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The Performance of Spectral Quality Measures

Piet M. T. Broersen

Abstract—Two different classes of quality measures are processes, it has been shown that the minimum prediction error
discussed and compared: absolute and relative measures. Theyariance is obtained if the spectrum of the residuals is maximally
relative class, to which the prediction error belongs, has many flat [4]. This, in turn, means that all frequencies are equally
different equivalent members, like the spectral distortion and . ' ' . . o
the likelihood ratio. This type of measure is based on time series mpprt_ant, and the model with mlnlmum prediction error a'SP
theory. The prediction error can be written either as a squared Minimizes theratio of the true and estimated spectral densi-
error of prediction in the time domain or as a relativeerror in the  ties. This background of time and frequency domain is also
frequency domain. It is useful in many applications, especially in clear in the derivation of the model error for ARMA processes
comparing models obtained with different estimation algorithms. [3]. The relationship between the prediction error and the inte-

It will be compared to some measures that areabsolutein the - . .
frequency domain. To that class belongs the integrated squared grated ratio of squared spectral densities has also been derived

difference between spectra, that gives equal weights to all frequen- [5], [6]. That measure has recently been used for a comparison
cies. Another measure is based on the squared difference betweenof the statistical accuracy of nonparametric spectral estimators

impulse responses. The absolute class has only a few practical[7]. This integrated squared ratio of spectra, with or without log-
applications, mainly in speech. arithm, also appears in an expression for the Cramér-Rao lower
Index Terms—Likelihood ratio, model accuracy, model error, bound in parametric spectral estimation [8]. Some other relative

prediction error, spectral distortion. precision measures with ratios of spectra have been proposed
as percentage errors, signal-to-noise ratio (SNR) or degrees of
. INTRODUCTION freedom (DOF) [9].

for th lity of models i Mathematicallydistancemeasures must have the property of
A N OBJECTIVE measure for the quality of models is r‘ecéymmetry: the distance from A to B should be equal to the dis-

S eslsary 1;(.” the mutual Evalua'ilon of sstlmathn algor|thr_n§ance from B to A. It turns out that the relative measures predic-
pectral quality measures have always been an Important ISsyg o rqrs or likelihood ratios do not obey this requirement for

in speech processing. The properties of Seve“'%' related measyies \ces hecause they are defined by quotients; spectral distor-
have been investigated theoretically and experimentally [1]. T, js an example of a relative distance measure because it is

treatment in the speech literature is generally limited to aum%fésed on aquaredogarithmic difference.

ressive (AR) pr r model he linear predic; .
gressive (AR) processes or models, because the linear pre CAbsolute measures are also distances. An absolute measure

tion models in speech processing are AR models. A close {fat is often mentioned in practice is the sum of squared dif-

'a“‘”.‘ e.X'StS be“’Vee’? Sev eral measures in the relat've .ClaSS: ®nces between the true and the estimated covariance or cor-
prediction error, the likelihood ratio, the spectral distortion, a |

th ; Th lidentical f ical ift ation functions. With Parseval’s relation, this is equal to the
€ cepstrum. hey are afl [dentical for practical purposes it egrated mean squared difference between the true and the es-
spectral distortion is less than 2 dB [1]. A similar measure cq,

) . fhated spectrum. No claims for optimality from a theoretical
also be expressed in other representations of AR models, s dint of view are known for this measure. It seems to be an ob-
reflection coefficients, line spectrum pairs or log area ratios |

For combined autoregressive-moving average (ARMA) pr lous choice where the accent is on estimating the strong parts qf
L e spectrum. However, the consequences are not always desir-
ges.ses, the concept of the prediction error has been use 6Pe because errors in weak parts of the spectrum have little in-
erve therT‘Od.e ! errqr[3]. If the tru_e process parameters aflyence on this distance measure for spectral quality. This mea-
known, as in simulations, the prediction error can be express

