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Abstract
Offshore wind farm design increasingly faces the challenge of adapting layouts to larger tur-
bines as technology advances. A promising approach is down-selection, where layouts designed
for smaller turbines are adapted to higher-rated machines by selecting a subset of positions.
This thesis investigates two central questions: which optimisation strategies are suitable for
the down-selection problem, and what is the impact of down-selection on the final wind farm
layout. The first question was addressed through a structured evaluation of candidate algo-
rithms, including a literature-based ranking, parameter tuning, and comparative testing across
multiple cases. The analysis showed that Gradient-Based methods and Greedy Heuristics were
the most effective strategies, with complementary strengths: Gradient-Based approaches of-
fered scalability and computational efficiency, while Greedy Heuristics achieved higher energy
yields under different occupancy conditions. The second question was addressed by comparing
down-selected farms with layouts directly optimised for larger turbines. Across all test cases,
the down-selected layouts achieved annual energy productions within 0.15% of the optimised
layouts, showing that down-selection can closely replicate optimal performance. The small
residual differences were governed primarily by spacing constraints, with compatibility be-
tween initial and final requirements leading to near-lossless performance. Down-selection also
influenced turbine distribution, with more retained along site perimeters, which may affect sec-
ondary design drivers such as cabling or support structures. Overall, the results demonstrate
that down-selection is a viable and efficient design strategy, provided that algorithm selection
and parameter tuning are carefully matched to the problem context, and that future spacing
requirements are anticipated at the design stage. These insights underline the potential of
down-selection to reduce computational and economic costs in wind farm development while
maintaining energy yield, and point towards its integration within robust design frameworks
for future turbine upgrades.
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CHAPTER 1
Introduction

1.1 Motivation and Context
Over the past few decades, the effects of global warming have become increasingly evident
to all. To avoid reaching a point of no return and mitigate the risks and impacts of climate
change, the Paris Agreement [45] was signed by 196 Parties during the UN Climate Change
Conference (COP21). This landmark treaty aims to limit the global temperature increase to
1.5°C above pre-industrial levels. As highlighted by Gielen et al. [17], renewable energy and
energy efficiency measures could achieve 94% of the emission reductions needed to meet these
targets. Specifically, renewable energy is projected to supply 63% of the total primary energy
by 2050, a significant increase from 15% in 2015, with wind energy alone contributing 24% of
this share. In line with these ambitions, the Global Wind Energy Council (GWEC) [47] reports
that over 20 governments have committed to installing 380 GW of offshore wind capacity by
2030 and 2000 GW by 2050. Notably, 2023 emerged as the second-best year on record, with
the global offshore wind industry connecting 11 GW of power to the grid, representing a 24%
year-on-year increase.

With the increasing demand for offshore wind farms (OWFs), optimizing the development of
new wind farms has become more critical than ever. Designing efficient layouts for wind farms
is essential to maximize energy production while keeping costs low. A key challenge lies in
the high cost of conducting seabed surveys, which are crucial for assessing site conditions. For
instance, a seabed survey for a 1 GW wind farm in the UK can cost approximately £8 million,
according to BVG Associates [1]. To address this, companies often create optimized layouts
for potential wind farms before performing detailed surveys, reducing the scope of these costly
assessments to the proposed turbine positions. Furthermore, offshore wind projects require a
lengthy development period, typically spanning 6–8 years from initial planning to commercial
operation, according to GWEC [47]. Over this timeframe, advancements in turbine technology
can lead to the availability of higher-rated turbines. This could enable developers to achieve
the same wind farm capacity with fewer turbines, reducing costs and requiring only a subset
of the originally surveyed layout positions.

Because layout optimizations and site surveys are performed early in the development process,
the set of feasible turbine positions is fixed in advance. When higher-rated turbines become
available, developers must therefore choose a subset of these predefined positions to deploy
them. This process, referred to as down-selection, involves selecting the most suitable turbine
locations from an existing layout originally optimized for lower-rated turbines. The challenge
arises from the complex wake interactions between turbines, which strongly influence overall en-
ergy production. Since the candidate positions are restricted to a predefined set of coordinates,
the task naturally takes the form of a discrete optimization problem.



1.2 Literature Review of Optimization Approaches for Down-Selection 2

Initial Layout
(100 smaller turbines)

Down-Selection

Down-Selected Layout
(50 larger turbines)

Figure 1.1: Conceptual illustration of down-selection. An initial layout with many smaller
turbines is reduced to a subset of positions, resulting in fewer larger turbines on the same site.

The scale of this problem is enormous: even for 100 candidate positions with 50 turbines to
be placed, the number of possible layouts is so large that evaluating the performance of all
individually would take longer than the age of the universe (see Section 2.1 for derivation). As
a result, exhaustive search is infeasible, and smart optimization strategies are required instead.
This project therefore investigates optimization strategies for down-selection and evaluates how
this process affects the resulting wind farm layout.

1.2 Literature Review of Optimization Approaches for
Down-Selection

This section reviews existing approaches to wind farm layout optimization in order to identify
methods relevant to the down-selection problem. The aim is to establish what is known about
turbine placement strategies, what methods have proven effective, and where knowledge gaps
remain.

When a wind turbine converts the kinetic energy of the wind into electricity, it creates a wake
of slower-moving, more turbulent air behind it (Manwell et al. [23]). In OWFs, where turbines
are densely packed to optimize space and infrastructure costs, these wakes reduce the energy
available to downstream turbines, leading to efficiency losses. Wind farm layout optimization
therefore seeks to determine turbine placements that mitigate wake effects and improve overall
farm performance. The optimization process can be driven by various objectives, such as maxi-
mizing annual energy production (AEP), minimizing the cost of energy (COE), or maximizing
profitability (Herbert-Acero et al. [18]).

Since wind farm layout optimization involves complex, nonlinear wake interactions (e.g. su-
perimposing wake deficits generated using the Jensen [20] wake model), gradient-free (GF)
optimization methods are widely used (Azlan et al. [3]). A common approach is to discretize
the available area into a grid of potential turbine locations and use optimization techniques to
determine the optimal subset. Studies have shown success with genetic algorithms (Mosetti
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et al. [28]), particle swarm optimization (Hou et al. [19]), greedy algorithms (Chen et al.
[11]), extended pattern search (Pont and Cagan [33]), and random search (Feng and Shen [14]).
While GF algorithms are easy to implement, they become computationally expensive as the
number of design variables increases (Martins and Ning [24]).

An alternative to heuristic GF methods is is to use exact optimization formulations. Turner
et al. [44] formulated the problem as a mixed-integer linear (MILP) and quadratic integer
(QIP) optimization model to bypass the complexities of nonlinear wake interactions. Similarly,
MirHassani and Yarahmadi [25] explored the impact of turbine hub height variation on layout
optimization using a similar approach, supplemented by a heuristic iterative method to improve
computational efficiency. However, as the problem size grows, exact approaches can become
increasingly time-consuming, making them less practical for large-scale wind farms.

