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Abstract—We created software to simulate the Larmor precession in a setup for SESANS with adiabatic/radio
frequency f lippers in magnets designed to measure the time-of-flight on pulsed or stationary neutron sources.
The values and spatial configurations of the magnetic fields of the existing prototype magnets we used as input
data. For an empty setup, we calculate the polarization of a “divergent ribbon beam” 2 cm high, depending
on the neutron wavelength λ. In the “scattering experiment”, we show how to convert λ to the “spin-echo
length” δ. For λ = 10 Å, f lippers at a distance of 140 cm and a radio frequency 1 MHz we find δ ≈ 10 μm.
Extension to δ = 20 μm is realistic.
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INTRODUCTION
SESANS is a method of spin-echo small-angle

neutron scattering with the transfer of wave vector
Q ∼10–6–10–3 nm–1 in regions with magnetic field B
in the form of parallellograms with a “device angle”
θ0 < 90° (Fig. 1). Depolarization of the beam due to
scattering in a sample with an inhomogeneous density
is measured as a function of the parameter of the spin-
echo length δ, which is specified by the “technical”
parameters of the setup: neutron wavelength λ, mag-
netic induction B, and length. SESANS is used in
materials science in samples with inhomogeneities of
102–104 nm. Examples are phase transitions, defects,
porosity, clusters, biological nanostructures, mem-
branes, colloids, ferromagnetic domains, etc. [1–7].

Neutrons with a wavelength λ f lying along a path of
length L through a uniform magnetic field with induc-
tion B “collect” the precession phase ϕ = cLBλ [1].
According to this rule, for field regions in the form of
a parallelogram, it can be found that the precession
phases ϕi in the arm 1 of the neutron spin-echo (NSE)
before (i = 1) and arm 2 (i = 2) after scattering in the
sample, while the neutron crosses the field, are:

(1)

where the constant c = 4πμn/h2 = 4.632 × 1014 T–1 m–2,
μn, mn, h are neutron mass, magnetic moment and
Planck constant, respectively, ψi are the angles
between the x axis and the f light directions in the NSE

arms. λΓψi in (1) is the angle labeling term. For a rect-
angular field, it is zero in the first order. Γ is called
“labeling coefficient”.

Suppose that a neutron is scattered by ψ2 – ψ1 = θs
in the y direction (Fig. 1a). Then (1) gives an offset
from NSE due to this process: ϕ1 – ϕ2 = Γθs. It has a
wave vector transfer Qy = (4π/λ)sin(θs/2). If we divide
the offset by Qy (with sinθs = θs), we get the dimension
length:

(2)
called “spin-echo length”. It follows from (1) and (2)
that δ depends on θs, L, B, and λ .

In the practice of a SESANS measurement, at a
fixed δ, the (damped) oscillating signal P(δ, Δϕ) after
the analyzer is measured as a function of the preces-
sion phase Δϕ collected in a “phase coil” in one NSE-
arm to make extra offset from NSE. The polarization
P(δ) is the (maximum) amplitude of the signal P(δ,
Δϕ). Scanning δ means repeating, varying one of the
parameters θ0, L, B, λ within the range that the setup
allows. The polarization P(δ) measured in this way
contains information on the Σ and dΣ/dΩ (total and
differential macroscopic cross sections). It is con-
nected with the so-called “SESANS correlation func-
tion” G(δ) via [1]:

(3)

( ( ),) 1,2i iLB iϕ = λ + Γψ =
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Fig. 1. (a) Principle of SESANS operation: P is a polarizer; A is a analyzer; R1/R2 are rotators to orient/analyze polarization vec-
tor along x, y or z axes. The lines in R1/R2 suggest the “V-coils” to orient/analyze the polarization component parallel to y, i.e.,
perpendicular to the local field needed to observe the precession. (b) Top view of GATCHINA variant by calculating (17) the DC
field profile along a horizontal trajectory through the f lipper F2 (� = 2) at ψ ≠ 0 (exaggerated). Sample S is located in a place with
a small field in the NSE-arm 1. (c) Side view of one flipper with “gradient spirals” and RF-coil.
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where l is the sample thickness, k0 = 2π/λ is the neu-
tron wave number, G(δ) is a function decaying from
unity at δ = 0. A discussion of this is beyond the scope
of this article; see [8] for more details.

