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Abstract
The XRP network (Ripple network) is a
global transaction network that settles trans-
actions in seconds. It is a technology that
provides new opportunities for traditional fi-
nancial institutions and startups. In the
XRP network, participants depend on each
other’s functioning. However, at present
Ripple Labs, Inc. is the only actor monitor-
ing some form of performance. This paper
presents a way for independent individuals
to verify the score of validators. Further-
more, to improve the insight into the per-
formance of validators, a new metric is in-
troduced. Together these improvements con-
tribute towards a healthy decentralised XRP
network.

Keywords: Blockchain, Performance metric, Performance
monitoring, Decentralised trust management, XRP

1 Introduction
Decentralised transaction databases (blockchains)
have become a very active field of research and many
companies operate in this domain as well [1]. Most
public blockchains use an algorithm to get partici-
pants that do not trust each other to cooperate. With
the result of a calculation, a participant can proof
to the rest of the blockchain network that a certain
set of transactions should be applied to the database
(ledger) next. Every other participant can verify this
calculation result and decide whether it is indeed cor-
rect to apply the proposed set of transactions next.
They do not have to know, and hence not trust, the
participant that provided the result. These Proof of
Work (PoW) algorithms require a lot of energy and
are slow [2].1

1This is simplified beyond the point that it is techni-
cally correct, but should bring home why it is worthwhile

To mitigate the problem of energy consumption and
create a faster system, Ripple Labs, Inc (hereafter
Ripple) proposed the XRP Ledger network. Unfortu-
nately, the system they designed also introduces the
need for some form of trust between the network par-
ticipants.

A large body of literature exists on decentralised
reputation and trust algorithms. They all have their
specific application, but can also be compared [3]. Re-
searchers proposed to store trust, or reputation, on a
blockchain [4], and researched trust in other domains
such as Internet of Things (IoT) [5] and social and ad-
hoc networks [6]. However, because most blockchains
do not need trust management to keep the network it-
self running, there is no literature about trust between
nodes of a blockchain network itself.

To evaluate the trustworthiness of XRP nodes,
specifically the XRP validator nodes, Ripple intro-
duced a central list: https://xrpcharts.ripple.com/#/
validators. This list shows the validators with their
score as measured by nodes monitored by Ripple.
These scores are in turn used to select the highest
performing validators, in order to create a separate
list of trustworthy validators the rest of the network
should follow, according to Ripple. Such a central list
is against the core principle of blockchains to not have
a central authority. After all, this situation makes
Ripple the de facto authority on which validators are
trustworthy. Furthermore, the underlying technology
Ripple employs is not scalable. This calls for a scal-
able solution without central authority for validators
to assess their peers.

Two contributions towards this goal are made in
this paper. First, we develop a program to locally
monitor validators and compute their scores. After
that, a new metric, built on top of those scores, is
introduced. This metric increases the understanding

to investigate cryptocurrencies not based on PoW. For an
excellent, technically correct, explanation, see the video
But how does bitcoin actually work? by Grant Sanderson.
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of the actual performance of validators.
The next section discusses required background

that should make clear what the design limitations
are. Section 3 examines related work on trust algo-
rithms. In section 4 the solution is introduced and in
section 5 it is evaluated. Section 6 discusses the eth-
ical aspects surrounding this research specifically and
blockchains in general. Section 7 provides a conclusion
and recommendations for future work.

2 Background
This section provides background on the mechanics
of the system to illustrate the problem to be tack-
led. The first subsection explains the XRP Ledger
Consensus Protocol (XRP LCP). This is the protocol
through which new ledgers are established. The para-
graphs after that introduce the XRP peer-to-peer net-
work. This is the network that, among other things,
facilitates the traffic required for the protocol to work.

2.1 The XRP Ledger Consensus
Protocol

The XRP Ledger (XRPL) network works with special
nodes called ‘validators’ to determine the next ledger.
All validators receive transactions that users want to
execute. Together the validators decide what trans-
actions to apply next. This is done in two stages:
deliberation and validation. In the deliberation stage
validators iteratively propose a set of transactions to
apply [7, p. 5]. If a validator receives the same set
of transactions from a set quorum of other validators
(e.g. >80%) it moves to the validation stage and ac-
tually applies the transactions.

