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Abstract—Despite its enormous economical and societal im-
pact, lack of human-perceived control and safety is re-defining
the design and development of emerging AI-based technologies.
New regulatory requirements mandate increased human control
and oversight of AI, transforming the development practices
and responsibilities of individuals interacting with AI. In this
paper, we present the SPATIAL architecture, a system that
augments modern applications with capabilities to gauge and
monitor trustworthy properties of AI inference capabilities. To
design SPATIAL, we first explore the evolution of modern
system architectures and how AI components and pipelines are
integrated. With this information, we then develop a proof-of-
concept architecture that analyzes AI models in a human-in-the-
loop manner. SPATIAL provides an AI dashboard for allowing
individuals interacting with applications to obtain quantifiable
insights about the AI decision process. This information is then
used by human operators to comprehend possible issues that
influence the performance of AI models and adjust or counter
them. Through rigorous benchmarks and experiments in real-
world industrial applications, we demonstrate that SPATIAL
can easily augment modern applications with metrics to gauge
and monitor trustworthiness, however, this in turn increases the
complexity of developing and maintaining systems implementing
AI. Our work highlights lessons learned and experiences from
augmenting modern applications with mechanisms that support
regulatory compliance of AI. In addition, we also present a road
map of on-going challenges that require attention to achieve
robust trustworthy analysis of AI and greater engagement of
human oversight.

Index Terms—Trustworthy AI; AI Act; Industrial Use Cases;
Accountability; Resilience; Human Oversight; Practical Trust-
worthiness

I. INTRODUCTION

The adoption of AI is imminent in everyday applications.

The AI market value is expected to reach a valuation of

two trillion USD by 2030 [1], emphasizing the impact of

AI on current software practices and systems development.

Machine and deep learning components (aka AI components)

are part of larger systems that provide autonomous decision

capabilities for modern applications. AI components imple-

ment machine/deep learning pipelines to build AI models.

These models are improving the perception, experience and

interaction between users and digital applications [2], pro-

viding human-like and insightful functionality that facilitates

application usage and provides added value to users. Examples

of this include advanced Chat-bots (ChatGPT, Gemini, Ernie)

for e-commerce recommendations [3], optimal route planning

for practical drone delivery [4], [5] and sophisticated diagnosis

capabilities in healthcare applications [6] to mention some. A

key limitation for the adoption of AI at scale is its inherent

black-box characteristics [7]. Indeed, the incomprehensible

advanced performance of AI caused distrust in humans when

massively trained, leading to the release of an open global pe-

tition in March 2023 to slow down the developments of AI for

at least 6 months [8]. AI probabilistic decision nature cannot

be dissected using existing methods to verify software [9].

Besides this, AI models can be easily hampered throughout

their life cycle, making them vulnerable and exposed to

many threats, impacting their autonomous decisions. This is

worrisome in cybersecurity situations, where AI models can be
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(purposely) attacked to perturb their inference process, which

can cause life-critical consequences for people and society.

As applications equipped with AI continue proliferating every

aspect of human life, new methods to gauge, adjust and

monitor its inference capabilities are required.

As recognized by all economic and regulatory frameworks,

with a primary emphasis on the EU but also encompassing

the US and China, artificial intelligence (AI) stands out as

the pivotal focus to developing a trustworthy technology.

Traditionally, trustworthy computing ensures that a piece

of software is trustful to users by verifying several of its

properties, e.g., robustness, reliability, resilience, accuracy and

so on. Audit and accountability compliance on trustworthy

software is simpler as there is a quantifiable understanding

of its performance sensitivity to drifts and errors. As trust-

worthy verification cannot be conducted directly with AI

using traditional methods, there is a lack of transparency,

accountability and resilience towards AI technologies. This

has made Europe to impose strict regulations for the use of

AI, becoming a benchmark at an international level. The US

also has acknowledged the significance of regulating AI usage

through its US AI ACT Executive Order 13859/13960 [10].

Likewise, China has emphasized the importance of regulating

generative AI developments as crucial steps in developing a

trustworthy AI [11]. AI trustworthiness extends fundamental

principles of trustworthy computing with additional properties

that have been considered and some defined by regulatory enti-

ties. Trustworthy AI is valid, reliable, safe, fair, free of biases,

secure, robust, resilient, privacy-preserving, accountable, trans-

parent, explainable, and interpretable [12]. Notice however,

that AI trustworthiness is an ongoing process whose definition

is evolving continuously and involves collaboration among

technologists, developers, scientists, policymakers, ethicists,

and other stakeholders. As emerging regulatory standards

mandate increased human control and oversight of AI, this

concurrently reshapes the development practices and respon-

sibilities of individuals engaging with AI. Moreover, new

methods and approaches that help to understand the behavior

of AI are being investigated or have re-gained attention, e.g.,

Explainable AI (XAI) methods [13]. As applications equipped

with AI continue proliferating every aspect of human life,

new methods are required to gauge, adjust and monitor the

trustworthiness of AI inference capabilities.

We contribute SPATIAL, a proof-of-concept architecture

that augments modern applications with capabilities to robustly

gauge and monitor the trustworthiness of AI in a human-

in-the-loop manner. To achieve this, SPATIAL uses an AI

dashboard and instruments applications with AI sensors. Con-

ceptually, an AI dashboard serves as a tool to provide insights

to human operators, enabling them to monitor and adjust AI

trustworthiness according to their preferences. Additionally, it

facilitates the verification of AI systems for potential audits

and ensures compliance with accountability regulations set

by regulatory bodies. In parallel to this, AI sensors that

monitor specific trustworthy properties are instrumented within

applications. Simply put, an AI dashboard shows to users

quantifiable metrics extracted by AI sensors [14]. To design

SPATIAL, first, we investigate the sensitivity of machine

learning pipelines to (induced/non-induced) changes - from

input data to model deployment. With this information, trust-

worthy metrics that can be instrumented as AI sensors are

reviewed in current state-of-the-art. For instance, a sensor for

fairness can be instrumented to analyze raw input data as

well as to characterize fairness in decision making after model

deployment [15]. Notice that currently, there is a misalignment

between regulatory (legal) and technical trustworthy require-

ments. Thus, relevant metrics are selected from a technical

point of view. Naturally, as regulatory trustworthiness evolves,

it is possible to replace technical metrics with alternatives

that adjust better to legal requirements. To augment modern

applications with AI dashboards and sensors, we develop

SPATIAL following a micro-service pattern. The key idea of

using this pattern is that each micro-service contributes with

the specific functionality to monitor a trustworthy property,

and this functionality is requested by an AI sensor instru-

mented in the application (like an API). Besides this, the

pattern also helps analyse a specific set of trustworthy prop-

erties. Indeed, as demonstrated by previous work, trustworthy

properties are not agnostic. Thus, the number of trustworthy

properties that can be derived from an application depends

on its inherent characteristics [12], [16]. Through rigorous

analysis and benchmarks conducted in real industrial use cases,

we evaluate the performance and scalability of SPATIAL.

