©
| -
©
-
M
L
@)
L
)
©
-
®
<
p]



Content
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point cloud automatically online learning ~ Segmentation &  Interpretations
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what it means performance
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1 ‘ Introduction

Point cloud segmentation
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: i i LiDAR
Point cloud semantic segmentation ﬁﬁ
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Point cloud semantic segmentation

Every point is given a class label

M Ground

Il Building
Civil

Bl Water

B Others

Bl High tension

]
TUDelft AHN4



Point cloud classification

2D, 3D modelling
* DTM (from ground)
* DSM (-water)

Digital Twins

* 3D BAG & o =
" /{,,,'/ /
PN, L4 1
Environment mapping J v /
*  Forest Wy,

* (Coastline
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Point cloud classification

B Ground M Building Civil
Il Water M Others [ High tension

If its wrong!

* Water through buildings

* Buildings on bridges!




also
noisy
labeling
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Research goal

How to develop a DL framework to automatically improve the existing classifications of laser-
scanned point cloud data by correcting misclassifications?

1. How to incorporate geospatial knowledge into a DL framework?

2. Can Online Learning Strateqgy enhance the model’s ability to correct misclassifications and
improve overall segmentation accuracy compared to traditional training approaches?

3. What is the impact of incorporating additional spectral features (such as NIR and RGB) on
the performance?
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2 ‘ Background

Automatic segmentation
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Img source: understand.ai
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Machine learning

......... N xd SEIEEE] IETEI BV
N xd’

3D Point » Neighborhood » Feature » Feature » Supervised » Labeled
Cloud Selection Extraction Selection Classification 3D Point Cloud

Source: Weinmann et al. [2015]

SEMANTIC INFORMATION!!!
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Machine learning

SEMANTIC INFORMATION!!!

Supervised » Labeled
Classification 3D Point Cloud

Source: Weinmann et al. [2015]

3D Point » Neighborhood » Feature ‘ Feature
Cloud Selection Extraction Selection

Raw data Human intervention

* curvature
+

,  normals
Information to

understand it » shape descriptors
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Deep learning

Less human interaction — automatic features extraction
o Data is fuel but Scarce

Normal DL Data Efficient DL

o Good performance o Make use of limited
training data

o Lots of good training data

%
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Deep learning

[ ess human interaction — automatic features extraction

Normal DL

1. Multi Layered Perceptrons — Basic NN
O Ex: PointNet, PointNet++

2. Convolution - Images
O Ex: PointCNN, KPConv

3. Transformer - NLP

P :
TUDelft Img source: Zhao et al., 2020 15



KPConv

Kernel Point Convolution

Inspired from image CNNs

Backbone!

* Tradeoff — performance & resources
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Skip link
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Source: KPConv, Thomas et al. [2019]
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Data efficient methods

Make the MOST out of limited Training Data

Approaches

1. Transfer learning
*  Finetuned to smaller datasets

2. Semi-supervised
* Little labeled - lot of unlabeled data

3. Self-supervised
* No labeled data - gives its own labels

]
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Data efficient methods

Make the MOST out of limited Training Data

Source: Li et al. [2021]
Training set GA N
o e onfidence o
Self-training  panpedrin
Progressively expands — i

the limited training data

GAN
2 Networks in parallel Segmentation network Discriminator network
Heavyl makes predictions judges predictions
18
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ldea of our approach

O To keep the network simple, but with the benefits of Data efficient models

v

(O

O Incorporate geospatial knowledge

O To have one network

Light weight!
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Method

Network training - Online strategy
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Method

GOAL: DL framework to learn from accurate labels by correcting misclassifications?

