
© Association for European Transport and contributors 2010

STAQ: STATIC TRAFFIC ASSIGNMENT WITH QUEUING

Luuk Brederode
Goudappel Coffeng BV, The Netherlands

Michiel Bliemer
Goudappel Coffeng BV & Delft University of Technology, The Netherlands

Luc Wismans
Goudappel Coffeng BV & University of Twente, The Netherlands

ABSTRACT

Because of computation time issues on large networks, most strategic
regional and urban transport models today use static instead of dynamic traffic
assignment procedures. Mathematical models of traffic assignment are
usually based upon Wardrop’s principle. To solve this static traffic equilibrium
problem almost all applied static assignment models follow Beckmann who
formulated it as a convex optimization problem containing a link travel time
function (Beckmann 1956). This function has the form of a polynomial whose
degree and coefficients are specified from statistical analysis of real data. The
best known polynomial is the BPR function (US bureau of Public Roads,
1964). Although widely used, traffic assignment models based on Beckmann’s
formulation have several drawbacks. Firstly, these models penalize but not
explicitly constrain link flows to their respective link capacities. This can result
in a solution where traffic flows exceed link capacities. Secondly, models
derived from Beckmann’s formulation do not account for queuing and
spillback on the network as a result of high demand, resulting in poor travel
times and route choice on congested networks. Related drawbacks are that
congestion is modelled downstream instead of upstream from the bottleneck
and that upstream bottlenecks do not influence downstream traffic demand.
These drawbacks not only yield incorrect link flows and travel times, they also
prevent proper network and matrix calibration using traffic counts on
congested links. Given the ever increasing levels of structural congestion,
these drawbacks will only become more relevant in the future.

In order to overcome the drawbacks of Beckmann’s formulation of the static
traffic equilibrium problem, models that explicitly constrain link flows to their
respective capacities have been proposed, both in literature (e.g. Marcotte et
al (2003), De Palma and Nesterov (2000), Larsson and Patriksson (1999),
Bifulco and Chrisali (1998)), and practice (e.g. Bundschuh et al (2006), 4Cast
(2009)). All these models cope with queuing thereby producing more accurate
travel times and placing congestion upstream from the bottleneck. However,
these models still have drawbacks, such as using heuristic or approximate
traffic delay rules and/or lack spillback-effects.

Given these drawbacks and the ever increasing levels of structural
congestion, there is a great need for a static traffic assignment model which
can be applied on both regional and urban regions, taking both queuing as
well as spillback into account. Instead of improving existing traffic assignment
models, we propose to start with a dynamic assignment model and construct

© Association for European Transport and contributors 2010

the special case of a static traffic assignment model. This leads to STAQ
(Static Traffic Assignment with Queuing), a specific case of the link
transmission model (Yperman 2007), with the added assumptions that there is
only one time period in which there is a stationary travel demand. While the
iterative (equilibrium) route choice model is the same as existing methods
(e.g., solving the deterministic or stochastic equilibrium problem with MSA or
Frank-Wolfe), STAQ replaces the traffic flow and travel time computations
(basically the static equivalent of dynamic traffic propagation) and is event-
based. STAQ exhibits many favourable properties of dynamic models (such
as horizontal dynamic queuing, shockwaves, spillback, using the complete
fundamental diagram) but simplified such that it is suitable for strategic
planning studies on large scale networks.

In this paper the concept of STAQ is explained and discussed, as well as
some case studies on some smaller hypothetical networks and a real life
network.

© Association for European Transport and contributors 2010

1. INTRODUCTION

Because of computation time issues on large networks, most strategic
regional and urban transport models today use static instead of dynamic traffic
assignment procedures. These models however, cannot cope with blocking
back and spillback of traffic. These drawbacks becomes have become more
important over the years given the use of transport models. Driven by e.g.
cost-benefit analysis and spatial accessibility studies, their field of use has
shifted from solely forecasting traffic volumes on networks with relatively little
detail towards forecasting both traffic volumes as well as travel times on
networks with much more detail. This ‘abuse’ of static assignment models has
lead to poor results and (legitimate) doubt about the use and even right of
existence of transport models as a whole. Therefore, in this paper we propose
a new method which combines the advantages of static (its speed and
scalability) and dynamic (its realistic flow propagation accurate travel times)
assignment models. This new static traffic assignment model with queuing
follows traffic flow theory and is based on realistic fundamental diagrams

2. STATIC TRAFFIC ASSIGNMENT

In this section, first the traditional static traffic assignment model is described.
Then the extension to include capacity constraints is described and several
solution approaches proposed in literature are discussed. Since these
traditional (extended) static traffic assignment models do not produce very
realistic traffic flows, other approaches have been proposed, which will be
briefly discussed. These more realistic approaches make it possible to model
queues and spillback, but still have several drawbacks. Then the new static
traffic assignment model with queuing is introduced. Finally, a comparison
between the different approaches is illustrated in a small example.

2.1 Traditional static traffic assignment without capacity constraints

Consider a transportation network (,),G N A consisting of nodes N and links

.A Denote the set of origin nodes by R N and the set of destination nodes
by .S N Let rsP denote the set of paths from origin r R to destination

.s S Furthermore, let rsD be the given travel demand from origin r to
destination .s Then the set of feasible link flows, ,Q can be defined by the

following constraints:

, (,),rs rs

p

p

f D r s  (1)

(,)

, ,rs rs

a ap p

r s p

q f a  (2)

0, (,), ,rs

pf r s p   (3)

where rs

pf is the path flow on path rsp P from r to ,s aq is the link flow on
link ,a A and rs

ap is a route-link incidence indicator that equals one if link a

© Association for European Transport and contributors 2010

is on path p from r to ,s and equals zero otherwise. Equation (1) is a flow
conservation constraint that indicates that the travel demand should be
satisfied. Equation (2) is a definitional constraint that states that the link flows
are composed of all the path flows that go through that link. Finally, inequality
(3) is a nonnegativity constraint, ensuring that all flows are nonnegative.

All link flows q Q are feasible, but we are interested in finding a user
equilibrium solution that satisfies Wardrop’s equilibrium law (Wardrop, 1952).
Wardrop’s first principle states that for each origin-destination (OD) pair, all
used paths have equal travel time, and there exist no unused paths with a
lower travel time. In other words, if 0,rs

pf  the path travel time rs

p is equal to
the minimum over all available paths in .rsP If 0,rs

pf  the path travel time
may be larger than this minimum. Let F be the set of feasible path flows that
satisfy constraints (1) and (3). It can be shown (see e.g., Nagurney, 1993) that
the solution to the following variational inequality (VI) problem describes a
Wardrop user equilibrium. The VI problem is to find path flows f F such
that

 
(,)

() 0, ,rs rs rs

p p p

r s p

f f f f F     (4)

where the path travel times are defined as ,rs rs

p ap aa
   and where F is the

set of feasible path flows that satisfy constraints (1) and (3). Using the
definition of the path travel time and constraints (2), we can rewrite this path-
based VI problem into a link-based VI problem:

   

 

 