Our results indicate that to measure trustworthiness in AI is

necessary to instrument every step of the AI pipelines with

sensors. Moreover, our results also suggest that AI dashboard

and sensors are useful to individuals to monitor AI inference

capabilities, but it increases the complexity of developing and

maintaining AI components in modern applications. Our work

also highlights lessons learned from designing and developing

SPATIAL, and describes on-going challenges that require

attention to achieve a robust analysis of AI trustworthiness

and greater engagement of human oversight.

II. RELATED WORK

AI trustworthiness: All regulatory and economic frame-

works have recognized the need for trustworthiness in AI.

As a result, several initiatives, projects and efforts are on-

going to define how to verify it. EU projects, such as EU

TRUST-AI (https://trustai.eu/), EU SPATIAL (https://spatial-

h2020.eu/) and EU TAILOR (https://tailor-network.eu/) have

proposed principles and guidelines to ensure trustworthiness

in AI development practices. Likewise, leading technologi-

cal vendors have proposed frameworks to achieve AI trust-

worthiness, including, IBM’s AI fairness 360, the what-if

tool and ML fairness gym of google, Microsoft’s fairlearn,

Linkedin Fairness Toolkit (LIFT), AT&T software System

to Integrate Fairness Transparently (SIFT), and Fat forensic.

Other initiatives also include, PwC AI trust index, AI trust and

transparency of Microsoft, and AI Impact Assessment of Open

AI. In parallel to this, development toolkits also have been

released by private vendors and open-source communities. For
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instance, Google’s model card toolkit measures transparency

in AI models. Other development initiatives to verify integrity

and robustness of AI include open-source SHAPASH [17],

IBM AI explainability 360 toolkit [18], Microsoft Interprete

ML, and IBM Adversarial Robustness 360 toolkit. While

there is a clear overlapping between all these works, a key

challenge that remains unexplored is identifying essential and

general requirements of trustworthiness. Unlike others, our

work investigates how to augment modern applications with

practical trustworthiness analysis and shares experiences and

lessons learned from our developments.

Human oversight and AI: Regulatory trustworthiness man-

dates human oversight in AI developments. While mul-

tiple frameworks have been developed to measure differ-

ent trustworthy properties [19], it is still unclear the

role that humans play in the monitoring and supervision

[20], [21]. XAI methods are the most common method to

communicate the logic of AI models to users via (opti-

mized) explanations, numerical values, visual diagrams, and

so on [22]. At the machine and deep learning levels,

several tools and frameworks are available to tune the in-

ference process of AI models. For instance, TensorLeap

(https://tensorleap.ai/), Neptune AI (https://neptune.ai/), and

Comet ML (https://www.comet.com/site/). Unlike others, our

SPATIAL uses an AI dashboard to communicate to human

operators the inference capabilities of AI, making it possible

to adjust it.

Fig. 1: AI perturbations based on algorithm type and attack.

AI perturbations: Attacks on machine learning systems

can be identified by threat modeling using frameworks like

ENISA, MITRE, NIST, IBM, Microsoft. AI pipelines im-

plement a set of steps to build AI models. These models

can be hampered by induced and non-induced changes in

any step of its construction [23]. Non-induced changes occur

due to situational events, e.g., environment, data quality and

failures of devices. Induced changes (aka adversarial attacks)

are perpetrated by an attacker with the main intention to

control/induce the inference process of AI models. Poisoning

attacks are of a significant issue as they contaminate the

data used for model training [24]–[30], [30]–[42], [42]–[51].

Adversarial attacks can also occur at the model level by

changing internal structure and parameters of the model [28],

[32], [35], [37], [52]–[54], e.g., model evasion, model stealing.

A summary of attacks investigated in the relevant literature in

the last years is shown in Figure 1. From the figure, it is

possible to observe the type of attack that can be performed

depending on each AI algorithm used for training. SPATIAL

augments modern applications with functionality to gauge and

monitor changes in AI inference capabilities such that human

operators can visualize and react to them.

III. BACKGROUND AND MOTIVATION

We continue by analyzing how modern applications im-

plement AI components and their respective AI pipelines for

building AI models. After this, we reflect on regulations for

the use of AI and its implications for software development

practices and systems deployment.

Modern architectures: As shown in Figure 2, the underlying

system of modern applications have evolved considerably from

its fundamental client-server architecture. At the same time,

there has been a rise in design and development considerations.

In early developments, in a basic client-server architecture,

end devices acting as clients send requests to the server. At

the server, the request is then processed and a response is sent

back to the client (Figure 2(a)). After this, more advanced

architectures are designed to collect data in a centralized

manner (at the server) from users interacting with applications.

This data is then used to train machine learning models to

improve certain functionality over time (Figure 2(b)). Further

developments have made these architectures capable of collect-

ing data from clients in a distributed manner, such that more

robust datasets can be used to train models. Currently, a global

model is trained by data contributions of clients collected in a

privacy-preserving manner, e.g., using federated learning, once

trained, this model is then propagated to all the end devices.

Figure 2(c) extends the ML architecture presented in [55] to

depict the latest advances of distributed training.

AI model construction in a nutshell: Applications equipped

with AI models implement pipelines that facilitate their con-

struction and incremental improvement over time. The stan-

dard pipeline for building an AI model can be summarized

in Figure 4(a). Applications implement these typical steps

to update models continuously as new data contributions are

obtained. In the first step (data collection), available data

is cleaned and prepared using common methods to enhance

its quality, e.g., missing data, removing duplicates, and data

augmentation [56]. After this step, data is transformed into a

suitable input for the AI algorithm, meaning data is labelled,

e.g. using human annotators. Next, the training process takes

place. Here, an algorithm is selected, e.g., Random Forrest,

Support Vector Machine; then the training process is decided,

e.g., data parallelization or model partition [57], and the model

is evaluated, e.g., using cross-validation [58]. Lastly, the model

is deployed and the performance is evaluated within applica-

tions. In classical architectures, models require re-training and

re-deploying as new data contributions are obtained. In newer

paradigms, such as federated learning, the model is updated
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Fig. 2: Evolving system architectures, highlighting the concerns that arise in each architecture as functionality is augmented;

a) Basic client-server architecture [55]; b) Machine learning architecture [55] and c) Distributed machine learning architecture

(Federated learning).

by a global aggregator, which combines contributions from

clients, such that the later resulting model is propagated back

to all the contributors.

