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The Performance of Spectral Quality Measures
Piet M. T. Broersen

Abstract—Two different classes of quality measures are
discussed and compared: absolute and relative measures. The
relative class, to which the prediction error belongs, has many
different equivalent members, like the spectral distortion and
the likelihood ratio. This type of measure is based on time series
theory. The prediction error can be written either as a squared
error of prediction in the time domain or as a relativeerror in the
frequency domain. It is useful in many applications, especially in
comparing models obtained with different estimation algorithms.
It will be compared to some measures that areabsolute in the
frequency domain. To that class belongs the integrated squared
difference between spectra, that gives equal weights to all frequen-
cies. Another measure is based on the squared difference between
impulse responses. The absolute class has only a few practical
applications, mainly in speech.

Index Terms—Likelihood ratio, model accuracy, model error,
prediction error, spectral distortion.

I. INTRODUCTION

A N OBJECTIVE measure for the quality of models is nec-
essary for the mutual evaluation of estimation algorithms.

Spectral quality measures have always been an important issue
in speech processing. The properties of several related measures
have been investigated theoretically and experimentally [1]. The
treatment in the speech literature is generally limited to autore-
gressive (AR) processes or models, because the linear predic-
tion models in speech processing are AR models. A close re-
lation exists between several measures in the relative class: the
prediction error, the likelihood ratio, the spectral distortion, and
the cepstrum. They are all identical for practical purposes if the
spectral distortion is less than 2 dB [1]. A similar measure can
also be expressed in other representations of AR models, so in
reflection coefficients, line spectrum pairs or log area ratios [2].

For combined autoregressive-moving average (ARMA) pro-
cesses, the concept of the prediction error has been used to
derive themodel error[3]. If the true process parameters are
known, as in simulations, the prediction error can be expressed
as the variance of an ARMA process, whose parameters are
cross convolutions of the true process polynomials with the es-
timated AR and MA polynomials [3]. For unknown process pa-
rameters, however, the prediction error remains a useful quan-
tity with a definite practical meaning. It is the expectation of
the squared one step ahead prediction with a time series model,
under the condition that the predicted observation has not been
used to estimate that model. A further advantage of the predic-
tion error as a quality measure is that its relevance can be in-
dicated both in the time and in the frequency domain. For AR
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processes, it has been shown that the minimum prediction error
variance is obtained if the spectrum of the residuals is maximally
flat [4]. This, in turn, means that all frequencies are equally
important, and the model with minimum prediction error also
minimizes theratio of the true and estimated spectral densi-
ties. This background of time and frequency domain is also
clear in the derivation of the model error for ARMA processes
[3]. The relationship between the prediction error and the inte-
grated ratio of squared spectral densities has also been derived
[5], [6]. That measure has recently been used for a comparison
of the statistical accuracy of nonparametric spectral estimators
[7]. This integrated squared ratio of spectra, with or without log-
arithm, also appears in an expression for the Cramér-Rao lower
bound in parametric spectral estimation [8]. Some other relative
precision measures with ratios of spectra have been proposed
as percentage errors, signal-to-noise ratio (SNR) or degrees of
freedom (DOF) [9].

Mathematically,distancemeasures must have the property of
symmetry: the distance from A to B should be equal to the dis-
tance from B to A. It turns out that the relative measures predic-
tion errors or likelihood ratios do not obey this requirement for
distances because they are defined by quotients; spectral distor-
tion is an example of a relative distance measure because it is
based on asquaredlogarithmic difference.

Absolute measures are also distances. An absolute measure
that is often mentioned in practice is the sum of squared dif-
ferences between the true and the estimated covariance or cor-
relation functions. With Parseval’s relation, this is equal to the
integrated mean squared difference between the true and the es-
timated spectrum. No claims for optimality from a theoretical
point of view are known for this measure. It seems to be an ob-
vious choice where the accent is on estimating the strong parts of
the spectrum. However, the consequences are not always desir-
able because errors in weak parts of the spectrum have little in-
fluence on this distance measure for spectral quality. This mea-
sure is proposed as a figure of merit in estimating parameters
from laser Doppler measurements [10], [11].