(,) (,)

(,)

() ()

()

()

rs rs rs rs rs rs

p p p ap a p p

r s p r s p a

rs rs rs

a ap p p

a r s p

a a a

a

f f f q f f

q f f

q q q

  

 



  

 

 

 

 



 (5)

Hence, in the link-based VI problem we would like to find link flows q Q
such that

 () 0, .a a a

a

q q q q Q     (6)

Since a VI problem of finding an x X for which () () 0, ,Tg x x x x X    can
be rewritten as an equivalent optimization problem of the form min (),x X h x
with () ()xg x h x  (under the condition that ()x g x is a symmetric matrix), VI
problem (6) can be rewritten as the following optimization problem:

0

min () .
aq

a
q Q

a

d


  




  (7)

© Association for European Transport and contributors 2010

This optimization problem corresponds to the well-known formulation by
Beckmann et al. (1956), where each link travel time only depends on the flow
on that link. In other words, the travel time functions are assumed to be
separable. If these travel time functions are also continuous and non-
decreasing, the optimization problem is convex and has a solution. If the
functions are strictly increasing, the solution is unique (Smith, 1979). In
practice, the Bureau of Public Roads (BPR) travel time functions are often
used,

0() 1 ,

a

a
a a a a

a

q
q

C



  
  
    
   

 (8)

where aC is the capacity of link ,a 0

a is the free-flow travel time, and a and

a are some given link parameters.

Several algorithms have been developed to solve problem (7), of which the
Frank-Wolfe algorithm is the most well-known, which iteratively solves a
shortest path problem to determine the steepest descent and calculates an
optimized step size. An often used heuristic is the method of successive
averages in which the stepsize is equal to 1/n where n equals the number of
iterations.

Since the link travel time merely increases when the link flow exceeds
capacity, capacity is not included as a hard constraint but as a soft constraint.
One can therefore not prevent the link flow to exceed the link capacity.
Daganzo (1977a,b) proposed to use a travel time function with an asymptote
near the capacity, which aims to prevent the link flow from exceeding the
capacity, but cannot guarantee this. Unrealistically high travel times and
numerical issues in solving the problem make this choice of travel time
function not very popular. Therefore, in the next section we will look at traffic
assignment problems with explicit (hard) capacity constraints.

2.2 Traditional static traffic assignment with capacity constraints

Beckmann et al.’s original formulation does not take any explicit link capacity
constraints into account. All path flows are assumed to be able to pass
through each link, such that the link flows can be determined by a simple

mapping from the path flows, given by Equation (2).

In order to take into account that each link a has a limited capacity, the
following straightforward constraints can be added that defines the set of
feasible link flows, ,Q

, .a aq C a  (9)

This results in a so-called capacity constrained or extended Beckmann
formulation. Although adding these constraints to the problem is easy, solving

© Association for European Transport and contributors 2010

the problem becomes much more tedious, as instead of iteratively solving a
shortest path problem, now a multi-commodity minimum cost flow problem
needs to be solved (Nie et al., 2004).

The capacitated problem can be solved by a sequence of uncapacitated
problems using either an exterior penalty function (also called the augmented
Lagrangean method), or by means of interior penalty functions.

To reveal the concept of external penalty functions, the extended Beckmann
problem can be rewritten in terms of Karush-Kuhn-Tucker (KKT) conditions, in
which Lagrange multipliers are associated with the constraints. Suppose that

a is the Lagrange multiplier associated with capacity constraints (8). Solving
the KKT conditions yields a solution in which 0a  if ,a aq C and 0a  if

a aq C (i.e., the constraint is binding). The Lagrange multiplier is therefore
often interpreted as the extra cost or delay on link a on top of the link travel
time ,a see Yang and Yagar (1994, 1995) and Larsson and Patriksson
(1995).

Interior penalty functions try to approximate the constrained traffic assignment
problem by adding a penalty term to the objective function of the
unconstrained problem, see Nie et al. (2004) and Prashker and Toledo
(2004). Shahpar et al. (2008) describe a new solution method in which the
side constraints are taken into consideration by implicitly adding a penalty
function to the link travel times, which they call the dynamic penalty function
method. In several tests they show that this new method achieves faster
convergence to a solution than the augmented Lagrangean method or the
inner penalty function approach.

Although adding the capacity constraints seems natural, it is not consistent
with the link travel time functions (),a aq such that ‘tricks’ with Lagrange
multipliers or interior penalty functions are needed. The main problem is that
such travel time functions are not suitable for describing the link flows and link
travel times consistently. For example, link travel times depend on the flows
on downstream links, as they could block the flow, hence separable travel
time functions are not valid. Also note that none of these traditional
approaches to capacity constrained assignment result in actual queues.
Determining link travel time functions that realistically describe congestion is
an almost impossible task. Therefore, other problem descriptions should be
developed that avoid the usage of such functions, as will be described in the

next section.

© Association for European Transport and contributors 2010

2.3 More realistic static traffic assignment with capacity constraints

In dynamic traffic assignment it has been argued that models using link travel
time (performance) functions, see e.g. Janson (1991), Ran and Boyce (1996),
Chen and Hsueh (1998), and Bliemer and Bovy (2000), cannot realistically
describe the traffic dynamics, such as queuing and spillback. Instead, flow
propagation models that explicitly follow the traffic flow theory, with
fundamental diagrams as input, have been successfully employed in
simulation-based assignment, see e.g. the cell transmission model (Daganzo,
1994) or the link transmission model (Yperman, 2007). The first dynamic
traffic assignment models were basically dynamic extensions of the static
assignment problem, in which the link travel time functions became functions
of the link inflows or volumes at a certain time instant. Here we will describe
some static traffic assignment models that have been proposed in the

literature that aim to take more realistic queuing into account. All these
approaches solve iteratively a shortest path problem to determine the user
equilibrium which is the same as the traditional approaches do. These
approaches however, differ in the way traffic is loaded on the network and/or
travel times are determined.

Bifulco and Crisalli (1998) determine iteratively the number of vehicles on a
link that can proceed to the next link on their path by checking the
corresponding link capacities. This means that not all traffic will be able to
reach its destination in the time interval considered. Spillback is not taken into
account.

Nesterov (2000), and Nesterov and De Palma (2000a,b, 2001) assume lower
bounds on the travel time (free-flow travel time) and upper bounds on the flow
(link capacity) instead of using link travel time functions. They search for
stable traffic equilibria in which the fundamental relationship between flow,
speed, and density holds. Queues longer than the link length are assumed not
to occur; hence spillback is again not taken into account.

Bundschuh et al. (2006) developed an operation model that they term quasi-
dynamic, as it takes capacity constraints and spillback into account, however,
at a much smaller computational complexity. In order to determine travel
times, they use incremental loading of the network, in which iteratively a
fraction of the travel demand is put on the network, say increases of 5%. The
flow is propagated over the consecutive links of a path until the capacity of a
link is reached. The extra flow on that link will be stored in the queue, and
blocked back to upstream links if the queue exceeds the storage capacity of
the link. Link travel times are determined afterwards by taking the free-flow
travel time and adding delays that refer to the time it takes for the queues to
disappear.