AI regulations: AI models are trained from data contributions

collected over time, each contribution helping to tune their

probabilistic nature. AI regulations thus define the properties

for verifying and validating the correct development and

usage of AI models. The General Data Protection Regulations

(GDPR) stipulates the guidelines for dealing with personal

data within the European Union (EU), putting forward fair-

ness, security, privacy, trust, transparency, and explanation

considerations during software and AI-based solution devel-

opment. These principles are also described in the US AI

Act, and other countries have also considered similar regu-

lations, for instance, China, Japan, Brazil, and Canada. Given

these considerations, modern applications have to implement

mechanisms or tools that allow individuals to understand the

inference capabilities of AI. This, however, requires to inspect

the whole construction of AI models.

IV. THE SPATIAL ARCHITECTURE

We next describe how modern applications are augmented

with SPATIAL, such that it is possible to gauge and monitor

the trustworthiness of its AI components. To do this, first,

we analyze how sensitive AI pipelines are to vulnerabilities

that can change the inference logic of AI models during

their construction. After this, we introduce the concepts of AI

dashboards and sensors, which encapsulate complexity of the

trustworthy analysis. With this information, we then provide

an overview of the SPATIAL system.

AI vulnerabilities: Machine learning vulnerabilities exist

throughout the AI pipeline and these can be exploited to

change the AI inference logic. We enumerate the most com-

mon and critical vulnerabilities by relying on the CIA (confi-

dentiality, integrity, and availability) approach. CIA provides

a qualitative analysis to model the impact of vulnerabilities

on AI models. Confidentiality depicts the level of access

to AI models. Confidentiality is not limited to preventing

access to a machine learning model but also to ensuring

that its output predictions do not leak information that can

be used to understand and reproduce its decision making

or reconstruct its training data . Similarly, integrity relates

to preserving expected behavior, level of performance, and

quality of predictions under any conditions, including at-

tack. Likewise, availability refers to the idea that accurate

predictions are produced, that reflect those seen in testing,

and in a timely manner. Models are vulnerable throughout

their construction life cycle pipeline. Figure 3 summarizes

these vulnerabilities together with associated security attributes

that can lead to compromise. This suggests that metrics that

quantify trustworthiness are required to be instrumented in

different steps of the AI pipelines.

Fig. 3: Vulnerabilities against machine learning systems.

The SPATIAL architecture: SPATIAL augments the latest

architectures by building upon the standard machine learning
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pipeline that constructs and updates AI models. Figure 5 shows

the overall concept. Applications are instrumented with AI

sensors (for each trustworthy property), and these sensors

gauge and monitor the inference capabilities of AI models.

At the architecture level, Figure 4(c) shows the system com-

ponents augmented in modern applications. Notice that the

architecture is easily integrated into any application as the

trustworthy analysis is applied over the model and data. In

practice, the trustworthy properties have to be monitored over

time as these can change as the AI model gets updated. Besides

this, it has been demonstrated that trustworthy properties can

be considered as trade-offs within applications [59], suggesting

that modifying one property can impact others, e.g., robustness

vs privacy, accuracy vs fairness, transparency vs security.

Moreover, different types of applications have different pre-

dominant characteristics, influencing the extraction of a trust

score and thus obstructing the adoption of a generic certifi-

cation scale [60]. By using AI sensors, it is possible then to

quantify the compliance of AI against available requirements.

The main reason for abstracting trustworthy properties into

sensors is that a sensor enables continuous monitoring of ap-

plications during runtime. AI sensors are software-based (aka

virtual sensors) and are instrumented within the source code of

an application to monitor specific parts of its code execution

or can be instrumented as a concurrent process to monitor

the behaviour of the overall application. Thus, AI sensors

can be considered APIs. Another reason for instrumenting

and abstracting modern applications with AI sensors is to

foster a correct-by-construction approach, such that standard

trustworthy properties are considered from the early design

and development phases of AI. Measurements obtained by

the AI sensors are shown to human operators using the AI

dashboard, such that human operators can aid in overseeing

the development of AI models. Human feedback to change

AI behavior is applied directly to the AI pipeline. Figure 4(b)

shows the additional steps that are introduced. As any step can

be easily hampered to change the model inference process, AI

sensors are required to be instrumented across the pipeline. AI

sensors are built using specific metrics to extract trustworthy

properties, e.g., XAI methods, fairness metrics, and accuracy,

among others.

V. IMPLEMENTATION AND DEPLOYMENT

System implementation: To demonstrate how modern appli-

cations can be augmented to gauge and monitor trustworthy

properties from AI models. We design, develop and deploy

a proof-of-concept system architecture. Our SPATIAL thus

consists of a back-end and a front-end implementation. The

back-end deployment uses a micro-service API gateway to

support various micro-services. These micro-services imple-

ment different metrics to analyze specific trustworthy prop-

erties. AI sensors are instrumented within applications and

request the functionality of a specific metric in an input/output

manner. This means that AI sensors are treated as APIs, whose

monitoring consists in requesting micro-service functionality

periodically. For instance, every time an AI model is updated

or there is a change in any step of the construction of the

model. The main reason for using micro-services architecture

is to add and replace metrics with ease. Indeed, currently,

there is a misalignment between legal regulatory and technical

trustworthiness. Thus, technical metrics that fulfil and comply

with regulatory requirements are meant to evolve over time.

Another reason to rely on micro-service patterns is to augment

dynamically the capacity of each individual metric to handle

the workload. The source of this workload considers 1) several

different applications requesting the metric and 2) workload

caused by continuous monitoring of the metric. To implement

our API gateway, we rely on the open-source Kong technology.

Kong can be easily extended through OpenAPI and configured

to support continuous integration, facilitating re-deployment

and managing versioning of our prototype. The API Gateway

manages the communication flow, ensuring that each micro-

service receives the necessary input, processes it, and returns

the appropriate response. Micro-services connected to the

API gateway rely on docker containerization to encapsulate

each metric. In parallel to this, the front-end implementation

facilitates the analysis of AI models through SPATIAL using

an AI dashboard. Humans can rely on the AI dashboard to

obtain quantifiable trustworthy characteristics of the AI model.