Validators do not listen to all other validators in
the network. Since it is an open decentralised network
anyone can join at any moment. To prevent their val-
idator from following malicious validators, every val-
idator operator configures a Unique Node List (UNL).
This UNL represents a list of validators they trust to
not defraud the network [7, p. 3] [8, p. 3]. To aid in
keeping a current list it does not have to be configured
manually, but can be automatically downloaded and
updated from a UNL provider.

Currently, Ripple2 and Coil3 are the only UNL
providers and their process in determining this list
is opaque. Ripple does publish a continually updated
list of scores and says that that is what they use in
determining their provided UNL, referred to as dUNL
for default UNL. There was however no way to verify
if these scores were correct. This paper will present a
way to solve this, but to understand the difficulties in
solving this problem, another key concept has to be
understood first.

2https://vl.ripple.com
3https://vl.coil.com

2.2 The operation of the peer-to-peer
network and problem for new
validators

Validators do not connect directly but communi-
cate over a peer-to-peer network instead. This net-
work consists of all validators and all tracking-nodes.
Tracking-nodes do not validate, but merely provide an
entry point into the network for users. All tracking-
nodes also have a UNL. Every node, validator or
tracking-node, finds its peers via a peer discovery pro-
tocol when booting. The result is a, essentially ran-
dom, set of up to 21 direct peers. There are two pro-
cesses in this network that are important to under-
stand, to get at the problem it creates for new valida-
tors.

Nodes only relay messages to its peers that are com-
ing from trusted validators (validators on their UNL).
This rule has two consequences. First of all, it implies
that messages from untrusted validators are only seen
by its direct peers. The second consequence is that
most nodes should have mostly the same UNL. Oth-
erwise some nodes may not receive messages from all
its trusted nodes. This would happen for example if
a node trusts a validator that is not trusted by any of
its peers.
Ripple records performance only through nodes that

expose their public API to them. Since these nodes
only have a limited number of direct peers, Ripple can
only observe parts of the network. For an untrusted
validator to become trusted it has to connect to a
Ripple node and then show a high performance for an
extended period of time. Unfortunately, as explained
earlier, these peer connections are mostly random.

This creates a problem for new validators that want
to become trusted validators. They have to ‘get lucky’
and connect to a Ripple node. Next to providing in-
sight into the performance of a validator this paper
also aims to aid in improving this process of becom-
ing a trusted validator.

3 Related work
Various types of trust algorithms exist, each with their
strengths. To replace Ripple’s dUNL list, some form of
a trust algorithm will be needed to counter the influ-
ence of malicious actors on the perceived scores. This
section discusses three types of algorithms for this,
and mentions some potential drawbacks. For a more
in-depth comparison of these algorithms, readers are
referred to an excellent review by Fan, Liu, Zhang,
et al. [3]. In this section score and trust are used
interchangeably, because most literature is on trust
algorithms, but the application in this context would
be to obtain scores.
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The first option is a globally consistent score. This
is interesting, because that could be a one-on-one sub-
stitute for Ripple’s list. EigenTrust [9] is one of the
most well-known algorithms of this type. However,
this type of trust algorithm is computationally heavy
[3] and may not be needed. For better protection
against certain types of attacks EigenTrust is vulner-
able to, a descendant, like EigenTrust++ [10], can be
considered.

On the other hand it may be worthwhile looking
into AdaptiveTrust [5] for its high resistance against
malicious attacks [3]. The drawback of this algorithm
is that it does not provide a global score, instead every
participant has its own set of scores about all other
participants.

A third option that may be well suited for this ap-
plication is to use distributed hash tables per the idea
in the original EigenTrust paper [9]. In this setup,
the owner of the server running the instance of the
program would no longer be the same as the owner of
the validator being monitored. Instead, all instances
decide via a distributed hash table which validators
should be monitored by which instance. All instances
judging the same validator can then decide the correct
score by majority vote. This may remove the need
for a trust algorithm completely, but still allow for a
global score and not be computationally intensive.