4Cast (2009) has developed an operational model called QBLOK, which they
also termed quasi-dynamic. The calculation of travel time in this model is done
using a heuristic that ensures that link capacities are not exceeded, and
queues appear upstream of bottleneck links. Queues longer than the link

© Association for European Transport and contributors 2010

length can occur, taking blocking back into account. Since this procedure is a
heuristic, it may produce unrealistic travel times and route choices. Also, the
actual link flows that QBLOK produces can be greater than link capacities
because these are calculated using a classical static assignment procedure
based on the travel times produced by the QBLOK heuristic.

In all of the above approaches, the link and path travel times are not explicit
functions, but are derived implicitly from the queues that form.

2.4 Newly proposed static traffic assignment with capacity constraints

In this paper we propose a static traffic assignment model in which capacity
constraints, spillback, and even shockwaves are explicitly taken into account.

This model can be seen as a static version of the link transmission model
(Yperman 2007), in which a single time period is assumed with a stationary
traffic demand. It somewhat resembles the models proposed by Bundschuh et
al. (2006) and 4Cast (2009), and can therefore also be called quasi-dynamic.
In contrast to Bundschuh et al. (2006) and 4Cast (2009), we use traffic flow
theory and realistic fundamental diagrams to come to a more rigorous
problem formulation. More realistic queuing, including shockwaves, is taken
into account. Heuristics are avoided by computing an exact solution. The
model proposed in this paper will be referred to as STAQ: Static Traffic
Assignment with Queuing. Similar to the above mentioned approaches, link
and path travel times are computed implicitly after determining the flows and
the queues. The path travel times are used in an iterative route choice
scheme in order to solve VI problem (4), where the feasible flows F obey
traffic flow theory and the fundamental diagrams.

2.5 Comparison of approaches

To illustrate the differences in the link flows and speeds between the
approaches discussed above, consider the simple corridor network in Figure
1. The path consists of seven links with varying link capacities, ranging from a
one lane to a four lane motorway segment. The flow (veh/h) through this
corridor is assumed to be somewhat larger than the capacity (veh/h) of a two
lane segment. In real life, this would result in a queue building up upstream of
the second link and upstream of the sixth link. The link flows and the

corresponding speeds (indicated by the colour of the flow, see Figure 2 in the
appendix for an explanation of the colours) for the original Beckmann
approach, the extended Beckmann approach, the approach by Bifulco and
Crisalli, the approach by Bundschuh et al., and our newly proposed approach,
are indicated in the figure. Note that any delay penalties have been
incorporated in the link speed colours.

The original Beckmann formulation without capacity constraints clearly does
not restrict the link flow to the link capacity, such that unrealistic flows appear.

© Association for European Transport and contributors 2010

Low speeds (corresponding to high travel times) are predicted in the
bottleneck links.

The extended Beckmann model with capacity constraints ensures that no link
flows exceed the link capacity. However, the result is too restrictive, as the
whole path flow is now restricted to the most critical link capacity, while the
flow through the first five links only needs to be restricted to the two lane
capacity. A (delay) penalty is put on the most restrictive bottleneck link.

Bifulco and Crisalli achieve a more realistic traffic flow pattern after putting the
entire travel demand on the path. Since they assume that the capacity
restricts the outflow capacity of a link and not the inflow capacity, queues build
up inside the bottleneck links, not upstream of the bottleneck links. Spillback
can not occur and speeds do not follow a given fundamental diagram, but are
based on link cost functions.

Bundschuh et al. yields a similar traffic flow pattern when compared to Bifulco
and Crisalli. Queues build up inside bottleneck links, but they may spillback to
upstream links. The speeds in bottleneck links decrease because of the
queues and may also decrease the speeds on upstream links if spillback
occurs. Speeds do not follow a given fundamental diagram, but are based on
simple queuing theory.

Our newly proposed model, STAQ, follows a realistic fundamental diagram
(see appendix) and is therefore able to predict more accurate speeds in the
queues. The capacity restricts the inflow of the link and therefore queues will
correctly build up upstream the bottleneck links. The queuing speeds are
typically larger than in the Bundschuh et al. model, and the queue lengths,
determined by the speeds of the shockwaves, are therefore also larger. The
speed inside the bottleneck is the speed at capacity, which may be smaller
than the free-flow speed.

Comparing the STAQ results with the Beckmann and extended Beckmann
approach clearly shows that flows following the STAQ procedure fall in
between the two Beckmann approaches. The flows following from Beckmann
are too large (not constrained enough), while the flows from extended
Beckmann are too small (too much constrained). Further, low speeds and
delays occur not in the bottleneck links, but upstream the bottleneck links.

© Association for European Transport and contributors 2010

Figure 1: Example corridor network and resulting flows for different
approaches

3. STAQ: STATIC TRAFFIC ASSIGNMENT WITH QUEUING

In this section the STAQ model is described in detail. First, the outline of the
algorithm is described. Then the problem formulation and an solution
algorithm are described for both phases that form STAQ.

3.1 Outline of STAQ

STAQ is a flow propagation model: it merely computes travel times based on
traffic flows derived from a given traffic demand for a given study period.
Route choice is considered exogenous to the model and can be solved using
any Frank-Wolfe type algorithm.

STAQ consists of two phases: the squeezing phase and the queuing phase.
After the queuing phase travel times can be derived from the network.

In the first phase (squeezing) traffic demand from all origin-destination pairs is
put on the network along paths derived from an earlier performed route choice
model. When traffic demand on a link is greater than its capacity this link is
considered a bottleneck link. Traffic flow over all paths using one or more

flow

Beckmann

Extended

Beckmann

Bundschuh

STAQ

Bifulco

& Crisalli

flow

Beckmann

Extended

Beckmann

Bundschuh

STAQ

Bifulco

& Crisalli

© Association for European Transport and contributors 2010

bottleneck links is reduced (‘squeezed’) from the bottleneck link(s) to the
destination. The surplus of traffic flow is stored as a vertical queue at the start
of the bottleneck link(s). The squeezing phase yields inflows (the amount of
traffic that flows into a link) and outflows (the amount of traffic that flows out of
a link) for all links that form the network consistent with the available capacity
and route choice of traffic. Note that after the squeezing phase already more
realistic travel times can be computed based on the determined vertical
queues at the bottlenecks. However, to be able to take the effects of spill back
into account the algorithm proceeds with a second phase.

In the second phase (queuing), the vertical queues are translated into
horizontal queues using traffic flow theory and fundamental diagrams. In
STAQ, a queue is explicitly modelled as a shockwave which is propagated
through the network. Shockwaves mark a change in flow conditions (density,
flow and speed) over space and can merge, split and cause new shockwaves
when propagated through the network. An extensive description of the
fundamental diagram used in STAQ as well as the way it is used can be found
in the appendix. The queuing phase yields flow conditions on any given
location on any given link on the network. Based on cumulative flows, travel
times and link speeds can be derived.