SPATIAL front-end is implemented using React, providing

users with an intuitive interface to seamlessly integrate with

SPATIAL features. Node.js serves as the required runtime en-

vironment for React’s development tools, including Babel and

Webpack. The Bootstrap 5 framework is utilized for respon-

sive design, while Tailwind CSS is employed for customized

styling, resulting in visually appealing UI components. For

dataset management and responsive chart visualization, we

utilize D3.js, Chart.js, and Papaparse for parsing CSV data.

Technical configurations are in subsection VI-B. The overall

system is deployed in the computing infrastructure provided

by the supercomputer LUMI at UT HPC data-centre [61].

Trustworthy metrics for AI sensors: Micro-services imple-

ment different metrics to quantify specific trustworthy proper-

ties. Applications are instrumented with AI sensors requesting

each metric functionality. Current micro-services implement

metrics that can be used to support the resilience and ac-

countability of AI models. Accountability metrics support the

ability to explain the source causes that led to a decision. Thus,

accountability is supported by implementing the XAI SHAP

method. SHAP fosters transparency of inference capabilities

of AI by highlighting the most important part of the data

used for learning. Likewise, resilience metrics quantify the

ability of models to resist and recover from an exploited

machine learning vulnerability. Resilience insights are thus

estimated by calculating complexity and impact metrics on

model and data [47]. Complexity quantifies the effort required

by an attacker to achieve a successful attack. The higher

the complexity, the more difficult it is for the attack to

hamper the model. Similarly, impact quantifies the extent of

the attack’s effect on the AI models within a system. The
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Fig. 4: AI model construction; a) standard pipeline to construct machine learning models; b) Augmented pipeline to analyze

trustworthy trade-offs; and c) Conceptual modern system architecture equipped with methods to monitor trustworthiness.

higher the impact, the more vulnerable the AI model becomes

in that system. Besides this, our architecture also implements

a machine learning component, where several AI algorithms

can be passed a dataset to create an AI model. This component

also allows us to provide performance metrics about the AI

model, e.g., accuracy and precision.

VI. THE EXPERIMENTS

We conduct experiments to analyze the performance and

scalability of SPATIAL as industrial modern applications are

augmented with it. Two sets of experiments are conducted.

The first focuses on gauging the trustworthiness properties of

AI components of applications, whereas the second focuses on

analyzing the capacity of the system to monitor applications

and handle workload of concurrent requests. In the following,

we provide a detail description of the experimental setup.

A. Monitoring performance.

We next evaluate how SPATIAL can gauge and monitor

the inference capabilities of AI. To do this, we analyze how

changes in AI models can be quantified and monitored over

time. Monitoring the inference process is important to identify

when models have been compromised. The first use case

focuses on analyzing sensor data to trigger medical emergency

support whereas, the second application depicts a network

activity classification system, where network data is poisoned

to disguise the classification model.

Fig. 5: SPATIAL concept overview.

Use case 1: Medical e-calling application: It is a mobile ap-

plication, part of an e-calling system, that uses accelerometer

data to detect the falling of an elderly person. As the falling

event is detected, the application triggers an emergency call

to request medical assistance.

Dataset and model: The UniMiB SHAR dataset [62] was

employed in training five different ML models, Logistic Re-

gression (LR), Random Forest (RF), Multilayer Perceptron

(MP), Deep Neural Network (DNN), and Decision Tree (DT).

The UniMiB dataset is a benchmark dataset for human activity

and fall detection comprising 11771 acceleration samples from

30 subjects, 9 classes representing activities of daily living

(ADL), and 8 classes representing falls.

Adversary model and assumptions: We assume a black-

box attacker model where the attacker has only access to

the training data but has no knowledge about the underlying

structure of the utilized model. Furthermore, we expect the

attacker to be capable of randomly poisoning the data up to

a poisoning rate of p. Thereby, we expect that the attacker

poisons the data by performing a random label-flipping attack.
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Setup and procedure: The label flipping attack is performed

systematically to different subsets of the dataset. Precisely, the

attack is executed at varying poisoning rates p of 0% (base-

line), 1%, 5%,10%, 20%, 30%, 40%, and 50%, respectively.

Baseline results without data poisoning are also collected for

reference purposes. Afterwards, the respective ML model (e.g.,

DNN, DT, RF, LR, or MLP) is trained on the poisoned training

data set and then evaluated with the retained clean test data

set based on the accuracy, precision, and recall evaluation

metrics. In addition, we explore the impact of the attack to the

model explainability. More specifically, we also calculate the

similarity of SHAP explanations of the DNN model for each

of the varying poisoning rates. To realize this, we determine

the five nearest neighbours regarding the Euclidean distance

for each fall instance in the retained clean test set. We then

measure the average distance of the corresponding SHAP

explanations. Finally, we average the average distances of

explanations, resulting in an average distance of explanations

of similar instances across the test set w.r.t. the class “fall”.

Use case 2: Network activity classification application:
The second use case is a network monitoring application that

examines IP and TCP/UDP data headers. The application is

able to identify the type of activity an online user is perform-

ing. Three common types of online activities are considered:

Web browsing, Web interactions and video streaming. Network

monitoring is important to design security policies, safeguard

user privacy and efficient dynamic allocation of resources,

particularly in 4G/5G networks.

Dataset and model: We setup a testbed to collect network

data of user activities using our application. Network data

depicts real online activities of users at [Annon. Vendor], a

network data monitoring provider. We rely on Wireshark to

create pcap files with a size of 2.15 GB that contain the

activities of users captured through the network traffic. Our

datasets comprise multiple network traces, linked to different

users. The network traffic traces contain essential information

such as the source and destination IP addresses, protocols, port

numbers, packet timestamps, packet size, to mention some. We

clean the dataset using standard methods and select relevant

features to identify the previous described activities. After

applying filtering methods, the final dataset consists of 382
labelled traces across three traffic classes: Web, Interactive,

and Video activities, with 304, 34, and 44 traces respectively.

The processed CSV files derived from this dataset are used

for the analysis and evaluation of our AI-based classification

model. Feature extraction reveals 21 features categorized into

five main categories: duration, protocol, uplink, downlink,

and speed. We employ various machine learning classifica-

tion algorithms, including Neural Networks (NN), LightGBM

(LGBM), and XGBoost.

Adversary model and assumptions: We assume a white-box

attack model, where the attacker has a complete knowledge

about the AI model structure. This type of attack depicts a

common situation where the AI models are hampered from

inside an organization. By injecting commonly used poisoning

and evasion attacks, the attacker’s objective is to compromise

the integrity of our models leading to a significant degradation

in the model’s accuracy. Fast Gradient Sign Method (FGSM)

is a technique used in adversarial ML to generate adversarial

examples by adding a small amount in the direction of

the gradient of the loss function with respect to the input.