A completely different concept for absolute measures has
been derived as the reconstruction error distortion (RED) [12].
The RED is defined as the sum of the squared differences be-
tween estimated and true impulse responses. Parametric im-
pulse responses are computed by using the AR and MA polyno-
mials with a single pulse as input signal. The RED is especially
useful for vowels in speech processing. An explanation is that
the model for vowels is in fact an impulse response to a sequence
of pitches rather than an autoregressive response to a white noise
excitation signal. The result may be that use of RED in codebook
searching requires fewer bits, giving a transparent quantization
for speech with a smaller size of the codebook [12]. The favor-
able performance of RED in speech coding is most likely due
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to the masking properties of the human ear, where soft parts
in the spectrum can be masked by adjacent strong parts. This
human sensitivity may favor absolute differences above relative
in speech.

This paper gives an empirical comparison of the different
types of spectral quality measures, especially of relative and ab-
solute measures. An example shows that a model can have a very
small absolute error, while the relative error is large. This result
can be found in examples with a high dynamic range where there
is a large difference between the power in weak and in strong
parts of the spectrum.

II. QUALITY MEASURES

A. Absolute Measures

A class of absolute quality measures that can be seen as
distances between two processes or between a process and its
model is derived from Parseval’s relation applied to covari-
ances and spectral densities , which form a Fourier
transform pair. That relation applied to the difference between
the true covariance function and an estimate that is indicated
by gives

(1)
In practice, finite sums of covariances are used for computation
of the left-hand side; the integral of the right-hand side is re-
placed by a finite summation obtained with the discrete Fourier
transform. Generally, measures calculated by a summation in
the frequency domain become inaccurate if poles of the dis-
crete-time process or model are close to the unit circle because
the continuous spectrum is not approximately constant over the
elementary frequency interval of the discrete transform. In the
time domain, a finite order computation with a summation of
covariances can only be a good approximation for (1) if the true
covariance is negligible for . Even then, will
never die out because it has a finite variance for [9].

The estimated variance of the signal will often be the same for
different spectral estimators. Hence, it might be better to remove
the variance from the spectral quality measure (1) by taking nor-
malized correlations , with . The normalized spec-
tral densities have the integral of the power equal to unity
and give

(2)

IMSE is an acronym for integrated mean square error. The infi-
nite sum of has a practical meaning because it determines
the variance of the estimate for [9]. However, it is generally
not possible to find a process that has the difference
in (1) as covariance or equivalently the difference between two
spectra as spectral density; the difference between spectra can
become negative and not be a spectrum itself. Therefore (1) and

(2) cannot be transformed into properties of processes. Never-
theless, the properties of as afunctionof are important in
that a valid covariance estimate should be positive semi-definite
[9]. There are no constraints on the function in (1) and (2). As
a consequence, estimated correlation functions that are not pos-
itive semi-definite can have a small IMSE, but they are useless
because they can produce negative spectral densities for some
frequencies. Furthermore, the most accurate estimator for the
infinite sum of has been studied in optimizing the accu-
racy of the estimated variance [13]. The best estimator for this
infinite sum isnotobtained from a summation of estimated cor-
relations; it is difficult to decide how many terms should be in-
cluded. It is better calculated with the parameters of a single
time series model [13] estimated from the data with special es-
timation and order selection algorithms [14].

No objective description of the properties of the measure (1)
is known, except that it seems to be an obvious choice in giving
priority to estimating the strong parts of the spectrum. Recently,
(2) has been used as a criterion for the analytical approximation
of measured turbulence correlation functions by prototypes of
the desired shape [10], [11]. Using as criterion
for minimization is not optimal in least squares theory because
the errors in the estimated correlations are not independent, but
they are strongly covariant [9]. An optimal solution would re-
quire generalized least squares with the inverse of the covari-
ance matrix of the measurement errors as weighting matrix [15].
However, a transformation to independent measurement errors
can also give an optimal solution. Modeling in the frequency
domain would not have the problem of dependence between the
measurement errors.