4 Approach
We developed a system that measures the score of in-
dividual validators using the same technique as Ripple
does.4 A new metric is built on top of this score to im-
prove the understanding of a validator’s performance.

4.1 Personal monitorer
The system is built as a standalone program for a val-
idator operator to monitor their validator. It connects
through the WebSocket protocol to a tracking node
directly connected to the validator under monitoring.
To guarantee a connection between the node and the
validator it is preferred that they are in a cluster to-
gether. On boot, the program connects to the config-
ured node and subscribes to the callback for received
ledger submissions. More on this API is found in its
documentation: https://xrpl.org/subscribe.html.

The program is split in a data aggregation and
a data processing function that are run separately
(data_aggregation and data_analysis folders in
the repository). The data aggregation function sub-
scribes to the node as described before. It writes every
hour the submissions from that hour. The data pro-
cessing function can analyse this data over arbitrary

4Available at:
https://gitlab.ewi.tudelft.nl/ripple/brp-2020/
validator-score/ripple-validator-reputation-scoring

time-frames. This is useful for reproducing this re-
search; in production, the processing should update
automatically and compute over the largest available
time-frame.

The processing function should display the current
performance of the validator under monitoring, pos-
sibly with the raw score from the last hour. In the
next subsection, the score directly computed from the
aggregated submissions is explained. After that, the
new metric for validator performance is introduced.

4.2 Score aggregation
The (existing) score used is the ratio between the num-
ber of correct submitted ledgers and the total number
of ledgers that should have been submitted during a
given time-frame:

correct submitted

total
= score. (1)

A correct submitted ledger is a ledger submitted by
the validator that ends up being the canonical ledger,
and total number of ledgers is the number of canoni-
cal ledgers. The canonical ledger is the ledger that all
validators (eventually) use to base new ledgers on. In
Bitcoin, it would be a block of the longest chain.

Inspecting the scores resulting from the ledger col-
lection can already give an idea of the validator’s
performance. However, this requires manual inspec-
tion. To overcome this manual inspection of valida-
tors’ scores by operators a metric is introduced built
from these scores.

4.3 Performance Trend Metric
The goal of the Performance Trend Metric is to im-
prove the understanding of the performance of the val-
idator. In isolation, the raw score (eq. 1) does not tell
much about the performance of a validator. If a val-
idator has a score of 1.0000 (100% agreement) it is
clear that it cannot do better, but it is not clear when
it stops being a ‘good’ score.

To add meaning to the score, the score of the valida-
tor of interest is compared to the scores of all dUNL
validators. First, a statistical significance test is per-
formed to determine if an observed difference between
these samples would be significant. Then, if the dif-
ference between the scores of the validator of interest
and the scores of the dUNL validators is indeed sig-
nificant, the effect size is computed. The effect size is
used as the basis for a colour based reporting scheme,
according to the thresholds in table 1. If there is no
significant difference (p-value ≥ 5%) the metric will
always report Green. This should give insight into the
performance of a validator, without the need to search
for and monitor other validators’ scores.
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Effect size Effect
significance

Metric
label

User explanation

> 0.4265 negligible Green Your validator’s performance is indistinguishable from a dUNL validator≤ 0.4265 small Green
≤ 0.335 medium Amber Your performance is drifting away from the dUNL validators

≤ 0.263 large Red Your performance is significantly lower than expected from a dUNL
validator

Table 1: Relative Validator Performance metric thresholds. These are the thresholds used for the Vargha-Delaney effect size
to determine the metric label. The effect size is only used if the validator’s performance is significantly different; p-value <
5%, see table 2

As significance test the non-parametric two-sample
Kolmogorov-Smirnov test is used [11]. The two-
sample Kolmogorov-Smirnov test tests the hypothesis
that both samples are drawn from the same distribu-
tion, by quantifying a distance between the empirical
distribution functions. It is useful in this context as it
works well for non-normal distributions and is sensi-
tive against all types of differences. The test statistic
is defined as:

