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ABSTRACT 
 
Because of computation time issues on large networks, most strategic 
regional and urban transport models today use static instead of dynamic traffic 
assignment procedures. Mathematical models of traffic assignment are 
usually based upon Wardrop’s principle. To solve this static traffic equilibrium 
problem almost all applied static assignment models follow Beckmann who 
formulated it as a convex optimization problem containing a link travel time 
function (Beckmann 1956). This function has the form of a polynomial whose 
degree and coefficients are specified from statistical analysis of real data. The 
best known polynomial is the BPR function (US bureau of Public Roads, 
1964). Although widely used, traffic assignment models based on Beckmann’s 
formulation have several drawbacks. Firstly, these models penalize but not 
explicitly constrain link flows to their respective link capacities. This can result 
in a solution where traffic flows exceed link capacities. Secondly, models 
derived from Beckmann’s formulation do not account for queuing and 
spillback on the network as a result of high demand, resulting in poor travel 
times and route choice on congested networks. Related drawbacks are that 
congestion is modelled downstream instead of upstream from the bottleneck 
and that upstream bottlenecks do not influence downstream traffic demand. 
These drawbacks not only yield incorrect link flows and travel times, they also 
prevent proper network and matrix calibration using traffic counts on 
congested links. Given the ever increasing levels of structural congestion, 
these drawbacks will only become more relevant in the future. 
 
In order to overcome the drawbacks of Beckmann’s formulation of the static 
traffic equilibrium problem, models that explicitly constrain link flows to their 
respective capacities have been proposed, both in literature (e.g. Marcotte et 
al (2003), De Palma and Nesterov (2000), Larsson and Patriksson (1999), 
Bifulco and Chrisali (1998)), and practice (e.g. Bundschuh et al (2006), 4Cast 
(2009)). All these models cope with queuing thereby producing more accurate 
travel times and placing congestion upstream from the bottleneck. However, 
these models still have drawbacks, such as using heuristic or approximate 
traffic delay rules and/or lack spillback-effects.  
 
Given these drawbacks and the ever increasing levels of structural 
congestion, there is a great need for a static traffic assignment model which 
can be applied on both regional and urban regions, taking both queuing as 
well as spillback into account. Instead of improving existing traffic assignment 
models, we propose to start with a dynamic assignment model and construct 
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the special case of a static traffic assignment model. This leads to STAQ 
(Static Traffic Assignment with Queuing), a specific case of the link 
transmission model (Yperman 2007), with the added assumptions that there is 
only one time period in which there is a stationary travel demand. While the 
iterative (equilibrium) route choice model is the same as existing methods 
(e.g., solving the deterministic or stochastic equilibrium problem with MSA or 
Frank-Wolfe), STAQ replaces the traffic flow and travel time computations 
(basically the static equivalent of dynamic traffic propagation) and is event-
based. STAQ exhibits many favourable properties of dynamic models (such 
as horizontal dynamic queuing, shockwaves, spillback, using the complete 
fundamental diagram) but simplified such that it is suitable for strategic 
planning studies on large scale networks.  
 
In this paper the concept of STAQ is explained and discussed, as well as 
some case studies on some smaller hypothetical networks and a real life 
network. 
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1.  INTRODUCTION 
 
Because of computation time issues on large networks, most strategic 
regional and urban transport models today use static instead of dynamic traffic 
assignment procedures. These models however, cannot cope with blocking 
back and spillback of traffic. These drawbacks becomes have become more 
important over the years given the use of transport models. Driven by e.g. 
cost-benefit analysis and spatial accessibility studies, their field of use has 
shifted from solely forecasting traffic volumes on networks with relatively little 
detail towards forecasting both traffic volumes as well as travel times on 
networks with much more detail. This ‘abuse’ of static assignment models has 
lead to poor results and (legitimate) doubt about the use and even right of 
existence of transport models as a whole. Therefore, in this paper we propose 
a new method which combines the advantages of static (its speed and 
scalability) and dynamic (its realistic flow propagation accurate travel times) 
assignment models. This new static traffic assignment model with queuing 
follows traffic flow theory and is based on realistic fundamental diagrams 
 
 
2.  STATIC TRAFFIC ASSIGNMENT 
 
In this section, first the traditional static traffic assignment model is described. 
Then the extension to include capacity constraints is described and several 
solution approaches proposed in literature are discussed. Since these 
traditional (extended) static traffic assignment models do not produce very 
realistic traffic flows, other approaches have been proposed, which will be 
briefly discussed. These more realistic approaches make it possible to model 
queues and spillback, but still have several drawbacks. Then the new static 
traffic assignment model with queuing is introduced. Finally, a comparison 
between the different approaches is illustrated in a small example.  
 
 
2.1  Traditional static traffic assignment without capacity constraints 
 
Consider a transportation network ( , ),G N A  consisting of nodes N  and links 

.A  Denote the set of origin nodes by R N  and the set of destination nodes 
by .S N  Let rsP  denote the set of paths from origin r R  to destination 

.s S  Furthermore, let rsD  be the given travel demand from origin r  to 
destination .s  Then the set of feasible link flows, ,Q  can be defined by the 

following constraints: 
 

, ( , ),rs rs

p

p

f D r s   (1) 

( , )

, ,rs rs

a ap p

r s p

q f a   (2) 

0, ( , ), ,rs

pf r s p    (3) 

 
where rs

pf  is the path flow on path rsp P  from r  to ,s  aq  is the link flow on 
link ,a A  and rs

ap  is a route-link incidence indicator that equals one if link a  
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is on path p  from r  to ,s  and equals zero otherwise. Equation (1) is a flow 
conservation constraint that indicates that the travel demand should be 
satisfied. Equation (2) is a definitional constraint that states that the link flows 
are composed of all the path flows that go through that link. Finally, inequality 
(3) is a nonnegativity constraint, ensuring that all flows are nonnegative.   
 