Recently, gradient-based (GB) methods have gained interest due to their lower computational
cost and ability to handle large-scale optimization with many constraints, despite being prone
to local optima (Herbert-Acero et al. [18]). Thomas and Ning [42] demonstrated that their GB
approach achieved a 10% higher mean AEP than a genetic algorithm while requiring nearly
three orders of magnitude fewer function evaluations for a 38-turbine case. Quick et al. [37]
explored stochastic gradient descent (SGD), a machine learning technique, and found that it
achieved larger AEP in substantially less time compared to its deterministic counterpart as
the number of turbines increased. To address local minima issues, multiple optimizations from
different initial conditions can be used, a strategy known as multi-start. Valotta et al. [46]
demonstrated that the Smart-Start heuristic significantly reduces the number of multi-starts
required for GB methods. However, deriving analytical gradients can be time-consuming,
which is why Quaeghebeur et al. [36] proposed a heuristic pseudo-gradient approach, noting
that their pseudo-gradient approach has also been applied in industry for large-scale offshore
wind farm design.

Most studies, including many mentioned above, focus on optimizing a fixed number of wind
turbines. However, when the number of turbines is also a variable, the problem becomes more
complex due to the inclusion of discrete decision variables. Mosetti et al. [28] were the first
to address wind farm layout optimization with a variable number of turbines, using a genetic
algorithm to determine the optimal placement and number of turbines on a 100×100 grid.
More recently, Stanley et al. [41] explored this problem using a greedy algorithm, a genetic
algorithm, and a repeated sweep algorithm, finding that both the layout and the optimal
number of turbines vary significantly depending on the chosen objective function (AEP, COE,
or profit). Pollini [32] observed that variable turbine numbers have mostly been handled
with gradient-free methods, and showed that a gradient-based approach can achieve optimal
layouts much faster than a genetic algorithm. Although these studies treat the turbine count
as a decision variable, the strategies they employ could also be adapted to cases where the
number of turbines is predetermined but layout optimization remains challenging.

Comparing different optimization methods in complex and realistic wind farm scenarios is chal-
lenging due to variations in implementation, modeling assumptions, and problem formulations.
To address this, Baker et al. [4] conducted a blind study within Task 37 of the International
Energy Agency Wind Technology Collaboration Programme (hereafter referred to as IEA-37),
evaluating various optimization methods and wake models for circular wind farms of 16, 36,
and 64 turbines. More recently, Thomas et al. [43] compared eight optimization methods using



1.2 Literature Review of Optimization Approaches for Down-Selection 4

a standardized approach, ensuring that each method was applied by experts in that specific
technique. Their study, based on the IEA-37 case study 4, modeled after the Borssele III
and IV wind farms with 81 turbines, demonstrated that all methods improved AEP by clus-
tering turbines along the outer boundaries while maintaining a more dispersed arrangement
within the inner regions of the farm. However, their findings reinforce a common conclusion
in optimization research: there is no single best algorithm. The effectiveness of an optimiza-
tion method depends on the specific problem, its constraints, and the available computational
resources. This observation is not unique to wind farm layout optimization, as similar conclu-
sions have been drawn in other fields (Reddy and Kumar [38]). Nevertheless, incorporating
problem-specific knowledge and heuristics can significantly enhance solution efficiency.

Offshore wind farm design extends beyond turbine layout, as multiple components, such as sup-
port structures and electrical systems, influence overall performance and cost. Perez-Moreno
et al. [30] compared two approaches for preliminary offshore wind farm design: a traditional
sequential method, where each component is optimized independently, and a multidisciplinary
design analysis and optimization (MDAO) approach, which simultaneously optimizes all com-
ponents with the levelized cost of energy (LCOE) as the global objective. Their study demon-
strated that the integrated MDAO approach consistently leads to lower LCOE compared to the
sequential method, highlighting the importance of considering interactions between different
wind farm subsystems.

In summary, researchers have explored a wide range of wind-farm layout strategies, from GF
heuristics (genetic algorithms, particle swarm, greedy, pattern and random searches), through
exact optimization formulations (e.g., MILP, QIP), and more recently GB and SGD meth-
ods with multi-start and pseudo-gradient enhancements. Some of these methods have been
extended to cases with variable turbine counts, and large comparison studies have confirmed
that no single algorithm consistently outperforms across all farm sizes and objectives. Multi-
disciplinary frameworks further demonstrate the benefits of co-optimizing support structures,
electrical systems, and turbine placement to minimize LCOE.

Taken together, the literature shows that many different approaches have been developed to
handle the challenges of wind farm layout optimization, and that they can be applied under
a variety of objectives and problem formulations. Strategies for selecting a subset of turbine
positions have also been studied, including cases where the number of turbines is treated as a
variable. What has not been explored is the case where an initial layout, already optimized for
lower-rated turbines, exists in advance, and a subset of those positions must later be chosen
when upgrading to higher-rated turbines in order to maintain the same farm capacity. This
sequential, two-stage perspective distinguishes the down-selection problem considered here
from the broader literature. Developing systematic approaches for this setting is therefore
necessary to strengthen the business case for OWF upgrades. Looking ahead, such methods
could also be integrated into robust optimization frameworks that account for turbine-rating
uncertainty from the outset, but this lies beyond the scope of the present study and may be a
valuable direction for future research.
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1.3 Research Questions
The literature review revealed that while many optimization strategies for wind farm layouts
exist, none directly address the down-selection problem. To investigate this gap, the following
research questions are formulated, each supported by sub-questions that break the problem
into more specific components.

RQ1. Which optimization strategies are suitable for down‑selection?

1. Which strategies are most suitable for down-selection, based on defined requirements?

2. How do the top‑ranked strategies compare across cases of increasing complexity?

RQ2. What is the impact of down-selection on the final wind farm layout?

1. How does the performance of the down-selected farm compare to an optimal layout
designed directly for higher-rated turbines?

2. How does the performance of the down-selected farm change when the initial layout
already satisfies the minimum spacing for higher-rated turbines?

3. How does the comparison between down-selected and directly optimized farms change
when all layouts are generated using a larger minimum spacing constraint?

4. How does down-selection influence the spatial distribution of turbines within the layout?

1.4 Scope
The scope of this thesis is restricted to the technical aspects of down-selection in offshore
wind farms. The analysis focuses on wake interactions and their effect on energy production
when higher-rated turbines replace lower-rated ones in pre-optimized layouts. AEP is the sole
performance metric considered, providing a first step that isolates the aerodynamic effects of
down-selection before such work can be extended to more complex cost-driven analyses.

Several aspects of offshore wind farm design are not considered in this work, including:

• Economic modelling (turbine, installation, and operational costs)

• Site-specific constraints such as bathymetry and seabed conditions

• Foundation and structural design

• Electrical infrastructure and grid connection

1.5 Report Outline
The remainder of this thesis is structured as follows. Chapter 2 provides the necessary back-
ground on down-selection in offshore wind farm layout optimization, optimization strategies,
and wake modeling. Chapter 3 introduces the general methodology, presenting the mathemati-
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cal definition of the down-selection problem, the objective function, and constraints. Chapter 4
addresses RQ1 by evaluating and comparing different optimization strategies for down-selection.
Chapter 5 investigates RQ2 by analyzing the impact of down-selection on the resulting layouts
when higher-rated turbines are introduced. Chapter 6 summarizes the main findings and dis-
cusses directions for future work. Finally, supporting material is provided in the Appendices
(Appendices A to C).



CHAPTER 2
Background

This chapter introduces the essential concepts required to understand the methodology and re-
sults of this thesis. Basic knowledge of wind turbines, aerodynamics, and general optimization
principles is assumed. For further background, the reader is referred to standard references
such as Manwell et al. [23] for wind energy, and Martins and Ning [24] and Audet and Hare
[2] for optimization and algorithms.

