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Abstract
Glucocorticoid hormones have important effects on brain 
function in the context of acute and chronic stress. Many of 
these are mediated by the glucocorticoid receptor (GR). GR 
has transcriptional activity which is highly context-specific 
and differs between tissues and even between cell types. 
The outcome of GR-mediated transcription depends on the 
interactome of associated coregulators. Selective GR mod-
ulators (SGRMs) are a class of GR ligands that can be used 
to activate only a subset of GR-coregulator interactions, 
thereby giving the possibility to induce a unique combina-
tion of agonistic and antagonistic GR properties. We de-
scribe SGRM action in animal models of brain function and 
pathology, and argue for their utility as molecular filters,  
to characterize context-specific GR interactome and tran-

scriptional activity that are responsible for particular gluco-
corticoid-driven effects in cognitive processes such as 
memory consolidation. The ultimate objective of this ap-
proach is to identify molecular processes that are respon-
sible for adaptive and maladaptive effects of glucocorti-
coids in the brain. © 2019 The Author(s) 

Published by S. Karger AG, Basel

Stress and Glucocorticoids in Brain Function and 
Memory

Stress, Homeostasis, and the Hypothalamic Pituitary 
Adrenal Axis
Stress is a state following a perceived threat to homeo-

stasis. It involves the activation of several responsive sys-
tems, including the endocrine, nervous, and immune sys-
tems, altogether facilitating adaptation of the organism  
to the stressor [1]. More specifically, the stress response 
includes the central corticotropin-releasing hormone 
(CRH) system, the sympathetic nervous system, and the 
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hypothalamic pituitary adrenal (HPA) axis. The latter 
constitutes the main neuroendocrine effector of the stress 
response, in which the stressor triggers activity of the hy-
pothalamic paraventricular nucleus (PVN). This initiates 
a cascade of hormonal processes starting with CRH re-
lease from the PVN, which in turn triggers production 
and release of adrenocorticotropic hormone from the an-
terior pituitary gland, ultimately resulting in the secretion 
of glucocorticoid (GC) hormones by the adrenal cortex 
into the circulation. 

Glucocorticoid Levels and Rhythm: From Adaptation 
to Maladaptation
The predominant GC in humans is cortisol, while ro-

dents exclusively produce corticosterone. Basal levels of 
GCs fluctuate as they display circadian and ultradian 
rhythms, which synchronize physiological processes and 
maintain appropriate stress responsiveness of the HPA 
axis and brain circuits [2–4]. The acute GC responses to 
stress, or short-term medical treatment with synthetic 
GCs, have many context-dependent effects that either cur-
tail the initial stress response, exemplified by anti-inflam-
matory actions, or support prolonged redistribution of en-
ergy stores and adaptation to future stressors [5, 6]. Long-
term and/or high exposure to endogenous and synthetic 
GCs is however associated with many adverse effects, in-
cluding the development of metabolic diseases, osteoporo-
sis, psychiatric symptoms, and cognitive deficits [7]. 

The brain is a prominent target of GCs, and it consti-
tutes the central structure for adaptation to stress. GC ef-
fects on the brain are pleiotropic – as they influence be-
havior, cognition, mood, and programming of the stress 
response – all functions to adapt to stressors. Shifts in GC 
levels are associated with complex changes in neuronal 
activity that differ over time and according to the brain 
region examined [4]. At the cellular level, GCs are neces-
sary for neuronal differentiation, integrity, growth, and 
synaptic and dendritic plasticity [8, 9]. These cellular pro-
cesses support brain functions such as decision-making, 
reward-based behavior, motor control, visual informa-
tion processing, learning and memory, food intake, and 
energy regulation. 