All link flows q Q  are feasible, but we are interested in finding a user 
equilibrium solution that satisfies Wardrop’s equilibrium law (Wardrop, 1952). 
Wardrop’s first principle states that for each origin-destination (OD) pair, all 
used paths have equal travel time, and there exist no unused paths with a 
lower travel time. In other words, if 0,rs

pf   the path travel time rs

p  is equal to 
the minimum over all available paths in .rsP  If 0,rs

pf   the path travel time 
may be larger than this minimum. Let F  be the set of feasible path flows that 
satisfy constraints (1) and (3). It can be shown (see e.g., Nagurney, 1993) that 
the solution to the following variational inequality (VI) problem describes a 
Wardrop user equilibrium. The VI problem is to find path flows f F  such 
that 
 

 
( , )

( ) 0, ,rs rs rs

p p p

r s p

f f f f F      (4) 

 
where the path travel times are defined as ,rs rs

p ap aa
    and where F  is the 

set of feasible path flows that satisfy constraints (1) and (3). Using the 
definition of the path travel time and constraints (2), we can rewrite this path-
based VI problem into a link-based VI problem: 
 

   

 

 

( , ) ( , )

( , )

( ) ( )

( )

( )
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a ap p p

a r s p

a a a

a

f f f q f f

q f f

q q q

  

 



  

 

 

 

 
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 (5) 

 
Hence, in the link-based VI problem we would like to find link flows q Q  
such that 
 

 ( ) 0, .a a a

a

q q q q Q      (6) 

 
Since a VI problem of finding an x X  for which ( ) ( ) 0, ,Tg x x x x X     can 
be rewritten as an equivalent optimization problem of the form min ( ),x X h x  
with ( ) ( )xg x h x   (under the condition that ( )x g x  is a symmetric matrix), VI 
problem (6) can be rewritten as the following optimization problem: 
 

0

min ( ) .
aq

a
q Q

a

d


  




   (7) 
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This optimization problem corresponds to the well-known formulation by 
Beckmann et al. (1956), where each link travel time only depends on the flow 
on that link. In other words, the travel time functions are assumed to be 
separable. If these travel time functions are also continuous and non-
decreasing, the optimization problem is convex and has a solution. If the 
functions are strictly increasing, the solution is unique (Smith, 1979). In 
practice, the Bureau of Public Roads (BPR) travel time functions are often 
used, 
 

0( ) 1 ,

a

a
a a a a

a

q
q

C



  
  
    
   

 (8) 

 
where aC  is the capacity of link ,a  0

a  is the free-flow travel time, and a  and 

a  are some given link parameters.  
 
Several algorithms have been developed to solve problem (7), of which the 
Frank-Wolfe algorithm is the most well-known, which iteratively solves a 
shortest path problem to determine the steepest descent and calculates an 
optimized step size. An often used heuristic is the method of successive 
averages in which the stepsize is equal to 1/n where n equals the number of 
iterations.  
 
Since the link travel time merely increases when the link flow exceeds 
capacity, capacity is not included as a hard constraint but as a soft constraint. 
One can therefore not prevent the link flow to exceed the link capacity. 
Daganzo (1977a,b) proposed to use a travel time function with an asymptote 
near the capacity, which aims to prevent the link flow from exceeding the 
capacity, but cannot guarantee this. Unrealistically high travel times and 
numerical issues in solving the problem make this choice of travel time 
function not very popular. Therefore, in the next section we will look at traffic 
assignment problems with explicit (hard) capacity constraints.  
 
 
2.2  Traditional static traffic assignment with capacity constraints 
 
Beckmann et al.’s original formulation does not take any explicit link capacity 
constraints into account. All path flows are assumed to be able to pass 
through each link, such that the link flows can be determined by a simple 

mapping from the path flows, given by Equation (2).  
 
In order to take into account that each link a  has a limited capacity, the 
following straightforward constraints can be added that defines the set of 
feasible link flows, ,Q  
 

, .a aq C a   (9) 

 
This results in a so-called capacity constrained or extended Beckmann 
formulation. Although adding these constraints to the problem is easy, solving 
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the problem becomes much more tedious, as instead of iteratively solving a 
shortest path problem, now a multi-commodity minimum cost flow problem 
needs to be solved (Nie et al., 2004). 
 
The capacitated problem can be solved by a sequence of uncapacitated 
problems using either an exterior penalty function (also called the augmented 
Lagrangean method), or by means of interior penalty functions.  
 
To reveal the concept of external penalty functions, the extended Beckmann 
problem can be rewritten in terms of Karush-Kuhn-Tucker (KKT) conditions, in 
which Lagrange multipliers are associated with the constraints. Suppose that 

a  is the Lagrange multiplier associated with capacity constraints (8). Solving 
the KKT conditions yields a solution in which 0a   if ,a aq C  and 0a   if 

a aq C  (i.e., the constraint is binding). The Lagrange multiplier is therefore 
often interpreted as the extra cost or delay on link a  on top of the link travel 
time ,a  see Yang and Yagar (1994, 1995) and Larsson and Patriksson 
(1995).  
 
Interior penalty functions try to approximate the constrained traffic assignment 
problem by adding a penalty term to the objective function of the 
unconstrained problem, see Nie et al. (2004) and Prashker and Toledo 
(2004). Shahpar et al. (2008) describe a new solution method in which the 
side constraints are taken into consideration by implicitly adding a penalty 
function to the link travel times, which they call the dynamic penalty function 
method. In several tests they show that this new method achieves faster 
convergence to a solution than the augmented Lagrangean method or the 
inner penalty function approach. 
 
Although adding the capacity constraints seems natural, it is not consistent 
with the link travel time functions ( ),a aq  such that ‘tricks’ with Lagrange 
multipliers or interior penalty functions are needed. The main problem is that 
such travel time functions are not suitable for describing the link flows and link 
travel times consistently. For example, link travel times depend on the flows 
on downstream links, as they could block the flow, hence separable travel 
time functions are not valid. Also note that none of these traditional 
approaches to capacity constrained assignment result in actual queues. 
Determining link travel time functions that realistically describe congestion is 
an almost impossible task. Therefore, other problem descriptions should be 
developed that avoid the usage of such functions, as will be described in the 

next section. 
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2.3  More realistic static traffic assignment with capacity constraints 
 
In dynamic traffic assignment it has been argued that models using link travel 
time (performance) functions, see e.g. Janson (1991), Ran and Boyce (1996), 
Chen and Hsueh (1998), and Bliemer and Bovy (2000), cannot realistically 
describe the traffic dynamics, such as queuing and spillback. Instead, flow 
propagation models that explicitly follow the traffic flow theory, with 
fundamental diagrams as input, have been successfully employed in 
simulation-based assignment, see e.g. the cell transmission model (Daganzo, 
1994) or the link transmission model (Yperman, 2007). The first dynamic 
traffic assignment models were basically dynamic extensions of the static 
assignment problem, in which the link travel time functions became functions 
of the link inflows or volumes at a certain time instant. Here we will describe 
some static traffic assignment models that have been proposed in the 

literature that aim to take more realistic queuing into account. All these 
approaches solve iteratively a shortest path problem to determine the user 
equilibrium which is the same as the traditional approaches do. These 
approaches however, differ in the way traffic is loaded on the network and/or 
travel times are determined.  
 