1. Preprocessing
* Separate good from bad samples

2. Online deep learning

* Learns from good labels
* Correct the bad ones

]
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1 Preprocessing

Separate good from bad samples

Confidence measurement

o Confidence scores for all the points

which decides Participation in training

o How confident we are with current label

%
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Point cloud

|

Primary confidences
with Neighbourhood Consistency

{ Update confidences for

ground points inside buildings to zero

Compute secondary point
confidences

building points inside buildings to one

if
confidence = t,

Confidence threshold

- ~

Over-confident Under-confident
point cloud point cloud
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1 Preprocessing 1. Primary Confidence

. © Neighborhood
T e e consistency
o /° o) N
/! @ @) \ ..
@ roogn how well a point is
\ DA ; surrounded by points of
® Ve o ° same classification
® e
. . N |
P o r=0.5m C— W if Niota1 >=5,
O lf Ntotal < 5
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1 Preprocessing

]
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M Ground

M Building
Civil

B Water

B Others

B High tension

77

Labeled

Confidence scores

Problem

Building walls
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2. Refining Confidence

ing

1 Preprocess

l
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After erosion & dilation

Mean NDVI
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1 Preprocessing

o

o

Building footprint
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Confidence scores

M Ground

Il Building
Civil

Bl Water

B Others

B High tension

Refined confidence

Labeled



2 Online deep learning

Deep learning

Good

input

%
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Good

predictions
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2 Online deep learning

Deep learning

Good Good
input predictions
BAD BAD
input predictions
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2 Online deep learning

Deep learning + Onlme

Good

input

%
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Good

training

Good

predictions
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2 Online deep learning

Deep learning + Onlme

Good

training
Good Good
input predictions
Pseudo
labels

lnput

wl CM

]
TUDelft 30



2 Online deep learning

Deep learning + Onlme

Good
training
Good Good
input predictions
if highly
Confldent -_—
BAD 99% Pseudo
input labels
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2 Online deep learning

Deep learning + Onlme

Good
uover GOOd tralnlng
Good
if highly
Confldent e
”U”der 990/0 Pseudo
Confident” Input labels
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2 Online deep learning

Good
predictions

“Over Good
Confident” input

Good
“Over GOO d training
Good
if highly
Confident |
“Under ~ BAD 99% Pseudo
Confident” input labels

%
TUDelft

Baseline

+0nline
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4 ‘ Implementation

Point cloud, DSM, MSI
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Data

Point cloud

Training Test

52 8 mini tiles

~85%

15%

0.25 x 0.3125 km

m Others ®Ground

%
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m Building

m \Water

m High tension

Civils

Training * in millions

250

200

150

100

50

0

Test

40
35
30
25
20
15
10

5

0

17
I 0.005 1

215
102
I 66
*in millions

37
18
10
6
- 0.0001 0.004
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Network supervision

Loss

o How far model’s predictions from true values

Penalizing for incorrect predictions

Others ®mGround  mBuilding m\Water mHigh tension

TUDelft

Weighted cross-entropy loss
Ne
Pe=N

_ 3/ Pmax

p

1

Lecross- entropy — T N7 Z Z Welc,j 11’1 yc .J
] 1lc=

More weight to minority classes
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Hyperparameters

Preprocessing

Hyperparameter Value
r 0.5m
t1 0.9

]
TUDelft

Backbone
Hyperparameter Value
N 300 ]
Epochsteps 300
[r 0.01
in_radius 10.2
kernel points 15

+Online
Hyperparameter Value

e 150

tr 0.99
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Results

Segmentation, online updates
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Results with base features

[Elevation + intensity ] - raw features (from LiDAR sensor) "*——

Model features: elevation, intensity

Per class accuracies mAcc OA

Others Ground Building Water High tension Civil

Baseline 89.8 98.6 78.1 99.2 322  80.0 79.6 9438 .
. Baseline
+Online | 90.8 98.6 794  99.2 332 753 | 794
Per class IoUs mloU +Online

Others Ground Building Water High tension Civil
Baseline 86.6 94.8 73.5 98.1 274 2.6 63.8
+Online 84 (948 754 984 304 57|

* All values represent the average of three experiments, ensuring fair comparison

“]
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M Ground
M Building
Civil
B Water
B Others
B Hightension £
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RGB