The interconnected limbic structures that mediate ef-
fects of stress and influence the HPA axis through PVN-
projecting neurons are considered the main functional 
GC targets [10]. These include the medial prefrontal cor-
tex (mPFC), the striatum, the hippocampus, and the 
amygdala. For example, stress impairs the long-term po-
tentiation in projections from the basolateral amygdala  
to the prelimbic PFC and to the ventral hippocampus-

mPFC connection [11, 12]. Acute GC treatment changes 
synaptic strength and excitability within hours, while re-
peated GC exposure or chronic stress paradigms consoli-
date such changes structurally via dendritic remodeling. 
This includes atrophy and reduction in apical spine den-
sity in the hippocampus region CA3 [13, 14] and the me-
dial prefrontal pyramidal cells [15–17], but also increased 
dendritic complexity in, e.g., the amygdala [18].

The cellular basis for most GC effects in the brain is 
largely unknown. Below, we will argue that targeting spe-
cific processes downstream of GC receptor activation 
may be a good strategy to unravel these effects. Before we 
address this question, we will discuss general molecular 
mechanisms of corticosteroid receptor signaling as well 
as different types of ligands.

The Receptors: Sensitivity of Brain Regions
The effects of GCs are mediated by the GC receptor 

(GR) and the mineralocorticoid receptor (MR). These 
corticosteroid receptors are closely related members of 
the family of nuclear steroid receptors, which act as li-
gand-dependent transcription factors. They differ in tis-
sue-distribution and ligand affinity [4]. MR is an aldoste-
rone receptor in tissues that convert GCs into inactive 
metabolites, but in relation to the stress system, it acts as 
a receptor for cortisol and corticosterone. The high GC 
affinity of the MR results in its function as a sensor of 
basal GC levels, and its involvement in shaping the initial 
response to stress [19]. GR has a lower affinity [20] and is 
more ubiquitously expressed throughout the human 
body. The difference in affinity is about 10-fold, as is ap-
parent from the pharmacological dissociation constants 
(Kd) of ∼0.5 nM for MR and 5 nM for GR. GR therefore 
responds to elevated levels of GCs, i.e. during stress. Spe-
cifically in the brain, MR is mainly restricted to the hip-
pocampus and other limbic areas, while GR is widely ex-
pressed. Within brain structures, different cell types show 
both qualitative and quantitative differences in their nu-
clear receptor expression profile. The use of single-cell 
profiling with RNA sequencing (scRNA-seq) allows 
large-scale comprehensive molecular classification of cell 
types in the brain and its subregions. For example, one 
study identified 69 different neuronal cell subtypes in the 
human temporal cortex [21]. These recent data suggest 
differential expression of GR in specific cell types in the 
human cortex, and also in hippocampal subregions [21–
23]. They also illustrate that scRNA-seq approaches can 
be used to identify specific cell types and intracellular 
pathways required for GC action in cognitive functions 
such as memory consolidation.
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After development of specific receptor (ant)agonists 
and the discovery of the two corticosteroid receptor types 
in the brain, it became clear GCs are essential for memo-
ry formation and each receptor type plays a distinctive 
role. For example, GR blockade shortly after learning in-
terferes with long-term memory consolidation, while MR 
blockade interfered with response strategy in novel situ-
ations [24]. Later studies using GR dimerization-deficient 
mice confirmed these pharmacological experiments and 
established the necessity of genomic GR action in mem-
ory consolidation [25]. Likely, there is also a role for ear-
ly, nongenomic effects of GCs in the promotion of mem-
ory formation (“encoding”). The formation and consoli-
dation of spatial and declarative memory heavily rely on 
hippocampal physiology and synaptic plasticity, for in-
stance via the modulation of glutamatergic transmission 
[26–28]. More recent work has also established roles of 
GR and MR in other, nonspatial, learning tasks; for ex-
ample memory retrieval is impaired by prior exposure to 
GCs [29]. The suppressive effects on memory retrieval 
may be turned into use for treatment of post-traumatic 
stress disorder, anxiety, and phobic disorders [30, 31]. 