Resilience of models against an evasion attack is quantified

based on impact and complexity metrics. Here, complexity

is measured by characterizing the processing power required

to generated evasion data points. Impact on the other hand,

it is measured by counting each successful misclassification

gained through those evasion data points. In parallel to this,

GAN-based poisoning attack is also performed and the goal

is to generate synthetic data that looks very similar to the real

data. Random swapping labels attack chooses randomly two

samples of the training dataset and swaps their labels. Target

label flipping attack flips the labels of some samples from one

class to the target class (e.g., Video class). Here, complexity

and impact are also estimated based on different observations.

Complexity is measured by quantifying the percentage of data

that is poisoned out of all the data used for training the

model. Similarly, impact is measured by using the drifts in any

performance metric of the model, e.g., accuracy, F1-score.

Setup and procedure: We generated 103 adversarial samples

from the 103 test data samples that were initially obtained.

After this, the white-box FGSM evasion attack is launched.

For GAN-based attack, we use CTGAN [63] for modelling

tabular data to generate 5000 synthetic samples. For other

poisoining attacks, such as label flipping and random swapping

labels attacks, the poisoning rates are 0% (baseline), 10%,

20%, 30%, 40%, 50%. Subsequently, the corresponding ML

models (e.g., NN, LightGBM and XGBoost) are retrained

using the manipulated training dataset and compared against

the baseline to identify performance degradation based on

accuracy, precision, and recall metrics.

B. Capacity-load performance

Experimental setup: To verify the performance and scalabil-

ity of SPATIAL, we deployed SPATIAL following the setup

shown in Figure 8(a). The system consists of six (6) different

machines, one acting as the integration/API gateway, and oth-

ers as back-end micro-services. The machine running the Kong

Gateway consists of 32 vCPUs and 64 GB of RAM running

Linux. The remaining machines host a specific service to

extract a metric. Micro-services include, a LIME micro-service

(4 vCPUs and 4 GB RAM); a SHAP micro-service (4 vCPUs

and 4 GB RAM), an Occlusion-sensitivity micro-service (4

vCPUs and 8 GB RAM), an impact resilience micro-service

(computing instance with NVIDIA A4000 GPU, Intel Xeon

2.10 GB CPU, and 128 GB RAM running Ubuntu 20.04),

and an AI pipeline micro-service that provides performance

indicators (8 vCPUs and 8 GB RAM)/. All micro-services are

accessible through the API gateway, and requests to micro-

services are specified by the clients. The system is deployed

in the computing infrastructure provided by LUMI.
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Tools and metrics: Once the system is deployed and running,

capacity-based testing is performed to evaluate the perfor-

mance of individual requests and concurrent requests, handled

by the system as its usage increases, depicting an in production

environment. To generate stress capacity load, we rely on

JMeter, deployed in a different machine, but running in the

same network as the SPATIAL deployment. JMeter is installed

in a Windows machine with an 11th Gen Intel(R) Core(TM)

i5-1135G7 @ 2.40GHz CPU and 16 GB RAM.

Experiment 1: We evaluate perturbations in the AI model

and derive the impact poisoning attacks have on resilience.

We also evaluate the analysis of SHAP and LIME values over

model predictions. In the configuration process for the JMeter

script, we create a test plan encompassing an ultimate thread

group with a thread count set to 100 to simulate concurrent

requests to the micro-services. To examine the performance of

specific micro-services, an HTTP request sampler was added,

specifying the server name, port, protocol, endpoint path.

Parameters or file uploads were configured as necessary. To

gauge response times, the Response Times Over Active threads

or the Summary Report listener was incorporated into the

test plan. These listeners provided detailed metrics, including

average response time, throughput, and error rate for each

micro-service.

Experiment 2: We next evaluate the performance of the

system when handling heavier load induced by image inputs.

In this case, when analyzing image-based samples, the analysis

of methods, such as LIME, SHAP and Occlussion sensitivity

increases. As a result, we analyze to what extent these services

impact the overall response time. Notice that configuration

presented in experiment 1 cannot be handled by these services

when considering input images. As a result, with this setup,

a different capacity load is generated. We select incremental

concurrent load from 5 to 25 requests. Requests are also set

to be sent to services with a ramp-up period of 1s in parallel.

VII. RESULTS

Monitoring results on use case 1: Prior to poisoning the

models, reference baselines of the models is established to

measure performance deviation. Our performance evaluation

indices, LR (73%), DNN (97%), RF (97%), DT (90%), and

MLP (97%), respectively. Moreover, our results indicate that

DNN, MLP and RF models are best suited for fall detection

when compared to others. It is also possible to observe from

the results that DNN, MLP, and RF are able to attain 97%

accuracy and precision in performing the binary classification

task but at slightly different recall rates, respectively. After

this, models are poisoned, Figure 6 shows the results. From

the figure, it is possible to observe that label flipping has a

significant impact on model performance, with most metrics

decreasing as the attack rate increased (Figure 6(a)-i shows

accuracy, 6(a)-ii shows precision and 6(a)-iii shows recall).

In line with this result, the average performance of all the

models in accurately detecting falls before the data poisoning

attack was 90%. However, this average performance starts

Fig. 6: Use case 1 results (Medical application); Effect of label

flipping based on (i) accuracy, (ii) precision, (iii) recall; and

(iv) poisoning quantification using SHAP dissimilarity

to decline down to 75% as the data is gradually poisoned

from 1% to 50%. We calculated a metric based on SHAP

values which addresses the similarity of SHAP explanations of

similar data points. Figure 6(a)-iv illustrates the results of this

metric relative to the poisoning rate of the model. As can be

seen from this figure, the metric is higher at higher poisoning

rates, suggesting its capability of indicating poisoning of the

data set. This result alone provides insights for detecting

possible attacks on the model, requiring to monitor further

the model to apply corrective actions, e.g., Label sanitization

methods. Besides this, analysis of the result indicated that

the high-performing models (DNN, MLP, and RF) showed

relatively small performance losses at low attack rates (1%

and 5%), indicating some degree of robustness in maintaining

their capabilities to detect fall up to 5% poisoning rate, but

this is lost when the intensity exceeded 5%. Interestingly, the

random forest (RF) model showed better resilience against

the poisoning attack. Even at a 30% poisoning rate, the RF

model maintained an accuracy of 93%, close to its baseline

performance. Only at a poisoning rate of 40% did a significant

performance decrease occur, rendering the model unusable.