The chapter is structured as follows. Section 2.1 introduces the down-selection problem within
wind farm layout optimization and highlights its combinatorial complexity. Section 2.2 reviews
optimization strategies that are commonly applied to such problems. Finally, Section 2.3
outlines the wake modeling approach adopted in this thesis, which underpins the evaluation of
all candidate layouts.

2.1 Down-Selection in Wind Farm Layout Optimization
Wind farm layout optimization seeks to determine the placement of turbines within a site in
order to maximize annual energy production (AEP) or minimize the levelized cost of energy
(LCOE), subject to practical constraints such as site boundaries, bathymetry, and minimum
spacing between turbines [18]. The challenge arises from the strong wake interactions between
turbines, which introduce nonlinearities and multiple local optima into the problem [23, 20].

In many studies, the available area is discretized into a grid of potential positions, and opti-
mization consists of selecting the best subset of these points [28]. In practice, the situation is
often even more restrictive: once site surveys have been completed, the set of feasible turbine
positions is fixed in advance. When higher-rated turbines later become available, developers
must then choose a subset of these predefined locations to maintain capacity with fewer tur-
bines. This sequential, two-stage setting defines the down-selection problem, which is the focus
of this thesis.

Consider an OWF with N candidate positions and a requirement to install exactly k tur-
bines. Each choice of k positions defines a unique layout, and since the ordering of turbines is
irrelevant, the total number of possible configurations is given by the binomial coefficient:

C(N, k) =
(

N

k

)
= N !

k! (N − k)!
k ≤ N (2.1)

The growth of this search space is explosive. For example, an OWF with N = 100 available
positions and k = 50 turbines yields approximately C(100, 50) ≈ 1029 unique layouts. Even
if the AEP of each layout could be computed in just one nanosecond, the total time required
would exceed the age of the universe (13.8 billion years ≈ 4.35×1026 nanoseconds). Exhaustive
search is therefore infeasible, even with state-of-the-art hardware.
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This combinatorial complexity motivates the use of dedicated optimization strategies, such as
greedy heuristics or gradient-based approaches, which can efficiently search the solution space
without evaluating every possible configuration.

2.2 Optimization Strategies
The combinatorial complexity of the down-selection problem makes exhaustive search infeasible,
motivating the use of optimization strategies that can efficiently explore the design space and
identify high-quality layouts within practical time limits. These strategies can be organized
into broad categories, as outlined in Section 2.2.1, and specific representative methods are
introduced in Section 2.2.2. This classification and selection provide the foundation for the
comparative evaluation presented later in Section 4.2.

2.2.1 Classification of Strategies
The strategies considered in this thesis span several classes of optimization methods. Gradient-
free (GF) approaches operate without derivative information, making them suitable for discrete
or discontinuous problems. Gradient-based (GB) approaches, in contrast, exploit analytical or
numerical derivatives to guide the search more efficiently but require continuous variables and
smoothness, which are generally less applicable here.

Beyond these, methods can be broadly divided into three additional categories: Heuristics,
which apply simple problem-specific rules; Metaheuristics, which are higher-level, problem-
independent frameworks that iteratively improve solutions via systematic exploration; and
Exact methods, which rely on mathematical programming formulations that can in principle
guarantee global optimality.

A more detailed discussion of these categories and their theoretical properties can be found in
Martins and Ning [24]. Here, only the aspects directly relevant to the down-selection problem
are highlighted.

2.2.2 Candidate Strategies
Based on the problem characteristics discussed in Section 2.1 and an extensive review of the
literature, ten strategies were identified as the most promising for solving the down-selection
problem. Methods with overlapping principles or limited applicability were omitted to maintain
focus and clarity. Each algorithm is briefly described below, while the detailed ranking is
presented in Section 4.2.

2.2.2.1 Gradient-Based (GB)
This method relaxes the problem by using continuous variables (values between 0 and 1) and
uses gradient-based solvers to adjust them, while using interpolation penalties to push solutions
toward clear 0 or 1 selections. [32, 31]
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2.2.2.2 Genetic Algorithm (GA)
Metaheuristic that represents candidate layouts as “individuals” in a population and evolves
them over generations via crossover (recombining layouts) and mutation (random tweaks). [28,
40, 32]

2.2.2.3 Binary Particle Swarm Optimization (BPSO)
Metaheuristic that models each layout as a “particle” in a discrete search space, with particles
nudged toward their own and group-wide best solutions using velocity-inspired updates. [27,
24]

2.2.2.4 Variable Neighborhood Search (VNS)
Metaheuristic that systematically explores increasingly distant neighborhoods of a current
layout, moving outwards in search space until a better layout is found. [26, 10, 35]

2.2.2.5 Random Search (RS)
Gradient‑free heuristic that begins from an initial feasible layout and iteratively applies random
perturbations, moving a randomly selected turbine by a random direction and distance, and
accepting layout updates when improvement occurs. [14]

2.2.2.6 Greedy Heuristic (GH)
Gradient‑free heuristic that starts with an empty layout and iteratively adds turbines one-by-
one, keeping the ones that maximize the objective. It is then followed by a second refinement
stage. [12, 41, 46]

2.2.2.7 Repeated Sweep (RSW)
A gradient-free heuristic that starts from a random feasible layout and iteratively flips sites (0–1
or 1–0) whenever the objective improves. Two trade phases then follow, sequentially swapping
sites with their right and upper neighbors if improvement is achieved, thereby emulating a
gradient. [41]

2.2.2.8 Discrete Exploration-Based Optimization (DEBO)
Gradient‑free, two‑stage heuristic that first greedily allocates turbines to discrete grid locations,
then refines the layout through a local search that iteratively moves one turbine at a time to
improve the objective. It produced the best layout in terms of AEP among the eight tested
algorithms. [43]

2.2.2.9 Discrete Perturbation Algorithm (DPA)
Gradient‑free heuristic that discretizes the design space into a grid and optimizes turbine
placement by applying both directed and random perturbations from existing positions. It
produced the second best layout in terms of AEP among the eight tested algorithms. [43]



2.3 Wake Modeling in Layout Optimization 10

2.2.2.10 Mixed-Integer Linear Programming (MILP)
An exact method that formulates the layout problem with binary variables in a mixed-integer
linear program. Wake effects are simplified and pre-computed in an interaction matrix, which is
then used as a lookup table during optimization. Guarantees optimal or near optimal solutions.
[44, 25, 34]

2.3 Wake Modeling in Layout Optimization
When a wind turbine extracts energy from the flow, it leaves behind a wake of reduced velocity
and increased turbulence. In offshore wind farms, where turbines are spaced relatively close
together, these wakes reduce the inflow available to downstream turbines and therefore have a
strong influence on overall energy production. Accurately capturing wake interactions is thus
essential for layout optimization, but it must also be done at a computational cost low enough
to allow repeated evaluations during the optimization process.

Several simplified engineering models have been developed for this purpose. The classical
Jensen or “top-hat” model [20] has been applied extensively in both research and industry due
to its robustness and simplicity [10]. However, it represents the wake as a uniform velocity
deficit across its cross-section, which can lead to unrealistic discontinuities in optimization
studies. Improved models based on Gaussian-shaped deficits provide a smoother and more re-
alistic description of wake recovery while remaining computationally efficient [8]. Comparative
assessments of wake models and their uncertainties can be found in Barthelmie et al. [6] and
Gao et al. [16].