3.2 STAQ: Squeezing phase

The squeezing phase determines the amount of traffic that flows into each
link, taking into account the link capacities, but no blocking back and spillback
can occur. The solution algorithm therefore assigns increments of the total
flow over all paths and calculates the increments in such a way that none of
the increments results in path flows where flow over a link exceeds capacity.
This way the algorithm outcomes are not dependent of the order in which the
different paths are assigned to the network. By making the size and thus the
number of increments dependent of the traffic demand and link capacities,
computation time of the squeezing algorithm also depends of these variables.

Unlike fully dynamic assignment models, the squeezing algorithm in STAQ
has no time variable. The time dependent variables (traffic flow and link
capacity) are made time-independent by assuming a stationary traffic demand
over a given time period (the study period as defined by the researcher). This
assumption creates implications on the study period when applying the
queuing algorithm. These implications will be discussed in section 5.

Squeezing phase: problem formulation
The problem of the squeezing phase can be described as the system of
equations (10), (11), (12) and (13) (derived from Yperman (2007)):

PpAaAaqq out

pa

in

ap  
 ,, (10)

PpAbAa
S

G
qq

ab

abin

ap

out

ap  ,,* (11)

© Association for European Transport and contributors 2010

In which out

apq is the outflow of a link caused by traffic on path p, a the preceding

link of a on path p and b the succeeding link of a on path p.

Equation (10) connects the different links on a path by setting the inflow of a
link equal to the outflow of a preceding link. Equation (11) reduces the outflow
of a link to reflect restrictions on links connected to the downstream end of the
link. The amount of reduction is equal to the ratio between the actual possible
flow (equation (12)) and the amount of traffic wanting to flow from the
considered towards the next link on path p (equation (13)).

AbAaSS
S

C
G abab

Aa

ba

b

b
ab 


























,;*min (12)

AbAaqS
p

in

apapba  ,* (13)

Where a is the preceding link of link b on any path and b the succeeding link
of a on any path.

Squeezing phase: algorithm
Below the squeezing algorithm as currently implemented in a prototype is
described.

Step1: Initialization

 Let P be the set of paths. },|{ SsRrPP rs 

 Assign all path flows without any blocking, and compute the link flows
using equation (x2)

 Determine all link V/C ratios, a

in

aa Cq /

 Determine the set of blocking links, ,A  | 1 .aA a A   

 Determine the set of blocked paths, ,P  | : 1 .apP p P a A     

 Find the current most restrictive link, ,a in which  ini max .a a
a A

 




 Set : 0.i 

 Set 



PPp

pap

in

a fq
\

0,  (assign all path flows that are not blocked)

 Set 0,0, in

a

out

a qq  for all path flows that are not blocked

 Set turn flows 0,out

aab qtf  for all turns on paths that are not blocked

 Set () 0, .i

a a A   

Step 2: Assign increment

 Determine increment:

ini

(1)

()
()

() (1)

1
, if 0,

1
min , if 0.

ai

i
i a

i ia A
a a

i

i







 









 

      

© Association for European Transport and contributors 2010

 Set 


 
Pp

i

pap

iin

a

iin

a fqq)1()(,)1(, 

 Set















Paq

Paq
q

iout

a

iin

aiout

a)(,

)1(,

)1(,

 Update turn flows Pbabqtftf iin

babab   |:)1(

 Set : 1.i i 

 Update AaCq a

iin

a

i

a  ,/)(,)( [Note that all V/C ratios are below

or equal to one].

 Update the set of actively blocking links,  * ()| 1 .i

aA a A   

 For all actively blocking links * ,a A update the link sequences in path

set P such that the paths only contain links up to the first actively
blocking link.

 Update the set of blocking links, *: \ .A A A

Step 3: Convergence

 If () 1,i

i

  then stop. Otherwise, return to Step 2.

3.3 STAQ: queuing phase

The queuing phase calculates the effect of blocking back and spillback given
the inflows and vertical queues calculated in the squeezing phase. In order to
do so the algorithm keeps track of the speed of and flow conditions around all
shockwaves travelling through the network. When any shockwave reaches the
beginning or end of a link, or reaches another shockwave, a so called event
occurs. Because the speed of each shockwave is known, it is possible to
determine the point of time (relative to the start of the queuing algorithm t0) on
which the event occurs. Flow conditions around the original shockwave are
adjusted taking into account the existing link and flow conditions on the
connecting link(s).

The queuing phase ends when all traffic demand has reached its destination.
Because in STAQ a single time period and stationary flow is assumed all
traffic demand is ‘put on the network’ when the time indicator in the queuing
phase equals the length of the study period. This does not mean that all traffic
demand has reached its destination at the end of the study period because
traffic can be held up at bottlenecks. The queuing phase therefore continues
after the time indicator equals the length of the study period, but with inflows
on all links set to 0 (creating new forward shockwaves), reflecting that all
traffic demand has been put on the network. The queuing phase ends when
no more shockwaves are present, i.e.: all traffic demand has reached its
destination.

© Association for European Transport and contributors 2010

Queuing phase: problem formulation
Let in in(,)a aq k and out out(,)a aq k denote the traffic conditions at the beginning and
at the end of link ,a respectively. Transitions between two traffic states are
given by a shockwave that can move backward or forward through a link. Let

 () (),n n

a aq k describe the traffic conditions downstream of the thn shockwave,
counted from the beginning of the link. If for example the outflow rate is
smaller than the inflow rate, possibly because of a downstream bottleneck,
there will exist a backward shockwave. Any changes in the outflow capacity of
a link may again start such a backward shockwave. If the inflow conditions
change, this may yield a forward moving shockwave. Hence, several
shockwaves may exist on a link at a certain time instant. In case these
shockwaves meet each other, a new shockwave is formed with a new speed
and direction (forward or backward), depending on the traffic states upstream
and downstream the shockwave. Shockwaves have a speed that is given by

() (1)

()

() (1)
.

n n
n a a

a n n

a a

q q
w

k k









 (14)

where  () (),n n

a aq k is the traffic state downstream the shockwave, and

 (1) (1),n n

a aq k  is the traffic state upstream. In case () 0,n

aw  the shockwave will
move backward, while () 0n

aw  indicates a forward moving shockwave. Let
() ()()n n

a ax t be the location of shockwave n that started at time instant () .n

at The
location of this shockwave at time instant t is given by

 () () () () ()() () .n n n n n

a a a a ax t x t w t t   (15)

There are three situations in which new shockwaves are created. Either at the
beginning of a link due to a change in the inflow conditions, such that

() ()() 0,n n

a ax t  at the end of a link due to changes in the outflow capacity, such
that () ()() ,n n

a a ax t L or somewhere else on the link when two shockwaves meet
each other, with () ()0 () .n n

a a ax t L  To illustrate, consider Figure 2. At 0 ,t we
assume that the outflow capacity drops, such that a queue will form. The tail
of the queue will move backward with a shockwave speed equal to the slope
from traffic state 2 to traffic state 1 indicated in the fundamental diagram. At
time 1 ,t assume that the inflow rate into the link drops, changing the traffic
state to 3. A forward moving shockwave will result with a speed equal to the
slope from traffic state 3 to traffic state 1 in the fundamental diagram. At time