The RF recall and precision metrics were also relatively stable,

up to a 30% poisoning rate, further highlighting its robustness.

Monitoring results on use case 2: A reference baseline about

the performance of our models for user activity classification

is estimated to be NN (96%), LightGBM (94%) and XGBoost

(94%). After this, the (FGSM) evasion attack is performed

over the models, degrading their performance to NN (71%),

LightGBM (72%) and XGBoost (54%). We then use SHAP to

observe differences as models get hampered. Figure 7(a) and

(b) shows the results of SHAP when applied to NN, before

and after the evasion attack. From the result, it is possible to

observe that shapley values for web activities have decreased

around 16% for the udp protocol, causing the feature to drop

to the second place in ranking, while the importance of the

tcp protocol has almost doubled. This means that attacks on

the model can easily induce misclassification of user activities.
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At the same time, it is possible to detect these changes with

SHAP, however, the detection alone is insufficient to identify

concrete causes nor overall performance degradation of the

model, requiring additional information to be computed. Thus,

complexity and impact metrics are calculated from the models

using the methods presented in [64].

For each model, impact and complexity are estimated, NN

(Impact 29%, Complexity 37.86 μs), LightGBM (Impact 28%,

Complexity 37.86 μs) and XGBoost (Impact 45%, Complexity

37.86 μs). The results of the metrics indicate that XGBoost is

(17%) more vulnerable for the FGSM attack when compared

with the other two models. Moreover, since the FGSM gener-

ation was done with only the NN model, the complexity of the

attack was always constant at around 37 μs. In parallel to this,

in the case of poisoning attacks, SHAP can provide valuable

insights to detect changes in performance. For instance, after

label flipping and GAN-based poisoning are performed in

our models, it is possible to observe shapley values for

web activities have also changed significantly (tcp protocol

increases by 10% while udp protocol decreased to half of it’s

initial importance). To reinforce this detection further, we then

calculate impact and complexity metrics to analyze further

the impact of poisoning in our NN model. Figure 7 shows

the results estimated by impact and complexity metrics. From

the results, we can observe how metrics changed based on

the level of poisoning applied. We can observe that there is

an increasing relative trend between increased poisoning and

drift in impact and complexity.

Capacity-load results: Experiment 1 results are shown in

Figure 8(b) and Figure 8(c). The figures show capacity results

when handling concurrent requests by the impact resilience

micro-service and LIME/SHAP micro-services, respectively.

From the results, it is possible to observe a lower response

time for the evasion impact metric. Even with nearly 100

parallel requests, the numerical metric converges to an average

of around 1600ms across the ramp-up time. Similarly, SHAP’s

and LIME’s APIs under 100 requests are also presented in Fig-

ure 8(b). From this result, it possible to observe that SHAP’s

and LIME’s explanations require an average processing times

of 228.6 and 243.4 milliseconds, respectively. In both cases,

the response times depict latencies that are tolerable by end-

users and also can be used for continious monitoring. Notice

however that XAI methods can also be used to analyze images,

such that it is possible to obtain a representation regarding

which parts of the images the model used to learn. Thus,

we also evaluate LIME to handle resource intensive workload

(Experiment 2). Figure 8(d) shows the results of experiment 2.

From the figure, it is possible to observe that LIME methods

require considerable amount for computation. As a result,

when facing resource intensive processing, XAI are not able

to handle concurrent workload below 1s. In fact, we can

observe a steady increase in response time that depends on

the number of concurrent users accessing the service. This has

direct implications in the types of models/datasets that can be

analyzed with available XAI methods.

VIII. CHALLENGES OUTLOOK AND EXPERIENCES

While all regulatory frameworks agree on the strategic im-

portance of AI trustworthiness, the development of trustworthy

AI is an on-going process. While principles, tools, guidelines

and methods are available to aid in this matter, there is still

a gap between regulations and technical requirements. Thus,

there are several challenges that remain open for augment-

ing modern applications with AI trustworthiness capabilities.

Based on our experiences, we next highlight technical chal-

lenges that require further attention for complying robustly

with the trustworthy AI requirements.

AI trust score and AI sensors: AI trustworthiness involves

the characterization of several properties [12], including tech-

nical (e.g., validity, accuracy, reliability, robustness, resilience,

or security) as well as the socio-technical characteristics (ex-

plainability, interpretability, managing bias, privacy enhanced,

safety). Each property can be obtained through specialized

metrics, based on the nature of the area of application at hand.

For instance, in a loan application, fairness can be applied to

identify data biases in individual or specific groups (equitable),

whereas fairness can be also calculated to estimate whether the

decision process was fair to all the involved loaners (procedu-

ral). Similarly, in a object detection application, explainability

can be generated using occlusion sensitivity to identify the

most relevant area on an image contributing with the object de-

tection. In turn, LIME divides the image into multiple section

areas and ranks each accordingly to measure their contribution

to the overall model prediction. Encapsulating all different

properties into AI sensors is a key challenge to foster the easy

integration of trustworthiness in current software development

practices. AI sensors can provide general procedures and

guidelines to instrument applications with trustworthy mech-

anisms. Another important challenge is to produce a coherent

and comparable trust score from measurements obtained by

AI sensors, such that trustworthiness can be understood as

an overall feature of applications. While the development

of a trust score has been explored by previous work [65],

these solutions simplify the extraction of trustworthiness by

considering all homogeneous properties and not considering

its different inherent characteristics.

Human oversight and AI tuning: As part of the EU AI Act,

humans play a critical role in overseeing the behavior of AI.

AI dashboards can provide critical information about the AI

inference capabilities to stakeholders. For example, level of

fairness, robustness and resilience to mention some. Through

the dashboard inspection, individuals relying on AI models

can be aware about the limitations and scope of the decision

support provided by AI models. Ultimately, dashboards can

support humans to decide whether or not to use AI for aiding

with a particular task. Moreover, as the trustworthy properties

are considered trade-offs that can be adjusted depending on the

requirements of different stakeholders using the applications,
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(a) SHAP XAI for benign data (b) SHAP XAI for evasion attack data (c) Impact vs Poison percent (d) Complexity vs Poison percent

Fig. 7: Use case 2 results (Network activity monitoring); SHAP analysis for evasion attacks; a) Benign (NN) model, b) Attacked

(NN) model; Poisoning attacks quantified by Impact and complexity metrics; c) Impact vs Poison%, d) Complexity vs Poison%.

