
M  S T

Synthesis of Novel Aircraft Concepts
for Future Air Travel

Development of a Conceptual Design Environment for
Conventional and Unconventional Aircraft Conögurations

10-01-2014 R.J.M. Elmendorp B.Eng.

Faculty of Aerospace Engineering · Delft University of Technology

Synthesis of Novel Aircraft Concepts
for Future Air Travel

Development of a Conceptual Design Environment for Conventional
and Unconventional Aircraft Conögurations

M  S T

For obtaining the degree of Master of Science in Aerospace Engineering at
Del University of Technology

R.J.M. Elmendorp B.Eng.

10-01-2014

Faculty of Aerospace Engineering · Del University of Technology

Copyright © R.J.M. Elmendorp B.Eng.
All rights reserved.

D U O T
D O

F P  P

e undersigned hereby certify that they have read and recommend to the Faculty of Aerospace
Engineering for acceptance a thesis entitled “Synthesis of Novel Aircra Concepts for Future Air
Travel” by R.J.M. Elmendorp B.Eng. in partial fulĕllment of the requirements for the degree of
Master of Science.

Dated: 10-01-2014

Head of department:
prof.dr.ir. L.L.M. Veldhuis

Supervisor:
dr.ir. R. Vos

Reader:
dr. ir. R. de Breuker

v

Abstract

In the last 60 years many new technologies have entered the aerospace industry, but the overall
aircra design remained virtually unchanged. If we compare an aircra built in the 1960’s with
the latest generation, they look strikingly similar. Only small evolutionary changes entered the
commercial aircra market. A lot of these changes are driven by the ever-lasting quest to reduce
the amount of burned fuel. However, the reduction in fuel usage which can be gained with these
small evolutionary changes decreases every aircra generation.

A revolutionary change in the aircra design is needed to make step-change in aircra fuel effi-
ciency. Changing the conĕguration of the aircra could create opportunities for aerodynamic and
structural improvements, which result in higher fuel efficiency.

Current tools used in the ĕeld of aircra design use a lot of empirical data obtained from the anal-
ysis of existing aircra. ese tools are not capable of correctly analysing unconventional aircra
conĕgurations.

A design tool, called the Initiator, is created which is able to synthesise a conceptual aircra design
based on a given set of top level requirements. e Initiator is able to design and analyse the
following aircra conĕgurations:

• Conventional aircra
• Canard (fore-plane) aircra
• ree-surface aircra
• Prandtl (box-wing) aircra
• Blended-Wing-Body aircra

From top level requirements a ĕrst estimation of the aircra characteristics is performed. e
aircra geometry is sized based on the estimated aircraweight, wing loading and thrust-to-weight
ratio. is geometry is used in a chain of analysis modules which estimate the aircra weight and
aerodynamic performance. e design process incorporates two convergence loops: e ĕrst loop
repeats the aircra sizing and analysis until the maximum take-off weight converges. e second
loop re-estimates the fuel weight until the harmonic range matches the requirements.

Physics based analysis methods are preferred over empirical methods since they are easier to adapt
to unconventional aircra. eweight estimationmethods for themainwing and fuselage areClass

v

vi Abstract

II.Vmethods, whichmeans that the main structure is sized using physical calculations. Secondary
structures are still estimated using empirical relations, which is sufficient unless the analysed parts
differ greatly from the data used to create the empiricalmethods. All other parts (everything except
the main wing and fuselage) are estimated used Class II methods, which are still highly empirical.

e aerodynamics are calculated using a vortex lattice method. since this method is not capable of
calculating the proĕle drag, an empirical method is used for the zero-li drag estimation.

e Initiator is veriĕed by comparing the output of the Initiator with existing aircra. A selection
of thirteen reference aircra varying from small regional jets to wide-body long-range jet-powered
aircra is made to verify the tool. Top level requirements are deĕned which match the payload,
harmonic range and runway performance speciĕcations of the reference aircra. e aircra gen-
erated from these top level requirements are compared to the existing aircra.

e design process is proven to work, since it converges to a feasible aircra design which com-
plies with the top level requirements. Since process contains design loops, inaccuracies in analyses
propagate easily through the whole design. By comparing the maximum take-off weights and op-
erational empty weights, it can be shown that the generated aircra are similar to the reference
aircra. Nine out of the thirteen generated aircra are estimated to within 10% of the reference
aircra weights.

Visual inspection and comparison of external aircra dimensions show that the implemented de-
sign rules are capable of generating an aircra which is similar to the reference aircra.

e design tool was used to compare the different aircra conĕgurations. It is shown that a design
process which iterates on the aircra maximum take-off weight and adjusts the fuel mass to match
range requirements works for conventional, canard, three-surface and Prandtl aircra. Testing the
design process for the Blended-Wing-Body was unfortunately not possible with the current state
of the sizing methods.

It is shown that the canard aircra provides a 12% reduction in fuel mass and a 28% reduction
in operational empty mass in comparison with a conventional aircra designed for the same pay-
load and harmonic range. However, since none of the analysis methods have been validated the
conĕdence in the results gained from the conĕguration comparison in low.

Overall can be concluded that it is possible tomodel awide range of different aircra conĕgurations
using the implemented sizing rules and analysis methods.

vii

Acknowledgements

is thesis is the conclusion of the great time I had studying as an Aerospace Engineering student
at the Del University of Technology. Since no project can be completed without the support of
other people I would like to use the next few lines to thank the people who supported my during
the last part of my Master.

First of all I would like to thank my supervisor Roelof Vos who guided me through the whole
project and was always available for feedback on my work or just a good talk about aircra design.
Second I would like to thank themembers ofmy committee: Leo Veldhuis and Roeland de Breuker
who took the time to asses my work and share their expert insights.

I would also like to thank my friends for their support and my fellow students who made working
at the faculty a pleasure.

Finally, A special thanks to my parents and sister who have always supported me in everything I
did and encouraged my to pursuit my dreams.

vii

viii Acknowledgements

ix

Contents

Abstract v

Acknowledgements vii

List of Figures xv

List of Tables xviii

Nomenclature xix

I esis 1

1 Introduction 3
1.1 Research Question andesis Goal . 5
1.2 Report Structure . 6

2 Background 7
2.1 Aircra Conĕgurations . 7

2.1.1 Conventional aircra . 7
2.1.2 Canard aircra . 8
2.1.3 ree-surface aircra . 9
2.1.4 Prandtl aircra . 9
2.1.5 Blended-wing-body aircra . 10

2.2 Aircra Design Process . 10

2.2.1 Conventional Conceptual Design Process 10

2.2.2 Design and Engineering Engine . 11

ix

x Contents

3 Design Tool Description 13

3.1 Soware architecture . 13
3.2 Design process . 14

3.3 e Modules . 15
3.3.1 Sizing Modules . 18

3.3.2 Analysis Modules . 19

3.3.3 Design Modules . 24

3.3.4 Work-Ęow Modules . 25

4 Design Tool Veriĕcation 27

4.1 Reference aircra . 27
4.2 Comparison based on Design point . 29

4.3 Comparison based Geometry . 31

4.4 Drag polar comparison . 36

4.5 Comparison based on Weight . 38

4.6 Conclusions . 42

5 Conĕguration Comparison 43

5.1 Top level requirements . 43

5.2 Design synthesis . 46

5.3 Key performance indicators . 48

5.4 Results . 48

6 Conclusions and Recommendations 53
6.1 Conclusions . 53
6.2 Recommendations . 54

II Code documentation 57

7 Introduction 59
7.1 Background . 59

8 Program Structure 61

8.1 Introduction . 61
8.2 InitiatorController . 63

8.2.1 Dependency handling . 64

8.3 Modules . 65
8.4 Aircra . 66

Contents xi

9 Geometry Deĕnition 67

9.1 Geometry class . 69

9.1.1 Airfoil . 72
9.1.2 Lo . 74

9.2 Part class . 76
9.2.1 Wing . 76

9.2.2 Fuselage . 77

9.2.3 BoxWing . 77

9.2.4 Engine . 80

9.2.5 LandingGear . 80

9.2.6 Cargo . 80

9.2.7 ULD . 80
9.2.8 Spar . 81

10 User manual 87
10.1 Introduction . 87
10.2 Installation . 87
10.3 Program Run . 88

10.4 XML Layout . 88

10.4.1 Aircra deĕnition ĕle . 88
10.4.2 Settings ĕle . 90

10.4.3 Modules ĕle . 90
10.4.4 Materials ĕle . 91
10.4.5 Cargo ĕle . 91

10.5 Executable Build Instructions . 91

References 93

A Aircra report generated by the Initiator 97

A.1 General Characteristics . 97
A.2 Speciĕcation . 98

A.3 Operational Performance . 98

A.4 Weight estimation . 99

A.5 Aerodynamics . 103

A.6 Propulsion . 104

A.7 Aircra Geometry . 104

xii Contents

B Code examples 107
B.1 Part implementation . 107

B.1.1 File creation . 107
B.1.2 Class deĕnition ĕle . 107
B.1.3 Generate method . 108

B.2 Module implementation . 109
B.2.1 File creation . 109
B.2.2 Class deĕnition ĕle . 109
B.2.3 Run method . 110
B.2.4 Adding module . 110

C Sample aircra deĕnition ĕle 111

xiii

List of Figures

1.1 History of the aircra fuel consumption (source: [1]) 3
1.2 Span efficiency of different non-planar wing conĕgurations (based on [2]) 4
1.3 Aircra conĕguration matrix (source: [3]) A: Flying wings B: Planar monoplane,

single body C: Non(co)planar wings, single body D: Planar monoplane, multi-
bodies E: Hybrid conĕgurations . 4

2.1 (Modern) jet transport aircra . 7
2.2 ree-view of the Beechcra Starship [4] . 8
2.3 Top: trimmed conventional aircra; Bottom: Trimmed canard aircra (arrows not

true to scale) . 8
2.4 ree-view of the Piaggio P180 Avanti [5] . 9
2.5 Impression of the Lockheed Greener Aircra [6] 9
2.6 Boeing X-48B [6] . 10
2.7 Flowchart an aircradesign process usingDesign andEngineeringEngines (source:

[7]) . 11
2.8 Flowchart a Design and Engineering Engine (source: [8]) 12

3.1 Top-level UML of the Initiator . 14
3.2 An abstract overview of the design process . 15

3.3 N2 chart of the modules . 17
3.4 Drag polar comparison of AVL with Ęight test data from the Airbus A320-100 [9] . 19
3.5 Wake visualisation plot from Tornado . 20
3.6 Validation cases of Tornado with varying aspect ratios, source: [10] 21
3.7 Relation between wing box weight and total wing weight (source: [11]) 22
3.8 Veriĕcation of the fuselage weight estimation method (source: [12]) 23
3.9 CD0 and e estimation . 24

xiii

xiv List of Figures

3.10 Activity diagram of the DesignConvergence module 26

4.1 Payload - harmonic range combinations of the reference aircra 29
4.2 Design point of the Initiator generated aircra according to A320-200 speciĕcations 30
4.3 Comparison of the design point of the Initiator generated aircra and data from

Roux [13] . 31
4.4 A320-200 geometry comparison . 33
4.5 A320-200 comparison . 33
4.6 Comparison of top views . 34
4.7 Drag polar output from the Initiator (A320-200) 36
4.8 Cruise drag polar comparison . 37
4.9 Weight deĕnitions (modiĕed from: [14]) . 38
4.10 Comparison of the OEM/MTOM fraction of the generated aircra with reference

data from [13] . 38
4.11 Comparison of themaximum take-offmass (MTOM) and operational emptymass

(OEM) calculated from the Initiatorwith reference aircraweight data fromÉlodie
Roux [13] . 40

4.12 Comparison of the weight breakdown . 41
4.13 Difference in weight fraction of the maximum take-off mass of the Initiator gen-

erated aircra compared with reference data from [14] and [15] 41
4.14 Comparison of the weight breakdown (continued) 41

5.1 Deĕnition of the design space and design points 45
5.2 3D-view of the design space . 45
5.3 Payload - range combinations of the design runs, aspect ratio written next to the

point; Missing points did not converge . 46
5.4 3D renders of the generated aircra . 47
5.5 Relation between the aircra purchase price and the Operation Empty Weight

(source: [16]) . 48
5.6 Payload mass as a function of the range as used in Figure 5.8 49
5.7 Contour plot of the KPIs for the conventional aircra with an aspect ratio of 9 . . . 51
5.8 Comparison of KPIs for the different aircra conĕgurations, coloured bands show

inĘuence of the aspect ratio on the parameters . 52

8.1 Top-level Initiator activity diagram . 62
8.2 Top-level UML class of the Initiator . 62
8.3 Class instantiation method of the Controller . 63
8.4 InitiatorController: runModule method . 64

9.1 UML of all Part and Geometry classes . 68
9.2 Activity diagram of the getGeometry method . 70
9.3 Activity diagram of the generate method . 70

List of Figures xv

9.4 Class instantiation method of Geometry . 70
9.5 Activity diagram of the propertyChanged method 71
9.6 Activity diagram of the propertyAccessed method 71
9.7 Example of a property change in the Wing object 72
9.8 Activity diagram of the generate method . 73
9.9 Activity diagram of the getDatFile method . 73
9.10 Activity diagram of the generate method . 74
9.11 Activity diagram of the resampleSection method 75
9.12 Wing geometry including spars . 76
9.13 Activity diagram of the generate method . 78
9.14 Illustration of the algorithm to generate spars . 78
9.15 Activity diagram of the getSparLocations method 79
9.16 Geometry of an oval and a conventional fuselage 81
9.17 BoxWing geometry . 81
9.18 Engine geometry . 82
9.19 Cargo part with ULD parts . 82

A.1 Aircra geometry (all dimensions in meters) . 97
A.2 Loading Diagram . 98
A.3 Payload-Range . 99
A.4 Manoeuvre diagram . 99
A.5 Mass distribution . 101
A.6 Loading diagram . 101
A.7 CG location . 102
A.8 Drag Polars . 103
A.9 Aerodynamic efficiency of the aircra . 104
A.10 Fuel tank layout . 106
A.11 Fuselage geometry; (blue = cargo ULDs, purple = Ęoors) 106

B.1 Square geometry; Length = 4, Width = 6, Position = (2,2,2), Orientation =
(45,60,15) . 109

xvi List of Figures

xvii

List of Tables

4.1 Reference aircra requirements, source: [13] . 28
4.2 Initiator input parameters . 28
4.3 Initiator performance settings . 29
4.4 Initiator geometry settings . 32
4.5 Comparison of geometry parameters . 35

5.1 Requirements used for the conĕguration comparison runs 44
5.2 Perceptual change of each conĕguration with respect to the conventional aircra . 51

8.1 InitiatorController class properties and methods 65
8.2 Aircra class properties and methods . 66

9.1 Geometry class properties . 69
9.2 Geometry class methods . 69
9.3 Airfoil class properties . 74
9.4 Airfoil class methods . 74
9.5 Wing class properties . 77
9.6 Wing class methods . 80
9.7 Fuselage class properties . 83
9.8 BoxWing class properties . 83
9.9 Engine class properties . 84
9.10 LandingGear class properties . 84
9.11 Cargo class properties . 84
9.12 ULD class properties . 85
9.13 Spar class properties . 85

xvii

xviii List of Tables

10.1 Initiator command-line arguments . 88
10.2 XML ĕles used by the Initiator . 88

A.1 Max payload . 98
A.2 Performance results . 98
A.3 Mass summary . 100
A.4 Component masses . 100
A.5 Aerodynamic properties at cruise . 103
A.6 Propulsion . 104
A.7 Main Wing dimensions . 104
A.8 Horizontal Stabiliser dimensions . 105
A.9 Vertical Stabiliser dimensions . 105
A.10 Fuselage dimensions . 105

xix

Nomenclature

Latin Symbols

A Wing aspect ratio [-]
b Wing span [m]
CD Drag coefficient [-]
CD0 Zero-li drag coefficient [-]
CL Li coefficient [-]
CLα Li curve slope [-]
CLmax Maximum li coefficient [-]
Cmα Pitching moment coefficient [-]
cr Root chord length [m]
ct Tip chord length [m]
e Span efficiency factor [-]
hcr Cruise altitude [m]
cT Speciĕc fuel consumption []1/s]
L/D Li-to-Drag ratio [-]
M Mach number [-]
Npax Number of passengers [-]
Rh Harmonic Range [km]
S Wing planform area [-]
Tstatic Static thrust [N]
Wp Payload mass [kg]

xix

xx Nomenclature

X Range parameter [km]

Greek Symbols

λ Wing taper ratio [-]
Λ0.25 Quarter-chord sweep angle [-]

Abbreviations

AVL Athena Vortex Lattice
BPR By-pass ratio
BWB Blended-Wing-Body
DEE Design and Engineering Engine
FM Aircra Fuel Mass
KPI Key Performance Indicator
MDO Multi-disciplinary Design Optimisation
MTOM Aircra Maximum Take-off Mass
OEM Aircra Operational Empty Mass
PLM Aircra Payload Mass
PRE Payload-Range Efficiency
TLRs Top-Level Requirements
TSA ree-Surface Aircra
ULD Unit Load Device
UML Uniĕed Modeling Language
XML Extensible Markup Language

1

Part I

esis

1

3

Chapter 1

Introduction

In the last 60 years many new technologies have entered the aerospace industry, but the overall
aircra design remained virtually unchanged. If we compare an aircra built in the 1960’s with
the latest generation, they look strikingly similar. One can say that the changes are more of an
evolutionary nature, real revolutionary changes have not entered the commercial aircra market
since the introduction of the jet engine in the 50’s1.

A lot of these changes are driven by the ever-lasting quest to reduce the amount of burned fuel.
e design changes result in of course environmental and, with the ever-rising oil prices, econom-
ical beneĕts. Figure 1.1 presents the total fuel consumption and the fuel consumption per seat of
aircra introduced in the last half century.

Figure 1.1: History of the aircraft fuel consumption (source: [1])

e introduction of the De Havilland DH.106 Comet brought the jet engine to the civil transport
aircra market. From the Comet’s introduction onwards, the fuel efficiency of the engines and the
total aircra started reducing every year and is levelling out at around 30% of the fuel burned per
seat in comparison to the Comet. As can be seen in Figure 1.1 the curve seems to almost reached

1A notable exception is the short popularity of the supersonic transport aircra (Concorde & Tupolev Tu-144)

3

4 Introduction

its asymptote; to introduce another step-change in aircra fuel efficiency the evolutionary change
pursued in the last half-century will probably not be sufficient. A revolutionary change in the
aircra design is needed.

One big change would be the overall aircra conĕguration. As can be seen in Figure 1.2 a lot of
aerodynamic advantages can be gained from unconventional wing shapes. Also the general layout
of the aircra could create opportunities for aerodynamic and structural improvements. Figure
1.3 shows a wide variety of different conĕgurations for subsonic transport aircra.

Bibplane

e = 1.36

X-wing

e = 1.33

Branched tips

e = 1.32

End plates

e = 1.38

Boxwing

e = 1.46

Joined wing

e = 1.05

C-wing

e = 1.45

Tip-plated winglets

e = 1.20

Winglets

e = 1.41

Dihedral (large)

e = 1.03

e = induced drag e!ciency factor

Figure 1.2: Span efficiency of different non-planar wing conögurations (based on [2])

Figure 1.3: Aircraft conöguration matrix (source: [3])
A: Flying wings
B: Planar monoplane, single body
C: Non(co)planar wings, single body
D: Planar monoplane, multi-bodies
E: Hybrid conögurations

1.1 Research Question andesis Goal 5

1.1 Research Question andesis Goal

e possible improvements which could be gained by using different aircra conĕgurations poses
the following research question:

Which aircra conĕguration has the potential to introduce a signiĕcant increase in
fuel efficiency?

Current tools used in the ĕeld of aircra design leverage the knowledge gained from aircra devel-
oped in the last half-century. e aircra metrics and performance characteristics are captured in
databases and empirical design methods are derived from this information. Since these methods
are based on knowledge of existing aircra, they can only be used to design aircra with design
features that are similar to the aircra present in the database.

e aforementioned method is inadequate in the design of unconventional aircra. Since there is
no real performance information available of unconventional conĕgurations, the design of such an
aircra requires more effort than designing a more conservative and traditional design. In order
to be able to get insight into the performance of unconventional aircra concepts a tool needs to
be conceived which enables the synthesis of such aircra in an efficient and fast manner very early
in the design process.

Since the tool should be able to design and analyse unconventional aircra, favour should be given
to ĕrst principle physics-based methods. is will make the tool sensitive to design changes which
are not captured by empirical methods. An aircra design process should be implemented which
enables the synthesis of conventional and unconventional aircra based on a set of top-level re-
quirements. In order to be able tomake a fair comparison of the different aircra all designs should
be analysed with the same methods, regardless of aircra conĕguration. In other words: all meth-
ods should be able to analyse a wide range of aircra conĕgurations.

At Del University of Technology previous research has been done on conceptual design methods
for conventional and box-wing aircra [17], three-surface aircra [18] and Blended-Wing-Body
aircra [19] and [20]. e effort of these projects should be combined in a single design tool
to be able to compare the different aircra concepts. Besides the conceptual design tools which
create a ĕrst aircra design based on top-level requirements more sophisticated design programs
are developed as the Design and Engineering Engine. e design tool should be able to fulĕl the
role of the Initiator, the program which creates the ĕrst estimate of an aircra design and provides
the input for higher-ĕdelity analysis methods.