Dn,m = sup|F1,n(x)− F2,m(x)| (2)
With F1,n(x) and F2,m(x) the empirical distribution
functions, sup the supremum function and m and n
the sizes of the samples. The supremum function re-
turns the least element that is greater than or equal
to all elements in a set, in other words, the least upper
bound. For a given confidence level α the null hypoth-
esis is rejected if:

Dn,m >
1√
n
·
√
− ln(α2 ) ·

1 + n
m

2 (3)

For the effect size Cliff’s delta is computed and
transformed to the A12 statistic of Vargha and De-
laney [12] [as cited in 13]. The significance thresholds
in table 1 are taken from Romano, Kromrey, Coraggio,
et al. [14, p. 14] and transformed for the A12 as well.
Readers familiar with this statistic will know that the
significance is mirrored over 0.5. This is not impor-
tant for our purpose, and hence everything above the
negligible threshold in the table is treated as negli-
gible. As presented in [12, eq. (14)] the statistic is
computed with the following formula:

A12 = (R1/m− (m+ 1)/2)/n, (4)
where R1 is the rank sum of the first sample [13] and
m and n defined as before.

Table 2 shows how the metric would behave over
the course of 78 days under different circumstances.
Day 23 shows that, even though the validator score
sample is significantly different from the dUNL sam-
ple (p-value < 5%, column 3), the effect size is small

(column 4 and 5) and therefore the metric turns green.
Furthermore, it shows that the metric can give confi-
dence in the validator on days that it has a low score,
see day 56 and 58. On the other hand, it also signals
that a validator is really falling behind even though
the scores every day are near perfect (day 71 and on).

To treat a new validator with caution and mitigate
any ‘newcomer advantage’ the score-list (column 2) of
the validator under inspection is prepended with 30
0% scores. This ensures that a validator does not turn
green shortly after coming online, but has to exhibit
high performance for multiple weeks first. The metric
is computed on a rolling window of 30 days.

5 Evaluation
To evaluate the introduced system it is first of all inter-
esting to know whether the locally aggregated scores
are more accurate than the (global) scores aggregated
by Ripple. This would legitimise the use of a local
monitorer instead of the data provided by Ripple. Af-
ter those results, the new metric is evaluated. To
demonstrate the usefulness of the introduced metric,
historical data is analysed to show how the new metric
may have helped the validator operator at that mo-
ment. The code for this historical analysis is available
under historical_analysis in the repository.

5.1 Design
To compare the accuracy between local and global
scores the program ran for multiple contiguous hours
on different days. Next to the hourly saving of the
received ledger submissions as described in the ap-
proach section, Ripple’s observations of that hour are
also saved to storage. Ripple’s data is pulled from the
Data API v2 : https://xrpl.org/data-api.html. From
this data, the validators are identified where the dif-
ference with what Ripple observed was at least 5. If
Ripple consistently misses submissions for a validator,
the local program may be more accurate for that val-
idator and vice versa. The program was set up to
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Day Score
(%)

p-
value
(%)

Eff.
size

Eff.
signifi-
cance

Metric
label {G,
A, R}

std
(%)

Mean
dUNL

(%)

Mean
validator

(%)

iqr
(%)

Median
dUNL

(%)

Median
validator

(%)
1 100.0 0.00 0.0190 L Red 16.28 97.18 3.33 0.00 100.00 0.00
2 99.6 0.00 0.0221 L Red 12.67 97.92 6.65 0.00 100.00 0.00
3 100.0 0.00 0.0414 L Red 10.39 98.59 9.99 0.00 100.00 0.00