Figure 2.1: Schematic of vertical profiles of the mean velocity (top) and velocity deficit
(bottom) downwind of a wind turbine assuming: (a) a top-hat distribution and (b) a Gaussian
distribution. Adapted from Bastankhah and Porté-Agel [7].

In this thesis, the modified Gaussian model of Bastankhah and Porté-Agel [8], implemented
following Thomas and Ning [42], is adopted. This formulation avoids the undefined near-
wake region that complicates optimization and has been widely used in recent benchmark and
comparison studies. A detailed description of the implementation, parameter choices, and
superposition method is provided in Section 3.1.3.2.



CHAPTER 3
General Methodology

This chapter outlines the general methodology used to address the two research questions:

RQ1. Which optimization strategies are suitable for down‑selection?

RQ2. What is the impact of down-selection on the final wind farm layout?

The overall approaches are summarized in Figs. 3.1 and 3.2, which provide a high-level overview
of the steps taken for each research question.

Compare Using
Test Cases

Rank Candidate
Strategies

Finetune Promising
Strategies

Figure 3.1: Flowchart for answering RQ1.

For RQ1, the process consists of three stages. First, candidate strategies are ranked based
on a set of requirements specific to down-selection. Second, the most promising strategies are
finetuned on a simplified benchmark case. Finally, their performance is evaluated across a
series of test cases of increasing complexity.

Down-Selection for

Higher Rated WTG
Comparison

Optimal Layout for

Lower Rated WTG

Optimal Layout for

Higher Rated WTG

Figure 3.2: Flowchart for answering RQ2.

To address RQ2, a different process is employed. First, optimal layouts are generated for
farms using lower-rated turbines. These layouts serve as the starting point for down-selection
to fewer, higher-rated turbines. To assess the impact of this process, the results are compared
against layouts optimized for the higher-rated turbines.

To ensure clarity and focus, each question is addressed separately in Chapters 4 and 5, re-
spectively. This separation is also intentional, as the findings from RQ1 directly inform the
down-selection strategy used to answer RQ2. The present chapter introduces the concepts,
equations, and methods common to both research questions, including the mathematical for-
mulation of the down-selection problem (Section 3.1) and the computational setup in terms of
software and hardware resources (Section 3.2).
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3.1 Down-Selection Problem Formulation
This section defines the optimization problem underlying the down-selection task. The problem
is first presented in its general form (Section 3.1.1), highlighting the key elements of the
formulation. The subsequent subsections then describe each of its individual components
in detail: the optimization variables (Section 3.1.2), the objective function (Section 3.1.3), and
the constraints (Section 3.1.4).

3.1.1 Mathematical Definition
The down-selection task can be formulated as a discrete optimization problem, where a fixed
number k of turbine positions is chosen from a larger set of N candidates. The goal is to
maximize the expected energy yield, subject to a fixed turbine count and a minimum separation
distance between any selected turbines. The general formulation is:

maximize AEP(b)

subject to
N∑

i=1
bi = k

Sij ≥ Smin ∀ i ̸= j

bi ∈ {0, 1} i = 1, . . . , N

(3.1)

Here, b is a binary vector with bi = 1 if position i is selected and bi = 0 otherwise. The first
constraint enforces the number of turbines, while the second ensures that any two selected
turbines respect the minimum separation distance Smin.

3.1.2 Optimization Variables
As introduced in Eq. (3.1), the problem involves selecting exactly k turbine locations out of N
available candidates. To represent this choice, a binary decision variable bi is associated with
each position i = 1, . . . , N , where bi = 1 if the position is selected and bi = 0 otherwise. The
complete layout is then described by the binary vector b = [b1, . . . , bN ]. This representation
makes the problem combinatorial, with C(N, k) possible configurations (see Eq. (2.1)).

3.1.3 Objective Function
As introduced in Eq. (3.1), the optimization problem is driven by the maximization of annual
energy production (AEP). Its computation relies on two components: the calculation of AEP
from wind statistics and turbine power output, and the modeling of wake losses that affect the
effective wind speed at each turbine. These are described in the following subsections.

3.1.3.1 Annual Energy Production
Among the possible objective functions, this work adopts the maximization of total annual
energy production (AEP), expressed as
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AEP = 8760
Np∑
p=1

Nq∑
q=1

fp,q Pp,q , (3.2)

where Np and Nq denote the numbers of wind-direction and wind-speed bins, fp,q is the joint
probability of wind direction p and wind speed q, and Pp,q is the farm power output under
those conditions. The farm power output is obtained as

Pp,q =
N∑

i=1
bi Pi(v(p,q)

eff,i ) (3.3)

where v
(p,q)
eff,i is the effective wind speed experienced by turbine i under wind direction p and

wind speed q.

The turbine power Pi(v) is evaluated from a tabulated power curve. Below cut-in and above
cut-out wind speeds the power is set to zero, while values between the tabulated points are
obtained by linear interpolation. The maximum of the curve corresponds to the rated power.
CT (v) is handled in the same way, using its corresponding tabulated curve.

3.1.3.2 Wake‑Loss Model
Wake deficits are modeled using the modified Gaussian formulation of Bastankhah and Porté-
Agel [8], as implemented by Thomas and Ning [42]. This version avoids the undefined near-
wake region that hinders optimization, by linearly interpolating the deficit from the rotor
to the point where the analytical solution becomes valid (far wake). Compared to top-hat
approaches such as the Jensen model [20], the Gaussian profile provides a smoother and more
realistic description of wake recovery while remaining computationally efficient. For this reason,
it has been widely adopted in recent layout optimization studies [4, 32, 40, 43].

The normalized deficit at downstream offset (∆x, ∆y) is given by

∆V

V∞
=
(

1 −
√

1 − CT

8(σy/D)2

)
exp

−1
2

(
∆y

σy

)2
 (3.4)

with σy = ky ∆x + D/
√

8, where CT is the thrust coefficient, D the rotor diameter, and ky

the wake‑expansion coefficient. In the present work, ky = 0.0324555 is used for a turbulence
intensity of 0.075, in line with values adopted in the aforementioned studies.

Wakes as superimposed using the root-sum-square method [22], which agrees better with ex-
periments than linear addition, particularly when several wakes overlap [13]. The analysis
assumes turbines operate aligned with the incoming wind, so wake deflection is neglected to
keep the model simple. Finally, to reduce computational time, the inflow velocity at each
turbine is evaluated at the hub center only, as in Thomas and Ning [42].
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3.1.4 Constraints
As introduced in Eq. (3.1), two constraints define the feasibility of each layout. The first is the
selection constraint, requiring exactly k turbines to be chosen. This guarantees that b contains
exactly k entries equal to 1:

N∑
i=1

bi = k (3.5)

The second is the minimum spacing constraint, which prevents turbines from being placed
too close together, to limit wake effects and structural fatigue. If Sij is the distance between
positions i and j, and Smin the required minimum distance, then any two selected turbines
must satisfy:

Sij ≥ Smin ∀ i ̸= j (3.6)

3.2 Software & Hardware
All simulations were performed using Python 3.11.4, primarily with the open-source libraries
PyWake 2.6.11 [29] and TOPFARM 2.5.1 [39], both developed and maintained by DTU Wind
Energy. PyWake provides a collection of validated wake models and utility functions for wind
farm flow simulations, while TOPFARM offers a modular framework for coupling such models with
optimization strategies. These tools were selected due to their modularity, reproducibility, and
broad adoption in both academic and industrial studies, which ensures that the results are
transparent and comparable to existing literature.