Because of work done by the previously mentioned conceptual design tools the initial implemen-
tation is limited to the design of:

• Conventional aircra

• Canard (fore-plane) aircra

• ree-surface aircra

• Prandtl (box-wing) aircra

• Blended-Wing-Body aircra

6 Introduction

e design tool should be developed with modularity in mind. Adding more aircra design con-
ĕgurations in the future should be supported and extending the analysis capabilities should be
possible without the need of re-writing the whole program.

All the above results in the following thesis goal:

e development of a Ęexible automated conceptual design environment for the syn-
thesis and analysis of conventional and unconventional aircra designs.

1.2 Report Structure

is report consists of two parts. Part I describes the work done in the context of the thesis, Part
II contains the implementation details of the design tool.

First, background information about the different aircra conĕgurations, the aircra design pro-
cess and an introduction to the Design and Engineering Engine developed at Del University of
Technology is given in Chapter 2.

e architecture of the design tool is an important choice since it eventually inĘuences the Ęexibility
of the design tool. is is presented in Chapter 3. Also the implemented design process and the
used design and analysis methods are elaborated in this chapter.

To be able to use the design tool it needs to veriĕed. is is done by comparing the design tool
output to data from existing aircra. e method and results of the tool veriĕcation can be found
in Chapter 4.

Chapter 5 will present an application of the design tool by using it to compare a set of conventional
and unconventional aircra designed for a wide set of payload and range requirements.

e thesis is concluded in Chapter 6 and recommendations for future research are presented.

Chapter 7 gives an introduction to the second part of this report: the code documentation.

Chapter 8 draws an outline of the structure of the program. Here the composition of the different
components and their implementation is shown.

Chapter 9 presents the aircra parts also known as the High Level Primitives. e different pa-
rameters which are required to deĕne the parts and the methods of generating the geometry are
elaborated.

In Chapter 10 the installation and ways of operating the program are explained. Also the structure
of the ĕles which are needed to operate the application is presented.

7

Chapter 2

Background

2.1 Aircra Conĕgurations

2.1.1 Conventional aircra

(a) De Havilland DH.106 [21] (b) Boeing 367-80 [22] (c) Airbus A350XWB [23]

(d) Sud Aviation SE 210 Car-
avelle [24]

(e) Bombardier CRJ900 [25]

Figure 2.1: (Modern) jet transport aircraft

e majority of all currenly operated aircra can be called “Conventional aircra”. As mentioned
previously, theDeHavillandDH.106Comet (Figure 2.1a) brought the jet engine to the commercial
transport aircra market. An unique design feature were the in the wing root integrated engines.

e Boeing Dash 80 (later developed into the Boeing 707 in 1958) placed the engines in nacelles
underneath the wing, as can be seen in Figure 2.1b. is solved a lot of structural problems, with

7

8 Background

the added advantage that bigger engines could be installed without a complete redesign of the
aircra. is tube-and-wing conĕguration with podded engines has remained unchanged during
the last six decades, with the latest example the Airbus A350 (Figure 2.1c).

A slight variation on this conĕguration comes in the form of fuselage mounted engines. is con-
ĕguration is particularly popular with regional jet aircra. An 1959 example of this conĕguration
is the Sud Aviation Caravelle (ĕgure 2.1d) and a modern example is the Bombardier CRJ900 in
Figure 2.1e.

2.1.2 Canard aircra

Figure 2.2: Three-view of the Beechcraft Starship [4]

ecanard aircra is a variation on the conventional aircra. Insteadmaintaining longitudinal sta-
bility and control with the horizontal stabiliser attached to the tail, the canard aircra sports a hor-
izontal stabiliser in front of the main wing. A Ęying example of a canard aircra is the Beechcra
Starship (Figure 2.2).

Figure 2.3: Top: trimmed conventional aircraft; Bottom: Trimmed canard aircraft (arrows not
true to scale)

2.1 Aircra Conĕgurations 9

Assuming the centre of gravity positioned between the canard and main wing, the aircra can
be trimmed with both surfaces providing li. is decreases the induced drag of the aircra in
comparison to the conventional aircra, since the later always has a down force on horizontal
stabiliser, which the main wing needs to compensate for with extra li. is is illustrated in Figure
2.3.

2.1.3 ree-surface aircra

e three-surface aircra is based on the same principle as the canard aircra with the added
Ęexibility of an additional control surface. e basic conĕguration is a fuselage, main wing, canard
and a horizontal tail. e three surfaces allows the designers to have more design freedom while
maintaining the aircra stability and the lack of negative li on the tail surface. An example of a
three surface aircra is the Piaggio P180 Avanti, which can be seen in Figure 2.4.

Figure 2.4: Three-view of the Piaggio P180 Avanti [5]

2.1.4 Prandtl aircra

Figure 2.5: Impression of the Lockheed Greener Aircraft [6]

e Prandtl-plane design is based on research by Ludwig Prandtl in 1924 [26]. e Box-wing
design is a derivative of Prandtl’s “Best wing system” and a great induced drag reduction is expected
from this design.

10 Background

Currently there are no commercial available aircrawhich feature the Prandtl-plane conĕguration.
e Lockheed submission on the NASA Greener Aircra project in Figure 2.5 is an example of a
conceptual Prandtl-plane design.

2.1.5 Blended-wing-body aircra

Figure 2.6: Boeing X-48B [6]

eBlended-wing-body aircra concept is an aircra where the body and wing are integrated into
one blended shape. e fuselage has an airfoil shaped cross-section and is designed to contribute
signiĕcantly to the li. Since the aircra weight is better distributed span-wise over the aircra,
less bending moments are introduced into the aircra structures. is should result into a more
fuel efficient aircra.

Currently there are no commercially Ęying bended-wing-body aircra. Boeing andNASA are con-
ducting experiments with the remote-controlled X-48 aircra (Figure 2.6) which should provide
insight into Blended-wing-body performance in the near future.

2.2 Aircra Design Process

e aircra design process is a complex task involving a lot of different disciplines. Because there
are is a lot of mutual inĘuence between the different disciplines the design synthesis is an iterative
process.

e section discusses two different approaches to conceptual aircra design. First the traditional
conventional aircra design process is discussed. Secondly the Design and Engineering Engine as
under development at Del University of Technology is presented.

2.2.1 Conventional Conceptual Design Process

e design methodologies currently in widespread use in the aerospace industry are based on
methods developed in the 1960’s and 1970’s. e conceptual design phase of these methods are
characterised by the extensive usage of empirical methods to create a ĕrst estimate of the aircra.
ese empirical relations are based on previously designed aircra, which are sometimes tuned to

2.2 Aircra Design Process 11

account for increases in technological capabilities. Only later in the detailed design computational
methods and wind-tunnel tests are used to analyse the aircra.

is approach enables designers to create aircra concepts and estimate their performance with
good accuracy, but restricts the design to aircra which are similar to the aircra on which the
empirical methods are based.

2.2.2 Design and Engineering Engine

e development of unconventional aircra concepts needs a different approach to the design
process. Instead of relying on empirical relations to design and analyse the aircra components a
semi-empirical or fully physics based methods are preferred. e interactions between disciplines
are modelled directly, which moves the aircra design process in the realm of multi-disciplinary
design optimisation (MDO).

e design starts by creating a ĕrst estimation of the aircra based on top-level requirements. is
design is analysed and the result is used to create a higher-ĕdelity design of the aircra in ques-
tion. Every step of increasing ĕdelity needs a starting point, this task is preformed by the so-called
Initiator. In fact, every design loop can be regarded as the Initiator of the next design loop; as is
illustrated in Figure 2.7. e ĕrst Initiator which generates a ĕrst preliminary design of the aircra
is the program developed in the context of this Master’s thesis project. Every step in the design
process is performed by a Design and Engineering Engine (DEE).

Figure 2.7: Flowchart an aircraft design process using Design and Engineering Engines
(source: [7])

In Figure 2.8 the layout of a Design and Engineering Engine is shown in amore detailed Ęow chart.
Here can be seen that for the different disciplines the same aircra geometry generated by themulti
model generator is used to create their input. e output is combined to calculate the performance

12 Background

of the analysed aircra. is information is used to determine the feasibility of the design and can
be used as an objective function of the optimiser.

Figure 2.8: Flowchart a Design and Engineering Engine (source: [8])

13

Chapter 3

Design Tool Description

isChapter describes the design tool: the Initiator developed in this thesis project. First the global
architecture of the tool is presented. In Section 3.2 the aircra design process implemented in the
tool is elaborated. e different modules of the Initiator are presented in Section 3.3.

3.1 Soware architecture

e Initiator is developed in a modular manner. To enable this modularity object-oriented pro-
gramming is used. All the different program features are deĕned as classes. Once a class is instan-
tiated it will be represented as an object in the program. Basic classes are created which can be
extended to represent more sophisticated object.

e Initiator consists of module and geometry objects which are controlled by a controller object.
All program Ęow is directed by the controller object. e top-level layout of the Initiator can be
found in an UML in Figure 3.1. Modules can specify modules they depend on for which the con-
troller will make sure they are completed before the module is started. ere are four different
types of modules deĕned:

• Sizing modules

• Analysis modules

• Design modules

• WorkĘow modules

Sizing modules perform the preliminary sizing of the aircra based on the top-level requirements
and conĕguration settings that are given as an input. e resulting design can be used by analysis
and design modules to respectively analyse the aircra (aerodynamics, weights, etc.) or design a
speciĕc part (cabin, control surfaces, etc.). e workĘow modules facilitate the Initiator by pro-
viding XML read/write methods and implement design workĘows (to converge to a consistent
design).

13

14 Design Tool Description

e aircra is built up of separate parts called high-level primitives. Each primitive is able to gen-
erate its own geometry. Besides this, the primitives implement methods which are able to calculate
for example surface areas, mean aerodynamic chords, etc, whatever is applicable to the primitive
in question. e main primitives are:

• Wing: Used for wings, tail surfaces, etc.

• Fuselage: Used for conventional as well as oval fuselages

• Engine: Used to model engine pods

Besides themain primitives, some simple primitives are deĕned tomodel cargo containers, landing
gear, spars and combine wings into a box-wing. For more information about the implementation
of the primitives, please read Chapter 9. Geometry is generated on-the-Ęy when it is needed and is
automatically Ęagged for re-generation when parameters are changed. is means that at all times
an up-to-date model of the aircra is used, without the need to re-generate all geometry aer every
change.

+runModule()

+resetModule()

+getModuleResults()

…

XMLFile

Settings

...

InitiatorController

+findPart()

+addPart()

+checkAllParts()

Name

Description

Type

Requirements

...

Aircraft

Name

Location

…

Part

+run

...

Module

Figure 3.1: Top-level UML of the Initiator

3.2 Design process

is section describes the design process. e process Ęow leverages two different mechanisms in
the Initiator. First, the sequence of modules is controlled by module dependencies. is provides
the basic forward-feeding module Ęow. e feedback loops are generated by the DesignConver-
gence module, which resets a set of modules, changes input parameters and calls the controller to
re-run the modules.

A high-level view of the design process can be found in Figure 3.2. e whole process starts with
the deĕnition of the top-level requirements (mission requirements), conĕguration parameters and
a set of performance parameters (initial guess of the drag polars, speciĕc fuel consumption and
CLmax values). is is represented in the ĕrst row in Figure 3.2.

3.3eModules 15

From the speciĕed top-level requirements a Class I weight estimation is performed. e wing
loading and thrust-to-weight ratio of the aircra is determined by evaluating performance and
regulatory constraints. A Class II weight estimation (Raymer [27]) is performed to get a more
design-sensitive weight and centre-of-gravity estimation.

e Class II weight results are used to perform an aerodynamic analysis by using a vortex-lattice
method (AVL [28]). e aerodynamic forces and moments on the aircra surfaces are used in
the Class II.V methods for a more reĕned and physics based estimation of the wing and fuselage
weight.

Since the vortex-lattice method is an inviscid analysis method, the proĕle drag is calculated sepa-
rately. is proĕle drag is calculated empirically using Torenbeek’s method [29]. All aerodynamic
and weight information is gathered and the overall aircra performance is calculated.

Aer every design loop the calculated (Class II.V) weight is compared to the weight previously
calculated. If the deviation is larger than 1% of the maximum take-off mass, the aircra weight
and performance data is fed back to the Class I methods, the wing loading and thrust-to-weight
ratio are recalculated and the whole design process is repeated until the weight converges.

When the aircra weight is converged, the range is tested against the payload-range requirements.
Tomeet the required range, the sensitivity of the fuelmass on the aircra range is determined using
a linear regression and the fuel mass for the next iteration is calculated. Because this changed fuel
weight also alters the gross aircra weight, the whole weight convergence loop is repeated. is
process is repeated until the calculated range is within 1% of the required range. One aircra takes
around 300 seconds on an Intel i7-3610QM CPU to converge for both the range and weight.

Database

Range

Converged?

Con guration

Mission Range
Passengers

Cargo
Airports

Top -Level Requirements

Class II Weight

Estimation

Preliminary Sizing

(Class I methods)

Aerodynamic

Analysisis

Class II.V Weight

Estimation

Performance

Estimationn

Weight

Converged?

KPIs and Geometry

Figure 3.2: An abstract overview of the design process

3.3 eModules

is section gives an overview of all modules currently implemented in the Initiator. In Figure
3.3 the N2 chart of the module can be found. Inside the ĕrst black square all sizing modules can
be found. ese modules generate a ĕrst estimation of the aircra which is subsequently used by
the design and analysis modules, which can be seen in the second big square in the N2 chart. e

16 Design Tool Description

Initiator contains two loops, which are marked with red squares in the N2 chart. e inner loop
makes sure the weight and aerodynamic loads converge. To converge the wing loading andweights
the outer loop is used.

3.3eModules 17

D
a

ta
b

a
se

W
e

ig
h

ts

F
u

se
la

g
e

 &

E
n

g
in

e

d
im

e
n

si
o

n
s

E
n

g
in

e

p
a

ra
m

e
te

rs

C
la

ss
 I

W
e

ig
h

t

E
st

im
a

ti
o

n
W

e
ig

h
ts

W
e

ig
h

ts
W

e
ig

h
ts

W
in

g
-T

h
ru

st

L
o

a
d

in
g

W
in

g
lo

a
d

in
g

G
e

o
m

e
tr

y

E
st

im
a

ti
o

n

A
ir

cr
a

ft

g
e

o
m

e
tr

y

A
ir

cr
a

ft

g
e

o
m

e
tr

y

A
ir

cr
a

ft

g
e

o
m

e
tr

y

A
ir

cr
a

ft

g
e

o
m

e
tr

y

A
ir

cr
a

ft

g
e

o
m

e
tr

y

A
ir

cr
a

ft

g
e

o
m

e
tr

y

A
ir

cr
a

ft

g
e

o
m

e
tr

y

A
ir

cr
a

ft

g
e

o
m

e
tr

y

A
ir

cr
a

ft

g
e

o
m

e
tr

y

C
a

b
in

 D
e

si
g

n
C

a
b

in
 &

 C
a

rg
o

d
im

e
n

si
o

n
s

C
a

b
in

 &
 C

a
rg

o

d
im

e
n

si
o

n
s

C
la

ss
 II

 W
e

ig
h

t

E
st

im
a

ti
o

n
W

e
ig

h
ts

 &
 C

G
s

W
e

ig
h

ts
 &

 C
G

s
W

e
ig

h
ts

 &
 C

G
s

W
e

ig
h

ts
 &

 C
G

s
W

e
ig

h
ts

 &
 C

G
s

W
e

ig
h

ts
 &

 C
G

s

A
V

L
 V

L
M

A
e

ro
d

y
n

a
m

ic

lo
a

d
s

A
e

ro
d

y
n

a
m

ic

lo
a

d
s

C
L

, C
D

, s
p

a
n

E
!

C
L

m
a

x

E
m

p
ri

ri
ca

l
C

L
m

a
x

C
L

m
a

x

E
M

W
E

T
 W

in
g

W
e

ig
h

t
W

e
ig

h
ts

F
u

se
la

g
e

 W
e

ig
h

t

E
st

im
a

ti
o

n
W

e
ig

h
ts

W
e

ig
h

ts
 &

 C
G

s
A

e
ro

d
y

n
a

m
ic

lo
a

d
s

A
e

ro
d

y
n

a
m

ic

lo
a

d
s

C
la

ss
 II

.V
 W

e
ig

h
t

E
st

im
a

ti
o

n
W

e
ig

h
ts

 &
 C

G
s

E
n

g
in

e
 M

o
d

e
l

S
F

C

E
m

p
ir

ic
a

l D
ra

g

E
st

im
a

ti
o

n
P

ro
"

le
 d

ra
g

W
e

ig
h

ts
 &

 C
G

s

P
e

rf
o

rm
a

n
ce

E
st

im
a

ti
o

n

R
a

n
g

e
, C

L
m

in
,

C
D

m
in

, e

D
ra

g
 p

o
la

rs
,

S
F

C
, C

L
 m

a
x

F
u

e
l m

a
ss

D
e

si
g

n

C
o

n
v

e
rg

e
n

ce
W

e
ig

h
ts

Fi
gu

re
3.
3:

N
2
ch

ar
to

ft
he

m
od

ul
es

18 Design Tool Description

3.3.1 Sizing Modules

e sizing modules are used to create an initial preliminary sizing of an aircra based on a set of
top-level requirements. ey are skipped when a pre-deĕned aircra is detected in the XML-ĕle.
e end result is a ĕrst estimation of the aircra geometry, weights, propulsion and performance.

Module: Class1WeightEstimation

is module developed by Slingerland as part of the MSc. thesis performs a Class I weight esti-
mation [30]. e module is able to size an aircra based on multiple payload-range combinations
and calculates an harmonic range for which all missions are feasible. With this information the
required fuel mass is calculated with the ‘lost range’ method [3]. e relation between the OEM
and MTOM is estimated using a linear regression. By using this relation in combination with the
fuel mass and payloadmass theMTOMandOEMof the aircra in question can be calculated [27].

Module: WingustLoading

is module chooses the wing loading and thrust-to-weight ratio of the aircra. A large number
of constraints are used to limit the design space:

• Take-off distance
• Landing distance
• Cruise speed
• Climb gradients
• Climb rate
• Stall speed
• Turn rates

e evaluation of the constraints are based on Roskam [31]. For a full description of the module
please read Slingerland’s Master thesis [30].

Module: GeometryEstimation

e GeometryEstimation module uses the wing loading and weight information to create a ĕrst
estimate of the aircra geometry. e wings are sized to meet the wing loading estimated by the
WingrustLoading module where canard planform is included to get the required loading. Since
the canard is estimatedwith volume coefficientmethods [27], the canard panform area is deĕned as
a function of the wing planform area andmean aerodynamic chord. erefore the wing and canard
sizing is solved simultaneously and iterated until the desired planform area is achieved. All other
tail surfaces are also estimated using the volume coefficient method. e sweep angle and taper
ratio are calculated using empirical relations used by Raymer [27]. e fuselage is sized tomeet the
required cabin Ęoor to hold the payload by using a pre-set passenger density. e slenderness is
estimated using database values of aircra with similar payload-range requirements. e engines
length and diamter is calculated by using the thrust to interpolate database information.

3.3eModules 19

emain part (which is the fuselage for the conĕgurations currently implemented in the Initiator)
is place at (0,0,0). All other parts are positioned with respect to this part by using length fractions
deĕned in settings. ese settings for the different conĕgurations are fractions of the main part
dimensions.

Design rules for the Blended-Wing-Body aircra are created, but only create feasible aircra ge-
ometries for very high payload requirements.

3.3.2 Analysis Modules

e Analysis modules are used to analyse the aircra generated by the sizing modules or a pre-
deĕned aircra. All analysis modules require a fully deĕned aircra; in other words: the sizing
modules need to be completed, or an aircra needs to be present in the XML ĕle.

Module: Class2WeightEstimation

eClass2WeightEstimationmodule performs aClass II weight estimation for all the different parts
of the aircra. It uses the method as written by Raymer [27]. Note that the connectors of the
prandtl-wing and winglets are currently not included in the weight estimation.

Module: AVLVLM

AVL is a vortex-latticemethoddeveloped byMarkDrela ofMIT [28]. eAVLVLMmodule creates
an AVL model of the aircra and performs several AVL runs on a trimmed aircra to get:

• Stability and Control derivatives

• CL and CD at several angles of attack to calculate the drag polar

• Forces and moments at n = 1 and n = nmax

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.02 0.03 0.04 0.05 0.06

Flight test

AVL

C
D

C
L

7.5 cts

Figure 3.4: Drag polar comparison of AVL with øight test data from the Airbus A320-100 [9]

Figure 3.4 shows the comparison of an AVL model of the Airbus A320-100 and Ęight test data.
Because vortex-lattice is an inviscid method, the CD0 from the Ęight test data is also used to con-
struct the AVL drag polar. Note that the AVL model has symmetric airfoils (which is not the case

20 Design Tool Description

on the real A320) and the twist angles could have a measurement inaccuracy since these were not
clearly visible in the technical drawings. As can be seen the drag polar is estimated quite well, with
an error of 7.5 drag counts at CL = 0.5, providing the estimation of the zero-li-drag is accurate.
Since the vortex-lattice method is incapable of modelling thickness effects, inaccuracies may occur
in the case of very thick liing surface (as is the case with the Blended-Wing-Body).