...
10 100.0 0.00 0.1606 L Red 5.86 99.43 33.32 0.00 100.00 0.00
11 99.3 0.00 0.1624 L Red 5.59 99.46 36.63 0.00 100.00 0.00
12 100.0 0.00 0.1818 L Red 5.36 99.49 39.96 0.00 100.00 0.00
13 99.0 0.00 0.1830 L Red 5.66 99.41 43.26 0.00 100.00 0.00
14 100.0 0.00 0.2019 L Red 5.46 99.45 46.59 0.00 100.00 0.00
15 99.9 0.00 0.2054 L Red 5.29 99.46 49.92 0.00 100.00 49.48
16 100.0 0.00 0.2246 L Red 5.15 99.47 53.26 0.00 100.00 99.12
17 100.0 0.00 0.2427 L Red 5.00 99.50 56.59 0.00 100.00 99.43
18 100.0 0.00 0.2614 L Red 4.87 99.51 59.92 0.00 100.00 99.73
19 100.0 0.00 0.2801 M Amber 4.75 99.53 63.26 0.00 100.00 99.94
20 100.0 0.02 0.2987 M Amber 4.63 99.55 66.59 0.00 100.00 99.98
21 100.0 0.06 0.3046 M Amber 4.54 99.55 69.92 0.00 100.00 100.00
22 100.0 0.24 0.3237 M Amber 4.46 99.55 73.26 0.00 100.00 100.00
23 100.0 0.75 0.3422 S Green 4.38 99.56 76.59 0.00 100.00 100.00

...
29 100.0 60.02 0.4545 N Green 3.91 99.64 96.59 0.00 100.00 100.00
30 99.9 63.20 0.4600 N Green 3.85 99.64 99.92 0.00 100.00 100.00
31 100.0 66.12 0.4624 N Green 3.79 99.64 99.92 0.00 100.00 100.00
32 99.8 66.40 0.4632 N Green 3.73 99.65 99.93 0.00 100.00 100.00
33 100.0 45.19 0.4489 N Green 3.67 99.66 99.93 0.00 100.00 100.00
34 98.5 44.95 0.4451 N Green 3.62 99.66 99.88 0.00 100.00 100.00
35 96.2 26.86 0.4267 N Green 3.57 99.67 99.75 0.00 100.00 100.00
36 100.0 14.08 0.4114 S Green 3.52 99.68 99.75 0.00 100.00 100.00

...
55 100.0 13.00 0.4177 S Green 3.74 99.67 99.81 0.00 100.00 100.00
56 19.8 5.78 0.3985 S Green 4.13 99.63 97.13 0.00 100.00 100.00
57 100.0 5.37 0.3970 S Green 4.09 99.64 97.14 0.00 100.00 100.00
58 95.2 2.08 0.3785 S Green 4.06 99.64 96.97 0.00 100.00 100.00
59 99.9 0.71 0.3624 S Green 4.02 99.65 96.97 0.00 100.00 100.00
60 100.0 2.19 0.3795 S Green 3.99 99.65 96.97 0.00 100.00 100.00

...
64 100.0 2.29 0.3855 S Green 3.86 99.67 97.03 0.00 100.00 100.00
65 99.9 2.41 0.3891 S Green 3.83 99.67 97.15 0.00 100.00 100.00
66 100.0 2.39 0.3885 S Green 3.81 99.68 97.15 0.00 100.00 100.00
67 100.0 0.81 0.3731 S Green 3.78 99.68 97.15 0.00 100.00 100.00
68 100.0 0.24 0.3579 S Green 3.75 99.68 97.15 0.00 100.00 100.00
69 99.9 0.06 0.3414 S Green 3.73 99.68 97.15 0.00 100.00 100.00
70 94.3 0.06 0.3376 S Green 3.70 99.68 96.96 0.00 100.00 100.00
71 100.0 0.01 0.3232 M Amber 3.68 99.69 96.96 0.00 100.00 99.99
72 99.9 0.00 0.3071 M Amber 3.65 99.69 96.96 0.00 100.00 99.99
73 100.0 0.00 0.3056 M Amber 3.63 99.69 96.95 0.00 100.00 99.99
74 100.0 0.00 0.2896 M Amber 3.61 99.70 96.95 0.00 100.00 99.98
75 99.9 0.00 0.2720 M Amber 3.58 99.70 96.95 0.00 100.00 99.98
76 100.0 0.00 0.2570 L Red 3.56 99.70 96.95 0.00 100.00 99.98
77 100.0 0.00 0.2419 L Red 3.53 99.71 96.95 0.00 100.00 99.98
78 99.9 0.00 0.2250 L Red 3.51 99.71 96.95 0.00 100.00 99.98