Bifulco and Crisalli (1998) determine iteratively the number of vehicles on a 
link that can proceed to the next link on their path by checking the 
corresponding link capacities. This means that not all traffic will be able to 
reach its destination in the time interval considered. Spillback is not taken into 
account. 
 
Nesterov (2000), and Nesterov and De Palma (2000a,b, 2001) assume lower 
bounds on the travel time (free-flow travel time) and upper bounds on the flow 
(link capacity) instead of using link travel time functions. They search for 
stable traffic equilibria in which the fundamental relationship between flow, 
speed, and density holds. Queues longer than the link length are assumed not 
to occur; hence spillback is again not taken into account.  
 
Bundschuh et al. (2006) developed an operation model that they term quasi-
dynamic, as it takes capacity constraints and spillback into account, however, 
at a much smaller computational complexity. In order to determine travel 
times, they use incremental loading of the network, in which iteratively a 
fraction of the travel demand is put on the network, say increases of 5%. The 
flow is propagated over the consecutive links of a path until the capacity of a 
link is reached. The extra flow on that link will be stored in the queue, and 
blocked back to upstream links if the queue exceeds the storage capacity of 
the link. Link travel times are determined afterwards by taking the free-flow 
travel time and adding delays that refer to the time it takes for the queues to 
disappear. 
 
4Cast (2009) has developed an operational model called QBLOK, which they 
also termed quasi-dynamic. The calculation of travel time in this model is done 
using a heuristic that ensures that link capacities are not exceeded, and 
queues appear upstream of bottleneck links. Queues longer than the link 
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length can occur, taking blocking back into account. Since this procedure is a 
heuristic, it may produce unrealistic travel times and route choices. Also, the 
actual link flows that QBLOK produces can be greater than link capacities 
because these are calculated using a classical static assignment procedure 
based on the travel times produced by the QBLOK heuristic.  
 
In all of the above approaches, the link and path travel times are not explicit 
functions, but are derived implicitly from the queues that form.  
 
 
2.4  Newly proposed static traffic assignment with capacity constraints 
 
In this paper we propose a static traffic assignment model in which capacity 
constraints, spillback, and even shockwaves are explicitly taken into account. 

This model can be seen as a static version of the link transmission model 
(Yperman 2007), in which a single time period is assumed with a stationary 
traffic demand. It somewhat resembles the models proposed by Bundschuh et 
al. (2006) and 4Cast (2009), and can therefore also be called quasi-dynamic. 
In contrast to Bundschuh et al. (2006) and 4Cast (2009), we use traffic flow 
theory and realistic fundamental diagrams to come to a more rigorous 
problem formulation. More realistic queuing, including shockwaves, is taken 
into account. Heuristics are avoided by computing an exact solution. The 
model proposed in this paper will be referred to as STAQ: Static Traffic 
Assignment with Queuing. Similar to the above mentioned approaches, link 
and path travel times are computed implicitly after determining the flows and 
the queues. The path travel times are used in an iterative route choice 
scheme in order to solve VI problem (4), where the feasible flows F  obey 
traffic flow theory and the fundamental diagrams.  
 
 
2.5  Comparison of approaches 
 
To illustrate the differences in the link flows and speeds between the 
approaches discussed above, consider the simple corridor network in Figure 
1. The path consists of seven links with varying link capacities, ranging from a 
one lane to a four lane motorway segment. The flow (veh/h) through this 
corridor is assumed to be somewhat larger than the capacity (veh/h) of a two 
lane segment. In real life, this would result in a queue building up upstream of 
the second link and upstream of the sixth link. The link flows and the 

corresponding speeds (indicated by the colour of the flow, see Figure 2 in the 
appendix for an explanation of the colours) for the original Beckmann 
approach, the extended Beckmann approach, the approach by Bifulco and 
Crisalli, the approach by Bundschuh et al., and our newly proposed approach, 
are indicated in the figure. Note that any delay penalties have been 
incorporated in the link speed colours.  
 
The original Beckmann formulation without capacity constraints clearly does 
not restrict the link flow to the link capacity, such that unrealistic flows appear. 
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Low speeds (corresponding to high travel times) are predicted in the 
bottleneck links.  
 
The extended Beckmann model with capacity constraints ensures that no link 
flows exceed the link capacity. However, the result is too restrictive, as the 
whole path flow is now restricted to the most critical link capacity, while the 
flow through the first five links only needs to be restricted to the two lane 
capacity. A (delay) penalty is put on the most restrictive bottleneck link. 
 
Bifulco and Crisalli achieve a more realistic traffic flow pattern after putting the 
entire travel demand on the path. Since they assume that the capacity 
restricts the outflow capacity of a link and not the inflow capacity, queues build 
up inside the bottleneck links, not upstream of the bottleneck links. Spillback 
can not occur and speeds do not follow a given fundamental diagram, but are 
based on link cost functions.  
 
Bundschuh et al. yields a similar traffic flow pattern when compared to Bifulco 
and Crisalli. Queues build up inside bottleneck links, but they may spillback to 
upstream links. The speeds in bottleneck links decrease because of the 
queues and may also decrease the speeds on upstream links if spillback 
occurs. Speeds do not follow a given fundamental diagram, but are based on 
simple queuing theory. 
 