A second absolute quality measure is RED [12], which is spe-
cial for speech coding. It uses a scaled sum of the squared dif-
ferences between the true impulse responseand its estimate

(3)

The impulse responses can be computed with the AR and MA
polynomials that will be defined in the next section using a pulse
as input signal. With Parseval’s relation and with (7), this ex-
pression can be written in the frequency domain as

(4)

For AR processes, an easy computation of RED has been given
[12]. The extension to ARMA processes is obvious with (4).
Application to code book search in speech coding has shown
that the use of either RED or relative measures gives a different
selection of code words for the same speech signal. In the fre-
quency domain, RED uses the absolute value of the difference
in transfer functions. In that respect RED is related to the IMSE
of (2). That also follows from the observation that the correla-
tion is the convolution of with .

B. Relative Measures

The class of measures that are relative in the frequency do-
main contains the prediction error, the likelihood ratio and the
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integrated ratio of squared spectral densities; those and other
measures are asymptotically equivalent [1], [2]. Suppose that
the ARMA process is given by [9]

(5)

or

where is an i.i.d. white noise sequence with varianceand
is defined as

(6)

Likewise, a polynomial is defined as a polynomial in
of order . The process is stationary if has no poles for
on or outside the unit circle. It is invertible if the roots of ,
denoted zeros, are all inside the unit circle. The spectral density
of an ARMA process is given by [9]

(7)

The prediction error of a model of a given process is de-
fined as the squared error when applying the estimated model
to a new, statistically independent, realization of that process.
A measured realization can be filtered with model parameters

and of orders and , respectively, not necessarily
equal to and . Predictions of the process (5) can be made by
substitution of these model parameters into the measured,
which can be written as

(8)

where the signal can be seen as the output of the estimated
model with used as input signal; the estimated is used
as the AR part, and as the MA part in this description of .
The squared error of prediction PE is defined as the expectation

, with the condition that is a realization of the process
(5) that is independent of the observations that had been used to
estimate the parameters. The outputof the model (8) can be
found by substituting with the relation in (5)

(9)

The relationship between the predictionand the innovations
that generated the true process is therefore given by an

ARMA process. It follows [3] that the variance
of is given as

(10)

if all poles of are inside the unit circle, which is
assumed throughout this paper. The constant scaling factor
gives no relevant information about the quality of different
models for the same process. Therefore, the ME for a model

estimated from observations is made independent ofas
[3]

(11)

The asymptotic expectation of ME equals for a model
that has all true nonzero parameters included, so with and

, independent of , and the true process parameters
[3]. This property of ME has advantages in the interpretation of
simulation results. Above the true order, this quality measure is
not dependent on the shape of the true spectrum. The ME should
not be used if the estimated variance itself is important for the
quality of the estimated spectrum.

The class of relative measures related to the PE and ME has
many different members. One of them, the spectral distortion
(SD) is defined as

(12)

The SD can be expressed in the true and the estimated polyno-
mials with (7). The SD can with (12) be computed over a part of
the frequency domain. Equally important is that a variant of SD
can be defined with instead of in (12). The variant
with is appropriate when the estimated variance is also a
part of the comparison. This occurs in the comparison of inter-
polation schemes. Some simple interpolation methods maintain
the true signal variance; and complex interpolation schemes,
which use more points per interpolation, disturb that variance
[16]. Interpolation is necessary for the use of fast Fourier trans-
form (FFT) or time series analysis on irregularly sampled data,
as in laser anemometry of turbulence. Another member of this
group is the integratedratio IRSE of squared spectral densities
[5], [6] that is defined as

(13)

Absolute and relative measures will be compared in the next
section. Their performance is similar for processes with rather
flat spectra, and the difference between the absolute measure (2)
and the relative measure (13) is small. In white noise, is a
constant and (2) and (13) are, except for a scaling factor, iden-
tical. However, the difference becomes pronounced for spectra
with high and sharp peaks and deep valleys. A turbulence spec-
trum will be treated as an example having a steep slope at high
frequencies.