The computational experiments were carried out on a laptop equipped with an Intel® i7-
13850HX processor (20 cores, 28 threads) and 32 GB of RAM. For RQ1, all optimizations
were executed on a single CPU core to ensure fair comparison between strategies. In contrast,
simulations for RQ2 leveraged parallel processing using 16 cores to reduce computation time
due to increased problem complexity. No GPU acceleration was used.



CHAPTER 4
Strategies for Down‑Selection (RQ1)

This chapter addresses the first research question:

RQ1. Which optimization strategies are suitable for down‑selection?

1. Which strategies are most suitable for down-selection, based on defined requirements?

2. How do the top‑ranked strategies compare across cases of increasing complexity?

The chapter follows the three main steps of Fig. 3.1, expanded into five sections as shown
in Fig. 4.1. First, the two most suitable strategies are introduced in Section 4.1, namely a
Gradient-Based approach and a Greedy Heuristic. Presenting these strategies in the beginning
helps direct attention to the strategies most relevant to answering the research question, and
avoids redundancy in the later sections. The ranking that motivated their selection from the
pool of candidate strategies is discussed in Section 4.2. Each chosen strategy is then finetuned
in Section 4.3, compared across test cases in Section 4.4, and the overall findings are discussed
in Section 4.5.

Compare Using
Test Cases

(Section 4.4)

Rank Candidate 
Strategies

(Section 4.2)

Finetune Selected
Strategies

(Section 4.3)

The 2 Selected
Strategies

(Section 4.1)

Discussion

(Section 4.5)

Figure 4.1: Roadmap for Chapter 4.

For the analysis of RQ1, the minimum turbine spacing constraint is assumed to be satisfied
by the predefined available positions. This simplification removes the need to enforce explicit
spacing constraints during optimization, thereby reducing computational cost and allowing the
focus to remain on the comparative performance of the algorithms.
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4.1 Description of Selected Strategies
This section presents the two optimization strategies that form the focus of this chapter, a
Gradient-Based approach and a Greedy Heuristic. Their working principles and implemen-
tation details are provided in Section 4.1.1 and Section 4.1.2, serving as background for the
subsequent ranking, finetuning, and comparative evaluation.

4.1.1 Gradient‑Based Approach
As described in Section 2.2.2.1, the Gradient-Based (GB) approach by Pollini [32] relaxes the
problem by using continuous variables. It then uses gradient-based solvers to adjust them,
while using interpolation penalties to push solutions toward clear 0 or 1 selections.

Therefore, the optimization formulation described earlier in Eq. (3.1) must be relaxed with
the use of a continuous variable xi ∈ [0, 1]. The variable represents a fictitious existence of
a wind turbine at an available position and is referred to as “existence” in the present work.
Since all candidate positions already satisfy the spacing requirement (as mentioned above), the
minimum spacing constraint does not appear here. The optimization problem then becomes

maximize AEP(x̃)

subject to
N∑

i=1
xi = k

0 ≤ xi ≤ 1 i = 1, . . . , N

(4.1)

where x̃ = [x̃1, . . . , x̃N ] is the penalized existence vector, and x̃i is the penalized existence

x̃ = x

1 + q(1 − x)
(4.2)
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Figure 4.2: Example of interpolation with the RAMP functions for different values of the
penalty parameters q.
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The existence is penalized using the RAMP interpolation function, shown in Fig. 4.2. The
interpolation leaves the endpoints unchanged (x̃ = 0 for x = 0 and x̃ = 1 for x = 1), while
reducing the effectiveness of intermediate values (x̃ < x for 0 < x < 1). As a result, a turbine
contributes less to the objective than what is counted in the constraint whenever x is fractional.
This mismatch penalizes intermediate solutions and biases the optimization toward discrete
0–1 values. Increasing the penalty parameter q strengthens this effect.

In the original work, wind speed deficits were precomputed to accelerate simulations. This was
feasible because the turbine used features a constant CT , so deficits scale with the free-stream
velocity and do not require evaluation at the wake-reduced inflow. In contrast, a turbine with
a realistic CT curve would couple the thrust coefficient to the local wind speed (see Eq. (3.4)),
making precomputation impractical due to the large number of operating points required.

In the present work, the applicability of the method to turbines with realistic CT curves is
explored. Wake deficits are therefore evaluated directly rather than precomputed. Furthermore,
the introduction of the existence variable x requires turbine characteristics to be expressed as
functions of both wind speed and existence. This is achieved by scaling the original power
and CT curves with x, yielding multidimensional curves that interpolate smoothly between
zero output (x = 0) and the original turbine characteristics (x = 1). For example, the IEA-37
3.35 MW power and CT curves in Fig. 4.5 are transformed into the interpolated curves shown
in Fig. 4.3. This functionality is implemented using PyWake’s PowerCtNDTabular class.
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Figure 4.3: Power and CT curves for sample existence values of the ExistenceWindTurbine,
based on the IEA-37 3.35 MW reference turbine.

For initialization, the existence variables are assigned random values between 0 and 1 such
that their sum equals the target number of turbines k. This ensures that the design space is
explored fairly while satisfying the selection constraint.

The optimization is carried out using the gradient-based Sequential Least Squares Program-
ming (SLSQP) algorithm. This solver is chosen for its robustness in handling constrained
nonlinear problems, its open-source implementation, and its seamless integration with the
TOPFARM framework. Unless otherwise specified, a convergence tolerance of 10−8 and a
maximum of 500 iterations are used.
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Upon convergence, the optimized existence variables typically take intermediate values rather
than crisp 0–1. A post-processing step is therefore introduced: the k positions with the highest
existence values are set to 1, and the remainder are set to 0. The AEP computed at the end
of the optimization is denoted AEPdrv, while the final value after post-processing is referred
to as AEP.

Since gradient-based methods are highly sensitive to initialization, a multistart strategy is
adopted. Specifically, the optimization is repeated m times from independent random ini-
tializations, and the solution yielding the highest AEP is retained. Unless otherwise stated,
m = 100 multistarts are used.

4.1.2 Greedy Heuristic
As described in Section 2.2.2.6, the Greedy Heuristic (GH) approach by Chen et al. [12] consists
of two stages. In Stage 1, turbines are placed iteratively, one at a time, onto an initially empty
layout. At each iteration, the next turbine is positioned at the location that maximizes the
AEP, given the turbines already placed. In Stage 2, a refinement process is performed in which
each turbine is revisited following the placement order and relocated to a different empty
position that further increases the total AEP. This refinement is repeated until no further
improvement is achievable.

In contrast to the Gradient-Based approach, this strategy is based directly on the original
formulation in Eq. (3.1). As mentioned before, the minimum spacing constraint does not
appear here, because all available positions are predefined to meet the requirement.

To ensure consistency with the Gradient‐Based approach, all strategies use the same custom
ExistenceWindTurbine incorporating multidimensional power and CT curves (see Fig. 4.3).
However, in the Greedy Heuristic only the two extreme states are evaluated (bi = 1 or bi = 0).

The outcome of the Greedy Heuristic is highly sensitive to the position selected for the first
turbine placement (or removal). This sensitivity to initial condition can significantly affect the
resulting layout and total AEP. To address this, a multistart strategy is adopted, involving
multiple independent runs starting from a different available position. The layout yielding the
highest AEP among all runs is selected as the final solution. Unless otherwise stated, m = N
multistarts are used.