Our newly proposed model, STAQ, follows a realistic fundamental diagram 
(see appendix) and is therefore able to predict more accurate speeds in the 
queues. The capacity restricts the inflow of the link and therefore queues will 
correctly build up upstream the bottleneck links. The queuing speeds are 
typically larger than in the Bundschuh et al. model, and the queue lengths, 
determined by the speeds of the shockwaves, are therefore also larger. The 
speed inside the bottleneck is the speed at capacity, which may be smaller 
than the free-flow speed. 
 
Comparing the STAQ results with the Beckmann and extended Beckmann 
approach clearly shows that flows following the STAQ procedure fall in 
between the two Beckmann approaches. The flows following from Beckmann 
are too large (not constrained enough), while the flows from extended 
Beckmann are too small (too much constrained). Further, low speeds and 
delays occur not in the bottleneck links, but upstream the bottleneck links. 
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Figure 1:  Example corridor network and resulting flows for different 
approaches 

 
 
3.  STAQ: STATIC TRAFFIC ASSIGNMENT WITH QUEUING 
 
In this section the STAQ model is described in detail. First, the outline of the 
algorithm is described. Then the problem formulation and an solution 
algorithm are described for both phases that form STAQ. 
 
 
3.1 Outline of STAQ 
 
STAQ is a flow propagation model: it merely computes travel times based on 
traffic flows derived from a given traffic demand for a given study period. 
Route choice is considered exogenous to the model and can be solved using 
any Frank-Wolfe type algorithm.  
 
STAQ consists of two phases: the squeezing phase and the queuing phase. 
After the queuing phase travel times can be derived from the network. 
 
In the first phase (squeezing) traffic demand from all origin-destination pairs is 
put on the network along paths derived from an earlier performed route choice 
model. When traffic demand on a link is greater than its capacity this link is 
considered a bottleneck link. Traffic flow over all paths using one or more 
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bottleneck links is reduced (‘squeezed’) from the bottleneck link(s) to the 
destination. The surplus of traffic flow is stored as a vertical queue at the start 
of the bottleneck link(s). The squeezing phase yields inflows (the amount of 
traffic that flows into a link) and outflows (the amount of traffic that flows out of 
a link) for all links that form the network consistent with the available capacity 
and route choice of traffic. Note that after the squeezing phase already more 
realistic travel times can be computed based on the determined vertical 
queues at the bottlenecks. However, to be able to take the effects of spill back 
into account the algorithm proceeds with a second phase.  
 
In the second phase (queuing), the vertical queues are translated into 
horizontal queues using traffic flow theory and fundamental diagrams. In 
STAQ, a queue is explicitly modelled as a shockwave which is propagated 
through the network. Shockwaves mark a change in flow conditions (density, 
flow and speed) over space and can merge, split and cause new shockwaves 
when propagated through the network. An extensive description of the 
fundamental diagram used in STAQ as well as the way it is used can be found 
in the appendix. The queuing phase yields flow conditions on any given 
location on any given link on the network. Based on cumulative flows, travel 
times and link speeds can be derived.  
 
 
3.2 STAQ: Squeezing phase 
 
The squeezing phase determines the amount of traffic that flows into each 
link, taking into account the link capacities, but no blocking back and spillback 
can occur. The solution algorithm therefore assigns increments of the total 
flow over all paths and calculates the increments in such a way that none of 
the increments results in path flows where flow over a link exceeds capacity. 
This way the algorithm outcomes are not dependent of the order in which the 
different paths are assigned to the network. By making the size and thus the 
number of increments dependent of the traffic demand and link capacities, 
computation time of the squeezing algorithm also depends of these variables.  
 
Unlike fully dynamic assignment models, the squeezing algorithm in STAQ 
has no time variable. The time dependent variables (traffic flow and link 
capacity) are made time-independent by assuming a stationary traffic demand 
over a given time period (the study period as defined by the researcher). This 
assumption creates implications on the study period when applying the 
queuing algorithm. These implications will be discussed in section 5. 
 
Squeezing phase: problem formulation 
The problem of the squeezing phase can be described as the system of 
equations (10), (11), (12) and (13) (derived from Yperman (2007)): 
 

PpAaAaqq out

pa

in

ap  
 ,,  (10) 

PpAbAa
S

G
qq

ab

abin

ap

out

ap  ,,*  (11) 
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In which out

apq is the outflow of a link caused by traffic on path p, a the preceding 

link of a on path p and b the succeeding link of a on path p. 

 
Equation (10) connects the different links on a path by setting the inflow of a 
link equal to the outflow of a preceding link. Equation (11) reduces the outflow 
of a link to reflect restrictions on links connected to the downstream end of the 
link. The amount of reduction is equal to the ratio between the actual possible 
flow (equation (12)) and the amount of traffic wanting to flow from the 
considered towards the next link on path p (equation (13)).  
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G abab
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ba

b

b
ab 


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


,;*min  (12) 

AbAaqS
p

in

apapba  ,*  (13) 

 
Where a is the preceding link of link b on any path and b the succeeding link 
of a on any path.  
 
Squeezing phase: algorithm 
Below the squeezing algorithm as currently implemented in a prototype is 
described.  
 
Step1: Initialization 

 Let P be the set of paths. },|{ SsRrPP rs   

 Assign all path flows without any blocking, and compute the link flows 
using equation (x2) 

 Determine all link V/C ratios, a

in

aa Cq /  

 Determine the set of blocking links, ,A   | 1 .aA a A     

 Determine the set of blocked paths, ,P   | : 1 .apP p P a A       
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a A
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
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PPp
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\
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 Set 0,0, in

a

out

a qq   for all path flows that are not blocked 

 Set turn flows 0,out

aab qtf  for all turns on paths that are not blocked 

 Set ( ) 0, .i
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Step 2: Assign increment 

 Determine increment: 

ini

( 1)

( )
( )

( ) ( 1)

1
, if  0,

1
min , if  0.

ai

i
i a

i ia A
a a

i

i







 









 

      

 



©  Association for European Transport and contributors 2010 

 

 

 Set 
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a

iin

a fqq )1()(,)1(,   

 Set 















Paq

Paq
q

iout

a

iin

aiout

a )(,

)1(,

)1(,   

 Update turn flows Pbabqtftf iin

babab   |: )1(  

 Set : 1.i i    

 Update  AaCq a

iin

a

i

a  ,/)(,)(  [Note that all V/C ratios are below 

or equal to one]. 