. e is proposed as a figure of merit in estimating parameters
as the variance of an ARMA process, Whose'parar'neters A& laser Doppler measurements [10], [11].
cross convolutions of the true process polynomials with the es-

timated AR and MA polynomials [3]. For unknown process pa- A completely different concept for absolute measures has
poly Lo . P P& een derived as the reconstruction error distortion (RED) [12].
rameters, however, the prediction error remains a useful qu

tity with a definite practical meaning. It is the expectation o he RED is defined as the sum of the squared differences be-

- ; : . 8/\/ en estimated and true impulse responses. Parametric im-
the squared one step ahead prediction with a time series mo Clse responses are computed by using the AR and MA polvio-
under the condition that the predicted observation has not besh P P y g POy

used to estimate that model. A further advantage of the predri?:'—aIS with a smgle_ pulse as input 5'9_”5"- The RED s ?Sp‘?c'a”y
useful for vowels in speech processing. An explanation is that

tion error as a quality measure is that its relevance can be Jj- g )
) . ) . : e model for vowels is in fact an impulse response to a sequence
dicated both in the time and in the frequency domain. For AR . . . )
of pitches rather than an autoregressive response to a white noise
excitation signal. The result may be that use of RED in codebook
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to the masking properties of the human ear, where soft paf®3 cannot be transformed into properties of processes. Never-
in the spectrum can be masked by adjacent strong parts. Tthisless, the properties BT(L) as afunctionof ¢ are important in
human sensitivity may favor absolute differences above relatitfeat a valid covariance estimate should be positive semi-definite
in speech. [9]. There are no constraints on the function in (1) and (2). As
This paper gives an empirical comparison of the differemtconsequence, estimated correlation functions that are not pos-
types of spectral quality measures, especially of relative and dive semi-definite can have a small IMSE, but they are useless
solute measures. An example shows that a model can have a \mgause they can produce negative spectral densities for some
small absolute error, while the relative error is large. This resditequencies. Furthermore, the most accurate estimator for the
can be found in examples with a high dynamic range where thénéinite sum of p(¢)> has been studied in optimizing the accu-
is a large difference between the power in weak and in strorary of the estimated variance [13]. The best estimator for this

parts of the spectrum. infinite sum isnotobtained from a summation of estimated cor-
relations; it is difficult to decide how many terms should be in-
Il. QUALITY MEASURES cluded. It is better calculated with the parameters of a single

time series model [13] estimated from the data with special es-
timation and order selection algorithms [14].

A class of absolute quality measures that can be seen aslo objective description of the properties of the measure (1)
distances between two processes or between a process anid kRaown, except that it seems to be an obvious choice in giving
model is derived from Parseval’s relation applied to covarpriority to estimating the strong parts of the spectrum. Recently,
ancesR(¢) and spectral densitigs(w), which form a Fourier (2) has been used as a criterion for the analytical approximation
transform pair. That relation applied to the difference betwe@fi measured turbulence correlation functions by prototypes of
the true covariance function and an estimate that is indicaté® desired shape [10], [11]. Usiqg(i) — 5(¢)}? as criterion
by ~ gives for minimization is not optimal in least squares theory because

the errors in the estimated correlations are not independent, but
i=co . N2 1 [ . 2 they are strongly covariant [9]. An optimal solution would re-
Z (R(l) - R(l)) = or (h(“’) - h(“’)) dw. quire generalized least squares with the inverse of the covari-
i=—o0 o ) ance matrix of the measurement errors as weighting matrix [15].

