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Università degli Studi di Pisa

geboren te Ronciglione, Italië
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Chapter 1

Introduction

1.1 The need for new sampling techniques

For most modern high-resolution multi-channel radar systems one of the major prob-

lems to deal with is the huge amount of data to be acquired, processed and/or stored.

But why do we need all these data? According to the well known Nyquist-Shannon

sampling theorem [1–3], natural signals have to be sampled at at least twice the sig-

nal bandwidth to prevent ambiguities. Therefore, sampling of very wide bandwidths

may require Analog to Digital Converter (ADC) hardware that is unavailable or very

expensive. Especially in multi-channel systems, both the cost and power consump-

tion can become critical factors. A similar limit applies also in the spatial domain;

for instance, for wide scanning arrays the spatial sampling must be smaller than

λ/2, with λ being the signal wavelength. In some applications, such as interleaving

of radar modes in time (pulses) or space (antenna aperture), multi-function oper-

ation can lead to conflicting requirements on sampling rates in both the time and

spatial domain. So, while on one hand the increased number of degrees of freedom

improves the system performance, on the other hand it puts a significant burden on

both the off-line analysis and performance evaluation of sophisticated detectors, and

on the real-time acquisition and processing. For example, in Space Time Adaptive

Processing (STAP) algorithms, evaluating the optimal filter weights is an immense

computational load both when simulating such detectors in the design phase and in

real time implementation.

In some cases, measurement time may also be a constraint, especially if the appli-

cation must work in (near) real-time. This is the case for example in 3D radar imaging

for airport security inspection of passengers. Acquisition of full 3D high resolution

image data may require a measurement time that is unacceptable in this situation.
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Since the issue of processing and storing huge amounts of data is a problem shared

by most modern digital systems, this subject has attracted much attention in the last

decade. Particularly, it was observed that in many systems while the data are sampled

at very high rates, often a compression stage follows the acquisition to reduce the data

dimensionality. This is based on the fact that most data sets contain significantly less

information than the number of measured samples. For example, in search radars

the observation space is divided in thousands of range, Doppler and azimuth bins, to

search for the presence of targets. However, while the volume contains many voxels,

the number of targets that might be present in the scene at a given time is orders

of magnitude less than the numbers of voxels in the search cone. Based on similar

observations, in mid 2006, Candès, Romberg and Tao [4] proposed a new, nonlinear

sampling theorem, stating that sparse signals can be recovered from measurements

acquired at a rate much lower than the one dictated by the Nyquist-Shannon theorem.

This innovative theorem served as the backbone for the development of a new field

called Compressive Sensing or Compressed Sensing or Compressive Sampling (CS).

The fundamental goal of CS is to perform simultaneously data acquisition and com-

pression, thus reducing significantly both the sampling requirements and amount of

data.

Although CS can efficiently deal with issues related to real-time data acquisition,

the design and analysis of sophisticated, multi-dimensional radar detectors is also

an issue that the radar designer has to deal with. In fact, when designing multi-

dimensional, efficient detection schemes, whose performances are difficult or impos-

sible to characterize analytically, we need to resort to simulations to evaluate the

detector performance. Even if the computational capacity of modern computers has

drastically increased in the last decades, generating and processing millions of (multi-

dimensional) random variables is still a time consuming task. This is the case for

example in STAP detectors. Such detectors are widely used in multi-channel systems

for improving detection capability of targets which are embedded in clutter, noise

and jammers. In typical STAP detectors, an angle-Doppler map of the background

disturbance surrounding the cell under test (CUT) is estimated from a set of target-

free training data and used to compute the optimal two-dimensional beamformer to

suppress disturbance and interference and enhance the signal of interest. STAP detec-

tors are notoriously intensive from a computational point of view, the main processing

burden being the inversion of the sample covariance matrix. Furthermore, the more

advanced (and robust) STAP detectors are also analytically difficult to examine, [5].

In such cases, the detector design must be performed by simulations. A critical as-

pect of design is the false alarm probability, which should be very low. In conducting

rare-event simulations of systems that involve signal processing operations that are

mathematically complex, there are two principal issues that contribute to simulation

time. These have to be dealt with effectively. The first issue concerns the rare event
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itself whose probability is being sought. The second concerns the computational in-

tensity that accompanies the signal processing. It is a daunting task to conduct

conventional Monte Carlo (MC) simulations that involve several millions of trials to

estimate low false alarm probabilities (FAP), with as many matrix inversions.

To alleviate the simulation burden of classical MC methods, forced Monte Carlo

or Importance Sampling (IS) simulations can be implemented. By efficiently sampling

the underlying probability density function (pdf), IS provides a very fast alternative

to more conventional MC methods. If one is able to design powerful biasing schemes,

the simulation time required to estimate even very low FAPs might be several orders

of magnitude smaller than the one of a MC estimator. Furthermore, in some cases

inverse IS can be used to design the detection thresholds of complex detectors whose

performance cannot be analytically evaluated [6].

1.2 Background and Research Objectives

In this thesis we investigate sampling methods that can deal with the problems of

processing complexity as well as efficient performance evaluation by reducing the

required amount of samples. By cleverly using properties of the signals or random

variables involved, the considered techniques, namely CS and IS, both alleviate the

burden related to data handling in complex radar systems. These methods, although

very different in nature, provide an alternative to classical sampling and performance

analysis techniques. In the next sections, we will briefly review the theories of CS and

IS, which will help to put our research objectives and results into perspective.

1.2.1 Compressive Sensing

The first method investigated, CS, is a revolutionary acquisition and processing theory

that enables reconstruction of sparse signals from a set of non adaptive measurements

sampled at a much lower rate than required by the Nyquist-Shannon theorem. This

results in both shorter acquisition times and reduced amounts of data. At the core of

the CS theory is the notion of signals sparseness. In fact, the information contained

in many natural signals can be represented more concisely if the signals are looked at

in a proper transform domain. If this is the case, then the (complex) signal of interest

x ∈ CN can be recovered from an undersampled set of linear projections y ∈ Cn,

with n � N , via `1-norm minimization.1 `1-norm based algorithms impose sparsity

on the estimated signal by looking for the solution with minimum `1-norm which is

in agreement with the measurements [4, 7–11].

1Throughout this thesis we consider the case of signals and measurements in the complex domain,

since it is more appropriate for radar applications. Equivalent results can be obtained for the case

of real signals.
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The sensing model can be mathematically represented as

y = Ax, (1.1)

where the n×N matrix A is called the sensing matrix.

The CS theory is based upon three fundamental concepts: sparsity, sensing matrix

properties and `1-norm minimization. In the next paragraphs we briefly review these

concepts.

Sparsity

Consider a discrete time (or space) signal having N samples. This signal can be

represented as a complex N -length vector x ∈ CN . The signal is said to be k-sparse if

a basis2 Ψ = [ψ1|ψ2| · · · |ψN ] ∈ CN×N exists such that x = Ψα and only k coefficients

in α are non-zero. In this case we can write

xΩ = ΨΩαΩ, Ω = {i, i = 1 · · · , N : αi 6= 0},

where ΨΩ is the N×k matrix containing only the basis vectors {ψi}ki=1 corresponding

to the k non-zero coefficients in α, and αΩ is the k-length vector of non-zero coef-

ficients. If instead α has k large coefficients (with indices in Ω) and (N − k) small

coefficients, then the signal x is not exactly sparse but it is said to be compressible,

and the best k-terms approximation can be determined [12].

Signal sparsity or compressibility plays a central role in transform coding, where

the N -length signal x is approximated by preserving only the k largest transform

coefficients αi. This is for example the case in JPEG compression, where only the

largest wavelet transform coefficients and their locations are stored [13]. Clearly, if

a signal can be represented in a domain where it is sparse, then, in this domain, the

signal information is contained in only k of the N coefficients.

In many radar applications the signals of interest are often sparse in range, Doppler

and/or azimuth. Consider for example the range dimension of an air surveillance

radar, as shown in Figure 1.1. The system scans several kilometers in range searching

for targets. Most of the time, however, only a few, one or no targets will be present

at any given time. In this case, the target response (or scene) can be considered as

being sparse in the range (time) domain, and therefore the matrix Ψ is the canonical

basis, i.e., Ψ = IN, and x = α.

2Throughout this thesis, we consider the sparsifying basis Ψ to be an orthonormal basis (thus

preserving vectors distances). Examples of orthobasis are discrete Fourier transform and wavelet

transform, which are widely used in image compression.
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Figure 1.1: Example of air surveillance radar.

Example: Range Pulse Compression

Consider a pulsed radar transmitting a chirp signal of duration T = 30µs and

bandwidth B = 3MHz (corresponding to 50m range resolution). There are five targets

present at ranges of 10.4Km, 10.6Km, 23Km, 26Km, and 30.5Km, respectively. The

received real signal, which is shown in Figure 1.2(a), is sampled at Nyquist rate (fs =

6MHz). The target scene can be reconstructed using conventional pulse compression,

without undersampling, as shown in Figure 1.2(b) in dashed line. Alternatively,

because of the sparsity in the range domain, we can use the CS approach. In this

example, the received signal is randomly subsampled in time by a factor of 5, and the

true target positions are still correctly found, without ambiguous responses. �

The sparse approximation also applies to high resolution imaging radars, when

the target reflectivity can be approximated as consisting of the sum of a few main

(independent) scatterers distributed over the whole observed range-azimuth plane.

Sensing Matrix Properties

The sensing mechanism of acquiring n measurements via linear projection through the

operator A is mathematically represented as in (1.1). Using the sparse representation,

we can write

y = Ax = AΨα = Φα, (1.2)

where Φ = AΨ is an n×N matrix.

However, the problem of recovering the length N vector x from the measurements

y is ill posed. In fact, there exist infinite many solutions x′ such that Ax′ = y.

Even so, if the sensing matrix is designed properly, it has been proved in [4, 14] that

the signal x can be recovered from the measurements y. Candès, Romberg and Tao

introduced the concept of Restricted Isometry Property (RIP), which is defined as

follows.3

Definition 1.2.1. [4, 14] A matrix Φ satisfies the RIP of order k if there exists

3Throughout this thesis we consider matrices Φ with unit column norm.
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Figure 1.2: Example of received signal from range sparse targets and reconstructed scene using pulse

compression and CS.

δk ∈ (0, 1) such that

(1− δk) ≤ ‖Φz‖22
‖z‖22

≤ (1 + δk) (1.3)

holds for any k-sparse vector z.

In words, the RIP condition ensures that any subset k of columns of Φ consists of

vectors which are almost orthogonal. If the matrix satisfies the RIP of order 2k, then

it implies that two different k-sparse vectors in RN will not map to the same vector

in Rn and their distance is approximately preserved.

Although many algorithms in CS literature rely on the RIP concept to provide

recovery guarantees, it is in general very difficult to verify whether or not a matrix

satisfies (1.3). To this end, one should check that all possible combinations of any k

columns of the sensing matrix satisfy the RIP, i.e., a combinatorial search is required.

For the special class of matrices with Gaussian independent and identically distributed

(i.i.d.) random entries, it has been demonstrated that the RIP condition is satisfied
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with high probability for n > ck log(N/k), with c being a small constant [4]. Since

random matrices have nice statistical properties, much attention has focussed on

designing CS systems using random entries sensing matrices. However, as we will see

later in Chapter 2, for some specific applications, such as range compression, more

efficient sampling strategies exist.

Since the RIP is practically impossible to compute for any realistic values of N and

k, a metric that is often used for the design of good CS matrices is the incoherence, in-

troduced in [15]. The coherence µ(B,C) between any two matrices B = [b1|b2| · · · |bN ]

and C = [c1|c2| · · · |cN ] is defined as [9]

µ(B,C) =
√
N max

1≤i,j≤N
|bTi cj |, (1.4)

i.e., the coherence is the maximum correlation between any two columns of the ma-

trices B and C.

As we will see in the next paragraph, the concept of coherence plays an important

role in determining how many CS measurements are needed to recover the signal of

interest x. Define the matrix Ã ∈ CN×N as the orthogonal matrix from which a

random subset of rows is selected by an operator Θ ∈ Rn×N to obtain the sensing

matrix A in (1.1). Then, the lower the coherence µ(Ã,Ψ) between the sensing and

sparsity domains, the smaller the number of CS measurements required. An example

of maximally incoherent matrices is the Discrete Fourier Transform (DFT) matrix

and the canonical basis I.

Recovery via `1-norm minimization

So far, we have seen that if the signal of interest x is sparse, then it is possible to

recover it from a number of measurements n� N . The question is now how we can

actually recover x (or an estimate of it) from y, the problem being ill-posed.

A common method, which is used for overdetermined systems of linear equations,

is the Least Square (LS) approach, which is based on minimizing the residual energy.

For an underdetermined system of linear equations, as is the case with CS, a solution

to (1.1) can be found using a similar approach by solving the problem:

α̂ = arg min ‖α′‖2 subject to Φα′ = y, (1.5)

where the p-norm of a vector z ∈ CN is defined as ‖z‖p :=
(∑N

i=1 |zi|p
)1/p

for

1 ≤ p < ∞, ‖z‖0 :=
∑N
i=0 1(zi 6= 0) for p = 0, with 1 being the indicator function,

and ‖z‖∞ := max(|z1|, · · · , |zN |).
Using the Lagrange multiplier, it can be shown that the solution to (1.5), for

p = 2, is given by α̂ = ΦH(ΦΦH)−1y, where ΦH(ΦΦH)−1 is the (right) pseudo-

inverse of the matrix Φ. However, using `2-norm minimization does not provide a

sparse solution.
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To enforce the a priori knowledge about signal sparsity in the recovery algorithm,

one should search for a solution with minimum `0-norm. Since the `0-norm counts

the number of non-zero elements in a vector, minimizing it is equivalent to looking

for the sparsest solution α̂ which is in agreement with the measurements y.

Unfortunately, this problem not only does not have a closed form solution, but

it also is NP-hard to solve (combinatorial complexity). However, if we replace the

`0 with the `1-norm, then the problem is convex and can be solved using standard

convex optimization routines. The use of `1-norm to enforce sparsity dates back to

the ’80s, when it was first used in geophysical applications to recover sparse signals

from missing data [16–18].

In the ideal case of noise free data, using the measurements model in (1.2), the

optimization problem can be written as

α̂ = arg min ‖α′‖1 s.t. Φα′ = y, (1.6)

where ‖α‖1 =
∑N
i=1 |αi|. Once we have access to an estimate α̂, then the signal of

interest can be easily obtained as x̂ = Ψα̂.

Furthermore, it was demonstrated by Candès and Romberg in [19] that, if x is

k-sparse in the domain Ψ, and the matrix A is an operator that selects a random

subset n of rows of Ψ, then the solution of (1.6) is exact with very high probability if

n ≥ Cµ2(Ã,Ψ)k log n. It is now clear that, if the coherence between the measurement

domain and the sparsity domain is low, then the number of measurements needed is

just of the order k logN instead of N . This fundamental theorem essentially justifies

the use of `1-norm minimization for recovering sparse signals from highly undersam-

pled measurements.

So far, we have only considered ideal settings. In practice however, the measure-

ments are always corrupted by errors and the model in (1.2) must be modified to4

y = Ax + n, (1.7)

where n might be a vector of white Gaussian noise, or represent the quantization

error, or any other disturbance that is added to the measurements [20–22]. In this

thesis, we focus on the case of measurements noise with i.i.d. Gaussian entries, i.e.,

n ∼ CNn(0, σ2I), where CN stands for complex Gaussian distribution.5

4For easiness of notation, in the remainder of this thesis we will assume that the signal of interest

x is sparse in the canonical basis, i.e., Ψ = IN and x = α. The results can be easily generalized to

the case Ψ 6= IN and will not change the derivation of our results.
5It was shown in [23–25] that, if white Gaussian noise is added to the signal x before sampling

with the matrix A, i.e.,

y = A(x + n),

then this results in a noise folding, which essentially can be treated exactly as (1.7) except for a

scaling by a factor N/n in the noise variance.
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In this scenario, the following convex optimization problem recovers a close ap-

proximation of x [7, 10]:

x̂ = argmin
x′

‖x′‖1 s.t. ‖Ax′ − y‖22 ≤ ε, (1.8)

where ε is a threshold proportional to the noise variance. Alternatively one can solve

the unconstrained problem, referred in literature as the Least Absolute Shrinkage and

Selection Operator (LASSO) [26] or Basis Pursuit Denoising (BPDN) [27], given by

x̂ = min
x′

1

2
‖y −Ax′‖22 + λ ‖x′‖1, (1.9)

where λ is a regularization parameter that controls the trade off between the sparsity

of the solution and the `2-norm of the residual. Note that the relation between λ and

ε that makes the two problems equivalent is not known and data dependent. Since

the cost function in (1.8) and (1.9) is convex, these problems can be solved using

standard techniques, such as gradient based or interior point methods. A variety of

algorithms to solve (1.8) and (1.9) can be found in [28–40] and references therein.

In [11], an important theorem was derived which upper bounds the reconstruction

error.

Theorem 1.2.2. [9,11] Define xS as a vector containing the S largest (in amplitude)

coefficients of the vector x and zeros elsewhere. If the sensing matrix A obeys the RIP

with constant δ2k ≤
√

2− 1, then the solution to (1.8) obeys

‖x̂− x‖2 ≤
C0√
k
‖x− xS‖1 + C1ε.

In words, Theorem 1.2.2 states that the reconstruction error has an upper bound

that equals the sum of the error caused by the sparse approximation and an error

proportional to the measurement noise.

The class of greedy algorithms, which is not investigated here, is also widely used

to recover sparse approximation. These algorithms include Matching Pursuit (MP)

and Iterative Hard Thresholding (IHT) based approaches [41–52].

Research Objectives and Results

Since the development of the CS theory, many papers have appeared demonstrat-

ing successfully that CS represents a valid alternative to conventional sampling and

processing schemes [53–77].

However, while most of the work so far has served to establish the usefulness of CS

in many radar applications, several practical issues have not been addressed yet. For

example, if we need to perform target detection, how can the detection probability
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be optimized against false alarm rate? How can the false alarm rate be controlled

adaptively against unknown noise and clutter? What is the relation between the

BPDN threshold (λ or ε) and the detection and false alarm probabilities? Further-

more, how can a CS-radar be designed, in particular, what amount of undersampling

is acceptable, and at what cost, in terms of power?

One of the main issues to be addressed to answer our questions is how to find

the ‘optimal’ value of the threshold ε or regularization parameter λ to be used in the

LASSO. These parameters are related to both the underlying noise power and the

number of non-zero coefficients k. Hence, in a practical scenario, where neither the

variance of the disturbance, nor the number of targets are known a priori, tuning of

these thresholds is a very difficult task. Furthermore, even if we know the disturbance

variance and the sparsity level, tuning the parameters for a given performance is

still an open problem, since most of the theoretical works in CS provide pessimistic

sufficient conditions that cannot be used in practice [78].

In most operational radars, Constant False Alarm Rate (CFAR) processors are

used for adaptive target detection. Several CFAR schemes have been designed to

attain good performance in the presence of different types of clutter and target sce-

narios [79–89]. The modeling and prediction of False Alarm Probability (FAP) is

essential for the design of CFAR schemes. This in turn requires some level of knowl-

edge of the underlying noise (or clutter) distribution which is input to the detector.

Designing CFAR schemes seems to be out of reach for CS radar systems, due to the

so far unknown relations between FAP/noise statistics and the parameters involved

in the `1-norm reconstruction. This is due to both the non linearity of the reconstruc-

tion algorithms and to the fact that the estimated signal has only a limited number

of non-zero coefficients, making it difficult to estimate any statistics.

The objectives of this thesis concerning CS are to i) design adaptive detection

schemes with CFAR properties for CS-based radars that can be implemented in op-

erational systems and ii) quantify their performance in terms of compression factor,

sparsity and Signal to Noise Ratio (SNR). To this end, we will address and solve

a number of issues, including: characterizing the input/output relations of the non-

linear LASSO reconstruction; adaptively estimating the recovery threshold parameter

that provides the optimal reconstruction SNR; analyzing the target signal and noise

distribution after `1-norm recovery; establishing the dependence of the recovery SNR

on the amount of compression and number of targets present in the signal and design-

ing suitable adaptive detection architectures with CFAR property that can be used

without any prior knowledge of the original signal or noise.
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1.2.2 Importance Sampling

The second technique investigated in this thesis, IS, has roots in statistical physics and

represents a fast and effective method for the design and analysis of detectors whose

performance has to be evaluated by simulations. Using fast simulations, the number

of random variables needed to estimate rare events can be significantly reduced, thus

resulting in much shorter simulation times [6, 90–93].

Fast simulations rely on techniques such as biasing and the g-method estima-

tor [6, 94, 95], and can be used to not only predict the performance of detection

schemes but also to design detector thresholds, using inverse IS techniques. In the

following sections, we briefly review some fundamental concepts of IS that will be

used throughout the second part of this thesis, based on [93].

Fast simulations

Importance Sampling (IS) is an efficient technique for estimation of events which

occur with very low probabilities, i.e., rare events. Consider for example the problem

of estimating the probability pt that a random variable (RV) X with pdf f(x) is above

the threshold t, i.e.,

pt = P (X > t) = E
(
1(X > t)

)
(1.10)

where 1 is the indicator function. If t is large enough, then pt represents a rare

event. Using classical MC simulations, an estimate of the probability pt is obtained by

generating K i.i.d. RVs Xi, i = 1, · · · ,K from the same distribution as the original RV

X and counting the number of times kt that the realizations are above the threshold,

i.e.,

p̂t =
kt
K

=
1

K

K∑
i=1

1(Xi > t). (1.11)

Here, p̂t is an unbiased estimate of pt and its variance is given by

var p̂t =
1

K
(pt − p2

t ). (1.12)

Using the Central Limit Theorem (CLT) it can be shown that the number of trials K

required to estimate pt with an error no greater than 20% with 95% confidence is about

K ≈ 100/pt, [91]. Clearly, in certain applications such as radar and communications,

where one needs to estimate false alarm probabilities or Bit Error Rates of the order

of 10−6, using classical MC methods becomes prohibitive, since it requires generating

millions of RVs to achieve a desired accuracy. This translates directly into extremely

long simulation times.

As an alternative to the classical MC method, IS works by biasing the origi-

nal probability distributions in ways that accelerate the occurrences of rare events,
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conducting simulations with these new distributions, and then compensating the ob-

tained results for the changes made. The principal consequence of this procedure is

that unbiased probability estimates with low variances are obtained quickly.

Define f∗ as the biased density function, i.e., f∗ is the pdf of some transformation

of the original RV X. Then equation (1.10) can be rewritten as

pt = E
(
1(X > t)

)
=

∫
1(x > t)

f(x)

f∗(x)
f∗(x)dx = E∗

(
1(X > t)W (X)

)
, (1.13)

where W (·) = f(·)/f∗(·) is the weighting function and E∗ denotes expectation with

respect to the density function f∗.

Using the last equality in (1.13), the IS estimator of pt can be derived, and it is

given by [93]

p̂t =
1

K

K∑
i=1

1(Xi > t)W (Xi), Xi ∼ f∗. (1.14)

In equation (1.14), Xi ∼ f∗ indicates that the RVs Xi are drawn from the distribution

f∗. This estimator is also unbiased and its variance is equal to

var p̂t =
1

K
[E∗
(
12(X > t)W 2(X)

)
− p2

t ] =
1

K
[E
(
1(X > t)W (X)

)
− p2

t ]. (1.15)

The expectation on the right hand side is called the I-function, and can be used to

characterize the performance of the designed IS estimator. While running simulations,

an estimate of the I-function can be evaluated as

Î =
1

K

K∑
1

1(Xi > t)W 2(Xi), Xi ∼ f∗. (1.16)

If an optimal biasing distribution can be determined, it has been proved that, for

estimating the same rare event, the variance of an IS estimator is always smaller than

or equal to the one of the MC estimator [93]. As can be seen from (1.15), a sufficient

condition so that the variance of the IS estimator is smaller than the variance of the

MC estimator is that W (x) < 1 for x > t.

Biasing

One of the main tasks in IS is determination of good simulation distributions f∗ such

that the variance of the IS estimator is smaller than the variance of the MC estima-

tor. Several types of biasing techniques, such as scaling, translation and exponential

twisting, exist. An example of biasing by scaling is shown in the following example.

A more detailed description about the properties of the optimal biasing distribution

and the different biasing strategies can be found in [92,93]. These simple yet effective
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schemes can be used to bias one or more of the random variables involved in the

estimation of the rare event. The amount of biasing is then controlled by a scalar θ

or a vector θ of biasing parameters, which, in turn, for a given f∗ must be optimized

to achieve the minimum variance IS estimator.

Example: biasing by scaling [93]

Suppose that we are interested in estimating the probability of false alarm p̂t that

a random variable X with Rayleigh distribution f(x) = x
σ2 e

−x2

2σ2 and parameter σ = 1

is above the threshold t = 5.2565. It is known in closed form that the probability

pt = e−t
2/2. Therefore, setting t = 5.2565 leads to pt = 10−6. Using Monte Carlo

simulations, it would require to generate at least 10 million realizations of the RV

X for estimating the rare event. However, using the theory of IS, we can think of

scaling the original RV X by an amount θ > 1, so that the rare event will occur more

frequently. The bias introduced by scaling the RV will be taken care of by applying

the proper weighting function during estimation of the false alarm, as shown in (1.14).

The distribution f∗ of the scaled RV θX can be obtained from the original one f using

f∗(x) =
1

θ
f
(x
θ

)
,

and the weighting function is given by

W (x) =
f(x)

f∗(x)
= θ

f(x)

f(x/θ)
= θ2e

−x2

2σ2
(1− 1

θ2
).

An example of the original and biased distributions is shown in Figure 1.3. �

It is clear that by drawing the RVs from the distribution f∗, the occurrence of

the event X > t takes place more frequently. In other words, we are sampling now

in the ‘important’ region, i.e., the region where the event of interest is taking place.

Simple schemes such as scaling or translation can be used to bias one or more of the

random variables involved in the estimation of the rare event. The effectiveness of the

IS estimator depends both on the biasing method applied and on the RVs involved

in the estimations. Note that the value of θ that minimizes the IS estimator variance

has also to be optimized. The procedure to adaptively estimate the optimal biasing

parameter for each desired value pt is called Adaptive IS.

Adaptive IS

After determining the biasing method and corresponding distribution, one has to

find the value of θ such that the variance of the IS estimator is minimized.6 From

6For simplicity, we consider here the case of a scalar biasing parameter.
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Figure 1.3: Example of biasing by scaling for Rayleigh distribution.

(1.15), it is clear that minimizing var(p̂t) is equivalent to minimizing the I-function

(or an estimate of it), which depends, through the weighting function, on the biasing

parameter θ. Therefore the optimum θ can be found by solving ∂I(θ)
∂θ = 0. An estimate

of the optimum biasing parameter can be adaptively computed, simultaneously with

the false alarm probability p̂t and Î, using, e.g., the Newton recursion

θm+1 = θm − δ
Î ′(θm)

Î ′′(θm)
. (1.17)

In (1.17) δ is a step-size parameter used to control convergence, m is the recursion

index, Î ′ and Î ′′ indicate the first and second partial derivatives of the estimated

I-function with respect to θ, respectively. It is straightforward to show that the

I-functions derivatives can also be estimated using the equations

Î ′(θm) =
1

K

K∑
1

1(Xi > t)W (Xi, θm)W ′(Xi, θm), Xi ∼ f∗,

Î ′′(θm) =
1

K

K∑
1

1(Xi > t)W (Xi, θm)W ′′(Xi, θm), Xi ∼ f∗,

where the partial derivatives of the weighting function, W ′ ≡ ∂W/∂θ and W ′′ ≡
∂2W/∂θ2, can also be evaluated numerically during the recursions.

When we use more than one biasing parameter, the Newton recursion can be

easily adapted to the multi dimensional case by replacing the estimates of the first

and second derivatives of the I-function with estimates of the gradient and Hessian

of the I-function [96].
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Simulation Gain

Simulations performed using biased distributions can provide enormous speed-ups if

they are chosen with due care and mathematical precision. Indeed, if applied suc-

cessfully, simulation lengths needed to estimate very low probabilities become (only)

weakly dependent on the actual probabilities. It is thus possible to evaluate any

probability in reasonable amounts of simulation time.

A measure to characterize the effectiveness of the chosen IS scheme is the simula-

tion gain Γ. The simulation gain of an IS estimator compared to a conventional MC

estimator is defined as the ratio of the simulation lengths required by the MC and IS

estimators in order to achieve the same error variance, i.e.,

Γ =
KMC

K
=

pt − p2
t

I(θ)− p2
t

,

where KMC and K are respectively the simulation lengths of the MC and IS esti-

mators, and θ is the vector containing the biasing parameters. In practice, since the

quantities involved in the computation of Γ are unknown, the true gain is replaced

by an estimate, which is given by

Γ̂ =
p̂t − p̂2

t

Î(θ)− p̂2
t

. (1.18)

The g-method estimator and Inverse IS

The g-method, first presented in [6] and later extended in [94, 95], is a conditional

estimator which exploits knowledge of underlying distributions more effectively, thus

yielding a more powerful estimator. Moreover, the g-method estimator can be used

with or without IS, in both cases achieving a lower variance than the standard MC

or IS ones. An additional advantage is that the inverse IS problem (for threshold

optimization or selection) can be easily solved. Consider for example a generic CFAR

processor, where the test statistic is given by

X
H1

≷
H0

ηY,

where X is, e.g., the envelope or square law value of the CUT and Y is some function

of the cells in the CFAR window, e.g., the arithmetic average in the well known Cell

Averaging (CA) CFAR processor [79, 97] or geometric mean of the surrounding cells

such as in the well known LOG/CFAR detector [85, 87, 88]. In the absence of target

in the CUT, the FAP can be written as

αg ≡ P (X > ηY |H0) = E{P (X > ηY |Y,H0)} = E{g(ηY )},
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where g(x) = 1−F (x) and F is the cumulative distribution function of X conditioned

on Y and H0. An estimator of the FAP using the g-method can be set up as

α̂g =
1

K

K∑
i=1

g(ηY )W (Y, θ), Y ∼ f∗. (1.19)

If the g-method estimator is used without IS, W (Y, θ) = 1 and Y ∼ f .

The variance of the estimator in (1.19) is given by

var α̂g =
1

K
[E∗
(
g2(ηY )W 2(Y, θ)

)
− p2

t ], (1.20)

where the expectation on the RHS is called the Ig-function. Since the function g

denotes a probability, it can be easily proved [6] that the variance of the g-method

estimator is lower that the variance of a MC or IS estimator using the indicator

function instead of the g-function.

Using the g-method estimator the inverse problem, namely that of finding by fast

simulation the value of detector threshold ηo satisfying a prescribed FAP αo, can be

readily solved [6]. This is done by minimizing the stochastic objective function

J(η) = [α̂g(η)− αo]2,

An example of the function J(η) is shown in Figure 1.4. All detection algorithms

that involve a threshold crossing will possess objective functions that have the gen-

eral behavior shown in Figure 1.4,7 assuming that the FAP estimate is a decreasing

function of its argument η. Minimization of J with respect to η is carried out by the

algorithm

ηm+1 = ηm + δη
pt − α̂g(ηm)

α̂′g(ηm)
, m = 1, 2, . . . , (1.21)

where δη is a step-size parameter and the derivative estimator in the denominator is

with respect to the threshold η. At convergence, the recursion in (1.21) provides an

estimate η̂o of the sought threshold ηo.

One of the powerful features of adaptive and inverse IS is that the same set of

random variables can be repeatedly used for parameters optimization for different

threshold settings. Assume that we have a biasing scheme that promises to be effec-

tive once the parameters of the biasing distributions have been optimized. If system

performance can be characterized in terms of certain random ‘metrics’ (we use the

word with a slight abuse of terminology), then these metrics can be pre-computed for

a given set of input variables, and used repeatedly (which, in complex systems such

as STAP detectors eases the computational burden) in adaptive biasing optimization

7This can be proven by evaluating the first and second derivatives of J(η) at η = η0 [6].



1.2 Background and Research Objectives 17

0.1 0.12 0.14 0.16
0

0.2

0.4

0.6

0.8

1
x 10

−12

η

 J
(η

)

α
o
 = 10−6

Figure 1.4: Example of IS objective function.

algorithms. These latter algorithms themselves usually require no more than 100 iter-

ations and can be extremely fast. Resulting IS simulation gains can be simultaneously

estimated and these tell us whether we need more or less pre-generated variables to

achieve certain accuracies. Adjusting this latter number, biasing and system param-

eter optimization (inverse IS) algorithms can be run, once. Thus there is an initial

stage of at most a few steps during which gains are estimated based on pre-computed

metrics and the number of these metrics is adjusted.

Research Objectives and Results

The principal objectives in this thesis concerning IS are to examine the viability of

using importance sampling methods for STAP detection, develop these methods into

powerful analysis and design algorithms, and use them for synthesizing novel detection

structures.

Fast simulation using IS methods have been notably successful in the study of

conventional constant false alarm rate (CFAR) radar detectors [6,90,98–100], and in

several other applications. The first paper to appear on application of IS to STAP

algorithms was [101]; it laid the groundwork for developing powerful estimation algo-

rithms, based on the work in fast simulation carried out in [93]. In this work also some

new detection algorithms that are intended to be robust under various conditions were

presented.