 Update the set of actively blocking links,  * ( )| 1 .i

aA a A     

 For all actively blocking links * ,a A  update the link sequences in path 

set P  such that the paths only contain links up to the first actively 
blocking link.  

 Update the set of blocking links, *: \ .A A A  
 
Step 3: Convergence 
 

 If ( ) 1,i

i

   then stop. Otherwise, return to Step 2.  

 
 
3.3 STAQ: queuing phase 
 
The queuing phase calculates the effect of blocking back and spillback given 
the inflows and vertical queues calculated in the squeezing phase. In order to 
do so the algorithm keeps track of the speed of and flow conditions around all 
shockwaves travelling through the network. When any shockwave reaches the 
beginning or end of a link, or reaches another shockwave, a so called event 
occurs. Because the speed of each shockwave is known, it is possible to 
determine the point of time (relative to the start of the queuing algorithm t0) on 
which the event occurs. Flow conditions around the original shockwave are 
adjusted taking into account the existing link and flow conditions on the 
connecting link(s).  
 
The queuing phase ends when all traffic demand has reached its destination. 
Because in STAQ a single time period and stationary flow is assumed all 
traffic demand is ‘put on the network’ when the time indicator in the queuing 
phase equals the length of the study period. This does not mean that all traffic 
demand has reached its destination at the end of the study period because 
traffic can be held up at bottlenecks. The queuing phase therefore continues 
after the time indicator equals the length of the study period, but with inflows 
on all links set to 0 (creating new forward shockwaves), reflecting that all 
traffic demand has been put on the network. The queuing phase ends when 
no more shockwaves are present, i.e.: all traffic demand has reached its 
destination.  
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Queuing phase: problem formulation 
Let in in( , )a aq k  and out out( , )a aq k  denote the traffic conditions at the beginning and 
at the end of link ,a  respectively. Transitions between two traffic states are 
given by a shockwave that can move backward or forward through a link. Let 

 ( ) ( ),n n

a aq k  describe the traffic conditions downstream of the thn  shockwave, 
counted from the beginning of the link. If for example the outflow rate is 
smaller than the inflow rate, possibly because of a downstream bottleneck, 
there will exist a backward shockwave. Any changes in the outflow capacity of 
a link may again start such a backward shockwave. If the inflow conditions 
change, this may yield a forward moving shockwave. Hence, several 
shockwaves may exist on a link at a certain time instant. In case these 
shockwaves meet each other, a new shockwave is formed with a new speed 
and direction (forward or backward), depending on the traffic states upstream 
and downstream the shockwave. Shockwaves have a speed that is given by 

 
( ) ( 1)

( )

( ) ( 1)
.

n n
n a a

a n n

a a

q q
w

k k









 (14) 

 
where  ( ) ( ),n n

a aq k  is the traffic state downstream the shockwave, and 

 ( 1) ( 1),n n

a aq k   is the traffic state upstream. In case ( ) 0,n

aw   the shockwave will 
move backward, while ( ) 0n

aw   indicates a forward moving shockwave. Let 
( ) ( )( )n n

a ax t  be the location of shockwave n  that started at time instant ( ) .n

at  The 
location of this shockwave at time instant t  is given by  
 

 ( ) ( ) ( ) ( ) ( )( ) ( ) .n n n n n

a a a a ax t x t w t t    (15) 

 
There are three situations in which new shockwaves are created. Either at the 
beginning of a link due to a change in the inflow conditions, such that 

( ) ( )( ) 0,n n

a ax t   at the end of a link due to changes in the outflow capacity, such 
that ( ) ( )( ) ,n n

a a ax t L  or somewhere else on the link when two shockwaves meet 
each other, with ( ) ( )0 ( ) .n n

a a ax t L   To illustrate, consider Figure 2. At 0 ,t  we 
assume that the outflow capacity drops, such that a queue will form. The tail 
of the queue will move backward with a shockwave speed equal to the slope 
from traffic state 2 to traffic state 1 indicated in the fundamental diagram. At 
time 1 ,t  assume that the inflow rate into the link drops, changing the traffic 
state to 3. A forward moving shockwave will result with a speed equal to the 
slope from traffic state 3 to traffic state 1 in the fundamental diagram. At time 

2 ,t  we assume another drop in the outflow capacity, changing the outflow 
conditions to traffic state 4, and another backward shockwave is created. As 
can be seen at 3 ,t  the first and second shockwave (counted from the left) 
approach each other, while the third shockwave may overtake the second 
shockwave due to its higher speed. At 4 ,t  The first and second shockwave 
have merged into a new shockwave that has a speed equal to the slope from 
traffic state 3 to traffic state 2. The two remaining shockwaves meet each 
other at time 5 ,t  creating a (forward moving) shockwave, which reaches the 
end of the link at time 6 .t  
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Figure 2:  Shockwaves from traffic flow theory 

 
Queuing phase: algorithm 
Below the queuing algorithm as currently implemented in a prototype is 
described. Note that a more recent version of the algorithm is currently being 
developed and implemented. This newer version is directly derived from the 
link transmission model (Yperman 2007). Because of new insights, in the new 
algorithm, it will no longer be necessary to explicitly trace shockwaves through 
the network, making it less complex and thus faster. Input for the queuing 

algorithm consists of link inflows ( Aaq in

a  ), link outflows ( Aaqout

a  ) and 

turn flows ( Aatfab  ) as determined in the squeezing phase. 