Ground truth

Baseline

+0Online
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Results with additional NIR feature

ien

| Elevation + intensity + NIR | Additional information from aerial images |||+——

Model features: elevation, intensity, NIR

Per class accuracies 7 mAcc) ( OA}
(" Others ) Ground [© Building) Water High tension Civil
Baseline 91 1 (1.1) |98.4 | (-0.3) | 73.5 | (-4.6) 992 (0) 44.8 ' (12.6) 79.0 | (-1.0) || 81" (1.3) |[94.6 | (-0.2)
+Online 90.8 (0) 98.6 (0) | 729 | (-6.5)| 99371 (0.1) 309 (-23) 7761 (23) ||783 | (-L1) |\947 | (-0.5)
Per class IoUs mloU
Others Ground Building Water High tension Civil
Baseline 865 | (-0.1) | 95.1 1 (0.3) | 69.1 | (-4.3)| 98.4 1 (0.3) 383 1(109) 25/ (-0.1) || 65 (1.2

+Online (87.0 1 (16) ) 95171 (02) | 69.6 | (59)) 9791 (05) 288/ (17) 24/(33) |(634(16))

* All values represent the average of three experiments, ensuring fair comparison

“]
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M Ground

M Building
Civil

B Water

B Others

M High tension
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RGB

Ground truth

Baseline

+0Online
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Results with additional RGB features

| Elevation + intensity + RGB| Additional information from aerial images

iergb

Model features: elevation, intensity, red, green, blue

Per class accuracies mAcc OA
Others ( Ground)  Building Water High tension Civil
Baseline 9051 (0.6) | 97.9 | (-0.8)| | 803 1 (22) 993 1 (0.2) 46~ (13.8) 842 (43)| 831 (3.4) 94.8 (0) |
+Online 917 1 (1) | 98] (-0.6)| 689/ (-105) 972/ (2) 313](-1.9) 704 | (-4.8) | 763 | (-3.1) 93.9 | (-1.2)
Per class IoUs mloU
Others Ground Building Water High tension Civil
Baseline | 87.27 (0.6) | 945 | (-03)| 75871 (23) 965/ (-1.6) 4451 (17.1) 277 (02) | 6691 (3) |
+Online 853 (-0.1) (942 | (-0.7)) 66 (-94) 954 (29) 256/ (-49) 24| (3.3)| 615 (-3.5)

* All values represent the average of three experiments, ensuring fair comparison
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& Baseline

+0Online
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M Ground

M Building
Civil

B Water

B Others

M High tension
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RGB

Ground truth

1

Baseline

+0nline
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Online updates on Training data

- - M Ground

Ground truth +Online update B 2?\;:?'”9

B Water

B Others
- - :

Ground truth +0nline update

%
TUDelft

46



Online updates

M Ground
RGB Ground truth +Online update - gj\;li?mg
M Water
B Others
. . .
RGB Ground truth +0nline update
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DIScUusSIons
& Conclusions
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B Ground

M Building
Civil

B Water

M Others

B High tension

A

% ; : 8 : A
TU De|ft Ground truth Threshold 5 Threshold 10 Threshold 15




Extracted Footprints

2D BAG Vegetation (ndvi>0.3)
Budildings (ndvi<0.3)
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Limitation 1 — Quality of additional features NIR

Buildings — decreased performance!

Alignment artifacts — point cloud & aerial images fusion

]
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Limitations 1 — Quality of additional features RGB

Ground
decreased performance!

%
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B

Alignment & Temporal artifacts
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Limitation 2 — Missing context

Ground truth +0nline

High accuracy but very low loU

M Ground

M Building
Civil

B Water

B Others

M High tension

80% accuracy 5% loU

o No training data!

o Context is everything

+0nline
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Limitations 3 — Faulty ground truth

M Ground [ Building  Civil [l Water [l Others M High tension

Ground truth +0nline

Despite the model’s strong predictive ability, these metrics suggest otherwise
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Conclusions

ﬁverall \

« Ifonly raw LiDAR
+ONLINE - best!

OA 95.1%
mAcc 79.4%
mloU 65

« Training data gets better

/However! \

» for class specific tasks, and
« if additional information (NIR, RGB)

Baseline with NO Online is better

High tension Baseline with RGB
Others (veg) Baseline with NIR

K quantify!? /

%
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* +O0nline is very sensitive to data
artefacts
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Future scope

1. Online hypothesis with Transformers
2. Generalizability to TLS & MLS

3. Incorporation of synthetic data

%
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Thanks!
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Questions?
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