Building upon the work in [96, 101] for the space time Adaptive Matched Filter

(AMF), we have investigated several STAP detectors from the standpoint of applying

importance sampling to characterize their performances. Various biasing techniques

have also been devised and implemented, such as biasing by rotation and two dimen-
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sional biasing, resulting in significant speed-ups in performance evaluation compared

to conventional MC methods. The important problem of detector threshold deter-

mination has been addressed and solved by fast simulation. Robust variants such

as the envelope-law and geometric-mean detectors for STAP processing have been

suggested, their CFAR property established, and performance thoroughly evaluated

using IS techniques. It is shown that their detection performances are decidedly bet-

ter than those of their conventional square-law counterparts when training data are

contaminated by interferers, while maintaining almost equal detection performances

under homogeneous conditions.

We have also investigated the class of low rank STAP detectors. Being compu-

tationally efficient, the low rank adaptive detector is a candidate for future imple-

mentation in STAP radar detectors. Subject to an approximation for the disturbance

covariance matrix in a clutter dominated scenario, the FAP of the Low Rank NAMF

(LRNMF) detector is known via a simple formula, [102] and [103]. However, using

fast simulations techniques we have provided an analytical derivation of the exact

FAP of the LRNMF detector for data possessing an arbitrary covariance matrix.

The work reported here paves the way to development of more advanced estima-

tion techniques that can facilitate design of powerful and robust detection algorithms

designed to counter hostile and heterogeneous clutter environments.

1.3 Outline of the Thesis

The remainder of the thesis is organized as follows:

Chapter 2 introduces the topic of CS and its application to radar. We derive the

CS radar signal model and describe some efficient ways of using CS for pulse

compression. We also emphasize some of the main issues related to `1-norm

based CS recovery algorithms and the effects of this non linear reconstruction

on CS radar detectors design.

Chapter 3 presents two architectures for radar detection using CS. These architec-

tures are designed and analyzed using the Complex Approximate Message Pass-

ing (CAMP) algorithm, which is a CS recovery algorithm that was developed in

cooperation with the Digital Signal Processing group at Rice University. The

CAMP algorithm enjoys several useful statistical properties and allows a com-

plete description of the input/output relations. Using the properties of CAMP,

we devise two novel CS CAMP based radar detectors and propose the first,

fully adaptive CFAR CS radar detector. The proposed schemes are analyzed

and compared by means of ROC curves using both theoretical and simulated

results.
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Chapter 4 describes the results of a measurement campaign performed at Fraun-

hofer FHR, in Germany, using Stepped Frequency (SF) radar waveforms for

applying CS in range. The performance obtained with the CS adaptive detec-

tion schemes presented in Chapter 3 are analyzed and compared. Some insight

can be gained about practical aspects of CS for radar detection by observing

the experimental results.

Chapter 5 reports on new IS biasing schemes for characterizing the Normalized

Matched Filter (NMF) and its adaptive version, the Normalized Adaptive Matched

Filter (NAMF). Furthermore, two novel STAP detectors, the Envelope (E) and

Geometric Mean (GM) variants of the NAMF detector, are also derived here

and their performance analyzed by means of fast simulations. These detectors

prove to be robust against interfering targets in the secondary vectors.

Chapter 6 deals with theoretical investigations into the performance of low-rank

(LR) STAP detectors. Using the g−method estimator, we have been able to

characterize the false alarm probability performance of LR STAP detectors in

terms of detection thresholds and disturbance backgrounds. FAP simulation

results are compared to the theoretical ones. The high simulation gains obtained

using the proposed estimator are also shown.

Chapter 7 summarizes the main results of the study which have led to this thesis

and also offers recommendations for future work in the areas of CS and IS.

1.4 Chronology

The work on Importance Sampling was carried out in 2005-2006 at the Telecom-

munication Group, University of Twente, Enschede, The Netherlands. The work was

supported by the European Office of Aerospace Research and Development (EOARD),

under Award No. FA8655-04-1-3025 and it was carried out under the supervision of

Prof. Dr. R. Srinivasan.

The research on Compressive Sensing was performed in 2010-2012 at TNO, The

Hague, The Netherlands, at the department of Radar Technology. This part of the re-

search was funded by TNO research programs ‘VP Space Data Utilization’ and ‘V922

Countering Improvised Explosive Devices and Landmines’, under the supervision of

Prof.ir P. Hoogeboom and Ir. M. Otten from TNO, and in cooperation with Prof.

Dr.-Ing. J. Ender from Fraunhofer FHR, Germany, and Prof. Dr. R. Baraniuk and

Dr. A. Maleki from Rice University, Houston.
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Chapter 2

Compressive Sensing Applied to

Radar

In this chapter we review some concepts from classical radar detection theory and

formulate the problem of compressive sensing radar detection. We derive the discrete

linear model that is commonly used in the CS framework, and describe the effects

of the non-linear `1-norm minimization recovery on the estimated signal. Based on

a statistical analysis of the target and noise characteristics obtained by solving the

Basis Pursuit Denoising (BPDN) problem, we can identify several challenges that

need to be addressed for the design and analysis of operational CS radar detectors.

We devise two possible CS radar detection architectures and perform a preliminary

comparison of their performance using Receiver Operating Characteristic curves. 1

2.1 Radar Signal Model

Consider the case of a one dimensional (1D) radar, which is concerned with the

exploitation of the target echoes as a function of range (or time delay) x(t) over an

observation interval t ∈ (Tmin, Tmax).2 The radar transmits a Radio Frequency (RF)

signal modulated by a waveform a(t), and, in absence of other sources of noise and

interference, the received and demodulated signal, which represents the interaction of

the transmitted pulse with the observed scene x(t), can be mathematically represented

1This chapter is based on articles [C5], [C6], [C7] and [C11] (a list of the author’s publications

is included at the end of this dissertation, p. 183.)
2For the results in this chapter, the simple 1D model suffices to illustrate our arguments. The

extension to azimuth and Doppler domains can be easily obtained in a similar way, see for example

[54,61,75].
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by the convolution

y(t) = C

∫
a(t− τ)x(τ)δτ (2.1)

where C is a constant including the target Radar Cross Section (RCS), phase terms

and propagation effects. The time delay variable t maps to range via the equation

t = 2r
c , where c is the speed of light and r is range (or distance). If there are k point

targets located at ranges ri, i = 1, · · · , k, corresponding to time delays τi, the target

reflectivity distribution can be expressed as x(t) =
∑k
i=1 ciδ(t − τi), where ci is the

i-th target RCS [59,63,104,105]. Hence, the (complex) baseband, received signal can

be rewritten as

y(t) =

k∑
i=1

xia(t− τi) (2.2)

where xi, i = 1, · · · , k is a (complex) amplitude proportional to, amongst others, the

target RCS, target distance and transmitted power [106]. Hence, in the remainder of

this thesis we consider |xi|2 as the power received from a target at position i.

As described in Section 1.1 of Chapter 1, in the framework of CS it is most

convenient to represent signals in vector form, therefore resorting to a discrete time

(and/or space) model. To this end, let the vector x represent the target response

(or scene) at discretized range bins,3 i.e., r = [r1, · · · , rN ], with r1 = cTmin
2 , rN =

cTmax
2 = r1+N∆R, where ∆R is the range bin size. Furthermore, assume that targets

can only be present at locations corresponding exactly to discrete grid points.4 Using

the Nyquist sampling theorem, the received signal y(t) is sampled at a rate fs ≥ B,

where B is the bandwidth of the transmitted signal. Then, the sampled received

signal y(tl), l = 1, · · · , L in (2.2) can be rewritten in vector form as

y = Ax =

k∑
i=1

xiai (2.3)

where each column ai, i = 1, . . . , N of the matrix A is a time delayed version of the

sampled transmitted waveform corresponding to the received signal from a target at

range bin i,5 and x is a length N vector with amplitude xi at indices i corresponding

to target located at ranges ri and zero elsewhere. Taking into account noise and

clutter, which are added to the signal received from the targets, we obtain

y = Ax + n (2.4)

where we consider n ∼ CN (0, σ2I).

3Because of the relation between time delay and range, we will use the two equivalently.
4In Section 2.4.2 we will briefly examine the effect of discretization errors (or model mismatch).
5For the 1D range case, the matrix A is determined by the transmitted waveform (a), the range

sampling interval ∆R and the received signal sampling frequency fs. In more general scenarios, using

also Doppler and angular information, the sensing matrix A will depend both on the transmitted

waveform and on the sensing geometry.
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2.2 Classical Radar Detection
In the most basic operation mode, a radar is concerned with the detection and local-

ization of targets in the observed scene. Over the years, radars have evolved into very

complex systems that are capable of not only detecting targets, but also estimate

their range, velocity and Direction or Angle Of Arrival (DOA or AOA) with very

high accuracy. Furthermore, radars are also used to obtain high resolution images

of areas or objects when operating in Synthetic Aperture Radar (SAR) or Inverse

SAR (ISAR) modes. In all cases, the final objective of a radar is to learn as much as

possible about the observed scene x via the available measurements y. Many classi-

cal books classify radars, based on their tasks, as either imaging, search or tracking

radars [107]. Although imaging radars typically have very high resolution, produce a

multi dimensional image, and may leave the detection to a human operator for image

interpretation, it is sometimes argued in the radar community that, on a more fun-

damental level, every radar is an imaging radar [105]. In fact, in all applications, a 1,

2 or 3D image estimate x̂ of the observed scene is obtained before further processing.

Whatever the classification, one of the questions to be answered by almost any radar

is how many targets are present and where are they located [108]. Therefore, radars

are mainly concerned with a joint detection and estimation problem [108–110].

In radar signal processing the detection and estimation of target parameters uses

concepts and tools from statistical decision theory, which are similar to the ones

used also in other applications, such as communication and image signal processing.

However, there are also some major differences that make the radar problem unique.

For example, it is hardly enough for a radar to simply declare the presence of a target

(using e.g., an energy detector). It is just as important to know how far the target

is and at what speed it is moving towards or away from the radar, see ( [109], p.

245) and ( [108], p.8). Another significant difference is that radar is a two-way active

sensor. Whereas in communication systems the message is added at the transmitter

side and travels one way, in radar the ‘message’ is added by the targets present in

the surrounding environment, and the signal is known. Considering that the free

space loss grows very rapidly with range as R4, the received power is scarce and

mostly radars operate at very low (input) SNR. Since the performance, both in terms

of detection capability and estimation accuracy of target parameters, are directly

dependent on the SNR, it is necessary to use all received power and to design both

the transmitter and the receiver to maximize the performance for the given radar task

and available resources.

2.2.1 The Matched Filter

It is well known that the Matched Filter (MF) is the filter that optimizes the SNR

of a known signal in white Gaussian noise, see e.g., [107]. The impulse response of
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the MF is a time reversed copy of the (known) transmitted signal, and the range

response of a point target after MF is given by the autocorrelation function of the

transmitted waveform. The range resolution at the output of the MF is determined

by the transmitted pulse length T . For a radar transmitting an unmodulated pulse,

the range resolution is given by δR = cT
2 . Hence, improving the range resolution

would require shortening the pulse duration, thus resulting in reduced transmitted

energy (for a limited fixed peak power). A common way to improve resolution with-

out reducing the pulse length, but rather increasing it, is to use frequency or phase

modulated pulses such as Linear Frequency Modulation (LFM) or chirp waveform,

Barker codes and pseudorandom noise (PN) sequences. In this case, the output of

the MF is a compressed pulse with resolution δR = c
2B , where B is the bandwidth of

the transmitted pulse. Because of this property, the operation of matched filtering is

mostly referred to as pulse compression (PC). The SNR gain of the MF after pulse

compression is given by the time bandwidth product BT . Although pulse compression

by matched filtering result in significant range resolution improvements compared to

unmodulated pulses, one of the issues that needs to be addressed is the sidelobes level.

In fact, since usually radar systems have very large dynamic range, it is necessary to

suppress sidelobes of strong targets in order to detect weaker ones. For example,

the autocorrelation function of a LFM pulse exhibits large sidelobes (about -13 dB)

with respect to the mainlobe [111]. As we will see in the next section, large sidelobes

may result in masking of weaker targets in a multiple targets scenario and in a severe

increase of the false alarm rate.

2.2.2 Target Detection

For the detection of a single target (with known parameters) embedded in white Gaus-

sian noise with known variance, the use of statistical decision theory shows that the

optimum (Neyman-Pearson) receiver consists of an MF followed by a fixed thresh-

old detector [108, 110, 112]. Using the Neyman-Pearson theorem, it is possible to

design the detector threshold to achieve a false alarm probability not exceeding a

pre-determined value of, say, α. Observe that the optimum detector, based on MF,

is derived for the ideal case of one known signal in white Gaussian noise. This is

hardly the case in practical operations, where mostly the target amplitude, phase,

time delay (range) and Doppler frequency are unknown.6 When the target param-

eters are unknown, a common approach is to set up a Generalized Likelihood Ratio

Test (GLRT) for each discrete time delay τi. Assuming for the initial target phase a

6For simplicity of exposition, we limit our discussion to the case of stationary targets, and therefore

ignore Doppler frequency shift.
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uniform distribution (and averaging it out), we obtain the test statistic [110]

|
∫ T

0

a∗(t− τi)y(t)dt|
H1

≷
H0

γ, (2.5)

where T is the received signal length.

Thus, the GLRT test consists in computing the envelope (or power) of the MF

output at all discrete time delays and comparing it to a threshold to determine the

presence (declare hypothesis H1) or absence (declare hypothesis H0) of a target at

time delay τi. Using the discrete linear model in (2.4), we can rewrite the test statistic

in (2.5) as

|x̂i| = |ai
∗y|, i = 1, · · · , N (2.6)

where ∗ indicates the conjugate transpose of a vector. In words, MF consists in

computing the cross-correlation of the received signal with time delayed versions of

the transmitted waveform, for each time delay that we want to test. Combining the

MF outputs for all time delays, we can write the MF discrete output signal in vector

form as x̂MF = [x̂1, · · · , x̂N ]T , where

x̂MF = AHy. (2.7)

Note that the test statistic x̂MF is a noisy estimate of the targets range response.

The envelope (or power) of each component of the vector x̂MF is compared to the

threshold γ to decide upon the presence of a target. For the envelope detector, the

threshold γ should be set to γ =
√
−σ2 lnα to achieve a FAP equal to α [107].

Detection of Multiple Targets

Mostly, although the number of targets might be significantly smaller than the num-

ber of resolution cells, more than one target is present in the received window. As

explained above, the task of the radar is to determine how many targets are present

and to estimate their locations.

If an MF is used at the receiver, expanding (2.7) we obtain

x̂MF = AHy = AH(Ax + n) = x + (AHA− I)x + AHn. (2.8)

From the above equation it can be seen that each entry x̂i of the MF output signal is

the sum of the true target response at location i (xi), plus the interference caused by

the presence of other possible targets at locations j 6= i (
∑N
j=1,j 6=i xja

∗
i aj), plus Gaus-

sian noise. Clearly, the interference is proportional to the cross-correlation between

time delayed version of the transmitted waveform [113].

In the ideal case that time delayed versions of the transmitted waveform are or-

thogonal and have unit norm columns, i.e., AHA = I, we obtain

x̂MF = x + z. (2.9)
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where z ∼ CN (0, σ2I).

Therefore, in the orthogonal case the components of the vector x̂MF are inde-

pendent of one another and each range bin can be treated independently. Applying

a binary hypothesis test at each time delay will produce an estimate of how many

targets are present and their time delays.7

However, for practical frequency or phase modulated waveforms the orthogonality

condition is never met. Furthermore, as targets are never exactly on a grid point, there

will also be discretization errors. These errors are often referred in the radar literature

as range gate straddling loss or scalloping error [107, 114]. Hence, the presence of a

target interferes, through the sidelobes, with the detection of another. A reduction

of the sidelobes level (SLL) can be accomplished by applying a weighting function

during matched filtering. However, the weighted MF output is no longer matched to

the transmitted signal, and therefore, while reducing the SLL it also reduces output

SNR. Alternatively, one can design waveforms with low sidelobes levels [115–117] or

use different pulse compression filters, such as Adaptive Pulse Compression (APC)

[104, 105] or mismatched filters [118–122]. A review of mismatched filters can be

found in [113]. Such filters can be obtained using standard convex optimization

algorithms and can be based on the minimization of different `p-norms of the sidelobe

energies vector [123]. In [123] it is shown that, the optimum filter that minimizes the

Integrated Sidelobe Level (ISL) is obtained by minimizing the `1-norm of the vector

whose elements are the sidelobe energies. Note that the design of mismatched filters

is based on iterative algorithms and the optimum filter weights have to be estimated

separately for each range bin. Therefore, such an approach is more computationally

complex than the MF one.

Furthermore, if the sidelobes are not sufficiently suppressed by the receive filter,

performing a binary GLRT at each range bin independently of the others does not

take into account the interaction between targets. In this case, the theoretically

optimum detection/estimation strategy is the multiple hypothesis test, considering all

possible combinations of number of targets and locations. This however, would require

to compute 2N probabilities, one per each hypothesis. Clearly, this would become

prohibitive as the size of the problem N increases. A similar problem is encountered

in asynchronous communication channels, and is referred herein as multiple users

interference. In a paper by Verdú [124], it is shown that the optimum detector for

this scenario is the multiple hypothesis test. However, this is NP-hard to compute.

Thus, although not optimal, in practical applications a weighted MF followed by a

detector is still the most popular approach.

7Note that, as described in the introduction, the GLRT acts as both a detector and an estimator.
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2.2.3 Constant False Alarm Rate detectors

The fixed threshold γ in (2.5), which fixes the FAP, depends upon the noise power σ2.

In practice, however, the noise power is varying and not known in advance. Hence, in

classical radar detectors a CFAR processor is employed. In CFAR schemes the Cell

Under Test (CUT) x̂i (which corresponds to the output of the receive filter at time

delay τi), is tested for the presence of a target against a threshold that is derived from

an estimated clutter plus noise power. The 2Nw cells (CFAR window) surrounding

the CUT are used to derive an estimate of the local background and they are assumed

to be target free. Commonly, 2NG guard cells immediately adjacent to the CUT are

excluded from the CFAR window. The great advantage of CFAR schemes is that they

are able to maintain a constant false alarm rate via adaptation of the threshold to a

changing environment.

The general form of a CFAR test is

X
H1

≷
H0

βY, (2.10)

where the random variable X represents some function (generally envelope or power)

of the CUT x̂i, β is a threshold multiplier that controls the false alarm rate, and Y

is also a random variable function of the cells in the CFAR window

[x̂i−Nw−NG , · · · , x̂i−NG−1, x̂i+NG+1, · · · , x̂i+Nw+NG ]. In the well known Cell Averag-

ing CFAR (CA-CFAR) detector, Y is the average of the cells in the CFAR win-

dow [79, 84, 97, 125–127]. The CA-CFAR detector is optimum in the presence of ho-

mogeneous i.i.d. Gaussian noise. However, in situations in which the clutter changes

rapidly or in the presence of interfering targets in the CFAR window, or when the

clutter and noise distribution are not Gaussian, the CA-CFAR detector performance

degrades severely. For this reason many alternative CFAR schemes have been de-

vised, such as Greatest Of (GO), Smallest Of (SO), Trimmed Mean (TM), Loga-

rithmic (LOG), and Order Statistic (OS) CFAR processors [79–83, 85, 86, 88, 89, 98].

Each of these CFAR schemes has some optimality property in a specific clutter and

interference scenario.

In most CFAR detectors some assumptions are made about the distribution of the

noise8, which is assumed to be known to within some shape and/or scale parameters

that can be estimated from the data. Depending on the characteristics of the expected

noise and interference scenario, the most appropriate CFAR scheme can be selected

or designed. Clearly, one has to know the relation between the CFAR threshold

multiplier and Pfa, so that β can be adjusted to maintain Pfa constant during the

observation time. Hence, the noise distribution should be known to design a CFAR

scheme.
8From this point on, the term noise will be used to signify noise and/or clutter with white Gaussian

distribution.
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The design of CFAR-like detectors for CS radars is one of the challenges tackled

in this work. As we will see in the next section, due to the characteristic of the signal

recovered from `1-norm minimization algorithms, a new approach to adaptive CFAR

detection for CS radar seems to be necessary.

2.3 CS applied to radar

As explained in Section 1.2.1, compressive sensing is a novel technique for data ac-

quisition and processing that allows reconstruction of sparse signals from a number of

measurements much smaller than the one dictated by the Shannon-Nyquist sampling

theorem. CS exploits the sparsity or compressibility of a signal to reduce both the

sampling rate (while keeping the resolution fixed) and the amount of data generated.

The prior information about sparsity is used in the reconstruction phase, which is

based on constrained `1-norm minimization as opposed to more conventional least

squares [4, 7, 11,27].

The possibility of using CS as a means to reduce the acquisition time or else to

achieve better performance with a reduced set of measurements has attracted the

interest of many researchers in several fields. Recent publications have demonstrated

the applicability of CS to optical and magnetic resonance imaging, remote sensing,

communications and radar, see [128] for an extensive list of publications.

In many radars the increasing demands in terms of resolution (bandwidth), and

trends towards multi-channel systems with less analog and more digital processing,

keep increasing the required sampling rates and amounts of data to be handled. As

the number of targets is typically much smaller than the number of resolution cells in

the illuminated area or volume,9 the prerequisite on the signal sparsity is often met in

many radar applications. Based on the target sparsity in the range-, angle-, and/or

Doppler domain, CS represents a valid alternative to conventional acquisition/process-

ing schemes with the advantage of relaxing some system requirements. An overview

of radar modes with corresponding CS applicability was presented in [129], and it is

summarized here in Table 2.1. This table shows that CS is most suitable for radar

applications where the observed scene is sparsely populated, such as air surveillance

and SAR tomography.

Much of the work on applications of CS to radar has focussed on demonstrating the

capability of recovering the target scene from a set of CS measurements using different

algorithms, sensing matrices, and sparsity domains [53–75, 131–133]. Particularly,

the work of [54] has established the fundamental limit of achievable resolution when

using CS to improve upon the resolution that can be achieved with classical imaging

techniques, such as MF. In [60] the achievable resolution of CS recovery was also

9An exception to this assumption is the case of SAR imaging radars, as described in Table 2.1.
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related to the grid discretization. We will see with an example in Section 2.4.2 and

with the experimental measurements in Chapter 4, that the super resolution achieved

using CS breaks down if targets are not located exactly on the discrete grid points

that are used to set up the sensing matrix.

In the work presented in this thesis, we focus on the design and analysis of CS

radar detectors rather than on CS high resolution radar imaging. Particularly, we are

interested in determining a strategy for optimal detection of targets from CS measure-

ments, designing an adaptive CFAR detector to achieve a desired pair (Pd, Pfa) in a

detection problem, and understanding the trade-offs between amount of compression

and SNR/detection capabilities. Moreover, the way to perform adaptive detection

in a CS framework is a problem that ultimately has to be addressed also for some

imaging radars where the estimated scene is not the final result (as it might be in

some SAR or ISAR applications) but it is just an intermediate step before automatic

target detection is performed. To design an adaptive detector in the CS framework,

one has to deal with a number of issues that are related mostly to the non-linearity

of the `1-recovery. These problems will become clear as we proceed.

Throughout the remainder of this thesis we concentrate our attention on the case of

a 1D radar operating in the range domain, when observing a single transmitted pulse

(or equivalently a burst for stepped frequency radar). We consider mainly two models

Table 2.1: Radar operations and corresponding CS applicability [129].

Radar Task Scene Sparsity CS Domain Applicability

Air surveillance [61] Few targets Thinned array +++

MTI [61,70,77] Few targets
Reduced slow time

sampling
++

Range profile [59,

130] (isolated vehi-

cles)

Few dominant scat-

terers

Reduced TX fre-

quencies
+

ISAR (isolated vehi-

cles) [53–55, 63, 75,

76]

Few dominant scat-

terers

Reduced TX fre-

quencies/angular

positions

++

SAR imaging [56,57,

66]
Not very sparse - -

SAR tomogra-

phy [68,69,71,72]

Few elevation angles

with reflections

Across track ar-

ray/number of

tracks

+++

MIMO imaging [58,

60,65,67]

Few dominant scat-

terers

Reduced TX/RX

units
++
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for the sensing matrix A. Specifically, we will consider A to be either a matrix with

random i.i.d. entries (either Gaussian or Bernoulli) or a partial DFT.10 Because of

their well-established properties, such as the RIP, these two models have been widely

used in the CS radar literature. From a system point of view, a random matrix A is

obtained when the transmitted waveform is a PN sequence and the received signal is

digitized at a sampling rate lower than the Nyquist rate [53,63,73]. This approach is

referred to as the ‘random filter’ in [53]. The partial DFT matrix instead is obtained

when transmitting a stepped frequency waveform in which the transmitted frequencies

are non uniformly spaced over the total transmitted bandwidth B [61, 75, 130, 134].

In Section 2.3.1 we make an explicit connection between the partial Fourier matrix

and the received signal from a SF radar.

For multidimensional radars, CS can be applied to just one or more domains,

as long as the signal permits a sparse representation in the domains where CS is

applied. Furthermore, depending on the transmitted waveform, there might be cases

where the application of CS in a given domain results in a significant performance

gain in another domain. An example of this is shown in [77], where it is demonstrated

that applying CS in range can results in either an increased Doppler unambiguous

range or increased Doppler resolution.

Notation

Let |α|, ]α and α∗ denote the amplitude, phase, and conjugate of α ∈ C respectively.

Furthermore, for the matrix A ∈ Cn×N , AH , Ai, Aij denote the Hermitian, ith

column and ijth element of matrix A, respectively. We are interested in detecting

the number and locations of targets present in the k-sparse signal x ∈ CN from

an undersampled set of n noisy linear measurements y = Ax + n, with n � N .

A ∈ Cn×N has either i.i.d. random elements (with independent real and imaginary

parts) from a given distribution that satisfies E(Aij) = 0 and E(|Aij |2) = 1
n , or is

a partial DFT matrix with unit norm columns. n ∈ Cn is the measurement noise

vector with i.i.d. components distributed as CN (0, σ2). Furthermore, we define the

compression factor δ = n/N and the relative signal sparsity ρ = k/n. Also, we assume

that the elements of x are i.i.d. distributed as xi ∼ (1− ρδ)δ(xi) + ρδG(xi), where G

denotes the probability distribution of the non-zero coefficients and δ(xi) is the Dirac

delta function.

10An n×N partial Fourier matrix is obtained from an N ×N discrete Fourier transform matrix

by preserving only a random subset n of the original N matrix rows.
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2.3.1 Stepped Frequency waveform for CS in range

As described in Section 2.2.1, to achieve high range resolution, the transmitted wave-

form must be a chirp, SF or phase coded signal. One approach to applying CS in range

could be to subsample the received signal y(t) in the time domain by, for example,

choosing only a subset of the Nyquist sampling instants tl or by using the Random

Demodulator of Tropp et al. [135]. However, subsampling the received signal in the

time domain will necessarily lead to an SNR loss, [59,135]. The loss of SNR, although

it can very well be tolerated in certain applications, is unacceptable in most radar

systems, which are already working at critical SNRs [107].

For example, it is known that at the output of the MF the SNR gain is equal

to the number of integrated samples, assuming the noise bandwidth is sampled at

Nyquist rate. While oversampling above the Nyquist rate does not bring any ad-

vantage, due to the noise correlation, undersampling reduces the MF gain, because

less samples are integrated. In terms of final SNR, throwing away time samples is

equivalent to throwing away transmitted power, and therefore does not appear to be a

good strategy. The method proposed in [59] suggests that a good strategy to perform

CS range pulse compression is to transmit only a subset of frequencies and to sample

only the transmitted frequencies at the receiver, so that also the noise is sampled

only on the selected TX frequencies and not over the whole bandwidth, as opposed to

undersampling in time. Using the methods proposed in [59], i.e., sequential or parallel

transmission of a reduced set of frequencies,11 also the TX waveform is designed to

perform CS, as opposed to time undersampling using the random demodulator. In

fact, although we cannot assign power to transmitted time samples, we can concen-

trate all the transmitted power on the subset of transmitted frequencies, so that all

transmitted power is equally divided amongst the measured (frequency) samples.

In SF radar (without CS), the transmitted waveform consists of a burst of N

pulses, each pulse being a rectangular pulse of duration τ modulated at the carrier

frequency fn = f1 +n∆f , n = 1, · · · , N , where ∆f is the separation between sequen-

tial transmitted frequencies. The bandwidth of a single pulse is equal to Bf = 1/τ .

An example of the TX waveform is shown in Figure 2.1.

After reception and demodulation, each range bin maps to N phases proportional

to the N transmitted frequencies [61, 136]. The N samples yn of the measurement

vector y are given by

yn =
1√
N

N∑
i=1

e−j2πfn2ri/cxi + n, (2.11)

11The model used in our simulations is the same whether the transmission of the selected frequen-

cies is performed sequentially or simultaneously. Therefore, in the remainder of this thesis, we refer

in general to subsampled SF waveform.
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Figure 2.1: Stepped frequency waveform.

where ri = r1 + i∆R, i = 1, . . . , N , is the range bin index and ∆R is the range bin

size. Finally, {xi}Ni=1 are the components of the sparse target vector x containing the

k complex target responses at indices corresponding to target range bins and zeros

elsewhere. Therefore, we can rewrite (2.11) in matrix form as in (2.3), where the

sensing matrix Ã (without CS) is the normalized N ×N DFT matrix. This implies

that, classical MF processing is equivalent to an Inverse DFT.12

Note that, contrary to classical pulsed radars, in SF radar one high resolution

measurement is obtained by processing together all the pulses in a burst (or, equiva-

lently, each pulse in the burst provides a single frequency measurement). This results

in an equivalent total burst bandwidth B = N∆f . The range resolution is therefore

given by δR = c/2B. Differently from pulsed/chirped radar, where the maximum

unambiguous range is determined by the PRF, in SF radar the frequency step size

(∆f) translates into a maximum unambiguous range of Run = c/2∆f [107].

To apply CS, the number of discrete frequencies which are transmitted is reduced

from N (which represents the Nyquist rate for unambiguous mapping of ranges to

phases over the whole bandwidth) to n, with n � N . Consequently, if we keep the

pulse length (τ) and the intra-pulse spacing (T ) unchanged, the duration of the total

burst is also reduced of a factor δ. In the remainder of this thesis, when using CS the

subset of transmitted frequencies is selected uniformly at random from the original

set of Nyquist frequencies. Therefore, the CS sensing matrix A consists of a random

subset of rows of Ã.

2.3.2 `1−norm recovery

As described in Section 1.2.1, a tractable approach to finding the sparsest solution to

the underdetermined system of linear equations in (1.7) is to solve the Basis Pursuit

for the noise free measurement case and the LASSO or BPDN problem [138] for the

the case of measurements corrupted by additive noise.

12Note that, formulating the relation in (2.11) without the use of complex numbers would be

extremely unwieldy. Therefore, we consider only algorithms that can deal with signals in the complex

domain. To this end, in Chapter 3 we will introduce the CAMP algorithm, which is an extension of the

AMP algorithm originally presented by Donoho et al. [137] to the case of signals and measurements

in the complex domain.
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(a) Amplitude (b) Phase

Figure 2.2: Complex soft thresholding function.

The cost function in (1.9) is convex and can be solved by standard techniques such

as interior point or homotopy methods [29, 30, 139]. However, these approaches are

computationally expensive, and therefore researchers have considered several iterative

algorithms with inexpensive per-iteration computations. For more information on

these algorithms, see [37, 140] and the references therein. These methods rely on

the fact that the optimization problem arg minx
1
2‖u − x‖22 + λ‖x‖1 has the closed

form solution x = η(u;λ) , (|u| − λ)ej]u 1(|u| > λ), where η(·;λ) is called the

complex soft thresholding function and 1 is the indicator function. The complex soft

thresholding function acts (componentwise) on the amplitudes of the input vector u

and produces a sparse signal by shrinking to zero all the elements of u whose amplitude

is below the threshold, or regularization parameter, λ, thus enforcing sparsity on the

solution. The components of u that are above the threshold will be biased towards

zero by an amount equal to the threshold λ, and their phase is unchanged by the soft

thresholding. The complex soft thresholding function is shown in Figure 2.2.

In the most general case, algorithms to solve (1.9) that are based on Iterative

Soft Thresholding (IST) use the following iterations. Starting with x̂0 = 0, at each

iteration t the estimate x̂ of the vector x is updated using

x̂t+1 = η
(
x̂t + AH(y −Ax̂t);λ

)
. (2.12)

Therefore, at each iteration, the current residual is projected along the waveforms,

and added to the previous solution. In other words, at each iteration of (2.12), the

algorithm moves in the negative gradient direction (of the objective function)

−AH(y−Ax̂t), (where the terms between brackets is known in the signal processing

literature as the residual), and it applies the soft thresholding function to enforce

sparsity on the solution. Therefore, at convergence, the estimated sparse signal x̂

will contain many zero components, and a few non-zeros, depending on the threshold

parameter λ, the SNR, δ and ρ. Furthermore, if we fix the values of δ, ρ, and SNR,

the solution of (2.12) will depend on the free parameter λ. It is clear that, as λ
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increases, the solution to (2.12) will be more sparse. Furthermore, if λ > ‖AHy‖∞,

the only feasible solution is x̂ = 0.