Processes that depend on GR are recapitulated, or ex-
aggerated, by the use of synthetic GR agonists (like dexa-
methasone and prednisone), which are the mainstay in 
the treatment of inflammatory diseases, autoimmune dis-
orders and hematologic cancers [3, 32]. The often mal-
adaptive effects associated with excessive GC exposure 
include increased food intake and weight gain [33], dis-
turbance of awakening/sleeping rhythm [8], anxiety, de-
pression [34], and impaired cognitive functions [7]. 

Neuropsychiatric side effects after synthetic GC treat-
ment may be the result of GR hyperactivation, but there 
is also evidence that implicates MR hypoactivation. GR-
specific agonists suppress endogenous cortisol produc-
tion through GR-mediated negative feedback on the HPA 
axis, which results in diminished MR activity that can be 
restored by exogenous cortisol treatment [35, 36]. Never-
theless, GR antagonists are widely considered to counter-
act the adverse consequences of endogenous GC expo-
sure, and may be considered for clinical use in some brain 
diseases, for instance in depression [37, 38], alcohol ad-
diction [39], and neurodegenerative disease [40]. 

Since the classical GR antagonist RU486 also binds to 
progesterone and androgen receptors [41], efforts have 
been made to develop more selective GR antagonists. 
ORG34850 was shown to inhibit GR-mediated negative 
feedback on the HPA axis and was therefore considered 
to be a potential treatment for mood disorders (as dys-
functional HPA axis is known to be involved in depres-

sion) [42]. More recently, the selective GR antagonist 
CORT113176 was shown to be efficacious in a model for 
alcohol seeking and self-administration in alcohol-de-
pendent rats [39].

Thus, GR agonists and antagonists may help to under-
stand which processes involve GR and may be used to 
counteract maladaptive consequences of GR overactiva-
tion. However, they will activate or antagonize all GR-
mediated effects, and given the pleiotropic nature of GR 
signaling, this may also trigger unwanted activities. There 
are additional types of ligands, called “dissociated li-
gands” or selective GR modulators (SGRMs) that activate 
only a subset of GR-dependent signals in the cell [43, 44]. 
These may not only be advantageous in clinical settings, 
but they are also very promising tools to identify the cel-
lular mechanisms underlying the many different effects 
of GCs in the brain. 

GR-Mediated Transcription

Nongenomic effects notwithstanding [45], GR is best 
understood as ligand-dependent transcriptional factor. 
The receptor binds directly to DNA via its central DNA 
binding domain to inverted-repeat GC responsive ele-
ments (GREs) or to half-site DNA sequences, which 
mainly leads to upregulation of gene transcription [46]. 
This mechanism is shared with the other steroid recep-
tors. Direct DNA occupancy of GR can also lead to the 
repression of target genes via so-called negative GREs [47, 
48]. DNA binding often occurs in conjunction with other 
transcription factors and is typically followed by recruit-
ment of coregulator proteins that either stimulate or re-
press transcription [49]. Additionally, GR can indirectly 
mediate transcription by inducing protein-protein inter-
actions with other transcriptional factors already bound 
to DNA-specific loci [50]. One well-known example is the 
repressive cross-talk between GR and proinflammatory 
transcription factor AP-1 [51, 52].

GR Genomic Occupancy in the Hippocampus
Chromatin immunoprecipitation followed by se-

quencing (ChIP-seq) can be used to identify GR-occu-
pied genomic regions in vivo, which can differ between 
species, tissues, cell types, and physiological state. In the 
rat hippocampus, GR signaling is mostly dependent on 
direct DNA binding. In 2013, Polman et al. [53] identified 
almost 2,500 genomic GR binding sites (GBS) with ChIP-
seq in rat hippocampus. Almost all these GBS contained 
a GRE. More recently, it has been confirmed that 89.9% 
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of hippocampal GBS contained full or half GREs [54, 55]. 
Because ChIP-seq has only been performed on whole hip-
pocampus homogenate, it is possible that protein-protein 
interactions in subsets of activated neurons have been 
overlooked. Nevertheless, these results show that direct 
DNA binding is a major mechanism contributing to GR 
activity in the hippocampus. The context (e.g., cell type) 
dependence of GRE-driven targets is apparent from the 
specific association of GR binding with other transcrip-
tion factors, such as Nuclear Factor-1 [53–55]. Likely, GR 
can also heterodimerize with MR at a subset of binding 
sites [55, 56].