The denominator P0(δ) is the polarization of the
empty setup when “focused” on the spin-echo length
δ using the parameters θs, L, B, and λ. Its value deter-
mines the quality and range of available δ that are rel-
evant for future users. If we take the parameter λ for
scanning δ, a complication may appear that dΣ/dΩ
changes with λ. By combining P(δ)/P0(δ) measured
varying λ at constant B with P(δ)/P0(δ) measured
varying B at constant λ, we can obtain additional
information about the sample [8], which not available
if, in the case of a monochromatic beam, only B is a
variable parameter. In the case of a “white” beam and
TOF mode, both options are available.

The purpose of the work was to find a realistic value
for P0(δ) by simulating the precession in the SESANS
variant with four “adiabatic RF/gradient-flippers”
(RF – radio frequency) (Fig. 1b) in existing proto-
types of electromagnets. We created software to simu-
late Larmor precession for a “beam” of trajectories.
For input, we take data on magnetic fields much more
accurate and complete than before [9]. We will simu-
late the offset from NSE after scattering in the “sam-
ple”. When applying (2), this will lead to accessible δ.
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHROT
Here we present the magnetic fields in our setup based
on the latest field measurements/calculations; we give
a simulation of the precession through a full setup, and
not through one NSE-arm. Moreover, we discuss the
consequence of imperfect setting of the polarization
vector in the setup.

MAGNETIC FIELDS IN THE SESANS SETUP
DC Magnet

The component (x) of the DC electromagnet
around the F1 flipper was measured in its real medium
along its main axis to x = ±75 cm. Fig. 2 shows the data
(–40 < x < 70) used for simulating the F1 flipper. The
field of such a magnet is not uniform, but increases
outside the plane z ≡ 0 with z2:

(4)
The coefficient γB(x) was measured between the poles;

outside we describe (x, z ≠ 0) with γB at the ends of

the poles. The difference (x, z ≠ 0) –  (x, z = 0)
is also shown in Fig. 2. If the field is configured so that
the plateau reaches 34.3 mT, it does not exceed 0.6 mT.

In the plane z ≡ 0 we measured the map (x, y)

near one end of the polar gap. The contour line (x, y),

DC
zB

DC DC 2( ) ( ), [ ( ]0 1 ), 0 .z z BB x z B x z x z≠ = = + γ

DC
zB

DC
zB DC

zB

DC
zB
DC
zB
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Fig. 2. Field (x) is measured (open circles) at λ = 2 Å

along the axis of the DC magnet of F1 with 33°-poles. For
simulation with RF = 1 MHz, far from the axis (z = 1.0 cm),

 is symmetrized and adjusted so that the plateau 34.32 mT

appears at ωRF/γ (1). The increase in (x, z) from z = 0 to

z = 1 is simulated using Eq. (4) (2). Multiplied by 10.
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Fig. 3. The field generated by the gradient field spirals at both
poles of the DC magnet (Fig. 1b), measured at λ = 4 Å.
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indicating the half plateau, repeats the shape of the

poles (θ0 = 33.7° → cotθ0 = 1.500) in Δy by more than

2 cm around the axis. This indicates that the desired

labelling coefficient Г is indeed implemented for these

poles.

Gradient and RF Field
in Adiabatic/RF/Gradient Flipper

For gradient field, we applied spirals on both sides

of the isolating plates and attached one plate directly

to each magnet pole (Fig. 1c) in order to increase the

field by two times compared to “isolated” mounting.

The z-component of the field, , measured at λ = 4 Å,

is shown in Fig. 3. Note that the component (x,

z ≡ 0) is invariant over Δy = 20 mm.