Let x̂λ be the solution of (2.12) with parameter λ. The Mean Square Error (MSE)

is defined as

MSEλ =
‖x̂λ − x‖22

N
(2.13)

Since the quality of the solution to (2.12) (in terms of MSE) varies significantly with

the (free) parameter λ, its value should be selected very carefully. However, the

relation between λ and the MSE of the solution is not known and data dependent.

One of the major issues to be addressed for the detection problem is how to set this

free parameter adaptively and according to some criterium of optimality.

In [27] it is suggested that setting the parameter λ = σ
√

2 log n, where n is the

number of CS measurements, produces a solution that has some optimality proper-

ties in the MSE sense. However, there is no closed form relation between this value

and the MSE. In [141,142] the authors proposed three different methods for adaptive

estimation of the threshold or hyper-parameter λ for SAR imaging. The first and

second method, respectively the Stein’s unbiased risk estimator (SURE) and Gener-

alized Cross Validation13 (GCV), are based on iterative algorithms that estimate and

minimize the predictive risk ‖Ax̂λ−Ax‖22. The third method, is based on estimating

the L-curve, and locating its corner. All three algorithms perform relatively well at

high SNRs, however, since the minimum MSE is a better measure of the reconstructed

image quality, in situations when the two measures differ significantly the proposed

algorithms will fail to estimate the optimal parameter. Furthermore, these algorithms

are computationally very expensive, as they require estimation and inversion of poten-

tially large matrices at each iteration. To alleviate the computational burden of such

methods, in [144] a method is proposed that is based on the estimation of the kurtosis

of the restored image. The proposed method is both computationally less costly than

the methods proposed in [141, 142], and does not require any prior knowledge of the

input noise variance, as it is the case for the SURE estimator. Both the method pro-

posed in [144] and the methods proposed in [141, 142] are based on optimizing some

function that measure the quality of the recovered image. Still, the relation between

the threshold and the detection or false alarm probabilities of the recovered signal is

not known, and it is not understood how to set the parameter for achieving a design

performance or maintaining a constant false alarm rate.

Another popular algorithm that is used to solve (1.8) is the Spectral Projected

Gradient `1 (SPG`1) method [28]. This algorithm is intuitively easier to use in terms

of threshold selection. In fact, from the formulation in (1.8) it is clear that the

threshold parameter ε is related to the noise variance σ. Particularly, ε should be

set to some constant C times the noise std. In the following section we will see how

13A similar method based on cross validation was also previously proposed in [143].
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the multiplicative constant C plays an important role in terms of detection and false

alarm performance of a CS radar detector. The SPG`1 algorithm (available online

at http://www.cs.ubc.ca/labs/scl/spgl1/) will be used to perform some of the

simulations presented in the remainder of this chapter.

Properties of the recovered signal

For the design of possible CS radar detectors, it is essential to determine the (sta-

tistical) properties of the signal obtained from `1-norm minimization algorithms. To

this end, we report here some examples of the 2 dimensional distribution of the re-

constructed signal amplitude and phase. In the following figures we will use a single

target with amplitude 1 and phase equal to zero. The SNR here is defined as |x̂i|
2

σ2 ,

which is equal to the SNR that we would obtain after a MF with full Nyquist mea-

surements. The input (per sample) SNR of the CS measurements can be derived as

SNRin = SNR
n . The number of range bins is fixed to N = 200, and the number of CS

measurements varies. The noise is Gaussian with i.i.d. entries with variance σ2. The

results are obtained using 10000 Monte Carlo realizations.

Figure 2.3 shows an example of the 2 dimensional histogram of the reconstructed

target amplitude and phase using 1) SPG`1 with ε = σ (the input noise variance is

assumed to be known in the following simulations), 2) IST with parameter λ = 0.25.

From Figure 2.3 we can make the following observations.14 First, the estimated

amplitude and phase are uncorrelated. Second, the soft thresholding function biases

the estimated target amplitude by an amount proportional to the threshold ε or

λ, depending on the algorithm used. For certain applications, such as imaging or

clustering, it may be important to reduce the bias on the estimated amplitudes of

detections. A possible way to do this is by applying least square estimation on the

reconstructed non-zero samples of x̂. This operation is referred to in literature as

de-biasing [63,145]. Finally, we observe from Figure 2.3 that the (mean) target phase

is preserved, as the complex soft thresholding function does not act on the input

signal phase. This aspect, although not relevant for detection (as only the envelope

of the signal is used), is very important if any coherent processing has to take place

after CS recovery. In fact, it is common in radar to have at least two stages of

coherent processing, usually range and Doppler. Preferably, the coherent summation

should be performed before CS recovery, as this would maximizes the processing gain.

However, if range compression must be performed before Doppler compression, for

example to compensate range migration, then it becomes important that the signal

phase is preserved.

14We conducted many simulations for different values of the recovery thresholds, target amplitudes,

SNR, δ and ρ and obtained consistent results.

http://www.cs.ubc.ca/labs/scl/spgl1/
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Figure 2.3: 2 dimensional histogram of CS estimated target amplitude and phase. SNR=12dB,

N = 200 and δ = 0.33. True target amplitude is equal to 1 and true target phase is equal to 0.
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Figure 2.4: Probability of having zero amplitude at target position using SPG`1 versus SNR for

δ = 0.25 and different values of the parameter ε.

Furthermore, although it can not be seen from Figure 2.3, another important phe-

nomenon associated with the non-linear soft thresholding operation is that, especially

as the SNR decreases, the recovered amplitude at the target location might be equal to

zero. If this happens, there is no way to recover the target, not even with subsequent

coherent processing, as the target is simply lost. Figure 2.4 shows the probability of

having a reconstructed target amplitude equal to zero versus SNR for different values

of ε and δ = 0.25.

Figure 2.5 shows the 2 dimensional histogram of the recovered non-zero samples at
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Figure 2.5: 2 dimensional histogram of CS estimated amplitude and phase at the target free range

bins. N = 200 and δ = 0.33. The input noise is i.i.d. Gaussian with variance σ2 = 0.063. The

thresholds are λ = 0.25 for IST and ε = σ for SPG`1.

locations not containing the targets, i.e., the recovered noise samples. For the recovery,

we use the same parameters as in Figure 2.3. We observe that, most of the noise

samples are reconstructed with zero amplitude. For the non-zero samples, the phase

is uniformly distributed between [−π, π], as for a standard Gaussian distribution.

However, some of the noise samples are reconstructed with non-zero amplitude, and

therefore, if no further processing is applied, they will produce false targets in the

recovered image or range profile. Increasing the threshold will reduce the number of

non-zero noise recovered samples, but it may also result in suppressing the targets,

especially as the SNR decreases. Note that the difference (in scale) in the histograms

obtained with IST and SPG`1 is due to the threshold selection. As described in

Section 1.2.1, the relation between λ and ε that makes the 2 solutions equal is not

known and data dependent. We manually selected 2 values that provided comparable

results.

2.4 CS Radar Detection

So far, the main focus of the CS literature has been on the reconstruction quality

in terms of MSE. Furthermore, most of the theoretical results provide only sufficient

conditions on the MSE with unknown/large constants that are not useful for practical

applications [4, 78, 145, 146]. In radar instead, the primary performance parameters

are the detection and false alarm probabilities. As explained in the previous sections,

classical radar architectures (without CS) use well-established signal processing algo-
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rithms and detection schemes, such as MF and CFAR processors. CS instead relies

on the nonlinear `1-minimization for reconstructing the target scene. In the existing

CS recovery algorithms the threshold or regularization parameter (ε or λ depending

on the algorithm) affects the quality of the reconstruction result and for the best

performance it is essential to optimally tune this parameter [140]. Furthermore, the

recovery threshold depends on the input noise level as ε = Cσ. Therefore, it is

necessary to not only determine the appropriate constant as a function of the de-

sired output performance but also to accurately estimate the noise level from the CS

measurements.

The problem of noise estimation is also encountered in classical radar detectors,

where the detection threshold adapts to the environment using a CFAR scheme. The

design of CFAR-like schemes for CS radar systems has not been addressed so far in

the literature, as the relations between the false alarm probability/noise statistics and

the parameters of the recovery algorithm are not known. In fact, even if we would

know how to set the constant C to achieve a design pair (Pd, Pfa), a way to adapt the

detector to the unknown environment is still to be found and far from obvious, consid-

ering the non-linearity of the recovery algorithm and the fact that the reconstructed

signal has only few non zero samples. This makes it very difficult to estimate any

statistics from it. Clearly, if a CS based radar detector should be designed, the way

to set the reconstruction and detection parameters while maintaining CFAR must be

established. Our objective is to design a CFAR CS radar detection scheme whose

performance can be predicted and that shows optimality in some sense.

Several papers in literature have investigated the problem of detecting not the

presence of targets but rather the presence of a signal (which may consists of the

sum of independent signals received from multiple targets) from a set of CS measure-

ments [147–153]. In the papers by Davenport et al [149, 150] the authors refer to CS

detection as the problem of deciding upon the presence of a known signal Ax from CS

measurements. Following standard statistical decision theory, the binary hypothesis

test is formulated as

H0 : y = n

H1 : y = Ax + n. (2.14)

Defining the signal s = Ax ∈ Cn, (2.14) can be rewritten in the same formulation

that is used in classical detection theory. It is well known that the optimum detector

consists of a MF followed by a fixed threshold, where the filter is now matched to the

signal Ax. The authors refer to this approach as the Compressive Matched Filter

(CMF). The test statistic is given by

T = y∗s (2.15)



2.4 CS Radar Detection 39

and its absolute value is compared to a threshold γ to decide which of the two hy-

pothesis is in force. Clearly, such an approach is not applicable to radar, as we do

not know the number and the locations of possible targets in advance, i.e., x is not

available.

A similar derivation is proposed in [148]. Here the authors also consider two

options for the more practical scenario when x is unknown. The first option is to use

an energy detector to decide between the two hypothesis. This consists in comparing

‖y‖22 to a threshold to decide if a signal s is present in the measurements or not.

However, this approach does not allow to estimate the targets locations, as it performs

a single binary test over the whole received signal. Otherwise, if an estimate x̂ of the

signal is available through ‘future knowledge’, this estimate can be used in the statistic

T in (2.15).

In [151,152] the authors propose a subspace compressive detector, again to decide

between the two hypothesis in (2.14). In the first scenario it is assumed that the k

non-zero components of the signal x are known and they are used to design a sensing

matrix matched to the signal subspace. Later, for the case of unknown signal x,

the authors propose to solve the LASSO problem to derive an estimate of the signal

subspace.

In [147] the authors propose the Incoherent Detection and Estimation Algorithm

(IDEA) for detecting the presence of a signal embedded in white Gaussian noise.

This algorithm uses a modified version of the greedy MP algorithm to estimate the

strongest sparse signal coefficients. Then, the highest coefficient is compared to a

threshold.

An important difference between our work and the work of [147–152] is that we

are not only interested in estimating the presence of the (unknown) signal x but, as it

is always the case in radar, we want to detect the number of non zero coefficients in x,

i.e., the number of targets, and estimate their locations, i.e., the position in the vector

x. A way to achieve our goal is to obtain an estimate of the target range response

x̂ that can be further used as input to a conventional binary hypothesis test. Since

the targets are resolved, using each range bin estimate in a binary test produces an

estimate of the number of targets present in the received signal and their locations.

A similar approach is also presented in [153], although it is assumed that a single

target is present. Here the authors compare three different ways for detecting the

presence of one target with known time delay (that fixes the range bin index i),

but unknown amplitude and phase. The results presented in [153] are based on

transmitting a fully sampled chirp signal, and using a random demodulator at the

receiver to obtain the sub-sampled CS measurements. The first method is the MF as

given in (2.6) with the full set of Nyquist measurements. The second approach, that



40 2. Compressive Sensing Applied to Radar

is also referred to as the CMF, computes the statistic

x̂iCMF = ai
∗y. (2.16)

Hence, x̂iCMF is an estimate of the target response at bin i obtained by matching the

received signal to the time delayed version of the undersampled transmitted wave-

forms. For the case of detection from a single pulse (or burst), as e.g., in a CFAR

processor, the false alarm rate at range bins other than the target is significantly

increased compared to the MF case. Furthermore, if multiple targets are present,

this approach will suffer form severe targets sidelobes, as time delayed versions of the

transmitted waveform are not orthogonal in the CS case, i.e., AHA 6= I. This will

result in an increase of false alarms and in possible masking of weaker targets.

The third approach consists in estimating the sparse vector x̂ via `1-norm min-

imization. The sparse estimate is then multiplied by the matrix containing time

delayed versions of the transmitted waveform to obtain a non-sparse estimate of the

Nyquist sampled received signal. This estimate is then further used for detection.

As also described in [147], it is clear that the one-shot CMF is not optimal due to

the targets sidelobe interference. Particularly, the CMF is the estimate of the target

response at the first iteration of most `1-minimization (and greedy) algorithms, before

soft thresholding is applied. The difference between the CMF and `1-minimization is

that, at each iteration, iterative algorithms produce an estimate of the active compo-

nents in the vector x, and use this information to suppress the interference (sidelobes).

This will improve the detection of weaker components at the next iteration. Iterative

algorithms are very similar to mismatched filters and they will, in general, outperform

the CMF.

Furthermore, we argue that the constrained `0-norm minimization (of which `1-

norm is a computationally feasible approximation), which can be formulated as

minimize ‖y −Ax′‖22 s.t. ‖x′‖0 ≤ k, (2.17)

represents the optimum, NP-hard, solution to the multi-hypothesis test for detecting

multiple targets with unknown amplitudes and time delays, as described in [124],

under the sparsity constraint of having less than k targets.

From the arguments above, for CS detection we propose to use an approach that

is similar to the classical radar approach, with the difference that pulse compression

is now performed via `1-norm minimization instead of using matched or mismatched

filters. The pulse compressed and sparse signal estimate obtained from `1-norm mini-

mization can be either considered as a vector of detections (where the soft thresholding

at the last iteration acts as the detector) or can be used as input to a second detection

stage. An example of this architecture for CS radar detection is shown in Figure 2.6.

One of the questions to be answered is whether it is possible to optimize (Pd, Pfa)
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Figure 2.6: Example of CS radar detection architecture. The case η = 0 corresponds to considering

the CS non-zero reconstructed samples as detections.

by properly choosing ε and setting η = 0, or if the performance can be improved by

using a separate detection block (i.e., η 6= 0).

In addition, a prime parameter in almost every radar design is transmitted power,

which may have to be reconsidered when undersampling schemes are introduced. This

implies that undersampling based on CS principles will have a major impact on radar

design, both in terms of performance and design methodology. Therefore, in order to

make CS applicable to practical radar operation and design, the following questions

must be addressed for CS-radar: how to optimized the detection probability against

the false alarm rate; how to adaptively control the false alarm rate against unknown

noise and clutter (CFAR), and how to design a CS-radar, in particular, what amount

of undersampling is acceptable, and at what cost, in terms of power.

2.4.1 Receiver Operating Characteristic Curves

To understand the behavior of the CS detector in Figure 2.6, we estimated via simula-

tions the ROC curves for several values of the parameters ε, SNR, δ, and ρ. For each

set of parameters 10000 Monte Carlo simulations were performed and results are com-

pared on the basis of an equal MF output SNR, as defined on page 35. For the case of

a single target (k = 1), we set N = 200 and n = 10, 20, 30, 40, 50, and 66, correspond-

ing to δ = [0.05, 0.1, 0.15, 0.2, 0.25, 0.33] and ρ = [0.1, 0.05, 0.033, 0.025, 0.02, 0.0152].

Furthermore, since IST and SPG`1 would provide similar results under proper tuning

of the parameters ε and λ, in the following figures we will report only the results

obtained using the SPG`1 algorithm.

In the following figures, the FAP is computed over all output samples except the

target sample with 2 guard cells margin. The range of values of SNR is between -2 and

15 dB. Values outside this range were simulated as well [154], but not reported here,

as they are of less interest, since detection is either impossible (low SNR) or almost

certain (high SNR). The simulated target is a point target with constant amplitude.

For each SNR, ROC curves were evaluated for set of values of ε proportional to σ and,

for varying n, the ratio ε/σ was kept constant and equal to 0, 2, 4, 6 and 8.15 In Fig-

15If the parameter ε is set above a certain maximum value, then the only feasible solution is the
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Figure 2.7: Pd versus Pfa (ROC) for SNR= 12dB and a single target. δ = 0.33.
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ure 2.7 an example of ROC curves is shown for δ = 0.33 and SNR = 12dB. To obtain

the ROC curve for a fixed ε, a second detector is used after CS reconstruction, with

varying detection threshold η. The case in which the CS reconstructed signal samples

are considered as detections is a special case of the model in Figure 2.6 (i.e., η = 0).

trivial solution x̂ = 0, as the threshold used in the soft thresholding function is too high. In our

experiments, we obtained almost always the zero solution when using ε/σ = 10.
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We will refer to this detector as the `1−detector. For the `1−detector, for each value

of ε a single pair (Pd, Pfa) is obtained. The performance of the `1−detector is shown

in Figure 2.7 with a square, the color of which corresponds to a given ε, as shown in

the legend. Thus, the ROC curve of the `1-detector can be obtained by joining the

points obtained for different values of ε. From the simulated ROC plots it appears

that using CS followed by a separate detector one can achieve better performance

than in the η = 0 case, especially since tuning the second threshold η allows to reduce

FAP while maintaining Pd relatively high. Moreover, notice that for a suboptimum

value of the threshold ε, the performance degrade gracefully when a separate detector

is used. This behavior suggests that, in an adaptive scheme, estimation errors on the

noise level could be well tolerated using this type of architecture.

A comparison of CS with both the MF and the CMF (all followed by a separate

detector) is shown in Figure 2.8. Here Pd is plotted versus SNR for a fixed Pfa = 10−3

for several values of δ. From Figure 2.8 we observe that, for the single target case

CS performs very close to the optimum, fully sampled MF. On the other hand, CS

performs significantly better than CMF for small values of δ, because the effect of

decimation in the CMF creates high target sidelobes, thus generating more false

alarms at a given Pd, which becomes more apparent at high SNRs.

2.4.2 Grid discretization errors

The simulations reported in Figures 2.7 and 2.8 were performed under ideal conditions,

in the sense that no sources of error other than noise were present. In practice, there is

always an additional source of error, which is caused by the discretization of the grid.

This error is due to the fact that, in reality, the target position never falls exactly on

one of the discrete grid points. However, it can be shown by analysis and simulation

that the effect of the grid mismatch is similar to additional noise. Furthermore,

just as in conventional matched filtering, the detected peak will be reduced by the

fact that the target falls between grid samples. It is common practice in any radar

system design to include a straddling loss, and in fact such a loss occurs in CS as

well as in conventional MF. The grid/target mismatch error has the effect of reducing

the effective output SNR, therefore resulting in a reduced Pd for a given FAP. This

phenomenon can be observed by comparing the ROC curve obtained from a target

that falls on or off a grid point, in both cases with equal SNR. Such an example is

shown in Figure 2.9, both for MF and for CS. In Figure 2.9, we set δ = 0.2 and the

grid mismatch error to ∆R/2, which corresponds to the worst case scenario in which

the target is exactly in between two grid points. In this figure, the target amplitude

and noise variance are such that the MF output SNR is equal to 15 dB. However, the

grid error results in a loss in detection probability, as the target received power is split

between two grid points. The loss in detection performance can be converted into an
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Figure 2.9: ROC with ∆R/2 grid mismatch error. Ideal MF output SNR = 15 dB (without grid

error). δ = 0.2.

equivalent loss in output SNR, which amounts for this example to approximately 3 dB.

A practical way to compute the straddling loss is to average the ROC curves obtained

for different amounts of grid mismatch. An extensive discussion of grid mismatch is

outside the scope of this work. A more detailed analysis of the discretization error

can be found in [155] and references therein. In [59] and [60] the authors propose

to oversample the reconstruction grid to reduce ‘grid’ noise and straddling losses.

In [156], the authors propose to use a regularized Total Least Square (TLS) algorithm

to improve the target localization.

2.5 Conclusions

In this chapter we introduced the radar detection problem in the context of CS and

analyzed the properties of the signal recovered using `1-norm minimization. We de-

vise two possible architectures for CS detection in a multiple, k-sparse target scenario.

From simulation results (with known noise level) it appears that detection after CS

reconstruction can closely approach classical detection performance, with fewer mea-

surements. However selection of the threshold or regularization parameter that is

needed for the `1-norm based recovery plays a significant role, and it appears that

better performances in terms of ROC are achieved when the CS reconstruction is fol-

lowed by a separate detector. Moreover, ideally CS does not produce target sidelobes

in the way that CMF does, which improves the FAP of the CS detector with respect

to CMF for a fixed threshold.
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For the design and analysis of adaptive CS CFAR radar detectors we have identi-

fied a number of problems that need to be dealt with:

• unknown relation between the recovered signal and the regularization parameter

of `1-norm recovery;

• unknown statistical properties of the recovered signal as a function of the CS

parameters δ and ρ, and the input SNR;

• how to accurately and efficiently estimate the noise level from the CS measure-

ments;

• how to set adaptively the recovery threshold;

• if a separate detector is used after CS recovery:

– how to set the detector threshold as a function of the unknown and sparse

recovery noise;

– how to make the detector adaptive;

– how to obtain CFAR property.

To deal with these issues, in the next chapter we will introduce the Complex Ap-

proximate Message Passing (CAMP) algorithm for `1-norm recovery. This algorithm,

which is an extension of the original AMP algorithm [137,157–160] to the case of sig-

nals in the complex domain, allows to statistically characterize the recovered signal.

Using the properties of CAMP, we are able to derive closed form expressions for the

detection and false alarm probabilities of the CAMP based CS detector. Also, using

the statistical properties of the estimated signal, we propose an adaptive detector

that can be combined with conventional CFAR processing. Our results and the novel

architecture based on CAMP allow to use classical radar design tools even in the CS

framework.
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Chapter 3

Compressive Sensing Radar

Detectors

In this chapter we focus on the problem introduced in Chapter 2 of target detection

from a set of CS radar measurements corrupted by additive white Gaussian noise.

We propose two novel architectures based on Complex Approximate Message Passing

(CAMP) and compare their performance by means of receiver operating characteris-

tic curves. Using asymptotic arguments and the properties of the CAMP algorithm,

we characterize the statistics of the `1-norm reconstruction error and derive closed

form expressions for both the detection and false alarm probabilities of both schemes.

Although the theoretical results on CAMP assume sensing matrices with i.i.d. ran-

dom entries, our simulations show that the general trend of our findings also applies

to partial Fourier sensing matrices. Furthermore, we demonstrate that, of the two

architectures, the best one consists of a reconstruction stage based on CAMP followed

by a detector. This architecture, which outperforms the `1-detector in the ideal case

of known background noise, can also be made fully adaptive by combining it with a

conventional CFAR processor. Finally, using the state evolution framework of CAMP,

we also derive SNR plots in which the reconstruction SNR, which is input to the de-

tection stage, is plotted against the undersampling factor (δ) and the relative signal

sparsity (ρ). Given a maximum number of expected targets in the scene, such graphs

can be used to evaluate how transmitted power can be traded for undersampling and

thus serve as a guide for the CS radar designer.1

1This chapter is based on articles [J1], and [J2] (a list of the author’s publications is included at

the end of this dissertation, p. 183.)
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3.1 Complex Approximate Message Passing (CAMP) al-

gorithm

Complex Approximate Message Passing [37] is an iterative algorithm for solving (1.9).

CAMP is an extension of the original Approximate Message Passing (AMP) algo-

rithm, first proposed in [137] for real signals, to the case of signals and measurements

in the complex domain. The AMP algorithm and its properties have been thoroughly

investigated in [157–162] for the case of both noise-free and noisy CS measurements.

However, as we already mentioned in the previous chapter, in radar it is most com-

mon to work with signals in the complex domain. Therefore, in the remainder of

this chapter we will concentrate exclusively on CAMP and, in this section, we briefly

review some of its main features that will be used in the derivation of our novel CS

radar detection schemes.2 As we will see in the next sections, these properties of

CAMP enable us to achieve the following objectives:

• characterize the distribution of the noise after `1-norm minimization;

• establish the relation between the regularization parameter λ of `1-norm recov-

ery and the quality, in terms of SNR, of the recovered solution;

• adaptively set the regularization parameter λ in a way that optimizes the re-

covery SNR;

• design a fully adaptive CS radar detector that can be combined with classical

CFAR processing;

• determine the tradeoffs between amount of undersampling, signal sparsity and

detection performance.

We first review the iterations of the CAMP algorithm, that is given in Algorithm

I. In Algorithm I, 〈·〉 denotes the average of a vector, ηI and ηR are the imaginary

and real parts of the complex soft thresholding function, ∂η
R

∂xR
is the partial derivative

of ηR with respect to the real part of the input, ∂ηI

∂xI
is the partial derivative of ηI

with respect to the imaginary part of the input, and maxiter is the (user specified)

maximum number of iterations. Furthermore, notice that in CAMP the soft thresh-

olding function is applied with threshold parameter τσt, where σt is the current noise

standard deviation and τ is a (fixed) user specified threshold. We will see in the next

subsection how the parameter τ of CAMP relates to the regularization parameter λ

in (1.9). Also, recall that the undersampling factor is defined as δ = n
N , i.e., the

2The derivation of the CAMP algorithm from message passing algorithms can be found in [37]. In

this chapter, we will mainly review the properties of CAMP that are necessary to solve the detection

problem.
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Algorithm I: Ideal CAMP Algorithm

Input: y, A, τ, x

Initialization x̂0 = 0, z0 = y

for t = 1 : maxiter

x̃t = A†zt−1 + x̂t−1

σt = std(x̃t − x)

zt = y −Ax̂t−1 + zt−1 1
2δ

(
〈 ∂η

R

∂xR
(x̃t; τσt)〉+ 〈 ∂η

I

∂xI
(x̃t; τσt)〉

)
x̂t = η(x̃t; τσt)

end

Output: x̃, x̂, σ∗

number of CS measurements divided by the number of samples to be recovered, and

the relative signal sparsity is defined as ρ = k
n , i.e., the number of non-zero coefficients

in x divided by the number of CS measurements.

We now explain each variable in the CAMP algorithm:

(i) x̂t is an estimate of x at iteration t. If the parameter τ is tuned properly,

x̂t → x̂(λ) as t → ∞. The tuning of τ in terms of λ is given later in (3.3) and

will be explained in detail in Section 3.1.1.

(ii) x̃t is a non-sparse, noisy estimate of x. Define the ‘noise’ vector wt = x̃t − x

at iteration t of CAMP. The histogram of wt, which is shown in Figure 3.1,

suggests that the empirical distribution of wt is ‘close’ to a zero mean Gaussian

probability density function. We will more rigorously discuss the Gaussianity

of wt in Section 3.1.1.

(iii) σt is the standard deviation of wt. Furthermore, we use the notation

σ∗ , limt→∞ σt.

In words, CAMP first finds a noisy estimate of the signal, that we call x̃t. Since

this estimate is not sparse, the soft thresholding function is applied to obtain a sparse

estimate x̂t. Here for the clarity of exposition we have assumed that the algorithm

uses the sought x for computing the noise standard deviation σt. Hence, we refer to

this algorithm as Ideal CAMP. In Section 3.3 we propose a more practical scheme

where σt is replaced with an estimate.

3.1.1 State evolution: A framework for the analysis of CAMP

There are three important questions that we need to answer before we proceed to show

how CAMP can be used in the analysis and design of CS radar detectors. (i) Under
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(a) Histogram of the real part of wt.
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(b) Histogram of the imaginary part of wt.

Figure 3.1: Histograms (bars) of the real and imaginary parts of the CAMP residual noise signal

wt at different iterations of Ideal CAMP. A Gaussian probability density function is fitted to the

histograms (black, solid line). In these plots, N = 4000, δ = 0.6, and σ = 10−3.

what conditions are the above heuristics accurate? (ii) Can we use the properties of

CAMP to predict its performance theoretically? (iii) What is the formal connection

between CAMP and the LASSO problem defined in (1.9)?

The first question is accurately discussed in [37,159,161,162]. It has been proved

that in the asymptotic setting N →∞, while δ and ρ are fixed, the above heuristics

are correct. Consider the following definition from [162].

Definition 3.1.1. For a given (δ, ρ) ∈ [0, 1]2, a sequence of instances {x(N),A(N),n(N)}
is called a converging sequence if the following conditions hold:

- The empirical distribution of x(N) ∈ RN converges weakly to a probability mea-

sure pX with bounded second moment as N →∞.

- The empirical distribution of n ∈ Rn (n = δN) converges weakly to a probability

measure pn with bounded second moment as N →∞.

- The elements of A(N) ∈ Rn×N are i.i.d. drawn from a Gaussian distribution.

Theorem 3.1.2. [162] Let {x(N),A(N),n(N)} be a converging sequence, and let

x̃t(N) be the estimate provided by the CAMP algorithm. The empirical law of wt(N) =
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x̃t(N)− x(N) converges to a zero-mean Gaussian distribution almost surely as N →
∞.

While the above result has been proved for Gaussian measurement matrices in

the asymptotic setting, simulation results confirm that it is still accurate even for

medium problem sizes with N ∼ 200 and different classes of sensing matrices.3 We

explore this claim for the partial Fourier matrices that are of particular interest in

radar applications using stepped frequency waveforms in Section 3.5.1.

Theorem 3.1.2 enables us to answer the second question as well. Using the Gaus-

sianity of the noise in the asymptotic regime, one can predict the performance of

CAMP through what is called the “state evolution” (SE). SE tracks the evolution of

the standard deviation of the noise σt across iterations. Let the marginal distribution

of x converge to pX , and σt denotes the standard deviation of wt. In the asymp-

totic setting, the value of the standard deviation at time t + 1 is calculated from σt
according to the following equation:

σ2
t+1 = Ψ(σt), (3.1)

where

Ψ(σt) = σ2 +
1

δ
E
(
|η(X + σtZ; τσt)−X|2

)
, (3.2)

Z ∼ CN (0, 1), σ2 is the input noise variance (as defined on page 22) and the expecta-

tion is with respect to the two independent random variables X ∼ pX and Z. In fact,

σt being the standard deviation of the noise at iteration t, E
(
|η(X + σtZ; τσt)−X|2

)
equals the MSE of the estimate x̂t after applying the soft thresholding function. For

this reason, the expectation in (3.2) is also referred in literature as the risk of the

soft thresholding function. It has been proved in [37] that the function Ψ is concave,

and therefore the iteration (3.1), (3.2) has at most one stable fixed point σ2
∗. Also,

CAMP converges to this fixed point exponentially fast (linear convergence according

to optimization literature). Appendix A provides an example of how to evaluate the

Ψ function for a given distribution pX . The following two consequences of (3.1), (3.2)

are particularly useful for the radar application:

(i) The SE framework establishes the input/output relation for CAMP. Particu-

larly, the output noise power σ2
∗ is the sum of the actual system noise (σ2)

plus a noise-like component caused by the reconstruction itself ( 1
δ MSE). Conse-

quently, for a given σ2, minimizing the reconstruction error also minimizes σ2
∗,

therefore maximizing the CAMP reconstruction SNR.4

3Empirical studies have already confirmed that this theoretical prediction holds for other sensing

matrices with i.i.d. elements other than Gaussian, [137,159,162].
4For a given target received power a2, the CAMP input and output SNR are defined here re-
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Figure 3.2: Fixed point σ∗ versus threshold τ for Ideal CAMP with σ = 0.23, compression factors

δ = 0.2 (dashed line) and δ = 0.6 (solid line). ρ = 0.1 and the non zero entries of the vector x have

all amplitudes equal to 1 and phase uniformly distributed between −π and π. The sensing matrix

A has i.i.d. Gaussian entries. These curves are obtained using the formulae derived in Appendix A.

(ii) The fixed point σ∗ depends on τ as well as on δ, pX , and σ. Figure 3.2 exhibits

the dependence of σ∗ on τ for two distinct values of δ and for a fixed problem

instance, i.e., fixed pX and σ. As it is clear from the figure, there is a value of

τ , say τo, for which σ∗ is minimized. Moreover, as the number of measurements

decreases, both the optimal threshold τo and the corresponding output noise

standard deviation increase.

Finally, to answer the third question we observe that there is a nice connection between

the CAMP and LASSO algorithms. According to [37], if τ is chosen to satisfy

λ , τσ∗

(
1− 1

2δ
E
(
∂ηR

∂xR
(X + σ∗Z; τσ∗)+

∂ηI

∂xI
(X + σ∗Z; τσ∗)

))
, (3.3)

then in the asymptotic setting CAMP with threshold τ solves the LASSO problem

(1.9) with parameter λ.

3.2 CS target detection using CAMP

Using the properties of CAMP explained previously, we now propose two CS detection

schemes and analyze their performance as measured by their ROC curves. Let k be

the number of targets, i.e., the number of non-zero coefficients in x, and define G as

spectively as SNRin = a2/(nσ2) and SNRout = a2/σ2
∗. Note that the output (reconstruction) SNR

depends on, amongst other quantities, the CAMP threshold τ via σ∗. A more rigorous definition of

SNR is given in Section 3.4.
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the distribution of the non-zero elements of x. In this section we assume that k, G,

and σ are known. In Section 3.3 we will investigate the more realistic scenario where

these parameters are not known a priori and describe how to implement the proposed

architectures in this case.