2 ,t we assume another drop in the outflow capacity, changing the outflow
conditions to traffic state 4, and another backward shockwave is created. As
can be seen at 3 ,t the first and second shockwave (counted from the left)
approach each other, while the third shockwave may overtake the second
shockwave due to its higher speed. At 4 ,t The first and second shockwave
have merged into a new shockwave that has a speed equal to the slope from
traffic state 3 to traffic state 2. The two remaining shockwaves meet each
other at time 5 ,t creating a (forward moving) shockwave, which reaches the
end of the link at time 6 .t

© Association for European Transport and contributors 2010

0t 11

3

2

1

1 23

3 1 2 4

43 2

3 4

flow

density

1

2

3

4

1t

2t

3t

4t

5t

6t

Figure 2: Shockwaves from traffic flow theory

Queuing phase: algorithm
Below the queuing algorithm as currently implemented in a prototype is
described. Note that a more recent version of the algorithm is currently being
developed and implemented. This newer version is directly derived from the
link transmission model (Yperman 2007). Because of new insights, in the new
algorithm, it will no longer be necessary to explicitly trace shockwaves through
the network, making it less complex and thus faster. Input for the queuing

algorithm consists of link inflows (Aaq in

a ), link outflows (Aaqout

a ) and

turn flows (Aatfab ) as determined in the squeezing phase.

Step 1: Initialize

 Calculate densities using fundamental diagram:

Aaduncongesteqkk in

aa

in

a )|(

© Association for European Transport and contributors 2010












out

a

in

a

out

qa

out

a

in

a

out

aaout

a
qqAacongestedqk

qqAaduncongesteqk
k

|)|(

|)|(

 Set time, and exodus indicator:
t:=0

falseexodus

 Create link-event lists SWa consisting of [t, x, v, k, s] :

 Aa
k

k

l
SW

out

a

in

a

a

a 













0

0

0

00

 Calculate turn fractions from turn flows





b

baabab tftftfr /

Step 2: Main loop

 Calculate changes in density and flow and check on stop criterion:

first

a

first

a

first

a

last

a

last

a

last

a

first

a

first

a

first

a

last

a

last

a

last

a

kkkkkk

kqkqqkqkqq









11

11)()()()(

If a

first

a

last

a

first

a

last

a

j

a JjAakkqqs  ,0000

Stop! End of algorithm
End

 Add backward shockwaves to SWa
 RkqAa last

a

last

a *|

last

a

last

a

k

q
v


























v

l
t

vv

vttxl
ts a

last

a

last

a

last

a

last

aa ,
*)((

min
1

111

v

l
ttvifss alast

a

last

a


  *11 0

 svkltSW last

aa

last

a 1

 Add forward shockwaves to SWa
 RkqAa first

a

first

a *|

first

a

first

a

k

q
v
























v

l
t

vv

vttx
ts a

first

a

first

a

first

a

first

a ,
*)(

min
1

111

v

l
tsvifss afirst

a

first

a   011

 svktSW first

a

last

a

11 0  

 Sort SWa on x, then on v Aa

 Update shockwaves and time indicator

}}{min{min j

a
jAa

st


 (in case of merging shockwaves t is updated later

on)

© Association for European Transport and contributors 2010

}{minarg* ta
a



)(
*

*

* ttjj j

a


jvv *

Backward shockwave meets beginning of link:

  20\ **

*

1

1

*

**






















jvif

anoden

swSWSW

kk

a

first

aaa

first

a

first

a

 Forward shockwave meetst end of link:

  10\ **

*

1

2

*

**

**






















lastjvif

bnoden

swSWSW

kk

a

last

aaa

last

a

last

a

 Forward shockwave merges with preceding shockwave:

 

 

10

0

0

\

*

)()(

*)()(

**

1

1

1

1

1

1

11

11

1

111

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

**

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*



































































































lastjvif

svkxtSW

vif
vv

xx
t

vif
vv

xx
t

s

swSWSW

tvxx

ttt

kk

kk

kqkq
v

vv

vttxx
t

j

a

j

a

j

a

j

a

j

a

j

aaa

j

a

j

a

j

a

j

j

a

j

a

j

a

j

a

j

a

j

a

j

a

j

a

j

a

j

a

j

a

Backward shockwave merges with previous shockwave:

© Association for European Transport and contributors 2010

 

 

)20(

0

0

\

*

)()(

*)()(

*

1

2

2

2

2

1

111

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

**

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*





























































































jvif

svkxtSW

vif
vv

xx
t

vif
vv

xx
t

s

swSWSW

kk

tvxx

ttt

kk

kqkq
v

vv

vttxx
t

j

a

j

a

j

a

j

a

j

a

j

aaa

j

a

j

a

j

a

j

a

j

a

j

a

j

a

j

a

j

a

j

a

j

a

j

a

j

a

j

a

j

a

 Check for endtime:
If falseexodusendtimet 

 endtimet 

Aak first

a  0

trueexodus 

 Break: start with new loop
end

 Perform node model on node n* (if n* is determined in ‘update
shockwaves’ and n* is not a centroid)

**' |)(,)(*
*)(

)(
min nanodenbnodeabtfrkqtfrkq

tfkq

kq
G baab

last

aab

last

a

a

ba

last

a

first

b

b
ab 
























 *

|

|

)|(

0

1

*

nbnodeAa

qkk

Gq

Kkif

Kkif

a

out

aa

last

a

nanodeAb

ab

out

a

a

last

a

a

last

a

b







































*

|

|

)|(

0

1

*

nanodeAa

qkk

Gq

Kkif

Kkif

a

in

aa

first

a

nbnodeAa

aa

in

a

a

first

a

a

first

a

a











































 Return to step 2

© Association for European Transport and contributors 2010

3.4 STAQ: derivation of travel times

Whenever the inflow rate or outflow rate on a link changes (due to an event at
the beginning or end of a link), the algorithm of the queuing phase stores the
cumulative link inflow and cumulative link outflow of this link. These
cumulative inflow and outflows can be used to derive travel times on any
given point in the time studied. Because the queuing phase continues until all
traffic demand has reached its destination, travel times can also be calculated
for traffic that reaches its destination after the study period has come to an
end.

The way STAQ calculates travel times is very similar to the way dynamic
traffic assignment models calculate travel times based on cumulative flows as
described in Newell (1993). However, because STAQ lacks a true time
variable, like all static assignment models, traffic travels through its path
instantaneous. This means that in the model vehicles are on every link on
their path at the same time. For the calculations of shockwaves (thus delays)
however, there does exist a time instant variable. When drawing cumulative
flow curves, this lack of a time variable when travelling free flow through the
network means that differences between cumulative inflow and cumulative
outflow curves in STAQ represent delays, not travel times like in true DTA
models. This means that in order to calculate link travel times, the free flow
travel time should be added to the delay derived from the cumulative flow
curves.