 
Step 1: Initialize 
 

 Calculate densities using fundamental diagram:  

Aaduncongesteqkk in

aa

in

a  )|(  
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










out

a

in

a

out

qa

out

a

in

a

out

aaout

a
qqAacongestedqk

qqAaduncongesteqk
k

|)|(

|)|(
 

 Set time, and exodus indicator: 
t:=0 

falseexodus  

 Create link-event lists SWa consisting of [t, x, v, k, s] : 

 Aa
k

k

l
SW

out

a

in

a

a

a 













0

0

0

00
 

 Calculate turn fractions from turn flows 





b

baabab tftftfr /  

 
Step 2: Main loop 
 

 Calculate changes in density and flow and check on stop criterion: 

first

a

first

a

first

a

last

a

last

a

last

a

first

a

first

a

first

a

last

a

last

a

last

a

kkkkkk

kqkqqkqkqq









11

11 )()()()(
 

 

If a

first

a

last

a

first

a

last

a

j

a JjAakkqqs  ,0000  

Stop! End of algorithm 
End 

 Add backward shockwaves to SWa  
 RkqAa last

a

last

a *|  

 
last

a

last

a

k

q
v




  





















v

l
t

vv

vttxl
ts a

last

a

last

a

last

a

last

aa ,
*)((

min
1

111

 

v

l
ttvifss alast

a

last

a


  *11 0  

 svkltSW last

aa

last

a 1  

 Add forward shockwaves to SWa  
 RkqAa first

a

first

a *|  

first

a

first

a

k

q
v




  



















v

l
t

vv

vttx
ts a

first

a

first

a

first

a

first

a ,
*)(

min
1

111

 

v

l
tsvifss afirst

a

first

a   011  

 svktSW first

a

last

a

11 0    

 Sort SWa on x, then on v   Aa  

 Update shockwaves and time indicator 

}}{min{min j

a
jAa

st


  (in case of merging shockwaves t is updated later 

on) 
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 Forward shockwave meetst end of link: 
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 Forward shockwave merges with preceding shockwave: 
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Backward shockwave merges with previous shockwave:  
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 Check for endtime: 
If falseexodusendtimet   

 endtimet   

Aak first

a  0  

trueexodus   

 Break: start with new loop 
end 

 Perform node model on node n* (if  n* is determined in ‘update 
shockwaves’ and n* is not a centroid) 

**' |)(,)(*
*)(

)(
min nanodenbnodeabtfrkqtfrkq
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 Return to step 2 
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3.4 STAQ: derivation of travel times 
 
Whenever the inflow rate or outflow rate on a link changes (due to an event at 
the beginning or end of a link), the algorithm of the queuing phase stores the 
cumulative link inflow and cumulative link outflow of this link. These 
cumulative inflow and outflows can be used to derive travel times on any 
given point in the time studied. Because the queuing phase continues until all 
traffic demand has reached its destination, travel times can also be calculated 
for traffic that reaches its destination after the study period has come to an 
end.  
 
The way STAQ calculates travel times is very similar to the way dynamic 
traffic assignment models calculate travel times based on cumulative flows as 
described in Newell (1993). However, because STAQ lacks a true time 
variable, like all static assignment models, traffic travels through its path 
instantaneous. This means that in the model vehicles are on every link on 
their path at the same time. For the calculations of shockwaves (thus delays) 
however, there does exist a time instant variable. When drawing cumulative 
flow curves, this lack of a time variable when travelling free flow through the 
network means that differences between cumulative inflow and cumulative 
outflow curves in STAQ represent delays, not travel times like in true DTA 
models. This means that in order to calculate link travel times, the free flow 
travel time should be added to the delay derived from the cumulative flow 
curves.  
 
 
4.  APPLICATION OF STAQ PROTOTYPE 
 
A fully working prototype of the STAQ algorithm has been developed. In this 
section results of the prototype on different networks are presented. First, runs 
on two test networks are presented which show how the algorithm works and 
that spillback and queuing is taken into account. Then, results of runs on the 
network of Amsterdam are presented in order to give insight in the real life 
performance of the STAQ algorithm.  
 
 
4.1 Corridor network 
 
The corridor network has already been introduced in section 2.5; figure 1. The 
corridor network is the simplest network tested. There are no diverging or 
splitting points, only bottlenecks. Network capacities are quantified as 1000 
veh/h per lane and traffic demand is quantified as 2200 veh/h. Since this 
network contains no route choice options assigning all or nothing yields the 
Beckmann solution as shown in figure 3. This is the quantification of figure 1.  

 
Figure 3:  Corridor network with quantified flows using Beckmann assignment 
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After applying the squeezing algorithm to this network the inflows and vertical 
queues are calculated as displayed in figure 4. The outcomes are as 
expected: the flow of 2200 is lowered whenever a link with insufficient 
capacity is encountered on the path, forming vertical queues the size of the 
difference between flow and capacity at the beginning of the bottleneck link.  

 
Figure 4: Inflows (bars) and vertical queues (pies) on corridor network after 

squeezing phase 
 
Applying the queuing algorithm to the corridor network using inflows as 
displayed in figure 4 yields an initial situation (figure 9), six events (figures 10 
to 15) and a final situation (figure 16). During the first five events, queues 
grow on the first and fifth link of which the latter causes spillback onto 
upstream links. At the sixth event both queues merge and in the final situation 
inflow of all links upstream from the bottleneck in link six is restricted to this 
bottleneck. This run demonstrates how STAQ handles the different events 
sequentially producing inflows and travel times at all events. The growing and 
merging of backward queues was also demonstrated. 
 
 
4.2 Network with crossing paths 
 
The network with crossing paths is used to demonstrate interaction between 
different paths. Like in the corridor network, there are no route choice options, 
just bottlenecks. This network however, has two paths which cross each other 
at an intersection, making it possible to demonstrate the behaviour of the 
node model with independent streams. The network and its link capacities are 
shown on the left hand of figure 6. Free flow speeds are set to 80 km/h on all 
links. Traffic demand on the path from centroid 11 to centroid 12 is 4000 whilst 
traffic demand on the path from centroid 13 to centroid 14 is 2000. Assigning 
all or nothing yields the Beckmann solution as shown in the right hand of 
figure 5. 
 