Chromatin Remodeling
GR transcriptional activity is regulated at different lev-

els, starting with the organization of the nuclear chroma-
tin and the availability of GREs for binding of the recep-
tors. Gene transcription is orchestrated by nucleosome 
architecture and chromatin configuration. Both levels are 
further coordinated by genomic and epigenomic mecha-
nisms that give dynamics to the chromosome layout and 
thereby modulate its accessibility. It has been shown that 
cell-specific GR-DNA interaction patterns are predeter-
mined by cell-specific differences in chromatin accessi-
bility. Genome-wide DNase I analysis and ChIP-seq were 
used to assess, respectively, chromatin accessibility and 
GR binding at high resolution before and after treatment 
with the synthetic GC dexamethasone. This revealed that 
preexisting accessibility of the chromatin largely but not 
completely determines genomic occupancy of GR [57]. It 
is of interest to identify also at which loci the GR can in-
duce chromatin opening by itself, rather than binding at 
preexisting accessible regions.

Steroid Receptor-Associated Coregulatory Complexes 
Epigenetic remodelers and chromatin context have a 

critical role in determining the transcriptional outcome, 
and therefore the directionality and intensity of gene ex-
pression changes. However, gene regulation also relies on 
the complex formation of GR with coregulatory partners 
[49]. GR transcription complexes typically consist of ap-
proximately 10 different coregulators, either stably or dy-
namically associated with each other [49, 58]. Tens of 
transcriptional coregulators are known to interact with 
GR, resulting in a large variety of transcriptional com-
plexes that lead to highly diverse gene expression out-
comes [59]. For example, the members of the steroid re-
ceptor coactivator (SRC) family are transcriptional co-
regulators that are differentially expressed in the brain, 
particularly the hippocampus, the cortex, and the hypo-

thalamus [60]. Knockout of SRC-1 is associated with dis-
turbed regulation of important GR targets: Pomc in the 
pituitary [61] and Crh, both in the hypothalamus and 
amygdala [62, 63]. It has been shown that the absence of 
SRC-coding genes NCoA2 and NCoA3 (Nuclear Coacti-
vator 2 and 3) had opposite effects on anxiety responses. 
Female NCoA2 knockout mice demonstrated decreased 
anxiety-like behavior, while NCoA3 knockout increased 
it. The latter data suggest that loss of SRC function under-
lies changes in behavioral phenotypes, but it is still un-
clear which steroid receptor pathways are involved in 
these effects as the coregulators affect several steroid re-
ceptors [64]. The coregulators may thus be viewed as in-
tegrators of multiple steroid signals. In a recent study, 
region-dependent expression of 62 coregulators and co-
expression with all steroid receptors were described in the 
brain [65] (Fig. 1). It is clear that the coexpression of GR 
and MR with coregulators is dependent on the brain re-
gion. Region-dependent recruitment of coregulator pro-
teins likely underlies the region-specific effects of steroid 
receptor-mediated transcription. 