The two architectures we consider are displayed in Figure 3.3. Since any sparse

recovery algorithm is intrinsically a detection scheme, Architecture 1 seems a natural

choice for a CS radar detector. In this architecture, the measurements y are input to

a recovery algorithm (here CAMP or equivalently LASSO). This algorithm returns

a sparse vector x̂ with the non-zero values being detections. Clearly, the threshold

parameter τ in CAMP (or equivalently the regularization parameter λ in LASSO)

controls the false alarm probability α (or Pfa) and detection probability (Pd) of the

algorithm.

Proposition 3.2.1. Consider the CAMP iteration with threshold τα =
√
− lnα. If

A(N),x(N),w(N) is a converging sequence and x̂(N) is the fixed point of CAMP,

then

lim
N→∞

1

N − k

N∑
i=1

1{x̂i(N)6=0,xi(N)=0} = α. (3.4)

almost surely. Also, τα is the only value of τ for which (3.4) holds.

Proof. Define z ∼ CN (0, 1). According to [161] we know that

lim
N→∞

1

N − k

N∑
i=1

1{x̂i(N) 6=0,xi(N)=0} = P(|σ∗z| > τασ∗) = e−τ
2
α .

Note that the connection between τ and the detection probability is not clear yet.

We will discuss this issue later.

The second architecture is inspired by the standard, non-CS radar approach. Most

commonly, radar detectors comprise two stages: an estimation stage, where a noisy

estimate of the signal is computed, followed by a detection stage. Usually, a matched

filter is used to obtain a noisy estimate of the signal with optimum SNR.5 Then this

noisy estimate is fed to a detection block that controls the False Alarm Probability

(Pfa or FAP). Inspired by this philosophy and by the properties of CAMP, we in-

troduce Architecture 2. We first use CAMP to obtain a noisy, non-sparse estimate

5As explained in Chapter 2, the MF is optimal (in terms of SNR) only for the case of a single

target in white Gaussian noise. For the case of multiple targets, the optimality is only satisfied if the

matrix A is orthogonal. Nevertheless, even for non orthogonal A and in a multiple targets scenario,

MF (with apodization) is one of the most popular approaches.
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(a) Architecture 1

(b) Architecture 2

Figure 3.3: Block diagrams of the proposed architectures for CS-radar detection.

of the signal x̃ = x + w. Similar to classical estimation procedures, the goal of the

first stage is to minimize σ∗ by choosing the optimal CAMP threshold τ = τo. Once

σ∗ is minimized, or equivalently the output SNR is maximized, the noisy signal x̃

can be fed to a detection block with fixed threshold κ = σ∗
√
− ln(α), which is used

to control the false alarm rate. From the Gaussianity of w, it is clear that in the

asymptotic setting this choice of κ results in the false alarm probability α as derived

in Proposition 3.2.1.

As will be clarified later, Architecture 2 is much more appropriate for practical

radar applications, since all of the parameters can be optimized and estimated effi-

ciently even without prior knowledge of k, G, and σ. Furthermore, from a detection

perspective, Architecture 2 outperforms Architecture 1. Suppose that the Gaussian-

ity of wt holds. Let τo be the optimal value of τ that leads to the minimum σ∗ and

that this optimal value is unique and can be computed using (3.2). Under these as-

sumptions, which provably hold under the conditions specified in Theorem 3.1.2, the

following theorem can be derived.

Theorem 3.2.2. Set the probability of false alarm to α for both Architecture 1 that

uses τα and Architecture 2 that uses τo in CAMP. If Pd,1 and Pd,2 are the detection

probabilities of the two schemes, then

Pd,1 ≤ Pd,2.

Furthermore the equality is satisfied at only one specific value α? = e−τ
2
o .

The above theorem is proved in Appendix B by comparing the detection and

false alarm probabilities of the two architectures. However, since in Architecture 2
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Figure 3.4: Comparison of the ROC curves for Architectures 1 and 2 at δ = 0.6, ρ = 0.1 and

σ2 = 0.05. The distribution G of the non-zero coefficients of x is chosen such that all non zero

components have the same amplitude (equal to 1) and phase uniformly distributed between −π and

π. The solid and dashed lines represent the theoretical predictions based on the SE equation. The

dots are the results of MC simulations using Ideal CAMP. The sensing matrix for MC simulations

had i.i.d. Gaussian entries.

the CAMP threshold is designed to minimize the output noise variance, intuitively

it is clear that, for the same Pfa, any other choice of τ will lead to a higher σ∗,

i.e., a lower SNR, and therefore a lower Pd. Example ROC curves for Architectures

1 and 2 are shown in Figure 3.4. The solid and dashed lines are obtained using the

analytical equation derived in Appendix A. The theoretical ROC curves are verified by

Monte Carlo simulations (dots). In the simulations we run the Ideal CAMP algorithm

given in Algorithm I for several values of Pfa ranging from 10−1 to 10−5. In Figure

3.4 we can also observe an interesting characteristic of Architecture 1 in the region

around Pfa = 0.4 (the zoomed area); the probability of detection, Pd,1, decreases

as Pfa increases above this value. To understand why, recall that in Architecture

1 the CAMP threshold τα varies with Pfa. Therefore σ∗ (and hence the CAMP

reconstruction SNR) also changes with Pfa, and it is not constant along the ROC

curve. This explains why Pd,1 reaches its maximum at around Pfa = 0.4 and then

decreases again as the Pfa goes to 1. Instead, in Architecture 2, σ∗ is fixed to its

minimum along the ROC curve, and therefore Pd,2 increases with increasing FAP.

From this plot it is also possible to observe that there exists only one value of FAP

(α? = 0.22) where Pd,1 = Pd,2.6

6The difference in performance between the two architectures depends significantly on the values

of (δ, ρ, σ) and on the sensing matrix in use, as explained later in Section 3.5.
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3.3 Adaptive CAMP Algorithm

So far, we have assumed to know exactly ρ, σ, and G (to derive the theoretical

fixed point) and x (to run Ideal CAMP). However, in practical radar systems such

information is not available, and both the CAMP and detector parameters must be

estimated from the CS measurements y. In this section we demonstrate how these

issues can be handled in practice and propose a fully adaptive scheme, i.e., one that

does not require any prior information and that adapts to changes in noise level.

There are three main issues that have to be settled. (i) How to estimate σt without

knowing x. (ii) How to compute the optimal value τo for Architecture 2, efficiently

and accurately, without the SE. (iii) How to replace the fixed threshold κ for the

detector in Architecture 2 with an adaptive threshold to maintain a CFAR.

The first question can be answered in several different ways. For instance, in the

result presented here we use the median to estimate the standard deviation via

σ̂t =

√
1

ln 2
median(|x̃t|). (3.5)

This estimator is unbiased if x = 0. However, in the presence of targets, i.e., when

x 6= 0, (3.5) is a biased estimator. The main advantage of this scheme is its robustness

to high SNRs. To see this, we consider the performance of the median estimation in the

asymptotic setting. As mentioned above, in the asymptotic setting at each iteration

of CAMP we have x̃t = x + wt. Assume that the elements of x are distributed as

xi
i.i.d.∼ εG(x) + (1 − ε)δ(x) with ε = δρ � 1, δ(x) is the Dirac delta function and

wti ∼ CN (0, σ2
∗). The goal is to estimate the median µ∗ of |wt|. However, since

we only have access to x̃, we estimate the median of |wt| as the µ̂ that satisfies

P(|x̃ti| > µ̂) = 1
2 . The following theorem provides an upper bound on the deviation of

the estimated median from the true median.

Proposition 3.3.1. The error of the estimated median is bounded above by

|µ̂− µ∗|
σ∗

≤ | ln(1− ε)|
2
√

ln 2
. (3.6)

Proof. To quantify the error of the median estimator as a function of δ and ρ, consider

the random variable x with pdf given by fx(x) = (1 − ε)δ(x) + εδ(x − a) and Z ∼
CN (0, σ2). Define µ∗ as the median of the absolute value of the random variable Z,

i.e., P (|Z| ≤ µ∗) = 1
2 . Since |Z| ∼ Rayleigh(σ2/2), we obtain µ∗ = σ

√
log(2).

Also, define µ as the median of the absolute value of the random variable X +Z,

i.e.,

P (|X + Z| ≤ µ) = εP (|a+ Z| ≤ µ) + (1− ε)P (|Z| ≤ µ)

= εP (|a+ Z| ≤ µ) + (1− ε)(1− e−µ
2/σ2

) =
1

2
.
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Since 0 ≤ P(|a+ Z| ≤ µ) ≤ 1, using the upper bound we obtain

(1− ε)(1− e−µ
2/σ2

) ≤ 1

2
− ε

and therefore

µ ≤ σ
√

log
(
2(1− ε)

)
.

Hence the normalized bias introduced by the median estimator in the presence of a

target is bounded by

|µ− µ∗|
σ

≤
∣∣∣√log

(
2(1− ε)

)
−
√

log(2)
∣∣∣.

Furthermore, using the inequality log
(
2(1− ε)

)
< log(2), the bound in (3.6) follows.

It is important to note several interesting properties of the upper bound (3.6).

First, the distribution G of the non zero components of x does not play any role.

Second, for small values of ε, i.e., in very sparse situations, | ln(1− ε)| ≈ ε and, hence,

the error is proportional to the sparsity level. Thus, when the noise level and x are

unknown, a practical implementation of Algorithm I is obtained by replacing σt with

the estimate in (3.5). We will refer to this algorithm simply as CAMP or Median

CAMP.

The estimate of σt provides an approach to answer the second above question

as well, namely how to estimate, in Architecture 2, the optimum CAMP threshold

τ̂o that minimizes σ̂2
∗. Suppose that we know or can estimate τmax such that τo <

τmax. Given a step size δτ , we define a sequence of thresholds τ = {τ`}L`=1 such that

τ1 = τmax and τ` = τ`−1 − δτ . Starting from τmax, at each new iteration ` CAMP

is initialized with x̂0
` = x̂`−1 and z0

` = z`−1. Using the solution of CAMP at the

previous iteration `− 1 as initial value for τ = τ`, CAMP needs only a few iterations

to converge to the solution, and therefore the entire process is very fast. After L

iterations, we have a matrix of solutions X̂ = [x̂1, x̂2, · · · , x̂L] of size N × L, where

each column contains the CAMP solution for a given τ`. Also, we have L estimates

{σ̂`∗}L`=1. The optimum estimated threshold τ̂o is chosen as the one that minimizes the

estimated CAMP output noise variance σ̂2
∗. It is clear that δτ specifies the trade-off

between computational complexity and the accuracy of the algorithm in estimating

τ̂o. Decreasing δτ increases the number of points L needed to span the same τ search

region, but it also results in a more accurate estimate of τ̂o.

We now explain how to set τmax. At the first iteration (` = 1 and t = 1) the

CAMP algorithm is initialized with x̂0 = 0 and z0 = y, and we have x̃ = AHy,

where AH is the Hermitian of the matrix A. Suppose that σ̂0 is estimated from

this vector. Consider now the LASSO problem in (1.9). It is well known that for
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Table 3.1: CAMP based algorithms.

Algorithm Inputs Outputs

Ideal CAMP A,y,x, σ, τ x̂, x̃, σ∗
Median CAMP A,y, τ x̂, x̃, σ̂∗
Adaptive CAMP A,y x̂, x̃, σ̂∗, τ̂o

λ > λmax = ‖AHy‖∞ the only solution is the zero solution. Using the calibration

equation (3.3) with λ = λmax and σ∗ = σ̂0, we can compute an estimate of τ̂max. We

will refer to this algorithm as Adaptive CAMP, since both the noise variance σ̂t and

the threshold τ̂o are adaptively estimated inside the algorithm itself, and the only

input variables are y and A.

To clarify the differences between Ideal, Median, and Adaptive CAMP, Table 3.1

shows the input and output variables for each of the three algorithms. Please recall

that Ideal CAMP is not an algorithm that can be used in practice, as it requires

knowledge of the true vector x.

3.3.1 Adaptive CAMP CFAR radar detector

It remains now to establish how to replace the fixed threshold κ with an adaptive one

for Architecture 2. In Appendix B we show how to set the fixed threshold κ to achieve

the desired FAP when the noise variance σ2 is known. In practice, however, the noise

statistics are not known in advance. As explained in Section 2.2.3 of Chapter 2, in

classical radar detectors a CFAR processor is commonly employed to estimate the

unknown background noise and clutter level. However, one has to know the relation

between the CFAR threshold multiplier and Pfa so that β can be adjusted to maintain

Pfa constant during the observation time. Hence, the noise distribution should be

known to design a CFAR scheme. If the CAMP estimate x̂ were input to a CFAR

processor, then estimation of the noise characteristics would be very difficult, since

many samples in x̂ are identically zero. Instead, the signal x̃ contains all non-zero

samples, and it is modeled as the sum of targets plus Gaussian noise; this can be

directly input to a conventional CFAR processor. A block diagram of the Adaptive

CAMP CFAR detector based on Architecture 2 is shown in Figure 3.5.

For the properties of CAMP, in Architecture 2 replacing the fixed threshold de-

tector with a CFAR detector provides similar results as in classical CFAR without

CS. In other words, once we have access to the signal x̃, we can design the detection

stage using classical equations of Pd and Pfa for the selected detector. All we need

to determine is the input/output SNR relations of CAMP, so that we can use the

output SNR in the detector equation for the prediction of Pd. As can be seen from

the SE equation, for a given input SNR, the output SNR of CAMP will depend on
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Figure 3.5: Block diagram of the Adaptive CAMP CFAR detector.

the parameters δ, pX , and τ . Hence, if we know how to compute or estimate the

output SNR of CAMP for a given set of parameters, then we can resort to classical

radar tools to predict the performance of the CAMP based detector and therefore we

can treat the recovery stage and the detection stage independently.

3.4 Defining the SNR for CS CAMP

Before proceeding to the simulation results, we provide a definition of SNR for the

CAMP-based CS radar system. This definition will be useful not only for under-

standing the performance of the proposed detectors, but also to compare the novel

CS based architectures to more classical ones for which the performance is known.

We observed in (3.2) that the variance σ2
∗ of the noise present in the CAMP estimate

depends on the 5-tuple (δ, ρ, pX , τ, σ). In fact, even for fixed pX , σ and for a specific

Architecture (that fixes τ), σ2
∗, and therefore the (Pd, Pfa) curves, can vary signifi-

cantly with δ and ρ. This is uncommon in classic radar systems, where the SNR after

the MF is uniquely determined for a given input SNR and integration time. Therefore

it is important to relate the performance of a given CS scheme to that of MF-based

classical systems.

Let Ã ∈ CN×N be the measurement matrix for the case δ = 1, i.e., no undersam-

pling. A conventional radar processor feeds the measurement vector y = Ãx + σz,

z ∼ CNN (0, I), to a MF to obtain a noisy estimate x̂MF = x + σz of the target

received signal with optimum SNR.7 CAMP enables us to define SNR in a similar

way. Once CAMP has converged we have access to both the sparse estimate x̂ and its

noisy version x̃. As stated before, even in medium size problems x̃ can be accurately

approximated by the sum of the true target vector plus white Gaussian noise with

variance σ2
∗, i.e. x̃ = x + σ∗z. Indicating with a2 the received power from a target

at bin i, we define the SNR at the input (SNRin) and output (SNR) of the MF and

7In a multiple target scenario, the MF SNR is optimum and independent of the number of targets

as long as each target is exactly on a grid point and the matrix Ã is orthogonal. We assume these

(ideal) conditions are satisfied when computing the MF SNR.
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CAMP Architecture 2 respectively as

SNRin,MF =
a2

Nσ2
, SNRin,CS =

a2

nσ2
,

SNRMF =
a2

σ2
, SNRCS =

a2

σ2
∗
. (3.7)

In the remainder of our discussion we assume that the total transmitted (and received)

power is independent of δ.8 In the case of partial Fourier sensing matrix this is

achieved in practice by dividing the total available transmit power over the subset of

transmitted frequencies. With this assumption, dividing both sides of (3.2) by a2, we

can derive the CAMP output SNR as a function of the equivalent MF output SNR,

i.e., the SNR that we would obtain without compression using a MF. The constraint

of keeping the received target power equal for different amounts of undersampling

enables us to evaluate the changes in SNRCS due to reconstruction and not due to

a reduction in total signal power. In other words, if we normalize (3.2) by a2, then

we keep the first term on the right hand side fixed (which is equal to SNRMF ) and

observe the change in SNRCS produced by the reconstruction error term (1/δ MSE).

Note that, with the above assumptions made, SNRMF represents an upper bound on

the highest SNR that can be obtained from CAMP.

In the remainder of this chapter we will compare the output (or recovery) SNR of

CAMP with the output SNR of an (ideal) MF, so that the results will be independent

of N or n. However, given the output MF SNR, the input SNR of both MF and

CAMP, which depends through N and n on the specific problem being investigated,

can be easily derived using (3.7).

3.5 Simulation results

In this section we investigate the performance of median and Adaptive CAMP using

MC simulations and compare it with the theoretical results obtained from the SE.

We also investigate the performance of the two proposed CS architectures using ROC

curves for the cases of fixed threshold and CA-CFAR detectors. Moreover, we consider

not only Gaussian sensing matrices, for which SE provably applies, but also partial

Fourier matrices, which are of particular interest in radar applications transmitting

SF waveforms [59, 61, 136]. Recall that an n × N partial Fourier matrix is obtained

from an N ×N discrete Fourier transform matrix by preserving only a random subset

n of the original N matrix rows. The elements of a partial Fourier matrix are given

by ai,j = e−j2π(g(i)−1)(j−1)/N , for i = 1, · · · , n, j = 1, · · · , N and g is the vector

containing the (distinct) indices of the randomly selected rows.

8This is achieved by using sensing matrices with unit column norms in all simulations.
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Figure 3.6: Histograms (bars) of the real and imaginary parts of the noise signal w for different

combinations (δ, ρ) using CAMP with threshold τ = 1.8. A Gaussian pdf is fitted to the histograms

(solid line). In these plots σ = 0.1 and N = 4000. The sensing matrix is partial Fourier.

3.5.1 Gaussianity of w using partial Fourier matrices

In this section we investigate the Gaussianity of the reconstruction noise vector wt

for a partial Fourier sensing matrix using MC simulations.

In Figure 3.6 we show a few examples of the empirical distribution of w at conver-

gence for different combinations of δ and ρ. To obtain the histograms we used CAMP

with a fixed (not necessarily optimal) threshold τ and we fixed σ = 0.1.

In Figures 3.7 and 3.8 we show the quantiles plots (QQplots) of the noise vector

along the iterations of CAMP for a few combinations of δ and ρ, for N = 4000. In

these plots the x-axis indicates the quantiles of the Normal distributions and the y-axis

the quantiles of the input samples. The QQplot of a zero mean Gaussian distribution

is linear and crosses the origin. Linearity of the QQplots of w indicate approximate

Normality. Also observe that the slope of the line diminishes with iteration number,

indicating a decrease in the noise variance.

We further investigate the Gaussianity of w using the Kolmogorov-Smirnov (KS)

test [163]. In Tables 3.2 and 3.3 we report the p-values from the KS test for N = 4000

and N = 200, respectively.

The KS test compares the empirical distribution of the input samples to the Gaus-

sian distribution, and the p-value measures the similarity of the input samples to the

reference distribution. In the null hypothesis it is assumed that the samples belong

to the reference probability density function. In our simulations, in all cases the null
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Figure 3.7: QQplots of the residual noise vector w along the iterations of the CAMP algorithm.

δ = 0.1, ρ = 0.01, N = 4000, σ = 10−3.
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Figure 3.8: QQplots of the residual noise vector w along the iterations of the CAMP algorithm.

δ = 0.8, ρ = 0.3, N = 4000, σ = 10−3.

hypothesis was accepted.

We evaluated the histograms, QQplots and KS test also for different combina-

tions of N , δ, and ρ and obtained similar results. Our simulations confirm that the

Gaussianity of the noise vector is preserved for partial Fourier matrices as well.

3.5.2 Accuracy of State Evolution

We investigate the accuracy of the SE by comparing the theoretical results obtained

from (3.2) with simulation results obtained using the Ideal CAMP algorithm. More-

over, we study the behavior of σ∗ for the case of a partial Fourier sensing matrix and
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Table 3.2: p-values of the real (R) and imaginary (I) parts of w for partial Fourier sensing matrix.

N = 4000.

δ ρ p-value (R) p-value (I)

0.1 0.01 0.7 0.85

0.18 0.5 0.77 0.76

0.2 0.05 0.99 0.84

0.2 0.75 0.83 0.92

0.3 0.6 0.99 0.84

0.4 0.2 0.99 0.98

0.4 0.3 0.46 0.58

0.5 0.15 0.63 0.98

0.6 0.3 0.71 0.8

0.65 0.8 0.62 0.72

0.7 0.6 0.93 0.84

0.8 0.3 0.75 0.78

0.8 0.65 0.86 0.73

0.9 0.1 0.52 0.96

0.9 0.45 0.62 0.36

Table 3.3: p-values of the real (R) and imaginary (I) parts of w for partial Fourier sensing matrix.

N = 200.

δ ρ p-value (R) p-value (I)

0.1 0.01 0.84 0.72

0.18 0.5 0.99 0.7

0.2 0.05 0.73 0.98

0.2 0.75 0.86 0.94

0.3 0.6 0.93 0.86

0.4 0.2 0.7 0.84

0.4 0.3 0.7 0.9

0.5 0.15 0.73 0.96

0.6 0.3 0.67 0.82

0.65 0.8 0.89 0.94

0.7 0.6 0.87 0.83

0.8 0.3 0.86 0.97

0.8 0.65 0.93 0.78

0.9 0.1 0.96 0.89

0.9 0.45 0.78 0.9
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Figure 3.9: σ∗ versus τ using Ideal CAMP for both complex Gaussian and partial Fourier sensing

matrices. The empirical curves are obtained by averaging over 100 MC samples for σ2 = 0.05, ρ =

0.05, N = 4000, and different δ. The theoretical SE curve shows the analytical σ∗ computed from

(A.1) in Appendix A.

investigate how it deviates from the theoretical case of a Gaussian sensing matrix,

for which the SE applies. Figure 3.9 compares σ∗ obtained from Ideal CAMP for the

case of complex Gaussian and partial Fourier sensing matrices with the theoretical

one from the SE. The following remarks can be made:

(i) SE correctly predicts the performance of CAMP for the Gaussian sensing matrix.

(ii) SE does not predict the performance of CAMP accurately for partial Fourier

matrices, as expected. However, for τ = τo, the value of σ∗ for Fourier is not

very different from the value for Gaussian.

(iii) As δ → 0 the predictions of SE become more accurate for the partial Fourier

matrix. However, as the number of measurements increases, i.e., δ → 1, the

columns of the partial Fourier matrix become deterministic and orthogonal,

and hence the true behavior deviates from the SE that holds for matrices with

i.i.d. entries.

(iv) For the partial Fourier matrix, the optimal threshold τo seems to be almost

the same for different values of δ. Interestingly, although the curves of σ∗ are

different for different δ’s, for a fixed δ and for τ > τo the variation of the output

variance is much smaller in the partial Fourier case than in the Gaussian case.

This behavior will have an impact on the difference in performance between
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Figure 3.10: Output noise standard deviation versus τ for both Ideal (σ∗) and Median (σ̂∗) CAMP

for complex Gaussian and partial Fourier sensing matrices. The curves are obtained by averaging

over 100 MC realizations for σ2 = 0.05, ρ = 0.05, N = 4000, and various δ.

Architecture 1 and Architecture 2 for the case of partial Fourier and Gaussian

matrices, as the SNR of Architecture 1 varies less along the ROC curves and it

is closer to the optimal SNR for the partial Fourier case.

3.5.3 Effects of the median estimator in CAMP

We investigate the effect of replacing the true σt with the median based estimate

σ̂t from (3.5) when x 6= 0. In Figure 3.10 the estimated output noise standard

deviation is shown for both Ideal and Median CAMP. We observe that the estimate

σ̂∗ deviates from the Ideal CAMP case because of the bias introduced by the estimator.

Furthermore, as is clear from this figure and confirmed by the upper bound provided

in (3.6), the deviation diminishes as ε = δρ decreases.

In Architecture 1, overestimating σ̂∗ will result in a loss in performance compared

to the case of using Ideal CAMP. This is because the soft thresholding function in

CAMP uses the parameter τασ̂∗. For a fixed FAP (that fixes τα), the bias will have

the effect of increasing the overall threshold, therefore resulting in losing detection

performance. This is shown in Figure 3.11, where we plot the ROC for Architecture

1 using both Ideal and Median CAMP. From this figure we also observe that, for the

value of δ used here, Architecture 1 performs much better when using the partial

Fourier sensing matrix as compared to the Gaussian one. This is related to the

variation of the noise variance σ2
∗, and therefore the SNR, with the threshold τα along

the ROC curve. As can be seen from Figure 3.10, in the partial Fourier case as δ
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Figure 3.11: ROC curves for Architecture 1 using Ideal and Median CAMP. Here N = 1000, δ = 0.6,

ρ = 0.1, a2 = 1, and σ2 = 0.05 (corresponding to a MF SNR = 13dB).

increases the variance curve becomes flatter than in the Gaussian case. This implies

that, for decreasing FAPs, in the partial Fourier case the SNR in Architecture 1

deviates much less from the optimum SNR that is achieved for τ = τo.

3.5.4 Adaptive CAMP CFAR detector performance

We investigate now the (Pd, Pfa) performance of the Adaptive CAMP CFAR detector.

Furthermore, we also compare the performance of Architecture 2 with the Compres-

sive Matched Filter (CMF) [136, 149], which is the filter matched to the subsampled

waveform. When using the CA-CFAR processor, this is preceded by a Square Law

(SL) detector (recall Figure 3.5) and has a CFAR window of length 20 with 4 guard

cells. For all detector cases, the detection probability is estimated for each target sep-

arately and by averaging over a number of Monte Carlo simulations. As all targets

have equal amplitudes (and therefore equal SNR), we report here the ROC curves for

only one of the recovered targets.

It is a well known fact that, if one or more targets are present in the CFAR

window, then they cause a rise in the adaptive threshold, thus possibly masking the

target in the CUT that has yet to be detected. Therefore, in the basic analysis of

CFAR schemes, it is assumed that there are no targets present in the CFAR window.

This scenario is referred to as the non-interfering targets scenario. Following a similar

approach, we consider the case of multiple but non-interfering targets. For the case of

interfering targets, to reduce the interference losses encountered in CA-CFAR, several

dedicated CFAR schemes have been proposed in literature, such as OS-CFAR [83].

To keep the discussions concise, we do not pursue these directions and leave them for
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Figure 3.12: ROC curves for Architecture 2 for different levels of adaptivity. Here N = 1000, δ = 0.6,

ρ = 0.1, a2 = 1, and σ2 = 0.05 (corresponding to a MF SNR = 13dB). FT denotes the use of an

(ideal) fixed threshold detector.

future research.

Adaptivity imposes extra losses on the system. One loss is due to the use of

Adaptive- instead of Ideal CAMP. This means that there is an error in estimating

τo. A second loss is caused by the CFAR processor and its estimate of the noise

standard deviation. In Figure 3.12 we show the ROC curves for Architecture 2 ob-

tained using: (a) Ideal CAMP with ideal (fixed threshold) detector, (b) Ideal CAMP

in combination with the CA-CFAR detector, (c) Adaptive CAMP with ideal (fixed

threshold) detector, and (d) a fully adaptive scheme consisting of Adaptive CAMP

followed by CA-CFAR processor. We also show the theoretical curve of a CA-CFAR

processor with the same window length and SNR = 11.55dB for the Gaussian sensing

matrix and 11.9dB for the partial Fourier sensing matrix. The SNR can be estimated

during simulations, or it can be derived using the procedure described later in Section

3.6. For the Gaussian sensing matrix the optimal threshold for Architecture 2 (using

Ideal CAMP) is computed using the SE. For the partial Fourier sensing matrix, the

threshold in Ideal CAMP is set to τo = 1.85, which is derived from a plot like the

ones shown in Figure 3.9 for the case δ = 0.6.

From Figure 3.12 we can make the following observations. First, Adaptive CAMP

introduces almost no loss in the detection performance of Architecture 2. This is

due to the fact that, although σ̂∗ is biased, the value of τ̂o at which the minimum

σ̂∗ occurs is very close to the true optimal τo (see Figure 3.10). The main loss

instead is introduced by the adaptive CFAR detector. This is the well-known CFAR

loss [79], which can be controlled by changing the CFAR window length. In general,

the window length depends on the specific application (e.g., the expected types of
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target and environment). Furthermore, by comparing the curve of Adaptive CAMP

plus CFAR with the theoretical one of a CA-CFAR processor (without CS) with equal

parameters, we observe that the CA-CFAR detector performance seems independent

of the fact that the input to the detector is obtained by running CAMP instead of a

conventional MF.

Second, we observe that when combined with a fixed threshold and a CA-CFAR

detector, Architecture 2 significantly outperforms the CMF. This is due to the fact

that match filtering with the subsampled waveform produces severe target sidelobes

(interference), which result in both an increase of the false alarm rate and the masking

of weak targets. We would like to observe that, although most commonly in the radar

literature the ROC plots are shown for the case of a single target, in the CS case, and

for N = 1000, setting k = 1 we would observe only a very small region in the (δ, ρ)

plane. Instead, in the case of multiple targets we are able to observe both the effects

of reconstruction and of the CFAR processor. As it is clear from the SE equation,

for the same σ and received target power, changing δ and/or ρ results in a different

σ∗, therefore a different CAMP output SNR. This in turns means that even if there

are multiple targets, as long as they are not in the CFAR window of one another, the

results of the CFAR processor will be independent on the number of actual targets

but will depend exclusively on the CAMP output SNR.

By comparing Figures 3.11 and 3.12 it can be seen that, in the fixed threshold

case, Architecture 2 always outperforms Architecture 1, as predicted by Theorem

3.2.2. Also in the adaptive case, Architecture 2 followed by a CA-CFAR processor

outperforms Architecture 1 using median based CAMP. However, the difference be-

tween the two schemes can vary significantly with the system parameters (δ, ρ, σ),

sensing matrix type, and CFAR window length. For instance, for the value of δ used

in these figures, we observe that Architecture 1 performs much better in the Fourier

case than in the Gaussian sensing matrix case. Also, the loss in detection performance

is significantly reduced compared to the adaptive detector. This again depends on

the behavior of σ2
∗ versus τ . In general, to predict how the two architectures will

perform one should observe the behavior of the output noise variance as a function

of the threshold τ . If the variation of σ∗ versus τ is small, in the ideal detector case

the ROC curves of the two architectures will be almost identical, with Architecture

2 always slightly better.

In Figure 3.13 the estimated FAP is shown for both Architecture 1 (which is non

adaptive, and uses median based CAMP) and Architecture 2, which uses Adaptive

CAMP in combination with a CA-CFAR processor. The desired FAP α, on the x-axis,

is used to obtain the threshold multiplier β for the CFAR processor in Architecture

2 and to derive the value of the fixed CAMP threshold τα in Architecture 1.

As expected, Figure 3.13 shows that, in homogeneous Gaussian noise, the proposed

architectures posses the CFAR property. In simulating the FAP for Figure 3.13,



3.6 Design Methodology 69

1 1.5 2 2.5 3 3.5 4

1

1.5

2

2.5

3

3.5

4

 −log
10

 α

 −
lo

g 10
 P

fa

 

 

Arch.1
Arch.2 + CA−CFAR

(a) Complex Gaussian sensing matrix

1 1.5 2 2.5 3 3.5 4

1

1.5

2

2.5

3

3.5

4

−log
10

 α
−

lo
g 10

 P
fa

 

 

Arch.1
Arch.2 + CA−CFAR

(b) Partial Fourier sensing matrix

Figure 3.13: Estimated FAP versus design FAP α for Architectures 1 and 2. N = 1000, and δ = 0.6.

according to hypothesis H0 (target absent) we generated a measurement vector y

with standard Gaussian distribution and x = 0. However, in practical scenarios,

where the noise level may change across range, or in the presence of one or multiple

targets located anywhere in the signal x, Architecture 1 can not achieve CFAR. This is

because the noise estimate computed by Median CAMP is not performed locally, as in

a CFAR processor, but it is based on the whole received signal using the median, which

is a biased estimator if x 6= 0. In Architecture 2 instead, separating the reconstruction

from the detection gives more flexibility, and, e.g., in a multiple interfering targets

scenario, the CA processor can be replaced with a more robust CFAR scheme such

as OS-CFAR.

3.6 Design Methodology

Using the tools developed in the previous sections, we propose here a methodology

for designing CS radar detectors based on CAMP. Given the detection range, target

RCS and system noise, the first step is to compute the transmitted power necessary

to reach a given CAMP output SNR. To do this in practice we would use standard

radar design methods, e.g., a Blake chart to compute the MF SNR, and then use this

value to calculate the CAMP output SNR as a function of δ and ρ (and the associated

detection performance). In this section, we focus on the latter part.

For example, if we consider Architecture 2 and we assume that the received power

is equal to a2 for all targets,9 then using equation (3.2) for a given σ2 we obtain a

9This choice of target amplitudes distribution provides a lower bound on the SNR performance,

being this the least favorable distribution for the non-zero entries in x [37].
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SNRMF = 13dB. The sensing matrix is i.i.d. Gaussian. The colormap is the output SNR of CAMP

in a dB scale.

value of σ2
∗ for each couple (δ, ρ). Computing the ratio a2/σ2

∗ we obtain the CAMP

output SNR map, an example of which is shown in Figure 3.14 for a Gaussian sensing

matrix.10 It is clear that CS radar performance depends, besides on the SNR, on δ

and ρ. Therefore, in the system design phase, an estimate of the expected number

of targets should be made. To design the system for the worst-case scenario, k could

be set based on the maximum expected number of targets, i.e., k = kmax. Then,

for a given number of range (or Doppler) bins N and a given σ, we can vary the

number of CS measurements n to obtain several values of δ = n/N and corresponding

ρ = kmax/n. By evaluating the SNR at these points, we obtain a curve that shows

how power (SNRCS) and undersampling (δ) can be traded against one another.