To create a RF field that is invariant over the equal

y-range and keep this field “far” from the iron poles of

the DC magnet, we introduce a rectangular coil Δy ×

Δz = 72 × 36 mm with a length of 70 mm (Fig. 1c).

Outside this coil, its field decays more slowly than the

field of a square coil of the same height. This is useful

for reducing the undesired components of Pxz and Pyz
(third column in Fig. 4). We calculate the field

strength HRF of this coil analytically based on the for-

mula for the absolute value |H| of the circular field of a

finite section of wire. For each winding, the fields of

the parts (top/bottom and side) are added. To obtain

the field components (x0) and (x0) of the

entire coil, the fields of all windings are added. The

result (I = 2.5 A) is shown in Fig. 5b. We checked: the

GR

zB
GR

zB

RF

zH RF

xH
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(x) component changes by less than 5% in the y-

range of 20 mm; therefore, it is also “invariant”.

Guide Field and Current Screen

Around our prototype, we built two sets of coils

with dimensions Lx × Ly = 250 × 50 cm at a distance

of d = 25 cm, creating a vertical “guide field” G.

Again, for each coil, the field contributions of (long

sides/x and start/end) are calculated analytically. The

field G(x, y, z ≡ 0) around one NSE-arm is the sum of

the fields of upper and lower coils. The line 1 in Fig. 6

is the sum of the z-components of the opposite fields

of the coil sets around NSE-arm 1 and 2. The d/Ly
ratio was 0.5: this is the “Helmholtz configuration”

with the advantage that G(x, z) becomes very homoge-

neous near the beam axis. For |z| < 1 cm, |G| deviation

from G(x, z ≡ 0) over the entire length is less than

2 mA/cm. We must remember that the guide field

between the poles of the DC magnets is “shielded”.

This is taken into account by subtracting the profile in

Fig. 2 weighted so that between the magnet poles the

guide field G is suppressed by 95%. This is indicated in

Fig. 6. We plan to install a “current screen” (a field

calculated with the geometry in Fig. 1a) that creates a

field step at x = 0 to avoid a drift of the polarization

vector to an undesirable direction during the transition

from NSE-arm 1 to 2 (making the NSE experiment

impossible).

SIMULATING PRECESSION

Matrix Multiplication

We identify the expected values of the spin compo-

nents along x, y, z with the “polarization vector” P(t).

In terms of this vector, the Larmor equation is usually

written as follows:

(5)

RF

xH

( ) ,d dt t= γ ×P P B
TRON AND NEUTRON TECHNIQUES  Vol. 14  Suppl. 1  2020
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Fig. 4. The evolution of the vectors [(Pxx, Pxy, Pxz), (Pyx, Pyy, Pyz), (Pzx, Pzy, Pzz)] in the f lipper F1 (Fig. 1b) with parameters:
λ = 4 Å, z = 0.5, ψ = 0, ζ = 0, plateau level is 343.3, number of simulation steps N = 2500.
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Fig. 5. Simulation input for the F1 flipper (Figs. 1b, 1c) (switched “ON”) according to Eqs. (7)–(11) (λ = 4 Å, z = 0.5, ψ = 0,
ζ = 0; number of simulation steps N = 2500): (a) gradient field; (b) RF field; (c) θ(x, z).
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with γ = 2μn/ħ. For a uniform magnetic field B along
z, this equation can be written as a standard (3 × 3)
matrix Rz(α) for rotation about z, where α = α(t) =
γ|B|t is the precession phase collected in time t, so that
the field acts on the vector P. For an arbitrary field B
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHROT
(defined by polar angle θ and azimuthal angle ϕ),
Eq. (1) takes the form

(6)= ϕ θ α θ ϕ–1 –1

in( ) ( ) ( ) )( ,( )) (z y z y zP t R R R R R P
RON AND NEUTRON TECHNIQUES  Vol. 14  Suppl. 1  2020
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Fig. 6. Guide field component Gz(x, y = 0, z ≡ 0) of two coil sets on the right with antiparallel field (1) and after adding the field
of the current screen placed at x = 0 (2). The dotted parts represent the shielding of the guide field between the DC magnet poles.
Vertical lines indicate a modular way of simulation.
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where Ry is the standard (3 × 3) matrix that describes
rotation around y.

