

Delft University of Technology

Learning state machines from data streams: A generic strategy and an improved heuristic

Baumgartner, R.; Verwer, S.E.

Publication date
2023
Document Version
Final published version
Published in
Proceedings of Machine Learning Research

Citation (APA)
Baumgartner, R., & Verwer, S. E. (2023). Learning state machines from data streams: A generic strategy
and an improved heuristic. In F. C. Coste, F. Ouardi, & G. Rabusseau (Eds.), Proceedings of Machine
Learning Research (Vol. 217). (Proceedings of Machine Learning Research).

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Proceedings of Machine Learning Research 217:117–141, 2023 ICGI regular paper

Learning state machines from data streams:
A generic strategy and an improved heuristic

Robert Baumgartner r.baumgartner-1@tudelft.nl

Sicco Verwer s.e.verwer@tudelft.nl

Department of Software Technology

Delft University of Technology

Delft, The Netherlands

Editors: François Coste, Faissal Ouardi and Guillaume Rabusseau

Abstract

State machines models are models that simulate the behavior of discrete event systems,
capable of representing systems such as software systems, network interactions, and control
systems, and have been researched extensively. The nature of most learning algorithms
however is the assumption that all data be available at the begining of the algorithm,
and little research has been done in learning state machines from streaming data. In this
paper, we want to close this gap further by presenting a generic method for learning state
machines from data streams, as well as a merge heuristic that uses sketches to account
for incomplete prefix trees. We implement our approach in an open-source state merging
library and compare it with existing methods. We show the effectiveness of our approach
with respect to run-time, memory consumption, and quality of results on a well known
open dataset.

Keywords: State machine learning, Automata learning, Streaming data

1. Introduction

State machines are insightful models that naturally represent formal languages and discrete
systems, and have been extensively used in various domains such as model checking (Baier
and Katoen, 2008) and modeling discrete event systems such as truck driving (Verwer, 2010),
computer networks (Pellegrino et al., 2017), and controllers and software systems (Walkin-
shaw et al., 2016). A major advantage of state machines is that, combined with expert
knowledge, they are interpretable (Hammerschmidt et al., 2016). Learning state machines
can be roughly subdivided into active learning and passive learning. Active learning learns
from interactions with a system under test. Passive learning learns directly from observed
execution traces without interfering with a system’s execution. Most passive algorithms
require all data to be available before running the inference step and hence cannot learn
from data streams. Exceptions are the works of Balle et al. (2012, 2014) and Schmidt and
Kramer (2014). These works employ a typical streaming approach where decisions made by
the learning algorithm are postponed until sufficient data has been observed. In this work,
we propose a novel streaming strategy, with its main advantage being that it corrects errors
made during previous iterations. In this way, we can perform learning steps even when
the statistical tests performed by the algorithm are inconclusive: subsequent iterations can
correct these steps. As a consequence, we learn faster. Our streaming strategy is generic
and can be used with multiple heuristics.

© 2023 R. Baumgartner & S. Verwer.

Baumgartner Verwer

Like most passive learning algorithms, we adopt state-merging in the red-blue framework
from Lang et al. (1998). This framework starts with a prefix-tree that directly encodes the
entire input data set and then greedily merges states of this tree until no more consistent
merges can be performed. Being a streaming algorithm, our method only keeps counts
from all observed traces in memory and builds the prefix tree only for states with sufficient
occurrence counts. To learn models from such a partially specified prefix tree, we propose a
new Count-Min-Sketch based merge heuristic. The main idea is that we hash future prefixes
and store them in sketches in each state. Our new heuristic performs consistency checks
directly on these sketches. Importantly, Count-Min-Sketches allow for efficient updates
which allows performing and undoing of merges in constant time.

We implemented our approach in the open source FlexFringe library (Verwer and Ham-
merschmidt, 2017), a flexible state-merging framework that allows to specify one’s own
heuristics and consistency checks. We added streaming capability and our own consistency
check using Count-Min-Sketches. FlexFringe provides efficient structures for performing and
undoing merges, as well as a multitude of heuristics such as Alergia (Carrasco and Oncina,
1994) that we use in our experiments. We demonstrate the effectiveness of our approach
on the well known PAutomaC dataset. We evaluate on run-time, memory footprint and
approximation quality. We experiment in settings where merge undoing is enabled, and
the more common streaming setting where merges are postponed until sufficient data is
available. In our experiments our method clearly outperforms the earlier approach of Balle
et al. (2014) in terms of approximation quality. It also compares favorably to streaming
using Alergia as the heuristic without merge undoing and performs better on most problems
when undoing merges is enabled, albeit the gap has shrank compared to the not-undoing
setting. The results clearly demonstrate that the ability to correct mistakes is crucial for
obtaining good performance using traditional merge heuristics such as Alergia. The Count-
Min-Sketches result in improved consistency checks when postponing merges, but even these
benefit from merge undoing. Our method gets close to but does not reach the performance
of a non-streaming version of Alergia that simply loads all the available data in the prefix
tree.

2. Related Work

There are two main approaches to learning state machines, either by active learning (An-
gluin, 1987, 1988; Vaandrager, 2017), or via state merging (de la Higuera, 2005). While
active learning requires the availability of an oracle being able to answer queries, state
merging learns from example traces. Example traces are being represented via a complete
tree, and then greedily minimized in accordance to Occam’s razor. These all perform a
consistency test of where a pair of state is mergeable and compute a heuristic value to
determine which merge to perform first. For example, Alergia (Carrasco and Oncina, 1994)
learns state machines representing probabilistic languages via sampled distributions, and
k-Tails (Biermann and Feldman, 1972) compares the subtrees of state pairs. Other seminal
works include the RPNI algorithm (Oncina and Garćıa, 1992) and the EDSM algorithm
(Lang et al., 1998). Several types of models can be learned like this. Verwer et al. (2012)
learn timed automata from timed strings, Walkinshaw et al. (2016) learn extended finite
state machines to represent software and control systems, and Mariani et al. (2017) learn

118

CSS Streaming

guarded finite state machines. Hybrid state machine models can be learned by taking dif-
ferent aspects of a system into account (Vodenčarević et al., 2011; Lin et al., 2018). Since
the problem of finding an exact solution in passive learning has been shown to be NP-hard
(Gold, 1978), several search strategies have been developed (Oliveira and Silva, 1998; Abela
et al., 2004; Lang, 1999). Different ways to speed up the main algorithm have also been
proposed through divide and conquer and parallel processing (Luo et al., 2017; Akram et al.,
2010; Shin et al., 2021).