C. Rationale for Time Series Measures

At first sight, IMSE might look more general than ME and
RED because IMSE is the integral of a spectrum, and ME and
RED use time series models. A spectrum can be found from
equidistant observations of arbitrary signals as the periodogram:
the product of the FFT with its complex conjugate. The inverse
transform of the periodogram is equal to the estimated covari-
ance function if sufficient zeros have been added to the signal
before applying the FFT algorithm [9]. However, any positive
definite covariance function of finite length can be interpreted
as coming from an MA( ) model [4]. The parameters can
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Fig. 1. Three types of quality measures as a function of the order of the AR
model for 64 observations of an AR(1) process.

be found with an iterative algorithm [17]. Hence, a spectrum es-
timated from the periodogram of the data, with or without win-
dowing and tapering, is equivalent to a finite order MA process.
For that reason, time series models and measures are certainly
not less general than measures derived from periodograms or
spectra.

III. COMPARISON OFQUALITY MEASURES

The first comparison is made by evaluating the quality of
estimated AR models as a function of the AR order. The
models of increasing orders have been estimated from a re-
alization of 64 observations of an AR(1) process with

. It is a priori obvious that the AR(1) model gives a
good description for this process. The quality of the models
will decrease for higher model orders. Fig. 1 shows three cri-
teria: 1) ME, 2) RED multiplied by the constant , and
3) IMSE. The ME has its minimum at the expected order 1,
RED at order 3, and IMSE at order 5. Moreover, ME is a
continuously increasing function of the model order as ex-
pected. The RED and IMSE behave differently as a function
of the AR model order, and they have several local minima.
In this example, the properties of ME as a quality measure
look more reliable. There is nothing in the residual variance
or in the estimated reflection coefficients that can explain the
irregularities of IMSE as a function of the AR model order
of this AR(1) process. All frequencies contribute with the
same weight to ME and equivalent measures. For IMSE, er-
rors where is high contribute much more than relative
errors of the same magnitude for frequencies where is
small. Accidental and relatively small improvements of the
fit in the strong parts of the spectrum explain this irregular
behavior of the integral IMSE.

It is seen in Fig. 2 that ME, SD, and the relative squared spec-
tral measure IRSE of (13) look similar and have their minimum
for AR order 1, the true process order. This is in agreement

Fig. 2. Three relative quality measures as a function of the order of the AR
model for 64 observations of an AR(1) process.

Fig. 3. Influence of using the estimated variance in the quality measures. The
measures are a function of the order of the estimated AR model in a single
simulation run. The true variance of the process is 5.26, the estimated variance
4.07.

with the asymptotical theory where those three measures be-
come identical with the proper scaling constants.

Due to their definition, the estimated variance of the signal
plays no role in ME and RED. Only the parameters of the
ARMA process are required for those measures in this simu-
lation study.

The error measure defined in (1) is similar to IMSE, but it
also includes the measured variance. Fig. 3 shows that results of
those criteria may be different. The IMSE has its minimum at
order 8 in this simulation example, and the criterion of (1) had
a minimum at order 4. Both measures will coincide if the esti-
mated variance is exactly the true variance, or if all estimated
parameters of the AR model are very close to their theoretical
values. Similar results are found in a comparison of the spec-
tral distortion of (12) or IRSE of (13) and their variants with

that include the estimated variance. The performance in
this figure is in line with the poor results of IMSE in other ex-
amples.
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Fig. 4. True spectrum, estimated AR spectrum, true spectrum with triangular
bias, and estimated tapered periodogram with Parzen window of length
125. Estimates from 500 simulated equidistant turbulence observations with
spectrum (14).

IV. A PPLICATION TO A TURBULENCE EXAMPLE

A second example uses a spectrum that is derived from tur-
bulence theory [10]. It has a slope of5/3 for low frequencies
and a slope 7 for high frequencies

(14)

with and . This spectrum has been gen-
erated with an AR(14) process that gives a close approxima-
tion to (14). Spectra can be estimated with time series methods
and with modified periodograms [9], [14]. Fig. 4 shows that the
spectrum of the AR model estimated with Burg’s method is very
close to the true spectrum in this log–log plot. The periodogram
estimated with the Parzen window has a higher variance. The
Fourier transform of thetrue covariance , multiplied with
the triangle has a severe bias in the higher frequen-
cies.