Table 2: The introduced Performance Trend Metric with additional statistical information on the samples. The marked cells
are the days that the metric changed label. Note that the introduced metric is designed to convey the performance over a
period of time, instead of on a day-to-day basis. This becomes clear for example at day 56, where a substantially lower score
of the validator has no immediate impact on the metric. The std and iqr columns are the standard deviation and interquartile
range of the dUNL scores respectively.



monitor validator ripple1.ewi.tudelft.nl.5
The new metric is empirically evaluated by

analysing daily scores over a period where it may not
have been clear how a validator performed by just
looking at the score. The situation is analysed from
the perspective of an operator of the validator. The
scores of this validator are compared to the scores, in
the same interval, of all dUNL validators.

5.2 Results
This section discusses the results of the described eval-
uations. First, the accuracy of the score aggregation is
discussed and compared to Ripple’s aggregation. Af-
ter that, the introduced metric is empirically evalu-
ated using real-world data.

Score accuracy
The data aggregation was done from May 25th to May
28th. In table 4 in Appendix A all scores are found
that did not match per hour, filtered as described be-
fore.6 The address column provides the last six char-
acters of the address.

Our local scores are not always in agreement with
Ripple’s global scores. It is however close. Assuming
that every hour 900 ledgers were closed and 40 val-
idators connected, it turns out that for ~0.03% of the
recorded submissions there was a major disagreement.
Crucially, there was never major disagreement on the
monitored validator ripple1.ewi.tudelft.nl. This
shows that local scores are equally good as the basis
for the new metric as Ripple’s scores.

Metric evaluation
A historical interval of scores is investigated. During
the recording for the score accuracy described above
no interesting situations occurred, therefore historical
data is used that better illustrates the usefulness of
the metric. The results are presented in table 3, this
interval starts at the 4th of January. The validator
under investigation is validator.xrptipbot.com.7
Although the validator does not start perfect, with

this metric it becomes clear that it is actually not
doing worse than dUNL validators as the metric turns
green on day 26. The new metric is intended to convey
the performance trend of a validator, not be affected
by day-to-day disturbances. This property is seen at
work on day 29 and 31 where the daily score drops
significantly below the average, but the metric is not
immediately affected. Only after an extended period
of time without perfect scores, starting day 36, the

5Address: nHDDkPeX4CzMrXAQXNQqVSxkPmRbrxRe
C5NUHWPCmDezfADKKwDQ

6The raw data is found in the repository with the source
code, in the folder data/consecutive_only/.

7Address: nHUXeusfwk61c4xJPneb9Lgy7Ga6DVaVLE
yB29ftUdt9k2KxD6Hw

Day Score label
1 100.00 R
2 100.00 R
3 99.91 R
4 100.00 R
5 99.81 R
6 99.98 R
7 98.45 R
8 96.23 R
9 99.96 R

10 100.00 R
11 100.00 R
12 100.00 R
13 99.98 R
14 100.00 R
15 100.00 R
16 99.99 R
17 100.00 R

...
21 100.00 A
22 99.99 A
23 100.00 A
24 99.99 A
25 100.00 A
26 100.00 G
27 100.00 G
28 100.00 G
29 19.76 G
30 100.00 G
31 95.18 G
32 99.93 G
33 100.00 G
34 99.98 G
35 100.00 G
36 99.95 G
37 99.99 G
38 99.94 G
39 99.95 G
40 99.97 G
41 99.96 G
42 99.92 G
43 94.28 G
44 99.98 A
45 99.92 A
46 99.96 A
47 99.96 A
48 99.88 A
49 99.98 R
50 99.99 R

...

Table 3: Score and new metric compared.
The marked cells are the days that the met-
ric changed colour. Day 1 is Jan. 4th 2020
from validator validator.xrptipbot.com (Address:
nHUXeusfwk61c4xJPneb9Lgy7Ga6DVaVLEyB29ftUdt9k
2KxD6Hw)
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metric drops to the amber warning zone and quickly
after that to red.