In practice, finite sums of covariances are used for computati'élr?wever’ a transformanon to n_wdependen_t mgasurement errors
an also give an optimal solution. Modeling in the frequency

of the left-hand side; the integral of the right-hand side is r&2N & Id not have th bl fq q bet h
placed by a finite summation obtained with the discrete Fourigpma'n would not have the problem of dependence between the

ionigasurement errors.
transform. Generally, measures calculated by a summation'i . . I
the frequency domain become inaccurate if poles of the dis-A second absolute quality measure is RED [12], which is spe-

crete-time process or model are close to the unit circle becal for spbeetch co?;}ngt. It Uses "’Il scaled sum ogt_rtle sqt_uaretzd dif-
the continuous spectrum is not approximately constant over freences between the frue impuise respaiiseand its estimate

elementary frequency interval of the discrete transform. In the 02 &
time domain, a finite order computation with a summatiodof RED = —£ > " (g(i) - 8(1))*. (3)
covariances can only be a good approximation for (1) if the true x 20

covarianceR(q) is negligible fori > K. Even thenR(:) will

A. Absolute Measures

di th it h finit . for 119 The impulse responses can be computed with the AR and MA
never die out because it has a finite varianceifor K [9]. foolynomialsthat will be defined in the next section using a pulse

_The estimated varlance ofthe S|gngl W.'" often be the same 85 input signal. With Parseval’s relation and with (7), this ex-
different spectral estimators. Hence, it might be better to rem??ession can be written in the frequency domain as

the variance from the spectral quality measure (1) by taking nor-

malized correlationg(¢), with p(0) = 1. The normalized spec- 2 7 |Blew) B(ew) 2
tral densitiesf (w) have the integral of the power equal to unity RED = ¢ 5 / — - dw. (4)
and give 2m02 J | A(e)  A(ew)

For AR processes, an easy computation of RED has been given
[12]. The extension to ARMA processes is obvious with (4).

Application to code book search in speech coding has shown
1 [T . 2 that the use of either RED or relative measures gives a different

. (f(w) - f(w)) dw. (2) selection of code words for the same speech signal. In the fre-

- guency domain, RED uses the absolute value of the difference

IMSE is an acronym for integrated mean square error. The inffit transfer functions. In that respect RED is_ related to the IMSE
nite sum ofR(4)? has a practical meaning because it determingé (2)- That also follows from the observation that the correla-

the variance of the estimate f& 0) [9]. However, itis generally tion is the convolution of(z) with g(—).

not possible to find a process that has the differeRit@ — R(:) _

in (1) as covariance or equivalently the difference between tfb Relative Measures

spectra as spectral density; the difference between spectra carhe class of measures that are relative in the frequency do-
become negative and not be a spectrum itself. Therefore (1) andin contains the prediction error, the likelihood ratio and the

IMSE
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integrated ratio of squared spectral densities; those and othstimated fromV observations is made independentgfas
measures are asymptotically equivalent [1], [2]. Suppose thHa}
the ARMA(p, q) processe,, is given by [9]
ME = N(PE/o2 - 1). (11)
A(z)x, = B(z)e, (5)

The asymptotic expectation of ME equals+ ¢’ for a model
or that has all true nonzero parameters included, sopith p and

q > g, independent ofV, o2 and the true process parameters
Xn+a1Xn-1+ " +8pXx—p = en+bien_1+---+bgen—q [3]. This property of ME has advantages in the interpretation of

simulation results. Above the true order, this quality measure is
wheree,, is an i.i.d. white noise sequence with variaegeand ot dependent on the shape of the true spectrum. The ME should
A(z) is defined as not be used if the estimated variance itself is important for the

B quality of the estimated spectrum.

+ootapzh (6) The class of relative measures related to the PE and ME has

. . . . ) ... _; many different members. One of them, the spectral distortion
Likewise, a polynomiaBB(z) is defined as a polynomial iz (SD) is defined as

of orderg. The process is stationary if(z) has no poles for
on or outside the unit circle. It is invertible if the roots Bf »), _05 /" R 2

denoted zeros, are all inside the unit circle. The spectral density 27 [ln{f(w)} ln{f(w)}} dw. (12)
of an ARMA process is given by [9]

A(z)=1+a;z7 ' +azz™?