We use a “rotating coordinate system” [10, 11]

around the z axis at the frequency ωRF of RF fields that

are assumed to oscillate in phase. The advantage is that

their time dependence is “transformed”, but with con-

sequences: RF fields appear to be reduced by two

times compared to their “DC-value”; a DC field B* =

ωRF/γ (with γ/(2π) = 2.9126 kHz/G) is subtracted; the

longitudinal DC field components rotate at –ωRF

around z: inefficiently, hence, they are ignored. The

remaining field profiles ΣAx and ΣAz (near the beam:

|y|, |z| < 1 cm) in the f lippers are:

(7)

(8)

∑Ay is set to zero by selecting the initial phase of the
ROT system. This means that ϕ = 0 in (7).

The components ∑Ax and ∑Az are shown in

Figs. 5a, 5b. They form a field A(x, z) making an angle

θ(x, z) with the z-axis, which gradually increases as a

function of x from zero to π (Fig. 5c). The polarization

vector P will (more or less) “follow” this field. The

length Lsim in our model (Fig. 1b) is divided in N steps

of length dxs. After each step k (–40/–70 + dxs < xk <

+70/+40, k = 1, …, N), the precession is calculated as

a matrix product with increasing number of factors:

(9)

input θj and αj are calculated from ΣAx and ΣAz and
plotted in Fig. 5c:

(10)

(11)

GR DC

0 ( , ) ( , ) – *

sum transverse c( omp ,)

z z zA H x z B x z B = μ +

RF

0 ( , ) sum longitudinal comp ,( )x xA H x z = μ

–1

in in

1

( ) ( ) (( )) ) ( ,

j k
k

y j z j y j
j

P t R R R P P
=

=
= θ α θ ≡∏ ℜ

–1
tan , ,[ ( ) ( )]

fiel( d orientation ,)

j x j z jA x z A x zθ =  

, precession p( ) ( ) ( )hase .j n j sm h x z dxα = γ λA
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As input for the matrix with k = 1, we take the vectors

[(100), (010), (001)], that is, the matrix (I).The out-

put for matrix (Rk)ij (i, j = x, y, z; k = 1…N) is shown

in Fig. 4 in the (3 × 3) layout. Third column, showing

the evolution of the vector (001), is easily interpreted:

this vector “flips” almost to (010), but the x and y
components appear. To see the precession, we must

prepare (100) or (010) as input (first or second col-

umn) using a polarization rotator (device R1 in

Fig. 1a) ending at x = –40. Independently, using the

second rotator R2 beginning at x = 70, we can select

any mode in Fig. 4.

Precession Phase

To discuss NSE, we need to know the collected

precession phase  along the trajectory. Following

the practice of 3D polarization analysis [12], we calcu-

late , assuming that the equipment {π/2 – rotator

+ anal + detec} is installed at xk and that we measured

the elements Pyy ≈  and Pyx ≈ . Here

they are identified with the elements of the matrix

(Rk) with k = 1, …, N. The phase  can be found

uniquely in the interval [–π, π] by calculating:

(12)

The result (multiplied by 100) is shown in Fig. 7 (line 1).

We made a routine to recover multiples of 2π (line 2).

To get a meaningful result, N must be chosen so high

that αj < π for all j. In Fig. 5c, we can verify: this con-

dition is fulfilled. This is  in the rotating system.

The phase in the LAB system (line 3) is obtained by

adding the phase ϕRF(x) = ωRF(mn/h)λx of the ROT

system (line 4).

( )kxφ

( )kxφ

cos ( )kxφ sin ( )kxφ

( )kxφ

–1 –1
[ ] [(( ) tan tan

1,  .

