

A Confidence-aware Deep
Learning Framework for Refining
Laser-scanned Point Cloud
Classification

Sharath Chandra

Supervisors
Shenglan
Daan
Jantien

Content

Background Conclusions Introduction Method Results point cloud online learning automatically Segmentation & *Interpretations* deep learning online updates Reasoning segmentation performance what it means

Introduction

Point cloud segmentation

Point cloud semantic segmentation

Points in 3D space

Point cloud semantic segmentation

Every point is given a class label

Ground Building Civil Water Others

Point cloud classification

2D, 3D modelling

- DTM (from ground)
- DSM (-water)

Digital Twins

3D BAG

Environment mapping

- Forest
- Coastline

Point cloud classification

If its wrong!

- Water through buildings
- Buildings on bridges!

RGB

Segmented PC

also noisy labeling

Research goal

How to develop a DL framework to automatically improve the existing classifications of laser-scanned point cloud data by correcting misclassifications?

- 1. How to incorporate geospatial knowledge into a DL framework?
- 2. Can Online Learning Strategy enhance the model's ability to correct misclassifications and improve overall segmentation accuracy compared to traditional training approaches?
- 3. What is the impact of incorporating *additional spectral features* (such as *NIR* and *RGB*) on the performance?

Background

Automatic segmentation

Traditional

Bounding boxes

Takes a lot time

Img source: understand.ai

Machine learning

Source: Weinmann et al. [2015]

SEMANTIC INFORMATION!!!

Machine learning

SEMANTIC INFORMATION!!!

Source: Weinmann et al. [2015]

Raw data

+

Information to understand it

Human intervention

- curvature
- normals
- shape descriptors

Deep learning

Less human interaction – automatic features extraction

Data is fuel but Scarce

Normal DL

- Good performance
- Lots of good training data

Data Efficient DL

 Make use of limited training data

Deep learning

Less human interaction – automatic features extraction

Normal DL

- 1. Multi Layered Perceptrons Basic NN
 - Ex: PointNet, PointNet++
- 2. Convolution Images
 - Ex: PointCNN, KPConv
- 3. Transformer NLP
 - Ex: Point Transformer, Superpoint Transformer

KPConv

Kernel Point Convolution

Inspired from image CNNs

Backbone!

Tradeoff – performance & resources

Source: KPConv, Thomas et al. [2019]

Data efficient methods

Make the MOST out of limited Training Data

Approaches

- 1. Transfer learning
 - Finetuned to smaller datasets
- 2. Semi-supervised
 - Little labeled lot of unlabeled data
- 3. Self-supervised
 - No labeled data gives its own labels

Data efficient methods

Make the MOST out of limited Training Data

Self-training

Progressively expands the limited training data

GAN

2 Networks in parallel

Heavy!

Idea of our approach

To keep the network simple, but with the benefits of Data efficient models

- Incorporate geospatial knowledge
- To have one network

Light weight!

Method

Network training - Online strategy

Method

GOAL: DL framework to learn from accurate labels by correcting misclassifications?

1. Preprocessing

Separate good from bad samples

- Learns from good labels
- Correct the bad ones

Separate good from bad samples

Confidence scores for all the points
 which decides Participation in training

How confident we are with current label

1. Primary Confidence

Neighborhood consistency

how well a point is surrounded by points of same classification

$$C = \begin{cases} rac{N_{sameclass}}{N_{total}} & ext{if } N_{total} >= 5, \\ 0 & ext{if } N_{total} < 5 \end{cases}$$

GroundBuildingCivil

WaterOthersHigh tension

Confidence scores

<u>Problem</u> Building walls

Primary confidence

2. Refining Confidence

1 Preprocessing

RGB

Building footprints!

for refinement of

buildings with

additional sources of

DSM & NDVI

Building footprint

Labeled

Confidence scores

Deep learning

Deep learning

04

Implementation

Point cloud, DSM, MSI

Data

Point cloud

from GeoTiles
AHN4

DSM

from AHN, 0.5m

Aerial MSI

Pléiades Neo from NSO, 0.5m, RGB+NIR

Data

Point cloud

Training Test

52 8 mini tiles 0.25 x 0.3125 km

~85% 15%

Network supervision

Loss

How far model's predictions from true values
 Penalizing for incorrect predictions

Weighted cross-entropy loss

$$p_c = \frac{n_c}{N}$$

$$w_c = \sqrt[3]{\frac{p_{max}}{p}}$$

$$L_{\text{cross-entropy}}(\hat{y}, y) = -\frac{1}{N} \sum_{j=1}^{N} \sum_{c=1}^{M} w_c y_{c,j} \ln(\hat{y}_{c,j})$$

More weight to minority classes

Hyperparameters

Preprocessing

Hyper	Value		
	r	0.5m	
	t_1	0.9	

Backbone

H	lyperparameter	Value		
	N	300		
	Epochsteps	300		
	lr	0.01		
	in_radius	10.2		
	kernel points	15		

+Online

Hyper	parameter	Value		
	е	150		
	t_2	0.99		

Results

Segmentation, online updates

Results with base features

Elevation + intensity] - raw features (from LiDAR sensor)