In Figure 3.15 we show an example of such curves for several values of k and N =

200. In Figure 3.15(a) the sensing matrix has i.i.d. Gaussian entries and the curves

are obtained using the theoretical SE. In Figure 3.15(b) the sensing matrix is partial

Fourier and the curves are obtained using MC simulations with Adaptive CAMP.

Observe that in both cases the curves are equal for the same k up to approximately

δ = 0.8. However, as δ → 1 the partial Fourier matrix approaches a full Fourier

matrix, i.e., it becomes orthogonal, and SNRCS → 13 dB. On the contrary, even in

the limit n = N (i.e., δ = 1) the Gaussian sensing matrix is not orthogonal. Hence,

we estimate that if k > 1, just as in conventional MF, there will be losses due to

10For sensing matrices other than Gaussian, the SNR map of CAMP can be obtained via simu-

lations using the Ideal or Adaptive CAMP algorithms, as shown in Figure 3.15(b) for a few sets of

points in the map. For Figure 3.14 we used the analytical equations from Appendix A.
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Figure 3.15: CAMP output SNR versus δ for Architecture 2 for different numbers of targets k. Here

N = 200, a = 1, and σ2 = 0.05, corresponding to SNRMF = 13dB.

target interference. In this case the upper bound (SNR= 13dB) cannot be achieved.

Once we have computed the SNR maps or curves, we can use them to predict the

performance of our CAMP CFAR detector. Assume, for example, that we would like

to choose δ = 0.6 and kmax = 12. For this combination (δ, ρ) we derive a value for the

CAMP output SNR equal to 11.7dB that can be plugged in the selected CFAR Pd
and Pfa equations. If we use a CA-CFAR processor and we assume that the targets

are not interfering, then for Pfa = 10−4 we obtain Pd = 0.7. This means that, if we

want to increase the detection probability for the desired FAP, since kmax is fixed,

we either have to increase the number of CS measurements (i.e., increasing δ) or the

received power. The latter can be achieved by increasing the transmitted power or

any term in the radar equation that increases the received power, such as antenna

gain.

We believe the design methodology derived here for the first time represents an

important step for understanding and designing CS-based radar systems. In fact,

when using Architecture 2, which combines the non-linear `1−norm minimization

with conventional radar detectors, the graphs shown in Figures 3.14 and 3.15 can be
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used to derived the reconstruction SNR of CAMP that can be plugged in the standard

detector equations to predict the performance of the system for different amounts of

undersampling and sparsity levels.

3.7 Conclusions

In this chapter we have achieved two main goals. Firstly, we have presented the first

architecture for adaptive CS radar detection with CFAR properties. Secondly, we

have provided a methodology to predict the performance of the proposed detector,

which makes it possible to design practical CS based radar systems.

These goals have been achieved by exploiting CAMP, which features closed-form

expressions for the detection and false alarm probabilities in the ideal case of known

system parameters. Based on the SE theoretical results, we have demonstrated that,

out of two proposed architectures, the combination of a recovery stage based on

CAMP with a separate detector achieves the best performance. With a simple mod-

ification to CAMP, we have combined conventional CFAR processing with `1-norm

minimization to provide a fully adaptive detection scheme. Our theoretical findings

have been supported with evidence from Monte Carlo simulations.

Furthermore, by comparing theoretical and simulated results we have been able

to understand the behavior of CAMP for sensing matrices other than i.i.d. Gaussian.

In fact, we have shown by means of simulations that our conclusions still hold for

the case of partial Fourier sensing matrices, for which, unfortunately, no theoretical

claims can yet be made.

We have derived closed form expressions for the CAMP output SNR as a function

of system and target parameters. These relations can be used to obtain CS link

budget plots that allow the system designer to evaluate the trade off between power

and undersampling. Such charts play an important role in determining when and how

CS can be applied and at what cost.

In the next chapter we present the results of the first CS radar experimental

measurements. The results confirm that our theoretical and simulated predictions

still hold even in more realistic settings.



Chapter 4

Experimental Results on

Compressive Sensing radar

In this chapter we present some preliminary experimental results to demonstrate that

the proposed CAMP detectors can be applied to real CS radar data. The mea-

surements were collected in September 2011 at Fraunhofer FHR, Germany, with the

Fraunhofer experimental LabRadOr radar system. The transmitted waveforms were

designed to achieve a set of CS SF radar measurements [59,61,130]. The performance

of the two CAMP based detection schemes presented in Chapter 3 are compared by

means of Receiver Operating Characteristic curves. Our experimental results show

that our theoretical conclusions hold even in the non-asymptotic setting and the pro-

posed Adaptive CFAR CAMP detector could potentially be used in operational CS

radars.

Furthermore, the performance of CAMP based architectures are also compared to

those obtained with the Compressive Matched Filter (CMF) [130,149], previously dis-

cussed in Section 2.4. As expected, the CAMP based CFAR radar detector performs

significantly better than the CMF.1

4.1 Experimental Set-up

In our experiments, we consider the case of a one dimensional radar operating in the

range domain. We use as targets five stationary corner reflectors with different RCS.

Figure 4.1 shows the five corner reflectors and their relative positions as they were

1This chapter is based on articles [J1], [C2], [C3] and [C9] (a list of the author’s publications is

included at the end of this dissertation, p. 183.)
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Figure 4.1: Five corner reflectors used during the experimental measurement campaign.

placed during the measurements. For each transmitted burst (containing n pulses, see

Figure 2.1) 300 measurements with the same set-up were performed. A description

of the radar system and the waveforms used in the measurements is given below.

4.1.1 Radar system

The measurements were carried out at Fraunhofer FHR, in Germany, using the

LabRadOr experimental radar system, which is shown in Figure 4.2. LabRadOr

is a software defined pulsed radar, with maximum transmit power of 32dBm (and

an attenuator of 1dB step size) using separate transmit (TX) and receive (RX) re-

flector antennas, with gain of 31.6dB each. The digital waveform designed by the

user is transferred from the control computer to an FPGA, where a Digital-to-Analog

Converter (DAC) converts the digital data to an analog signal. The analog wave-

form is then transferred to an RF front-end for up conversion to the carrier frequency

fc = 8.9 GHz. At the receiver, after down conversion, the signal is returned to the

FPGA, where an Analog-to-Digital Converter (ADC) samples the received analog sig-

nal at 2 GHz sampling rate. The real time samples are then transferred to the control

unit where they are stored for further processing. Because of internal FPGA limita-

tions, the maximum number of samples per sweep that can be recorded is 1024, thus

limiting the receiver record window length to 512nsec. The start time of the record

window can be set by the user within the Pulse Repetition Interval (PRI), which is

fixed and equal to 10msec. Since our objective is to perform SF measurements, but

the maximum TX pulse length is limited to 512nsec, we transmit one frequency per

pulse, and later combine all the n frequencies (thus n pulses) to obtain a single SF

measurement. Hence, we assume that the scene is stationary at least to within nPRI

seconds. Also, since both the corners and the radar are fixed, the target amplitudes
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Figure 4.2: LabRaDor radar system of Fraunhofer FHR used during the experimental measurement

campaign.

can be modeled as Swerling Case 0 [164].2

4.1.2 Transmitted waveform

For our experiments, we designed a set of stepped frequency waveforms [59,130] and

the TX signal consists of a number of discrete frequencies fm, ranging from 100

to 900MHz. In the Nyquist case (that represents unambiguous mapping of ranges to

phases over the whole bandwidth) we transmit N = 200 frequencies over a bandwidth

of 800 MHz. The achievable range resolution is therefore δR = 18.75 cm. Each

frequency is transmitted during 0.512 µs, thus implying a bandwidth of Bf = 1.95

MHz, and sequential frequencies are separated by ∆f = 4 MHz, resulting in an

unambiguous range of Run = 37.5 m.

In the CS case, the number of TX frequencies is reduced from N to n (n < N).

We used n = 50 and 100, that correspond, for N = 200 and k = 5, to δ = 0.5, 0.25

and ρ = 0.05, 0.1. The subset of transmitted frequencies is chosen uniformly at ran-

dom within the total transmitted bandwidth, with the constraints that we always use

the first and last frequencies in the bandwidth (to span the same total bandwidth to

preserve range resolution), and we also force at least two of the transmitted frequen-

cies to be separated by the nominal frequency separation ∆f , to guarantee that the

unambiguous range is preserved. The spectrograms of the Nyquist waveform and of

one of the CS TX waveforms for the case n = 50 (δ = 0.25) are shown in Figure 4.3.

After reception and demodulation, each range bin, ri = r0 + i δR, i = 1, . . . , N ,

maps to n phases proportional to the n transmitted frequencies fm = fc + g(m)∆f ,

m = 1, . . . , n and g is the vector containing the indices of the randomly selected fre-

quencies. Therefore, the sensing matrix A can be represented as a partial Fourier

2Since we are interested in the detection problem from a single range measurements, we kept the

targets fixed and did not perform any Doppler measurements.
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Figure 4.3: Spectrogram of TX waveform. Left: Nyquist waveform with N = 200; right: CS

waveform with n = 50 and δ = 0.25.

matrix, and the n samples ym of the compressed measurement vector y are as in

(2.11). While performing the measurements, we adjusted the per frequency transmit-

ted power in a way that the same total power is transmitted in each burst, irrespective

of the number of transmitted frequencies. This means that when the number of mea-

surements is reduced by a factor δ, the power per transmitted frequency PT is 1/δ

times higher than in the Nyquist waveform case, so that the total transmitted energy

(PT ×n/Bf ) is the same in all cases, irrespective of n. This enables us to analyze the

effects on detection performance due only to measurement undersampling and not

due to a reduction in the transmitted power as δ decreases.

4.2 CAMP detectors performance

In this section, we analyze the performance of the two proposed CAMP based detec-

tion schemes and compare them to both the MF (with full set of frequencies) and the

CMF (with the same undersampling factor used in CAMP).

4.2.1 Reconstructed range profile

Figure 4.4 exhibits the signals reconstructed with Architectures 1 and 2 based on

CAMP, in addition to SPG`1 solver [28], CMF [130, 149], and MF. We set δ = 0.5

for the CS algorithms and use N = 200 measurements for the MF. In this figure the

five corner reflectors, indicated as T1–T5, are visible at ranges from 20m to 36m.

For Architecture 1, τα was set using α = 10−4. For SPG`1, ε was manually tuned
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Figure 4.4: Reconstructed range profile using: CAMP Architectures 1 and 2, CMF, SPG`1 and MF.

For the MF, N = 200; for CS, δ = 0.5.

to achieve the best reconstruction (by means of visual inspection). As expected,

the signal reconstructed from the CMF is much more noisy than that of CAMP

Architecture 2. In the CMF, the excessive noise outside the target bins is not actual

system noise, but it is due to reconstruction from an undersampled spectrum (target

sidelobes).

From Figure 4.4 we also observe that, as explained in Section 2.4.2, since the

targets are not exactly on Fourier grid points, there is a leakage of target power into

neighboring range bins both for MF and CS. In this case, the resolution of CAMP is

comparable, and not superior, to that of the MF.

As can been seen in Figure 4.4, the SNR is very high for all the targets (in all cases

above 20 dB). To evaluate the performance of the detectors at medium SNR values,

we added white Gaussian noise (with σ = 500) to the raw frequency data samples.

We set the output SNR of the MF to 17.2, 16.6, 14, 10.2 and 26 dB, from the closest

corner to the farthest one.

For MF, CMF and CAMP Architecture 2, we estimate the SNR after reconstruc-

tion, i.e., the SNR that is input to the detector, separately for each target and for
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Figure 4.5: Estimated output SNR after reconstruction using MF (with Nyquist sampling), CAMP

Architecture 2 and CMF (with δ = 0.5) for targets T1–T5.

each value of δ. Again, we emphasize that the reconstruction SNR is the ratio of the

estimated target power to the system- plus reconstruction noise. The estimated SNR

for the five targets is shown in Figure 4.5 for δ = 0.5. We observe that, as anticipated,

the CMF SNR is lower than that of CAMP. In fact, as we estimate the noise (plus

clutter and interference) level from the target free range bins, the presence of targets

sidelobes at these range bins will act as excessive non Gaussian interference, which

not only degrades the SNR but also compromises the performance of the CA-CFAR

detector. Since a loss in SNR translates directly into a loss in the detection probabil-

ity, for a given FAP, we predict that CAMP will perform better than CMF. So, while

the total transmitted power remains fixed, the reconstruction SNR depends on the

reconstruction scheme, in addition to the undersampling factor δ. In fact, for a fixed

algorithm, the reconstruction SNR decreases as we reduce δ.

In Figure 4.6 we plot the estimated output noise standard deviation (σ̂∗) for the

experimental data where the range profiles were reconstructed using Median CAMP

for different values of the threshold τ . The curve is obtained by averaging over all

300 measurements. Note that, for the same input noise variance, for δ = 0.25 the

output noise power is always higher than for δ = 0.5, also implying that for the same

target received power the SNR decreases with δ. We also see that the behavior of the

estimated output noise standard deviation resembles the one shown is Section 3.5.3

for the simulated data.
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Figure 4.6: Estimated σ∗ versus τ using Median CAMP.

4.2.2 ROC curves

We now present the result of detection performance of the newly proposed CAMP

based architectures and compare them against the CMF. The ROC plots are shown

for both the ideal case of fixed threshold (non-adaptive) detector for the CMF and

CAMP Architectures 1 and 2 and for the adaptive detector case using a CA-CFAR

processor for CMF and CAMP Architecture 2. For the Pd estimation, we used the

detection at the location of the highest target peak. The CA-CFAR processor uses

four guard cells and a CFAR window of length 20. An example of the reconstructed

range profile using CAMP Architecture 2 with δ = 0.25, together with the CA-CFAR

adaptive threshold is shown in Figure 4.7. The CA-CFAR threshold multiplier is set

for α = 10−4. The black circles in the figure indicate the range positions of the five

targets that were used for estimation of the Pd.

In the ROC plots, the estimated detection probability for each target is plotted

against the design FAP, that is used to set the detector threshold. For all detector

cases (adaptive and non-adaptive), the CAMP reconstruction threshold τo of Architec-

ture 2 is always adaptive. In Architecture 1 the threshold τα is set to τα =
√
− logα,

where α is the design Pfa, and the same threshold τασ̂ is applied to all range bins

inside Median CAMP. Recall that in Median CAMP the presence of targets in the

received signal will result in overestimating the noise std σ̂∗, with a consequent re-

duction in Pd compared to the ideal case, as described in Section 3.5.3. Furthermore,

using Architecture 1 the highest FAP that can be achieved is equal to δ, since the

sparse estimated signal x̂ cannot have more than n out of N non-zero coefficients.

For the fixed threshold case, Figure 4.8 illustrates that, as claimed from our the-
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Black circles: true targets positions.

oretical and simulated results, for a given FAP the detection probability of CAMP

Architecture 2 is always higher than that of CAMP Architecture 1 (and hence any

`1-solver). Also, as expected in a multiple target scenario, all CAMP architectures

perform better than the CMF.

For the adaptive detector case, shown in Figure 4.9, it can be seen that, for

a given FAP there is a loss in Pd when using the CA-CFAR processor compared

to the fixed threshold detector. This is the well-known CFAR loss. Also with the

CFAR processor, CAMP Architecture 2 performs still better than Architecture 1 and

significantly better than CMF.

Note that in Figures 4.8 and 4.9 the ROC curves for target T5 are not shown as

they are equal to 1 for all detectors in all cases. Furthermore, if we compare the cases

δ = 0.5 and 0.25, both in the ROC curves and in the range profiles illustrated in

Figures 4.7 and 4.4, we observe that, for the same Pfa, target T1 has the highest Pd
for the case δ = 0.5 whereas target T2 has the highest Pd for the case δ = 0.25. This

is due to the fact that each measurement setting (TX waveform and power) results in

sampling of the main target lobe at a slightly different location (due to small timing

variations in the signal generation and transmission) and therefore a variation of the

associated straddling loss.

If we compare the ROCs of the Adaptive CAMP CFAR detector to the ones

of Architecture 1 that uses a fixed threshold, we observe that, in some particular
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Figure 4.8: ROC curves using: CAMP Architecture 1 (blue lines), CAMP Architecture 2 with fixed

threshold detector (black lines), CMF with fixed threshold detector (red lines). δ = 0.5 (4.8(a)) and

δ = 0.25 (4.8(b)). Each line style corresponds to a different target, as indicated in the legend.

scenarios, the performance of the two detectors are very similar. However, at low FAPs

and high Pd, which is the most relevant case in practical situations, Architecture 2

with the CFAR detector always outperforms Architecture 1. Furthermore, we observe

that Architecture 1 is comparable to an OS-CFAR detector where the CFAR window

is the entire signal, i.e., 2Nw = N , including the CUT. Clearly, a serious disadvantage
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Figure 4.9: ROC curves using: CAMP Architecture 2 with CA-CFAR detector (black lines), CMF

with CA-CFAR detector (red lines). δ = 0.5 (4.9(a)) and δ = 0.25 (4.9(b)). Each line style corre-

sponds to a different target, as indicated in the legend.

of Architecture 1 is that, since the entire signal is used in the noise estimation and

the threshold τα is fixed, it can not adapt to local variation of noise level. This

makes Architecture 1 unsuitable for many radar applications. Architecture 2, in

contrast, provides the flexibility to choose both the most appropriate CFAR processor

and CFAR window length depending on the specific scenario. The discrepancy in
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performance between the two detectors depends also on the targets distribution in

range. In fact, whereas Architecture 2 would have significant performance losses if

multiple targets are present in the same CFAR window when using a CA-CFAR,

Architecture 1 is insensitive to the target locations, and therefore would have the

same performance. However, in Architecture 2 one has the freedom to choose the

most appropriate CFAR processor for the scenario at hand, e.g., an OS-CFAR would

be preferable in a multiple targets scenario. Instead, in the current implementation of

Median CAMP that is used in Architecture 1, the lack of adaptivity to local variation

of the noise and clutter levels represents a major drawback.

As we only performed measurements with targets, we are unable to evaluate the

CFAR property of Architecture 1. However, for CAMP Architecture 2, we can demon-

strate that our model x̃ = x + σ∗w is correct by estimating the FAP from the re-

constructed noisy signal x̃ by excluding the range bins corresponding to the target

locations plus four guard cells. If our model is correct, and the noise in the signal

x̃ is Gaussian, then the estimated FAP should correspond to the design FAP used

to set the detector threshold. This should be true for both the fixed threshold and

the CFAR detector. This is demonstrated in figure 4.10, where the estimated Pfa is

plotted versus the design FAP α for CAMP Architecture 2 using both the CA-CFAR

and the fixed threshold detector. From this figure we observe that, as expected, the

estimated FAP matches the design one, confirming that our model is correct.

4.3 Conclusions

In this chapter we investigated the use of the novel CAMP based detection schemes on

the first experimental CS radar measurements. We have analyzed the performance of

the proposed CAMP based detectors in the non-asymptotic setting using experimental

measurements and compared the ROCs obtained with our adaptive and non-adaptive

schemes with that of the Compressive Matched Filter (CMF) under equal settings.

The results show that, as predicted by our theoretical findings, the approaches based

on CAMP have significantly better performance than the CMF and that CAMP Ar-

chitecture 2 achieves better performance than Architecture 1. Furthermore, we were

able to implement the first fully adaptive CFAR CS radar detector, that requires no

prior knowledge of either the number of targets or the noise level and demonstrated its

CFAR property. We believe this work paves the way for the design and development

of more sophisticated CS CFAR radar detectors, as further discussed in Section 7.3,

page 128.
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Figure 4.10: Estimated FAP versus design FAP α for CAMP Architecture 2 using fixed threshold

detector (4.10(a)), and CA-CFAR detector (4.10(b)). δ = 0.5 (dashed line) and δ = 0.25 (solid line).



Chapter 5

Importance Sampling for Space

Time Adaptive detectors

In this chapter we demonstrate the use of IS methods on the class of Normalized

Matched Filter (NMF) Space Time Adaptive Processing (STAP) detectors and pro-

pose two variants of the square-law detector that use the Envelope (E) and Geometric

Mean (GM). In the first part of this chapter, using the classical NMF detector, we

demonstrate how IS can be used to both derive analytical closed form expressions

and to speed up simulations for evaluation of false alarm probabilities. We extend the

theoretical and numerical results, first presented in [101,165], for deriving a powerful

2-dimensional biasing scheme that is used to evaluate the performance of the adaptive

NMF, the Normalized Adaptive Matched Filter (NAMF) detector.

In the second part of this chapter, following a similar approach as in [96], we pro-

pose two novel NAMF detector variants, the envelope and geometric-mean NAMF

detectors. Their CFAR property is established and threshold settings for the detec-

tors for specified false alarm probability is accomplished using fast simulation. Per-

formance analysis of these detectors reveals almost indistinguishable loss in detection

probability in homogeneous Gaussian interference compared to conventional square-

law STAP detector versions. In addition, they exhibit robust detection performance

in the presence of interfering targets in the training data, for both non-fluctuating as

well as fluctuating target models.1

1This chapter is based on articles [J3], [C20] and [R1] (a list of the author’s publications is

included at the end of this dissertation, p. 183.)
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Figure 5.1: STAP data cube during one CPI.

5.1 Space Time Adaptive Processing

It is a well-established fact that the detection performance of many radar systems,

typically operating in time (fast and slow) domain, can be significantly improved

by simultaneously including a spatial domain (i.e., multiple antenna elements) in an

adaptive way. This is the aim of Space Time Adaptive Processing [166]. As the

principles of STAP are well understood, we proceed immediately to a description of

the STAP data cube.

Consider a radar system consisting of a linear array of Ns antenna elements. A

burst of Nt pulses is transmitted during a Coherent Processing Interval (CPI) and

each element receives as many return samples in any one range gate. The complex

(because of I and Q channel processing) samples measured during one CPI from all

antenna elements in all range bins can be arranged in a data cube, as shown in Figure

5.1. The NsNt = N samples in the range gate of interest are referred to as the primary

data. They may contain a target and represent the range to be tested. The samples

are rearranged in an N × 1 column vector and denoted as x. The target return is

modeled as consisting of a known (direction-Doppler) vector s, called the steering

vector, with an unknown complex amplitude (a) in addition to clutter, interference,

and noise. The steering vector s is given by the Kronecker product of the temporal

vector st and the spatial vector ss [166], i.e.,

s = st ⊗ ss,
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where

st = [1 zt z
2
t . . . z

Nt−1
t ]

T
,

ss = [1 zs z
2
s . . . z

Ns−1
s ]

T
,

zt = ej2πfd ,

zs = ej2π
d
λ cosφt ,

and fd is the target Doppler frequency normalized to the Pulse Repetition Frequency

(PRF), φt is the look angle and d is the antenna elements spacing.2

There are L other N -length complex vectors, called the training or secondary

data, obtained from as many nearby range gates and assumed to be free of target

signal. These are denoted as x(l), l = 1, . . . , L. It is assumed from now on that the

training data is free of other targets or contamination3. In the absence of target,

the primary and secondary data vectors are assumed to be jointly independent and

complex Gaussian, sharing the N × N covariance matrix R = E{xx†}, where the

superscript † denotes complex conjugate transpose.

The binary hypothesis test for detecting the presence of a target can be set up as

H0 : x = n

H1 : x = as + n (5.1)

where n is the Gaussian noise plus clutter vector with covariance matrix R.

For detecting the presence of a target from a given direction s, the famous paper

by Reed, Mallett and Brennan (RMB) [167] shows that the optimum filter weights

vector w that maximizes the SNR has the form

w = CR−1s, (5.2)

where C is a scalar constant. This is the well-known RMB beamformer.

Later, in 1974 Kelly [168] derived a test statistic to perform adaptive target de-

tection based on the Generalize Likelihood Ratio Test (GLRT), since both the target

amplitude and the noise covariance matrix are unknown. The GLRT test has the

form

ΛGLRT ≡
|s†R̂−1x|2

s†R̂−1s
(

1 + 1
Lx†R̂−1x

) H1

≷
H0

Lη. (5.3)

2The steering vector s must be determined for each look angle and Doppler frequency of interest

in a given range bin.
3In Section 5.4.3, detection performance is carried out for training data contaminated by inter-

fering targets.
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Since the second term inside the brackets in the denominator would impose a

serious computational load in any real time implementation, a simplified version of

the GLRT test was derived in [169], resulting in the well-known Adaptive Matched

Filter (AMF) detector, given by

ΛAMF ≡
|s†R−1x|2

s†R−1s

H1

≷
H0

η. (5.4)

Since then, many sophisticated STAP detectors have been designed, to deal with

both computational load and with different types of clutter and interference scenarios.

In [170] an overview can be found abut STAP related issues and proposed detectors

solutions.

The first successful attempt to using IS for characterizing STAP detectors is pre-

sented in [101], and further extended in [96]. Building up upon that work, in this

chapter we focus our attention to the class of NMF STAP detectors.

5.2 The Normalized Matched Filter detector

The NMF detection test is given by

ΛNMF ≡
|s†R−1x|2

(s†R−1s)(x†R−1x)

H1

≷
H0

η. (5.5)

The NMF test statistic ΛNMF is equivalent to the square magnitude of the correlation

coefficient between the two transformed vectors R−1/2x and R−1/2s. Its FAP in

Gaussian interference is known, [171], and particularly easy to derive. It differs from

the matched filter (for known interference covariance matrix R) in the normalization

term which is the second one in the denominator. The FAP of the detector is given

by

α
NMF

= (1− η)N−1,

and it has the CFAR property of being invariant to the interference covariance matrix

R. Furthermore, as is evident from (5.5), the FAP is also invariant to any scaling of

the primary and secondary data.

5.2.1 The FAP of the NMF detector using IS

With a simple (re-) derivation of the FAP of this detector, we illustrate an elegant

aspect of IS, by which it is sometimes possible to derive a perfect estimate of a rare-

event probability.

It is assumed that x ∼ CNN (0,R). With a whitened data vector defined as

x1 ≡ R−1/2x and a transformed steering vector s1 ≡ R−1/2s, the test statistic of
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(5.5) takes the form

ΛNMF =
|s†1x1|2

(s†1s1)(x†1x1)
=
|y1|2

‖x1‖2
, (5.6)

where y1 = u†1x1 is a scalar random variable and u1 = s1/‖s1‖ is an N -dimensional

unit vector. Using for example a Gram-Schmidt procedure, an N -dimensional basis

can be formed by determining N − 1 other unit vectors in the orthogonal subspace

of u1. Denoting the former by ui, i = 2, . . . , N , we define the corresponding random

variables yi = u†ix1. Then

|y1|2 +

N∑
i=2

|yi|2 =

N∑
i=1

|yi|2 = x†1

N∑
i=1

uiu
†
i x1 = ‖x1‖2, (5.7)

with the {yi}N1 being i.i.d. and distributed as CN 1(0, 1). The test therefore becomes

ΛNMF =
|y1|2

|y1|2 +
∑N
i=2 |yi|2

H1

≷
H0

η, (5.8)

which can be put in the form

u∑N
i=2 vi

H1

≷
H0

ηo ≡
η

1− η
, (5.9)

where

u ≡ |y1|2 and vi ≡ |yi|2, i = 2, . . . , N.

The FAP of the NMF detector is then

α
NMF

= PH0

(
U > ηo

N∑
i=2

Vi
)

= E
{
PH0

(
U > ηo

N∑
i=2

Vi

∣∣∣V2, . . . , VN
)}
. (5.10)

The first line above has exactly the same form as the FAP of a CA-CFAR detector as,

under H0, U and each Vi are i.i.d. (unit) exponential random variables; the formula

for this probability is well known. To re-derive the latter, a g-method estimator

combined with IS can be written as

α̂
NMF

=
1

K

K∑
1

e−ηo
∑N

2 Vi ·W (V2, . . . , VN ), Vi ∼ f∗. (5.11)

Scaling each Vi with a and using the resulting weighting function

W (v2, . . . , vN ) = aN−1 e−(1−1/a)
∑N

2 vi , (5.12)

yields the estimator

α̂
NMF

=
1

K

K∑
1

aN−1 e−(ηo+1−1/a)
∑N

2 Vi , Vi ∼ f∗. (5.13)
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If the scaling factor is chosen as a = 1/(1 + ηo) in this estimator, then

α̂
NMF

=
1

K

K∑
1

(
1

1 + ηo

)N−1

= (1− η)N−1 = α
NMF

.

and therefore the variance of this IS unbiased estimator is zero.

A novel biasing scheme based on rotation of the primary data vector was developed

for the estimation of the FAP of the NMF detector using IS. The derivation of the FAP

using this technique and the corresponding simulation results are given in Appendix

C.

5.3 The Adaptive NMF STAP detector

The NAMF detector is the adaptive version of the NMF detector. Here, the true data

covariance matrix is replaced by an estimate and the detection statistic is given by

|s†R̂−1x|2

(s†R̂−1s)(x†R̂−1x)

H1

≷
H0

η. (5.14)

We now proceed to investigate the FAP of the NAMF detector using IS.

5.3.1 FAP estimation using IS

To estimate the FAP of the NAMF detector, we first rewrite the test in (5.14) in

a suitable form to apply the g−method estimator. To this end, we perform some

random variables transformation following a similar approach as in [168].

Define the vectors z and z(l), l = 1, · · · , L, distributed as CNN (0, I) and indepen-

dent. The vectors z and z(l) can be decomposed as

z =

[
z
A

z
B

]
and z(l) =

[
z
A

(l)

z
B

(l)

]
,

where the A components are scalar and B components (N−1)-vector. The covariance

matrix of the vectors z(l) is given by 1
LS, where

S =

L∑
l=1

z(l)z(l)† =

SAA S
AB

S
BA

S
BB

 . (5.15)

Furthermore, define

y ≡ z
A
− S

AB
S−1

BB
z
B
,

y(l) ≡ z
A

(l)− S
AB
S−1

BB
z
B

(l),
(5.16)
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Σ
B
≡ z†

B

( L∑
l=1

z
B

(l)z
B

(l)†
)−1

z
B
, (5.17)

and

M
B
≡ 1 + Σ

B
. (5.18)

Using the definitions above and the transformations given in Appendix D, the test

in (5.14) can be rewritten as

u
L−N+1∑
l=1

u(l)

H1

≷
H0

η

LM
B

(x†R̂−1x), (5.19)

where u and u(l), l = 1, · · · , L−N +1 are all i.i.d. unit exponential RVs. In addition,

the normalization term in the RHS of (5.19) becomes

x†R̂−1x = L z†S−1z. (5.20)

From the discussion on pages 120 and 121 of [168], it turns out that the quantity

z†S−1z, denoted therein as Σ, can be expressed as

z†S−1z =
|y|2

L∑
l=1

|y(l)|2
+ Σ

B

d≡ |y|2
L−N+1∑
l=1

|w(l)|2
+ Σ

B

= M
B
· u
L−N+1∑
l=1

u(l)

+ Σ
B
, (5.21)

where {w(l)}L−N + 1

1
are i.i.d. each with distribution CN 1(0, 1). Combining (5.19),

(5.20), and (5.21) yields the test in the form

u
H1

≷
H0

ηo
Σ
B

1 + Σ
B

L−N+1∑
l=1

u(l), (5.22)

where ηo = η/(1 − η). Conditioned on Σ
B

(i.e., on the B-vectors z
B

and z
B

(l)) the

test in (5.22) is in the form of a conventional CA-CFAR test, thus resulting in the

FAP

α
NAMF

= E{g
N

(Σ
B

)}, (5.23)
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where

g
N

(Σ
B

) =
1

[1 + ηoΣB/(1 + Σ
B

)]L−N+1
. (5.24)

The g-method estimator using IS for the FAP of the NAMF can then be set up as

α̂
NAMF

=
1

K

K∑
1

g
N

(Σ
B

)W (z
B
, z
BL

); ∼ f?. (5.25)

To implement IS, biasing of the B-vectors contained in Σ
B

must produce an in-

crease in the value of the g-function in (5.24). This means that Σ
B

must be made

to decrease, which can easily be accomplished by scaling down the primary B-vector

z
B

and scaling up the secondary B-vectors z
B

(l). A 2-dimensional biasing scheme

results, which needs to be optimized adaptively. The primary and secondary scaling

parameters are chosen as a1/2 and θ1/2 respectively, where 0 < a ≤ 1 and θ ≥ 1, and

the weighting function is given by

W (z
B
, z
BL

) = aN−1θL(N−1) exp
(
− z†

B
z
B

(1− 1/a)
)

· exp
(
− (1− 1/θ)

L∑
l=1

z
B

(l)†z
B

(l)
)
. (5.26)

Figures 5.2 to 5.6 show the simulation results for the 2-dimensional biasing scheme

using the g-method estimator for the NAMF detector. In these figures we used L =

128 secondary vectors, N = 64 space-time samples, and K = 10000 realizations.