The substantial number of distinct GR signaling path-
ways and the need for specific manipulation are the basis 
for the category of SGRMs [43, 44, 66]. Historically, dis-
sociated ligands bind GR and have higher efficacy at tran-
srepressive protein-protein interactions than at tran-
scription via GREs [47, 48]. These types of ligands have 
been pursued to separate anti-inflammatory effects from 
unwanted metabolic side effects, but it has turned out that 
anti-inflammatory effects also involve GRE-dependent 
transcription. For example, GR activation can lead to the 
upregulation of IκB-α (NF-κB inhibitor alpha), which 
limits the proinflammatory actions of NF-κB [51]. In ad-
dition, recent data suggest that inhibition of NF-κB-
driven proinflammatory transcription may depend on 
GR binding to negative GREs [67]. The term “selective 
modulators” relates to ligands that stimulate interactions 
with only a subset of the GR coregulators that are recruit-
ed in the presence of full agonists [59, 68]. Based on their 
selective efficacy, this class of drugs has the potential to 
combine agonistic and antagonistic properties in GR-me-
diated transcription. This may allow dissection of benefi-
cial from adverse effects, and thus holds potential to im-
prove current GC-based therapies. We recently discov-
ered that the actual combination of agonism and 
antagonism is sometimes required to generate beneficial 
effects on disease outcome. To date, the best example 
concerns a liver steatosis disease model, in which the 
SGRM CORT188335 mimicked GR agonism by stimulat-
ing lipid efflux via very low-density lipoprotein produc-
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tion, whereas it lacked agonist efficacy in stimulating fat-
ty acid uptake by the liver. In this way the hepatic lipid 
flux was affected in such a way that efflux dominated over 
influx, and liver steatosis could be attenuated [69].

Although a substantial number of whole genome tran-
scriptional and ChIP-seq datasets have been generated, it 
remains a major challenge to couple the extensive tran-
scriptional outcome of GR activation to effects at the lev-
el of synaptic signaling and behavior. Comparing the ef-
fects of SGRMs on behavior, coregulator interaction, and 
the transcriptional signature, may help to unravel the tar-
get genes and signaling pathways underlying particular 
GR effects in the brain and beyond. Below, we illustrate 
this approach based on experiments with two recently de-
veloped SGRMs, CORT108297 and CORT118335. 

CORT108297 and CORT118335 in Memory, 
Behavior, and Neurodegenerative Diseases
In an attempt to understand the GC effects on memo-

ry consolidation, SGRMs CORT108297 and CORT118335 
were studied in animal models. CORT108297 is a high-
affinity GR ligand (Kd = 0.9 nM) [70], while CORT118335 
has a lower affinity for GR (Kd of ∼8 nM), and shows some 
affinity for the MR, for which it acts as an antagonist [71]. 
CORT108297 was shown to have GR agonistic effects in 
an inhibitory avoidance memory task (Fig.  2a) [72], a 
paradigm known to be potentiated by GR [73] and usu-
ally set up to assess memory strength [74]. CORT118335 

had opposite effects on memory consolidation as 
CORT118335 injection an hour before the avoidance 
memory task antagonized the memory-enhancing effect 
of corticosterone, similarly to the classical GR antagonist 
RU486 (Fig. 2b) [59]. 

In a separate study, CORT108297 was shown to de-
crease immobility in a forced-swim stress paradigm, 
which was interpreted as GR antagonist effects on depres-
sion-like behavior [75]. CORT108297 also displayed an-
tagonist-like effects on corticosterone-induced reduction 
of neuronal differentiation [72], analogous to the effects 
of the full GR antagonist RU486 [76]. In terms of gene ex-
pression, CORT108297 was shown to act both as agonist 
and as antagonist, depending on the target gene [72]. A 
transcriptome analysis in the liver showed that in this tis-
sue CORT118335 acts as a partial agonist on most GR tar-
get genes but lacks agonism at a, functionally important, 
subset of targets [69]. Both compounds are thus selective 
modulators, rather than classical agonists or antagonists. 

CORT108297 has also been studied in models of neu-
rodegeneration. There is a substantial association between 
HPA axis dysfunction and Alzheimer’s disease (AD), as 
AD patients show elevated basal cortisol levels [77, 78]. 
The GR antagonist RU486 has beneficial effects in many 
models of AD [40, 79, 80]. In a rat model of AD, deregula-
tion of the HPA axis is associated with cognitive impair-
ments, apoptotic and neuroinflammatory processes, and 
an induction of amyloidogenic pathway. In this model, 
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CORT108297 treatment restored synaptic markers in the 
hippocampus and cognitive function in spatial short-term 
memory [81]. CORT108297 also restored hippocampal 
integrity and normalized neurogenesis in the dentate gy-
rus in mutant Wobbler mice as a model for human amyo-
trophic lateral sclerosis [82]. These mice also show moto-
neuron degeneration, motor deficits, astrogliosis and mi-
crogliosis in the spinal cord, which are correlated with 
increased levels of corticosterone in plasma, brain and spi-
nal cord. In these two neurodegenerative pathologic mod-
els it is likely that the antagonistic properties of selective 
modulators are mainly responsible for the beneficial ef-
fects. Indeed, the full GR selective antagonist CORT113176 
also rescued the phenotype of mutant Wobbler mice [83]. 