6 Ethical aspects of this work
This work has been conducted with the ethics of cryp-
tocurrencies and responsible research in mind. Con-
siderations around this will be discussed in the fol-
lowing two subsections. First it is discussed that, al-
though there are serious concerns around privacy and
energy usage surrounding cryptocurrencies in general,
it turns out that this is less applicable to XRP . After
that, the efforts of making this work reproducible are
set out.

6.1 Privacy, speed and energy
This section first discusses that XRP possesses the
same privacy characteristics as Bitcoin. After that,
a possible consequence of the fast settlement speed is
described. It concludes with a note on energy usage.

Privacy
Bitcoin has been perceived as a useful tool for crimi-
nal activity in the past due to its anonymity. Despite
its design considerations around privacy at inception
[15, p. 6], it turns out that Bitcoin is only pseudo-
anonymous. Companies actively try to link public ad-
dresses with real people8 and academic research has
shown that it can be even easier for law enforcement
that can subpoena information [16]. Although privacy
was not a design consideration for XRP like it was
for Bitcoin [8], it does possess similar characteristics.
XRP also runs on a public ledger where transactions
are linked to public addresses. From a technical per-
spective, this makes it equally hard to link real people
to transactions. Furthermore, XRP is not mined and
hence has to be acquired by receiving it from some-
one else. This must mean that it is always traceable
to an institution that swapped it for fiat currency,
which should be able to identify the other party per
Customer Due Diligence (CDD) and Know Your Cus-
tomer (KYC) regulations. These considerations com-
bined convince the authors that this work contributes
to a technology that is not likely to be used for anony-
mous criminal activity.

Speed
Within the context of criminal activity, it should also
be considered that XRP is sent in a matter of seconds,
and when a ledger is validated transactions are irre-
versible. This makes it a useful tool for moving money
out of a country very fast. Although the above para-
graph suggests the identity behind addresses can prob-
ably be unearthed, this may come too late. Where law

8Bitcoinist.com: “Yes, your Bitcoin transactions can be
tracked - and here are the companies that are doing it”

enforcement is probably able to halt international fiat
transactions if they operate within twenty-four hours,
this may not be fast enough for XRP. Such activity is
very much against the interest of Ripple and any other
connected company. Therefore the authors trust that
this risk is kept to a minimum.
Energy
The introduction already alluded to the fact that proof
of work algorithms like the algorithm Bitcoin employs
have enormous energy costs [2][17]. As discussed in
this paper, XRP uses a completely different system.
Therefore this work does not contribute to or support
high energy usages.

6.2 Reproducibility
An effort was made to make this work reproducible as
recommended by and per the guidelines in the Nether-
lands Code of Conduct for Research Integrity [18].
The presented validator scores were computed online
and the data was not saved in permanent storage in
earlier iterations of the code. Splitting aggregation
and computation made it possible to share the dataset
so the presented scores can be verified. Furthermore,
a replication study is made easier by providing the
code itself.

7 Conclusions & Future work
The presented program, alongside the presented new
metric, gives validator operators better insight into
the performance of their validator. This is beneficial
to validator owners and hence to the overall stability
of the XRP network.

This work can be extended by building a score trust
algorithm into the tool. When adopted widely, that
would render Ripple’s score list obsolete and remove
Ripple from its position as an authority. If instances
of the program determine the score of all validators of
which it is receiving messages independently, enough
instances of the program are running, and they decen-
trally determine a global score, the Ripple score list
is not needed anymore. All these instances together
could, in that case, provide a score per validator in-
dependent of Ripple’s list.
Next to extending the program with this new func-

tionality, it can also be improved. In particular, more
research can be done into the best method to test for
statistical significant difference in the score samples.
It is not clear what type of differences are most rele-
vant for this data. Depending on the answer to this,
the Cucconi test may turn out to be better suited to
test for significance as the Kolmogorov-Smirnov test
is sensitive against all possible types of differences be-
tween distribution functions. The Cucconi test, on
the other hand, was only proposed to test location
and scale.
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Another interesting direction is to test for signifi-
cance directly from the effect size statistic. Vargha
and Delaney describe a technique for this in their pa-
per proposing the A12 statistic [12].