Model features: elevation, intensity									
Per class accuracies								OA	
	Others	Ground	Building	Water	High tension	Civil			
Baseline	89.8	98.6	78.1	99.2	32.2	80.0	79.6	94.8	
+Online	90.8	98.6	79.4	99.2	33.2	75.3	79.4	95.1	
		mIoU							
	Others	Ground	Building	Water	High tension	Civil			
Baseline	86.6	94.8	73.5	98.1	27.4	2.6	63.8		
+Online	85.4	94.8	75.4	98.4	30.4	5.7	65.0		

^{*} All values represent the average of three experiments, ensuring fair comparison

Baseline

+Online

Ground

Building
Civil

Water Others

Results with additional NIR feature

Elevation + intensity + NIR

Additional information from aerial images

Model features: *elevation*, *intensity*, NIR

Per class accuracies							mAcc	OA
	Others	Ground	Building	Water	High tension	Civil		
Baseline	91 ↑ (1.1)	98.4 \(\((-0.3) \)	73.5 \(\psi \) (-4.6)	99.2 (0)	44.8 ↑ (12.6)	79.0 ↓ (-1.0)	81 ↑ (1.3)	94.6 ↓ (-0.2)
+Online	90.8 (0)	98.6 (0)	72.9 \(\tau (-6.5)	99.3 ↑ (0.1)	30.9 ↓ (-2.3)	77.6 ↑ (2.3)	78.3 \(\((-1.1) \)	94.7 ↓ (-0.5)
			Per class Io	Us			mIoU	
	Others	Ground	Building	Water	High tension	Civil		
Baseline	86.5 \(\((-0.1) \)	95.1 ↑ (0.3)	69.1 \(\((-4.3) \)	98.4 ↑ (0.3)	38.3 ↑ (10.9)	2.5 ↓ (-0.1)	65 ↑ (1.2)	
+Online	87.0 ↑ (1.6)	95.1 ↑ (0.2)	69.6 ↓ (-5.9)	97.9 ↓ (-0.5)	28.8 \(\((-1.7) \)	2.4 \(\((-3.3) \)	63.4 \(\((-1.6) \)	

^{*} All values represent the average of three experiments, ensuring fair comparison

Ground truth

Ground Building Civil Water Others

High tension

RGB

Results with additional RGB features

Elevation + intensity + RGB | Additional information from aerial images

Model features: elevation, intensity, red, green, blue

Per class accuracies						mAcc	OA	
	Others	Ground	Building	Water	High tension	Civil		
Baseline	90.5 ↑ (0.6)	97.9 \downarrow (-0.8)	80.3 ↑ (2.2)	99.3 ↑ (0.2)	46 ↑ (13.8)	84.2 ↑ (4.3)	83 ↑ (3.4)	94.8 (0)
+Online	91.7 ↑ (1)	98 ↓ (-0.6)	68.9 \(\((-10.5) \)	97.2 ↓ (-2)	31.3 \((-1.9)	70.4 \(\((-4.8) \)	76.3 \(\((-3.1) \)	93.9 ↓ (-1.2)
			Per class IoUs				mIoU	
	Others	Ground	Building	Water	High tension	Civil		
Baseline	87.2 ↑ (0.6)	94.5 \(\((-0.3) \)	75.8 ↑ (2.3)	96.5 ↓ (-1.6)	44.5 ↑ (17.1)	2.7 ↑ (0.2)	66.9 ↑ (3)	
+Online	85.3 \(\((-0.1) \)	94.2 \((-0.7)	66 ↓ (-9.4)	95.4 ↓ (-2.9)	25.6 \(\((-4.9) \)	2.4 \(\((-3.3) \)	61.5 \(\((-3.5) \)	

^{*} All values represent the average of three experiments, ensuring fair comparison

TUDelft

■ Ground ■ Building Civil

Water Others

High tension

Online updates on Training data

RGB

RGB

Ground truth

Ground truth

+Online update

+Online update

Online updates

RGB

Ground truth

Ground truth

+Online update

Discussions & Conclusions

Hyperparameters comparison

Our building footprints vs 2D BAG

Limitation 1 – Quality of additional features NIR

Buildings – decreased performance!

Alignment artifacts - point cloud & aerial images fusion

Limitations 1 – Quality of additional features RGB

Ground

decreased performance!

Limitation 2 – Missing context

High accuracy but very low IoU 80% accuracy 5% IoU

- No training data!
- Context is everything

Limitations 3 – Faulty ground truth

Despite the model's strong predictive ability, these metrics suggest otherwise

Conclusions

Overall

If only raw LiDAR +ONLINE – best!

OA 95.1%mAcc 79.4%mIoU 65

 Training data gets better quantify!?

However!

- for class specific tasks, and
- if additional information (NIR, RGB)

Baseline with NO Online is better

High tension Baseline with RGB
Others (veg) Baseline with NIR

 +Online is very sensitive to data artefacts

Future scope

- 1. Online hypothesis with Transformers
- 2. Generalizability to TLS & MLS
- 3. Incorporation of synthetic data

Thanks!

Questions?