Differential GR Coregulator Recruitment and Gene 
Expression
The differential agonistic and antagonistic effects of 

CORT118335 and CORT108297 on various processes 
likely relate to their differential effects on gene expression 
that in turn depend on distinct coregulator recruitment by 
the ligand-bound GR. Differential GR-coregulator inter-
action profiles for CORT118335 and CORT108297 were 
demonstrated via the Microarray Assay for Real-time Co-
regulator-Nuclear receptor Interaction (MARCoNI) tech-
nology [58], which measures in vitro interactions between 
the GR ligand binding domain and peptides containing 
the coregulator domains that are responsible for interac-
tions with the GR (LxxLL motif containing Nuclear Re-

ceptor [NR] boxes) [84, 85]. The GR interaction profiles 
in the presence of SGRMs can in this way be compared 
with those of full GR agonists (cortisol, dexamethasone) 
and antagonists (mifepristone) [72]. 

As an example, SRC-1 is a GR coregulator associated 
with HPA axis function and the regulation of specific GR 
target genes [62]. The involvement of SRC-1 in negative 
feedback regulation of the HPA axis is complex due to the 
fact that there are two splice variants, SRC-1A and SRC-
1E. They share three NR boxes, but SRC-1A has an addi-
tional NR-box in the C-terminal part of the protein [86]. 
Moreover, SRC-1A is highly expressed in the pituitary and 
the hypothalamus, whereas both factors seem to be equal-
ly expressed in many other brain regions. This implies that 
there is a “targetable” GR-NR-box interaction that is spe-
cific for the hypothalamus and the pituitary [61].

CORT108297 differentiates GR interactions with the 
two SRC-1 splice variants as it preferentially induces an 
interaction between GR ligand binding domain and the 
SRC-1A NR-box 4 in the MARCoNI assay. The full ago-
nist dexamethasone does not show any preference for 
SRC-1 NR-boxes [72]. These observations suggest that 
CORT108297 selective effects on gene expression could 
be based on its potential to induce specific interactions 
between GR and the SRC-1 coregulator NR-box 4. This 
notion seems to hold, as CORT108297 could differentiate 
between regulation of Crh transcription in the hypothala-
mus (agonism) and the central nucleus of the amygdala 
(no agonism) [72].
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The GR coregulator interactions that are induced 
upon binding of CORT108297 and CORT118335 are 
both intermediate between those seen as full agonists 
(dexamethasone) and full antagonists (RU486). These 
SGRM-induced coregulator interaction profiles show 
partial overlap, but also clear differences [59, 72] (Fig. 3). 
Specifically, among 155 NR-boxes, 40 were shared be-
tween CORT118335, CORT108297, and dexamethasone, 
which likely represent shared agonistic properties. For a 
number of motifs, CORT118335 displayed agonist-like or 
antagonist-like GR interactions that were not present for 
CORT108297 [59].

It is an attractive hypothesis to relate functional differ-
ences to the coregulator interactions. The number of dif-
ferential interactions of GR bound CORT108297 and 
CORT118335 provides a short-list of responsible signal-
ing pathways. Likewise, motifs that differ between 
CORT108297, CORT118335, RU486 on one hand and 
full agonists on the other, may point to coregulators that 
underlie the GR-mediated aggravation of neurodegener-
ative processes and cognitive impairments.