Figure 5.2 show the IS gain surface using the g-method estimator with 2 dimen-

sional biasing versus the biasing parameters. From this figure it can be seen that,

for each value of FAP, there is an optimal combination of the biasing parameters

that achieves the maximum IS gain. The optimal parameters can be estimated using

the adaptive IS procedure described in Section 1.2.2. An example of the adaptive IS

recursion for estimating the optimal biasing parameters a and θ is shown in Figure

5.3.

Figure 5.4 shows the IS gain obtained using the g-method estimator with 2 di-

mensional biasing using the estimated optimal biasing parameters.

In Figure 5.5 the estimated threshold multipliers needed to achieve a design FAP

α are shown versus the recursions of the inverse IS method described in Section 1.2.2.

Recall that the inverse IS method, that can be used for the detector design, can only

be applied in combination with the g−method estimator.

Finally, in Figure 5.6 the estimated threshold multipliers obtained using the inverse

IS procedure are compared to those obtained with the analytical expression available

in [171]. We observe that the inverse IS procedure correctly estimates the multiplier

values.
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Figure 5.2: IS gain surface versus biasing parameters for α = 10−6 using the g-method with 2-

dimensional biasing for the NAMF detector. L = 128, N = 64, and K = 10000.

5.4 Envelope and Geometric Mean NAMF STAP detec-

tors

In this section we propose two novel detectors for space-time adaptive processing.

These are variants of the NAMF detector that use envelope-law and geometric mean

(or logarithmic) processing, both being well-known concepts from conventional CFAR

square-law radar detection [84–89,106,125–127,172]. Linear-law CA-CFAR detectors

using the amplitude of the received signal instead of the squared amplitude were stud-

ied in [127] and [84]. Later, it was also shown in [98] that mean-level CFAR processors

including CA preceded by an envelope detector have more robust performance in the

presence of Gaussian clutter power transitions and interfering targets as compared to

the square-law detector. The geometric-mean (GM) variant of the CA-CFAR detec-

tor was already well known in the ’70s and it is mostly known in the radar field as

LOG/CFAR receiver, [85–89,106,172].

The so called LOG/CFAR detector was of great importance due to the capability

of the receiver of operating over a larger dynamic range than a CA-CFAR receiver

and to its capability of better suppressing Weibull distributed clutter and interfering

targets with a reasonable CFAR loss. Later, a geometric-mean (GM) variant of the

CA-CFAR detector was also considered in [93], where it was demonstrated that, in

the scalar case (only 1 antenna element), the square-law CA-CFAR detector is better

than the GM detector in homogeneous Gaussian background, but the GM detector
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Figure 5.3: Estimated optimum scaling parameters using adaptive IS versus recursion index using

the g-method with 2-dimensional for the NAMF detector. L = 128, N = 64, and K = 10000.

performs better in the presence of interfering targets. Based on these observations,

two STAP detector variants of the AMF using envelope-law and geometric mean

processing were proposed in [96]. In this section we extend this idea and present

two corresponding variants of the NAMF STAP detector [173], establish their CFAR

property under the assumption of homogeneous Gaussian interference, and then carry

out false alarm and detection probability performance estimation via IS.

The proposed envelope-law version of the NAMF detector, referred to as the E-
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Figure 5.4: IS gain of the g-method with 2-dimensional biasing for the NAMF detector as function of

FAP using optimum biasing parameters obtained from Figure 5.3. L = 128, N = 64, and K = 10000.
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Figure 5.5: Threshold multipliers estimated via inverse IS using the g-method with 2-dimensional

biasing for the NAMF detector. L = 128, N = 64, and K = 10000.

NAMF detector, [165,173], is given by the test

|s†R̂−1x|√
x†R̂−1x

H1

≷
H0

ηe
L

L∑
l=1

|s†R̂−1x(l)|, (5.27)

where ηe denotes the detector threshold.

The geometric-mean version, referred to as the GM-NAMF detector, is defined as
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Figure 5.6: Comparison of inverse IS simulation and numerical integration [171] for determining the

threshold multipliers for different FAP. L = 128, N = 64, and K = 10000.

|s†R̂−1x|√
x†R̂−1x

H1

≷
H0

ηg

( L∏
l=1

|s†R̂−1x(l)|
)1/L

, (5.28)

where ηg is the threshold. The square-law version of the GM test in (5.28) is identical,

being just a square of the above test expression.

5.4.1 Asymptotic thresholds

The asymptotic FAP behavior of the E-NAMF detector as L→∞ (or known covari-

ance matrix R) is obtained from

α
L→∞ = P

(
|s†R−1x|√
x†R−1x

≥ ηeE{|s†R−1x(l)|}
)

= P

(
|s†R−1x|2

x†R−1x
≥ η2

eπ

4
s†R−1s

)

=
(

1− π

4
η2
e

)N−1

, (5.29)

the first line above following from convergence arguments and the law of large numbers

applied to the independent and identically distributed sequence {s†R−1x(l)}, the

second by noting that s†R−1x(l) is distributed as CN 1(0, s†R−1s), and the third

from the fact that the second line represents the FAP (1 − ν)N−1 of a normalized

matched filter (NMF) STAP detector (the statistic of which can be obtained from the
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LHS of (5.14) by replacing R̂ with R) with threshold ν ( [171]) where ν = η2
eπ/4.

The asymptotic threshold can be calculated from the above expression.

Using similar arguments, the asymptotic FAP of the GM-NAMF detector is given

by

α
L→∞ = P

(
log
|s†R−1x|2

x†R−1x
≥ 2 log ηg + E{log |s†R−1x(l)|2}

)

= P

(
log
|s†R−1x|2

x†R−1x
≥ 2 log ηg − γ + log(s†R−1s)

)

= P

(
|s†R−1x|2

x†R−1x
≥ η2

g e
−γ s†R−1s

)
=
(
1− η2

g e
−γ)N−1

(5.30)

where γ = 0.5772156... is the Euler-Mascheroni constant and in the second line we use

the fact that the pdf of the logarithm of an exponential RV has a Generalized Extreme

Value distribution. The CFAR property of both the E and GM NAMF detectors is

proved in Appendix E

5.4.2 FAP estimation using IS

With some straightforward manipulations and using the definitions given in Section

5.3.1, the E-NAMF test in (5.27) can be rewritten as

|y|2
H1

≷
H0

η2
eΣ

B

LCe

( L∑
l=1

|y(l)|
)2

, (5.31)

where

Ce ≡ 1− η2
e

L

(∑L
l=1 |y(l)|

)2∑L
l=1 |y(l)|2

, (5.32)

and the GM-NAMF in (5.28) as

|y|2
H1

≷
H0

η2
gLΣ

B

Cg

( L∏
l=1

|y(l)|2
)1/L

, (5.33)

where

Cg ≡ 1− Lη2
g

( ∏L
l=1 |y(l)|2

)1/L∑L
l=1 |y(l)|2

. (5.34)

In writing (5.31) and (5.33) we have assumed that Ce > 0 and Cg > 0. This will

be guaranteed if ηe ≤ 1 and ηg ≤ 1, respectively, and can be seen by an application

of Hölder’s inequality to the sums in (5.32) and using the fact that geometric means

are smaller than arithmetic means in (5.34). As shown by simulation results, a wide
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range of FAPs is achieved for values of both thresholds less than unity and therefore

we assume this restriction to hold. For brevity we denote the RHSs of both (5.31) and

(5.33) by Σ
B
D, where D is a function of

(
y(1) · · · y(L)

)
, yTL and corresponding

constants that depend on the detector in question. With this (generic) notation, the

FAP can be written as

α = P (|Y |2 ≥ Σ
B
D)

= EB{P (|Y |2 ≥ Σ
B
D
∣∣B-vec)}

= EB{E{P (|Y |2 ≥ Σ
B
D
∣∣B-vec,YL)}}

= EB{E{e−Σ
B
D/(1+Σ

B
) ∣∣B-vec)}}

= EB
{
E
{
g(Σ

B
,YL)

∣∣∣B-vec
}}
, (5.35)

where

g(Σ
B
,YL) ≡ e−Σ

B
D/(1+Σ

B
)
, (5.36)

and EB denotes expectation over the distribution of the B vectors and E the expec-

tation over the conditional distribution of YL. The fourth line above follows because

conditioned on the B vectors, Y and YL are independent and |Y |2/(1 + Σ
B

) is unit

exponential.

From (5.15) and (5.16) on page 90, y and y(l) can be rewritten as

y ≡ z
A
−

L∑
l=1

z
A

(l)z
B

(l)† S−1

BB
z
B
,

y(l) ≡ z
A

(l)−
L∑
i=1

z
A

(i)z
B

(i)† S−1

BB
z
B

(l).

(5.37)

Then the FAP in (5.35) can be further written as

α = EB
{
E
{
g(Σ

B
,YL)

∣∣∣B-vec
}}

= E{g(Σ
B
, Y (1), . . . , Y (L))}

= E{g(Σ
B
, ZA(1), . . . , ZA(L))} , E{g(Σ

B
,ZAL)}

= E?{g(Σ
B
,ZAL)W (ZAL)} (5.38)

where g(Σ
B
,ZAL) = g(Σ

B
,YL) and is given by (5.36). A step by step derivation of

the above equation is provided in Appendix F.
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Figure 5.7: Estimated IS gains for the E- and GM-NAMF detectors. L = 128 and N = 64.

For simplicity, we perform IS only on the variables in ZAL = (ZA(1) · · ·ZA(L))T .

Noting that ZAL ∼ CNL(0, I), scaling down ZAL with parameter θ leads to the

weighting function

W (zAL) = θL e−
∑L

1 z
†
A(l)zA(l)(1−1/θ). (5.39)

The IS estimator for the FAP is therefore

α̂ =
1

K

K∑
i=1

[g(Σ
B
,ZAL)W (zAL)](i); ZAL ∼ f?(zAL),B-vec ∼ f(B-vec) (5.40)

5.4.3 Simulation results

In this section simulation results are shown for both E-NAMF and GM-NAMF detec-

tors. The parameters used in the simulations are L = 128 and N = 64. In Figure 5.7

the estimated IS gain is plotted against the design FAP α. In Figure 5.8 the threshold

multipliers for the two tests derived using the inverse IS procedure are shown versus

the design FAP α.

PD in homogeneous case

In this subsection we present the detection probability of the E-NAMF and GM-

NAMF detectors in homogeneous i.i.d. Gaussian background and compare it with

that of the NAMF detector. The FAP is set to 10−6, L = 128 and N = 64. Detection

probabilities are estimated using MC simulation with 100000 trials. The detection
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Figure 5.8: Threshold values for the E- and GM-NAMF detectors. L = 128 and N = 64.

probability for the case of both fluctuating and non-fluctuating target model is plotted

in Figure 5.9 versus the SNR. In this figure is also plotted the detection probability for

the NAMF detector obtained using the analytical formula of [171]. The figure shows

that the three detectors perform almost the same in the presence of homogeneous

clutter. In fact, the E-NAMF and NAMF perform exactly the same while the GM-

NAMF has a very small loss compared to the other two detectors. Therefore, in

homogeneous clutter background, regardless of the target fluctuation, both the E-

NAMF detector and the GM-NAMF detector perform as well as the NAMF detector.

In Figure 5.10 the receiver operating characteristic is shown for a signal-to-noise

ratio of 10 dB. The detection probability is plotted versus the FAP for E-NAMF and

GM-NAMF for both Swerling 0 and Swerling 1 target models.

PD in the presence of interfering targets

In this subsection the performance of the envelope, geometric mean and square law

NAMF detectors are compared in the presence of two interfering targets in the sec-

ondary data. In the performance evaluations, correlated clutter and jammer have not

been considered and the background consists of white Gaussian noise. In Figure 5.11

Pd performance are shown respectively for the Swerling 0 and Swerling 1 target model.

In the simulations we assumed the interfering targets to have the same power and

the same steering vector as the actual target. Figure 5.11(a) shows the comparison in

the presence of 2 interferers when the target signal is constant, i.e., non-fluctuating.

In Figure 5.11(b) is plotted the detection probability when both the target and the

interferers are assumed to be fluctuating. For both target models, it can be seen

that the NAMF detector, for a fixed Pd, has a significant detection loss compared to
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Figure 5.9: Detection probability versus SNR in homogeneous background for Swerling 0 and Swerling

1 target model. L = 128, N = 64 and α = 10−6.
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Figure 5.10: ROC for E-NAMF and GM-NAMF for both Swerling 0 and Swerling 1 target models.

SNR=10 dB. L = 128 and N = 64.

the envelope and geometric mean variants and that the GM-NAMF performs slightly

better than the E-NAMF detector. For example, at Pd = 0.5, the NAMF has a de-

tection loss of about 1.2 dB w.r.t E-NAMF and 1.38 dB w.r.t GM-NAMF for the

case of non-fluctuating target and about 2 dB w.r.t E-NAMF and 2.38 dB w.r.t GM-

NAMF for the fluctuating model. This detection loss will increase for higher Pd. For

example, in the case of Swerling 0 target model at Pd = 0.9, NAMF has about 3 dB

loss w.r.t E-NAMF for the same case and 5.5 dB loss w.r.t NAMF in homogeneous

Gaussian background. It has also to be noticed that in the fluctuating target scenario

the presence of interfering targets produces a loss in terms of Pd performance much

more significant than in the nonfluctuating case, especially in the region of high SNR.
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Figure 5.11: Pd comparison for the NAMF, E-NAMF and GM-NAMF detectors with 2 interfering

targets and NAMF detector without interfering targets (homogeneous). α = 10−6, L = 128 and

N = 64.

As expected, in the presence of nonhomogeneities the E-NAMF and GM-NAMF de-

tectors are more robust than the NAMF square low detector. Furthermore, they also

perform better than the AMF detector and its envelope and geometric mean variants,

whose performance are reported in [96]. This result is in agreement with previous

works on LOG/CFAR processors, [85–89, 172] and reference therein, and due to the

capability of the logarithmic receiver to suppress non Gaussian clutter and interfering

targets.
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Figure 5.12: Variance of IS estimators when biasing is applied at different points in the processing

chain.

5.5 Point of application of biasing

Some comments of a general nature regarding application of IS to signal processing

algorithms are made here. They give some insight into the thinking behind our efforts

to simulate the above mentioned algorithms. The simulation procedures described

thus far in the previous sections, such as adaptive IS, are applicable to any detector.

When IS biasing is performed on the input random variables then we refer to this

technique as input biasing. Comparing the results for the different detectors presented

in this thesis, it is clear that accuracy of the IS estimates and resulting simulation

gains will of course depend on the particular detection algorithm under study. It is

generally true (and intuitive) that better estimator performance can be obtained if IS

biasing can be carried out closer to the point in the processing chain of the detector

where the actual (rare event) decisionmaking is done, as shown in Figure 5.12. A

formal proof of this fact can be found in [92]. This of course necessitates knowledge

of density functions of the processes at the point where biasing is to be implemented.

Often, input stochastic variables may have undergone transformations whose results

are difficult to characterize statistically in analytical form, and we have to rely on the

general method above. However, when such transformations can be characterized,

then IS should be carried out using the modified processes. Therefore, it is desirable

to perform biasing and IS as close to the final decisionmaking point as permitted

by availability of knowledge of probability density functions. Another approach to

biasing that is sometimes possible is to perform a series of (linear and/or nonlinear)

transformations of the input processes as if one were carrying out a mathematical

analysis of the algorithm. The transformations are carried out until the point beyond

which it may not be possible to determine the density functions of the transformed

processes without considerable mathematical effort. Biasing is then performed at

this stage, the hope being that the g-method becomes applicable. This procedure

may produce higher simulation gains than simple input biasing which, of course, is

the easiest to implement. This point is illustrated in Figure 5.13 by comparing the

gains obtained using the 2 different biasing schemes proposed in this thesis, namely

input biasing for NMF (Appendix C) and g-method estimator with biasing of ΣB for

the NAMF detector (Section 5.3). Another example of this phenomenon is shown in
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Figure 5.13: IS gain comparison for NMF using (input) biasing by rotation and NAMF using the

g-method with 2 dimensional biasing. N = 64 and L = 128.

Appendix D, Figure D.3, by comparing the simulation gains of different IS schemes

using one dimensional ( [96]) and two dimensional biasing ( [174]) applied to the

AMF.

5.6 Conclusions

In this chapter we have introduced and developed IS techniques suitable for analysis

of the NMF class of STAP detectors. Two dimensional biasing schemes using the

g-method estimator have been used to produce new IS results for the NAMF detec-

tor and its variants, the envelope-law and geometric-mean. The E and GM NAMF

detectors have been proposed here for the first time, and their respective thresholds

have been determined using fast simulations. We have shown that these detectors

have better performance in the presence of interfering targets in the training data

while maintaining almost equal performance as the standard square-law version in

homogeneous Gaussian interference. These detectors represent robust alternatives to

conventional square-law processing.



Chapter 6

Fast simulations for Low Rank

STAP detectors

In this chapter the STAP detector based on the low-rank approximation of the nor-

malized adaptive matched filter (LRNAMF) is investigated for its performance. Being

computationally efficient, the LRNAMF detector is a candidate for future implemen-

tation in STAP radar detection. Subject to an approximation for the disturbance

covariance matrix in a clutter dominated scenario, the FAP of the LRNMF detec-

tor is known via a simple formula, [102, 103]. A brief description of the detector is

reported in the first section in order to summarize the low-rank approximation. We

then provide an analytical derivation, based on the g-method, of the exact FAP of

the LRNMF detector for data possessing an arbitrary covariance matrix. The FAP

derivation based on the g-method is obtained using both singular and non-singular

Gaussian distributions. Using a nominal model for the eigenspectrum of the covari-

ance matrix that is used to set up our simulations, we compare the results of the

g−method estimator with the exact formula of the LRNMF FAP. We also discuss the

adaptive LRNMF, the LRNAMF detector and show how the analytical results for the

LRNMF detector can be used to predict its performance. Finally, we evaluate the

detection performance of the adaptive detector when the secondary data are contam-

inated by interfering targets, and demonstrate that LR detectors are robust against

outliers in the secondary data vectors.1

1This chapter is based on articles [C19] and [R1] (a list of the author’s publications is included

at the end of this dissertation, p. 183.)
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6.1 The LRNMF detector

The low-rank approximation to the normalized matched filter is used for target de-

tection in heterogeneous clutter scenarios. The background is assumed to consist of

clutter plus white Gaussian noise. The binary hypothesis test can be written as

H0 : x = d = c + n

H1 : x = as + d = as + c + n (6.1)

where x is the primary data vector, c is the Gaussian clutter vector with covariance

matrix sRc with unknown level s and known structure, n denotes the additive white

Gaussian noise vector with covariance matrix σ2I, where I is the N × N identity

matrix and the noise power σ2 is unknown, s is the steering vector and a is the

unknown target amplitude. The vector d is used to represent the sum of the clutter

and the white Gaussian noise. The covariance matrix of the disturbance d is

Rd = sRc + σ2I. (6.2)

In many real cases the clutter covariance matrix Rc has rank r which is less than

N . This fact will be used to approximate the inverse of the disturbance covariance

matrix which will be used in the NMF test. The matrix Rd can be expressed as

Rd = UDU†, (6.3)

where U is the matrix whose columns are the normalized eigenvectors of Rd and D

is the diagonal matrix of the eigenvalues of Rd. When Rc has rank r � N , then Rd

can be rewritten as

Rd =

r∑
i=1

(sλi + σ2)uiu
†
i +

N∑
i=r+1

σ2uiu
†
i . (6.4)

The inverse covariance matrix is

R−1
d =

r∑
i=1

(sλi + σ2)−1uiu
†
i +

N∑
i=r+1

σ−2uiu
†
i . (6.5)
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The previous expression can be rewritten as

R−1
d =

1

σ2

r∑
i=1

uiu
†
i

(1 + sλi
σ2 )

+

N∑
i=r+1

σ−2uiu
†
i

=
1

σ2

N∑
i=1

uiu
†
i −

1

σ2

r∑
i=1

sλi
σ2

(1 + sλi
σ2 )

uiu
†
i

=
1

σ2

(
I−

r∑
i=1

sλi
σ2

(1 + sλi
σ2 )

uiu
†
i

)
. (6.6)

For a clutter-to-noise ratio (CNR) much greater than one, i.e., sλi � σ2, the inverse

of the disturbance covariance matrix can be approximated as [175]

R−1
d ≈

1

σ2
(I−P), (6.7)

where

P =

r∑
i=1

uiu
†
i (6.8)

is a rank r projection matrix formed with the r eigenvectors corresponding to the r

dominant eigenvalues of Rd. Using the approximation in (6.7) in the NMF test of

(5.5), we obtain the LRNMF test

ΛLR ≡
|s†(I−P)x|2

(s†(I−P)s)(x†(I−P)x)

H1

≷
H0

η. (6.9)

It can be noticed that the LRNMF test is invariant to the unknown clutter level s

and to the noise power σ2. Moreover, since (I − P) is also a projection matrix of

rank (N − r), (I − P)2 = (I − P), therefore we can define the transformed vectors

s1 = (I−P)s, x1 = (I−P)x and rewrite the test as

ΛLR ≡
|s†1x1|2

(s†1s1)(x†1x1)

H1

≷
H0

η. (6.10)

It is important to observe that the low rank NMF test is the squared cosine of the

angle between the transformed steering vector s1 and the transformed data vector

x1. Fast simulation can be performed using rotation of the primary data vector x1

as described in Appendix C for the NMF detector; of course, since the two vectors in

this case are not the same as for the NMF case, the IS performance will be different.
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6.1.1 FAP approximation: low clutter rank and high CNR

The FAP for the LRNMF detector is derived in [103] and is given by

α
LRNMF

= (1− η)N−r−1. (6.11)

A crucial point of the LRNMF detector is the clutter rank estimation. The threshold

for the LRNMF test, for a fixed FAP, will depend on the rank r of the clutter covari-

ance matrix, specifically it increases with increasing r. A technique for clutter rank

estimation can be found in [176]. The case r = 0 coincides with the full rank NMF

test, which is invariant to the white noise level.

6.2 Exact FAP of the LRNMF detector using the g−method

In this section we derive two alternate expressions for the exact FAP of the LRNMF

detector in (6.9). In particular, we do not assume that (I − P) in (6.7) whitens

the primary vector x, as is required for the derivation of the FAP formula in (6.11).

Therefore, these exact forms are valid for any primary covariance matrix Rd. The first

expression involves singular multivariate Gaussian distributions whereas the second

does not.

For ease of notation we denote the projection matrix (I − P) by Q, which is

idempotent. The LRNMF test of (6.9) can then be written as

ΛLR ≡
|s†Q2x|2

(s†Q2s)(x†Q2x)

H1

≷
H0

η. (6.12)

Define the transformed vectors

x1 = Qx and s1 = Qs. (6.13)

Then

R1 = E
{
X1X

†
1

}
= QE

{
XX†

}
Q† = QRdQ

†. (6.14)

As Q is a singular matrix, the matrix R1 is also not of full rank. This follows

from the property of the rank of a product of matrices.2 Hence x1 ∼ SCNN (0,R1),

where SCN indicates a singular multivariate Gaussian distribution.3 Using the above

transformations the test becomes

ΛLR ≡
|s†1x1|2

(s†1s1)(x†1x1)
=

|s†1x1|2

‖s1‖2‖x1‖2
=
|(s†1/‖s1‖) x1|2

‖x1‖2
=
|t†x1|2

‖x1‖2
(6.15)

where t ≡ s1/‖s1‖ is a unit vector.

2rank(AB) ≤ min( rank(A), rank(B) )

3A complex Gaussian vector x of N components with covariance matrix R and mean vector

µ is said to have a singular multivariate Gaussian distribution if rank(R) = p < N . Using the
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6.2.1 Exact FAP: using singular Gaussian distributions

Define a unitary transformation t1 = Ht, such that the unit vector t1 has a single

element equal to 1 and the remaining (N−1) elements are zero, i.e., t1 = (0, . . . , 0, 1)T .

The matrix H can be an Householder transformation matrix given by

H = I− 2uu†

‖u‖2
, (6.16)

and

u = t +
ti‖t‖
|ti|

ei, (6.17)

where

ei = [0, . . . , 0, 1, 0, . . . , 0]T (6.18)

has 1 as the ith element and zero elsewhere. The transformation by the matrix H will

eliminate all the elements of t except the element ti. Note that H is an Hermitian

unitary matrix

H−1 = H† = H. (6.19)

We will construct the H matrix in order to preserve only the Nth element of the

vector t. The likelihood ratio in (6.15) now takes the form

ΛLR =
|t†1Hx1|

x†1x1

. (6.20)

Now define

y = Hx1,

Ry = E
{
yy†

}
= HE

{
x1x

†
1

}
H† = HR1H

†, (6.21)

factorization

R = U

[
Dλ 0

0 0

]
U†

the covariance matrix can be written as R = U1DλU†1, where U = [U1,U2] is an N×N orthogonal

matrix, U1 is an N × p column orthogonal matrix, and Dλ = diag(λ1, . . . , λp) with λ1 > 0 for

i = 1, . . . , p. Define R− ≡ U1D−1
λ U†1, the generalized inverse of R = U1DλU†1. The p.d.f. of x is

given by

f(x) =
1

πN |Dλ|
exp{(x− µ)†R−(x− µ)}

where x lies on the p-dimensional linear subspace defined by

L†(x− µ) = 0; L : N × (N − p), L†R = 0, L†L = IN−p
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where y ∼ SCNN (0,Ry). The vector x1 in the test can be replaced by

x1 = H−1y = H†y = Hy. (6.22)

Then, the likelihood ratio of (6.20) and corresponding test can be rewritten as

ΛLR =
|t†1y|

y†H†Hy
=
|t†1y|
y†y

=
|yN |2
N∑
i=1

|yi|2

H1

≷
H0

η (6.23)

where yi, i = 1, . . . , N are the elements of the vector y. Now we can write the test in

the form

|yN |2
H1

≷
H0

η
(
|yN |2 +

N−1∑
i=1

|yi|2
)

|yN |2(1− η)
H1

≷
H0

η

N−1∑
i=1

|yi|2

|yN |2
H1

≷
H0

η0

N−1∑
i=1

|yi|2

|yN |
H1

≷
H0

(
η0

N−1∑
i=1

|yi|2
)1/2

(6.24)

where η0 = η/1− η.

Define the (N − 1) vector ỹ ≡ (y1, . . . , yN−1)T , u1 ≡ |yN |, and

b(η, ỹ) ≡
(
η0

N−1∑
i=1

|yi|2
)1/2

. (6.25)

Then, the FAP is given by

α
LRNMF

= P
(
|YN | ≥

(
η0

N−1∑
i=1

|Yi|2
)1/2)

= E
{
P
(
U1 ≥ b(η, Ỹ)

∣∣Ỹ)} , E{g(η, Ỹ)
}

(6.26)

and the g function can be expressed in integral form as

g(η, ỹ) =

∫ ∞
b(η,ỹ)

f(u1|ỹ)du1. (6.27)
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The conditional distribution of YN is also Gaussian and we have to determine the

conditional mean and variance. The vector y can be written as y = [ỹ; yN ] and the

covariance matrix of y can be partitioned as

Ry =

[
E{ỸỸ†} E{ỸY †N}
E{YNỸ†} E{YNY †N}

]
=

[
Rỹ Rỹy

N

Ry
N
ỹ σ2

y
N

]
(6.28)

where Rỹ is the (N − 1) × (N − 1) singular covariance matrix of the vector ỹ and

σ2
y
N

is the variance of the random variable YN . The conditional mean and variance

of YN are

E{YN |ỹ} = Ry
N
ỹR−ỹ ỹ = cT ỹ =

N−1∑
i=1

ci yi,

var{YN |ỹ} = σ2
yN −Ry

N
ỹR−ỹ Rỹy

N
, (6.29)

where cT ≡ Ry
N
ỹR−ỹ , ci, i = 1, . . . , N − 1 are the elements of the vector c, and R−ỹ

is the g-inverse of Rỹ.

Conditioned on the vector Ỹ, the random variable YN is Gaussian with mean and

variance given in the expressions above. Then the random variable U1 = |YN | has a

Rice distribution with noncentrality parameter

s2 =
∣∣∣N−1∑
i=1

ci yi

∣∣∣2, (6.30)

and parameter

σ2 = var{YN |ỹ}/2. (6.31)

Hence, the integral in (6.27) can be written as

g(η, ỹ) =

∫ ∞
b(η,ỹ)

u1

σ2
exp

[
− (u2

1 + s2)/2σ2
]
I0(u1s/σ

2) du1

= Q1

(
s

σ
,
b(η, ỹ)

σ

)
, (6.32)

where Q1(·, ·) is the Marcum-q function, and the FAP becomes

α
LRNMF

=

∞∫
−∞

. . .

∞∫
−∞

Q1

(
s

σ
,
b(η, ỹ)

σ

)
f(ỹ)dỹ (6.33)

where f(ỹ) is the density corresponding to the singular Gaussian distribution SCNN−1(0,Rỹ).

This is one expression for the FAP of the LRNMF detector for arbitrary covariance

matrix Rd of the primary data vector.
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6.2.2 Exact FAP: using nonsingular Gaussian distributions

We start with the covariance matrix R1 of x1 ∼ SCNN (0,R1) having some rank say

p < N in (6.14) and write its decomposition as

R1 = QRdQ
† = VΛV† (6.34)

where V is the matrix of eigenvectors corresponding to the eigenvalues {λi}N1 in the

diagonal matrix Λ, which can be written as

Λ =



λ1 0 . . . 0

0 . . . . .

. . λp . . .

. . . 0 . .

. . . . . 0

0 . . . 0 0


. (6.35)

Define

Λp ≡


λ1 0 . . 0

0 . . . .

. . . . .

. . . . 0

0 . . 0 λp

 , (6.36)

and

Vp ≡ upper left block of V ∈ Rp×p,

VN−p ≡ lower left block of V ∈ R(N−p)×p. (6.37)

Using these definitions we can write R1 as

R1 =

 Vp Λp V†p Vp Λp V†N−p

VN−p Λp V†p VN−p Λp V†N−p

 (6.38)

which also turns out to be the covariance matrix of a new vector x1 defined as

x1 ≡
[

Vp

VN−p

]
︸ ︷︷ ︸

N×p

Λ1/2
p W; W ∼ CN p(0, I) (6.39)

and hence this new x1 is statistically identical to the vector x1 in the beginning of

this subsection. This is a well known representation [177] for expressing a singular

Gaussian vector in terms of a nonsingular Gaussian vector with independent compo-

nents.
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Substituting this definition into (6.15) yields the likelihood ratio

ΛLR =
|t†x1|2

‖x1‖2

=

∣∣∣∣ t† [ Vp

VN−p

]
Λ

1/2
p W

∣∣∣∣ 2

W†Λ
1/2
p

[
V†p V†N−p

] [ Vp

VN−p

]
Λ

1/2
p W

=

∣∣∣∣ t† [ Vp

VN−p

]
Λ

1/2
p W

∣∣∣∣ 2

W†ΛpW
. (6.40)

Now define

Y ≡ Λ1/2
p W (6.41)

and the p× 1 unit vector

t1 ≡
[

V†p V†N−p

]
t. (6.42)

Then Y ∼ CN p(0,Λp) and the likelihood ratio becomes

ΛLR =
|t†1y|2

y†y
. (6.43)

Next we find a unitary transformation H (not to be confused with the unitary trans-

formation H defined on page 109) such that

e1 ≡ H t1 =
(

1 · · · 0
)T
. (6.44)

Then the likelihood ratio can be written as

ΛLR =
|e†1Hy|2

y†y
. (6.45)

Defining

Z ≡ H Y (6.46)

leads to

ΛLR =
|e†1z|2

z†z
, (6.47)

with Z ∼ CN p(0,Rz) where

Rz = HΛpH
†. (6.48)
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The likelihood ratio test can therefore be written as

|z1|2
p∑
i=1

|zi|2

H1

≷
H0

η (6.49)

where the zi’s denote the components of z. Rearranging yields

|z1|
H1

≷
H0

(
ηo

p∑
i=2

|zi|2
)1/2

(6.50)

where ηo = η/(1 − η), which can be considered (somewhat loosely speaking) as the

nonsingular version of the test in (6.24) on page 110. The rest of the derivation for

the FAP, which is given below, is similar to the one in Section 6.2.1.

Defining z̃ ≡
(
z2 · · · zp

)T
, the covariance matrix Rz can be partitioned

as

Rz = E

{[
Z1

Z̃

] [
Z?1 Z̃†

]}

=

[
E{|Z1|2} E{Z1Z̃

†}
E{Z̃Z?1} E{Z̃Z̃†}

]

,

[
σ2

1 Rz1z̃

Rz̃z1 Rz̃

]
. (6.51)

The random variable Z1 is conditionally Gaussian with density f(z1 | z̃) corresponding

to the distribution CN 1(µc, σ
2
c ) where the conditional mean and variance µc and σ2

c

are given by

µc = E{Z1 | z̃} = Rz1z̃ R−1
z̃ z̃,

σ2
c = var(Z1 | z̃) = σ2

1 −Rz1z̃ R−1
z̃ Rz̃z1 . (6.52)

The random variable U ≡ |Z1| is then conditionally Rice with density

f(u | z̃) =
u

σ2
exp

[
− (u2 + s2)/2σ2

]
I0(us/σ2), u ≥ 0 (6.53)

where s = |µc| and σ2 = σ2
c/2. Defining

b(η, z̃) ≡
(
η0

p∑
i=2

|zi|2
)1/2

(6.54)
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the FAP of the test in (6.50) can be expressed as

α
LRNMF

= P
(
|Z1| ≥

(
η0

p∑
i=2

|Zi|2
)1/2)

= E
{
P
(
U ≥ b(η, Z̃)

∣∣Z̃)}
, E

{
g(η, Z̃)

}
(6.55)

where

g(η, z̃) =

∫ ∞
b(η,z̃)

u

σ2
exp

[
− (u2 + s2)/2σ2

]
I0(us/σ2) du

= Q1

(
s

σ
,
b(η, z̃)

σ

)
(6.56)

using (6.53). Then, similarly to (6.33), the FAP can be written as

α
LRNMF

=

∫ ∞
−∞

. . .