Module: TornadoVLM

is module is capable of modelling the aerodynamics of the aircra liing surfaces with the Tor-
nado vortex-lattice method [32] which is extended by Vaessen [10] with a relaxed wake model and
an improved compressibility correction. An example of the output of the Tornado module can be
seen in Figure 3.5. Currently AVL is used in favour of Tornado since the Trez-plane analysis of
Tornado is very inaccurate. Another fact in favour of AVL is the runtime; AVL is multiple times
faster than Tornado. Tornado is validated by Vaessen during his Master’s thesis work. e results
of a few validation cases can be found in Figure 3.6.

Figure 3.5: Wake visualisation plot from Tornado

Module: CLmaxEmpirical

is module, developed by Jan Mariens, calculates the CLmax of a clean wing and is based on the
ESDU 89034 method [33]. Since it does not give reliable results, the method is currently disabled
and CLmax values provided by the user and used. is needs to be ĕxed in a future version.

Module: EmpiricalDragEstimation

e EmpiricalDragEstimation is developed by M.Warmenhoven [34] and is a soware implemen-
tation of the method described in Appendices F and G of prof.dr.ir Torenbeek’s Synthesis of Sub-
sonic Aircra Design [29]. e method can estimate the drag of an aircra in cruise condition
and with different low-speed conĕgurations (including Ęap deĘections). Currently only the cruise
drag is calculated, from which only the proĕle drag is used in other modules of the Initiator. e
induced drag is already acquired from theAVLVLM module. Note that the method is an empirical
method based on data from conventional aircra conĕgurations. Please be suspicious to results

3.3eModules 21

Figure 3.6: Validation cases of Tornado with varying aspect ratios, source: [10]

calculated with this module in the case of unconventional conĕgurations. In Warmenhoven’s re-
port the tool is compared with the Fokker 100 aircra. e tool gives a CD0 of 0.0215, where the
real aircra has a CD0 of 0.0188, an overestimation of 14%. is is compensated in the tool by
underestimating the CL in cruise condition. Since the CD0 is the only result used by the Initiator,
this could result in inaccurate drag estimation results.

Module: EMWETWeight

is module is a wrapper around the student version of the EMWET Class II.V wing weight esti-
mationmethod developed byA. Elham as part of his PhD thesis [35]. EMWET is a quasi-analytical
wingweight estimationmethodwhich uses load data from an aerodynamic analysis to calculate the
material distribution in the wing box which is needed to withstand the loads. [11] Semi-empirical
relations are used to estimate the secondary weights. Figure 3.7 shows the correlation between the
calculated wing box weight and the actual wing weight. is ĕt is used inside the program to derive
the wing weight aer the wing box sizing.

Module: FuselageWeightEstimation

ismodule performs aClass II.Vweight estimation of the fuselage and is developed byK. Schmidt
as part of hisMaster’s thesis work [12]. Is is able to perform a weight estimation on conventional as
well as oval-cross-subsection fuselages. It uses the moment and forces calculated by AVL as well as
component weights calculated by the Class II or Class II.V weight estimation methods. In Figure
3.8 the veriĕcation of the fuselage weight estimation can be found. e reference aircra used are
all quite small, therefore it would be advisable to validate the method with a more varied set of
reference aircra.

22 Design Tool Description

10
3

10
4

10
3

10
4

F50

B737

B727

A300

B777 A330

Calculated wingbox weight (kg)

A
ct

u
a

l w
in

g
 w

e
ig

h
t

(k
g

)

Figure 3.7: Relation between wing box weight and total wing weight (source: [11])

Module: Class25WeightEstimation

e Class25WeightEstimation extends the Class II weight estimation module by iterating AVL,
EMWET and the Class II.V fuselage weight estimation method until the maximum take-off mass,
wingmass and fuselagemass stabilise within a pre-setmargin. All other parts (eveything except the
main wing and fuselage) are calculated with the same methods as the Class II weight estimation.

Module: HighLiDevices

is module, developed by Jan Mariens, uses the ESDU 99031 method [36] to estimate the li-
curves of the wing-fuselage combination with high-li devices. It evaluates all possible Ęap/slat
combinations and chooses the most simple solution which meets the runway requirements. Since
this module had a very long runtime (around 1 minute on an Intel i7-3610QM CPU) it is not
included as a dependency for other modules. Also the accuracy of the method regarding uncon-
ventional aircra conĕgurations is unknown.

Module: PerformanceEstimation

e PerformanceEstimationmodule combines all data calculated by the analysis modules to create
the aircra drag polar, manoeuvre loading diagram and payload-range diagram. e drag polar is
constructed by combining the induced drag from the Trez plane analysis of AVL and the proĕle
drag calculated with empirical methods. e drag polar is commonly approximated with a polar

3.3eModules 23

10
0

10
1

10
2

10
0

10
1

10
2

Werkelijk gewicht [x10 3 kg]

G
e

s
c

h
a

t
g

e
w

ic
h

t
[x

1
0

3
 k

g
]

Class 2.5
Torenbeek
Raymer
Howe
Nicolai
0%
15%
35% fout

fout
fout

A300B2

A320-200

ATR42

B707-121

B707-320

B707-321

B727-100

B737-100

DC8-55
DC8-72

DC9-15

F100

L1011-1

Figure 3.8: Veriöcation of the fuselage weight estimation method (source: [12])

which has the form:
CD = CD0 +

C2
L

π ·A · e
(3.1)

To calculate the values of CD0 and e the method presented in Section 5.3 of [29] is used, which is
illustrated in Figure 3.9. A linear ĕt is made around the cruise li coefficient for CD = f(C2

L).
e intersection of this line with the C2

L = 0 is the value of CD0 of the polar approximation.

24 Design Tool Description

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

1.2

C
D

C
L2

k =
1

π · A · e

CD 0

drag polar

approximation

Figure 3.9: CD0 and e estimation

3.3.3 Design Modules

Design modules add or change the aircra design. In implementation they are not different from
the analysismodules. However, to separate analysis fromdesign, a differentmodule type is created.

Note that including design modules in an optimiser workĘow need to be done with caution. One
has to be sure that parameters which are present in the design vector are not changed by the mod-
ules.

Module: CabinDesign

is module creates the fuselage interior by creating the cabin Ęoor (and wall and roof in an oval
fuselage) and the cargo bay. It creates a Cargo part into the fuselage and ĕts ULDs container into
the bay. e module is created as part of Schmidt’s Master thesis [12].

Module: ControlAllocation

e ControlAllocation module allocates control surfaces to various parts of the aircra by using
some simple design rules and writes the results to the wing parts. is module will be extended by
[37].

Module: PositionLandingGear

e PositionLandingGear module estimates the placement of the landing gear by using a large set
of constraints which result in the best placement of the landing gear. e module is developed by
Heerens [38].

3.3eModules 25

3.3.4 Work-ĘowModules

ework-Ęowmodules don’t analyse or change the aircra directly. ey implement design work-
Ęows and in- and output modules.

Module: XMLReader

e XMLReader reads the aircra deĕnition ĕle and stores the data into the  objects for
use by the modules. Existing data previously loaded are overwritten by the values in the XML ĕle.

Module: XMLWriter

eXMLWritermodule writes all data from the Initiator to the aircra deĕnition ĕle. Existing data
in the ĕle is overwritten.

Module: DesignConvergence

is module implements the design loop which feeds back the Class II.V weight estimation to
re-evaluate the wing loading and thrust-to-weight ratio. e weight converge when the change
between two iterations fall within a pre-set tolerance. e module also has a loop which changes
the fuel mass until the desired range is met. e work-Ęow can be found in the activity diagram in
Figure 3.10. is is the implementation of the design process outlined in Figure 3.2.

Module: InteractiveMode

e interactive mode implements a text interface for the user. It has the possibility to run and reset
modules and print results in the console.

Module: BatchMode

eBatchModemodule reads the<runList> tag in the aircradeĕnition ĕle and runs themodules
in the order they are speciĕed in the ĕle.

Module: PlotTool

e PlotTool module has two different run cases. When invoked from the InteractiveMode it
presents the user an input prompt from where the user can plot the aircra geometry and ĕg-
ures created by the modules. When called from BatchMode, it reads its own module input and
plots the speciĕed ĕgures.

Module: ReportWriter

e ReportWriter module collects results from the analysis modules and writes this information to
a nicely formatted PDF ĕle. is module required a working LATEX installation. An example of a
report generated with the module can be found in Appendix A.

26 Design Tool Description

Get initial values

(Call getModuleR esults method)

Get convergence criteria from settings

C lass 2.5 converged?

R ange converged?

R anges of all requirements met?

R e-run all S izingModules

With C lass 2.5 results

R un C lass 2.5 weight estimation

R un performance estimation

Calculate fuel mass required

to achieve range

Figure 3.10: Activity diagram of the DesignConvergence module

27

Chapter 4

Design Tool Veriöcation

In this chapter the Initiator design tool developed in this thesis project is compared against existing
aircra. e Initiator is a tool designed to synthesise a preliminary aircra design from a set of
top-level requirements. An aircra design is in essence a non-unique solution to a problem posed
by a set of TLRs. Since the Initiator is a design tool there is, in contrast to an analysis tool, no
“right” answer which can be used to validate the tool. However, assuming commercially designed
aircra represent an optimally designed aircra, the design tool output can be veriĕed against
existing aircra designed for similar top-level requirements. Each analysis tool should be validated
separately, this is however outside the scope of this thesis. e current state of the differentmodules
can be read in Section 3.3.

A selection of aircra varying from small regional jets to wide-body long-range, jet-powered air-
cra is made with different wing and engine conĕgurations. Aircra are chosen for which suffi-
cient reference data could be acquired. e aircra are generated by the Initiator utilising a de-
sign routine which designs an aircra for a speciĕed payload versus harmonic range combination.
e requirements are set to match the performance characteristics of the reference aircra. e
generated aircra are compared with the reference aircra designed for the same payload-range
requirements.

4.1 Reference aircra

e full list of reference aircra requirements can be found in Table 4.1. Of all aircra the per-
formance gross weights and empty weights are available. Six aircra (A300 B2-100, A320-200,
B737-200, DC-10-30, MD-80 and F-100) can be compared using a more detailed weight break-
down acquired from [14] and [15]. Drag polars from Ęight-test data is available for the A320-200,
B737-200, B737-800, DC-10-30 and the MD-80. Figure 4.1 shows the harmonic range and maxi-
mum payload mass of different aircra used for the tool veriĕcation.

From the aircra performance speciĕcations top level requirements are created and Initiator input
ĕles are created. An example of an input ĕle (the Airbus A320-200) can be found in Appendix
C. Besides the requirements, the conĕguration (low or high wing, standard or T-tail, number of

27

28 Design Tool Veriĕcation

Table 4.1: Reference aircraft requirements, source: [13]

Aircra Npax [-] Wp [kg] Mcruise [-] hcr [m] Rh [km] Ltakeoff [m] Llanding [m]

A300-B2-100 269 31750 0.78 10058 1720 1850 1768
A320-200 150 20536 0.76 11278 2870 2180 1440
A340-300 295 50800 0.82 11887 9167 3000 1964
A340-600 380 67400 0.82 11887 10556 3100 2240
A380-800 555 83900 0.85 11887 12149 2990 2160
B737-200 97 11385 0.73 10668 1774 1829 1350
B737-800 162 21319 0.79 11887 1363 2101 1440
B777-300 394 64000 0.84 10668 3142 2574 1860
BAe 146-200 88 10250 0.65 9144 2000 1646 1192
F70 70 9302 0.77 10668 1085 1296 1210
F100 107 11300 0.72 10668 2556 1856 1321
DC-10-30 285 46180 0.82 9449 6995 2996 1820
MD80 155 18236 0.76 10668 1453 2195 1481

engines) and the wing aspect ratio is deĕned. Also the CLmax of the aircra in clean, take-off and
landing conditions need to be speciĕed. e choice of the landingCLmax has great inĘuence on the
aircra performance since this is currently the only constraint for the maximum wing loading.1
e CLmax values are chosen such that the wing loading of the generated aircra lies within the
loading of its reference aircra. e used parameters can be found in Table 4.2, general setting
used for all conĕgurations can be found in Table 4.3. All other aircra parameters are estimated
by the Initiator. All aircra are designed by running the DesignConvergence module. e global
working of this design convergence module can be found in Chapter 3.

Table 4.2: Initiator input parameters

Aircra A CLmax,landing CLmax,take-off CLmax,clean

A300-B2-100 7.73 2.6 2.2 1.2
A320-200 9.39 3.2 2.2 1.2
A340-300 10.02 2.5 2.2 1.2
A340-600 9.16 2.5 2.2 1.2
A380-800 7.52 2.6 2.2 1.2
B737-200 8.83 3.2 2.2 1.2
B737-800 9.45 3.4 2.2 1.2
B777-300 8.68 2.8 2.2 1.2
BAE146-200 8.98 2.8 2.2 1.2
F70 8.43 3.0 2.2 1.2
F100 8.43 3.0 2.2 1.2
DC-10-30 6.91 2.7 2.2 1.2
MD80 9.62 3.2 2.2 1.2

1In future Initiator versions the wing loading will also be constrained by buffet onset in cruise conditions

4.2 Comparison based on Design point 29

A300 B2-100

A320-200

A340-300

A340-600

A380-800

B737-200

B737-800

B777-300

BAE146-200

DC-10-30

F-100

F-70

MD-80

0

10

20

30

40

50

60

70

80

90

0 2000 4000 6000 8000 10000 12000 14000

P
a

y
lo

a
d

 m
a

ss
 [

m
e

tr
ic

 t
o

n
s]

Range [km]

Figure 4.1: Payload - harmonic range combinations of the reference aircraft

Table 4.3: Initiator performance settings

Parameter Value Description
∆CD0,take-off 0.0350 Zero-li drag increment, take-off conĕguration, Ęaps & landing gear
∆CD0,landing 0.0850 Zero-li drag increment, landing conĕguration, Ęaps & landing gear
∆etake-off 0.05 Span efficiency increment, take-off conĕguration
∆elanding 0.10 Span efficiency increment, landing conĕguration
BPR 6.0 Engine bypass ratio

4.2 Comparison based on Design point

e design point is the wing loading - thrust-to-weight-ratio combination chosen for the designed
aircra. e design space is the space set up by all possible wing loading versus thrust-to-weight
ratio combinations. e design space is constrained by a multitude of requirements. e choice of
design point has a big inĘuences on the aircra design. But because limited information is available
at the conceptual design phase a lot of assumptions need to be made. A majority of constraints on
thewing loading are a result of the high-li performance of the aircra. Because there is no high-li
or clean CLmax prediction available in the tool at the time of writing, all CLmax values are set by the
user. e design point which results in the highest wing loading and still meet all the constraints
is selected by the design tool. For more information please read Slingerland’s Master’s thesis [30].

As can be seen in Figure 4.2, the wing loading of the aircra with the A320-200 requirements
matches the wing loading of the aircra present in the Initiator database. Note that the “reference
aircra” presented in the Figure are not the reference aircra used in this Chapter. e refer-

30 Design Tool Veriĕcation

ence aircra used in the sizing are gathered from a database inside the Initiator. Based on the
payload-range requirements a selection of similar aircra is made. For more information please
read Slingerland’s Master’s thesis [30].

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

Take−o! Wing Loading (W/S) [N/m
2

]

T
a

k
e

−
o

!
 T

h
ru

st
−

to
−

W
e

ig
h

t
ra

ti
o

 (
T

/W
)

[−
]

s
L

 = 1440 m

b
max

 = 80 m

(c/V)
FAR 25.111c

 = 1.2 %

(c/V)
FAR 25.119

 = 3.2 %

(c/V)
FAR 25.121a

 = 0 %

(c/V)
FAR 25.121b

 = 2.4 %

(c/V)
FAR 25.121c

 = 1.2 %

(c/V)
FAR 25.121d

 = 2.1 %

s
TO

 = 2180 m

M
cr

 = 0.76

t
climb

 = 10 min to h = 4000 m

Design Point

Reference Aircraft

design space
Figure 4.2: Design point of the Initiator generated aircraft according to A320-200 speciöca-

tions

eactive constraints are the landing distance, cruise speed and take-off length. In otherwords, the
design space is bound by these constraints. Note that the landing and take-off distances are highly
dependent on theCLmax values supplied by the user, therefore it cannot be stressedmore that a good
CLmax estimation method is required to improve the design tool and make it less dependent on
values given by the user. e cruise speed constraint (and also the climb requirements) are highly
sensitive to changes in the aircra drag polar. Since the proĕle drag is currently estimated with an
empirical method, its validity cannot be ensured for unconventional aircra conĕgurations.

All design points of the generated aircra are compared to the reference aircra in Figure 4.3. e
wing loading estimation is quite good, although this is highly inĘuenced by the selected CLmax

values. e thrust-to-weight ratio is not estimated correctly for all aircra. Further inspection
reveals that the thrust-to-weight ratio is driven up by the cruise speed requirement in the cases
where the thrust-to-weight ratios have a large difference.

For example the generated aircrawithAirbusA380-800 requirements has a thrust-to-weight ratio
of 0.34, where the “real” A380-800 has a thrust-to-weight ratio of 0.24. e cause of this high
value of the cruise speed constraint is the high drag coefficient, which is a direct result of the high
cruise CL of 0.75. e CD0 is 203 drag counts, where the total CD is 491 cts; from this can be
concluded that the li-induced drag is very high, which is a result of the high cruise li coefficient.
In reality this high CL could result in buffet onset in cruise conditions. Since the aircra is always
designed such that the li equals the weight, this means that the wing loading is too high for the
aircra. erefore a buffet onset constraint is needed to limit the wing loading, which would result
in a lower cruise CL. is lower CL will result in a lower CD during cruise, which decreases
the required thrust (or trust-to-weight-ratio). is results into smaller engines, but larger wings.
e other aircra which have a large thrust-to-weight ratio show the same high cruise CL and
corresponding high CD values.

4.3 Comparison based Geometry 31

F
-7

0

B
A

e
-1

4
6

-2
0

0

F
-1

0
0

B
7

3
7

-2
0

0

M
D

-8
0

A
3

0
0

-B
2

-1
0

0

B737-800

B777-300

A320-2
00

D
C

-1
0

-3
0

A
3

8
0

-8
0

0

A
3

4
0

-3
0

0

A
340-600

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

3000 4000 5000 6000 7000 8000

Roux

Initiator

Wing loading [N/m2]

T
h

ru
st

-t
o

-w
e

ig
h

t
ra

ti
o

 [
-]

Figure 4.3: Comparison of the design point of the Initiator generated aircraft and data from
Roux [13]

4.3 Comparison based Geometry

e Initiator design tool generates 3-dimensional geometry of the designed aircra. e conĕgu-
ration (high or low wing, tail type) and the aspect ratio are deĕned by the input. All other variables
are calculated by the design tool. e Initiator uses a lot of settings to generate the aircra. e
most relevant settings are listed in Table 4.4. is section will compare the geometry generated by
the Initiator with the actual aircra.

Figure 4.4 compares the A320-200 with an aircra generated by the Initiator with the same re-
quirements. As can be seen the geometry is estimated quite well, note that since the aspect ratio is
a user-input, this is an exact match. e vertical tail size (and to a lesser degree, the horizontal tail
too) is a little underestimated. However, the vertical tail is positioned further a than the reference
aircra, which results in a longer moment arm.

e fuselage length is clearly overestimated. Its planform area is sized by using a pre-set passenger
density. is setting is currently an average density found in literature for a three-class conĕgura-
tion. (For more information please see [12]). is could be improved by making this parameter
sensitive to range, since longer hauls require more room per passenger than short Ęights. Also
there is no distinction made between single and twin-aisle fuselages.

Other little differences can be seen between the compared aircra geometries. enacelle diameter
is underestimated, this is caused partly by the underestimated thrust-to-weight ratio, but since the
scaling factor used by the design tool are probably based on older reference aircra (Since they
come from Raymer [27]) they are not suited to estimate modern high by-pass ratio engines. e

32 Design Tool Veriĕcation

Table 4.4: Initiator geometry settings

Parameter Value Description
Wing
Position 0.48 Fraction of fuselage length
Spar positions 0.15 0.75 Chordwise position of spars
Kink location 0.3 Spanwise location of the kink
Airfoils B737

Fuselage
Nose ĕneness ratio 0.18 Fraction of fuselage length
A ĕneness ratio 0.55 Fraction of fuselage length
Pax density 1.29 Pax per m2

Horizontal tail
Aspect ratio 5.0 Fixed HT aspect ratio
Taper 0.35 Fixed HT taper ratio
Position 0.05 Fraction of fuselage length measured from end
Airfoil NACA0012

Vertical tail
Aspect ratio 1.6 Fixed HT aspect ratio
Taper 0.35 Fixed HT taper ratio
Aspect ratio (T-tail) 1.0 Fixed HT aspect ratio
Taper (T-tail) 0.7 Fixed HT taper ratio
Position 0.05 Fraction of fuselage length measured from end
Airfoil NACA0012

Engines
Span location (single) 0.35 Fraction of half-span
Span location (dual) 0.3 0.7 Fraction of half-span
Fuselage location 0.7 Fraction of fuselage length

4.3 Comparison based Geometry 33

wing kink (and with it, the landing gear) is placed too far inboard, but this can be changed by
altering settings listed in Table 4.4. Also the nose-gear is placed too far to the front of the nose.
e fairing between the fuselage and wing, which houses the landing gear, is not modelled by the
Initiator. is could have a small impact on the wetted area of the aircra, which in turn affects
the CD0 .