—7

The SD can be expressed in the true and the estimated polyno-
2 o2 |B(e™%)|? mials with (7). The SD can with (12) be computed over a part of
h(w) = o3 f(w) = m (M) the frequency domain. Equally important is that a variant of SD
can be defined witth(w) instead off(w) in (12). The variant
The prediction erroé,, of a model of a given process is dewith h(w) is appropriate when the estimated variance is also a
fined as the squared error when applying the estimated mogalt of the comparison. This occurs in the comparison of inter-
to a new, statistically independent, realization of that procegmlation schemes. Some simple interpolation methods maintain
A measured realization can be filtered with model parametdhe true signal variance; and complex interpolation schemes,
A(z) andB(z) of ordersy’ andq’, respectively, not necessarilywhich use more points per interpolation, disturb that variance
equal top andg. Predictions of the process (5) can be made K$6]. Interpolation is necessary for the use of fast Fourier trans-
substitution of these model parameters into the meastuyged form (FFT) or time series analysis on irregularly sampled data,
which can be written as as in laser anemometry of turbulence. Another member of this
. . group is the integratexhtio IRSE of squared spectral densities
B(z)é, = A(z)x, (8) [5], [6] that is defined as

¥l
S

where the signat,, can be seen as the output of the estimated 05 [™ |f(w) - f(w) :

model withz,, used as input signal; the estimatBdz) is used IRSE = 2% C flw) dw. (13)

asthe AR part, and (z) as the MA partin this description éf,.

The squared error of prediction PE is defined as the expectatidbsolute and relative measures will be compared in the next

E[£2], with the condition that,, is a realization of the processsection. Their performance is similar for processes with rather

(5) that is independent of the observations that had been usetlatspectra, and the difference between the absolute measure (2)

estimate the parameters. The outpybf the model (8) can be and the relative measure (13) is small. In white nojge;) is a

found by substituting:,, with the relation in (5) constant and (2) and (13) are, except for a scaling factor, iden-

. . tical. However, the difference becomes pronounced for spectra
_ A(Z)X B A(Z)B(Z)E ©) with high and sharp peaks and deep valleys. A turbulence spec-
C B(z) | A(z)B(z) trum will be treated as an example having a steep slope at high
frequencies.

The relationship between the predictignand the innovations

e, that generated the true process is therefore given by @n Rationale for Time Series Measures

ARMA(p + ¢, p' + q) process. It follows [3] that the variance

of g, is given as

—

At first sight, IMSE might look more general than ME and
RED because IMSE is the integral of a spectrum, and ME and
2 RED use time series models. A spectrum can be found from

PE = o2 = o [" A(eiw)]?’(eiw) dw (10) equidistant observations of arbitrary signals as the periodogram:
© 27 J_x | A(e?)B(elw) the product of the FFT with its complex conjugate. The inverse

transform of the periodogram is equal to the estimated covari-
if all poles of A(z)B(z) are inside the unit circle, which is ance function if sufficient zeros have been added to the signal
assumed throughout this paper. The constant scaling fagtorbefore applying the FFT algorithm [9]. However, any positive
gives no relevant information about the quality of differendefinite covariance function of finite leng#i can be interpreted
models for the same process. Therefore, the ME for a modal coming from an MAK) model [4]. TheK parameters can
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ME, RED and IMSE of AR models for an AR(1) process, N=64 Relative measures for AR modeis
10"
R + A~ ] 1
o PPt et S 10"}
5 e
g (] 4 //f
10 / A
[
E -
g ./ —
3- \ o 17 % RED
10" xu/ L* + IMSE
[ 10°
AR
Ly
V ‘ ‘ ) ) 5 10 15 20 25 30
5 10 15 20 25 30 AR model order

AR model order
Fig. 2. Three relative quality measures as a function of the order of the AR

Fig. 1. Three types of quality measures as a function of the order of the Ag@del for 64 observations of an AR(1) process.
model for 64 observations of an AR(1) process.