∫ ∞
−∞

Q1

(
s

σ
,
b(η, z̃)

σ

)
f(z̃) dz̃

(6.57)

where f(z̃) corresponds to the (nonsingular) density of CN p−1(0,Rz̃). This is the

second expression for the exact FAP of the LRNMF detector.

6.3 Nominal statistical model for simulation and threshold

setting

A nominal statistical model for the radar returns in the (target-free) primary data

vector is required in order to be able to specify a covariance matrix Rd under the

Gaussian assumption. Such a model can then be used to derive threshold settings

for desired FAP values for the detector either through simulation or through direct

computation of FAP expressions.

For the disturbance covariance Rd = sRc + σ2I in (6.2) we start again with the

low clutter-rank approximation of (6.4) on page 106 as

Rd =

r∑
i=1

(sλi + σ2) uiu
†
i +

N∑
i=r+1

σ2 uiu
†
i = UDU†, (6.58)
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and identify the matrix of eigenvalues D as

D = diag
(
sλ1 + σ2, . . . , sλr + σ2, σ2, . . . , σ2 )

= σ2 diag
(

1 + sλ1/σ
2, . . . , 1 + sλr/σ

2, 1, . . . , 1︸ ︷︷ ︸
N−r

)
. (6.59)

Now, choice of the unitary matrix U of eigenvectors will determine the covariance

matrix Rd. The simplest choice that can be made (at the risk of seeming somewhat

subjective) is U = I. In such a case, Rd = D. That is

Rd = D = σ2



1 + sλ1/σ
2 0 . . . 0

0 . . . . .

. . 1 + sλr/σ
2 . . .

. . . 1 . .

. . . . . 0

0 . . . 0 1


. (6.60)

It turns out that this choice is not without some practical significance. In a special

case, using the high clutter-to-noise ratio assumption

sλi
σ2
� 1

with

σ2 = 1; λi = 1, i = 1, . . . , r

leads to a covariance matrix of the form

Rd = D =


s 0 . . 0

0 s . . .

. . . . .

. . . 1 0

0 . . 0 1

 . (6.61)

A plot of the eigenspectrum of R̂d estimated from Gaussian data generated according

to the above Rd is shown in Figure 6.1. This eigenspectrum shows a close resemblance

to the eigenspectrum estimated from KASSPER data, [103]. We note of course that

this property of our model is due to the shape of the matrix of eigenvalues D (rather

than the particular choice U = I).

A consequence of the structure of the nominal covariance matrix Rd in (6.60) is

described in the following subsection.
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Figure 6.1: Estimated eigenspectrum for data having covariance matrix in (6.61). The clutter rank

is r = 33 and CNR = 40dB.

6.3.1 Exact FAP of LRNMF detector: nominal Rd

We calculate here the FAP of the LRNMF detector when the covariance matrix Rd of

the primary data vector is as in (6.60). The assumption of high clutter-to-noise ratio

is not used. Therefore, the only restriction is on the shape of Rd. As Rd is diagonal,

it follows that its eigenvector matrix U are composed of the columns of I and hence,

for a given r, the projection matrix Q is given by

Q = I−
r∑
i=1

uiu
†
i

=

N−r∑
i=1

uiu
†
i

=



0 . . . . 0

. . . . . .

. . 0 . . .

. . . 1 . .

. . . . . 0

0 . . . 0 1


(6.62)

which is of rank N − r. Applying this and Rd in (6.60) to (6.34) yields

R1 = VΛV† = Q. (6.63)
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This implies, from (6.35), that

Λ =



1 0 . . . 0

0 . . . . .

. . 1 . . .

. . . 0 . .

. . . . . 0

0 . . . 0 0


(6.64)

p = N−r, and thus Λp in (6.36) is Λp = IN−r. Using this in (6.48) yields Rz = IN−r.

Therefore the test in (6.50) represents a simple CA-CFAR test with FAP given by

α
LRNMF

= (1− η)N−r−1

which coincides with the expression for the LRNMF detector in (6.11) on page 108.

Therefore we can conclude that whereas the above formula is an approximation

(albeit a good one) for the FAP under the assumptions of low clutter-rank and high

clutter-to-noise ratios, it is an exactitude if the covariance matrix of the data possesses

the structure in (6.60). In the latter case the clutter-to-noise ratio does not matter.

6.4 The LRNAMF detector

The low-rank normalized adaptive matched filter (LRNAMF) detector is described

by

ΛLR-A ≡
|s†(I− P̂)x|2

(s†(I− P̂)s)(x†(I− P̂)x)

H1

≷
H0

η (6.65)

where

P̂ =

r∑
i=1

uiu
†
i (6.66)

and {ui}N1 are eigenvectors of the covariance matrix estimate R̂d obtained from the

secondary vectors with r being the estimated rank of the clutter component of the

disturbance.

6.4.1 FAP approximation: low clutter rank and high CNR

The main difference between the LRNMF and LRNAMF detectors (the former given

in (6.9)), for a fixed value of r used in both detectors, lies in the set of eigenvectors

{ui}N1 used to compose the matrix P (or P̂). However, for the low-rank clutter

model of (6.4) and subject to the high clutter-to-noise ratio approximation of (6.7),

the FAP performance of the LRNMF detector is given by the expression of (6.11)
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and this expression is independent of the eigenvectors used in the detector. This

implies that the LRNMF detector is CFAR with respect to the structure of covariance

matrices Rd of data that arise from models satisfying these assumptions. Therefore,

for data having the same eigenspectrum as in the above model, and for the same

value of r used in both detectors, the FAP performance of the LRNAMF detector

will be, largely, equal to that of the LRNMF detector and given by the same formula

for each realization of the sample covariance matrix R̂d. The LRNAMF detector

will also be approximately CFAR under the above assumptions on clutter rank and

power. Nevertheless, it must be emphasized that the FAP expression of (6.11) is an

approximation.

6.4.2 Exact FAP: arbitrary covariance Rd

If the model assumptions do not hold, specifically in cases where the CNR is not high,

then the expressions for exact FAP of the LRNMF detector derived in (6.33) and

(6.57) can be used to determine the exact FAP of the LRNAMF detector. Whereas

the influence of the secondary vectors on the LRNAMF detector is felt through the

eigenvectors in P̂, via singular value decomposition of the covariance matrix estimate

R̂d, the FAP is affected by the covariance matrix Rz in the expression (6.57). This

matrix is derived from the eigenvectors in P̂ through a series of transformation de-

scribed in Sections 6.2 and 6.2.2 and is, strictly speaking, a random matrix whose

statistical properties are related to those of the secondary vectors. Therefore the

FAP expression for the LRNMF detector in (6.57) can be considered as a conditional

probability expression; the average of this over the statistics of the covariance matrix

Rz will produce the exact FAP performance of the LRNAMF detector. Although it

does not appear to be analytically tractable, this fact can be formally expressed by

α
LRNAMF

= ERz{αg(Rz)} = ERz{E{g(η, Z̃)
∣∣Rz}} (6.67)

with g(η, z̃) given in (6.56).

6.5 Simulations for LR detectors

We report here the simulation results obtained for FAP and threshold estimation

for both LRNMF and LRNAMF detectors having the nominal covariance matrix

in (6.61). The two FAP expressions, (6.33) and (6.57), have been used to set up

estimators for FAP. The estimator for the LRNMF detector can be written as

α̂
LRNMF

=
1

K

K∑
1

g(η, Z̃); Z̃ ∼ CN p−1(0,Rz̃). (6.68)
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Figure 6.2: Comparison of FAP using the g-method estimator and the formula in (6.11) for the

LRNMF detector. N = 128, r = 33, K = 100000 (for the g-method estimator).

For simplicity we have not used any IS. The FAP estimator for the LRNAMF detector

is configured as

α̂
LRNAMF

=
1

K2

K2∑
1

[ 1

K1

K1∑
1

[g(η, Z̃)](i)
](j)

;

Z̃ ∼ CN p−1(0,Rz̃), Rz̃ ∼ f(secondary vectors) (6.69)

where the inner simulation is conditioned on the covariance matrix Rz̃, which depends

on the data covariance Rd in place.

Detector thresholds have been estimated using the inverse g-method described in

Section 1.2.2.

Results for FAP

The first result for FAP of the LRNMF detector is shown in Figure 6.2, for N = 128

and r = 33. As expected, for the nominal covariance model the simulation results

using the g-method coincide with the formula of (6.11), indicated by stars in the

figure. Corresponding simulation gains for the g-method are shown in Figure 6.3.

Figure 6.4 shows the results of the estimated FAP versus the threshold multipliers

for LRNAMF detector for different values of r and for N = 64 and L = 128. The

FAP of the LRNMF detector is also shown, and it is obtained using the theoretical

formula in (6.11).

A somewhat surprising observation is that for the same data eigenspectrum, the

LRNMF and LRNAMF detectors match very closely in terms of achieved FAP values
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Figure 6.3: Gain of the g-method estimator for the LRNMF detector. N = 128, r = 33, K = 100000.
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Figure 6.4: Estimated FAP versus threshold multipliers for the LRNMF detector using the theoretical

formula in (6.11) for the values of r reported in the legend (red stars) and for the LRNAMF detector

using the g-method estimator. r = 4, 33, and 42, N = 64, L = 128, and K = 100000.

for given thresholds. A plausible explanation for this behavior lies in the following

arguments. Firstly, LR detectors seem to ignore some of the information available in

the secondary vectors, depending solely on the eigenvectors obtained through spec-

tral decomposition and not on the actual estimated eigenvalues. Furthermore, for a

sufficiently large number L of secondary vectors, the estimated eigenspectrum resem-

bles the actual eigenspectrum in shape. This fact may manifest itself through the

eigenvectors of the spectral decomposition.

The estimated simulation gains for the LRNAMF detector using the g-method



122 6. Fast simulations for Low Rank STAP detectors

1 2 3 4 5 6 7 8
10

1

10
2

10
3

10
4

10
5

10
6

10
7

−log
10

α

Γ

 

 

r = 4
r = 33
r = 42

Figure 6.5: Gain of the g-method estimator for the LRNAMF detector. N = 64, L = 128.

estimator is shown in Figure 6.5. From this figure we observe that, even without

applying IS, the g−method alone can achieve considerable gains compared to classical

MC. Also, it can be seen that the gain of the g−method varies significantly with the

rank r of the clutter covariance matrix. This is due to the change of the covariance

matrix Rz that changes, via Λp, with the rank r.

Results for detection probability

In Figure 6.6 the detection probability for the adaptive LR detector for both Swerling

0 and 1 models for the target amplitude distribution are shown for the adaptive LR

detector.4 For the covariance matrix, we used in our simulations CNR = 40dB and

r = 33. Although in a practical scenario the clutter rank would have to be estimated

from the data, in the following simulations we assume r to be known (or correctly

estimated). Furthermore, for the Pd estimation we used conventional MC simulations,

without IS or g-method. We also consider the case when two interfering targets are

presents in the secondary vectors. For simplicity, we assume that the two interfering

targets share the same steering vector and have SNR = 25dB. Figure 6.6 shows that,

for both target amplitude models, the detection performance is almost unchanged by

the presence of interfering targets in the secondary data. This can be explained by

the fact that, if the rank is correctly estimated, the 2 interfering targets with SNR

= 25 dB have no impact on the first r eigenvalues of the covariance matrix, which is

clutter dominated. Therefore, as long as the SNR of the interfering targets is smaller

4The detection performance of the non adaptive LRNMF detector is known in closed form and

available in [102].
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Figure 6.6: Detection probability versus SNR for LRNAMF detector with and without interfering

targets in the secondary data. The interfering targets have SNR = 25 dB. N = 64, L = 128, r = 33

and Pfa = 10−6.

than the CNR, and the clutter rank is correctly estimated, the adaptive LR detector

is robust against the presence of outliers in the training data.

Figure 6.7 compares the detection performance of the adaptive LR and NAMF

detectors in the presence of two interfering targets in the training data. We observe

that, when the clutter has low rank, than the LRNAMF detector outperforms the

NAMF detector, since excluding from the estimate the eigenvalues associated with

the interferers results in a better estimate of the clutter covariance matrix of the

primary data vector.

6.6 Conclusions

In this chapter some theoretical investigations have been made into the performance

of low-rank STAP detectors. We have been able to characterize the FAP performance

of LRNMF detectors in terms of detection thresholds using the g−method estimator.

We showed that the threshold settings for the adaptive detector are very similar to

those of the non adaptive LR detector. Furthermore, we reported some results for

the detection performance of the LRNAMF detector, and observed that, thanks to

the low rank approximation of the clutter covariance matrix, the detector is robust

against the presence of outliers in the training data.
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Figure 6.7: Detection probability versus SNR for the adaptive NAMF and LRNAMF detectors in

the presence of two interfering targets in the training data. N = 64, r = 33 and Pfa = 10−6.



Chapter 7

Conclusions

In the research presented in this thesis we focus on novel sampling techniques that

can be used for the design, analysis and implementation of radar systems.

In the first part of the thesis we investigate the use of the recently developed

Compressive Sensing (CS) technique to radar systems. CS represents an alternative to

the Shannon-Nyquist theorem relying on ’sparseness’ in some signal domain, making

it possible to relax the requirements on sampling rates. However, before CS can be

implemented in any operational system, a number of practical problems that have not

been addressed before must be solved. One of these is how to perform adaptive target

detection from CS measurements. In the work presented here, we devise and compare

different architectures for automatic detection of targets embedded in noise from a

single CS stepped frequency measurement (range), using both theoretical, simulated

and experimental data. We envisage that the proposed architectures can be further

extended to include angle- and Doppler processing.

In the second part of the thesis we investigate the use of Importance Sampling

(IS) techniques for the design of robust and efficient Space Time Adaptive Processing

(STAP) detectors. Space time adaptive processing is a technique used in multi-channel

radar systems for improving clutter and interference suppression. STAP produces

significant processing gain at the cost of an increased computational complexity. IS

represents a fast alternative to classical Monte Carlo simulation for the analysis of

such detectors. However, in order to apply IS, an efficient way to bias the probabil-

ity density function of the test statistic such that the rare event occurs more often

must be designed specifically for the problem at hand. We examine several STAP

detectors from the standpoint of applying importance sampling to characterize their

performances. Various biasing techniques are also devised and implemented, such as

biasing by rotation and two dimensional biasing, resulting in significant speed-ups in
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performance evaluation compared to conventional MC methods.

In the remainder of this chapter we summarize the main contributions of this

research in both areas and conclude with some remarks on future work.

7.1 Compressive Sensing radar detectors

The main research question that we address in this thesis is the design and analysis

of compressive sensing radar detectors. The efforts towards this goal have resulted in

two main contributions:

• the design of the first architecture for adaptive CS radar detection with constant

false alarm rate properties, whose performance is also validated with experimen-

tal CS measurements;

• the development of a theoretical framework that provides a methodology to

predict the performance of the proposed detector, which makes it possible to

design practical CS-based radar systems.

The first objective, namely the design of a CS radar detector with CFAR prop-

erties, is achieved by exploiting the properties of the Complex Approximate Message

Passing (CAMP) algorithm, which is an extension of the AMP algorithm that was

carried out during this thesis for `1-norm recovery from complex data. The CAMP

algorithm allows a statistical characterization of the recovered signal and, using this

property, we are able to derive closed form expressions for the detection and false

alarm probabilities. Furthermore, with a simple modification to the algorithm, we

are able to combine the non-linear `1-norm reconstruction with conventional CFAR

detection, which provides a fully adaptive detection scheme. By comparing theoret-

ical and simulated results we also characterize the behavior of CAMP for sensing

matrices other than Gaussian, for which the theory was developed, and show that

our conclusions still hold for the case of partial Fourier sensing matrices, which are

very suitable for radar measurements and for which, unfortunately, no theoretical

claims can yet be made. From our analysis and experiments, we conclude that using

a separate detector after `1-norm recovery results in improved detection performance

compared to the `1-detector and the compressive matched filter, as in our architecture

both the estimation and detection problems can be optimized separately.

The second main contribution is the derivation of a design methodology for CS-

based radar. This is based on closed form expressions for the CAMP output SNR as a

function of the system and target parameters, which are obtained in this thesis. These

relations can be used to obtain CS link budget plots that allow the system designer

to evaluate the trade off between transmit power and undersampling. Moreover, as

our novel architecture based on CAMP can be combined with conventional radar
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detectors, the characterization of the recovery SNR permits the use of classical radar

design tools even in the CS framework. Our design methodology plays an important

role in determining when and how CS can be applied and at what cost. In fact, the

sparsity-undersampling trade offs show that CS comes at a price. If the signal is not

sparse enough or the number of measurements is too small, there will be losses in SNR

and therefore in performance, the impact of which can be evaluated with the proposed

methodology. However, if the signal sparsity is of the order of 1% with respect to the

number of degrees of freedom, the signal can be significantly compressed compared

to the Nyquist case without noticeable performance loss. In some radar applications

where the SNR is not critical, much higher compression can be applied even at lower

sparsity.

We believe this work paves the way for the development and implementation of

CS in operational radar systems.

7.2 Importance Sampling for analysis and design of STAP

detectors

The main objective of this work is to demonstrate the use of importance sampling

techniques for the efficient synthesis and analysis of space time adaptive processing

radar detectors. The main contributions of this thesis in this direction are:

• the development of ad hoc fast simulation methods for the analysis of the class

of Normalized Adaptive Matched Filter STAP detectors;

• the design of two novel STAP detectors, the Geometric Mean and Envelope

NAMF detectors, and the investigation of their performance using IS.

In this work, we devise novel biasing schemes for the class of Normalized Adaptive

Matched Filter detector and its variants, such as biasing of the probability density

function by rotation of the primary data vector and two-dimensional biasing combined

with the g-method estimator. Using both adaptive and inverse IS, we characterize

the false alarm probability (FAP) performance of the NAMF detectors in terms of

detection thresholds and disturbance backgrounds. With some transformations of the

test statistic, and using the g-method estimator, we also derive general expressions

for the FAP of the low rank NAMF detector that do not make use of the low-rank

approximation. By means of simulations, we demonstrate that the adaptive and non-

adaptive LR detectors have equal threshold settings under the assumption of low rank

and high CNR covariance matrix. We also show that, thanks to the low rank approx-

imation, the LRNAMF detector is robust to the presence of outliers in the secondary

data. Furthermore, in this scenario, if the clutter rank is correctly estimated, the
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LR detector outperforms the NAMF. By investigating different methods of IS, we

are able to gain knowledge on the performance, in terms of gains over conventional

MC simulations, of different biasing schemes. Although the design of an efficient IS

method requires a meticulous mathematical analysis of the detector under investiga-

tion, by comparing our results with traditional Monte Carlo it is clear that IS can

achieve tremendous gain in terms of computational time.

Building upon the work in [96], we also present here for the first time the envelope-

law (E) and geometric-mean (GM) NAMF STAP detectors. The E and GM NAMF

detectors are investigated using fast simulations, and their respective thresholds are

determined using two-dimensional biasing schemes with the g-method estimator. The

proposed detectors are shown to have better performance in the presence of interfering

targets in the training data compared to the standard (square-law) NAMF detector

while maintaining almost equal performance in homogeneous Gaussian background.

These detectors represent robust alternatives to conventional square-law processing.

7.3 Recommendations and future work

CS is a topic that has attracted much interest in the last few years, resulting in

significant developments especially in the theoretical and algorithmic areas. In the

field of radar, but also in other areas where CS has been successfully demonstrated on

synthetic data, the necessary step to bring the CS theory to the next level is to design

CS based hardware and processing chains that can be tested on actual operational

systems and practical conditions.

We foresee that in the field of radar CS could be especially useful for achieving

super-resolution in imaging radars and for reducing cost, power and weight on small

platforms, such as UAVs. Our research has made the first step in this direction, by

demonstrating the possibility of adaptive target detection on experimental CS radar

measurements and by providing a theoretical framework to gauge the impact of CS

on radar design. However, toward this goal several major challenges still need to be

addressed. Implementing a multi-dimensional CS based radar system that can work

in operational conditions requires dealing with issues such as clutter, interference,

and non-homogeneity of the environment. The long history of radar systems has to

some extent addressed all these issues for classical Nyquist-based radars, resulting for

example in very advanced STAP algorithms for multi-channel, coherent radar systems.

However, these issues might have to be reconsidered and have not been addressed

yet for CS radars. The challenges that would need to be tackled include dealing

with non-gaussian and non-white clutter and interference; extending our approach to

multiple signal domains (time, Doppler, channel); characterizing the tradeoffs between

compression and power, and analyzing the impact on the radar architecture. Further,
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in a multi-dimensional approach it is of great interest to explore the possibilities

of adaptive compressive sensing, in such a way that the available resources can be

efficiently divided amongst the different radar tasks, depending on the environment

and target scenario.

Concerning our outlook on application of IS to STAP detectors, it would be par-

ticularly interesting to further investigate the design of novel biasing schemes for the

analysis of STAP detectors whose performance is not known, such as the nonhomo-

geneity and parametric detectors. The so far developed IS methods could provide a

starting point for the analysis of such detectors. Another important extension would

be to consider different target models and more general clutter distributions, such as

the K-distributed models, for clutter backgrounds that are homogeneous as well as

nonhomogeneous. Simultaneously, the conceptualization and development of new de-

tection algorithms from a robustness perspective together with necessary performance

characterization could be carried out, as it was done in this thesis for the envelope and

geometric mean variants of the NAMF STAP detector. Another desirable develop-

ment would be the inclusion of emerging knowledge-aided STAP detection techniques

under the IS umbrella.

Finally, with further research into CS-based techniques for multi-dimensional radar

applications, it is very likely that new detection algorithms capable of dealing with

a number of practical situations will be developed. It is also likely that many of

these algorithms will not lead to simple and straightforward analytical performance

characterizations, especially with regard to false alarm and detection probabilities that

are standard metrics in radar system design. Thus, the designer will have to resort

to Monte Carlo simulations necessitating the use of IS for evaluating CS based CFAR

algorithms. To achieve this combination of CS-based system design and IS-based

performance analysis, significant effort will be required to develop accurate statistical

characterizations of the inputs and outputs of these new detection algorithms. It is

clear from this that there are new and challenging directions for future research in

the areas dealt with in this thesis.
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Appendix A

Risk of the soft thresholding

function

We derive an analytical expression for (3.2) for the case when the non-zero elements

of the vector x all have equal amplitude a and (possibly non-zero) phase θ, i.e.,

xi = aejθ, i = 1, · · · , k. We also demonstrate that, for the complex signal case,

the function Ψ(σ∗) is independent of the phase of the non-zero coefficients. At the

end of the appendix, we also explain how the calculations can be easily generalized

to the more general setting where the non-zero elements have different amplitude

distributions.

Using the above distribution for the non-zero coefficients of x in (3.2), we obtain

σ2
∗ = σ2 +

1

δ
EZ,X{|(η(X + σ∗Z; τσ∗)−X)|2}

= σ2 +
1

δ

{
EZ{|(η(σ∗Z; τσ∗))|2}P (x = 0)

+ EZ{|(η(aejθ + σ∗Z; τσ∗)− aejθ)|2}P (x = aejθ)
}

= σ2 +
σ2
∗
δ

{
(1− δρ)EZ{|(η(Z; τ))|2}+ δρEZ{|(η(µejθ + Z; τ)− µejθ)|2}

}
,

(A.1)

where µ = a/σ∗, and Z ∼ CN (0, 1) and can be decomposed as Z = (Zr + jZc),

where Zr, Zc ∼ N (0, 1/2). Define the two independent random variables W = |Z| ∼
Rayleigh( 1

2 ) and ϑ = ](Z) ∼ that is uniformly distributed between 0 and 2π. The
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first expectation in (A.1) can be computed as

EZ{|η(Z; τ)|2} =

∫
ϑ

∫
w>τ

(w − τ)2fw(w)fϑ(ϑ)dwdϑ = 2

∫
w>τ

w(w − τ)2 e−w
2

dw

= 2
√
π

 ∫
w>τ

w3 e
−w2

√
π
dw − 2τ

∫
w>τ

w2 e
−w2

√
π
dw + τ2

∫
w>τ

w
e−w

2

√
π
dw

 ,

(A.2)

where each of the integrals in the last line is the incomplete moment of a Gaussian

random variable with parameters (0, 1√
2
) of order 3, 2, and 1, respectively. These

integrals can be computed numerically.

Now we want to compute the second expectation in (A.1), which is given by

E(|η(µejθ + Zr + jZc; τ)− µejθ|2), (A.3)

where µ, and θ are fixed numbers and the expectation is with respect to the RV

Zr, Zc, which are independent and distributed as N(0, 1/2). Expanding the expected

value, and using the definition of complex soft thresholding function, we obtain

E(|η(µejθ + Zr + jZc; τ)− µejθ|2)

=

∫
(µcosθ+zr)2+(µsinθ+zc)2≤τ2

µ2 1

π
e−(z2r+z2c )dzrdzc

+

∫
(µcosθ+zr)2+(µsinθ+zc)2≥τ2

|(
√

(µ cos θ + zr)2 + (µ sin θ + zc)2 − τ)ej tan−1 µ sin θ+zc
µ cos θ+zr

− µ cos θ − jµ sin θ|2 1

π
e−(z2r+z2c )dzrdzc. (A.4)

We first simplify the second integral in (A.4). Using the equalities

cos
(

tan−1 µ sin θ + zc
µ cos θ + zr

)
=

µ cos θ + zr√
(µ cos θ + zr)2 + (µ sin θ + zc)2

sin
(

tan−1 µ sin θ + zc
µ cos θ + zr

)
=

µ sin θ + zc√
(µ cos θ + zr)2 + (µ sin θ + zc)2
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we can rewrite the second integral in (A.4) as

∫
(µcosθ+zr)2+(µsinθ+zc)2≥τ2

|(
√

(µ cos θ + zr)2 + (µ sin θ + zc)2 − τ)ej tan−1 µ sin θ+zc
µ cos θ+zr

− µ cos θ − jµ sin θ|2 1

π
e−(z2r+z2c )dzrdzc

=

∫
(µcosθ+zr)2+(µsinθ+zc)2≥τ2

|zr + jzc −
τ(µ cos θ + zr)√

(µ cos θ + zr)2 + (µ sin θ + zc)2

− j
τ(µ sin θ + zc)√

(µ cos θ + zr)2 + (µ sin θ + zc)2
|2 1

π
e−(z2r+z2c )dzrdzc. (A.5)

Define x = µ cos θ + zr and y = µ sin θ + zc. Using this change of variables and

transforming to polar coordinates, we can rewrite (A.5) as

∫
√
x2+y2>τ

|x− µ cos θ + j(y − µ sin θ)− τx√
x2 + y2

− j τy√
x2 + y2

|2

1

π
e−(x−µ cos θ)2−(y−µ sin θ)2dxdy

=

2π∫
φ=0

∫
r>τ

|r cosφ− µ cos θ + j(r sinφ− µ sin θ)− τ cosφ− jτ sinφ|2

1

π
e−(r cosφ−µ cos θ)2−(r sinφ−µ sin θ)2rdrdφ

=

2π∫
φ=0

∫
r>τ

|(r − τ) cosφ− µ cos θ + j((r − τ) sinφ− µ sin θ)|2

1

π
e−(r cosφ−µ cos θ)2−(r sinφ−µ sin θ)2rdrdφ

=

2π∫
φ=0

∫
r>τ

1

π
[(r − τ)2 + µ2 − 2µ(r − τ) cos(θ − φ)]

e−r
2−µ2+2rµ cos(θ−φ)rdrdφ. (A.6)

Using the same transformation as above, we now simplify the first integral in
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(A.4).

∫
(µcosθ+zr)2+(µsinθ+zc)2≤τ2

µ2 1

π
e−(z2r+z2c )dzrdzc

=

∫
x2+y2≤τ2

µ2 1

π
e−(x−µ cos θ)2+(y−µ sin θ)2dxdy

=

2π∫
φ=0

∫
r≤τ

µ2 1

π
e−(r cosφ−µ cos θ)2+(r sinφ−µ sin θ)2rdrdφ

=

2π∫
φ=0

∫
r≤τ

µ2 1

π
e−r

2−µ2+2rµ cos(θ−φ)rdrdφ. (A.7)

For the periodicity of the cosine function, the integrals in (A.6) and (A.7) are indepen-

dent of θ and, therefore, in Chapter 3 (and in the remainder of this demonstration)

we have consider the case θ = 0.

Now, combining the 2 integrals in (A.6) and (A.7) and using the following relations

[178,179]

2π∫
0

ez cos xdx = 2πI0(z),

2π∫
0

cosxez cos xdx = 2πI1(z),

M− 1
2 ,0

(µ2) = µe−µ
2/2M1,1(µ2) = µe−µ

2/2eµ
2

= µeµ
2/2,

2µ2e−µ
2

∞∫
0

re−r
2

I0(2rµ)dr = µ2e−µ
2

∞∫
0

e−xI0(2
√
µ2x)dx = µ2e−µ

2

(
eµ

2/2

µ
M− 1

2 ,0
(µ2)

)

= µe−µ
2/2M− 1

2 ,0
(µ2) = µ2,

where I0 and I1 are modified Bessel functions of the first kind of order 0 and 1 and

M is the Whittaker M function (pp.505 and 509 of [178]), the expectation in (A.3)



135

can be written as

E(|η(µ+ zr + jzc; τ)− µ|2) =

2π∫
φ=0

∫
r≤τ

µ2 1

π
e−r

2−µ2+2rµ cos(φ)rdrdφ

+
1

π

2π∫
φ=0

∫
r>τ

[(r − τ)2 + µ2 − 2µ(r − τ) cos(φ)]e−r
2−µ2+2rµ cos(φ)rdrdφ

= 2µ2e−µ
2

τ∫
0

re−r
2

I0(2rµ)dr + 2e−µ
2

∞∫
τ

r(r − τ)2e−r
2

I0(2rµ)dr

+ 2µ2e−µ
2

∞∫
τ

re−r
2

I0(2rµ)dr − 2e−µ
2

∞∫
τ

2rµ(r − τ)e−r
2

I1(2rµ)

= 2µ2e−µ
2

∞∫
0

re−r
2

I0(2rµ)dr + e−µ
2

∫ ∞
τ

r(r − τ)e−r
2
(
− 4µI1(2rµ) + 2(r − τ)I0(2rµ)

)
dr

= µ2 + e−µ
2

∫ ∞
τ

r(r − τ)e−r
2
(
− 4µI1(2rµ) + 2(r − τ)I0(2rµ)

)
dr (A.8)

The integral in the last line of (A.8) can be implemented in Matlab.

Finally, note that if the amplitudes of the non-zero coefficients are drawn from

an arbitrary distribution G, then we can also calculate the expected value of the

expressions in (A.8) with respect to µ ∼ G.
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Appendix B

Proof of Theorem 3.2.2

To prove Theorem 3.2.2, we derive the detection and false alarm probabilities of

Architectures 1 and 2. Since the thresholds τα and τo are different for Architectures

1 and 2, in what follows, σ∗,α and σ∗,o denote the fixed point solutions of SE for

Architectures 1 and 2, respectively.

Architecture 1

Recall from Figure 3.3(a) that in Architecture 1 the non-zero coefficients in x̂ represent

the final detections and the threshold τα is selected so as to achieve the desired FAP

α. In this architecture, the output of CAMP is given by

x̂ = η(x + σ∗,αz; τασ∗,α), (B.1)

where z ∼ CN (0, I). The Gaussianity of the noise is due to the assumption of the

Theorem, and it holds in the asymptotic settings according to Theorem 3.1.2. The

test statistic at bin i, i = 1, · · · , N , is given by

|x̂i|
H1

=
H0

0. (B.2)

Therefore, we have

Pfa1 = P (|x̂i| 6= 0|H0) = P (|σ∗,αz| > τασ∗,α) = P (|z| > τα) = e−τ
2
α ,

where z ∼ CN (0, 1). This leads us to the following straightforward parameter tuning:

τα =
√
− lnα.
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For evaluating the detection probability, we define a as the square root of the

power received from a target at location i. We then have

Pd1 = P (|x̂i| 6= 0|H1) = P (|η(x̃i; τασ∗,α)| 6= 0|H1) = P (|xo,i + σ∗,αz| > τασ∗,α)

= P (|a+ σ∗,αz| > τασ∗,α) = Q1(
√

2SNRCS,1,
√
−2 lnα), (B.3)

where SNRCS,1 = a2/σ2
∗,α , σ2

∗,α is evaluated using (3.2) with threshold parameter

τα, and Q1(., .) is the Marcum-Q function.

Architecture 2

Suppose that after the estimation block we obtain the following noisy estimate of x

x̃ = x + σ∗,oz.

For Architecture 2, the decision statistic at bin i is given by

|x̃i|
H1

≷
H0

κ.