34.09m

(a) Top

37.57m

(b) Side (c) Front

Figure 4.4: A320-200 geometry comparison

Figure 4.5: A320-200 comparison

Figure 4.6a shows the A340-600 top-view compared with the tool output. In contrast to the A320-
200, is the fuselage length underestimated but it is slightly wider. ewing span is a bit larger when
the winglets of the reference aircra are not taken into consideration. Also the placement of the
outboard engines is too far outboard, but this is easily ĕxed by changing a setting. Interesting to see
is that the tail size is now overestimated, though the same design rule (Raymer’s volume coefficient
method [27]) is used for all aircra.

In Figure 4.6b the Fokker 100 aircra is compared, which is an aircra with fuselage-mounted
engines and a T-tail. As can be seen the wing sweep is overestimated. e wing sweep is calculated
by using a simple relation between the cruise Mach number and the sweep angle. is is a very
crude method which could be the cause of the difference. e fuselage length is underestimated.
However, when inspecting the ĕgure, it can be seen that the “real” F100 fuselage width is decreased
between the engines. To account for this lost Ęoor area, the fuselage is made longer. e engine
are under-sized. is is simply because the same design rule is used for both wing mounted and
fuselage mounted nacelles.

eBritishAerospace 146-200 is a highwing aircrawith four engines. As can be seen the estimate
of the wing is quite good, however the tail is again undersized. e fuselage is clearly overestimated
(again probably due to the passenger density effect as discussed with the A320-200) and the out-
board engines are again placed too far outboard.

34 Design Tool Veriĕcation

63.45m

(a) A340-600

28.08m

(b) Fokker 100

26.34m

(c) BAe 146-200

Figure 4.6: Comparison of top views

Table 4.5 lists the geometry parameters of the aforementioned aircra. One reference aircra of ev-
ery aircra conĕguration used in the tool veriĕcation was selected. e other aircra show similar
differences in geometry and are therefore not listed in the table.

4.3 Comparison based Geometry 35

Ta
bl
e
4.
5:

Co
m
pa

ris
on

of
ge

om
et
ry

pa
ra
m
et
er
s

A
32
0-
20
0

A
34
0-
60
0

BA
E1

46
-2
00

F1
00

D
im

en
sio

n
D
es
cr
ip
tio

n
U
ni
t

Re
fe
re
nc
e

In
iti
at
or

Re
fe
re
nc
e

In
iti
at
or

Re
fe
re
nc
e

In
iti
at
or

Re
fe
re
nc
e

In
iti
at
or

W
in

g
S

pl
an
fo
rm

ar
ea

m
2

12
2.
4

12
2.
8

43
9.
4

44
0.
4

77
.3

73
.4

93
.5

88
.3

b
sp
an

m
33
.9

34
.1

63
.5

63
.7

26
.3

25
.8

28
.1

27
.4

λ
ta
pe
rr
at
io

-
0.
25

0.
21

0.
22

0.
18

0.
36

0.
27

0.
24

0.
22

Λ
0
.2
5

1/
4
c
sw

ee
p

◦
25

24
.5

31
.1

29
.1

15
.0

14
.5

17
.5

20
.9

Fu
se

la
ge

L
f

le
ng

th
m

37
.6

40
.7

73
.5

66
.6

26
.5

31
.0

32
.5

34
.2

D
f

di
am

et
er

m
4.
1

4.
2

5.
6

6.
5

3.
56

3.
2

3.
3

3.
6

H
or

iz
on

ta
lt

ai
l

S
pl
an
fo
rm

ar
ea

m
2

31
.0

26
.0

98
.1

11
3.
1

15
.6

15
.0

21
.7

19
.3

b
sp
an

m
12
.5

11
.5

22
.6

23
.9

11
.1

8.
7

10
.0

9.
9

λ
ta
pe
rr
at
io

-
0.
33

0.
35

0.
39

0.
35

0.
41

0.
35

0.
39

0.
35

Λ
0
.2
5

1/
4
c
sw

ee
p

◦
28
.0

27
.4

29
.9

32
.6

20
.0

16
.2

26
.0

23
.4

Ve
rt
ica

lt
ai

l
S

pl
an
fo
rm

ar
ea

m
2

21
.5

18
.3

51
.4

75
.1

11
.6

10
.9

12
.3

12
.6

b
sp
an

m
5.
9

5.
4

8.
8

11
.0

4.
9

3.
3

3.
3

3.
6

λ
ta
pe
rr
at
io

-
0.
35

0.
35

0.
36

0.
35

0.
67

0.
70

0.
74

0.
70

Λ
0
.2
5

1/
4
c
sw

ee
p

◦
35
.0

36
.7

39
.5

43
.6

36
.0

21
.7

0.
9

31
.4

En
gi
ne

po
ds

L
e

le
ng

th
m

4.
4

2.
9

4.
7

5.
7

2.
6

2.
1

5.
1

2.
5

D
e

di
am

et
er

m
2.
4

1.
8

3.
1

3.
6

1.
4

1.
1

1.
7

1.
5

Y
m

sp
an
w
ise

po
sit
io
n

%
34
.0

35
.0

29
.5
61
.8

30
.0
70
.0

31
.5
50

30
.0
70
.0

-
-

36 Design Tool Veriĕcation

4.4 Drag polar comparison

e aerodynamic analysis in the Initiator consist of two different modules. First, the induced drag
is estimated with AVL, a vortex-lattice method [28]. e proĕle drag is estimated with the method
presented in Appendices F & G of Dr. Torenbeek’s Synthesis of Subsonic Airplane Design [29].
e output of these two analyses are combined to create an estimate of the drag polar. Since there
is currently no reliable high-li estimation available in the Initiator, the changes of the drag polar
for take-off and landing conditions are deĕned as a ĕxed increase in the span efficiency e due to
Ęap deĘections and a ĕxed increase in CD0 due to Ęap and landing gear deĘections. ese values
can be found in Table 4.3. An example of the resulting drag polars can be found in Figure 4.7.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.00 0.10 0.20 0.30 0.40 0.50

CL

C
D

Cruise

Take-o

Landing

Figure 4.7: Drag polar output from the Initiator (A320-200)

In Figure 4.8 CD - C2
L is plotted of aircra for which Ęight test data is available. Overall can be

seen that the zero-li drag (CD0) is overestimates by an average of 25% with respect to the Ęight
data. e slope of theCD -C2

L lines is, with exception of the DC-10-30 estimated quite nicely. is
means that the estimation of parameter k, (k = 1

πAe) is accurate. e empirical drag estimation
needs to be further investigated to solve this difference between the Initiator results and Ęight test
data.

4.4 Drag polar comparison 37

0

0.05

0.1

0.15

0.2

0.25

100 150 200 250 300 350 400

Flight Test

Initiator

*A320 !ight

test data is used

C
L

2

C
D
 x 104

(a)CD -C2
L Airbus A320-200∗

0

0.05

0.1

0.15

0.2

0.25

100 150 200 250 300 350 400

Flight Test

Initiator

C
L

2

C
D
 x 104

(b)CD -C2
L Boeing 737-200

0

0.05

0.1

0.15

0.2

0.25

100 150 200 250 300 350 400

Flight Test

Initiator

C
L

2

C
D
 x 104

(c)CD -C2
L Boeing 737-800

0

0.05

0.1

0.15

0.2

0.25

100 150 200 250 300 350 400

Flight Test

Initiator

C
L

2

C
D
 x 104

(d)CD -C2
L McDonnell Douglas DC-10-30

0

0.05

0.1

0.15

0.2

0.25

100 150 200 250 300 350 400

Flight Test

Initiator

C
L

2

C
D
 x 104

(e)CD -C2
L McDonnell Douglas MD-80

Figure 4.8: Cruise drag polar comparison

38 Design Tool Veriĕcation

4.5 Comparison based onWeight

Fixed

equipment

Removeable

equipment

Fuel WeightZero Fuel Weight

Maximum Take-O! Weight

Useful load

T
y

p
ic

a
l W

e
ig

h
ts

M
a

in

g
ro

u
p

s

Basic Empty Weight

Manufacturers Empty Weight Load

Basic Operational Empty Weight

Aircraft

structure
Powerplant

Airframe equipment and

services Operator

items
Payload Fuel

Figure 4.9: Weight deönitions (modiöed from: [14])

e conventional method of breaking up the aircra weight is by identifying the operational empty
mass (OEM), the fuel mass (FM) and the (maximum) payload mass (PLM) which together add up
to themaximum take-offmass (MTOM). All the different weight deĕnitions can be found in Figure
4.9.
As can be seen in Figure 4.9 the MTOM and OEM of nine of the thirteen reference aircra are
estimated with an error less than 10%. e maximum take-off mass and the operational empty
mass are generally underestimated. ese two weights are linked; a higher operational emptymass
will also result in a higher take-off mass due to the snowball effect.

A300 B2-100

A320-200

A340-300
A340-600

A380-800

B737-200

B737-800

B777-300

BAE146-200

DC-10-30

F-100

F-70

MD-80

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.40 0.45 0.50 0.55 0.60 0.65 0.70

In
it

ia
to

r
o

u
tp

u
t

O
E

M
/M

T
O

M
 [

-]

Reference OEM/MTOM [-]

+5%

-5%

Figure 4.10: Comparison of the OEM/MTOM fraction of the generated aircraft with reference
data from [13]

An interesting measure of how well the weight estimation performs is by comparing the OEM
MTOM

fraction of the reference aircra with the Initiator output. In Figure 4.10 can be seen that the

4.5 Comparison based onWeight 39

OEM
MTOM fraction is estimated quite accurately. Since the payloadmass is a top-level requirement and
therefore equal for both the reference aircra and the Initiator generated aircra, it can be con-
cluded that the estimation of the fuel fraction is also accurate. (SinceMTOM=OEM+PLM+FM)
Of course the absolute value of the fuel mass will be underestimated due to the underestimation
of the maximum take-off mass. However, this can not be tested directly, since the fuel masses for
the harmonic range points are not known for the reference aircra.

e operational empty weight is the sum of all aircra structures, components and operational
items. In Figure In Figure 4.13 can be seen that the fuselage is consequently over-estimated (av-
erage: 5% of the MTOM, 11% to 16%; overestimated by 43% w.r.t. reference mass), where the
wing weight is underestimated (average: -4% of MTOM, 12% to 8%; underestimated by 32% w.r.t.
reference mass). ese two effects cancel each other out, which results in an operational empty
mass estimation which is quite accurate, as is seen before in Figure 4.10. Note that, because of the
cancelling effect improvement of the fuselage or wing weight estimation could result in a worse op-
erational empty weight prediction. However, this should not be a reason to refrain from improving
the estimation methods.

Overall can be concluded that the weight estimation implemented in the Initiator performs quite
well; the aircra synthesised by the design tool show comparable weights as the reference aircra
designed for the same top-level requirements.

40 Design Tool Veriĕcation

A
3

0
0

 B
2

-1
0

0

A
3

2
0

-2
0

0

A
3

4
0

-3
0

0

A
3

4
0

-6
0

0

A
3

8
0

-8
0

0

B
7

3
7

-2
0

0

B
7

3
7

-8
0

0

B
7

7
7

-3
0

0

B
A

E
1

4
6

-2
0

0

D
C

-1
0

-3
0

F
-1

0
0

F
-7

0

M
D

-8
0

A

3
0

0
 B

2
-1

0
0

A
3

2
0

-2
0

0

A
3

4
0

-3
0

0
 A

3
4

0
-6

0
0

A
3

8
0

-8
0

0

B
7

3
7

-2
0

0

B
7

3
7

-8
0

0

B
7

7
7

-3
0

0

B
A

E
1

4
6

-2
0

0

D
C

-1
0

-3
0

F
-1

0
0

F
-7

0

M
D

-8
0

1
0

1
0

0

1
0

0
0

1
0

1
0

0
1

0
0

0

Initiator mass output [metric tons]

R
e

fe
re

n
ce

 m
a

ss [m
e

tric to
n

s]

M
T

O
M

O
E

M

+
1

0
%

-1
0

%

Figure
4.11:Com

parison
ofthe

m
axim

um
take-off

m
ass

(M
TO

M
)and

operationalem
pty

m
ass

(O
EM

)calculated
from

the
Initiatorw

ith
reference

aircraftw
eightdata

from
Élodie

Roux
[13]

4.5 Comparison based onWeight 41

0

10

20

30

40

50

60

70

80

Reference Initiator

[m
e

tr
ic

 t
o

n
s

]

(a) A300 B2-100

0

5

10

15

20

25

30

35

40

45

Reference Initiator

[m
e

tr
ic

 t
o

n
s

]

(b) A320-200

0

5

10

15

20

25

Reference Initiator

[m
e

tr
ic

 t
o

n
s

]

(c) B737-200

Operational items

Furnishing

Systems

Empenage

Landing Gear

Engines

Fuselage

Wing

Figure 4.12: Comparison of the weight breakdown

- 6
.4

%

-3
.5

%

- 3
.4

%

- 3
.1

%

- 3
.8

%

-2
.3

%

8
.0

%

2
.8

%

3
.1

%

6
.3

%

3
.6

%

5
.1

%

0
.1

%

-1
.0

%

0
.9

%

0
.2

%

0
.5

%

- 1
.8

%

1
.1

%

1
.7

%

-0
.2

%

0
.1

%

1
.6

%

1
.5

%

-0
.1

%

0
.1

%

- 1
.3

%

-0
.5

%

-0
.4

%

-0
.9

%

1
.7

%

3
.2

%

7
.4

%

1
.1

%

6
.9

%

2
.7

%

-3
%

- 2
%

-6
%

- 5
%

- 4
%

-5
%

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

A300 B2-100 A320-200 B737-200 DC-10-30 F-100 MD-80

Figure 4.13: Difference in weight fraction of the maximum take-off mass of the Initiator gen-
erated aircraft compared with reference data from [14] and [15]

0

20

40

60

80

100

120

Reference Initiator

[m
e

tr
ic

 t
o

n
s

]

(a) DC-10-30

0

5

10

15

20

25

Reference Initiator

[m
e

tr
ic

 t
o

n
s

]

(b) F-100

0

5

10

15

20

25

30

35

40

Reference Initiator

[m
e

tr
ic

 t
o

n
s

]

(c)MD-80

Operational items

Furnishing

Systems

Empenage

Landing Gear

Engines

Fuselage

Wing

Figure 4.14: Comparison of the weight breakdown (continued)

42 Design Tool Veriĕcation

4.6 Conclusions

From this chapter can be concluded that the aircra generated by the Initiator match the reference
aircra quite well.

From the difference in design point between the Initiator output and the reference aircra can seen
that a good estimation of themaximum li coefficients is crucial for the design tool to ĕnd the right
design point. However, this estimation functionality is currently not available in the Initiator.

A few generated aircra have a high cruise li coefficient, which resulted in a high vortex drag due
to the small wing planform. Real aircra could encounter buffet onset at these high li coefficients
during cruise therefore a wing-loading constraint needs to be added which takes these effects into
account.

e geometry estimation performed good, because they are based on rather simple design rules
variations from the reference aircra can be expected. e horizontal and vertical tail prediction
methods currently use volume coefficient methods, which deĕnes the tail area as a function of the
main wing area and the distance between the aerodynamic centres of the surfaces. ese methods
could be improved by taking stability and controllability into account. is would also beneĕt the
estimation of control surfaces on unconventional aircra, since this is less reliant on empirical data.

e fuselage sizing could be improved by creating a more accurate representation of the cabin and
ĕtting a fuselage around it. Something similar is done by P. van der Linden in this Master’s thesis
[39]. Here T. Langen’s Initiator [17] is used where the cabin design is offloaded to DARFuse, which
sizes the cabin by taking a lot of design choices into account.2

e aerodynamics modules need to be improved. Since quite low-ĕdelity aerodynamic tools are
used and there is a geometric difference between the Initiator generated and the reference aircra
an exact match cannot be expected. However, the on average 25% overestimation of the zero-li-
drag should be investigated in future versions. A more sophisticated proĕle drag estimation may
be needed, also because the current tool is only applicable to conventional aircra conĕgurations.

e weight estimationmethods perform good, nine out of the thirteen aircra’s operational empty
weight andmaximum take-off weight are estimated to within 10% of the reference aircra weights.
Currently the main wing and fuselage are estimated with Class II.Vmethods, which are less reliant
on empirical data and use load cases to size the main structures. is approach could be extended
to also size the tail surfaces. e wing weight is currently underestimated by (on average) 32% (4%
of MTOM); the fuselage is overestimated by (on average) 43% (5% of MTOM). is needs to be
investigated to improve the accuracy of the weight prediction.

edifferent disciplines (aerodynamics, weight, etc.) in the design process are very closely coupled.
For example a slight change in the aerodynamics could have great inĘuences on the structures. To
verify and, if possible, validate themodules they need to be tested separately. In otherwords, testing
amodule which output could inĘuence its own input in the next iteration (practically anything in a
design loop) cannot be validated in-place. e analysis modules need to be validated separately for
known cases and the bounds for which the tools are valid need to be identiĕed. is information
can then be used to increase the conĕdence in the design tool output.

2Unfortunately this could not be implemented into the design tool discussed in this esis, because the version of
DARFusewas built on an old version ofGDL,which did not run on the author’s computer. enew versions ofDARFuse
(built on a newer version of GDL) lacked the XML read/write capability needed to implement the connection between
 and GDL

43

Chapter 5

Conöguration Comparison

In this Chapter the Initiator is used to compare different aircra conĕgurations by designing them
for varying payload-range requirements and deriving key performance indicators from the de-
signed aircra.

First the top level requirements are determined in Section 5.1. With these requirements the aircra
are generated by the Initiator. is results in 176 converged aircra conĕgurations, which can be
seen in Section 5.2. e output is analysed and key performance indicators (KPIs) are calculated
for every aircra. e different KPIs used are presented in Section 5.3. e results are presented
in Section 5.4.

5.1 Top level requirements

e top level requirements specify the mission and performance characteristics for which the air-
cra is designed. Two main top level requirements are the payload mass and range. An other
design variable which can be chosen freely in the Initiator is the wing aspect ratio. e upper and
lower bounds on the aspect ratio are set to 7 and 11, since these are roughly the minimum and
maximum values found in the reference aircra used in Chapter 4. e payload and range bounds
cannot be set by simply setting minimum and maximum values, since designing an aircra for a
large payload on a short range or a long-range aircra with a small payload would create infeasible
designs with the currently implemented methods. e top-level requirements are speciĕed for the
following aircra conĕgurations:

• Conventional aircra
• Canard aircra
• ree-surface aircra
• Prandtl aircra

Unfortunately the sizing methods of the Blended-Wing-Body aircra are not robust enough to be
used in the conĕguration comparison. Currently the BWB sizing methods only work for aircra

43

44 Conĕguration Comparison

with a very big payload, which does not result in a converged and feasible design with the current
methods.

e design space on the range versus payload mass plane is chosen by selecting the minimum and
maximum payloads and ranges of the reference aircra selected in Chapter 4. Two lines are drawn
between the origin and reference aircra which result in the largest angle between the lines. e
intersection point between the two slanted lines and the payload and range bounds are used to
create a convex quadrilateral which enables indexing of the design space with two variables. e
process can be seen in Figure 5.1.

Inside this prism-shaped design space design points are deĕned using latin hypercube sampling,
which makes sure that the largest variety of variable combinations is chosen for the given amount
of design points. For more information about these sampling methods, please read Slingerland’s
Master’s thesis [30]. e design space and the design points can be seen in Figure 5.2. To limit the
computation time (around 12 hours on an Intel i7-3610QMCPU) 50 design points per conĕgura-
tion are chosen, which results in a total of 200 aircra.

Table 5.1 list the remaining requirements used in the conĕguration runs. e coefficients ato and
al used to calculate the landing and take-off distances are determined using a quadratic ĕt between
the harmonic range and the distance of the reference aircra from Chapter 4.

Table 5.1: Requirements used for the conöguration comparison runs

Parameter Value

CLmax,clean 1.2
CLmax,takeoff 2.2
CLmax,landing 2.8
Landing distance ato ·R0.5

Takeoff distance al ·R0.5

5.1 Top level requirements 45

0 2000 4000 6000 8000 10000 12000 14000
0

1

2

3

4

5

6

7

8

9
x 10

4

Max PLM

Min PLM

M
in

 R

M
a

x R
Design space

Reference aircraft

Design points

Range [km]

P
a

yl
o

a
d

 m
a

ss
 [

kg
]

M
ax

 a
n

g
le

Min angle

Figure 5.1: Deönition of the design space and design points

Figure 5.2: 3D-view of the design space

46 Conĕguration Comparison

5.2 Design synthesis

For every design point the DesignConvergence module, as described in Section 3.2, is used. is
design is completed for every conĕguration. In Figure 5.3 the different design points are shown.
Some payload-range-aspect ratio combinations did not converge. In the case of high aspect ratio
wings the wing weight estimation method sometimes does not converge, which would crash the
weight estimation module. A too small wing aspect ratio would result in a too small fuel tank,
which results in an aircra which does not converge.

Figures 5.4 shows the 3-dimensional geometry of all generated aircra. Note that these ĕgures are
not to scale and only serve to show the multitude of generated aircra.