4. APPLICATION OF STAQ PROTOTYPE

A fully working prototype of the STAQ algorithm has been developed. In this
section results of the prototype on different networks are presented. First, runs
on two test networks are presented which show how the algorithm works and
that spillback and queuing is taken into account. Then, results of runs on the
network of Amsterdam are presented in order to give insight in the real life
performance of the STAQ algorithm.

4.1 Corridor network

The corridor network has already been introduced in section 2.5; figure 1. The
corridor network is the simplest network tested. There are no diverging or
splitting points, only bottlenecks. Network capacities are quantified as 1000
veh/h per lane and traffic demand is quantified as 2200 veh/h. Since this
network contains no route choice options assigning all or nothing yields the
Beckmann solution as shown in figure 3. This is the quantification of figure 1.

Figure 3: Corridor network with quantified flows using Beckmann assignment

© Association for European Transport and contributors 2010

After applying the squeezing algorithm to this network the inflows and vertical
queues are calculated as displayed in figure 4. The outcomes are as
expected: the flow of 2200 is lowered whenever a link with insufficient
capacity is encountered on the path, forming vertical queues the size of the
difference between flow and capacity at the beginning of the bottleneck link.

Figure 4: Inflows (bars) and vertical queues (pies) on corridor network after

squeezing phase

Applying the queuing algorithm to the corridor network using inflows as
displayed in figure 4 yields an initial situation (figure 9), six events (figures 10
to 15) and a final situation (figure 16). During the first five events, queues
grow on the first and fifth link of which the latter causes spillback onto
upstream links. At the sixth event both queues merge and in the final situation
inflow of all links upstream from the bottleneck in link six is restricted to this
bottleneck. This run demonstrates how STAQ handles the different events
sequentially producing inflows and travel times at all events. The growing and
merging of backward queues was also demonstrated.

4.2 Network with crossing paths

The network with crossing paths is used to demonstrate interaction between
different paths. Like in the corridor network, there are no route choice options,
just bottlenecks. This network however, has two paths which cross each other
at an intersection, making it possible to demonstrate the behaviour of the
node model with independent streams. The network and its link capacities are
shown on the left hand of figure 6. Free flow speeds are set to 80 km/h on all
links. Traffic demand on the path from centroid 11 to centroid 12 is 4000 whilst
traffic demand on the path from centroid 13 to centroid 14 is 2000. Assigning
all or nothing yields the Beckmann solution as shown in the right hand of
figure 5.

After applying the squeezing algorithm to this network the inflows and vertical
queues are calculated as displayed in figure 6. Two vertical queues appear:
one on the path of centroid 11 to centroid 12 (500 in vertical queue) and one
on the path of centroid 13 to centroid 14 (3000 in vertical queue).
Applying the queuing algorithm to the network with crossing paths using
inflows as displayed in figure 6 yields an initial situation, five events and a final
situation. These are displayed in figures 17 to 20. It can be seen that the
bottleneck on the path from centroid 11 to centroid 12 starts blocking the
intersection at the second event, in which the path from centroid 13 to centroid
14 is also blocked. This creates a forward shockwave from the intersection
towards centroid 14 which starts to dissolve the queue at the third event. This
queue has completely disappeared at the fifth event. This run shows how
STAQ handles interaction between different paths over intersections, forming
both backward and forward shockwaves.

© Association for European Transport and contributors 2010

Figure 5: Capacities (left) and Beckmann flows (right) on network with
crossing paths

Figure 6: Inflows (bars) and vertical queues (pies) on network with crossing
paths after squeezing phase

© Association for European Transport and contributors 2010

4.3 Amsterdam network

The algorithm has also been applied on the network of Amsterdam consisting
of 3868 links and 279 centroids in order to give insight in the scalability and
calculation speed of the algorithm. Table 1 displays some properties of the
Amsterdam network.

Indicator Value
links 3868
centroids 279
Hbpairs 77562
used paths 72908
blocked paths 24056
average #links per per path 45.65
squeezing increments 49
of queues after squeezing 23
average #connectinglinks per node 1.27
average absolute shockwave speed 5

(2)
duration of queuing phase 1
average link length 0.1491

Table 1: properties of the Amsterdam network

The squeezing phase needed 49 increments to load all traffic onto the
network resulting in inflows and queues as displayed in figure 7. Application of
the queuing phase on the Amsterdam network yields 23 initial shockwaves
caused by the vertical queues displayed in figure 7 triggering 2216 events.
Although the number of events seems very large, calculations that need to be
done per event are very limited because each event only causes calculations
with respect to one node and the links connecting to that node while the rest
of the network is left untouched.

Figure 8 shows results after 1 hour of STAQ (evening peak). The results have
not been analysed on plausibility of the calculated queues and travel times.
This was not done since route choice was based on an all or nothing
assignment because multiple paths per OD pair are not yet supported by the
prototype.

© Association for European Transport and contributors 2010

Figure 7: Inflows (bars) and vertical queues (pies) on the Amsterdam network

after squeezing phase

Figure 8: inflows (width) and speed relative to free flow speed (colour) on the

Amsterdam network after 9 minutes of queuing

© Association for European Transport and contributors 2010

In order to give insight in the computational complexity, below the amount of
computational time needed to solve each of the two problems in STAQ is
related to an all or nothing assignment.

In an all or nothing assignment, the amount of calculation time required is
proportional to the number of paths times the average number of links per
path (equation 15).

)(* p
Pp

ngallornothi AavgPT


 (15)

The calculation time needed for the STAQ squeezing phase is proportional to
the number of increments needed, the number of paths and the average
number of links per path (16). The latter is divided by two because links
behind blocked paths are removed from the path which means, assuming a
uniform spread of blocked links over the network, that the average number of
links per path to be processed will be half of the average number of links per
path. The number of increments I is dependent on the crowdedness of the
network. The more blocking links (links on which demand exceeds capacity),
the more increments needed. This effect is tempered when multiple blocking
links exist on the same path because existence of blocking links upstream
result in lower demand on links downstream, thereby possibly removing such
a downstream blocking link.

)2/(** p
Pp

squeezing AavgPIT


 (16)

The calculation time needed for the STAQ queuing phase is proportional to
the number of events created. The number of events depends on the number
of vertical queues created during the squeezing phase, the average number
of incoming and outgoing links per node, the length of the chosen study
period, the average absolute shockwave speed and the average link length.
Proportionality is then calculated using (17).
The average number of connecting links per node is network dependent and
determines how many new shockwaves are added on average when an
existing shockwave reaches a node1. The average link length divided by the
absolute shockwave speed determines how much time it takes for a
shockwave to reach the end of a link, thus creating new shockwaves. The
length of the chosen study period is equal to the parameter endtime,
assuming that simulation starts at time=0. In (17) the parameter endtime
represents the amount of time that the queuing phase has to create events.