IMSE and its variant of Eq(1) for an AR(1) process, N=64

be found with an iterative algorithm [17]. Hence, a spectrum es-
timated from the periodogram of the data, with or without win-
dowing and tapering, is equivalent to a finite order MA process.
For that reason, time series models and measures are certainly
not less general than measures derived from periodograms or .
spectra.

ra

absolute crite

I1l. COMPARISON OFQUALITY MEASURES

— MSE
+ Eq(1), with variance

The first comparison is made by evaluating the quality of
estimated AR models as a function of the AR order. The
models of increasing orders have been estimated from a re-
alization of 64 observations of an AR(1) process with—
—0.9. It is a priori obvious that the AR(1) model gives &ig.3. Influence of using the estimated variance in the quality measures. The
good description for this process. The quality of the modelssasures are a function of the order of the estimated AR model in a single
will decrease for higher model orders. Fig. 1 shows three cpinulation run. The true variance of the process is 5.26, the estimated variance
teria: 1) ME, 2) RED multiplied by the constaat /o2, and
3) IMSE. The ME has its minimum at the expected order 1,

RED at order 3, and IMSE at order 5. Moreover, ME is aith the asymptotical theory where those three measures be-
continuously increasing function of the model order as exome identical with the proper scaling constants.

pected. The RED and IMSE behave differently as a function Due to their definition, the estimated variance of the signal
of the AR model order, and they have several local minimplays no role in ME and RED. Only the parameters of the
In this example, the properties of ME as a quality measupMRMA process are required for those measures in this simu-
look more reliable. There is nothing in the residual variandation study.

or in the estimated reflection coefficients that can explain the The error measure defined in (1) is similar to IMSE, but it
irregularities of IMSE as a function of the AR model ordealso includes the measured variance. Fig. 3 shows that results of
of this AR(1) process. All frequencies contribute with thehose criteria may be different. The IMSE has its minimum at
same weight to ME and equivalent measures. For IMSE, @rder 8 in this simulation example, and the criterion of (1) had
rors wheref(w) is high contribute much more than relativea minimum at order 4. Both measures will coincide if the esti-
errors of the same magnitude for frequencies whie) is mated variance is exactly the true variance, or if all estimated
small. Accidental and relatively small improvements of thparameters of the AR model are very close to their theoretical
fit in the strong parts of the spectrum explain this irregulafalues. Similar results are found in a comparison of the spec-
behavior of the integral IMSE. tral distortion of (12) or IRSE of (13) and their variants with

Itis seenin Fig. 2 that ME, SD, and the relative squared spéd+w) that include the estimated variance. The performance in
tral measure IRSE of (13) look similar and have their minimuris figure is in line with the poor results of IMSE in other ex-
for AR order 1, the true process order. This is in agreemeanples.

5 10 15 20 25 30
AR model order
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log spectral density in turbulence simulations with N= 500 TABLE |
ST T THREE QUALITY MEASURES FOR THE
10" | L ST 4 TURBULENCE SPECTRUM OFFIG. 4. ESTIMATED WITH DIFFERENTTIME SERIES
at MODELS, WITH A MODIFIED PERIODOGRAM AND THE INFLUENCE OF THE
TRIANGULAR BIAS ON THE THEORETICAL COVARIANCE FUNCTION
10 *‘Q%&&Q J
& ME IMSE RED
s '° B AR 93 0056  .006
E —— true O\Q
s ARB
£ 0 . Rtrue-tnangle 2 MA 71.8 5502 320
£ + Parzen N/4 % 3
§ ;‘,A ARMA 9.6 0.250 .012
=2 \DALL
10" R fee Ry * Triangle 569.3 0.005 .033
o}
) \ Parzen N/4 424 0424 296
107 F %
:‘i+
107 “;.1 10° Measures for AR models in turbulence simulations with N= 500