Few works deal with making state-merging algorithms more scalable when run on
streaming data. Schmidt and Kramer (2014) utilize frequent pattern data stream tech-
niques to tackle the problem. Dupont (1996) build on the RPNI algorithm and learn state
machines from positive and negative examples in an incremental fashion. Conflicts that can
arise from new unseen negative examples are resolved via splitting states until conflicts are
resolved. Balle et al. (2012) present a theoretical work of streaming state machines using
modified space saving sketches (Metwally et al., 2005), and extend it with a parameter search
strategy in (Balle et al., 2014). Schouten (2018) implements a streamed merging method
in the Apache framework, also using the Count-Min-Sketch data structure (Cormode and
Muthukrishnan, 2005). In this paper, we present a new streaming learning method that,
like the algorithm of Dupont (1996), can correct mistakes from earlier iterations, and like
the algorithm of Balle et al. (2012) uses sketches to approximate the information contained
in the observed traces.

3. Background

A PDFA is a tuple defined by A = {Σ, Q, q0, τ, λ, η, ξ}, where Σ is a finite alphabet, Q is a
finite set of states, q0 ∈ Q is a unique starting state, τ : Q× Σ ∪ {ζ} → Q is the transition
function with ζ the empty string, λ : Q×Σ→ [0, 1] is the symbol probability function, and
η : Q → [0, 1] is the final probability function, such that η(q) +

∑
a∈Σ λ(q, a) = 1 for all

q ∈ Q. ξ ̸∈ Σ denotes the final symbol, indicating the end of a sequence.

In the following we will stick to the following convention: We denote the Kleene star
operation over Σ by Σ∗, and denote xΣ∗ the set of all possible strings with prefix x. When
we decompose a string into multiple parts or when referring to general strings over Σ∗ we
use the letter σ. Single elements of the alphabet are denoted by the character a, s.t. a ∈ Σ.
For example, the string σ1aσ2 is the string obtained through the concatenation of string
σ1, the symbol a and the string σ2. Given string σ = a1a2 . . . an, we call the sequence
ai+1ai+2 . . . ai+m, i ∈ [0, n −m] a substring of length m of σ. Given transition function τ ,
a string traverses the PDFA recursively in order τ(qi, a

i+1) = qi+1 for all 0 ≤ i ≤ n − 1.
For convenience we define a traversal through an entire string or substring σ via shorthand
notation τ(σ). We consider a parent of a state q a state q′ s.t. ∃a ∈ Σ : τ(q′, a) = q. In the
prefix tree each node has exactly one parent.

The probability P (σ) of a string σ = a1, . . . , an can be computed via P (σ) = λ(q0, a
1) ·

λ(q1, a
2) · . . . ·λ(qn−1, a

n) · η(qn). In this work we model sequential information via sampled
distributions over strings emanating from a state qi via Dqi(σ), σ = ai+1ai+2..., where
Dq(σ)→ [0, 1] models a sampled distribution. We call a (sub-)string σ2 an outgoing string
from state q if ∃σ′ = σ1σ2 : τ(σ1) = q. We further define the size sq of a given node q
by the number of input strings σ ∈ I from input I during the learning that traverse q, i.e.

119

Baumgartner Verwer

nq = |{σ ∈ I|σ = a1a2...a|σ| ∧ ∃i ∈ [1, |σ|] : τ(qi−1, a
i) = q}|. The size of the root node q0 is

nq0 = |{σ ∈ I}|.
PDFAs can be learned via state-merging. In a first step, a state-merging algorithm

constructs a prefix tree representing the input data completely, meaning that every state
in this tree has only one unique access sequence. Algorithms differ in how they minimize
this tree. Usually heuristics are employed to greedily merge equivalent state pairs (q, q′).
In each iteration the heuristic will assign a score ϕ to every mergeable state pair (candidate
pair), and the merge with the highest score will be performed. After merging two states
into one, a subroutine is started such that τ is deterministic, i.e. that there is only one
possible transition τ(q′, a′) for all q′ ∈ Q, a′ ∈ Σ. Multiple search strategies exist to limit
the search of state pairs. In this work we stick close to the red-blue-framework (Lang et al.,
1998). The first red state is the root node of the prefix tree, and blue states are all states
emanating from red states. Only pairs of one red and one blue state can be merged, and
the state resulting from a merge is always red. In case no merge can be performed, the blue
state q with the largest size sq will be turned red. Note that in this framework nodes that
are not red always have exactly one parent, and the parent of a blue node is always red.

4. Methodology

4.1. Merge heuristic

The core idea of our merge heuristic is to store the counts of outgoing strings of each state.
Because this quantity can become very large in data streams we use the Count-Min-Sketch
(CMS) (Cormode and Muthukrishnan, 2005) data structure, and we equip each state with
one such CMS. We store each state’s outgoing strings in its sketch. Inserting elements and
retrieving them can be done in time O(1), and only depend on the size of the sketches.
Two CMS can be considered as matrices, and states can easily be merged and unmerged
via matrix addition and subtraction. To compare two sketches we retrieve the counts of all
seen strings σ and model the distribution over those as frequencies. We can then compare
these two distributions via statistical tests. A problem that arises is that the number of
possible strings grows O(|Σ|Fs), where we denote as Fs the maximum length of the strings
that we consider (a hyperparameter). We propose two solutions to tackle this problem: The
first one by constructing multiple sketches per state, one for each possible size of string. In
this setting, the first sketch would only store strings of size 1, the second sketch strings of
size 2, and so on. The second solution is concerning the hash-function that is utilized in
the CMS. We describe the heuristic in more detail in the following subsection.

4.1.1. Count-Min-Sketches and the heuristic

We consider two states behaving similar if their multiset of outgoing strings is similar. We
consider the regular set of outgoing strings of a state q the set {σ ∈ Σ∗|∃x ∈ Σ∗ ∧ σ′ = σ :
τ(x) = q}. The multiset of outgoing strings of state q is simply the respective multiset, that
also stores the number of times each of the elements has been attempted to be inserted into
the set. We denote the count of an arbitrary element y via cy.

120

CSS Streaming

Given state q, we assume a sampled distribution Dq : σ → [0, 1], again with σ ∈ Σ∗1.
For us, Dq(σi) is simply the frequency of string σi, that is Dq(σi) =

cσi
nq

. Because the set

Σ∗ can be potentially very large, we approximate Dq for each state via a variant of the
Count-Min-Sketch (CMS) data structure (Cormode and Muthukrishnan, 2005), which is
why we call our heuristic CSS (CMS-based Space Saving).