9.6

8.4

11

7.9

9.8

9.3

8.8

7.5

7.1
8.9

7.7

10

8.5

10.5

10.1

9.2

7.6

10.8

8.1

10.7

7.8

8.5

7.4

9.7

7.7

7.3

9.9

8.4

9.9
8.7

9.5

10.6

10.2

10.2

10.5

8.7

9.5

9.3

9.1

8.2

8.1
9

8

10.4

10.9

7.2

9.1

7.4

10.3

0

10

20

30

40

50

60

70

80

90

0 2000 4000 6000 8000 10000 12000

P
a

y
lo

a
d

 m
a

ss
 [

m
e

tr
ic

 t
o

n
s]

Range [km]

Conventional

Canard

TSA

Prandtl

7.1

Figure 5.3: Payload - range combinations of the design runs, aspect ratio written next to the
point; Missing points did not converge

5.2 Design synthesis 47

Figure 5.4: 3D renders of the generated aircraft

48 Conĕguration Comparison

5.3 Key performance indicators

Key performance indicators need to be chosen to compare the different aircra conĕgurations.
One important metric is the maximum take-off mass (MTOM).is gives an overall indication of
the aircra operating cost, since a lot the cost post are take-off mass related.

Secondly the operational empty mass (OEM) is used since this can be an indication of the aircra
purchase price, as can be seen in Figure 5.5. Note that is only valid for aircra built at the same
technology level; a weight-reduction due to more advanced materials would probably not result in
a decreased purchasing price.

Figure 5.5: Relation between the aircraft purchase price and the Operation Empty Weight
(source: [16])

epayload range efficiency (PRE) is a indication of the fuel efficiency of the aircra and is deĕned
as:

PRE =
Wp ·R
Wf

(5.1)

where Wp is the maximum payload weight, R is the aircra harmonic range and Wf is the fuel
weight associated with this mission. A higher payload range efficiency indicates a lower fuel usage
and therefore less noise and emissions.

e range parameterX is the ĕrst part of the famous Breguet range equation:

R =
V ·L/D

cT
· ln

W1

W2
=⇒ X =

V ·L/D
cT

(5.2)

where V is the aircra speed, L/D is the li-to-drag ratio and cT s the speciĕc fuel consumption.
is range parameter is a good ĕgure of merit for the aerodynamic and propulsive efficiency of the
aircra.

5.4 Results

Aer the runs are completed the results are interpreted which results in a four-dimensional scat-
tered dataset for every key performance indicator. To create continuous plots, the data is linearly
interpolated.

5.4 Results 49

In Figure 5.7 the selected KPIs are plotted for an conventional aircra with an wing aspect ratio of
9 (average of the aspect ratio used to generate the aircra). Other conĕgurations and aspect ratios
show similar trends, only the absolute values (and rates of change) differ. From Figure 5.7 can
be seen that the maximum take-off mass, operational empty mass as well as the range parameter
increase signiĕcantly with increasing payloadmass, but are less dependent on the harmonic range.
e fuel mass is more inĘuenced by the range, as well as the payload.

In Figure 5.8 theKPIs for every conĕguration are plotted for increasing payloadmass andharmonic
range. e horizontal axis describes an increase in payload mass and harmonic range. Every point
on the horizontal axis represents an unique payload versus harmonic range combination. e path
through the payload-range design space can be seen in Figure 5.6.

0 2000 4000 6000 8000 10000 12000 14000
0

1

2

3

4

5

6

7

8

9
x 10

4

Range [km]

P
a

y
lo

a
d

 m
a

ss
 [

k
g

]

Figure 5.6: Payload mass as a function of the range as used in Figure 5.8

e coloured bands in Figure 5.8 indicate the margin of the KPI which altering the wing aspect
ratio can inĘuence. In other words: the boundaries of the coloured bands are the minimum and
maximum values of the KPI which can achieved by varying the wing aspect ratio. Note that the
data is not smooth; this can be improved by increasing the number of generated aircra, at the cost
of increased computation time.

In Figure 5.8a the maximum take-off mass of the different conĕgurations is compared. As can
be expected, the maximum take-off mass increases with increasing payload and range for every
conĕguration. Interesting to see is that the conventional and the conventional aircra and the
three-surface aircra have similar take-off masses and also the canard aircra and the Prandtl air-
cra have comparable masses. e maximum take-off masses differ on average 30 tons, which is
quite considerable since this is roughly 25% of the maximum take-off mass.

Since MTOM = OEM + FM + PLM and the payload masses are the same for all conĕgurations,
the weight reduction must be in the operational empty mass and/or the fuel mass. As can be seen
in Figures 5.8b and 5.8c both show a considerable reduction in mass for the canard aircra and
the Prandtl aircra. In Figure 5.8b can also be seen that the three-surface aircra has a reduces
operational empty mass compared with the conventional aircra. However, the fuel mass is higher
for the three-surface aircra until an harmonic range of about 8000km. In terms of fuel mass the
canard aircra has consistently the advantage over the other aircra conĕgurations.

e payload-range efficiency, shown in Figure 5.8d, complies with the previous ĕgures. It shows
that the efficiency of the canard aircra and Prandtl aircra is higher than the conventional aircra
and the three-surface aircra, with an average difference of 1200km. e canard has clearly the
highest payload-range efficiency and the conventional aircra performs slightly better than the

50 Conĕguration Comparison

three-surface aircra until 8000km. Note that the three surface aircra’s PRE slope clearly increases
with increasing range while the slope of all other lines are almost constant. is is more clearly
visible in Figure 5.8f where the data in Figure 5.8d is ĕtted with a second-order polynomial.

In Figure 5.8e the range parameter is plotted. Surprisingly the conventional aircra performs the
best with exception for the very small ranges and payloads, where the canard aircra performs
slightly better. Again, the three-surface aircra starts off as the worst performing aircra for small
ranges and payloads, but increases rapidly to the point where it outperforms the other conĕgura-
tions (with exception of the conventional aircra) for the large ranges and payloads.

Since the conventional aircra outperforms the other conĕgurations in terms of the range pa-
rameter, it can be concluded that the other concepts do not get their advantage from increased
aerodynamic performance (since X = V ·L/D

cT
). e payload-range efficiency is higher, which

indicates a lower fuel mass, which is a result of the decreased operational empty mass due to the
so-called snowball effect inherent to the aircra design process.

e decreased operational empty mass could be a result of lower structural loads. In the case of
the canard aircra the root bending wing moments on the wings in lower because both the main
wing and the trimming surface are both liing: the main wing does not have to compensate the
download normally present due to trimming. e Prandtl aircra has less bending moments on
the fuselage, since it distributes the weight over the two wings and therefore introduces the liing
loadsmore gradually into the fuselage in comparison to other conĕgurations. Note that the Prandtl
aircra has an unfair advantage in the current implementation of the Initiator since the surfaces
connecting the two parts of the box-wing are not included in the weight estimation. ey are
included in the aerodynamic analysis, so the loads generated by the surfaces are used in the Class
II.V wing weight estimation, which results in a slightly increased wing weight.

e three-surface aircra should also take advantage of the fact that all surfaces are liing, which
would give it the same structural advantage. is absence of could have two causes:

1. e additional weight of the extra canard surface does not weight up against the weight
reduction gained by lower structural loads.

2. Trimming the three-surface aircra is a complex problem, since there are a lot of different
combinations of trimming surface angles which could trim the aircra. Ideally the combi-
nation which results in the lowest trim drag should be selected. Currently this is not the
case, the canard is ĕxed at a positive incidence angle, and the tail surface is used to trim the
aircra.

e trimming functionality of the Initiator is currently being improved as part of C. Huijts’sMaster
thesis [37]. Aer the trimming routines are fully integrated in the design tool, the performance of
the tree-surface aircra should be re-calculated.

Table 5.2 list the percentual changes of each KPI with respect to the conventional aircra.

5.4 Results 51

Table 5.2: Perceptual change of each conöguration with respect to the conventional aircraft

Aircra MTOM OEM FM PRE X

Canard -22% -28% -12% 15% -14%
ree-surface aircra -8% -10% 3% -4% -20%

Prandtl aircra -26% -31% -8% 9% -26%

2000 3000 4000 5000 6000 7000 8000 9000 10000

20

25

30

35

40

45

50

55

60

Range [km]

P
L

M
 [

m
e

tr
ic

 t
o

n
s]

M
T

O
M

 [
m

e
tr

ic
 t

o
n

s]

60

80

100

120

140

160

180

200

220

240

(a)Maximum take-off mass (MTOM)

2000 3000 4000 5000 6000 7000 8000 9000 10000

20

25

30

35

40

45

50

55

60

Range [km]

P
L

M
 [

m
e

tr
ic

 t
o

n
s]

O
E

M
 [

m
e

tr
ic

 t
o

n
s]

40

50

60

70

80

90

100

110

120

130

140

(b)Operational empty mass (OEM)

2000 3000 4000 5000 6000 7000 8000 9000 10000

20

25

30

35

40

45

50

55

60

Range [km]

P
L

M
 [

m
e

tr
ic

 t
o

n
s]

F
M

 [
m

e
tr

ic
 t

o
n

s]

10

15

20

25

30

35

40

45

50

55

60

(c) Fuel mass (FM)

2000 3000 4000 5000 6000 7000 8000 9000 10000

20

25

30

35

40

45

50

55

60

Range [km]

P
L

M
 [

m
e

tr
ic

 t
o

n
s]

P
R

E
 [

k
m

]

4500

5000

5500

6000

6500

7000

7500

8000

8500

(d) Payload range efficiency (PRE)

2000 3000 4000 5000 6000 7000 8000 9000 10000

20

25

30

35

40

45

50

55

60

Range [km]

P
L

M
 [

m
e

tr
ic

 t
o

n
s]

X
 [

k
m

]

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

(e) Range parameter (X)

Figure 5.7: Contour plot of the KPIs for the conventional aircraft with an aspect ratio of 9

52 Conĕguration Comparison

Range [km]

M
T

O
M

 [
m

e
tr

ic
 t

o
n

s]

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

50

100

150

200

250

300

350

PLM [metric tons]

20 30 40 50 60 70 80

Conventional

Canard

TSA

Prandtl

(a)Maximum take-off mass (MTOM)

Range [km]

O
E

M
 [

m
e

tr
ic

 t
o

n
s]

2000 3000 4000 5000 6000 7000 8000 9000
20

40

60

80

100

120

140

PLM [metric tons]

20 25 30 35 40 45 50

Conventional

Canard

TSA

Prandtl

(b)Operational empty mass (OEM)

Range [km]

F
M

 [
m

e
tr

ic
 t

o
n

s]

2000 3000 4000 5000 6000 7000 8000 9000
0

10

20

30

40

50

60

PLM [metric tons]

20 25 30 35 40 45 50

Conventional

Canard

TSA

Prandtl

(c) Fuel mass (FM)

Range [km]

P
R

E
 [

k
m

]

2000 3000 4000 5000 6000 7000 8000 9000
4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

PLM [metric tons]

20 25 30 35 40 45 50

Conventional

Canard

TSA

Prandtl

(d) Payload range efficiency (PRE)

Range [km]

X
 [

k
m

]

2000 3000 4000 5000 6000 7000 8000 9000
4

5

6

7

8

9

10

11

PLM [metric tons]

20 25 30 35 40 45 50

Conventional

Canard

TSA

Prandtl

(e) Range parameter (X)

Range [km]

P
R

E
 [

k
m

]

2000 3000 4000 5000 6000 7000 8000 9000
4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

PLM [metric tons]

20 25 30 35 40 45 50

Conventional

Canard

TSA

Prandtl

(f) Payload range efficiency (PRE) ötted with a sec-
ond order polynomial

Figure 5.8: Comparison of KPIs for the different aircraft conögurations, coloured bands show
inøuence of the aspect ratio on the parameters

53

Chapter 6

Conclusions and Recommendations

6.1 Conclusions

e goal of this thesis was to develop an automated design environment for the synthesis and anal-
ysis of conventional and unconventional aircra conĕgurations. e design tool is used to answer
the research question: “Which aircra conĕguration has the potential to introduce a signiĕcant in-
crease in fuel efficiency?”

edesign tool, the Initiator, implements a design process which results in a feasible aircra design
which complies to a given set of top level requirements. e Initiator is veriĕed by comparing the
output of the Initiator with existing aircra.

e design process is proven to work, since it converges to a feasible aircra design which com-
plies with the top level requirements. Since process contains design loops, inaccuracies in analyses
propagate easily through the whole design. By comparing the maximum take-off weights and op-
erational empty weights, it can be shown that the generated aircra are similar to the reference
aircra. Nine out of the thirteen generated aircra are estimated to within 10% of the reference
aircra weights. With exception of the Airbus A380-800, all aircra weights are either estimated
correctly or slightly underestimated.

e trust-to-weight ratio is overestimated on a number of aircra. Further investigation shows
that this is caused by the absence of a constraint on the cruise liing coefficient. e high li
coefficients result in a high vortex drag, which results in unfavourable aerodynamic performance.
is happens mostly with long-range aircra. As it turns out, the landing distance is no longer
the active constraint on the wing loading for these aircra. Currently additional constraint are
developed (for example buffet onset during cruise) to avoid these high li coefficients.

From the veriĕcation can be concluded that the geometry estimation performs quite well. Note
that exactlymatching the reference aircra was never a goal of the Initiator and cannot be expected
since an aircra design problem has no unique solutions. Unfortunately creating a sizing method
which generates a reasonable Blended-Wing-Body aircra for a large variety of payload and range
requirements showed to be rather difficult and need further investigation.

53

54 Conclusions and Recommendations

eClass II.V weight estimation of the fuselage overestimates on average by 43% (which is around
5%of theMTOM).ewingweight estimation underestimates on average by 32% (4%ofMTOM).
In the total weight estimation these two inaccuracies neutralise each other, which is currently ben-
eĕcial for the design tool. Of course, this should not be a reason to refrain from improving the
estimation methods.

By comparing the drag polar of an Airbus A320-200 with the vortex-lattice model it is shown that
AVL can correctly estimate the drag polar (within 8 drag counts at CL = 0.5), provided that the
zero-li drag is correctly estimated. Since a vortex latticemethod is used, it is incapable of correctly
model wing thickness effects. erefore the accuracy of predicting the aerodynamic performance
of the Blended-Wing-Body aircra in unknown.

eproĕle drag is calculatedwith an empiricalmethod, therefore its validity for the drag estimation
of unconventional aircra is unknown. Besides this it is shown that the proĕle drag is consistently
overestimated by an average of 25%. Comparing the tool output with data from the Fokker 100,
the zero-li drag is underestimated by 14% when the exact geometry of the aircra is inserted into
the tool. e additional underestimation (11%) could be due to geometric differences between the
‘real’ and the Initiator generated aircra.

Overall can be concluded that it is possible to model a wide range of different aircra conĕgura-
tions using comparable sizing rules and analysis methods. It is shown that a design process which
iterates on the aircra maximum take-off weight and adjusts the fuel mass to match range require-
ments works for conventional, canard, three-surface and Prandtl aircra. Testing the design pro-
cess for the Blended-Wing-Body was unfortunately not possible with the current state of the sizing
methods. Veriĕcation with existing aircra data showed that the design tool performs as expected,
differences could be traced back to the responsible modules and are listed in the recommendations
below.

e design tool was used to compare the different aircra conĕgurations. It is shown that the
canard aircra provides a 12% reduction in fuel mass and a 28% reduction in operational empty
mass in comparison with a conventional aircra designed for the same payload and harmonic
range. However, since none of the analysis methods have been validated the conĕdence in the
results gained from the conĕguration comparison in low. Also the Prandtl aircra shows promising
results (-8% fuel mass and -31% operational empty weight), but since this conĕguration is more
unconventional than the canard aircra, the uncertainty is probably even higher.

6.2 Recommendations

From the conclusions and other insights gained during the thesis recommendations are derived
for improvements to the design tool and further research.

All used analysis tools should be validated. Since the tools are used in a design loop, errors prop-
agate very quickly and an error in one module could alter the whole design of the aircra.

e Prandtl aircra is currently sized with design rules which are similar to those used for conven-
tional aircra. A parametric study should be done to investigate the effect of the box-wing design
on the aircra performance.

e sizing of the Blended-Wing-Body aircra is not capable enough to be used in an aircra design
loop. Currently only reasonable geometries are created for very high payload requirements. A

6.2 Recommendations 55

method of sizing the fuselage needs to be developed, since the current method of specifying a Ęoor
area and slenderness is simply not adequate for the fuselage design of the Blended-Wing-Body
aircra.
EMWET, the Class II.V weight estimation method used for the wings has trouble with wings with
a high aspect ratio. Also the box-wing poses a real challenge for the analysis tool. e ‘Student ver-
sion’ is currently used by the Initiator. e differences with the full version should be investigated
and the tool needs to be adapted to be able to analyse unconventional wing shapes. e overesti-
mation of the Class II.V fuselage weight should also be investigated. e weight of winglets and
the connectors of the Prandtl wing are currently not included in the weight estimation. A weight
prediction method needs to be developed for these parts.
e empirical drag estimation as currently implemented overestimates the zero-li drag. When
using the method as only aerodynamic estimation method (the way Torenbeek intended) it pre-
dicts the overall drag polar quite good. But since only the proĕle drag component (which would
normally be compensated with an underestimated vortex drag) is used in the Initiator, it results in
an overestimation of the total drag.
All currently implemented high-li modules are either invalid for unconventional aircra or give
unreasonable results. e CLmax of the clean wing is greatly overestimated. e high-li devices
module as currently implemented is only valid for conventional aircra. is module should be
modiĕed to be able to model high li devices on all implemented aircra conĕgurations. Once
this is developed, the runway performance could be evaluated and included in the design process.
A module should be created which evaluates the aircra stability and controllability. A more ca-
pable sizing method for tail and control surfaces should be considered instead of relying on rather
crude volume coefficient methods. Also integrating effects of advanced control systems is an area
a lot of research could be done.
e Initiator could beneĕt from a good transonic aerodynamic analysis tool. Currently there is no
estimation available for the wave drag of transonic aircra. Also modules covering aircra cost,
noise and emission still need te be developed.
In the current implementation the Initiator features a Blended-Wing-Body aircra with an oval-
shaped fuselage. Amulti-Bubble fuselage needs to be added. emethods could be based on work
previously done by van Dommelen [19].
Currently the sizing modules generate one aircra based on the weight, wing loading and a set of
design rules. To be able to integrate the tool with an optimiser, functionality should be added to
create the possibility of handing over design variables and conĕguration parameters to an external
module.
e Initiator could be extended to analyse other aircra conĕgurations. Looking back to Figure
1.3, there are still a lot of aircra conĕguration currently unimplemented in the design tool.
e Initiator is currently programmed in the  environment. is allowed the rapid devel-
opment of the program. However,  is a closed system and using it puts you at the mercy of
the development plans of the manufacturer. During the development a lot of compatibility issues
between different releases have been discovered. It could be beneĕcial to re-implement te program
in a open and standardised programming language. One example could be Python, which together
with the NumPy and SciPy packages1 can provide an platform which is comparable, if not more
capable than  .

1http://www.python.org, http://www.numpy.org, http://www.scipy.org

56 Conclusions and Recommendations

57

Part II

Code documentation

57

59

Chapter 7

Introduction

is document describes the functionality and implementation of a conceptual aircra design tool
called e Initiator described in Part I.

is Chapter gives some insight in the background fromwhich the application is developed. Chap-
ter 8 draws an outline of the structure of the program. Here the composition of the different com-
ponents and their implementation is shown.

Chapter 9 presents the aircra parts also known as the High Level Primitives. e different pa-
rameters which are required to deĕne the parts and the methods of generating the geometry are
elaborated.

In Chapter 10 the installation and ways of operating the program are explained. Also the structure
of the ĕles which are needed to operate the application is presented.

7.1 Background

emain use case of the application is the synthesis of a preliminary design of a subsonic transport
aircra from top-level requirements. A secondary use case is the evaluation of an already deĕned
aircra.

Besides conventional aircra conĕgurations, the program is designed to create and analyse designs
for Canard aircra,ree-Surface-aircra, Prandtl-planes and Blended-Wing-Body aircra. Since
no or very little empirical data exists on these unconventional conĕgurations, preference is given
tomethods which are physics-based or at least sensitive to geometry changes; within the possibility
of achieving a reasonable runtime on current computer hardware.

e application is based on the conventional and Prandtl aircra initiator written by T. Langen
[17], later extended forree-Surface aircra design by Vaessen [10] and the Blended-Wing-Body
Conceptual Design Tool written by J. van Dommelen [40] and M. Hoogreef [20].

e Initiator can be used as a stand-alone application, but is also supposed to be able to integrate
into the Design and Engineering Engine (DEE) developed at the Del University of Technology.

59

60 Introduction

is creates the possibility to generate an aircra from top-level requirements with the Initiator
and analyse it with high-ĕdelity tools in the DEE. At the time of writing this whole tool-chain has
not been fully developed and is out scope of this document.

61

Chapter 8

Program Structure

8.1 Introduction

e Initiator is written in  since this environment is widely used at universities and various
analysis methods are already implemented in this language. is choice has the advantage that
new students can easily extend and modify the code without learning an additional programming
language, but has the disadvantage that it ties the program to a closed-source soware system. e
Initiator uses the fairly new object-oriented programming functionality of the  language,
for more information reading the  documentation[41] is highly recommended.

e Initiator is created with extendibility in mind. At the heart of the Initiator is the so-called con-
troller. All elements of the Initiator, including the controller are implemented is classes, which will
instantiate to objects. For more information about classes and object please read any introductory
text to object-oriented programming. is object handles the program Ęow of the Initiator. All
modules use the controller to get information about other modules and the aircra Geometry. It
also keeps track of module dependencies and which modules have been completed.