Furthermore, other thresholds for the effect size
could be researched. The thresholds used in this re-
search are common, but not specialised for this type
of data. It may be possible to find heuristics to base
the thresholds on for this specific application.

Next to that, the program could be extended to
group the performance on the domain name, instead
of by address. Validators with the same domain tend
to have the same operator, so such a grouping could
potentially provide new insights for and on these op-
erators.

A last possibly interesting extension is to provide a
second year window next to the thirty-day window im-
plemented now. Such a window may better convey the
performance under maintenance. It is likely that in a
year, maintenance is performed. Within a month this
is less likely. A year window is therefore potentially
better suited to convey information on maintenance
performance.
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Appendices

A Ledger submissions

Hour Address Missed Score
local Ripple local Ripple

May 25th 2020, 11:02:59 CET, 9 hours
1 NePRTw 0 0 1.0000 0.0000
2 yMRWJW 5 0 0.9947 1.0000

ZDfnYe 5 0 0.9947 1.0000
NePRTw 0 0 1.0000 0.0000

3 NePRTw 0 0 1.0000 0.0000
4 NePRTw 0 0 1.0000 0.0000
5 ZDfnYe 1 11 0.9989 0.9884

NePRTw 0 0 1.0000 0.0000
6 GgPBjp 7 16 0.9926 0.9831

NePRTw 0 0 1.0000 0.0000
7 NePRTw 0 0 1.0000 0.0000
8 ZDfnYe 5 0 0.9947 1.0000

NePRTw 0 0 1.0000 0.0000
9 KxD6Hw 0 5 1.0000 0.9947

ZDfnYe 0 8 1.0000 0.9916
NePRTw 0 0 1.0000 0.0000

May 26th 2020, 10:19:08 CET, 14 hours
2 ZDfnYe 8 0 0.9915 1.0000

yMRWJW 10 0 0.9894 1.0000
DHn7GK 10 0 0.9894 1.0000

4 ZDfnYe 11 0 0.9883 1.0000
yMRWJW 9 0 0.9904 1.0000
DHn7GK 9 0 0.9904 1.0000

5 ZDfnYe 0 13 1.0000 0.9863
6 ZDfnYe 6 0 0.9936 1.0000

yMRWJW 6 0 0.9936 1.0000
DHn7GK 8 0 0.9915 1.0000

7 QVajam 0 26 1.0000 0.9723
8 ZDfnYe 9 0 0.9904 1.0000

yMRWJW 11 0 0.9883 1.0000
DHn7GK 11 0 0.9883 1.0000

9 ZDfnYe 0 6 1.0000 0.9936
10 ZDfnYe 5 0 0.9947 1.0000
11 KxD6Hw 0 6 1.0000 0.9937
12 ZDfnYe 8 0 0.9915 1.0000

yMRWJW 13 0 0.9863 1.0000
DHn7GK 13 0 0.9863 1.0000

Hour Address Missed Score
local Ripple local Ripple

May 27th 2020, 12:49:19 CET, 7 hours
1 ZDfnYe 8 14 0.9916 0.9853

KxD6Hw 0 7 1.0000 0.9926
QVajam 34 0 0.9642 1.0000
yMRWJW 9 0 0.9905 1.0000
DHn7GK 11 0 0.9884 1.0000

2 QVajam 4 9 0.9958 0.9905
3 ZDfnYe 6 0 0.9937 1.0000

yMRWJW 8 0 0.9916 1.0000
DHn7GK 7 0 0.9926 1.0000

7 yMRWJW 5 0 0.9945 1.0000
DHn7GK 7 0 0.9923 1.0000

May 28th 2020, 12:54:15 CET, 7 hours
5 yMRWJW 9 0 0.9902 1.0000
7 yMRWJW 7 0 0.9924 1.0000

ZDfnYe 7 0 0.9924 1.0000
KxD6Hw 0 6 1.0000 0.9935

Table 4: Validator scores per hour for the validators that
our local program and the Ripple score did not agree on. It
turns out that in less than 0.1% of the submissions there is
disagreement. If missed and score report 0 simultaneously
Ripple had no data on this validator. Validator WvcyRj is
left out completely because it was unreliable.
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