) ( ) ]

( ).., .

k k
k yx yy yx yyx P P

k N
φ = ≡

=
ℜ ℜ

( )kxφ
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Fig. 7. Collected precession phase  through F1
according to the data Pyx and Pyy in Fig. 4: (1) × 100 in the
ROT system; (2) after π-retrieve; (3) in the LAB system;
(4) the phase in the ROT system.
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Modular Simulation of Full SESANS Setup

We enter three vectors [(Pxx, Pxy, Pxz), (Pyx, Pyy, Pyz),

(Pzx, Pzy, Pzz)] at the end of F1 as input to F2. This is

repeated for F3 and F4 using the same software – a

modular simulation scheme:

(13)

For each flipper, the matrix (RN) is given by (Rk),

(10), and k runs from one to N. As the input polariza-

tion vectors in step 1 of (R1)F1, we take matrix (I).

The matrix (13) is unitary: |P| remains equal unity. The

phase  in F1 is found from Eq. (12). The preces-
sion phase through F2 is added to the phase at the end

of F1, etc. The precession phase  is shown in Fig. 8,
f lippers ON. Notice that after conversion to the LAB
system between F1–F2 and F3–F4, the slope

≈ 2 × the slope in the f lippers: the polarization

vector collects the precession phase, although the

F4 F3 F2 F1 in( ) ( ) ( .) ( )
N N N N=P Pℜ ℜ ℜ ℜ

( )kxφ

( )xφ

d dxφ
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Fig. 8. Precession phase through the setup along a trajectory ||x 

ζ = 0 in the LAB and in ROT systems. The vertical lines are the 

precession phase for a “ray” scattered in sample (d) in the plane z 
(2) in the ROT system; (3) in the LAB system. Note: a scatterin

This means that the poles of the DC magnets must be aligned ve
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magnetic field is almost zero. This is “zero field pre-
cession” [13] at a frequency of ≈ 2ωRF.

Beam of Neutrons

For a fixed ψ (Fig. 1b), we define a vertical “diver-

gent ribbon beam”. Its trajectories starting at x = –40

have slopes ζ, so that they remain on the “ribbon”,

therefore |z0| < 1 (Fig. 1c) to the end of F4 at x = 400:

they will end in the detector. Thus, starting at z0 = 0,

slope ζ must be < 1/440, i.e., in the interval [–2.45,

+2.45 mrad]; starting at z0 = –1 – in the interval [0,

+4.9 mrad], etc. These restrictions correspond to the

area indicated by F = 1 in Fig. 9. This is the locus of

trajectories in the divergent ribbon beam. We give

them the weight F(z0,ζ) = 1; the other is F = 0. With

the selected step, width Fig. 9 includes 21 × 41 = 861

trajectories; the area F = 1 contains 441 trajectories.

For each of the latter, we “simulate” the precession for

λ = 4 Å, applying (13). For each flipper, the product

matrix (RN) is calculated using (12) up to k = N; θj's

and αj's depend on the parameters (z0,ζ). The matrix

(13) is unitary: |P| remains equal unity.

For each trajectory, we calculate the final phase 

(x = 400), denoted Φ(z, ζ), using (13), and then the

module for multiples of 2π (Fig. 9). The spin-echo is

not sharp: there is a spread of 1.5 rad, mainly due to the

coefficient γB in (4). Since the fields in our flippers are

independent of y, the results for a divergent ribbon beam

are valid also for a finite beam thickness Δy. Therefore,

henceforth, we discard the idea of “ribbon”.