Formally, a CMS is a probabilistic data structure to summarize data streams. In practice

a CMS is a matrix represented by d =
⌈
ln 1

γ

⌉
rows and w =

⌈
e
β

⌉
columns, where e is the

basis to the natural logarithm ln. Given counts cyi of elements yi of a given set of possible

events Y, the CMS is able to store the counts and retrieve them using O
(

1
β

)
space and

O
(

1
γ

)
time. To do so each row of the CMS is associated with a hash-function h mapping

elements y of set Y, y ∈ Y, to h : y → N∩ [0, w− 1]. That means in total there exist d hash
functions, and we want them to be i.i.d. chosen from a pairwise-independent hash-family
H (Cormode and Muthukrishnan, 2005). We denote hj the hash function associated with
row j, and for convenience we define an inverse mapping h−1

j (y). At initialization, each
entry of the CMS is set to zero. To store an incoming element y the CMS hashes y for
each row j and increments the row at hj(y) by 1. Retrieving an approximated count of a
given element y works via again hashing the y once per row. The approximated count is
the minimum minj∈[1,d] h

−1
j (y). The CMS is then able to retrieve an approximated count

ĉyi of yi via the retrieve(yi) operation. The error bound is ĉyi ≤ cyi +β
∑

i cyi , which holds
with probability at least 1− γ.

As already mentioned we count strings σ ∈ Σ∗, and we denote the count of string σi by
cσi and its approximated count by ĉσi . In addition to conventional CMS our data structure
one extra attribute and two extra operations. The extra attribute is a counter for the final
counts ξ, indicating that a sequence did end in the previous state. Our sketches further
support a + and a − operation, which we define as the sum and subtraction of two matrices
of equal size, and the same for the final counts. These two operations will be used to
perform and undo merges. In order test whether two states behave similar we perform the
statistical test from the works of Carrasco and Oncina (1994), which they use in their own
Alergia-algorithm. This statistical test, herein after referred to as Alergia-test, is used to
check whether two sampled distributions are similar. State-pairs that pass this test get
assigned a score ϕ. To this end we use the Cosine-similarity. Given two vectors v1 and v2
the Cosine-similarity measures the angle in between the two vectors via

cosine similarity(v1, v2) =
v1 · v2

||v1||2||v2||2
, (1)

where v1 · v2 is the dot-product of the two vectors, and ||vi||2 denotes the L2-norm of
vector vi. We show the entire subroutine including the Alergia-test in Algorithm 1. In this
subroutine α is a hyperparameter to be set before the start of the learning algorithm. It
represents a bound on the probability of a wrong rejection, which is upper bounded with
2α (a wrong rejection means that the two distributions are similar, but the test deems them
dissimilar).

1. Recount that the Kleene-star operation applied to Σ, i.e. Σ∗, denotes the set of finite strings. Hence
the set of all {σ ∈ Σ∗} is a finite set and we can obtain discrete probabilities for the occurrence of each
string.

121

Baumgartner Verwer

Algorithm 1: Consistency − routine

Input:
CMSq1 , CMSq2 : Count-Min-Sketches of state q1 and q2 respectively
nq1 , nq2 : Size of state q1 and q2 respectively
S: The set of all strings x observed so far. α: Hyperparameter to be set.
Output: Boolean value indicating consistency, score ϕ if applicable
v1, v2 ← empty lists
foreach σ ∈ S do

ĉσq1
← CMSq1 .retrieve(σ)

ĉσq2
← CMSq2 .retrieve(σ)

if
∣∣∣ ĉσq1nq1

− ĉσq2
nq2

∣∣∣ > √
1
2 log

(
2
α

) (
1√
nq1

+ 1√
nq2

)
then

return false
v1.append(ĉσq1

/nq1), v2.append(ĉσq2
/nq2)

end
return true, cosine similarity(v1, v2)

4.1.2. The runtime problem

In practice we have to bound the size of outgoing strings of states, because they can be
arbitrarily long. We denote the maximum length of an outgoing (sub-)string for any state
q ∈ Q by Fs. The run-time problem then is that the size of set S from Algorithm 1 does
grow with O(|Σ|Fs). We propose two solutions to overcome this problem. The first one is a
simple decoupling. Instead of storing all strings in one sketch, we construct Fs sketches per
state, namely C1, C2, . . . CFs , and each of them stores one size of string in ascending order:
(sub-)strings of length 1 → C1, (sub-)strings of length 2 → C2, ..., (sub-)strings of length
Fs → CFs . Consistency checks are then performed in ascending order on those CMS, and
higher order CMS are only checked if all lower order CMS passed the test already. The
score ϕ is simply the average of all scores ϕ1 . . . ϕFs returned by those checks. Figure 1(a)
illustrates an example, where state S13 stores sketches with Fs = 3.

While this helps us reduce runtime in practice at the cost of some memory, the worst
case run-time remains at O(|Σ|Fs). This can practically be a problem on data where a large
Fs is required to distinguish states properly. In this case we propose a second solution. We
adopt the ideas introduced by Locality Sensitive Hashing (LSH) (Gionis et al., 1999; Datar
et al., 2004). Intuitively, LSH hashes elements of some domain W of dimensionality r1 into
another domain U of dimensionality r2 < r1 while preserving a distance measure of choice.
The hashing-algorithm is based on the chosen distance measure. Because we are dealing
with set of discrete symbols a ∈ Σ we choose to preserve the Jaccard similarity of two strings
σ1 and σ2, denoted by Jaccard(σ1, σ2), and hash the strings using the MinHash-algorithm
(Broder, 1997; Carl Kingsford, 2016). Taking a hash-function hi from hash-family H =
{h : W → U} we obtain P (hi(σ1) = hi(σ2)) = Jaccard(σ1, σ2), where Jaccard(σ1, σ2) =
|{σ1}∩{σ2}|

|Σ| . In this notation we use the shorthand-notation {σi} to denote the set {a′ ∈
Σ|σi = a1a2 . . . an, ∃j ∈ [1, n] : aj = a′}. In other words, the more similar two strings, the
more likely they are being hashed into the same bin. We introduce a new hyperparameter

122

CSS Streaming

lm, and define lm mutually-independent hash-functions hi, i ∈ [1, lm]. Because our goal is to
reduce run-time we only need to hash strings with length larger than lm, hence the run-time
is then O(|Σ|+ |Σ|lm), where the |Σ| term stems from the maximum number of attempts it
takes to hash a string of length FS . Figure 1(b) shows the approach with a hashing down
to size 2. We herein after call this approach CSS-MinHash.

(a) An example of how the futures are
stored within the sketches. The num-
bers are purely fictional.

(b) Illustration of CSS-MinHash. Here we
hash down to a size of 2.

Figure 1: The two solutions to the problem of uniform distributions in the sketches.

4.2. Streaming

Our streaming algorithm consists of two main ideas. The first one is that we discard infor-
mation that does not occur often enough. This is common practice in streaming algorithms.
To do so we use the red-blue framework and include a threshold tS , where states can only be
created with red or blue states as parent nodes, and a state’s size nq has to exceed tS to be
able to become a blue node. The second idea is to undo and redo merges. In our approach
we divide the incoming data stream into batches of size B. After reading B sequences from
the stream, we first perform a greedy minimization step. We keep track of all the operations
(herein after called refinements) we performed on the prefix tree. A refinement is either
the identification of a new red state or the merge of a state-pair. Once we cannot perform
refinements anymore, we save the resulting automaton and reverse all the refinements we
did, starting anew. In the next iteration we will first try to perform all the refinements
from the previous iteration again, and then perform greedy minimization.