After applying the squeezing algorithm to this network the inflows and vertical 
queues are calculated as displayed in figure 6. Two vertical queues appear: 
one on the path of centroid 11 to centroid 12 (500 in vertical queue) and one 
on the path of centroid 13 to centroid 14 (3000 in vertical queue).  
Applying the queuing algorithm to the network with crossing paths using 
inflows as displayed in figure 6 yields an initial situation, five events and a final 
situation. These are displayed in figures 17 to 20. It can be seen that the 
bottleneck on the path from centroid 11 to centroid 12 starts blocking the 
intersection at the second event, in which the path from centroid 13 to centroid 
14 is also blocked. This creates a forward shockwave from the intersection 
towards centroid 14 which starts to dissolve the queue at the third event. This 
queue has completely disappeared at the fifth event. This run shows how 
STAQ handles interaction between different paths over intersections, forming 
both backward and forward shockwaves. 
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Figure 5: Capacities (left) and Beckmann flows (right) on network with 
crossing paths 

Figure 6: Inflows (bars) and vertical queues (pies) on network with crossing 
paths after squeezing phase 
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4.3 Amsterdam network 
 
The algorithm has also been applied on the network of Amsterdam consisting 
of 3868 links and 279 centroids in order to give insight in the scalability and 
calculation speed of the algorithm. Table 1 displays some properties of the 
Amsterdam network. 

 
Indicator Value 
# links 3868 
# centroids 279 
# Hbpairs 77562 
# used paths 72908 
# blocked paths 24056 
average #links per per path 45.65 
# squeezing increments 49 
# of queues after squeezing 23 
average #connectinglinks per node 1.27 
average absolute shockwave speed 5

(2) 
duration of queuing phase 1 
average link length 0.1491 

Table 1: properties of the Amsterdam network 
 
The squeezing phase needed 49 increments to load all traffic onto the 
network resulting in inflows and queues as displayed in figure 7. Application of 
the queuing phase on the Amsterdam network yields 23 initial shockwaves 
caused by the vertical queues displayed in figure 7 triggering 2216 events. 
Although the number of events seems very large, calculations that need to be 
done per event are very limited because each event only causes calculations 
with respect to one node and the links connecting to that node while the rest 
of the network is left untouched.  
 
Figure 8 shows results after 1 hour of STAQ (evening peak). The results have 
not been analysed on plausibility of the calculated queues and travel times. 
This was not done since route choice was based on an all or nothing 
assignment because multiple paths per OD pair are not yet supported by the 
prototype.  
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Figure 7: Inflows (bars) and vertical queues (pies) on the Amsterdam network 

after squeezing phase 

 
Figure 8: inflows (width) and speed relative to free flow speed (colour) on the 

Amsterdam network after 9 minutes of queuing  
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In order to give insight in the computational complexity, below the amount of 
computational time needed to solve each of the two problems in STAQ is 
related to an all or nothing assignment.  
 
In an all or nothing assignment, the amount of calculation time required is 
proportional to the number of paths times the average number of links per 
path (equation 15). 
 

)(* p
Pp

ngallornothi AavgPT


  (15) 

 
The calculation time needed for the STAQ squeezing phase is proportional to 
the number of increments needed, the number of paths and the average 
number of links per path (16). The latter is divided by two because links 
behind blocked paths are removed from the path which means, assuming a 
uniform spread of blocked links over the network, that the average number of 
links per path to be processed will be half of the average number of links per 
path. The number of increments I is dependent on the crowdedness of the 
network. The more blocking links (links on which demand exceeds capacity), 
the more increments needed. This effect is tempered when multiple blocking 
links exist on the same path because existence of blocking links upstream 
result in lower demand on links downstream, thereby possibly removing such 
a downstream blocking link. 
 

)2/(** p
Pp

squeezing AavgPIT


  (16) 

 
The calculation time needed for the STAQ queuing phase is proportional to 
the number of events created. The number of events depends on the number 
of vertical queues created during the squeezing phase, the average number 
of incoming and outgoing links per node, the length of the chosen study 
period, the average absolute shockwave speed and the average link length. 
Proportionality is then calculated using (17). 
The average number of connecting links per node is network dependent and 
determines how many new shockwaves are added on average when an 
existing shockwave reaches a node1. The average link length divided by the 
absolute shockwave speed determines how much time it takes for a 
shockwave to reach the end of a link, thus creating new shockwaves. The 
length of the chosen study period is equal to the parameter endtime, 
assuming that simulation starts at time=0. In (17) the parameter endtime 
represents the amount of time that the queuing phase has to create events.  
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Table 2 shows the number of calculations needed for an all or nothing 
assignment and the two phases of STAQ on the Amsterdam network. The 
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figures in table 2 are based on (15), (16) and (17) and the properties of the 
Amsterdam network as displayed in table 1. 
 
It can be seen that the number of calculations needed for the squeezing 
phase of STAQ is roughly 8 times bigger than an all or nothing assignment3. 
The STAQ queuing phase needs only 0.025% of the number of calculations 
needed in an all or nothing assignment. It must be noted that the number of 
calculations needed for the STAQ queuing phase is not directly comparable to 
the number of calculations needed for the other assignments because the 
STAQ queuing phase performs calculations on more links (the current link and 
its connecting links) and it performs a node model.  
 

 All or nothing STAQ squeezing STAQ queuing 
Estimated number of 
calculations 

3.328.250 26.904.832 826 

Unit 
change of inflow 

on 1 link 
change of inflow on 

1 link 

change of density on 
1+connectinglinks, 

perform node model 
Index 100 808 0.025 

Table 2: number of calculations on the Amsterdam network for an all or 
nothing assignment and the two phases of STAQ 

 
 
5. DISCUSSION AND FURTHER WORK 
 
Based upon the limited experience with STAQ, in terms of both realism of 
outcomes and calculation times, STAQ should be positioned in between static 
and dynamic assignment. Because the current implementation STAQ is still a 
prototype no definite judgement can be made about either of these criteria. 
The algorithms will be further optimized and developed and only application in 
real life transport studies can prove if STAQ outcomes meet demanded levels 
of realism. It is clear however, that STAQ is methodological superior to any of 
the existing static and semi dynamic models presented in chapter 2.  
 
Below recommendations for further research related to the development of 
STAQ are presented. 
 