Phase Coil Signal

The beam polarization P is the average of the y-
component of the vector P(z0, ζ) over the area F = 1

(Fig. 9) obtained as a result of simulating (13): P ≡
Py(z0, ζ)F=1. To account for the precession Δϕ in the

ϕ

RON AND NEUTRON TECHNIQUES  Vol. 14  Suppl. 1  2020

starting at x = –40, with λ = 4 Å, RF = 1 MHz, z0 = 0.5, ψ = 0,

ends of the poles of the DC magnets: (1) deviation Δϕ(×1000) in

≡ 0 by 0.1 mrad, i.e., the wavevector transfer Qy = 1.57 × 10–4 Å–1;

g angle of only 0.1 mrad gives a precession shift ΔΦ = 2.56 rad!
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Fig. 9. The final precession phase Φ(z, ζ) through the full
setup along the trajectories (λ = 4 Å).
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Fig. 10. The phase coil signal Pyy(Δϕ) obtained using (14)
at λ = 4 Å (contrary to practice, it does not fade, because
the simulation has no λ spread): (1) the averaging is limited
to ζ = 0; (2) the averaging is over the entire area.

‒1.0

1.0

0.5

0

‒0.5

‒4 20‒2 4

P
yy

1

2

Δϕ, rad
phase coil (geometry is not specified: for fixed λ, it

gives an equal phase Δϕ around z for all trajectories),

we multiply the product matrix in (13) by Rz(Δϕ) for

each trajectory and take the average value of the yy-

element of the resulting matrices. Each matrix is con-

sidered as a “pure” rotation around z by Φ(z, ζ) (if the

efficiency of the f lippers is close to unity, in practice

for λ > 3 Å). So, the phase coil signal becomes:

(14)

To simulate a sweep with a phase coil through 2π, we
repeat this for Δϕ = iπ/6 (i = –6, …, 6). The line 1 in
Fig. 10 is the signal P(Δϕ) found in this way when the
averaging is limited to ζ = 0: the amplitude is unity. When
averaging over the entire area F = 1, it drops to 0.92.

SESANS: SCATTERING IN SAMPLE

Divergent Beam at ψ ≠ 0

From the map (x, y) of 33°-poles, we know

that the labeling coefficient Γ in (1) is constant in the

region Δy of more than 20 mm. Then we can compose

the field profile Bz(x, z0, ψ ≠ 0) using a f lipper along a

trajectory with ζ = 0, but at an angle ψ ≠ 0 from the

profiles along the axis, as shown for F1 in Fig. 2. Bz(x,

z0, ψ ≠ 0) for f lipper with number j from:

(15)

(16)

with the x shifts, dx1,j,ψ =(j – 1)ψLsimcotθ0 and dx2,j,ψ =
jψLsimcotθ0, shown in Fig. 1b for f lipper F2: j = 2. The
profile Bz(x, z0, ψ ≠ 0) represents the transition from
(15) to (16), described by the parameter ε(x), which
runs linearly from zero to one along the length Lsim

(Fig. 1b):

(17)

This equation is also valid trajectories with a slope ζ ≠ 0,
including correction (4).

Angle ψ in NSE-Arm 1 Different from Arm 2: Scattering

When we insert the profiles (x, z0, ψ) in (13) with

ψ in the F3–F4 flippers other than ψ in F1–F2, we

simulate the scattering in the sample between F2 and

F3. Taking 0.1 mrad for this difference gives the final

offset ΔΦ(x = 400) = 2.56 (Fig. 8). Then we can calcu-

late the coefficient Γ using (2), Γ = ΔΦ(λθs) is rewritten.

In other words, (2) becomes the conversion λ → δ:

(18)

( )
 1

.cos( ) [ ], FP z =Δϕ ≡ Φ ζ + Δϕ

DC

zB

ψ≡ +DC

1, 0 1, ,( , )

(profile along line )

)

,

(
j
z z jB x z B x dx

1

ψ≡ +DC

2, 0 2, ,( , ) ( )

(profile along line ),

j
z z jB x z B x dx

2

0 1, 0 2, 0( , , ) 1 – ( , ) (( ) , ).
j j j

z z zB x z B x z B x zψ = ε + ε

j
zB

2 4 –1

4 –1

( ) 2 1 MHz: 0.64 10 Å ,

1.5 MHz: 0.9

(

9

(

)10 Å .