Because we can logically separate the two main steps we perform, namely the batch-wise
streaming of the prefix tree and the subsequent minimization routine, we have split those
up into two algorithms. We describe the two steps individually in the next two subsections.

4.2.1. Streaming the prefix tree

Streaming the prefix tree starts with the root node marked as a red state. We read in B
elements of the data stream, and create states emanating from the root node. Those states
are neither red nor blue, unless they have been accessed by an incoming sequence at least
tS times, in which case we mark them blue. States can only be created emanating from red
or blue states, thus in each iteration the fringe of the prefix tree can grow at a maximum of

123

Baumgartner Verwer

Algorithm 2: Streaming the tree

Input: Stream of sequences I, batch-size B, threshold tS , upper bound on states n
Output: Hypothesis automaton H
H ← root node
c← 0
Rold ← empty queue
foreach σi ∈ X do

σi ← σiξ
q ← root node
nq ← nq + 1
update q with relevant data
foreach j ∈ len(σi) do

aj ← σi[j]
if transition from q with aj exists then

q ← τ(q, aj)
else if q is red or q is blue then

create new node q′

set τ(q, aj) = q′

q ← q′

else if q.parent is red and nq ≥ tS then
mark q blue

else
break inner loop

nq ← nq + 1
update q with relevant data

end
c← c+ 1
if c == B then

Rold ← perform minimization routine(H,Rold)
c← 0

if size of last H = n or I empty then
perform minimization routine(H,Rold)
return H

end

two more states from each existing state. We do this to only save relevant information of
the common behavior of the system. Every time a node q gets traversed by a string σ ∈ I
we update it with data. This operation depends on the merge heuristic that we chose at
the start of the program. In case of our CSS-heuristic we update the node with its outgoing
strings.

Once a batch is completed a minimization routine, described in section 4.2.2, will start.
The minimization routine returns a hypothesis automaton and marks all the states that
have been red or blue as a result of the minimization routine. We then start reading in
another batch as described before, and the minimization routine starts again. The algorithm
is depicted in Algorithm 2.

124

CSS Streaming

4.2.2. Minimization routine

The core idea of our minimization routine is that, depending on the implementation, undoing
and performing refinements again can be done cheaply. Performing merges and undoing
them can be done cheaply in constant run-time in Flexfringe (Verwer and Hammerschmidt,
2017). The advantage of undoing and redoing refinements is that the learner gets the chance
to correct mistakes earlier. This way we can return a model earlier without compromising
its future correctness. The first time we start the minimization routine it performs the
normal minimization routine described in section 3. What is new is that we store all the
refinements that are performed in this step in a queue Rnew. We save the found automaton
as hypothesis H and undo all refinements that we did. At the end of the subroutine we we
save Rnew as another queue Rold and return to the prefix-tree streaming subroutine.

From the second time onward, when we enter the minimization subroutine we will start
with Rold and retry every refinement we performed in the previous run. Assuming that
the underlying distribution of strings from the data stream did not change most of these
refinements will still hold, hence this approach saves us run-time. The way we deal with
the case that a refinement is not possible anymore is based on the following observation.
We identified two main causes why a refinement cannot take place anymore:

1. Consistency-failure: The underlying structure of the node has changed according to
the merge heuristic. It could be for instance that the distribution of strings that
passed it changed significantly.

2. Structural-failure: The underlying structure of the tree has changed. This can be
caused by previous consistency failures, in which case the sub-tree might change.

While consistency-failures cannot be fixed in this batch, we follow the intuition that
refinements with structural failures can often still hold after obtaining an appropriate tree
structure. As an example, say that an earlier performed merge refinement of two states
q1 and q2 cannot be performed, because state q2 is neither red nor blue anymore. We
then continue the minimization procedure and later reconsider what to do with q2. If at
that time q2 is blue, we perform the merge if it is valid. The advantage of this strategy is
that it avoids having to recompute consistency checks where unnecessary. Compared with
structural checks, which can be done in a simple flag check, consistency check are much
more expensive. Our strategy works then as follows.

We first test on structural failures on each refinement r ∈ Rold. In case a structural
failure did not happen, we test on a consistency failure. We perform the refinement if none
of those two failures did occur. If a consistency failure occurred we discard r and test for
the next refinement from Rold. If however only a structural failure occurred, we push r onto
another queue Rfailed. Once we’ve exhausted Rold we perform the greedy minimization
again. This time however, each time a new refinement is identified we iterate once over
Rfailed and test again for both failure modes. If no failure can be detected we perform the
refinement. Just as in the first iteration we store all the refinements performed in Rnew

and save it as Rold at the end of the subroutine. The whole procedure is described in
Algorithm 3.

125

Baumgartner Verwer

Algorithm 3: Minimization routine

Input: Current hypothesis H, queue Rold

Output: queue Rnew

R← empty stack
Rfailed, Rnew ← empty queue
while Rold not empty do

r ← Rold.pop()
if r possible via structure and via consistency then

perform r on H
R.push(r)
Rnew.push(r)

else if r possible via structure then
Rfailed.push(r)

end
while H contains at least one blue or white state do

Select best possible refinement r
perform r on H
R.push(r)
Rnew.push(r)
foreach r ∈ Rfailed do

if r possible via structure and possible via consistency then
Rfailed.delete(r)
perform r on H
R.push(r)
Rnew.push(r)

end

end
output H
while R not empty do

r ← R.pop()
undo r on H

end
return Rnew

5. Experiments and results

We implemented our heuristic and our streaming approach in Flexfringe (Verwer and Ham-
merschmidt, 2017; Verwer and Hammerschmidt). We compared with the Alergia-algorithm
(Carrasco and Oncina, 1994) as implemented in the framework, and with the heuristic
of Balle et al. (2012), herein after called SpaceSave. In order to compare the results we
used the PAutomaC-dataset (Verwer et al., 2014), consisting of 48 scenarios. Each sce-
nario comes with a set of example traces extracted from existing automata, and the task
is to infer the original automaton. Each scenario also comes with a test set, consisting of
string-probability pairs, assigning a probability of each string to the real automaton. In the
subsequent experiments we first learn a state machine for each scenario from the dataset.