Therefore,

Pfa2 = P (|x̃i| > κ|H0) = P (|σ∗,oz| > κ) = P (|z| > κ/σ∗,o) = e−κ
2/σ2
∗,o .

The last equality comes from the fact that |z| ∼ Rayleigh(1/2). Thus, for a desired

FAP α, the detector threshold can be set as κ = σ∗,o
√
− lnα, where as before σ2

∗,o
can be computed from (3.2) with threshold parameter τo. The detection probability

is given by

Pd2 = P (|x̃i| > κ|H1) = P (|xo,i + σ∗,oz| > κ) = P (|a+ σ∗,oz| > κ)

= Q1(
√

2SNRCS,2,
√
−2 lnα), (B.4)

where SNRCS,2 = a2/σ2
∗,o.

The proof of Theorem 3.2.2 is now straightforward. Since σ2
∗,o ≤ σ2

∗,α, for the

same target received power a2, SNRCS,2 ≥SNRCS,1 and, therefore, for the same FAP

α, Pd2 ≥ Pd1 , with equality if and only if α = e−τ
2
o . Note that the above arguments

are independent of the distribution G of the non-zero elements of x.



Appendix C

FAP estimation of the NMF by

rotation of primary vector

In this appendix, we developed a method of IS for estimating the FAP of the NMF

detector in (5.5) that is based on rotation of the primary data vector

If we want to estimate α
NMF

using IS with, e.g., biasing of the input data vector,

then it is clear from the test statistic in (5.5) that a simple scaling of the elements of

the primary data vector x will be useless. A form of biasing can however be developed

using the (well known) fact that the test statistic is actually a cosine-squared one, the

concerned angle being that between the transformed steering (or unit) and whitened

primary data vectors s1 (or u1) and x1 respectively. With these transformation, the

NMF test statistic in (5.5) takes the form

ΛNMF =
|s†1x1|2

(s†1s1)(x†1x1)
=
|y1|2

‖x1‖2
, (C.1)

The frequency of false alarm events in a simulation can therefore be increased by

biasing x1 so as to decrease the angle toward zero or increase it toward π. This can

be accomplished by a rotation of x1 which, since it is being assumed for this detector

that the actual data covariance matrix R is completely known, is equivalent to input

biasing (of the primary data vector x).

Consider biasing the whitened primary data vector x1 by rotation with an N ×N
matrix A. The biased vector is Ax1 and will be distributed as CNN (0,R?) with

covariance matrix R? given by R? = AA†, since x1 ∼ CNN (0, I). The weighting

function is then given by

W (x1; A) =
f(x1)

f?(x1)
= |R?| exp

(
− x†1(I−R−1

? )x1

)
, (C.2)
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Figure C.1: Effect of biasing by rotation of the primary data vector.

where | · | denotes matrix determinant. The FAP estimator for the test in (C.1) then

takes the form

α̂
NMF

=
1

K

K∑
1

1
(
|u†1x1|2 ≥ η ‖x1‖2

)
W (x1; A); x1 ∼ f?. (C.3)

The problem now centers around determining an effective rotation or biasing ma-

trix A. There is clearly an unbounded number of rotation matrices to choose from.

To narrow the choice, it is most convenient to make the matrix dependent on a sin-

gle (biasing) parameter, say a, and search for the optimum value of the latter by

minimizing the associated I-function which is given by

I(a) = E?
{

1
(
A
)
W 2(x1; A)

}
= E

{
1
(
A
)
W (x1; A)

}
, (C.4)

where A ≡ 1
(
|u†1x1|2 ≥ η ‖x1‖2

)
is the false alarm event. In actual simulation we will

determine a minimizer for an estimate of I(a), that is

aopt = arg min
a

(
Î(a) =

1

K

K∑
1

1
(
A
)
W 2(x1; A); ∼ f?

)
. (C.5)

The form or structure of A has to be now decided. We assume that A = I + aT for

0 ≤ a < 1 where T is some N ×N matrix. The biasing matrix A is to be constructed

so as to move the data vector x1 in a controlled manner towards u1, as shown in

Figure C.1. Owing to this, the matrix will depend not only on the parameter a but

also on the components of u1. For the general case R 6= I, we make the choice that

A = I + aT for 0 ≤ a < 1, where

T =


t1 − 1 t1 . . t1
t2 t2 − 1 . . t2
. .

tN . . . tN − 1

 ,
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and ti, i = 1, . . . , N , denote the elements of u1. Then, the biasing matrix becomes

A =


1 + (t1 − 1)a t1a . . t1a

t2a . . t2a

. .

tNa . . . 1 + (tN − 1)a

 .

The components of the biased data vector x1 thus become correlated. For the special

case R = I, A reduces to a matrix with unity on the diagonal and a everywhere else,

assuming that s=[1 . . . 1]′/
√
N . When a = 1 the biased vector is just

(∑N
i=1 x1i

)
u1

and is collinear with u1, where x1i’s denote the elements of the unbiased x1. That

is, the fully biased vector would be aligned in the direction of u1 or opposite to it, in

CN . However we avoid simulating with a = 1 since it obviously leads to a singular A

matrix. When a = 0, no biasing or rotation takes place. Estimating an optimum value

of a that maximizes the simulation gain for a given threshold η is an easy problem,

and can be solved using the adaptive IS method described in Section 1.2.2.

An interesting phenomenon takes place with this biasing scheme. The weighting

function in (C.2) depends on the matrix A which in turn depends (apart from on the

biasing parameter a) on the elements of the unit vector u1 through the T matrix. The

IS estimator in (C.3) estimates α
NMF

= E{1(A)} which, from (5.14), is known to be

independent of the particular unit vector u1 being used. Hence, if the estimator α̂
NMF

is a reasonably good one, then it will be largely unaffected by the choice of the biasing

matrix A (and hence of T). However, the gain of the proposed IS scheme depends

on the I-function given in (C.4) and this depends on the weighting function and

therefore on the matrix T. Thus the maximum gain for the optimized IS scheme will

be affected by the choice of unit vector u1. Since u1 = R−1/2s/‖R−1/2s‖ it follows

that the IS performance of this rotation biasing scheme depends on the data covariance

matrix R in force; this is despite the fact that the detector FAP is independent of

R. Decoupling the biasing matrix A from u1 is of course not possible. Thus there

may exist some R which gives a best IS simulation gain for given detector constants

η and N . Furthermore, it may be possible to achieve some invariance of IS gain to

covariance matrix R by using a matrix normalization for the T or A matrices. In the

interests of expediency, the results presented here are obtained by simulating the case

R = I. However, it must be stated here that in the general case of R 6= I this rotation

biasing scheme would be the only possible one to use if the probability distributions

of the clutter and interference returns departed from the Gaussian.

The simulation results for the optimum biasing parameter aopt and the IS gain Γ

as functions of the FAP α for the rotation biasing scheme are shown in Figures C.2(a)

and C.2(b) respectively.
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Figure C.2: Simulation results using biasing by rotation for the NMF detector. R = I, N = 128,

and K = 5000.
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FAP Estimation of the AMF

revisited

D.1 FAP estimation using 2 dimensional biasing

The AMF detection test, as obtained in [169], is given by

|s†R̂−1x|2

s†R̂−1s

H1

≷
H0

η. (D.1)

As shown in [169], the test in (D.1) can be rewritten as

|s†R̂−1x|2
H1

≷
H0

η s†R̂−1s

= η s†R̂−1R̂R̂−1s

= η s†R̂−1 1

L

L∑
l=1

x(l)x(l)†R̂−1s

=
η

L

L∑
l=1

s†R̂−1x(l)x(l)†R̂−1s

=
η

L

L∑
l=1

|s†R̂−1x(l)|2. (D.2)

This is in the form of a vector (or, array) version of the usual CA-CFAR test. The

LHS is a square law detector, being the output of a matched filter (matched to the

direction s in which the array is steered) for incoherent detection using the so-called
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sample matrix inversion (SMI) beamformer weights R̂−1s. The RHS represents a cell

averaging term. Define the random variables1

G ≡ s†R̂−1x and G(l) ≡ s†R̂−1x(l), (D.3)

for l = 1, . . . , L. Using (D.3) the AMF test in (D.2) can be rewritten as

|G|2
H1

≷
H0

η

L

L∑
l=1

|G(l)|2. (D.4)

In [96], the following proposition was proven.

Proposition D.1.1. [96] Any STAP detection algorithm that uses only the random

variables G and {G(l)}L
1

defined in (D.3) for its description such that the algorithm

itself is unchanged by arbitrary but equal scaling of all these variables, has a FAP

which is independent of the target-free data covariance R.

Using the transformations u = R−1/2s, y = R−1/2x, and y(l) = R−1/2x(l), leads

to

G = u†R̃−1y and G(l) = u†R̃−1y(l), (D.5)

where R̃ ≡ R−1/2R̂R−1/2. The whitened vectors Y and Y(l) are both distributed

CNN (0, I). It turns out that R̃ has the complex Wishart distribution2 CW(L,N ; 1
LI).

Further, a unitary transformation U can be found which rotates the new signal vector

u into an elementary vector e as

de = U†u,

such that e = [1, 0, . . . , 0]† and where d2 = ‖U†u‖ = s†R−1s. The first column

of U is the new signal vector u. The remaining columns comprise an orthonormal

basis determined, for example, by a Gram-Schmidt procedure. Let z = U†y and

z(l) = U†y(l). Applying these to (D.5) yields the variables

G =
d

L
e†S−1z and G(l) =

d

L
e†S−1z(l), (D.7)

1In this Appendix we have reproduced for the reader’s convenience certain definitions and trans-

formations from [168], [169], and [96] that are required for the present analysis. We have used several

results from these three papers and have attempted to maintain the same notation.
2When X ∼ CNN (0,R), the (Wishart) matrix W =

∑L
l=1 XX† = LR̂ has the complex Wishart

distribution CW(L,N ; R) specified by the density

fW (w) =

 (detw)L−N

J(R)
exp(−tr(R−1w)), if R is positive definite

0, otherwise
(D.6)

where J(R) = πN(N−1)/2
∏N
n=1 Γ(L− n+ 1)(det R)L. The covariance estimate R̂ is distributed as

CW(L,N ; 1
L

R). If B is an N ×N nonsingular complex matrix, then V = B†WB is distributed as

CW(L,N ; B†RB). See [180] for more on Wishart distributions.
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where S ≡ LU†R̃U. While z and z(l) are distributed as CNN (0, I) and are inde-

pendent, S has the distribution CW(L,N ; I). The vectors z and z(l) are decomposed

as

z =

[
z
A

z
B

]
and z(l) =

[
z
A

(l)

z
B

(l)

]
,

where the A components are scalar and B components (N − 1)-vector. Correspond-

ingly, S is decomposed as

S =

L∑
l=1

z(l)z(l)† =

SAA S
AB

S
BA

S
BB

 , (D.8)

with

P ≡ S−1 =

PAA P
AB

P
BA

P
BB

 .
The entries of P can be expressed as

P
AA

= (S
AA
− S

AB
S−1

BB
S
BA

)−1,

P
BA

= −S−1

BB
S
BA
P
AA

,

P
AB

= P−1

BA
,

P
BB

= S−1

BB
+ P−1

AA
P
BA
P
AB

,

as shown in [168], page 120. Using these definitions and relations in (D.7) gives

G =
d

L
e†S−1z =

d

L
P
AA

(z
A
− S

AB
S−1

BB
z
B

) =
d

L
P
AA

y, (D.9)

and

G(l) =
d

L
e†S−1z(l) =

d

L
P
AA

(
z
A

(l)− S
AB
S−1

BB
z
B

(l)
)

=
d

L
P
AA

y(l), (D.10)

where

y ≡ z
A
− S

AB
S−1

BB
z
B
,

y(l) ≡ z
A

(l)− S
AB
S−1

BB
z
B

(l).
(D.11)

The AMF test of (D.4) can therefore be written as

|y|2
H1

≷
H0

η

L

L∑
l=1

|y(l)|2. (D.12)
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Conditioned on z
B

and {z
B

(l)}L
1

(or, for short, the B-vectors), the random variables

Y and {Y (l)}L
1

are (in the absence of a target) uncorrelated and Gaussian with zero

means and variances that can be calculated3 as

E
B
{|Y |2} = 1 + z†

B
S−1

BB
z
B

= 1 + z†
B

( L∑
l=1

z
B

(l)z
B

(l)†
)−1

z
B
, (D.13)

using (D.8) in the second step, and

E
B
{|Y (l)|2} = 1− z

B
(l)†S−1

BB
z
B

(l), l = 1, . . . , L, (D.14)

with E
B

denoting conditional expectation. Further, the conditional covariance of the

variables Y (l) is given by

E
B
{Y (k)Y (n)?} = − z

B
(n)†S−1

BB
z
B

(k), k 6= n. (D.15)

Hence the set of conditionally jointly Gaussian zero mean random variables Y and

{Y (l)}L
1

have individual variances and covariances that are functions of the ran-

dom vectors z
B

and {z
B

(l)}L
1

. The latter are all jointly independent, each being

distributed as CNN−1(0, I). The probability of any event defined on the random

variables Y and {Y (l)}L
1

in (D.11) can thus be determined by performing an aver-

aging operation over the distributions of z
B

and {z
B

(l)}L
1

and this probability will

be independent of the data covariance R. This statement is also true for the random

variables G and {G(l)}L
1

in (D.9) and (D.10) with the caveat that any constant scal-

ing of these variables should leave the event unchanged. The preceding arguments

therefore constitute proof of Preposition D.1.1.

From [168] it is known that

L∑
l=1

|y(l)|2 d≡
L−N+1∑
l=1

|w(l)|2, (D.16)

where the w(l) are i.i.d. each with distribution CN 1(0, 1). Moreover, Y/M1/2
B

is,

conditioned on the B-vectors, also distributed as CN 1(0, 1) where

M
B
≡ 1 + Σ

B
, (D.17)

and

Σ
B

= z†
B

( L∑
l=1

z
B

(l)z
B

(l)†
)−1

z
B
. (D.18)

3See pages 121 and 122 of [168].
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The test in (D.12) then takes the form

u
H1

≷
H0

η′
L−N+1∑
l=1

u(l), (D.19)

where U ≡ |Y |2/M
B

and {U(l) ≡ |w(l)|2}L−N + 1

1
are all unit exponential and i.i.d.,

and η′ ≡ η/(LM
B

). Once again, this is in the form of the usual CA-CFAR test when

it is conditioned on the B-vectors. Hence the FAP of the AMF detector can be written

as

α
AMF

= P
(
U ≥ η′

L−N+1∑
l=1

U(l)
)

= E
{
P
(
U ≥ η′

L−N+1∑
l=1

U(l)
∣∣∣B-vectors

)}
, E{g(Σ

B
)}, (D.20)

where

g(Σ
B

) =
1

[1 + η/(LM
B

)]L−N+1
. (D.21)

We can therefore estimate the FAP using the g-method with an IS simulation that

biases the B-vectors. This estimator is

α̂
AMF

=
1

K

K∑
1

g(Σ
B

)W (z
B
, z
BL

); ∼ f?, (D.22)

where z
BL
≡ (z

B
(1), . . . z

B
(L))′.

Biasing of the B-vectors contained in Σ
B

must produce an increase in the value of

the g-function in (D.21). This means that Σ
B

must be made to increase, which can

easily be accomplished by scaling up the primary B-vector z
B

and scaling down the

secondary B-vectors z
B

(l). A 2-d biasing scheme results, which needs to be optimized

adaptively. The primary and secondary scaling parameters are chosen as a1/2 and

θ1/2 respectively, with the weighting function W being the same as in (5.26) except

that the roles of the two biasing parameters are exchanged, that is, 0 < θ ≤ 1 and

a ≥ 1. The rest of the optimization procedure is as discussed in Section 1.2.2.

D.2 Simulation results

Figure D.1 contains the result of the IS optimization for estimating the biasing pa-

rameters a and θ for the AMF detector using the 2-d g−method estimator described
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Figure D.1: Optimum scaling parameters for g−method with 2-d biasing for the AMF detector.

K = 10000, L = 128 and N = 64.

previously. Figure D.2 shows an example of the 2-d IS gain surface versus the biasing

parameters for α = 10−6.

In Figure D.3 the gain obtained from the 2-d IS biasing method presented here

is compared with the g-method used with input biasing, the technique which was

developed in [96]. From this figure it is clear that applying the g-method with biasing

of B-vectors is a more powerful IS scheme than the corresponding method used with

input biasing of all secondary vectors. This example also illustrates the point made

in Section 5.5.
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Figure D.2: IS gain surface for 2-d biasing of B-vectors for the AMF detector. K = 10000, α = 10−6,

L = 128 and N = 64.
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Figure D.3: IS gain comparison of the g-method with 2-d biasing derived here and the g-method

with input biasing presented in [96]. For both schemes K = 10000, L = 128 and N = 64.
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Appendix E

CFAR property of the E and GM

NAMF detectors

The E-NAMF detector is given by

|s†R̂−1x|√
x†R̂−1x

H1

≷
H0

ηe
L

L∑
l=1

|s†R̂−1x(l)|, (E.1)

where ηe denotes the detector threshold.

Using the transformation in Appendix D, the E-NAMF test of (E.1) can be rewrit-

ten as

|y|√
x†R̂−1x

H1

≷
H0

ηe
L

L∑
l=1

|y(l)|. (E.2)

Then, combining (5.20) and the first line of (5.21) and substituting for x†R̂−1x in

the above yields the test

|y|√
LΣ

B
+ L|y|2

/∑L
l=1 |y(l)|2

H1

≷
H0

ηe
L

L∑
l=1

|y(l)|. (E.3)

So if we replace y and y(l) by G and G(l) as defined in (D.3) respectively in the above,

then the test remains unchanged. Therefore, from Proposition D.1.1, it follows that

the test is CFAR.

The GM-NAMF detector is defined as

|s†R̂−1x|√
x†R̂−1x

H1

≷
H0

ηg

( L∏
l=1

|s†R̂−1x(l)|
)1/L

, (E.4)
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where ηg is the threshold.

Just as for the E-NAMF detector, the GM-NAMF test of (E.4) can be rewritten

as

|y|√
x†R̂−1x

H1

≷
H0

ηg

( L∏
l=1

|y(l)|
)1/L

, (E.5)

and then as

|y|√
LΣ

B
+ L|y|2

/∑L
l=1 |y(l)|2

H1

≷
H0

ηg

( L∏
l=1

|y(l)|
)1/L

. (E.6)

For the same reasons as for the E-NAMF detector, the GM-NAMF test is also CFAR.
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Appendix F

Derivation of (5.38)

Equation (5.38) in Chapter 5, page 98 can be derived using the following equalities.

α = EB
{
E
{
g(Σ

B
,YL)

∣∣∣B-vec
}}

=

∫ ∫
g(Σ

B
,YL) f(YL

∣∣B-vec) f(B-vec) dYL dB-vec

=

∫ ∫
g(Σ

B
,YL) f(YL,B-vec) dYL dB-vec

= E{g(Σ
B
,YL)}

= E{g(Σ
B
, Y (1), . . . , Y (L))}

= E{g(Σ
B
, ZA(1), . . . , ZA(L))}

, E{g(Σ
B
,ZAL)}

=

∫ ∫
g(Σ

B
, zAL) f(zAL,B-vec) dzAL dB-vec

=

∫ ∫
g(Σ

B
, zAL) f(zAL) f(B-vec) dzAL dB-vec

=

∫ ∫
g(Σ

B
, zAL)

f(zAL)

f?(zAL)
f?(zAL) f(B-vec) dzAL dB-vec

,
∫ ∫

g(Σ
B
, zAL)W (zAL) f?(zAL) f(B-vec) dzAL dB-vec

= E?{g(Σ
B
,ZAL)W (ZAL)} (F.1)
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ADC Analog to Digital Converter, page 1

AMF Adaptive Matched Filter, page 17

AMP Approximate Message Passing, page 48

AOA Angle Of Arrival, page 23

BER Bit Error Rate, page 11

BPDN Basis Pursuit Denoising, page 9

CA Cell Averaging, page 15

CFAR Constant False Alarm Rate, page 17

CLT Central Limit Theorem, page 11

CMF Compressive Matched Filter, page 38

CPI Coherent Processing Interval, page 86

CS Compressive Sensing, page 2

CUT Cell Under Test, page 2

DFT Discrete Fourier Transform, page 7

DOA Direction Of Arrival, page 23

E Envelope, page 19

FAP False Alarm Probability, page 3

GCV Generalized Cross Validation, page 34

GLRT Generalized Likelihood Ratio Test, page 24
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GM Geometric Mean, page 19

i.i.d. independent and identically distributed, page 6

IHT Iterative Hard Thresholding, page 9

IS Importance Sampling, page 3

ISL Integrated Sidelobe Level, page 26

IST Iterative Soft Thresholding, page 33

KS Kolmogorov-Smirnov, page 61

LASSO Least Absolute Shrinkage and Selection Operator, page 9

LFM Linear Frequency Modulation, page 24

LR Low Rank, page 19

LS Least Square, page 7

MC Monte Carlo, page 3

MF Matched Filter, page 23

MP Matching Pursuit, page 9

MSE Mean Square Error, page 34

NAMF Normalized Adaptive Matched Filter, page 19

NMF Normalized Matched Filter, page 19

OS Order Statistic, page 27

PC pulse compression, page 24

pdf probability density function, page 3

PN pseudorandom noise, page 24

PRF Pulse Repetition Frequency, page 87

RCS Radar Cross Section, page 22

RIP Restricted Isometry Property, page 5

RV random variable, page 11
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RX receive or receiver, page 74

SE State Evolution, page 51

SF Stepped Frequency, page 19

SLL sidelobes level, page 26

SNR Signal-to-Noise Ratio, page 10

SPG`1 Spectral Projected Gradient `1, page 34

STAP Space Time Adaptive Processing, page 1

SURE Stein’s unbiased risk estimator, page 34

TX transmit or transmitter, page 74
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Summary

Compressive Sensing and Fast Simulations: applications to

radar detection

In most modern high-resolution multi-channel radar systems one of the major prob-

lems to deal with is the huge amount of data to be acquired, processed and/or stored.

But why do we need all these data? According to the well known Nyquist-Shannon

sampling theorem, real signals have to be sampled at at least twice the signal band-

width to prevent ambiguities. Therefore, sampling of very wide bandwidths may

require Analog to Digital Converter (ADC) hardware that is unavailable or very ex-

pensive; especially in multi-channel systems, the cost and power consumption can be-

come critical factors. In applications involving interleaving of radar modes in time or

space (antenna aperture), multi-function operation often leads to conflicting require-

ments on sampling rates in both time and spatial domains. So while, on one hand,

the increased number of degrees of freedom improves the system performance, on the

other hand it puts a significant burden on both the off-line analysis and performance

evaluation of sophisticated detectors, and on the real time acquisition and process-

ing. For example, space-time adaptive processing algorithms significantly enhance

the detection of targets buried in noise, clutter and jamming. However, evaluating

the optimal filter weights is an immense computational load when simulating such

detectors in the design phase as well as in real time implementation. In some cases,

measurement time may also be a constraint, as in 3D radar imaging for airport se-

curity inspection of passengers. Conventional acquisition of a full 3D high resolution

image requires a measurement time that can be unacceptable in this situation.

In this thesis we investigate sampling methods that can deal with the problems of

processing complexity as well as analysis (or performance evaluation) extremely effi-

ciently by reducing the required amount of samples. By cleverly using properties of

the signals or random variables involved, the considered techniques, namely Compres-

sive Sensing (CS) and Importance Sampling (IS), both alleviate the burden related to

data handling in complex radar detectors. These methods, although very different in
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nature, provide an alternative to classical sampling techniques. The first, compressive

sensing, is based on a revolutionary acquisition and processing theory that enables

reconstruction of sparse signals from a set of measurements sampled at a much lower

rate than required by the Nyquist-Shannon theorem. This results in both shorter

acquisition time and reduced amount of data. The second, importance sampling, has

roots in statistical physics and represents a fast and effective method for the design

and analysis of detectors whose performance have to be evaluated by simulations. By

efficiently sampling the underlying probability density function, importance sampling

provides a very fast alternative to conventional Monte Carlo simulation.

The first part of the thesis deals with the design and analysis of adaptive detec-

tors for compressive sensing based radars. In systems using compressive sensing, the

target signal, which is assumed to be sparse, is estimated from the noisy, undersam-

pled measurements via `1-norm minimization algorithms. CS recovery algorithms

require proper setting of parameters (thresholds) and are therefore not inherently

adaptive. Classical radar systems employ a matched filter, matched to the transmit-

ted waveform, followed by a Constant False Alarm Rate (CFAR) processor for the

detection of targets embedded in unknown background clutter and noise. However,

the non-linearity introduced by a CS recovery algorithm does not allow straightfor-

ward application of conventional adaptive detector design methodology. In the work

reported here, by making use of the properties of the Complex Approximate Mes-

sage Passing algorithm, we are able to propose an adaptive non-linear recovery stage

combined with classical CFAR processing, and derive a novel adaptive CS detector.

Additionally, our theoretical findings are also demonstrated via both simulated and

experimental results. Furthermore, we provide a methodology to predict the perfor-

mance of the proposed detectors that can be used to evaluate how transmitted power

can be traded against undersampling, making it possible to incorporate CS-based

sampling and detection in radar system design.

The second part of this thesis focuses on deriving methods of importance sam-

pling for fast simulation of rare events especially applicable to Space Time Adaptive

Processing (STAP) radar detectors. These type of methods are, however, of much

wider applicability. They can and have been used in many other situations that

require intensive and time-consuming Monte Carlo simulations. In conducting rare

event simulations of systems that involve signal processing operations that are math-

ematically complex, there are two principal issues that contribute to simulation time.

The first issue concerns the rare event itself whose probability is being sought. The

second concerns the computational intensity that accompanies the signal processing.

It is a daunting task to conduct conventional Monte Carlo simulations that involve

several millions of trials to estimate low false alarm probabilities, with as many ma-

trix inversions, as required in STAP. We demonstrate how fast simulation schemes

can deal with these aspects, and devise tailored importance sampling biasing schemes
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for evaluating the performance of STAP detectors which are analytically difficult or

impossible to analyze, such as low rank STAP detectors. By comparing our results

with traditional Monte Carlo methods, we show that importance sampling can achieve

tremendous gain in terms of computational time.
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Samenvatting

Compressive Sensing and fast simulations: applications to

radar detection

In de meeste moderne hoge resolutie- , meerkanaals radarsystemen is het omgaan

met grote hoeveelheden data die vergaard en verwerkt moeten worden een prob-

leem van betekenis. Waarom hebben we zoveel data nodig? Welnu, volgens het

algemeen bekende Shannon-Nyquist bemonsteringstheorema moeten, om dubbelzin-

nigheden te voorkomen, rele signalen bemonsterd worden met een frequentie die

minstens tweemaal de bandbreedte van het gemeten signaal is. Daardoor vraagt

het bemonsteren van breedbandige signalen om vaak dure of zelfs niet beschikbare

Analoog-Digitaal omzetters. Vooral in meerkanaals radarsystemen kunnen de kosten

en stroomverbruik kritieke beperkende factoren vormen. In bepaalde toepassingen,

zoals het verweven van verschillende radar modes in tijd of spatieel (antenne-)domein,

leidt multi-functionele operatie soms tot onderling conflicterende eisen ten aanzien van

bemonstering in tijd en/of ruimte. Terwijl enerzijds het toegenomen aantal vrijheids-

graden de prestaties van een meerkanaalssysteem kunnen verbeteren, legt het anderzi-

jds een zware last op zowel de acquisitie en verwerking van meetgegevens in ’real-time’

als op de analyse van prestaties van geavanceerde detectiemechanismen. Bijvoorbeeld:

Space-Time Adaptive Processing (STAP) algoritmen kunnen de detectie van doelen

die verborgen zijn in ruis, achtergrondreflecties en storing aanzienlijk verbeteren. Het

berekenen van optimale filtercofficienten is echter een enorme rekentaak, zowel bij

het simuleren van de detectieprestaties als bij het daadwerkelijk implementeren in

real-time. In sommige toepassingen is meettijd ook een kritieke beperking, zoals bi-

jvoorbeeld bij het 3D-scannen van personen voor luchthavenbeveiliging; acquisitie van

een volledige 3D beeld op conventionele wijze duurt onacceptabel lang in dat geval.

Voor dit proefschrift zijn bemonsteringsmethoden onderzocht die bovenstaande

problemen ten aanzien van processingcomplexiteit en datahoeveelheid efficient kun-

nen oplossen of verminderen, door het aantal benodigde signaalbemonsteringen (’sam-

ples’) te reduceren. Door slim gebruik te maken van de signaaleigenschappen of van
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de eigenschappen van stochastische variabelen, kunnen de onderzochte methoden, te

weten Compressive Sampling en Importance Sampling, de last van dataverwerking

in complexe radardetectoren aanzienlijk verlichten. Deze twee methoden, die onder-

ling zeer verschillend van aard zijn, bieden een alternatieve aanpak voor klassieke

bemonsteringsmethoden. De eerst methode, Compressive Sensing, afgekort CS, is

gebaseerd op een revolutionaire theorie over data-aquisitie- en verwerking, die het mo-

gelijk maakt om de reconstructie van zogenaamde ’sparse’ signalen te bewerkstelligen

uit een set van meetgegevens die vergaard is met een veel lagere bemonsteringsfre-

quentie dan volgens het Shannon-Nyquist theorema nodig is. Dit leidt tot een kortere

meettijd en tot een kleinere hoeveelheid data. De tweede methode, Importance Sam-

pling, afgekort IS, komt oorspronkelijk uit de Statistische Fysica en is een snelle en

efficinte methode voor het door middel van simulatie analyseren en evalueren van

detectoren, met name wanneer een dergelijke evaluatie niet met analytische meth-

oden kan worden uitgevoerd. Door de onderliggende kansdichtheidsfuncties slim te

bemonsteren, biedt IS een veel sneller alternatief voor zware conventionele Monte

Carlo simulaties.

Het eerste deel ven het proefschift behandelt de de analyse en ontwerp van adap-

tieve radardetectoren gebaseerd op Compressive Sampling. In systemen die op CS

gebaseerd zijn, wordt het doelsignaal, waarvan we aannemen dat het ’sparse’ is,

geschat uit een onderbemonsterde set van ruizige meetgegevens door middel van l1-

minimalisatiealgoritmen. Deze reconstructiealgoritmen bevatten parameters die op

een zeer specifieke wijze moeten worden afgesteld, waardoor dit proces niet van zichzelf

adaptief is. Conventionele radarsystemen maken gebruik van een zogenaamd Matched

Filter, dat is aangepast aan de uitgezonden golfvorm, gevolgd door een adaptieve

Constant False Alarm Rate (CFAR) detector, om detectie van doelen in onbekende

ruis- en interferentiecondities mogelijk te maken. CS-reconstructie-algoritmen intro-

duceren echter niet-lineair gedrag waardoor de standaard CFAR ontwerpmethodologie

niet zonder meer kan worden toegepast. In het hier gepresenteerde werk wordt gebruik

gemaakt van de eigenschappen van het Complex Message Passing Algoritme, waar-

door het mogelijk is om een niet-lineair reconstructie algoritme toch te combineren

met een klassieke CFAR detector en zodoende een nieuwe adaptieve CS detector

te realiseren. De theoretische bevindingen zijn bovendien bevestigd geworden door

gesimuleerde- en experimentele resultaten. Daarboven wordt een ontwerpmethodolo-

gie aangereikt waarbij de detectieprestaties kunnen worden voorspeld en waarbij het

mogelijk wordt om afwegingen te maken ten aanzien van elektrisch vermogen versus

onderbemonstering. Hiermee is het mogelijk geworden om CS-methoden direct te

betrekken in het ontwerp van radarsystemen en -detectoren.

Het tweede deel van dit proefschrift is toegespitst op het afleiden van IS methoden

voor het snel simuleren van ’events’ zoals valse detecties, die met zeer lage waarschi-

jnlijkheid en dus zeer weinig voorkomen en in het bijzonder de toepassing daarvan
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op STAP detectoren. IS methoden zijn echter veel breder toepasbaar. Dit type

van methoden is reeds toegepast in vele andere toepassingen waarbij intensieve en

tijdrovende Monte-Carlo simulaties benodigd zijn. Bij het simuleren van onwaarschi-

jnlijke ’events’ in signaalverwerkingssystemen die mathematisch complex zijn, zijn er

twee aspecten die de simulatietijd in hoge mate bepalen. Ten eerste is het de lage

waarschijnlijkheid van de event zelf. Ten tweede is het de complexiteit van (reken-

)bewerkingen die voor de signaalverwerking nodig zijn. Daardoor is het een lastige

taak om Monte Carlo simulaties uit te voeren bestaande uit miljoenen simulatie-runs

om vals-alarmwaarschijnlijkheid te bepalen van STAP detectoren, waarbij o.a. even-

zovele matrixinversies moeten worden uitgevoerd. We laten zien hoe dit met snelle

simulatiemethoden kan worden aangepakt en leiden IS ’biasing’ methoden af, die zijn

toegesneden op de evaluatie van STAP detectoren die moeilijk via analytische weg

te evalueren zijn, zoals Low-Rank STAP detectoren. Door de resultaten te vergeli-

jken met traditionele Monte Carlo simulaties wordt aangetoond dat met IS zeer grote

winst in rekentijd kan worden geboekt.
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