Those coregulators that are differentially recruited af-
ter CORT108297 or CORT118335 binding to the GR may 
explain the functional differences between the com-
pounds [59]. Comparisons between SGRMs in terms of 
coregulator interactions with GR and the resulting func-
tional effects may allow the linking of particular signaling 
pathways with more integrative consequences, especially 
in the brain, where several cognitive and behavioral func-
tions are regulated by GCs. 

Conclusion and Perspectives

In conclusion, GR-mediated transcription depends on 
several parameters including chromatin accessibility, 
DNA-binding configuration, interaction with other tran-
scription factors, and GR coregulator interactome. These 
parameters are highly context-dependent and differ ac-
cording to the tissue, cell type, physiological state, and GR 
ligand. Ligand-related changes that are reflected in be-
havior, particularly in memory consolidation, could rely 
on variations in GR coregulator interactome in the hip-
pocampus and the other limbic structures involved in 
memory. The combination of behavioral and transcrip-
tional effects of SGRMs – with knowledge about their in-
duced GR coregulatory interactome, and the cell-specific 
coexpression of potentially interacting partners [65] – 
represents an interesting new research strategy to iden-
tify molecular pathways that are responsible for adaptive 
and maladaptive effects of GCs on brain function (Fig. 4). 

Future work may include validation of these putative 
interactions by using coimmunoprecipitation and ChIP-
seq directed towards the identified coregulators and GR, 
either in mixed cell populations or at the single-cell level 
in order to characterize the cells functionally involved in 
the observed changes in learning and memory. It is im-
portant to consider that the integration of the simultane-
ous levels of modulation represents a substantial chal-
lenge. The coregulators only represent one level of GR 
transcriptional modulation, and it would be of interest to 
also investigate the nucleosome configuration, chromatin 

RU486

0 0.5 1.0
Modulation index

1.5 2.0

CORT118335

CORT108297

Dexamethasone

Fig. 3. CORT108297 and CORT118335 in-
duce GR binding to coregulators in an in-
termediate fashion compared to dexa-
methasone and RU486. Each column rep-
resents a unique coregulator-derived 
peptide from a range of 50 nuclear receptor 
coregulators. In the MARCoNI analysis, 
the peptides were immobilized on a solid 
support and incubated with cell lysates 
containing tagged-GR, a ligand (dexa-
methasone, CORT108297, CORT118335, 
or RU486), and a tag-specific antibody 
coupled with a fluorophore. The relative 
interaction between each peptide and the 
GR was assessed by detecting the fluores-
cent label. The modulation index repre-
sents the log10-transformed ratio of the 
normalized fluorescence value. The values 
were normalized to the values obtained in 
control conditions (with dimethyl sulfox-
ide treatment) [unpubl. data]. 
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accessibility, other transcription factors, or posttransla-
tional modifications of the interacting effectors. 

Beyond their fundamental input, SGRMs also hold 
potential therapeutic value in GC-related disorders of the 
nervous system and beyond. Some authors have suggest-
ed superior effects of selective modulators over pure an-
tagonists [81]. GR selectivity over other steroid receptors 
is the first asset of SGRMs, as it prevents side effects re-
lated to androgen receptor, progesterone receptor, or 
even MR activities (although CORT118335 does act as a 
low-affinity MR antagonist). Furthermore, the other ma-
jor advantage of SGRMs is the specificity regarding their 
agonistic and antagonistic properties according to the 
cell type or transcriptional target, which provides target-
ing of only a subset of processes. For neurodegenerative 
diseases, it appears that residual GC anti-inflammatory 
efficacy combined with antagonism on classical neuro-
endangerment may represent the ideal SGRM properties 
[83]. The application of the GR coregulator interactome 
hypothesis in these models will also allow the dissection 
of GR-mediated effects and the potential benefits of se-
lective GR modulation compared to GR antagonism or 
agonism.

The ultimate goal for this line of research is to identify 
the GR-mediated transcriptional effects that are respon-
sible for adaptive processes and for brain disorders or pa-
thologies, and to evaluate therapeutic targeting of the lat-
ter pathways.
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