(a) System deployment (b) (c) (d)

Fig. 8: Capacity-load experiments, a) System deployment; b) Load in impact metric; c) Load in LIME and SHAP; and c) Load

in LIME when handling requests requiring heavy computations.

it then becomes critical to tune these properties over time.

Existing methods can be used to perform hyperparametrization

on the way an AI algorithm learns and thus adjusting its

resulting decision process [16]. As the tuning of models is

an iterative process that involves a reinforced human-in-the-

loop feedback rather than a single shot, a key challenge is to

integrate such process in the construction of AI models. To

obtain significant feedback from stakeholders, it is important

that explanations describing the overall trustworthiness of a

model are tied to specific domain terminology of stakeholders,

e.g., tailored explanations for end users and software devel-

opers. An extra layer of transformation is thus required to

map understandable insights of a model to a specific target

audience. A potential solution is to rely on large language

models (ChatGPT-like preamble) or a meta-model that change

dynamically the explanations to a specific domain audience.

Besides this, another key challenge is to determine what

changes can be applied on the model by individuals. For

instance, removing personal data from the training dataset or

changing the machine learning algorithm. This is a critical

challenge to overcome as AI models have to support individual

needs of users, while preserving general values from groups

and society. Otherwise, conflicts on AI usage may arise,

halting everyday activities and human processes. Another

remaining challenge is to develop AI dashboards that motivate

users to be involved in the AI tuning process [66].

Adversarial threats over AI algorithms and data: As

demonstrated in our experiments, the decision process of AI

models can be changed abruptly. Induced changes (aka attacks)

are of particular interest as proactive counter measurements

have to be taken rapidly by human operators, otherwise, com-

promised applications can become source of harm for citizens

and urban infrastructure, e.g., attacks on drone delivery [23].

Other examples of this include adversarial generative patches

that confuse AI models and poisoned data that can make

devices drain energy at faster rates, e.g., sponge attacks in

IoT devices. As there is a large plethora of attacks that can

hamper AI functionality, a key challenge is to quantify the

level of the AI resilience to attacks by applying multiple

detection methods and suggesting those counter measurements

to human operators. Naturally, the level of resilience depends

on the available methods that attest whether model/data has

been compromised. Besides this, while some post defacto

verification methods could be applied to detect attacks over

AI functionality, other methods require re-playing the overall

training process, involving a more time consuming analysis.

Privacy-preserving data and computations: Data is a key

element in the machine and deep learning pipelines, building

AI models. Regulatory guidelines in the use of data, e.g.,

EU GDPR, forbid the inclusion of private and sensitive data

that can be used to identify specific individuals. Thus, data

is required to be obfuscated before it can be used within

the AI pipelines. Existing solutions to aid in this matter in-

clude differential privacy and data anonymity techniques [67].

However, data removal degrades the decision making process

performance, requiring new methods to obfuscate sensitive
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information without reducing model performance levels, e.g.,

sparse coding and compressive sensing compensation models.

At the same time, since direct access to model and data are

required to estimate different trustworthy properties, a key

challenge is to guarantee that the analysis of these properties

is conducted in a secure manner to avoid potential induced

attacks over AI. Existing methods based on multi-party com-

putation, homomorphic encryption and TEEs (Trusted Execu-

tion Environments) could be adopted in this matter. Integrating

these mechanisms within the architectures, however, require

managing extra computation overhead in the analysis as well

as to solve several technological limitations to achieve scalable

solutions. For instance, while TEEs are currently available

to aid in secure computation, they have several limitations

regarding the specific characteristics in software runtime exe-

cution, e.g., programming language, dependencies, and storage

to mention the most common.

IX. IMPLICATIONS

Room for improvement: Our work presents SPATIAL, a

proof-of-concept system that can be used to augment mod-

ern system architectures with capabilities for analyzing the

trustworthiness of AI functionality. Currently, our results focus

on analyzing the performance of SPATIAL when quantifying

and monitoring trustworthy properties over time. Our current

back-end functionality just support the analysis of certain

trustworthy properties. This is because the analysis of trust-

worthiness is application dependent, requiring specific metrics

based on the type of application that is analyzed [59], [65].

As a result, our SPATIAL prototype is equipped only with the

metrics required to analyze our use case applications. We are

interesting in analyzing other type of applications, which inci-

dentally will also introduce new trustworthy metrics running

as micro-services is our solution. Besides this, currently our

front-end provides a basic AI dashboard to visualize the results

quantified through SPATIAL. Future implementations of the

AI dashboard will allow stakeholders to perform active tuning

over AI models [14]. We are also interested on evaluating the

perception of different stakeholders when tuning AI models

through the dashboard provided by SPATIAL. Furthermore,

we aim to integrate SPATIAL with Large Language Models

(LLMs) to enable customizable explanations based on the type

of stakeholder interacting through the AI dashboard.

Legal vs technical trustworthiness: Our work presents the

design and development experiences from augmenting mod-

ern applications with capabilities to gauge and monitor AI

trustworthiness. The selected metrics of our prototype are

considered from a technical point of view based on the most

common methods currently adopted to analyze AI black-box

characteristics. We are interested on replacing our metrics with

others that align better with regulatory trustworthiness. This

however requires to conduct a legal analysis that considers all

metrics available in the state-of-the-art to identify the most

suitable. This analysis out of the scope of this work.

Cost and complexity: SPATIAL not just augments modern

applications with new regulatory functionality, but it also aug-

ments the amount of components and enlarges the underlying

deployment of the overall system running the applications.

This increases the complexity of developing and maintaining

the applications. Moreover, the cost of the deployment also

increases as it is not possible to piggyback already existing

infrastructure due to increased load required for computation.

Indeed, as shown in our experiments, methods such as XAI

can induce heavy load in the overall system, requiring instead

to be deployed in their own dedicated machine.

Adaptive trustworthiness: In our work, we present the en-

capsulation of trustworthy properties into AI sensors. More

advanced AI sensors are envisioned to provide adaptive trust-

worthiness [14]. As these properties can be considered trade-

offs [59], it is possible to establish interactions and negoti-

ations between AI sensors to obtain a balance level of trust

(similar to AI-Chatbot negotiations). Achieving this level of

automation however requires to develop further autonomy in

AI sensors.

Other technological enablers for trustworthy AI: While

blockchain-based solutions have been proposed to achieve

trustworthy AI [68], it’s important to note that while

blockchain can enhance security and provide better track-

ing of operations, it does not address all the characteristics

necessary for developing trustworthy software. Additionally,

several technological enablers are currently available to aid in

realizing the vision of trustworthy AI. However, the choice of

a specific technology ultimately depends on factors such as

its rate of development, level of maturity, and its ability to

comply with regulatory requirements.