When a new Initiator session is started, a new instance of the controller is created. e start-up
process can be seen in Figure 8.1. e controller is tied to an aircra deĕnition ĕle for which the
starting point of the Initiator is deduced. Aer the Controller is started, depending on the input,
the Initiator runs the InteractiveMode or the BatchModemodule. When themodule is ĕnished, the
controller is deleted and the program will exit. is can be seen in Figure 8.1.

Two starting points are currently implemented in the current version of the initiator:

1. Top-level requirements and aircra conĕguration

2. Fully deĕned aircra geometry

In the ĕrst case the Initiator can be used as a tool to perform preliminary sizing and analysis of
the design; in the latter case the sizing process is skipped and the aircra can be analysed directly.

61

62 Program Structure

Add all subdirectories to MATLAB path

Parse function arguments

C reate InitiatorController instance

Interactive?

R un batch module (runModule) R un interactive module (runModule)

C lear InitiatorController instance

Figure 8.1: Top-level Initiator activity diagram

When the Initiator detects that geometry is deĕned in the aircra deĕnition ĕle and can success-
fully generate the geometry, it will use the speciĕed geometry. Otherwise, it will start with the
preliminary sizing to generate a ĕrst estimate of the geometry.

e Initiator exists of three separate parts, the aforementioned Controller, the Aircra object and
the modules. e aircra geometry is build up using High-Level primitives called Parts. All parts
generate geometry which is used to drive the analysis modules and visualisation of the aircra. An
UML of the top-level classes can be seen in Figure 8.2. In Section 8.2 the workings of the Initia-
torController is explained. Section 8.4 discusses the Aircra object. e workings of the Module
class is explained in Section 8.3, for information about the speciĕc modules implemented in the
Initiator, please read Chapter 3.

+runModule()

+resetModule()

+getModuleResults()

…

XMLFile

Settings

...

InitiatorController

+findPart()

+addPart()

+checkAllParts()

Name

Description

Type

Requirements

...

Aircraft

Name

Location

…

Part

+run

...

Module

Figure 8.2: Top-level UML class of the Initiator

8.2 InitiatorController 63

All in- and output of the program is written XML ĕles. is is a plain-text ĕle-format that is both
machine- and human-readable. For reading and writing XML ĕles the open-source TIXI library
[42] developed at DLR is used. is library is written in C and has bindings for  , Python
and Fortran.

8.2 InitiatorController

e Controller is the main object of the Initiator and is implemented in the InitiatorController
class. e Controller contains an Aircra object and structures which contain all the different
modules. Every program session starts with the instantiation of an InitiatorController object. e
XML ĕles are read and the module structures are populated with the modules which are deĕned
in the modules.xml ĕle. e InitiatorController class instantiation can be found in an activity
diagram in Figure 8.3.

Open XML file

Contains settings?

Append existing settingsR ead all settings from settings .xml

C reate Aircraft instance

R un getModules for all module types

Check XML structure

C lose XML file

Figure 8.3: Class instantiation method of the Controller

e main method of the InitiatorController class is the runModule method. is method is called
whenever a module in needed to run. e method makes sure all dependencies of the module are
met and handles the switching between the different module types.

e analysis methods require the aircra geometry. erefore a preliminary sizing of the aircra
is needed before analysis or design methods can be used.

Aer start-up the controller will try to build the geometry if it does not know if a preliminary
sizing is preformed. In case of a correctly pre-deĕned aircra is present in the aircra deĕnition

64 Program Structure

ĕle this will succeed. e controller will now be able to run analysis and design modules. In
case the geometry generation fails, the controller will ĕrst run the sizing modules to perform the
preliminary sizing. e full program Ęow of this runModule method can be seen in an activity
diagram in Figure 8.4.

Get dependent modules

S ort dependencies by type

F irst run?

R un XMLR eader module
Module is a S izingModule?

Has preliminary s izing?

R un XMLWriter module

Has no preliminary s izing?

R e-read data from XML

Module has uncompleted dependencies?

R un dependent moduleCall module run method

R eset Anays is & Design modules

All parts generate?

F inish preliminary s izingR un S izing modules

F irst loop?

E rror

Get dependent modules

S ort dependencies by type

F irst run?

R un XMLR eader module
Module is a S izingModule?

Has preliminary s izing?

R un XMLWriter module

Has no preliminary s izing?

R e-read data from XML

Module has uncompleted dependencies?

R un dependent moduleCall module run method

R eset Anays is & Design modules

All parts generate?

F inish preliminary s izingR un S izing modules

F irst loop?

E rror

Figure 8.4: InitiatorController: runModule method

Other methods implemented in the InitiatorController class handle the settings and provide ways
for modules to interact with other modules. e full list of properties methods of the InitiatorCon-
troller can be found in Table 8.1.

8.2.1 Dependency handling

As is common in a design tool, modules are dependent on the output of other modules. e naive
approach to solve this problem is by running all modules in the proper order. To downside to this

8.3 Modules 65

approach is the possibility that modules are called which are not needed to generate the requested
end-result.
To solve this problem, when the controller is requested to run a module it only checks and, if
needed, runs modules which are set as dependencies in the modules.xml ĕle. is function is
called recursively, until all dependent modules are completed.
In a workĘow oen happens that information needs to be recalculated. To accommodate this, the
controller can reset a module. is also resets all modules which depend on the re-setted module;
in other words: the dependencies are resolved backwards until on modules can be found which
depend on the re-setted module. Again, this function is called recursively.

Table 8.1: InitiatorController class properties and methods

Poperty Description
XMLFile Name of the aircra deĕnition ĕle
Settings Cell-array containing all settings
Aircra Aircra object

SizingModules Structure containing all sizing modules
AnalysisModules Structure containing all analysis modules
DesignModules Structure containing all design modules

WorkĘowModules Structure containing all workĘow modules

Method Description
appendSettings Merges settings from xml ĕle and settings ĕle
rereadSettings Re-reads all settings from the settings ĕle

getSetting Returns the value of a setting
getModuleInput Returns the module input of a speciĕed module

getModuleResults Return the results of a speciĕed module
runModule Runs a module and its dependencies

getModuleHandle Returns a handle (pointer) of a module
resetModule Resets a module and all modules depending on the module

runAllModules Runs all modules of a certain type
resetAllModules Resets all modules of a certain type

writeModuleResults Writes module results to the aircra deĕnition ĕle

8.3 Modules

All modules implemented in the Initiator are subclasses of the Module class. ere are four dif-
ferent module classes deĕned which are used to organise the modules in groups by functionality.
First there are themodules which do the preliminary sizing. esemodules are all subclasses of the
SizingModule class. Next, there are the analysis and design modules. ey have the AnalysisMod-
ule and DesignModule as superclass. Finally there are the workĘow-modules in which workĘows,
interfaces, optimisers, etc. can be implemented. ese modules are all subclasses of theWorkĘow-
Module class.
e module class had pre-determined structures for input and output. When the ModuleInput
property is called, the module will check the aircra deĕnition ĕle if there is input present for the

66 Program Structure

running module. is (optional) input is merged with the (again optional) default input, where
preference is given for the input in the aircra deĕnition ĕle. All results are stored in the Results
property. e ĕelds in this structure are written to the aircra deĕnition ĕle aer the module is
completed.

When the module is completed the Completed property of the module is set to true. is prop-
erty is used by the InitiatorController to keep track of which modules need to be called to resolve
module dependencies.

e only exception to the aforementioned behaviour are the workĘowmodules, these modules do
not have Results and Completed properties since they generally don’t generate results and aren’t
limited to run only once (for example plotting can be done multiple times).

e different modules implemented in the Initiator can be found in Chapter 3.

8.4 Aircra

e Aircra object represents the aircra which is currently in memory. It contains all require-
ments for the speciĕedmission(s), conĕguration- and performance parameters and all parts which
represent the aircra geometry. It also provides methods to ĕnd parts of a certain type and check
if parts are able to generate. e full list of properties methods of the Aircra class can be found in
Table 8.2.

Table 8.2: Aircraft class properties and methods

Poperty Description
Name Name of the aircra

Description (Optional) description of the aircra
Type Aircra type; (Conventional, Canard, Prandtl, etc.)

MainPart Main part of the aircra (Part at 0,0,0)
Requirements Harmonic range point requirements

MissionRequirements All requirements for different missions
PerformanceParameters Parameters related to performance

ConĕgurationParameters Parameters related to the aircra conĕguration
Parts Structure containing all aircra parts

Method Description
addPart Add a part to the Parts structure
ĕndPart Find part(s) of a certain type

checkAllParts Checks if all parts generate correctly

67

Chapter 9

Geometry Deönition

eaircra geometry is represented by a collection ofParts. Every part has its own set of properties,
unique to the aircra geometry represented by the part. is chapter presents all geometric parts
implemented in the Initiator.

All objects are a subclass of the Geometry class, this class implements the basic geometry proper-
ties. e Geometry class is described in Section 9.1. e Geometry has three direct subclasses, the
Aircra class, the Lo class and the Part class which are discussed in Sections 9.1.1 through 9.2.
All aircra parts are subclasses of the Part class and they use the functionality of the Airfoil, Lo
and Geometry classes to generate their geometry.

e class structure can be seen the UML in Figure 9.1. Note that for sake of clarity not all part
properties and methods are shown. For a full description of the parts please review Chapter 8.

First, in Section 9.2.1, the Wing part is discussed, this is one of the main parts in the Initiator and
is used for all wing-like parts like the main wing, tail surfaces, canards, etc. In Section 9.2.2 the
Fuselage part is brieĘy discussed. is part is able to generate conventional and oval fuselages.
Sections 9.2.3 to 9.2.8 treat the BoxWing, Engine, LandingGear, Cargo and Spar parts.

67

68 Geometry Deĕnition

...

InitiatorController

Name

Location

...

Part

+getGeometry()

+reset()

+surfaceArea()

+Planform()

-generate()

Position

Orientation

...

Geometry

+getDatFile()

+calculateThickness()

Section

Chord

Twist

Thickness

Airfoil

+resampleSection()

Sections

Closed

Loft

+outerPoints()

+meanAeroChord()

+equivalentWing()

...

Type

Span

RootChord

Sections

SectionPostions

Tapers

Sweeps

Dihedrals

...

Wing

...

Spar +outerPoints()

...

Type

Length

CenterSection

CornerWidth

CabinHeight

NoseLength

AftRation

...

Fuselage
Type

Diameter

Length

...

Engine

meanAeroChord()

...

Span

WingDistance

ConnectorShape

...

BoxWing

+outerPoints()

...

Shape

FromPart

ToPart

...

Connector

Figure 9.1: UML of all Part and Geometry classes

9.1 Geometry class 69

9.1 Geometry class

e Geometry class is the base class for all geometry in the Initiator. It handles the geometry
positioning and orientation and makes sure the geometry is re-generated when required. e
main method of the Geometry class is getGeometry (Figure 9.2). is method will call the generate
method (Figure 9.3) when no geometry is present and returns the geometry data. e generate
method is required for every geometry object in the Initiator . is method is expected to generate
the geometry with its reference point at (0,0,0). e generate method of the Geometry class will
make sure the geometry is positioned and oriented correctly. An example of how to implement
geometry in the Initiator can be found in Section B.1. All properties and methods of theGeometry
class are listed in Tables 9.1 and 9.2.

Table 9.1: Geometry class properties

Property Description Unit
Position Position vector of the inlet centre point m, m, m

Orientation Rotation angles around x,y,z ◦, ◦, ◦
Controller Handle to the InitiatorController object -
Generated true if geometry is generated -
Generating true while generating the geometry -

GeneratedProperties List of properties which require the generate method -

Table 9.2: Geometry class methods

Method Description
getGeometry Returns the geometry as X,Y,Z data

reset Clears the geometry and sets Generated to false
surfaceArea Calculates the total surface area

planform Calculates the projected area (default in Z-direction)
generate Generates the geometry
translate translates X,Y,Z data by a vector

rotate Rotates X,Y,Z data by angles around x,y,z
intersect Checks if two Geometry parts intersect or touch

When a Geometry object is created, a PostSet listener is created for every property of the object,
which can be seen in Figure 9.4. is is a  feature which creates the possibility to detect
the change of a property and run a function at the event. When a property is changed, the proper-
tyChanged method (Figure 9.5) of the object is called which then calls the reset method when this
is required. e geometry will not be reset while is being generated, because this will invoke an
inĕnite loop. e next time the getGeometry method is called, the geometry will be regenerated.

e Geometry object can also handle ‘generated’ properties. ese are properties which are cal-
culated by the generate method and are not an input slot of the object. A generated property can
be created like any other property, but its name also needs to be added to the GeneratedProper-
ties property of the class. e propertyAccessed method (Figure 9.6) makes sure the geometry is
generated before the value is returned.

70 Geometry Deĕnition

Geometry is not generated?

Call generate method

R eturn X,Y ,Z data

Figure 9.2: Activity diagram of the getGeometrymethod

Get X,Y ,Z data

R otate geometry

Trans late geometry

S et generated to true

Figure 9.3: Activity diagram of the generatemethod

Add ‘P reG et’ lis tener with propertyAccessed method

for all properties in the G eneratedP roperties lis t

Add ‘P ostS et’ lis tener with propertyC hanged method for all properties

Figure 9.4: Class instantiation method of Geometry

9.1 Geometry class 71

Geometry is generated?

Call reset method

Figure 9.5: Activity diagram of the propertyChangedmethod

Geometry is generated & not generating?

S et generating to true

Call generate method

S et generating to false

Figure 9.6: Activity diagram of the propertyAccessedmethod

72 Geometry Deĕnition

How these methods work together is illustrated in Figure 9.7. Here the user changes a property of
a Wing object. e change is noted by the property listener, the propertyChanged method is called
and the geometry is reset if necessary. When later on in the workĘow the geometry is requested,
the generate methods are called (if necessary) and the geometry information is returned.

Wing property is changed

E vent lis tener calls propertyChanged method

Geometry is generated?

Call reset method

Wing geometry is requested

Geometry is generated?

Wing generate method is called

Geometry generate method is called

Wing geometry

Geometry is returned

Positioned & oriented geometry

Wing geometry is

now deleted

Figure 9.7: Example of a property change in the Wing object

9.1.1 Airfoil

eAirfoil object is used to import airfoil .dat ĕles, scale them to a desired chord length, thickness
and position them in 3D-space. e getDatFilemethodwill sort the airfoil points from trailing edge
→leading edge →trailing edge (Figure 9.9). e generate method will scale the geometry and rotate
the airfoil around the 1

4c point as can be seen in Figure 9.8. All properties and methods of the
Airfoil class can be found in Tables 9.3 and 9.4.

9.1 Geometry class 73

Call getDatF ile with section name

S cale data to chord length and thickness

R otate for twist angle around ¼ chord point

Figure 9.8: Activity diagram of the generatemethod

G et coordinates from .dat file

S trip header information

S ort points T E ->LE ->T E

Figure 9.9: Activity diagram of the getDatFilemethod

74 Geometry Deĕnition

Table 9.3: Airfoil class properties

Property Description Unit
Position Position vector of the wing apex (inherited from Geometry) m, m, m

Orientation Rotation angles around x,y,z (inherited from Geometry) ◦, ◦, ◦
Section Name of the airfoil (Must match a .dat ĕle) -
Chord Chord length of the section m
Twist Angle by which the airfoil is rotated around its 1

4c point
◦

TcRatio ickness-to-chord ratio -

Table 9.4: Airfoil class methods

Method Description
getDatFile Returns the points from a airfoil ĕle

calculateickness Calculates the thickness of an airfoil

9.1.2 Lo

e Lo object is used to create a linear lo between two sections. It can be used with the Airfoil
object as sections, but this no hard requirement. As long the object returns a single line in X,Y,Z
the Lo object can use it as a section. e sections are stored in the Sections property. An activity
diagram of the generate method can be found in Figure 9.10.

To be able to lo between two sections the sections need to be ‘resampled’ to make sure the two
sections have both the same amount of points. is is done by the resampleSection method. e
algorithm used is elaborated in Figure 9.11.

Call getGeometry method of every Airfoil object

Call resampleS ection for every section

Linear interpolate between sections

Combine into surface

Call generate method of Geometry

Figure 9.10: Activity diagram of the generatemethod

9.1 Geometry class 75

Calculate distances between section points

Calculate length of one resampled panel

Next facet fits in selection?

Calculate the length of the line defined by current selection of original points

E xtend selection of original points C reate resampled point by interpolation

S et selection to last original point

Last point?

Figure 9.11: Activity diagram of the resampleSectionmethod

76 Geometry Deĕnition

9.2 Part class

e Part class is a simple extension to the Geometry class by adding the Name and Location prop-
erties. e Name property is used to identify parts and needs to be unique for every part. e
Location property is set to the name of the part to which the part is connected. It defaults to the
MainPart, but can be set to other parts (for example engines mounted to a wing).

9.2.1 Wing

e Wing part is used to represent all wig-like parts of the aircra. Examples are the main wing,
the horizontal tail and the vertical tail.

e wing can have any number of sections (with a minimum of 2 sections). Every section has
a spanwise position, airfoil shape, chord, twist angle and thickness-to-chord ratio. Between two
adjacent sections a straight trunk is generated. Every trunk has a sweep angle, taper ratio and
dihedral angle. e wing can contain any number of spars which can be generated automatically
or set by manually. e wing can also generate a fuel tank geometry for a set fraction of the span.
Finally the wing can generate winglets with a given span, airfoil shape, taper, sweep, toe-in angle
and twist.

e wing class contains methods which calculate the planform area, mean aerodynamic chord
length and position, the equivalentwing and fuel volume. A complete reference of all the properties
and methods of the wing can be found in Tables 9.5 and 9.6.

c
r

ε
1
∙c

r

Figure 9.12: Wing geometry including spars

e wing is created by calculating the position, orientation and chord lengths of every section by
using the span, taper, sweep and dihedral of every section. On every section position an Airfoil
object is created. ese Airfoil objects are given to a Lo object which creates the wing surface by
interpolating between the sections. e full procedure can be found in Figure 9.13.

e spars can be generated by an algorithm or speciĕed by the user.

e only user input for the algorithm to work are the chordwise spar positions of the outer and
inner spar position. First the spar positions are calculated by using the spar positions the user
provided. e tangent of the outboard trunk is then used to project a point on the inboard section.

9.2 Part class 77

Table 9.5: Wing class properties

Property Description Unit
Position Position vector of the wing apex (inherited from Geometry) m, m, m

Orientation Rotation angles around x,y,z (inherited from Geometry) ◦, ◦, ◦
Type Wing type (Mainwing, Canard, etc.) -
Span Wing span m

RootChord Root chord length m
Section Cell-array of airfoil names -

SectionPositions Spanwise fraction of sections (0..1) -
Twists Section twist angles (positive is nose up) ◦

TcRatios ickness-to-chord ratios of the sections -
Tapers Trunk taper ratios: λ = ct

cr
-

Sweeps Trunk 1
4c sweep angles ◦

Dihedrals Trunk dihedral angles ◦

SparPositions Chord fraction of spars (0..1) used to generate spars -
SparLocations Matrix containing all spar chord fractions -

FuelTank true or false -
FuelTankSpanPosition Spanwise position of start & end of fuel tank (0..1) -

Symmetric true or false true for a symmetric wing -
Mirror true or false mirrors the wing along its root -

Winglets true or false -
WingletAngle Angle between wing plane and winglet plane ◦

WingletSpan Winglet span m
WingletSection Airfoil name -
WingletTaper Taper ratio of the winglet -
WingletSweep Winglet sweep angle ◦

WingletToeInAngle Toe-in angle of the winglet ◦

WingletTwist Twist angle of the outboard winglet section ◦

If the distance or angle falls with a certain tolerance, the projected point is used as a spar position,
since this results in a straight spar, which is structurally more efficient. If the angle and distance are
bigger than the et tolerance, both points are used and an auxiliary spar is created. is procedure
is repeated for every trunk. A visual example can be seen in Figure 9.14, the activity diagram of
the algorithm can be found in Figure 9.15.

9.2.2 Fuselage

e Fuselage part is able to model conventional as well as oval fuselages. It is developed by R.K.
Schmidt as part of his Master thesis work.

9.2.3 BoxWing

e BoxWing part is used to model Prandtl-wings. It’s a combination of two Wing objects which
are connected with a Connector.

78 Geometry Deĕnition

Calculate spanwise section position

Align ¼ chord points

Calculate streamwise position due to sweep

Calculate vertical pos ition due to dihedral

C alculate rotation due to twist

C reate Airfoil objects for every section

C reate Loft object

Add Airfoils to Loft object

Call getGeometry method of Loft object

Call getS parLocations

Call generate of Part

C reate S par objects

Figure 9.13: Activity diagram of the generatemethod

?

?

??

0.15c

0.75c

Figure 9.14: Illustration of the algorithm to generate spars

9.2 Part class 79

Wing is not generated and not generating

Call getG eometry method

Calculate point on current section

projected by outboard spar

P rojected point lies outs ide outer spar location?

S et outer location as spar location

projected point lies within

the mimimal distance and angle?

Use projected point as spar location S et outer location as spar location

Last section?

S tart at inboard spar

S tart at inboard spar

Calculate point on current section

projected by outboard spar

P rojected point lies outs ide

minimal distance and angle?

C reate extra spar pos ition at point

Interpolate inboard spar locations

Last section?