126

CSS Streaming

We can test the quality of our learned state machines via comparison of the divergences
in between the assigned probability-distributions by the learned machine and the provided
true probability of the strings to occur. Similar to the PAutomaC-competition (Verwer
et al., 2014), we use the perplexity score to compare the two distributions. The smaller the
perplexity, the closer the two distributions are. All results that we report are produced by
a notebook with the following relevant specifications:

1. Operating system: Ubuntu 20.4

2. CPU: Intel i7@2.60Ghz

3. RAM: 16GB

5.1. The heuristic

To compare the heuristics we first run them all in normal batch mode. In order to better
compare Alergia with the other two heuristics we augment Alergia with the well-known
k-tails-algorithm (Biermann and Feldman, 1972). In this case the merge procedure remains
the same as in the Alergia algorithm, but the consistency-check includes checking the sub-
trees of each node pair up to a depth of k. The reason for this is that the Alergia heuristic
naturally does not have the lookahead-feature that CSS provides. In our experiments we
found that the results stop improving after k = 3, so we only report results up to k = 3.
We then run the same experiments with CSS, varying the FS parameter from a length of
1 up to a length of 4. Note that Alergia with k = 3 and CSS with FS = 4 both look 4
steps ahead of each state, hence the comparison is fair. We also test CSS-MinHash, where
we hash down the strings to a size of 2, while keeping FS at 3 and 4 respectively. Last
but not least we did the same experiments with the SpaceSave heuristic. We report the
perplexities of all heuristics but the SpaceSave heuristic in Fig. 3(a), and we report the
results of the SpaceSave heuristic in Fig. 2(b). We chose two plots because the perplexities
for the SpaceSave are much higher, hence putting them into the same plot as the other
heuristics would make the results of the other heuristics illegible.

Additionally, for all the steps we measured the times it took to run through. The times
are in Table 1.

Heuristic F == 0 F == 1 F == 2 F == 3 F == 4

Alergia 1m45s 1m55s 2m8s 2m24s -
CSS - 2m1s 2m15s 2m14s 2m50s

CSS-MinHash - - - 3m14s 3m40s
SpaceSave - 4m37s 6m51s - -

Table 1: Runtime comparisons of the heuristics and different future length parameters F ,
F being a placeholder for either k, Fs, or L. Empty fields do not exist or are not
interesting to us.

We can see that the runtimes of CSS are small, and that CSS-MinHash took longer. The
reason here is that for the dataset even small steps ahead are enough to distinguish them

127

Baumgartner Verwer

(a) Comparison of all heuristics tested but the SpaceSave heuristic. All
tested heuristics come with varying lookahead parameters (k for Aler-
gia, FS for CSS).

(b) Errors on SpaceSave heuristic. Pay attention to the difference
in magnitude.

Figure 2: Boxplots of all heuristics. Due to the difference in magitude in between the
SpaceSave heuristic and the other heuristics we separated them into two sub-
plots.

correctly, whereas the strength of CSS-MinHash comes out when dealing with larger strings.
We also have to point out that the times for the SpaceSave heuristic are not optimal, since
we do not use the proposed data structure for the sketches (Metwally et al., 2005). This
does however not influence the errors presented. We found that its performance is due to
the employed consistency check. We discuss this in detail in Appendix A and do not test it
further, since the nature of their sketches does not enable undoing.

128

CSS Streaming

(a) Comparison of the stream settings and the new stream setting.

(b) CSS-MinHash in batch-mode vs. the new stream-mode. Note
that on problem 20 the stream mode had a perplexity score
of around 40, but we trimmed the y-axis at a length of 10 for
better comparisons.

Figure 3: Perplexity score results of the streaming experiments.

5.2. Streaming

After measuring the base-performance of our Count-Min-Sketch heuristic, we are also in-
terested in the effect of our new streaming method. Having already experimented with
different parameters, we decided to move on with Alergia k = 3 and CSS-MinHash Fs = 4,
because these delivered the best results respectively. Note again that both look four steps
into the future per state. To compare our streaming approach we compare it with the tradi-
tional streaming approach that does not undo and redo refinements, which we call streaming
old. We depict the perplexities of the streaming approaches in Fig. 3(a). Because we also
want to see how the streaming compares with the batch-mode version, we picked the best
streaming version, i.e. the CSS-MinHash with FS = 4, and compared it with its respective
batch-mode version in Fig. 3(b).

129

Baumgartner Verwer

Strategy Prob. 1 Prob. 5 Prob. 11 Prob. 18 Prob. 23 Prob. 34 Prob. 45

Batch 250MB 56MB 1.1GB 3.1GB 1.0GB 2.4GB 257MB
Stream old 15MB 13MB 34MB 123MB 63MB 53MB 13MB
Stream new 14MB 13MB 29MB 123MB 63MB 44MB 13MB

Table 2: Memory-footprints compared on a few selected problems. Heuristic employed:
CSS-MinHash Fs == 4 .

The run-times are as follows: Alergia in the old stream setting took 37s, while CSS took
67s, and on the new stream setting they took 51s (Alergia) and 78s (CSS). We report the
maximum achieved heap size as measured using the Valgrind tool (Nethercote and Seward,
2007) in Table 2. As we can see the streaming did drastically reduce the memory footprint
and run-time compared with the batch version. We can also see that the old streaming
approach is faster but gives worse results, and that the errors for Alergia are much higher
on the old streaming approach, since on the new streaming approach it gets the chance to
correct its mistakes. The main advantage of CSS over the k-tails augmented Alergia is then
that CSS has more information on the fringes of the prefix tree. We see that in the new
streaming CSS still performs better than Alergia on most problems, although the difference
has become much smaller than on the old streaming setting.

6. Discussion and conclusion

We propose a new strategy for streaming state machine learning using Count-Min-Sketches
and the ability to undo previous mistakes. We demonstrate the efficacy of our approach
on the PAutomaC dataset. We found that on this dataset the lookahead improvements
start saturating at about 2 to 3 steps ahead into the future of each state respectively. We
then showed that CSS and the variant CSS-MinHash perform well. We compared with
the SpaceSave heuristic and point its subpar performance to the consistency heuristic, as
discussed in Appendix A, and we point out the limitation that it does not support the
undo-operation. Lastly we compared CSS with Alergia and showed similar performance
when we enhance Alergia with the k-tails algorithm. An advantage of CSS here is that
Alergia does require the prefix tree to be complete. After that we showed the effectiveness
of our new streaming strategy in comparison with the traditional approach. It is clear
that the new streaming strategy greatly improved results. It also showed the effectiveness
of our CSS heuristic, as can especially be seen in the comparison of Alergia and CSS in
the old streaming scenario. This discrepancy does however become smaller in the new
streaming strategy. We expect our heuristic to make better choices mainly on the fringes of
an incomplete prefix tree. Both streaming strategies greatly improved run-time and memory
footprint compared with the batched version. Limitations of our work are the limited size
of the dataset, and limitations to our hashing using MinHash, which mitigates but does not
yet solve the potential run-time bottleneck completely.

130

CSS Streaming

Acknowledgments

This work is supported by NWO TTW VIDI project 17541 - Learning state machines from
infrequent software traces (LIMIT).