Development trustworthiness practices: Current practices

to analyze trustworthiness of AI inference capabilities rely

on post-defacto verification of the models. The use of AI

sensors can be foster the embedding of mechanisms to gauge

and monitor AI trustworthy properties from early development

and design phases (Verifying vs Embedding). This however

requires /standard procedures on how to create AI sensors

(like APIs) that encapsulate each trustworthiness property.

Moreover, guidelines and best practices on how to instrument

modern applications with AI sensors are also required to

facilitate their adoption in software development practices.

Towards standardization: While the development of a trust

score for applications have been investigated [65], it is difficult

to adopt it in practice. Trustworthy properties can be consid-

ered as trade-offs, and analyzing the whole trustworthiness of

an applications is not an agnostic process, instead it depends

on the characteristics of the application at hand. The existence

of this score as a standard would be useful to developers and

software architectures, such that it is possible to be aware

of the expected trustworthiness required before deploying an

application in a production environment. Our work provides

insights on the effort required to augment modern applications

with capabilities to gauge and monitor AI trustworthiness.
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X. SUMMARY AND CONCLUSIONS

In this paper, we presented the SPATIAL architecture, a

proof-of-concept system that augments modern applications

with capabilities to analyze trustworthy aspects of AI models.

SPATIAL diagnoses AI functionality by combining different

methods that characterize and quantify the inference process of

AI. Through rigorous benchmarks and analyses that consider

two real-world industrial applications, our results suggests that

SPATIAL can provide relevant insights about AI models, but

this analysis is time-consuming and very resource intensive,

making it unsuitable for critical applications. We also highlight

a roadmap of requirements and challenges that need to be

overcome, such that current issues that were found can be

addressed. Our work paves the way towards augmenting

modern applications with trustworthy AI mechanisms.

ACKNOWLEDGMENT

This research is part of SPATIAL project that has received

funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No.101021808.

We thank SPATIAL researchers and our collaborators who par-

ticipated in general discussions around the topic, Cornelis van

de Kamp, Souneil Park, Anouk Mols, Danitsja van Heusden-

van Winden, Jose Gonzalez, Siike Lampson, Jennifer Albright,

Martijn Janssen, Martijn Warnier, Huu-Nghia Nguyen, Wissam

Mallouli, Jorge Campos, Roel Dobbe, Iris van der Wel, Giulia

Pastor, Christopher Vervoort, Laura Bruun, Tim Orchard, Faye

Carr, Sabastian Mateiescu, Ville Valtonen, Selma Toktas. We

also want to thank our steering committee for providing

valuable critics on our work: Jon Crowcroft, Stefan Schmid,

Michael Zimmer, and Eve Schooler. We thank the EU Project

Officer and the respective EU reviewers.

REFERENCES

[1] Statista, Artificial intelligence (AI) market size worldwide in 2021 with a
forecast until 2030, Accessed Dec 31, 2023. [Online]. Available: https://
www.statista.com/study/38609/artificial-intelligence-ai-statista-dossier/

[2] T. M. Brill, L. Munoz, and R. J. Miller, “Siri, alexa, and other digital
assistants: a study of customer satisfaction with artificial intelligence
applications,” in The Role of Smart Technologies in Decision Making.
Routledge, 2022, pp. 35–70.

[3] L. Qiu and I. Benbasat, “Evaluating anthropomorphic product recom-
mendation agents: A social relationship perspective to designing infor-
mation systems,” Journal of management information systems, vol. 25,
no. 4, pp. 145–182, 2009.

[4] E. Frachtenberg, “Practical drone delivery,” Computer, vol. 52, no. 12,
pp. 53–57, 2019.

[5] H. Flores, “Opportunistic multi-drone networks: Filling the spatiotem-
poral holes of collaborative and distributed applications,” IEEE Internet
of Things Magazine, vol. 7, no. 2, pp. 94–100, 2024.

[6] A. L. Fogel and J. C. Kvedar, “Artificial intelligence powers digital
medicine,” NPJ digital medicine, vol. 1, no. 1, p. 5, 2018.

[7] A. Adadi and M. Berrada, “Peeking inside the black-box: a survey on
explainable artificial intelligence (xai),” IEEE access, vol. 6, pp. 52 138–
52 160, 2018.

[8] F. of life, Pause Giant AI Experiments: An Open Letter, Accessed Dec
31, 2023. [Online]. Available: https://futureoflife.org/open-letter/pause-
giant-ai-experiments/

[9] A. Asatiani, P. Malo, P. R. Nagbøl, E. Penttinen, T. Rinta-Kahila, and
A. Salovaara, “Challenges of explaining the behavior of black-box ai
systems,” MIS Quarterly Executive, vol. 19, no. 4, pp. 259–278, 2020.

[10] Cio.gov - executive order (eo) 13960. [Online].
Available: https://www.cio.gov/policies-and-priorities/Executive-Order-
13960-AI-Use-Case-Inventories-Reference

[11] C. A. of China, Interim Measures for the Management of Generative
Artificial Intelligence Services, Accessed March 1, 2024. [Online]. Avail-
able: http://www.cac.gov.cn/2023-07/13/c 1690898327029107.htm

[12] B. Li, P. Qi, B. Liu, S. Di, J. Liu, J. Pei, J. Yi, and B. Zhou, “Trustworthy
ai: From principles to practices,” ACM Computing Surveys, vol. 55,
no. 9, pp. 1–46, 2023.

[13] K. Gade, S. C. Geyik, K. Kenthapadi, V. Mithal, and A. Taly, “Ex-
plainable ai in industry,” in Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining, 2019,
pp. 3203–3204.

[14] H. Flores, “Ai sensors and dashboards,” IEEE Computer Magazine,
2024.

[15] A. D’Amour, H. Srinivasan, J. Atwood, P. Baljekar, D. Sculley, and
Y. Halpern, “Fairness is not static: deeper understanding of long term
fairness via simulation studies,” in Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency, 2020, pp. 525–534.

[16] J. M. Wing, “Trustworthy ai,” Communications of the ACM, vol. 64,
no. 10, pp. 64–71, 2021.

[17] M. D. Scientists. (2023) Shapash. [Online]. Available: ,https:
//github.com/MAIF/shapash

[18] V. Arya, R. K. Bellamy, P.-Y. Chen, A. Dhurandhar, M. Hind, S. C.
Hoffman, S. Houde, Q. V. Liao, R. Luss, A. Mojsilović et al., “Ai
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