Figure 9.15: Activity diagram of the getSparLocationsmethod

80 Geometry Deĕnition

Table 9.6: Wing class methods

Method Description
planform Calculates the planform area (inherited from Geometry)

surfaceArea Calculates the surfaceArea area (inherited from Geometry)
getGeometry Returns the part surface (inherited from Geometry)

getChords Calculates the chord length of every section
getWingletGeometry Returns the winglet surface

outerPoints Returns the leading- and trailing edge positions for every section
meanAeroChord Returns the mean aerodynamic chord length and position
equivalentWing Returns a structure containing the equivalent wing parameters

getCG Calculates the wing centre of gravity
getFuelTankGeometry Returns the fuel tank surface

getFuelTankCG Calculates the fuel tank centre of gravity
getFuelVolume Calculates the fuel tank volume

getPosOnLeadingEdge Calculates a arbitrary point on the leading edge
getPosOnTrailingEdge Calculates a arbitrary point on the trailing edge

e two wings, called FrontWing and RearWing are both instances of the aforementioned Wing
object. e connector connects the wing tips with a Bézier curve or a straight edge. e properties
of the BoxWing part are listed in Table 9.8.

9.2.4 Engine

e Engine part is used to model engines. Besides geometry information it also contains the thurst
and bypass-ratio information of the engine. e properties of the Engine part can found in Table
9.9

9.2.5 LandingGear

e LandingGear part is a simple part which visualises the landing gear by generating a set of tyres.
e properties of the LandingGear part can found in Table 9.10.

9.2.6 Cargo

e Cargo part is used to model a cargo bay. It can model bulk cargo and ULD cargo bays. Only
in the case of ULD cargo, geometry is generated. e properties of the Cargo part can be found in
Table 9.11.

9.2.7 ULD

e ULD part represents one ULD container used in the Cargo part. It’s data is gathered from
cargo.xml.

9.2 Part class 81

Figure 9.16: Geometry of an oval and a conventional fuselage

Figure 9.17: BoxWing geometry

9.2.8 Spar

e spar part is a simple part which ĕts a spar inside a given wing. It is positioned by specifying
chordwise positions at wing sections. e spars are then modelled as straight spars between the
sections. e properties of the Spar part can be found in Table 9.13.

82 Geometry Deĕnition

Figure 9.18: Engine geometry

Figure 9.19: Cargo part with ULD parts

9.2 Part class 83

Table 9.7: Fuselage class properties

Property Description Unit
Position Position vector of the fuselage nose (inherited from Geometry) m, m, m

Orientation Rotation angles around x,y,z (inherited from Geometry) ◦, ◦, ◦
Type Fuselage type -

Length Total length of fuselage m
FloorZPosition Vertical position of the Ęoor m
CenterSection Vector containing: NoseFinenessRatio AFinenessRatio Height NoseDroop ADroop -
CenterAirfoil Airfoil name of the centre section -

CenterBernstein Bernstein coefficients of the centre section -
TorusRadiusFactor Torus radius as fraction of cabin height -
PinchWidthRatio Width ratio of fuselage pinch -
PinchLengthRatio Length ratio of pinch location -

ForceAPinch Overrules pinch on non-conventional aircra -

Properties for conventional fuselages

Diameter Fuselage diameter m
NoseFinenessRatio Ratio between nose length and fuselage diameter -
AFinenessRatio Ratio between a length (from nose) and fuselage diameter -

Properties for straight oval fuselages

StraightOvalHeight Height of the fuselage m
StraightOvalWidth Width of the fuselage m

Properties for oval fuselages

CornerWidth Width of corner points of cabin Ęoor m
CornerLength Location of corner points m
CabinHeight Cabin height m

EccentricityLower Floor eccentricity -
EccentricityUpper Floor eccentricity -

NoseLength Length of the nose m
ACutoff Length of a section -
ARatio A fuselage taper -

Table 9.8: BoxWing class properties

Property Description Unit
Position Position vector of the front wing apex (inherited from Geometry) m, m, m

Orientation Rotation angles around x,y,z (inherited from Geometry) ◦, ◦, ◦
Span Span of the total wing-connector combination m

WingDistance Distance vector between the front and rear wing apex points m
ConnectorShape Straight or Bezier -

84 Geometry Deĕnition

Table 9.9: Engine class properties

Property Description Unit
Position Position vector of the inlet centre point (inherited from Geometry) m, m, m

Orientation Rotation angles around x,y,z (inherited from Geometry) ◦, ◦, ◦
Type Engine Type (TurboFan or TurboProp) -

Diameter Engine diameter m
Length Engine length m
rust Engine thrust N

rustReverser true or false -
BypassRatio Engine bypass-ratio -

Table 9.10: LandingGear class properties

Property Description Unit
Position Position vector of the bogie centre (inherited from Geometry) m, m, m

Orientation Rotation angles around x,y,z (inherited from Geometry) ◦, ◦, ◦
Type NoseGear or MainGear -

TyreDiameter Diameter of the tyres m
Tyreickness Width of the tyre m

Length Height of the landing gear m
NRows Number of rows of tyres -

NWheelPerRow Number of wheels per row –
XPositions Slot to override tyre x-position m
YPositions Slot to override tyre y-position m

Table 9.11: Cargo class properties

Property Description Unit
Position Position vector of parent part (inherited from Geometry) m, m, m

Orientation Rotation angles around x,y,z (inherited from Geometry) ◦, ◦, ◦
Type Bulk or ULD -

Height Cargo bay height m
FloorArea Area of the cargo Ęoor m2

Floors Cell array containing the coordinates of the separate cargo Ęoors m
Positions ULD positions m
Mirrors Boolean, true if containers are mirrored -

ULDType ULD type, as speciĕed in cargo.xml -

9.2 Part class 85

Table 9.12: ULD class properties

Property Description Unit
Position Position vector of parent part (inherited from Geometry) m, m, m

Orientation Rotation angles around x,y,z (inherited from Geometry) ◦, ◦, ◦
Height0 Height of the container m
Height1 Height without the chamfer m
Width0 Width of the container m
Width1 Width without the chamfer m

SecondChamfer true if the container is chamfered at both sides -
Depth Depth of the container m

MassFull Mass of a fully loaded container kg
MassEmpty Mass of an empty container kg

Volume Usable container volume m3

Mirror When true, geometry is mirrored on local XZ-plane -

Table 9.13: Spar class properties

Property Description Unit
Position Position vector of the parent wing (inherited from Geometry) m, m, m

Orientation Rotation angles around x,y,z (inherited from Geometry) ◦, ◦, ◦
ChordFractions Chord fraction of the spar position per wing section -

Symmetric true when spar is mirrored on local XZ-plane -
Mirror true when spar is on the other side of the local XZ-plane -

ContainingSections Airfoil objects from which the spar is generated -

86 Geometry Deĕnition

87

Chapter 10

User manual

10.1 Introduction

e Initiator is developed in the  environment and is tested on the latest release currently
available (R2013b). To install the program the code needs to be checked out from SVN to a local
directory1 and opened in  . It is also possible to run the Initiator as an executable. For
build instructions of the executable, please read Section 10.5.

10.2 Installation

e application is tested to run on Windows 7+ (32bit and 64bit), Mac OSX 10.7+ (64bit) and
Linux (64bit). e version available in the SVN repository works directly on Windows operating
systems. Whether it will run immediately on a Mac or Linux system is highly depended on the
libraries installed on the local system. If it does not run, this probably means that the TIXI library
needs to be installed or compiled and added to the  path. See the TIXI website [42] for
more information and installation instructions. e Initiator is build with TIXI version 2.0.42,
but depending on DLRs developments could also work with future versions. Also make sure the
binaries of xFoil,AVL and ESDU99031 (all present in the External directory) work on the current
operating system.

1If the directory is indexed by a synchronisation service (for example Dropbox) please disable or pause this while
running the program

2e  binding in the standard package is missing some wrapper functions, please use the tiximatlab.c
ĕle included with the Initiator to build the mex ĕle if errors occur

87

88 User manual

10.3 Program Run

e easiest way to start the Initiator is by typing:
>> Initiator
in the  command prompt. is starts the application and will prompt for an aircra deĕ-
nition ĕle.

e program has a couple of optional switches which can be passed as arguments:

Table 10.1: Initiator command-line arguments

Argument Description
filename XML ĕle

--help Show help
--interactive Run the Initiator in interactive mode

--silent No text output to command prompt
--debug Enable to break out of the interactive mode by typing debug

--showfigures Shows all plots and ĕgures during program run

All input and output done with XML ĕles. Also the settings and other data is exchanged through
XML. e only exception is the Database ĕle which is for ease of editing an Excel ĕle.

e main directory contains two helper-functions: restore and clean which respectively copy air-
cra deĕnition ĕles from CleanInputFiles to the working directory or deletes them. e syntax
of the aircra deĕnition ĕle and the input which is required to run the program can be read in Sec-
tion 10.4.

To function properly the Initiator needs the following XML ĕles in its directory:

Table 10.2: XML öles used by the Initiator

File Description
settings.xml Contains all settings used by the application
modules.xml In this ĕle all modules and their dependencies are set

materials.xml is ĕle contains all required material properties
cargo.xml Describes the different cargo pieces (ULD containers)

10.4 XML Layout

10.4.1 Aircra deĕnition ĕle

All information regarding the aircra are collected in one ĕle. To be able to run the Initiator from
scratch one needs to set up a basic XML structure. is structure can be seen in Listing 10.1.

All data is collected in the <initiator> tag. Inside this main tag are four possible sub-tags, where
the ĕrst two are mandatory for proper workings of the Initiator:

10.4 XML Layout 89

• <aircraft>

• <settings>

• <moduleInputs>

• <moduleResults>

Inside the <aircraft> tag all aircra requirements, conĕguration parameters and performance
parameters are deĕned.

Inside the <parts> tag all the aircra parts (represented by high-Level Primitives) are deĕned.
To be able to run the Initiator only empty part deĕnitions are required, the dimensions and other
parameters are calculated by the modules of the Initiator. One exception is the <engine> part
which requires a location tag. Every part deĕnition requires a name and a type tag. e name
can be chosen by the user. e type needs to be a valid type for the part in question. is and other
parameters for the parts can be found in Chapter 9.

e <settings> entry links to its source ĕle through the source attribute. is is normally the
settings.xml ĕle. It is possible to overrule certain settings by redeĕning them inside the aircra
deĕnition ĕle, like is done in Listing 10.1 on lines 34-37.

e <moduleInputs> tag contains, as the name would suggest, inputs for the modules. All mod-
ules are conĕgured to use defaults when no inputs are deĕned.

Inside the <moduleOutputs> tag all results calculated by the modules are written to their own
result tag.

1 <initiator>
2 <aircraft>
3 <name></name>
4 <description></description>
5 <missions default="Default Mission">
6 <mission name="Default Mission">
7 <requirement>
8 <name></name>
9 <value></value>
10 </requirement>
11 </mission>
12 </missions>
13 <configuration>
14 <parameter>
15 <name></name>
16 <value></value>
17 </parameter>
18 </configuration>
19 <performance>
20 <parameter>
21 <name></name>
22 <value></value>
23 </parameter>
24 </performance>
25 <parts mainPart="Fuselage">
26 <fuselage name="The Partname" type="parttype" />
27 <wing name="" type="" />
28 <engine name="" type="">

90 User manual

29 <location></location>
30 </engine>
31 </parts>
32 </aircraft>
33 <settings source="settings.xml">
34 <setting>
35 <name>OverRuledSetting</name>
36 <value>true</value>
37 </setting>
38 </settings>
39 <moduleInputs>
40 <input module="ModuleName">
41 <TheInput>2013</TheInput>
42 </input>
43 </moduleInputs>
44 <moduleResults>
45 <result module="ModuleName">
46 <TheResult>42</TheResult>
47 </result>
48 </moduleResults>
49 </initiator>

Listing 10.1: XML aircraft deönition öle structure

10.4.2 Settings ĕle

e settings ĕle contains all settings and default values of the Initiator. e settings ĕle has a very
simple structure as demonstrated in Listing 10.2.

1 <settings>
2 <setting>
3 <name>firstSetting</name>
4 <value>1</value>
5 </setting>
6 <setting>
7 <name>secondSetting</name>
8 <value>2</value>
9 </setting>
10 </settings>

Listing 10.2: Settings öle structure

10.4.3 Modules ĕle

e modules ĕle is a XML-ĕle which deĕnes the modules which are implemented in the Initiator
and (optionally) sets their dependencies. e ĕle splits the modules up in four categories:

• sizingModules

• analysisModules

• designModules

• workflowModules

10.5 Executable Build Instructions 91

edependencies are optional. When dependencies are speciĕed the Initiator will make sure these
are completed before themodule is called. An example of amodule deĕnition can be seen in Listing
10.3.

1 <modules>
2 <sizingModules>
3 <module>
4 <name>Database</name>
5 </module>
6 <module>
7 <name>Class1WeightEstimation</name>
8 <dependency>Database</dependency>
9 </module>
10 </sizingModules>
11 </modules>

Listing 10.3: Module deönition

10.4.4 Materials ĕle

ematerials ĕle contains all material properties are stored used by various modules in the Initia-
tor. e Material object parses this XML-ĕle and exposes the material properties to the 
environment.

10.4.5 Cargo ĕle

e cargo XML-ĕle speciĕes the dimensions and other properties of the cargo containers used in
the Initiator. ese are used by the Cargo and ULD objects.

10.5 Executable Build Instructions

In the directory Build a .prj ĕle is created which contains the conĕguration to compile the Ini-
tiator. To run the compiled executable the  Compiler Runtime is required on the target
computer3. If for some reason the build project ĕle needs to be created from scratch, please include
the following directories to the shared resources:

• AnalysisModules

• DesignModules

• SizingModules

• WorkflowModules

• External

• Tools

3link: http://www.mathworks.nl/products/compiler/mcr/index.html

92 User manual

93

References

[1] Peeters, P. M., Middel, J., and Hoolhorst, A., “Fuel efficiency of commercial aircra An
overview of historical and future trends,” Tech. Rep. November, 2005.

[2] Kroo, I., “Nonplanar Wing Concepts for Increased Aircra Efficiency,” VKI lecture series on
Innovative Conĕgurations and Advanced Concepts for Future Civil Aircra, 2005.

[3] Torenbeek, E., Advanced Aircra Design - Conceptual Design, Analysis and Optimization of
Subsonic Civil Airplanes, Wiley, 2012.

[4] Scherer, R., “Starship dimensions,” http://rps3.com/Files/Starship_Dimensions.
jpg, [Online; accessed September 2013].

[5] AeroFred, “Piaggio Avanti 3-view,” http://plans.aerofred.com/data/media/54/
piaggio-p180-avanti-ii.jpg, [Online; accessed September 2013].

[6] NASA, “National Aeronautics and Space Administration website,” http://www.nasa.gov,
[Online; accessed September 2013].

[7] Schut, J. and Tooren,M. V., “Design ”Feasilization” Using Knowledge-Based Engineering and
Optimization Techniques,” Journal of Aircra, Vol. 44, No. 6, Nov. 2007, pp. 1776–1786.

[8] Rocca, G. L. and Tooren, M. J. L. V., “Knowledge Based Engineering to Support Aircra
Multidiscilpinary Design and Optimisation,” 26th International Congress of the Aeronautical
Sciences, 2008.

[9] Obert, E., “Drag polars of nineteen jet transport aircra at Mach numbers M = 0.40 - 0.60
(unpublished),” Tech. rep., 2013.

[10] Vaessen, F. and Vos, R., “A New Compressibility CorrectionMethod to Predict Aerodynamic
Interaction between Liing Surfaces,” Aviation Technology, Integration, and Operations Con-
ference, 2013, pp. 1–20.

[11] Elham, A., La Rocca, G., and van Tooren, M., “Development and implementation of an ad-
vanced, design-sensitive method for wing weight estimation,” Aerospace Science and Technol-
ogy, Vol. 29, No. 1, Aug. 2013, pp. 100–113.

93

http://rps3.com/Files/Starship_Dimensions.jpg
http://rps3.com/Files/Starship_Dimensions.jpg
http://plans.aerofred.com/data/media/54/piaggio-p180-avanti-ii.jpg
http://plans.aerofred.com/data/media/54/piaggio-p180-avanti-ii.jpg
http://www.nasa.gov

94 References

[12] Schmidt, R. K., A Semi-Analytical Weight Estimation Method for Oval Fuselages in Novel Air-
cra Conĕgurations, Master’s thesis, Del University of Technology, 2013.

[13] Roux, E., Avions civils à réaction: Plan 3 vues et données caractéristiques, Elodie Roux, 2007.

[14] Obert, E., Aerodynamic Design of Transport Aircra, IOS Press, 2009.

[15] Nicolai, L. M., Carichner, G. E., Schetz, J. A., andMalcolm, L. M. L., Fundamentals of Aircra
and Airship Design Volume I — Aircra Design, Vol. I, American Institute of Aeronautics and
Astronautics, 2010.

[16] Nangia, R. K., “Efficiency parameters formodern commercial aircra,”eAeronautical Jour-
nal, , No. 3068, 2006, pp. 495–510.

[17] Langen, T., Development of a conceptual design tool for conventional and boxwing aircra,
Master’s thesis, Del University of Technology, 2011.

[18] Vaessen, F., Improved aerodynamic analysis to predict wing interaction of high-subsonic three-
surface aircra, Master’s thesis, Del University of Technology, 2013.

[19] Van Dommelen, J., Design of a Forward-Swept Blended Wing Body Aircra, Master’s thesis,
Del University of Technology, 2011.

[20] Hoogreef, M., e Oval Fuselage, Master’s thesis, Del University of Technology, 2012.

[21] user), H. B. W., “De Havilland DH.106,” http://commons.wikimedia.org/wiki/File:
Comet_4.jpg, [Online; accessed September 2013].

[22] Dreamscape, B., “Dash 80,” http://en.wikipedia.org/wiki/File:Air_to_air_
photo_of_the_Dash_80_FA239925.jpg, [Online; accessed September 2013].

[23] Airbus, “Airbus companywebsite,” http://www.airbus.com, [Online; accessed September
2013].

[24] COROLLER, G., “Caravelle,” http://en.wikipedia.org/wiki/File:Caravelle_12.
jpg, [Online; accessed September 2013].

[25] user), R. W., “bombardier crj-900 scandinavian airlines,” http://en.wikipedia.org/
wiki/File:Crj900-sas.jpg, [Online; accessed September 2013].

[26] Prandtl, L., “TN-182: Induced drag of multiplanes,” Tech. rep., NACA, 1924.

[27] Raymer, D. P., Aircra Design: A Conceptual Approach, American Institute of Aeronautics
and Astronautics, 1992.

[28] Drela, M., “AVL (Athena Vortex Lattice),” http://web.mit.edu/drela/Public/web/
avl/, [Online; accessed April 2013].

[29] Torenbeek, E., Synthesis of Subsonic Airplane Design, Del University Press, 1982.

[30] Slingerland, A., Preliminary Sizing of Conventional and Unconventional Aircra, Master’s the-
sis (not yet published), Del University of Technology, 2014.

http://commons.wikimedia.org/wiki/File:Comet_4.jpg
http://commons.wikimedia.org/wiki/File:Comet_4.jpg
http://en.wikipedia.org/wiki/File:Air_to_air_photo_of_the_Dash_80_FA239925.jpg
http://en.wikipedia.org/wiki/File:Air_to_air_photo_of_the_Dash_80_FA239925.jpg
http://www.airbus.com
http://en.wikipedia.org/wiki/File:Caravelle_12.jpg
http://en.wikipedia.org/wiki/File:Caravelle_12.jpg
http://en.wikipedia.org/wiki/File:Crj900-sas.jpg
http://en.wikipedia.org/wiki/File:Crj900-sas.jpg
http://web.mit.edu/drela/Public/web/avl/
http://web.mit.edu/drela/Public/web/avl/

References 95

[31] Roskam, J., Airplane design, No. v. 1 in Airplane Design, Roskam Aviation and Engineering
Corp., 1989.

[32] Melin, T., Master esis A Vortex Lattice MATLAB Implementation for Linear Aerodynamic
Wing Applications, Master’s thesis, Royal Institute of Technology (KTH), 2000.

[33] ESDU, “ESDU 89034: e maximum li coefficient of plain wings at subsonic speeds.” 1993.

[34] Warmenhoven, M., “A Preliminary Drag Estimation,” Tech. rep., Del University of Tech-
nology, 2012.

[35] Elham, A.,Weight Indexing for Multidisciplinary Design Optimization of Liing Surfaces, Del
University of Technology, 2013.

[36] ESDU, “ESDU 99031: Computer program for estimation of li curve to maximum li for
wing-fuselage combinations with high-li devices at low speeds.” 2009.

[37] Huijts, C., Trim drag minimization in the conceptual and preliminary design phase applied to a
Blended Wing Body aircra conĕguration, Master’s thesis (not yet published), Del University
of Technology, 2014.

[38] Heerens, N., Landing gear design in an automated design environment, Master’s thesis (not yet
published), Del University of Technology, 2014.

[39] Linden, P., Conceptual design of a passenger aircra for in-Ęight refueling operations, Master’s
thesis, Del University of Technology, 2013.

[40] Vos, R. and Van Dommelen, J., “A Conceptual Design and Optimization Method for
Blended-Wing-Body Aircra,” 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dy-
namics and Materials Conference, 2012, pp. 1–14.

[41] MATLAB, version: 8.2.0.701 (R2013b), e MathWorks Inc., Natick, Massachusetts, 2013.