Some quality measures for this turbulence example are given
in Table I. The most important conclusion of this table is that
IMSE is very small for the true covariance multiplied with the
triangle. But the spectrum in Fig. 4 and the value for the measure
ME in Table I are poor on the same row of multiplied with
the triangle . If the spectrum is plotted on a linear scale,
then the appearance of the true covariance with triangle would
seem reasonable because all contributions above the normalized
frequency 0.2 would be nearly zero. Small values for IMSE are
obtained if errors are small in the strong part of the spectrum.
Large relative errors in the weak part of the spectrum have a neg-
ligible influence on the measure IMSE. The absolute measures
IMSE and RED show a remarkable difference in Table I for the
triangular distortion.

The three measures ME, SD, and IRSE of the relative class
were nearly identical for , as they should be according
to the asymptotic theory. Estimating from more observations
gives a closer relation between the different criteria in this class.
The three criteria reach a minimum at order 6 and the quality of

TABLE I
THREE QUALITY MEASURES FOR THE

TURBULENCESPECTRUM OFFIG. 4. ESTIMATED WITH DIFFERENTTIME SERIES

MODELS, WITH A MODIFIED PERIODOGRAM AND THE INFLUENCE OF THE

TRIANGULAR BIAS ON THE THEORETICAL COVARIANCE FUNCTION

Fig. 5. Three types of quality measures as a function of the order of the AR
model for 500 observations of a turbulence process.

higher order models is monotonically increasing, as might be
expected. As in Fig. 1, the quality of AR models as a function
of the AR order has been studied for different measures for this
example in Fig. 5. The behavior of IMSE as a function of the
model order is irregular, especially for AR orders between 6 and
27. No reason has been found in the AR models that justifies this
behavior. Obviously, IMSE is not a good measure for the mutual
quality of those AR models estimated from the same data.

The insensitivity of IMSE to frequencies with a small spectral
density can be demonstrated by calculating the effect of trun-
cating the estimated spectrum, i.e., by replacing the high-fre-
quency part of the estimated spectrum by zero

(15)

This truncation represents an important change in the character
of the process [9, p. 733]. The relative measure ME has the es-
timated spectrum in the denominator, see (7) and (10), and the
quotient equals if an estimate zero is substituted. The ME
of this truncated spectrum equals for all truncation points

smaller than 1. Table II shows that IMSE with the truncated
spectrum does not change in the 4th decimal place for

for all three estimated spectra. So for the second half of
this example spectrum, taking the estimated spectral density or
taking zero instead has no consequences for the numerical value
of IMSE. This is the same for all three estimates in this example
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TABLE II
IMSE OF TRUNCATED SPECTRA f̂ (!) AS A FUNCTION OF THETRUNCATION

POINT � FOR AN AR SPECTRUM, A WINDOWED PERIODOGRAM, AND FOR THE

THEORETICAL SPECTRUM WITH TRIANGULAR BIAS

because the relative spectral density is less than 0.01
for , and the numerical value of IMSE shows only vari-
ations in the fifth decimal. Hence, the character of the model can
become completely different without a noticeable change in the
quality criterion IMSE.

V. CONCLUDING REMARKS

The class of relative measures with the model error ME, the
prediction error, the likelihood ratio or the spectral distortion has
a sound mathematical background as a measure for the spectral
quality in a mutual evaluation of estimation algorithms. This
class has also a sensible practical meaning given by the pre-
diction error in the time domain. These measures give reliable
conclusions if the general shape of spectral models is important.
They all represent a relative measure in the frequency domain.
The model error ME is the preferred normalized version in this
class that is independent of true and estimated variances. The
spectral distortion with variance can be used if the estimated
variance is also important for the quality.

The integrated squared measure IMSE has no firm theoretical
background and can give undesirable results in practice. Models
with a small value for IMSE can be very inaccurate at frequen-
cies with little power. The RED is useful in speech but not in
general applications.
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