Meaning of STAQ travel times on a given time instant 
As mentioned earlier, lack of a time variable in the squeezing algorithm has 
implications on the study period when applying the queuing algorithm. 
Because the queuing algorithm starts with vertical queues (with a queue 
length of 0) taken from the squeezing algorithm it implicitly assumes that there 
are no queues present at t0. This means that the study period over which 
STAQ is applied must be chosen in such a way that there are (more or less) 
no queues in reality at t0. For the end of the study period the lack of a time 
variable means that STAQ implicitly assumes that there are no more growing 
queues in reality at the end of the study period. As a result of this, travel times 
on any given time instant should not be used for analysis. Travel times which 
can be clearly interpreted are: 

 the average travel time calculated using cumulative flows based on the 
total results of the queuing phase. These travel times represent the 
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average travel time any user will experience when travelling during the 
study period. 

 the travel time at the end of the study period, which represents the 
maximum travel time users can encounter when travelling during the 
study period.  

 
Node model 
The node model that is now applied in STAQ is based on Bliemer (2007). 
Tampère et all (2010) state that this node model violates the invariance 
principle as defined by Lebacque and Khoshyaran (2005). The invariance 
principle was introduced to avoid discontinuous changes in the flows. The 
principle states that under constant demand and supply constraints, flows 
should be invariant during an infinitesimal time step. The effects of this 
violation of the invariance principle on STAQ will be investigated further.  
 
Junction modelling 
So far, only delays caused by capacity constraints on links are incorporated 
into STAQ. Delays caused by intersections (nodes) are not due to the lack of 
junction modelling. When STAQ is to be applied in urban transport models, 
junction modelling should be added. How this should be done, and especially 
the interaction between the junction modelling and STAQ will be investigated 
further. 
 
Application and optimization within route choice loop 
The test runs presented in this paper all used route choice based on an earlier 
performed all-or-nothing assignment. Application of STAQ within a route 
choice loop in order to reach Wardrop’s user equilibrium has yet to be done. 
Different approaches can be considered varying from fully incorporating STAQ 
within the route choice loop to applying a single run of STAQ after a static 
equilibrium assignment. 
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NOTES 
 
1 More precisely, if one would want to calculate the average number of 
connecting links per node as displayed in equation (17), the averaging should 
only take place over nodes that will be encountered by one or more 
shockwaves during the queuing phase. Since this is not known beforehand 
this cannot be done. 
2 Average absolute shockwave speed has been estimated, not calculated 
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Figure 9:  Link speeds (colour, figures) and inflows (bandwiths) on corridor 

network at t=0 (initial situation) 

 
Figure 10:  Link speeds (colour, figures) and inflows (bandwiths) on corridor 

network at t=0.08215 (first event) 

 
Figure 11:  Link speeds (colour, figures) and inflows (bandwiths) on corridor 

network at t=0.24259 (second event 

 
Figure 12:  Link speeds (colour, figures) and inflows (bandwiths) on corridor 

network at t = 0.42677 (third event) 

 
Figure 13:  Link speeds (colour, figures) and inflows (bandwiths) on corridor 

network at t = 0.50286 (fourth event) 

 
Figure 14:  Link speeds (colour, figures) and inflows (bandwiths) on corridor 

network at t = 0.58500 (fifth event) 

 
Figure 15:  Link speeds (colour, figures) and inflows (bandwiths) on corridor 

network at t = 0.65000 (sixth event) 

 
Figure 16:  Link speeds (colour, figures) and inflows (bandwiths) on corridor 

network after t= 0.65000 (until t=1.0) 
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figure 17: link speeds and inflows on network with crossing paths: initial 
situation and first event  

figure 18: link speeds and inflows on network with crossing paths: second 
and third event 
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figure 19: link speeds and inflows on network with crossing paths: fourth and 
fifth event 

figure 20: link speeds and inflows on network with crossing paths: final 
situation 
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Appendix:  Fundamental diagram and traffic flow theory 
 
In STAQ the Smulders’ fundamental diagram (see Smulders, 1988, or De 
Romph, 1994) is used, which is given by the following equation: 
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 (x14) 

 
where ak  is the density (km/h) on link ,a  and ,aV ,aK  and aJ  the given 
maximum speed, critical density (which is the density at capacity aC ), and the 

jam density of link ,a  respectively.  
 
It consists of a free-flowing branch and a congested branch. The simplified 
fundamental diagram as proposed by Newell (1993) and applied in the link 
transmission model by Yperman (2007), assumed both branches to be linear 
(indicated by the dashed blue line in Figure 2). While this linear assumption 
for the congested branch is often assumed to be close enough to reality, a 
linear line for the free-flowing part is somewhat unrealistic. For example, if the 
free-flow speed is 120 km/h, then anything below this speed is assumed to be 
in congestion. Therefore, we assume the free-flowing branch to be quadratic, 
following Smulders’ fundamental diagram. Should this be needed, Newell’s 
diagram can still easily be implemented by setting aaa VCK / . 
 
The colours in Figure 1 refer to the link speeds as indicated in Figure 21, 
which is ‘green’ in free-flow conditions, ‘yellow’ at capacity, and different 
shades of ‘orange’ to ‘red’ for more congested situations.   
 
 

flow

density

aC

aJ  
 
Figure 21:  Smulders’ fundamental diagram used in STAQ and speed colours 
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The fundamental diagrams are assumed to be given for each link in the 
network, and are used in conjunction with regular traffic flow theory to derive 
queues and shockwaves. Figure 22 illustrates an example of a link upstream 
of a bottleneck with a given link inflow and outflow. This inflow and outflow 
correspond to two points on the fundamental diagram, as indicated in Figure 
22. Due to the bottleneck the outflow is restricted to the inflow capacity into 
the bottleneck. Since the inflow is higher than the outflow, a queue will build 
up. The queuing speed is indicated by the slope from the line from the origin 
to the second point on the fundamental diagram. The first part of the link will 
initially remain free-flow with a speed equal to the slope of the line from the 
origin to the first point on the fundamental diagram. However, as time elapses, 
the queue builds up and may reach the beginning of the link, such that over 
time the traffic conditions at the beginning of the link switch from the traffic 
situation in point 1 to the traffic situation in point 2. The time it takes the queue 
to spillback to upstream links (provided that the inflows and outflows are 
stationary, as assumed in a static model) is determined by the shockwave 
speed, which is the slope of the line from point 2 to point 1. Given the link 
length, the time that spillback occurs can readily be computed.  
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Figure 22:  Shockwaves from traffic flow theory 
 