)(

,

)(/)(

2/
*

linksconnectingavg

j

a
JjAa

a
Aa

queuing

nodes

a

avglavg

endtime
queuesET






















 (17)

Table 2 shows the number of calculations needed for an all or nothing
assignment and the two phases of STAQ on the Amsterdam network. The

© Association for European Transport and contributors 2010

figures in table 2 are based on (15), (16) and (17) and the properties of the
Amsterdam network as displayed in table 1.

It can be seen that the number of calculations needed for the squeezing
phase of STAQ is roughly 8 times bigger than an all or nothing assignment3.
The STAQ queuing phase needs only 0.025% of the number of calculations
needed in an all or nothing assignment. It must be noted that the number of
calculations needed for the STAQ queuing phase is not directly comparable to
the number of calculations needed for the other assignments because the
STAQ queuing phase performs calculations on more links (the current link and
its connecting links) and it performs a node model.

 All or nothing STAQ squeezing STAQ queuing
Estimated number of
calculations

3.328.250 26.904.832 826

Unit
change of inflow

on 1 link
change of inflow on

1 link

change of density on
1+connectinglinks,

perform node model
Index 100 808 0.025

Table 2: number of calculations on the Amsterdam network for an all or
nothing assignment and the two phases of STAQ

5. DISCUSSION AND FURTHER WORK

Based upon the limited experience with STAQ, in terms of both realism of
outcomes and calculation times, STAQ should be positioned in between static
and dynamic assignment. Because the current implementation STAQ is still a
prototype no definite judgement can be made about either of these criteria.
The algorithms will be further optimized and developed and only application in
real life transport studies can prove if STAQ outcomes meet demanded levels
of realism. It is clear however, that STAQ is methodological superior to any of
the existing static and semi dynamic models presented in chapter 2.

Below recommendations for further research related to the development of
STAQ are presented.

Meaning of STAQ travel times on a given time instant
As mentioned earlier, lack of a time variable in the squeezing algorithm has
implications on the study period when applying the queuing algorithm.
Because the queuing algorithm starts with vertical queues (with a queue
length of 0) taken from the squeezing algorithm it implicitly assumes that there
are no queues present at t0. This means that the study period over which
STAQ is applied must be chosen in such a way that there are (more or less)
no queues in reality at t0. For the end of the study period the lack of a time
variable means that STAQ implicitly assumes that there are no more growing
queues in reality at the end of the study period. As a result of this, travel times
on any given time instant should not be used for analysis. Travel times which
can be clearly interpreted are:

 the average travel time calculated using cumulative flows based on the
total results of the queuing phase. These travel times represent the

© Association for European Transport and contributors 2010

average travel time any user will experience when travelling during the
study period.

 the travel time at the end of the study period, which represents the
maximum travel time users can encounter when travelling during the
study period.

Node model
The node model that is now applied in STAQ is based on Bliemer (2007).
Tampère et all (2010) state that this node model violates the invariance
principle as defined by Lebacque and Khoshyaran (2005). The invariance
principle was introduced to avoid discontinuous changes in the flows. The
principle states that under constant demand and supply constraints, flows
should be invariant during an infinitesimal time step. The effects of this
violation of the invariance principle on STAQ will be investigated further.

Junction modelling
So far, only delays caused by capacity constraints on links are incorporated
into STAQ. Delays caused by intersections (nodes) are not due to the lack of
junction modelling. When STAQ is to be applied in urban transport models,
junction modelling should be added. How this should be done, and especially
the interaction between the junction modelling and STAQ will be investigated
further.

Application and optimization within route choice loop
The test runs presented in this paper all used route choice based on an earlier
performed all-or-nothing assignment. Application of STAQ within a route
choice loop in order to reach Wardrop’s user equilibrium has yet to be done.
Different approaches can be considered varying from fully incorporating STAQ
within the route choice loop to applying a single run of STAQ after a static
equilibrium assignment.

© Association for European Transport and contributors 2010

NOTES

1 More precisely, if one would want to calculate the average number of
connecting links per node as displayed in equation (17), the averaging should
only take place over nodes that will be encountered by one or more
shockwaves during the queuing phase. Since this is not known beforehand
this cannot be done.
2 Average absolute shockwave speed has been estimated, not calculated

© Association for European Transport and contributors 2010

BIBLIOGRAPHY

4Cast (2009). Qblok_2004: toedelingsprocedure LMS/NRM. (in Dutch;
working report).

Beckmann, M., McGuire, C. & Winsten, C. (1956). Studies in the economics of
transportation. Yale University Press, New Haven, CT.

Bifulco, G. & Crisalli, U. (1998). Stochastic user equilibrium and link capacity
constraints: formulation and theoretical evidences. Proceedings of the
European Transport Conference 1998.

Bundschuh, M., Vortisch, P. & Van Vuuren, T. (2006). Modelling queues in
static traffic assignment. Proceedings of the European Transport Conference
2006.

Bliemer, M.C.J. and P.H.L. Bovy (2003) Quasi-Variational Inequality
Formulation of the Multiclass Dynamic Traffic Assignment Problem.
Transportation Research Part B 37 () 501-519.

Bliemer, M.J., 2007. Dynamic queuing and spillback in an analytical multiclass
dynamic network loading model. Transportation Research Record 2029, 14–
21.

Chen, H.-K. and C.-F. Hsueh (1998) A Model and an Algorithm for the
Dynamic User-Optimal Route Choice Problem. Transportation Research B, 32
(3) 219–234.

Daganzo, C.F. (1977a) On the traffic assignment problem with flow dependent
costs--I, Transportation Research, 11 (6) 433-437.

Daganzo, C.F. (1977b) On the traffic assignment problem with flow dependent
costs--II, Transportation Research, 11 (6) 439-441.

Daganzo, C.F. (1994) The Cell Transmission Model: A Dynamic
Representation of Highway Traffic Consistent with the Hydrodynamic Theory.
Transportation Research B, 28 (4) 269–287.

Janson, B.N. (1991) Dynamic Traffic Assignment for Urban Road Networks.
Transportation Research B, 25 (2/3) 143–161.

Larsson, T. & Patriksson, M. (1995). An augmented lagrangean dual algorithm
for link capacity constrained traffic assignment problems. Transportation
Research B, 29 () 433-455.

Lebacque, J.P., Khoshyaran, M.M., 2005. First-order macroscopic traffic flow
models: intersection modeling, network modeling. In: Proceedings of the 16th
International Symposium on Transportation and Traffic Theory (ISTTT), pp.
365–386.

© Association for European Transport and contributors 2010

Marcotte, P, Nguyen, S and Schoeb, A. (2003). A strategic flow model of
traffic assignment in static capacitated networks, Operations Research 52 ()
191-212

Nagurney, A. (1993) Network economics: a variational inequality approach.
Kluwer Academic Publishers, Boston, USA.

Nesterov, Y. (2000). Stable traffic equilibria: properties and applications.
Optimization and Engineering, 3 () 29-50.

Nesterov, Y. & de Palma, A. (2000a). Stable dynamics in transportation
systems. CORE discussion paper.

Nesterov, Y. & de Palma, A. (2000b). Stable dynamics transportation
systems. In: Proceedings of the European Transport Conference 2000.