One limitation of the baseline refinement procedure is that turbines are revisited in the exact
order they were added. Early-placed turbines may undergo many relocation attempts, while
later-placed turbines receive fewer or none before convergence. Consequently, the algorithm
may become trapped in a local optimum that reflects the arbitrary placement order rather
than the true global optimum.

To investigate possible improvements to this baseline, several alternative strategies are in-
troduced in Table 4.5. These include adjustments to refinement order, early stopping, and
removal-based placement. Their effectiveness will be tested in the tuning experiments of Sec-
tion 4.3.3.
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4.2 Ranking of Candidate Strategies
This section presents the literature-based screening and ranking of candidate strategies that mo-
tivated the selection of the two strategies described in Section 4.1. The screening methodology
is outlined in Section 4.2.1, followed by a definition of the ranking criteria in Section 4.2.2, an
overview of the considered strategies in Section 4.2.3, and the resulting ranking with discussion
in Section 4.2.4.

4.2.1 Screening Methodology
The screening is carried out through a literature-based review of optimization strategies that
could be applicable to the down-selection problem. A wide range of papers and textbooks are
consulted to identify candidate approaches, since no comprehensive comparison of methods
exists in the literature. Conducting such a comparison would be outside the scope of this
thesis, both in terms of time and resources.

To enable a systematic assessment, a set of criteria considered important for down-selection is
defined (see Section 4.2.2). Each candidate strategy is then scored qualitatively against these
criteria. The scores are summed to obtain an overall ranking, from which the most promising
strategies are identified for further analysis.

To keep the assessment simple and focused, hybrid strategies that combine multiple methods
are not considered. Only stand-alone strategies are included, ensuring that the results reflect
the inherent characteristics of each approach.

4.2.2 Ranking Criteria
The ranking is based on a set of requirements that reflect the characteristics of the down-
selection problem. The aim is to identify strategies that are well suited for handling the specific
characteristics of this task while remaining practical to apply in research and industry settings.
The criteria are listed in Section 4.2.2.1, followed by the scoring system in Section 4.2.2.2.

4.2.2.1 Criteria
The following criteria are used to evaluate candidate strategies:

1. Suitability for predefined available positions The down-selection problem assumes
a predefined set of available positions. Effective strategies must operate directly on this
fixed choice set.

2. Scalability to large combinatorial problems. The number of possible layouts in-
creases combinatorially with the number of available positions (see Eq. (2.1)). An effec-
tive strategy must therefore be able to handle problem sizes representative of offshore
wind farms.

3. Suitability for non-linear objectives. Wake effects introduce non-linearities in the
objective function. Strategies must be able to cope with such interactions without relying
on restrictive assumptions.
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4. Number of tuning parameters. Strategies with few tuning parameters are preferred,
as this reduces the effort required for calibration and limits sensitivity to arbitrary choices.

5. Ease of implementation. Preference is given to methods that are straightforward to
implement, as this reduces development effort within the time frame of this thesis and
enables practical application.

4.2.2.2 Scoring System
Each candidate strategy is evaluated primarily qualitatively, and in some cases quantitatively,
against the criteria in Section 4.2.2.1 using a four-level scoring scheme:

• 3 = Favourable: strong suitability for down-selection.

• 2 = Moderate: partial suitability or weaker performance than other strategies.

• 1 = Unfavourable: poor suitability or clearly inferior performance.

• 0 = Insufficient evidence: no clear information available.

No weights are assigned to the criteria, so all aspects are treated equally in the assessment. The
individual scores are summed to produce an overall ranking, from which the most promising
strategies are identified for further analysis.

4.2.3 Candidate Strategies
Following an extensive literature review, ten strategies were identified as the most promising
for the down-selection problem and are carried forward to the ranking. Table 4.1 gives a
concise overview of each strategy, including its category, a main strength and weakness, and
representative references. More details about the algorithms can be found in Section 2.2.2.

Table 4.1: Overview of candidate strategies considered for ranking. Acronyms defined in
Section 2.2.2.

Strategy Category Strength Weakness References
GB Gradient-Based Fast Local minima [32, 31]
GA Metaheuristic Widely used Poor scalability [28, 40, 32]
BPSO Metaheuristic Swarm exploration Tuning [27, 24]
VNS Metaheuristic Neighborhood jumps Tuning [26, 10, 35]
RS Heuristic Simple Myopic [14]
GH Heuristic Simple Myopic [12, 41, 46]
RSW Heuristic Gradient mimicry Integration effort [41]
DEBO Heuristic Top in reference Integration effort [43]
DPA Heuristic Top in reference Integration effort [43]
MILP Exact Provable optimality Linear objective [44, 25, 34]

4.2.4 Results and Discussion of Ranking
This section presents the outcomes of the ranking. Section 4.2.4.1 reports the aggregated scores
and final ordering of the ten candidate strategies from Table 4.2. Section 4.2.4.2 interprets
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the results with reference to the scoring criteria and highlights key trade-offs and limitations.
Finally, Section 4.2.4.3 identifies the strategies shortlisted for subsequent evaluation.

4.2.4.1 Ranking Results
The ranking of the candidate strategies for down-selection is presented in Table 4.2.

Table 4.2: Ranking of candidate strategies for down-selection.
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GB 3 3 3 2 2 13
GA 3 2 3 1 3 12
BPSO 3 2 3 1 1 10
VNS 3 2 3 2 1 11
RS 3 2 3 3 1 12
GH 3 2 3 3 2 13
RSW 3 2 3 3 1 12
DEBO 0 0 3 0 1 4
DPA 0 0 3 0 1 4
MILP 3 2 1 2 1 9

4.2.4.2 Discussion of Results
DEBO and DPA, despite strong results in their original study, are not formulated for selection
from a predefined set of available positions. Applying them to down-selection would require
substantial reformulation, so there is no direct evidence for their performance on the first
criterion. For the same reason, they are assigned (0) on that criterion and score poorly across
most of the criteria, placing them at the bottom for down-selection suitability. Their ranking
is not discussed further below.

In terms of scalability, GB scores (3) because the relaxation of the problem with the use of
continuous design variables enables the use of gradients, and gradient-based methods scale more
favourably with the number of design variables than gradient-free alternatives [2, 41]. Empirical
results further indicate markedly lower runtimes for GB relative to GA on comparable wind-
farm problems [32]. The remaining strategies are scored (2), as they can be engineered to handle
large candidate sets, yet their evaluation cost typically grows more steeply with dimensionality
or depends on problem-specific proxies and tuning, consistent with reports that gradient-free
techniques degrade as variable counts increase [24, 40].
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In terms of non-linear objectives, all strategies except MILP score (3), as they can operate
directly on AEP with non-linear wake interactions. MILP typically relies on the linearization
of the objective to remain tractable, while also pre-computing an interaction matrix of the
velocity deficits. Using the full non-linear AEP objective would require a computationally
costly MINLP formulation outside this scope. Consequently, MILP is assigned (1) due to its
dependence on linearizing assumptions that reduce fidelity.

In terms of having few tuning parameters, GH, RS, and RSW score (3) because they rely on
simple settings such as basic stopping rules, sweep order, or acceptance checks, which rarely
need fine calibration. GB, VNS, and MILP score (2) since they involve a moderate number of
choices, for example choice of solver, tolerance, neighborhood size or gap tolerance. GA and
BPSO score (1) because performance depends on several coupled hyperparameters, including
population size, selection pressure, mutation rates, inertia or social weights, which increases
the effort needed for finetuning.