References

John Abela, François Coste, and Sandro Spina. Mutually compatible and incompatible
merges for the search of the smallest consistent dfa. volume 3264, pages 28–39, 10 2004.
ISBN 978-3-540-23410-4. doi: 10.1007/978-3-540-30195-0 4.

Hasan Ibne Akram, Alban Batard, Colin De La Higuera, and Claudia Eckert. Psma: A
parallel algorithm for learning regular languages. In NIPS workshop on learning on cores,
clusters and clouds. Citeseer, 2010.

Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,
75(2):87–106, nov 1987. ISSN 0890-5401. doi: 10.1016/0890-5401(87)90052-6. URL
https://doi.org/10.1016/0890-5401(87)90052-6.

Dana Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The
MIT Press, 2008. ISBN 026202649X. URL http://www.amazon.com/

Principles-Model-Checking-Christel-Baier/dp/026202649X%3FSubscriptionId%

3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%

26creative%3D165953%26creativeASIN%3D026202649X.

Borja Balle, Jorge Castro, and Ricard Gavaldà. Bootstrapping and learning pdfa in data
streams. In Jeffrey Heinz, Colin Higuera, and Tim Oates, editors, Proceedings of the
Eleventh International Conference on Grammatical Inference, volume 21 of Proceedings
of Machine Learning Research, pages 34–48, University of Maryland, College Park, MD,
USA, 05–08 Sep 2012. PMLR. URL http://proceedings.mlr.press/v21/balle12a.

html.

Borja Balle, Jorge Castro, and Ricard Gavaldà. Adaptively learning probabilistic deter-
ministic automata from data streams. Mach Learn, 96:99–127, 2014. doi: 10.1007/
s10994-013-5408-x.

A. W. Biermann and J. A. Feldman. On the synthesis of finite-state machines from samples
of their behavior. IEEE Transactions on Computers, C-21(6):592–597, 1972. doi: 10.
1109/TC.1972.5009015.

A.Z. Broder. On the resemblance and containment of documents. In Proceedings. Compres-
sion and Complexity of SEQUENCES 1997 (Cat. No.97TB100171), pages 21–29, 1997.
doi: 10.1109/SEQUEN.1997.666900.

Danny Sleator Carl Kingsford. 15-451/651: Algorithms, lecture #8: Streaming algorithms,
September 2016.

131

https://doi.org/10.1016/0890-5401(87)90052-6
http://www.amazon.com/Principles-Model-Checking-Christel-Baier/dp/026202649X%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D026202649X
http://www.amazon.com/Principles-Model-Checking-Christel-Baier/dp/026202649X%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D026202649X
http://www.amazon.com/Principles-Model-Checking-Christel-Baier/dp/026202649X%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D026202649X
http://www.amazon.com/Principles-Model-Checking-Christel-Baier/dp/026202649X%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D026202649X
http://proceedings.mlr.press/v21/balle12a.html
http://proceedings.mlr.press/v21/balle12a.html

Baumgartner Verwer

Rafael C. Carrasco and Jose Oncina. Learning stochastic regular grammars by means of
a state merging method. In Rafael C. Carrasco and Jose Oncina, editors, Grammati-
cal Inference and Applications, pages 139–152, Berlin, Heidelberg, 1994. Springer Berlin
Heidelberg. ISBN 978-3-540-48985-6.

Graham Cormode and S. Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.
ISSN 0196-6774. doi: https://doi.org/10.1016/j.jalgor.2003.12.001. URL https://www.

sciencedirect.com/science/article/pii/S0196677403001913.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the Twentieth Annual
Symposium on Computational Geometry, SCG ’04, page 253–262, New York, NY, USA,
2004. Association for Computing Machinery. ISBN 1581138857. doi: 10.1145/997817.
997857. URL https://doi-org.tudelft.idm.oclc.org/10.1145/997817.997857.

Colin de la Higuera. A bibliographical study of grammatical inference. Pattern Recog-
nition, 38(9):1332–1348, 2005. ISSN 0031-3203. doi: https://doi.org/10.1016/j.
patcog.2005.01.003. URL https://www.sciencedirect.com/science/article/pii/

S0031320305000221. Grammatical Inference.

Pierre Dupont. Incremental regular inference. In Laurent Miclet and Colin de la Higuera, ed-
itors, Grammatical Interference: Learning Syntax from Sentences, pages 222–237, Berlin,
Heidelberg, 1996. Springer Berlin Heidelberg. ISBN 978-3-540-70678-6.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via
hashing. In Proceedings of the 25th International Conference on Very Large Data Bases,
VLDB ’99, page 518–529, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers
Inc. ISBN 1558606157.

E Mark Gold. Complexity of automaton identification from given data. Information
and Control, 37(3):302–320, 1978. ISSN 0019-9958. doi: https://doi.org/10.1016/
S0019-9958(78)90562-4. URL https://www.sciencedirect.com/science/article/

pii/S0019995878905624.

Christian Hammerschmidt, Sicco Verwer, Qin Lin, and Radu State. Interpreting finite
automata for sequential data. 12 2016.

Kevin J Lang. Faster algorithms for finding minimal consistent dfas. NEC Research Insti-
tute, Tech. Rep, 1999.

Kevin J. Lang, Barak A. Pearlmutter, and Rodney A. Price. Results of the abbadingo one
DFA learning competition and a new evidence-driven state merging algorithm. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), volume 1433, pages 1–12. Springer Verlag, 1998.
ISBN 3540647767. doi: 10.1007/bfb0054059.

Qin Lin, Yihuan Zhang, Sicco Verwer, and Jun Wang. Moha: A multi-mode hybrid au-
tomaton model for learning car-following behaviors. IEEE Transactions on Intelligent
Transportation Systems, 20(2):790–796, 2018.

132

https://www.sciencedirect.com/science/article/pii/S0196677403001913
https://www.sciencedirect.com/science/article/pii/S0196677403001913
https://doi-org.tudelft.idm.oclc.org/10.1145/997817.997857
https://www.sciencedirect.com/science/article/pii/S0031320305000221
https://www.sciencedirect.com/science/article/pii/S0031320305000221
https://www.sciencedirect.com/science/article/pii/S0019995878905624
https://www.sciencedirect.com/science/article/pii/S0019995878905624

CSS Streaming

Chen Luo, Fei He, and Carlo Ghezzi. Inferring software behavioral models with mapreduce.
Science of Computer Programming, 145:13–36, 2017.

Leonardo Mariani, Mauro Pezzè, and Mauro Santoro. Gk-tail+ an efficient approach to learn
software models. IEEE Transactions on Software Engineering, 43(8):715–738, 2017. doi:
10.1109/TSE.2016.2623623.