—— ME
» RED
+ IMSE ||

normalized frequency

Fig. 4. True spectrum, estimated AR spectrum, true spectrum with triangule
bias, and estimated tapered periodogram with Parzen window of lengt

125. Estimates from 500 simulated equidistant turbulence observations wit 10° L

spectrum (14). H g
o it e .
IV. APPLICATION TO A TURBULENCE EXAMPLE E 10’ LA,\ NP o pﬂw.‘“'
- : ‘
. . = R G +
A second example uses a spectrum that is derived from tu S 1 et ﬁGﬁﬁmﬁwﬁmw
. o e
bulence theory [10]. It has a slope 6b/3 for low frequencies 10° | - jﬁ
and a slope-7 for high frequencies i o
i R i
h(w) = - g :
w 5/3 w 16/3 1\ ‘ ‘ ‘ ‘ ‘
1 + _ 1 + _ 10 20 30 40 50 60 70 80 90 100
w1 wz AR modelorder

with w, = 0.017 andws = 0.17. This sp_ectrum has been 9€NTig. 5. Three types of quality measures as a function of the order of the AR
erated with an AR(14) process that gives a close approximgadel for 500 observations of a turbulence process.

tion to (14). Spectra can be estimated with time series methods

and with modified periodograms [9], [14]. Fig. 4 shows that thgjgher order models is monotonically increasing, as might be
spectrum of the AR model estimated with Burg's method is vegypected. As in Fig. 1, the quality of AR models as a function
close to the true spectrum in this log—log plot. The periodogragi the AR order has been studied for different measures for this
estimated with the Parzen window has a higher variance. TBgample in Fig. 5. The behavior of IMSE as a function of the
Fourier transform of thérue covariancef(¢), multiplied with  moqe| order is irregular, especially for AR orders between 6 and
the triangle(1 — i/N') has a severe bias in the higher frequeny7 No reason has been found in the AR models that justifies this
cies. _ _ ~behavior. Obviously, IMSE is not a good measure for the mutual
~ Some quality measures for this turbulence example are givgiyjity of those AR models estimated from the same data.
in Table I. The most important conclusion of this table is that The insensitivity of IMSE to frequencies with a small spectral
IMSE is very small for the true covariance multiplied with thgjensity can be demonstrated by calculating the effect of trun-
triangle. But the spectrum in Fig. 4 and the value for the measygiing the estimated spectrum, i.e., by replacing the high-fre-
ME in Table | are poor on the same row&f.,,. multiplied with quency part of the estimated spectrum by zero
the trianglel — ¢ /N . If the spectrum is plotted on a linear scale, .
then the appearance of the true covariance with triangle would fa(w) - {f(w% lw| < am (15)
seem reasonable because all contributions above the normalized 0, ar < |w| <.
frequency 0.2 would be nearly zero. Small values for IMSE afiéhis truncation represents an important change in the character
obtained if errors are small in the strong part of the spectrunf.the process [9, p. 733]. The relative measure ME has the es-
Large relative errors in the weak part of the spectrum have a négiated spectrum in the denominator, see (7) and (10), and the
ligible influence on the measure IMSE. The absolute measugstient equalsc if an estimate zero is substituted. The ME
IMSE and RED show a remarkable difference in Table | for thef this truncated spectrum equais for all truncation points
triangular distortion. « smaller than 1. Table II shows that IMSE with the truncated
The three measures ME, SD, and IRSE of the relative claggectrumy,(w) does not change in the 4th decimal place for
were nearly identical folN = 500, as they should be accordinga > 0.4 for all three estimated spectra. So for the second half of
to the asymptotic theory. Estimating from more observatiotisis example spectrum, taking the estimated spectral density or
gives a closer relation between the different criteria in this clagaking zero instead has no consequences for the numerical value
The three criteria reach a minimum at order 6 and the quality of IMSE. This is the same for all three estimates in this example
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