In terms of ease of implementation, GA scores (3) because a ready to use implementation exists
in TOPFARM. GB scores (2) since it can be realized in TOPFARM through a continuous re-
laxation with moderate additional setup. GH also scores (2) because a straightforward Python
implementation appears feasible. The remaining strategies score (1) as their development
would be more challenging and require some experience.

Overall, GB and GH come out on top with (13) points, followed by GA, RS and RSW with
(12). Then come VNS, BPSO and MILP with (11), (10) and (9) points respectively, and in
the last place with (4) points are DEBO and DPA.

Additional numerical results that support this ranking are provided in Appendix A.1.

4.2.4.3 Shortlisted Strategies
The criteria based ranking process revealed that two strategies are more suitable for the down-
selection problem:

• Gradient-Based (GB). Scores highly on scalability and non-linear objective handling,
with moderate tuning and implementation effort using a continuous relaxation in TOP-
FARM.

• Greedy Heuristic (GH). Scores highly on tuning simplicity and non-linear objective
handling, with moderate scalability and implementation effort.

These strategies will form the focus of this chapter. Their operating principles and implemen-
tation details are presented in Section 4.1.1 and Section 4.1.2, serving as the background for
the subsequent finetuning in Section 4.3.
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4.3 Finetuning of Selected Strategies
The purpose of this section is to determine suitable parameter settings for the selected strate-
gies prior to their comparative evaluation in Section 4.4. The finetuning is carried out on a
single benchmark case, which provides a consistent environment for testing different parameter
choices. In the process, the analysis of the Greedy Heuristic gives rise to an additional variant,
so that three strategies are ultimately carried forward.

The benchmark setup is described in Section 4.3.1, followed by the tuning of the Gradient-
Based approach in Section 4.3.2 and the tuning of the Greedy Heuristic in Section 4.3.3. The
section concludes with a summary of the recommended settings in Section 4.3.4.

4.3.1 Benchmark Setup for Tuning
The benchmark case is based on the reference offshore wind site from the IEA’s Wind Task 37
(IEA-37), as described by Baker et al. [4] with openly available data in [5]. This site features
a circular domain populated with 64 predefined turbine positions, as shown in Fig. 4.4.
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Figure 4.4: The 64 available turbine positions in the IEA-37 (left), and the wind rose corre-
sponding to a uniform wind speed of 9.8 m/s (right).

The benchmark problem is formally defined as selecting 32 turbine locations out of the 64
predefined positions. This setting is both practically relevant and computationally challenging.
Occupying 50% of the positions maximizes the number of possible combinations in a binary
combinatorial problem (see Eq. (2.1)). Specifically, the number of distinct layouts is:

C(64, 32) ≈ 1.8 × 1018

This high number of combinations ensures a low probability that all strategies converge to the
global optimum, thereby providing a robust test environment.
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All simulations use the idealized IEA-3.35 MW reference wind turbine described by Bortolotti
et al. [9], for which this site was specifically designed. The turbine has a rotor diameter of
D = 130 m. The wind speed of 9.8 m/s matches the rated speed of the turbine, increasing
power variability across positions and leading to more local optima, which makes the problem
more challenging for optimization. The power and thrust coefficient (CT ) curves are shown in
Fig. 4.5.
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Figure 4.5: Power (left) and CT (right) curves of the IEA-3.35 MW reference turbine.

The IEA-3.35 MW turbine features a constant CT , so wake deficits scale with the free-stream
velocity rather than the local wake-reduced inflow. This decouples CT from the effective
wind speed and enables non-iterative, single-pass wake evaluation. Thus, enabling the pre-
computation of wake effects for given wind conditions, yielding substantial computational
savings. The choice is a modeling convenience for layout-optimization benchmarks, not a
reflection of actual turbine aerodynamics. However, in the present work, wakes are not pre-
computed. Also, the selected wake model does not require a constant CT , as realistic CT curves
have been used in the original formulation by Thomas and Ning [42].

An additional reason for selecting this site and turbine is that they were also employed by
Pollini [32] in the development of the Gradient-Based approach. This ensures consistency with
earlier work and could enable comparison of results in the future.

For the analysis of RQ1, the minimum turbine spacing constraint is assumed to be satisfied by
the predefined positions of the IEA-37 site. The actual minimum pairwise spacing is 5.17D,
which is sufficient for the validity of the wake model. This simplification removes the need to
enforce explicit spacing constraints during optimization, thereby reducing computational cost
and allowing the focus to remain on the comparative performance of the algorithms.
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4.3.2 Tuning of Gradient‑Based
Here the Gradient‑Based approach is tuned using the benchmark case of placing k = 32
turbines in the N = 64 available positions of the IEA-37 farm, as described in Section 4.3.1.
Although a broader range of parameters was explored, these are documented in Appendix A.2
to avoid distracting from the main discussion. The most relevant findings are presented below.

4.3.2.1 RAMP vs SmoothStep
First, the choice of the interpolation function that can replace RAMP (Eq. (4.2)) is explored.
After a lot of trial and error, the SmoothStep function is found to perform adequately:

x̃ = xs

xs + (1 − x)s
(4.3)

The function is controlled by the penalty parameter s, and it is a continuous monotonic function
that passes through (0,0), (0.5,0.5), and (1,1), as can be seen from Fig. 4.6.
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Figure 4.6: Example of interpolation with the RAMP (left) and the SmoothStep (right)
functions for different values of the penalty parameters q and s respectively.

To draw meaningful conclusions about the behavior of each function, a sufficiently large sample
size is required. Therefore, 100 different random seeds are used for the initial existence values.
Then, 21 different values of q and s are tested while reusing the same 100 seeds. This results
in a total of 2100 optimization runs for RAMP and another 2100 for SmoothStep. For RAMP,
q values ranging from 0 to 1 are used, while for SmoothStep from 1 to 2. In both cases, the
values start just after the linear region and increase in equal steps. The corresponding results
are presented in Fig. 4.7.

It is immediately apparent that for both interpolation functions the min, median and max
AEP decrease as their respective penalty factors increase. Also, at an initial reading it might
seem that the SmoothStep performs better as it maintains a higher AEP statistics with smaller
standard deviation. However, this would comparison would be unfair, as its function might be
less or more aggressive for the same increase in the penalty parameter.
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Figure 4.7: Boxplot of AEP using RAMP (top) and SmoothStep (bottom).
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RAMP (left column) and SmoothStep (right column).
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Selecting the best out of the 100 runs for each penalty parameter value, leads to the multistart
approach mentioned before. The best AEP and the corresponding total function calls for each
penalty function are presented in Fig. 4.8. SmoothStep maintains a higher best AEP than
RAMP as the penalty parameters increase. However, the total function calls of RAMP drop
drastically and stay low, while for SmoothStep they increase steadily, apart from a sudden
increase in the beginning.

As mentioned before, after each optimization, the k = 32 positions with the highest existence
values are selected and assigned a final existence value of 1, with the remaining positions set
to 0. This binary selection defines the final layout used to calculate the AEP. Fig. 4.9 depicts
the existence of each turbine just before this top-32 selection.

It appears that as q increases, RAMP pushes the turbines closer to an existence of either 0 or
1. On the other hand, SmoothStep leaves a lot of turbines with intermediate values. Therefore,
RAMP does a better job at splitting the turbines to ones that exist and ones that do not.
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Figure 4.9: Existence of each of the 64 turbines at the end of the optimization using RAMP
(top) and SmoothStep (bottom) for different q and s values. The optimization that yields the
highest AEP is used for each q and s. Turbine numbering is not relevant but is consistent.