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation of
frequent and top-k elements in data streams. In Proceedings of the 10th Interna-
tional Conference on Database Theory, ICDT’05, page 398–412, Berlin, Heidelberg,
2005. Springer-Verlag. ISBN 3540242880. doi: 10.1007/978-3-540-30570-5 27. URL
https://doi.org/10.1007/978-3-540-30570-5_27.

Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dynamic
binary instrumentation. SIGPLAN Not., 42(6):89–100, jun 2007. ISSN 0362-1340. doi:
10.1145/1273442.1250746. URL https://doi.org/10.1145/1273442.1250746.

A.L. Oliveira and J.P.M. Silva. Efficient search techniques for the inference of minimum size
finite automata. In Proceedings. String Processing and Information Retrieval: A South
American Symposium (Cat. No.98EX207), pages 81–89, 1998. doi: 10.1109/SPIRE.1998.
712986.

J. Oncina and P. Garćıa. Inferring regular languages in polynomial updated time, pages
49–61. 1992. doi: 10.1142/9789812797902 0004. URL https://www.worldscientific.

com/doi/abs/10.1142/9789812797902_0004.

Gaetano Pellegrino, Qin Lin, Christian Hammerschmidt, and Sicco Verwer. Learning be-
havioral fingerprints from Netflows using Timed Automata. In Proceedings of the IM 2017
- 2017 IFIP/IEEE International Symposium on Integrated Network and Service Manage-
ment, pages 308–316. Institute of Electrical and Electronics Engineers Inc., jul 2017. doi:
10.23919/INM.2017.7987293.

Jana Schmidt and Stefan Kramer. Online induction of probabilistic real-time automata.
Journal of Computer Science and Technology, 29(3):345–360, 2014.

Hans Schouten. Learning State Machines from data streams and an application in network-
based threat detection. Technical report, 2018. URL http://repository.tudelft.nl/.

Donghwan Shin, Domenico Bianculli, and Lionel Briand. Prins: Scalable model inference
for component-based system logs. arXiv preprint arXiv:2106.01987, 2021.

Frits Vaandrager. Model learning. Communications of the ACM, 60(2):86–95, 2017.

Sicco Verwer. Efficient Identification of Timed Automata: Theory and practice. PhD thesis,
2010.

Sicco Verwer and Christian A. Hammerschmidt. flexfringe: A passive automaton learning
package. In 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 638–642, 2017. doi: 10.1109/ICSME.2017.58.

133

https://doi.org/10.1007/978-3-540-30570-5_27
https://doi.org/10.1145/1273442.1250746
https://www.worldscientific.com/doi/abs/10.1142/9789812797902_0004
https://www.worldscientific.com/doi/abs/10.1142/9789812797902_0004
http://repository.tudelft.nl/

Baumgartner Verwer

Sicco Verwer and Christopher Hammerschmidt. Flexfringe. https://github.com/

tudelft-cda-lab/FlexFringe.

Sicco Verwer, Mathijs Weerdt, and Cees Witteveen. Efficiently identifying deterministic
real-time automata from labeled data. Machine Learning, 86:295–333, 03 2012. doi:
10.1007/s10994-011-5265-4.

Sicco Verwer, Rémi Eyraud, and Colin De La Higuera. PAutomaC: A probabilistic automata
and hidden Markov models learning competition. Machine Learning, 96(1-2):129–154, oct
2014. ISSN 15730565. doi: 10.1007/s10994-013-5409-9. URL http://ai.cs.umbc.edu/

icgi2012/challenge/Pautomac/committee.php.

Asmir Vodenčarević, Hans Kleine Bürring, Oliver Niggemann, and Alexander Maier. Iden-
tifying behavior models for process plants. In ETFA2011, pages 1–8, 2011. doi:
10.1109/ETFA.2011.6059080.

Neil Walkinshaw, Ramsay Taylor, and John Derrick. Inferring extended finite state machine
models from software executions. Empirical Software Engineering, 21(3):811–853, 2016.
ISSN 1573-7616. doi: 10.1007/s10664-015-9367-7. URL https://doi.org/10.1007/

s10664-015-9367-7.

Appendix A. Discussion of SpaceSave

As can be seen in Figure 2, the SpaceSave heuristic did not work all too well for us. The
hyperparameters we used can be taken from Table 3. While we might have been able to
improve via setting hyperparameters, we found it harder than the other two methods to find
appropriate hyperparameters. We point this to the similarity test developed by Balle et al.
and described in (Balle et al., 2012). In short, the similarity test assumes a distinguishability
parameter µ for a pair of two sketches that is being approximated by value and a confidence
interval estimated from sampled sketches. The term for the upper bound is determined by
Equation (2). It is clear the the term includes the estimate µ̂k plus a confidence interval.
The confidence interval itself is the sum of 8ν (in our implementation we decreased it to 2ν
because it is a large constant even with relatively small ϵ), with ν = 2ϵ, a hyperparameter,
and a max-term, where both terms within the max-term come in the form of an nth-square-
root of 1

M ln Kk
δ , with the pooled mass M = m1·m2

(
√
m1+

√
m2)

2 and Kk ∝ (m1 + m2)
2. m1 and

m2 are the sizes of the two respective sketches, i.e. the number of strings processed (Balle
et al., 2012). Comparing M and Kk in the limit leads to the following: limm1→∞Kk =∞,
but limm1→∞M = m2, and vice versa with m2 → ∞ due to the symmetry in m1 and m2.
This means that for imbalanced states, i.e. one that has processed many strings, while the
other has processed few of them in relative terms, the denominator becomes smaller and the
nominator becomes larger within the max-term, i.e. the confidence bound becomes larger,
even though both states might have gathered enough evidence to confidently conclude good
approximation of their sampled distributions.

We show this problem with two tests that actually occurred in problem 5 of PAutomaC,
an example where m1 and m2 are rather similar, the balanced example, and one imbalanced
example, where the sizes of the states were rather unequal. In the balanced example we

134

https://github.com/tudelft-cda-lab/FlexFringe
https://github.com/tudelft-cda-lab/FlexFringe
http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac/committee.php.
http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac/committee.php.
https://doi.org/10.1007/s10664-015-9367-7
https://doi.org/10.1007/s10664-015-9367-7

CSS Streaming

Parameter L == 1 L == 2

ϵ 0.005 0.005
δ 0.05 0.05
µ 0.6 0.4

K (number of prefixes to track) 20 20
r (number of bootstrapped sketches) 10 10

Table 3: Hyperparameters used for the SpaceSave heuristic. The parameter’s meaning can
be taken from (Balle et al., 2012).

had one state with a size of approximately m1 ≈ 8000, and m2 ≈ 11000. The pooled mass
became M = 4804. As for the imbalanced example, m1 ≈ 25000 and m2 ≈ 950, hence
M = 1016. Kk became very large in both cases, so the log term lnKk

δ became ≈ 42 in
both cases. In both cases, the max-term was determined by the left side of the max-term
in Eq. 2, and the term 1

1c1M
became ≈ 0.001 for the balanced state pair, and ≈ 0.005

for the imbalanced state pair, resulting in a max-term of 0.2 for the balanced states, and
0.45 for the imbalanced states. Given that the distinguishability of two states based on the
Lp
∞-distance as defined in (Balle et al., 2012) lies in the interval [0, 1], this a large change. It

should be noted that in both cases the approximated distinguishability µ̂k was very small,
and we considered 950 a good enough sample size.