[42] Litz, M., “TIXI: A Library for fast and simple XML Access,” https://code.google.com/
p/tixi/, [Online; accessed March 2013].

https://code.google.com/p/tixi/
https://code.google.com/p/tixi/

96 References

97

Appendix A

Aircraft report generated by the
Initiator

0 5 10 15 20 25 30 35 40 45

−15

−10

−5

0

5

10

15

Fuselage station, x [m]

B
ut

t l
in

e,
 y

 [m
]

(a) Top view

−15−10−5051015

2

4

6

8

10

Butt line, y [m]

W
at

er
 li

ne
, z

 [m
]

(b) Front view

0 5 10 15 20 25 30 35 40 45

2

4

6

8

10

Fuselage station, x [m]

W
at

er
 li

ne
, z

 [m
]

(c) Side view

10

20

30

40

−15
−10−50

51015

2

4

6

8

10

(d) 3D view

Figure A.1: Aircraft geometry (all dimensions in meters)

A.1 General Characteristics

Aircra “A320” generated by the Initiator version 2.0. e aircra is a conventional aircra with
a low wing and an aspect ratio of 9.39. e aircra is designed to transport 150 passengers with a
total payload mass of 20536kg over 2870km.

97

98 Aircra report generated by the Initiator

A.2 Speciĕcation

Table A.1: Max payload

Pax 150 -
Payload Mass 20536 kg
Cruise Mach 0.76 -
Altitude 11278 m
Range 2870 km
Take Off Distance 2180 m
Landing Distance 1440 m

A.3 Operational Performance

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

Take−off Wing Loading (W/S) [N/m2]

T
ak

e−
of

f T
hr

us
t−

to
−

W
ei

gh
t r

at
io

 (
T

/W
)

[−
]

s

L
 = 1440 m

b
max

 = 80 m

(c/V)
FAR 25.111c

 = 1.2 %

(c/V)
FAR 25.119

 = 3.2 %

(c/V)
FAR 25.121a

 = 0 %

(c/V)
FAR 25.121b

 = 2.4 %

(c/V)
FAR 25.121c

 = 1.2 %

(c/V)
FAR 25.121d

 = 2.1 %

s
TO

 = 2180 m

M
cr

 = 0.76

t
climb

 = 10 min to h = 4000 m

Design Point
Reference Aircraft

Figure A.2: Loading Diagram

Result: Wing loading at MTOM: 5378 N/m2

rust-to-weight ratio: 0.288 -

Table A.2: Performance results

L/Dcruise 15.9 -
Cruise altitude 11278 m
Maximum take-off mass 68000 kg
Operational empty mass 36000 kg
Payload mass 21000 kg
Fuel mass 12000 kg
Harmonic range 2880 km
Ferry range 8570 km
Maximum fuel range 8440 km

A.4 Weight estimation 99

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5

10

15

20

25

Range, R [km]

P
ay

lo
ad

 m
as

s
M

pl
 [m

et
ric

 to
ns

]

Maximum payload at range
Maximum passengers range
Mission requirements

Figure A.3: Payload-Range

0 50 100 150 200 250 300

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

V [m/s]

Lo
ad

 fa
ct

or
 n

 [−
]

V

c

V
D

Figure A.4: Manoeuvre diagram

A.4 Weight estimation

100 Aircra report generated by the Initiator

Table A.3: Mass summary

Pax 12000 kg
Cargo 9000 kg
DLM 58000 kg
End Cruise Mass 58000 kg
FM 12000 kg
Fuel Volume 0 kg
Initial Cruise Mass 66000 kg
MLM 61000 kg
MRM 69000 kg
MTOM 68000 kg
Max FM 26000 kg
Mission FM 10000 kg
OEM 36000 kg
PLM 21000 kg
Reserve FM 0 kg
ZFM 56000 kg

Table A.4: Component masses

Engine1 2442 kg
Engine2 2442 kg
Furnishing 854 kg
Fuselage 10177 kg
Horizontal Stabiliser 604 kg
Main Gear1 1455 kg
Main Gear2 1455 kg
Main Wing 5797 kg
Nose Gear 388 kg
Vertical Stabiliser 496 kg
APU 1837 kg
Air Conditioning 1145 kg
Anti Ice 135 kg
Avionics 766 kg
Electrical 411 kg
Flight Controls 254 kg
Fuel System 132 kg
Handling Gear 20 kg
Hydraulics 1784 kg
Instruments 107 kg

A.4 Weight estimation 101

MainWing

HorizontalStabiliserVerticalStabiliser

Fuselage

Engine1

Engine2

Systems

FurnishingMainGear1MainGear2NoseGearOperationalItems

Pax

Cargo

Extra fuel

Mission fuel

Figure A.5: Mass distribution

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
3.5

4

4.5

5

5.5

6

6.5

7
x 10

4

X
pos w.r.t. MAC

/MAC [−]

M
as

s
[k

g]

P
ax

C
argo

F
uel

Loading according to mission requirements
Loading maximum fuel mass

Figure A.6: Loading diagram

102 Aircra report generated by the Initiator

10 15 20 25 30 35
−10

−8

−6

−4

−2

0

2

4

6

8

10

Fuselage station, x [m]

B
ut

t l
in

e,
 y

 [m
]

CG at MTOM
CG at OEM
CG at ZFM

Figure A.7: CG location

A.5 Aerodynamics 103

A.5 Aerodynamics

Table A.5: Aerodynamic properties at cruise

CL,cruise 0.62 -
CD,cruise 388 cts
L/Dcruise 15.9 -
CD0 (Clean) 231 cts
CD0 (Take-Off) 576 cts
CD0 (Landing) 1076 cts
Oswald factor (e) (Clean) 0.753 -
Oswald factor (e) (Take-Off) 0.803 -
Oswald factor (e) (Landing) 0.853 -
CLα 5.19 rad−1

Cmα -3.49 rad−1

CLmax,clean 1.2 -
CLmax,take-off 2.2 -
CLmax,landing 3.2 -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

2.5

3

3.5

C
D

 [−]

C
L [−

]

Clean cruise
Take−off, flaps & gear
Landing, flaps & gear

Figure A.8: Drag Polars

104 Aircra report generated by the Initiator

0 0.5 1 1.5 2 2.5 3 3.5
2

4

6

8

10

12

14

16

18

C
L
 [−]

L/
D

 [−
]

Clean cruise
Take−off, flaps & gear
Landing, flaps & gear

Figure A.9: Aerodynamic efficiency of the aircraft

A.6 Propulsion

Table A.6: Propulsion

Number of engines 2 -
SFCcruise 0.682 h−1

Tstatic (per engine) 129.8 N
Bypass Ratio 6 -
Diameter 1.83 m
Length 2.86 m

A.7 Aircra Geometry

Table A.7: Main Wing dimensions

Span 34.1 m
Planform area 122.8 m2

MAC 4.35 m
Root Chord 4.18 m
Root t/c 0.18 -
Tip Chord 1.28 m
Tip t/c 0.1 -
Sections (root to tip) boeing-a, boeing-b, boeing-c
Sweep 0.25c 24.5 ◦

Taper ratio 0.207 -
Twist 0 ◦

Dihedral 6 ◦

A.7 Aircra Geometry 105

Table A.8: Horizontal Stabiliser dimensions

Span 11.5 m
Planform area 25.98 m2

MAC 2.47 m
Root Chord 3.39 m
Root t/c 0.118 -
Tip Chord 1.19 m
Tip t/c 0.118 -
Sections (root to tip) N0012, N0012
Sweep 0.25c 27.4 ◦

Taper ratio 0.35 -
Twist 0 ◦

Dihedral 6 ◦

Table A.9: Vertical Stabiliser dimensions

Span 5.44 m
Planform area 18.3 m2

MAC 3.66 m
Root Chord 5.04 m
Root t/c 0.118 -
Tip Chord 1.76 m
Tip t/c 0.118 -
Sections (root to tip) N0012, N0012
Sweep 0.25c 36.7 ◦

Taper ratio 0.35 -
Twist 0 ◦

Dihedral 0 ◦

Table A.10: Fuselage dimensions

Length 40.7 m
Floor Position -58 % of fuselage height
Diameter 4.2 m
Nose Fineness Ratio 0.18 -
A Fineness Ratio 0.55 -
Cabin Height 1.37 m
Nose Length 4.57 m
A Cutoff 0.85 -
A Ratio 0.05 -

106 Aircra report generated by the Initiator

18
20

22
24

26

−15

−10

−5

0

5

10

15

3.5
4

4.5
5

5.5

FS, x [m]

BL, y [m]

W
L,

 z
 [m

]

Figure A.10: Fuel tank layout

5
10

15
20

25
30

35
40

−202

3

4

5

6

7

FS, x [m]
BL, y [m]

W
L,

 z
 [m

]

Figure A.11: Fuselage geometry; (blue = cargo ULDs, purple = øoors)

107

Appendix B

Code examples

B.1 Part implementation

In this section a example is given how to implement a simple part into the Initiator . A simple part
called Square will be created. e geometry is a square in the XY plane with the properties length
and width.

B.1.1 File creation

First a directory for the new part needs to be created. Inside the Geometry directory a new direc-
tory @Square will be created. e ‘@’ symbol tells  that all ĕles inside the directory belong
to the Square class.

Inside the @Square directory, two ĕles are required to implement the part. First the ĕle Square.m
is created which will contain the class deĕnition of our Part. Secondly the ĕle generate.m will be
created which will contain the code needed to generate the geometry.

B.1.2 Class deĕnition ĕle

e ĕle Square.m will contain the class deĕnition code. e Square part only has two properties;
length and width. In the initiator it is a convention to write properties starting with a uppercase
letter. is is done to be able to differentiate between the methods and properties. e code for
Square.m can be found in Listing B.1.

e ĕrst line tells  that Square is a subclass of Part. Between properties and end all
properties are deĕned, in this caseLength andWidth. e(SetObservable, GetObservable)
keywords tell  that it can create listeners for the properties. iswill enable the re-generation
when a property is changed. e Initiator will give an error when there keywords are not set, since
it then fails to create property listeners. Between methods and end all methods are deĕned. In this
case only the class instantiation method is created, which is required. is method simply passes

107

108 Code examples

the part name and a handle to the controller to the superclass. e generate method declaration is
required since all methods in  are public by default. Since the generate method is set
to protected in the superclass, this pattern needs to be repeated in this class deĕnition ĕle.

1 classdef Square < Part
2 %SQUARE Simple square
3

4 properties (SetObservable , GetObservable)
5 Length % Length in [m]
6 Width % Width in [m]
7 end
8

9 methods
10 function obj = Square(name,controllerHandle)
11 % Call superclass instantiation method
12 obj = obj@Part(name,controllerHandle);
13 end
14 end
15

16 methods (Access = protected)
17 generate(obj)
18 end
19

20 end

Listing B.1: Square class deönition öle

B.1.3 Generate method

e generate method calculates the X,Y,Z points of the part. e full code is listed in Listing B.2.
e obj variable is a handle to the Square class and can be used to access the properties and meth-
ods. Lines 5-6 calculate the corner points of the square with it’s origin in the middle of the square.
In line 10 the generatemethod of the superclass is called. is is required for correct functioning
of the geometry objects.

1 function generate(obj)
2 %GENERATE Generates the square geometry
3

4 % Calculate the square coordinates , (0,0,0) is the centre
5 obj.X = [-obj.Length -obj.Length; obj.Length obj.Length]./2;
6 obj.Y = [-obj.Width obj.Width; -obj.Width obj.Width]./2;
7 obj.Z = zeros(2,2);
8

9 % Call superclass method
10 generate@Part(obj);
11

12 end

Listing B.2: Square generate method

An example instance of the Square part can be found in Figure B.1.

B.2 Module implementation 109

1

2

3

−1

0

1

2

3

4

5

−1

0

1

2

3

4

5

Figure B.1: Square geometry; Length = 4, Width = 6, Position = (2,2,2), Orientation =
(45,60,15)

B.2 Module implementation

In this section a example is given how to implement a simple module into the Initiator . A design
module called SpanDoubler will be created, which as the name suggests doubles the span of the
wing(s).

B.2.1 File creation

First a directory for the new module needs to be created. Inside the DesignModules directory a
new directory @SpanDoubler will be created.

Inside the @SpanDoubler directory, two ĕles are required to implement the module. First the ĕle
SpanDoubler.m is created which will contain the class deĕnition of our module. Secondly the ĕle
run.m will be created which will contain the code needed to run the module.

B.2.2 Class deĕnition ĕle

e ĕle SpanDoubler.m will contain the class deĕnition code. e ĕle only contains one method,
the class instantiation method. is method simply passes a handle to the controller to the super-
class. e code can be found in Listing B.3.

1 classdef SpanDoubler < DesignModule
2 %SPANDOUBLER Doubles the span of the main wing(s)
3

4 methods
5 function obj = SpanDoubler(controllerHandle)
6 obj = obj@DesignModule(controllerHandle);
7 end
8 end
9

10 end

Listing B.3: SpanDoubler class deönition öle

110 Code examples

B.2.3 Run method

e run method contains all logic of the module and is the method which is called by the Initiator
when the module needs to run. With big modules it can be advantageous to split the module into
several methods and link them together in the run method.

e code ĕrst gets the main wings from the aircra and then doubles the span. And then calls the
run method of the superclass. is is required for correct functioning of the modules. e full
code can be found in Listing B.4.

1 function run(obj)
2 %RUN Run method of the SpanDoubler module
3

4 % Get main wings
5 MainWings = obj.Aircraft.findPart('MainWing');
6

7 % Double span
8 for i = 1:length(MainWings)
9 MainWings(i).Span = MainWings(i).Span * 2;
10 end
11

12 run@DesignModule(obj)
13

14 end

Listing B.4: SpanDoubler run method

B.2.4 Adding module

To be able to run the module inside the Initiator it needs to be added to the modules.xml ĕle.
is is quite straight forward, and since the module has no dependencies only its name needs to
be added with a <name> element. Would the module have dependencies, the dependent modules
need to be added with <dependency> elements. e relevant part of the modules.xml ĕle can
be found in Listing B.5.

1 <modules>
2 ...
3 <designModules>
4 <module>
5 <name>SpanDoubler</name>
6 </module>
7 ...
8 </designModules>
9 ...
10 </modules>

Listing B.5: SpanDoubler module deönition

111

Appendix C

Sample aircraft deönition öle

is is the input ĕle of an aircra with requirements similar to the Airbus A320-200. All data is
gathered from Élodie Roux - Avions civils à réaction [13].

1 <?xml version="1.0" encoding="utf-8"?>
2 <initiator xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance"

xsi:noNamespaceSchemaLocation="initiator.xsd">
3 <aircraft>
4 <name>A320 -200</name>
5 <description>Initiator file based on Airbus A320 -200</description>
6 <missions default="Max payload">
7 <mission name="Max payload">
8 <requirement>
9 <name>Pax</name>
10 <value>150</value> <!-- [-] -->
11 </requirement>
12 <requirement>
13 <name>PayloadMass</name>
14 <value>20536</value> <!-- [kg] -->
15 </requirement>
16 <requirement>
17 <name>CruiseMach</name>
18 <value>0.76</value> <!-- [-] -->
19 </requirement>
20 <requirement>
21 <name>Altitude</name>
22 <value>11278</value> <!-- [m] -->
23 </requirement>
24 <requirement>
25 <name>Range</name>
26 <value>2870</value> <!-- [km] -->
27 </requirement>
28 <requirement>
29 <name>TakeOffDistance</name>
30 <value>2180</value> <!-- [m] -->
31 </requirement>
32 <requirement>
33 <name>LandingDistance</name>

111

112 Sample aircra deĕnition ĕle

34 <value>1440</value> <!-- [m] -->
35 </requirement>
36 <requirement>
37 <name>NumberOfFlights</name>
38 <value>100000</value> <!-- [-] -->
39 </requirement>
40 <requirement>
41 <name>AirworthinessRegulations</name>
42 <value>FAR-25</value>
43 </requirement>
44 <requirement>
45 <name>TimeToClimb</name>
46 <!-- Time [minutes] ; Altitude [meter] -->
47 <value mapType="vector">10;4000</value>
48 </requirement>
49 </mission>
50 </missions>
51 <performance>
52 <parameter>
53 <name>LDmax</name>
54 <value>16</value>
55 </parameter>
56 <parameter>
57 <name>SFC</name>
58 <value>0.5</value> <!-- [1/hr] -->
59 </parameter>
60 <parameter>
61 <name>FFStartUp</name>
62 <value>0.990</value>
63 </parameter>
64 <parameter>
65 <name>FFTaxi</name>
66 <value>0.990</value>
67 </parameter>
68 <parameter>
69 <name>CLmaxLanding</name>
70 <value>3.2</value>
71 </parameter>
72 <parameter>
73 <name>CLmaxTakeOff</name>
74 <value>2.2</value>
75 </parameter>
76 <parameter>
77 <name>CLmaxClean</name>
78 <value>1.2</value>
79 </parameter>
80 </performance>
81 <configuration>
82 <parameter>
83 <name>WingAspectRatio</name>
84 <value>9.39</value>
85 </parameter>
86 <parameter>
87 <name>WingLocation</name>
88 <value>Low</value>
89 </parameter>
90 <parameter>
91 <name>TailType</name>

113

92 <value>Standard</value>
93 </parameter>
94 <parameter>
95 <name>RootAirfoil</name>
96 <value>boeing-a</value>
97 </parameter>
98 <parameter>
99 <name>KinkAirfoil</name>
100 <value>boeing-b</value>
101 </parameter>
102 <parameter>
103 <name>TipAirfoil</name>
104 <value>boeing-c</value>
105 </parameter>
106 </configuration>
107 <parts mainPart="Fuselage">
108 <fuselage name="Fuselage" type="Conventional">
109 </fuselage>
110 <wing name="Main Wing" type="MainWing">
111 </wing>
112 <wing name="Horizontal Stabiliser" type="HorizontalTail">
113 </wing>
114 <wing name="Vertical Stabiliser" type="VerticalTail">
115 </wing>
116 <engine name="Engine -1" type="TurboFan">
117 <location>Main Wing</location>
118 <bypassRatio>6.0</bypassRatio>
119 </engine>
120 <engine name="Engine -2" type="TurboFan">
121 <location>Main Wing</location>
122 <bypassRatio>6.0</bypassRatio>
123 </engine>
124 </parts>
125 </aircraft>
126 <runList>DesignConvergence ,ReportWriter ,PlotTool</runList>
127 <settings source="settings.xml">
128 </settings>
129 <moduleInputs>
130 <input module="PlotTool">
131 <plotModules>Geometry ,DesignConvergence</plotModules>
132 </input>
133 </moduleInputs>
134 </initiator>

Listing C.1: XML aircraft deönition öle of the Airbus A320-200

114 Sample aircra deĕnition ĕle

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Nomenclature
	I Thesis
	1 Introduction
	1.1 Research Question and Thesis Goal
	1.2 Report Structure

	2 Background
	2.1 Aircraft Configurations
	2.1.1 Conventional aircraft
	2.1.2 Canard aircraft
	2.1.3 Three-surface aircraft
	2.1.4 Prandtl aircraft
	2.1.5 Blended-wing-body aircraft

	2.2 Aircraft Design Process
	2.2.1 Conventional Conceptual Design Process
	2.2.2 Design and Engineering Engine

	3 Design Tool Description
	3.1 Software architecture
	3.2 Design process
	3.3 The Modules
	3.3.1 Sizing Modules
	3.3.2 Analysis Modules
	3.3.3 Design Modules
	3.3.4 Work-flow Modules

	4 Design Tool Verification
	4.1 Reference aircraft
	4.2 Comparison based on Design point
	4.3 Comparison based Geometry
	4.4 Drag polar comparison
	4.5 Comparison based on Weight
	4.6 Conclusions

	5 Configuration Comparison
	5.1 Top level requirements
	5.2 Design synthesis
	5.3 Key performance indicators
	5.4 Results

	6 Conclusions and Recommendations
	6.1 Conclusions
	6.2 Recommendations

	II Code documentation
	7 Introduction
	7.1 Background

	8 Program Structure
	8.1 Introduction
	8.2 InitiatorController
	8.2.1 Dependency handling

	8.3 Modules
	8.4 Aircraft

	9 Geometry Definition
	9.1 Geometry class
	9.1.1 Airfoil
	9.1.2 Loft

	9.2 Part class
	9.2.1 Wing
	9.2.2 Fuselage
	9.2.3 BoxWing
	9.2.4 Engine
	9.2.5 LandingGear
	9.2.6 Cargo
	9.2.7 ULD
	9.2.8 Spar

	10 User manual
	10.1 Introduction
	10.2 Installation
	10.3 Program Run
	10.4 XML Layout
	10.4.1 Aircraft definition file
	10.4.2 Settings file
	10.4.3 Modules file
	10.4.4 Materials file
	10.4.5 Cargo file

	10.5 Executable Build Instructions

	References
	A Aircraft report generated by the Initiator
	A.1 General Characteristics
	A.2 Specification
	A.3 Operational Performance
	A.4 Weight estimation
	A.5 Aerodynamics
	A.6 Propulsion
	A.7 Aircraft Geometry

	B Code examples
	B.1 Part implementation
	B.1.1 File creation
	B.1.2 Class definition file
	B.1.3 Generate method

	B.2 Module implementation
	B.2.1 File creation
	B.2.2 Class definition file
	B.2.3 Run method
	B.2.4 Adding module

	C Sample aircraft definition file