)δ λ = Γ π λ Γ = ×
Γ = ×
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We simulated (13) for λ = 2–10 Å. The amplitudes
P0(λ) in (13) are shown in Fig. 11a. Then P0(λ) is less
than for 1 MHz, because (4) gives a stronger correc-
tion for a higher DC field. Figure 11 shows the calibra-
tion of the empty beam P0(λ) and P0(δ) for a beam
2 cm high.

DISCUSSION

Polarization Rotators
Using the identity matrix (I) as input, we assume

that polarization rotator R1 (Fig. 1a) precisely “sets”

the polarization vector along x, y, and z. In reality, R1,

receiving polarization (001), creates vectors that make

up the (3 × 3) matrix, denoted by ₱1, deviating from I.

R1 contains two longitudinal coils for setting x and a

“V-coil” for each of the y and z settings. In Fig. 1a, the

V-coil for setting y is shown schematically. For all

three settings, we simulated the precession in R1 for

λ = 4 Å (with the matrix I as input, in a fixed coordi-

nate system) in a manner analogous to (7)–(11). The
TRON AND NEUTRON TECHNIQUES  Vol. 14  Suppl. 1  2020
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Fig. 11. Prediction of the P0(λ) calibration for the setup in Fig. 1b with a net length 4.4 m for a divergent beam 2 cm high at the
radio frequency (1) 1 and (2) 1.5 MHz: (a) as a function of λ; (b) after converting λ to δ using (18).
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result is three matrices; their third columns are com-

bined to:

(19)

instead of I. This matrix is no longer unitary: its
determinant is 0.942, which we consider as satisfac-
tory. Rotator R2 “freezes” the polarization matrix at
x = 400 and “transports” it in the z direction of the
analyzer field. This is described using the matrix ₱2

inverse to ₱1. Thus, taking into account the rotators R1
and R2, the product matrix Rk in (14) becomes equal
to ₱2(R

k)₱1. Equation (19) shows that ₱1 and ₱2 do
not deviate too much from I; moreover, reversing the
precession between F2 and F3, they hardly affect the
final phases Φ(z, ζ). Therefore we ignored them.

Polarization P0(λ)

There are two reasons why P0 drops along the beam

through the f lippers F1–F4. The first reason is that

the polarization component appears in the xy plane,

since the angle θ(x) does not reach π (Fig. 5c). This is

valid for each trajectory. Moreover, for many trajecto-

ries this component grows in successive f lippers; it can

be reduced by increasing the DC gradient. The second

reason is that, as a result of the correction γB (4), the

field increases with z2 from the beam axis to magnet

poles. This fact, characteristic of the design of our DC

magnets, is the main reason for spread in the final

phase Φ(z, ζ) (Fig. 8), it is crucial for maximum beam

height. This spread is largely nullified within each DC

magnet by spin flipping. If the RF and gradient fields are

“OFF”, the spread is so great that the amplitudes of the

phase coil signals drop below 0.2 even for λ = 2 Å.

Ribbon Beam

There was criticism of the concept of a vertical rib-

bon beam. Due to the independence of the fields of y,

1 [(0.983,–0.166,–0.080),

(0.018,0.955,0.296),(001)],

−− =P
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the ribbon can be expanded to a beam of finite width

of the order of 1 cm. If we know details of the neutron

guide supplying SESANS, we could introduce a more

realistic beam.

CONCLUSIONS

The routines developed here are ways of simulating

the Larmor precession in a rather complex magnetic

field configuration for neutron paths at angles (ζ,ψ) ≠ 0

relative to the beam axis. The values of δ (Fig. 11) leave

much to be desired; we could increase δ by placing the

flippers in each NSE-arm farther apart, due to loss of

intensity. As shown in [14], radio frequencies of 2–3

MHz are possible. They give realistic forecast for

achieving δ = 20 μm. The routines can be used for

studying deviations of parameter settings from design

ones. We calculated the precession phases not just by

calculating the field integrals, but by stepwise matrix

multiplication.
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