Nesterov, Y. & de Palma, A. (2003). Stationary dynamic solutions in
congested transportation networks: summary and perspectives. Network and
Spatial Economics, 3 () 371-395.

Newell, G.F. (1993) A simplified theory of kinematic waves in highway traffic,
Part I: General theory, Part II: Queuing at freeway bottlenecks, Part III: Multi-
destination flows, Transportation Research B 27 () 281-313.

Nie, Y., Zhang, H. & Lee, D. (2004). Models and algorithms for the traffic
assignment problem with link capacity constraints. Transportation Research,
38 () 285-312.

Prashker, J. & Toledo, T. (2004). A gradient projection algorithm for side-
constrained traffic assignment. European Journal of Transport and
Infrastructure Research, 4 (2) 177-193.

Ran, B., H.K. Lo and D.E. Boyce (1996) A Formulation and Solution Algorithm
for a Multi-Class Dynamic Traffic Assignment Model. In: J.-B. Lesort (ed.),
Transportation and Traffic Theory, Proceedings of the 13th International
Symposium on Transportation and Traffic Theory in Lyon, Pergamon,
Elsevier, pp. 195–216.

De Romph, E. (1994) A dynamic traffic assignment model: Theory and
applications. PhD Thesis, Delft University of Technology, Delft, The
Netherlands.

Shahpar, A., Aashtiani, H. & Babazadeh, A. (2008). Dynamic penalty function
method for the side constrained traffic assignment problem. Applied
Mathematics and Computation, 206 () 332-345.

Smith, M. (1979). The existence, uniqueness and stability of traffic equilibria.
Transportation Research B, 13 () 295–304.

© Association for European Transport and contributors 2010

Smulders, S. (1988) Modelling and Filtering of Freeway Traffic Flow. Report
OSR8706, Centre of Mathematics and Computer Science, The Netherlands.

Tampère, C.M.J., et al. (2010) A generic class of first order node models for
dynamic macroscopic simulation of traffic flows. Transportation Research B
(2010), doi:10.1016/j.trb.2010.06.004

US Bureau of Public Roads (1964). Traffic assignment manual. US Bureau of
Public Roads, US Government Printing Office, Washington DC.

Wardrop, J. (1952). Some theoretical aspects of road traffic research.
Proceedings of the Institute of Civil Engineers, Part II, pp. 325–378.

Yang, H., Yagar, S. (1994). Traffic assignment and traffic control in general
freeway-arterial corridor systems, Transportation Research B, 28 (6) 463-486.

Yang, H., Yagar, S. (1995), Traffic assignment and signal control in saturated
road networks, Transportation Research Part A, 29 (2) 125-139.

Yperman, I 2007. The Link Transmission Model for Dynamic Network
Loading, Katholieke Universiteit Leuven, Leuven

© Association for European Transport and contributors 2010

Figure 9: Link speeds (colour, figures) and inflows (bandwiths) on corridor

network at t=0 (initial situation)

Figure 10: Link speeds (colour, figures) and inflows (bandwiths) on corridor

network at t=0.08215 (first event)

Figure 11: Link speeds (colour, figures) and inflows (bandwiths) on corridor

network at t=0.24259 (second event

Figure 12: Link speeds (colour, figures) and inflows (bandwiths) on corridor

network at t = 0.42677 (third event)

Figure 13: Link speeds (colour, figures) and inflows (bandwiths) on corridor

network at t = 0.50286 (fourth event)

Figure 14: Link speeds (colour, figures) and inflows (bandwiths) on corridor

network at t = 0.58500 (fifth event)

Figure 15: Link speeds (colour, figures) and inflows (bandwiths) on corridor

network at t = 0.65000 (sixth event)

Figure 16: Link speeds (colour, figures) and inflows (bandwiths) on corridor

network after t= 0.65000 (until t=1.0)

© Association for European Transport and contributors 2010

figure 17: link speeds and inflows on network with crossing paths: initial
situation and first event

figure 18: link speeds and inflows on network with crossing paths: second
and third event

© Association for European Transport and contributors 2010

figure 19: link speeds and inflows on network with crossing paths: fourth and
fifth event

figure 20: link speeds and inflows on network with crossing paths: final
situation

© Association for European Transport and contributors 2010

Appendix: Fundamental diagram and traffic flow theory

In STAQ the Smulders’ fundamental diagram (see Smulders, 1988, or De
Romph, 1994) is used, which is given by the following equation:

, if 0 ;

()
()

, if ,

a a
a a a a a

a a

a a

a a a
a a a

a a

C k
k V V k K

K K
q k

C J k
K k J

J K

   
           


  

 (x14)

where ak is the density (km/h) on link ,a and ,aV ,aK and aJ the given
maximum speed, critical density (which is the density at capacity aC), and the

jam density of link ,a respectively.

It consists of a free-flowing branch and a congested branch. The simplified
fundamental diagram as proposed by Newell (1993) and applied in the link
transmission model by Yperman (2007), assumed both branches to be linear
(indicated by the dashed blue line in Figure 2). While this linear assumption
for the congested branch is often assumed to be close enough to reality, a
linear line for the free-flowing part is somewhat unrealistic. For example, if the
free-flow speed is 120 km/h, then anything below this speed is assumed to be
in congestion. Therefore, we assume the free-flowing branch to be quadratic,
following Smulders’ fundamental diagram. Should this be needed, Newell’s
diagram can still easily be implemented by setting aaa VCK / .

The colours in Figure 1 refer to the link speeds as indicated in Figure 21,
which is ‘green’ in free-flow conditions, ‘yellow’ at capacity, and different
shades of ‘orange’ to ‘red’ for more congested situations.

flow

density

aC

aJ

Figure 21: Smulders’ fundamental diagram used in STAQ and speed colours

© Association for European Transport and contributors 2010

The fundamental diagrams are assumed to be given for each link in the
network, and are used in conjunction with regular traffic flow theory to derive
queues and shockwaves. Figure 22 illustrates an example of a link upstream
of a bottleneck with a given link inflow and outflow. This inflow and outflow
correspond to two points on the fundamental diagram, as indicated in Figure
22. Due to the bottleneck the outflow is restricted to the inflow capacity into
the bottleneck. Since the inflow is higher than the outflow, a queue will build
up. The queuing speed is indicated by the slope from the line from the origin
to the second point on the fundamental diagram. The first part of the link will
initially remain free-flow with a speed equal to the slope of the line from the
origin to the first point on the fundamental diagram. However, as time elapses,
the queue builds up and may reach the beginning of the link, such that over
time the traffic conditions at the beginning of the link switch from the traffic
situation in point 1 to the traffic situation in point 2. The time it takes the queue
to spillback to upstream links (provided that the inflows and outflows are
stationary, as assumed in a static model) is determined by the shockwave
speed, which is the slope of the line from point 2 to point 1. Given the link
length, the time that spillback occurs can readily be computed.

flow

density

inflow

outflow

slope:

shockwave speed

slope:

queuing speed

slope:

free-flowing speed

1

2

Figure 22: Shockwaves from traffic flow theory