We provided a quick fix for the problems via simply replacing the similarity check with
the Hoeffding-bound that is also used in Alergia and CSS, as we show in Figure 4, in which
we compare the heuristic vs Alergia with k == 2. A better performance might be achieved
with some tuning, which we did not do at this point. Because the nature of the sketches
does not permit the undo operation, which is required for our merging strategy, we did not
proceed with this heuristic from here on. It should be noted that the large runtimes are
partly attributable to the data structure we used to model the sketches described in the
original paper, since we do not use the data structure described by (Metwally et al., 2005).

µ∗ ≤ min
1≤k≤r2

µ̂k + 8ν +max


√

1

2c1M
ln

Kk

δ
, 4

√
(16ν)2

2c2M
ln

Kk

δ


 . (2)

A.1. Hyperparameters

In this chapter we give the hyperparameters. They are defined as in our tool Verwer and
Hammerschmidt, which is open source and can be downloaded and used. Hence in the
following we provide simple lists as can be used by .ini-files by the tool.

A.1.1. Alergia batch-mode

[default]
heuristic-name = alergia
data-name = alergia data
; for use with small datasets use low counts

135

Baumgartner Verwer

Figure 4: New results of the SpaceSave heuristic with the Hoeffding bound instead of the
old check.

state count = 10
symbol count = -1
satdfabound = 2000
sinkson = 1
blueblue = 0
sinkcount = 25
confidence bound = 0.5
largestblue = 1
finalred = 0
lowerbound = 0
finalprob = 1
mergelocal = -1
mcollector = 4
markovian = 0
printwhite = 0
printblue = 1
extend = 0

; ktail can be varied to reproduce the experiments
ktail = 2

A.1.2. Alergia stream-mode

[default]
heuristic-name = alergia
data-name = alergia data
; for use with small datasets use low counts
mode = stream

136

CSS Streaming

state count = 10
symbol count = -1
satdfabound = 2000
sinkson = 1
blueblue = 0

; sinkcount 100 for old streaming strategy, 5 for new streaming strategy sinkcount = 100
confidence bound = 0.1
largestblue = 1
finalred = 0
lowerbound = 0
finalprob = 1
mergelocal = -1
mcollector = 4
markovian = 0
printwhite = 1
printblue = 1
extend = 0

ktail = 2
mergesinks = 0
extendsinks = 0
; addtails = 0 saves memory
addtails = 0
parentsizethreshold = -1
; redbluethreshold does enable the streaming framework, i.e. appending only to red and
blue states
redbluethreshold = 1

A.1.3. CSS batch-mode

[default]
heuristic-name = css
data-name = css data
; for use with small datasets use low counts
mode = batch
state count = 10
satdfabound = 2000

blueblue = 0
finalred = 0
lowerbound = 0
finalprob = 1
mergelocal = -1
mcollector = 4

137

Baumgartner Verwer

markovian = 0
printwhite = 0
printblue = 1
extend = 0

; sinks
sinkson = 1
sinkcount = 25
mergesinks = 0
extendsinks = 0

; for streaming and LSH
testmerge = 1
largestblue = 1

; general LSH parameters
confidence bound = 0.5
; numoftables can be 1 when conditionalprobs is turned off. Too little collisions
numoftables = 3
; the width of the sketches
vectordimension = 20
; futuresteps == FS

futuresteps = 3
; conditionalprob = 0 model conditional probabilities, unreported experiments
conditionalprob = 1
; minhash does only work if conditionalprob is turned on
minhash = 1
minhashsize = 2

ktail = 0

; saving space for streaming
addtails = 0
parentsizethreshold = -1
redbluethreshold = 0

A.2. CSS stream-mode

[default]
heuristic-name = css
data-name = css data
; for use with small datasets use low counts
mode = stream
state count = 10

138

CSS Streaming

satdfabound = 2000

blueblue = 0
finalred = 0
lowerbound = 0
finalprob = 1
mergelocal = -1
mcollector = 4
markovian = 0
printwhite = 1
printblue = 1
extend = 0

;sinks
sinkson = 1
; sinkcount 5 for new stream strategy, 100 for old
sinkcount = 100
mergesinks = 0
extendsinks = 0

; for streaming and CSS
testmerge = 1
largestblue = 1

; general CSS parameters
; 0.05 for new streaming strategy, 0.5 for old
confidence bound = 0.5
; numoftables can be 1 when conditionalprobs is turned off. Too little collisions
numoftables = 3
vectordimension = 20
futuresteps = 4
conditionalprob = 1
; minhash does only work if conditionalprob is turned on
minhash = 1
minhashsize = 2

ktail = 0
addtails = 0
parentsizethreshold = -1
redbluethreshold = 1

139

Baumgartner Verwer

A.3. SpaceSave

[default]
heuristic-name = space saving
data-name = space saving data
mode = stream

state count = 10
symbol count = 0
satdfabound = 2000

sinkson = 1
sinkcount = 100
blueblue = 0
largestblue = 1
; finalprob
finalprob = 0
finalred = 0
lowerbound = 0
correction = 0
mergesinks = 0
extend = 0
printblue=1
printwhite=0

; keep. NOTE: testmerge must be 0 with this heuristic
testmerge = 0
ktail = 0
addtails = 0
parentsizethreshold = -1
redbluethreshold = 1

; space saving parameters for L=1, uncomment below
;epsilon= 0.005
;delta = 0.05
;mu = 0.6
;pref L = 1
;pref K = 20
;bootstrap R = 10

; space saving parameters for L=2, uncomment below
epsilon= 0.005
delta = 0.05
mu = 0.4
pref L = 2

140

CSS Streaming

pref K = 20
bootstrap R = 10

; only for hoeffding bound
confidence bound = 0.1

141

	Introduction
	Related Work
	Background
	Methodology
	Merge heuristic
	Count-Min-Sketches and the heuristic
	The runtime problem

	Streaming
	Streaming the prefix tree
	Minimization routine

	Experiments and results
	The heuristic
	Streaming

	Discussion and conclusion
	Discussion of SpaceSave
	Hyperparameters
	Alergia batch-mode
	Alergia stream-mode
	CSS batch-mode

	CSS stream-mode
	SpaceSave