Despite all these observations, Fig. 4.8 suggests that the highest AEP is achieved for q = 0 (or
s = 1), or when no interpolation is happening (Linear interpolation). Despite producing less
crisp 0-1 values in Fig. 4.9, this approach is selected to be used in the later tuning tests due
to its superior AEP performance.
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4.3.2.2 Impact of Driver Tolerance
Relaxing the SLSQP driver tolerance from 10−8 could substantially reduce the number of func-
tion calls needed for convergence, while yielding nearly identical AEP results. To test this
hypothesis, 100 penalty‐free (Linear) optimizations are run using the same set of 100 random
seeds for each driver tolerance, which range from 10−8 to 10−2. By keeping the seeds constant,
any performance differences are attributable solely to the tolerance setting. Fig. 4.10 summa-
rizes the distributions of AEP and function calls for each tolerance value. The AEP boxplots
remain virtually identical across tolerances. In contrast, the minimum, median, maximum,
and standard deviation of the function calls all drop as the tolerance is relaxed.
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Figure 4.10: Boxplots of AEP obtained after selecting top-k (left) and function calls (right),
for various driver tolerances.

However, since a multistart strategy is followed, which ultimately relies on the best AEP
achieved and the total computational effort, Table 4.3 compares, for each tolerance, the highest
AEP found and the total number of function calls. The results show that loosening the tolerance
does not compromise the maximum AEP but dramatically reduces the total number of function
calls, demonstrating that a higher tolerance can significantly accelerate convergence without
sacrificing optimality.

Table 4.3: Max AEP and function calls for top-k selection under different driver tolerances.

Driver
Tolerance

AEPmax

[GWh]
Total

Func. Calls
1E-08 823.7 9,717
1E-07 823.7 9,509
1E-06 823.7 9,328
1E-05 823.7 9,040
1E-04 823.7 8,302
1E-03 823.7 6,668
1E-02 823.7 4,696
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Additionally, the seed that yielded the highest AEP under the strictest tolerance, is examined
across all tolerance settings. The progress of the driver’s AEP against the function calls is
shown in Fig. 4.11. As expected, looser tolerances stop the optimizer sooner, but at 10−2 the
driver stops before the AEP curve has fully flattened. Therefore, 10−3 is chosen as the new
default tolerance, as it can produce the exact same maximum AEP, while requiring around
half the number of total function calls.
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Figure 4.11: Progress of driver’s AEP for various driver tolerances but the same seed.

4.3.2.3 Impact of Number of Multistarts
Thus far, every optimization has used m = 100 multistarts to maximize the chance of finding
the true global optimum AEP. However, fewer starts might achieve equivalent AEP with fewer
function calls, while more starts could further explore the design space and possibly find an
even higher AEP.
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Figure 4.12: Best AEP values across 10 independent optimizations with 25, 50, 100, and 200
multistarts using random initial existence values.
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To investigate this trade-off, 10 independent optimizations are run for each of four multistart
counts (25, 50, 100, and 200) using random initial guesses without fixed seeds to ensure broad
sampling. As shown in Fig. 4.12, the number of multistarts has no observable impact on AEP,
since all runs converge to the same value.

Table 4.4 summarizes the average maximum AEP and the average total number of function
calls for each multistart setting. As expected, the average peak AEP remains constant while the
function-call counts scale almost linearly with the number of starts. Although 25 multistarts
can reach the peak AEP in the fewest function calls, 100 multistarts will be used for the
subsequent sections to ensure a better exploration of the design space.

Table 4.4: Average maximum AEP and average total function calls over 10 optimizations, for
varying numbers of multistarts.

Number of
Multistarts

Average
AEPmax [GWh]

Average Total
Func. Calls

25 823.7 1,690
50 823.7 3,398
100 823.7 6,750
200 823.7 13,580
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4.3.3 Tuning of Greedy Heuristic
As outlined in Section 4.1.2, the baseline Greedy Heuristic suffers from certain limitations,
such as sensitivity to placement order and the risk of becoming trapped in local optima. To
investigate potential improvements and accelerate convergence, several alternative strategies
are defined and tested (see Table 4.5):

• Refinement Order: Revisit turbines by ascending individual AEP contribution, so that
the least effective turbines are refined first.

• Early Stopping: Terminate the relocation search for a turbine as soon as any improving
move is found.

• Removal‐Based Greedy: Start from a full layout and iteratively remove the turbine whose
deletion causes the smallest decrease in AEP, followed by the same refinement schemes.

Table 4.5: Description of the various Greedy Heuristic strategies explored.

Strategy Placement Refinement Refinement Based on Early Stopping
A Add 1-by-1 7 – –
B Add 1-by-1 3 Placement order 7

C Add 1-by-1 3 Ascending AEP 7

D Add 1-by-1 3 Ascending AEP 3

E Remove 1-by-1 7 – –
F Remove 1-by-1 3 Ascending AEP 7

G Remove 1-by-1 3 Ascending AEP 3

The tuning study is performed using the benchmark case of placing k = 32 turbines among
N = 64 available positions in the IEA-37 wind farm, as described in Section 4.3.1. First, all
seven strategies are directly compared in Section 4.3.3.1. Then the influence of the starting
locations is examined in Section 4.3.3.2, after which the optimal number of multistarts is
investigated in Section 4.3.3.3

4.3.3.1 Direct Comparison of Strategies
As previously discussed, the performance of the Greedy Heuristic is highly sensitive to the
position selected for the first turbine placement (or removal). To address this, a multistart
approach is employed in which each of the 64 available positions is used for the turbine place-
ment and the layout yielding the highest AEP is retained. The results of applying all seven
strategies to the benchmark case are summarized in Fig. 4.13, which presents the distribution
of AEP values obtained across all 64 runs. The best AEP values and the total function calss
are reported in Fig. 4.14.
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Figure 4.13: Boxplots of AEP for the various Greedy Heuristic strategies.
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Figure 4.14: Bar chart of maximum AEP (left) and total function calls (right) for the various
Greedy Heuristic strategies.

The results presented in Fig. 4.14 show that strategies A–D, which add turbines one-by-one to
an initially empty layout, achieve higher AEP values compared to strategies E–G, which begin
from a full layout and remove turbines sequentially. This outcome may be influenced by the
target of k = 32 turbines out of N = 64 positions. It remains possible that for different values
of k, the relative performance of removal-based strategies may differ.

As expected, all strategies that include a refinement stage (i.e. B–D and F–G) outperform
their respective non-refined counterparts (A and E) in terms of AEP. Refinement enables
repositioning of turbines after initial placement or removal, allowing the escape from local
optima.

Among the addition-based strategies, B–D all achieve the same best AEP. but strategy D
requires the least total function calls, followed by B and then C. This demonstrates the effec-
tiveness of early stopping in reducing function calls without compromising on AEP. A similar
trend is observed for the removal-based strategies F and G, which reach the same AEP, but
strategy G requires fewer total function calls.
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Even though strategies B–D achieve the same peak AEP, Fig. 4.13 shows that the AEP dis-
tributions of strategies C and D are shifted higher than that of B. This suggests that, under
different conditions (e.g. number of multistarts), strategies that revisit turbines in ascending
individual AEP contribution are more likely to reach a high-performing solution.

Based on these observations, strategies D and G are selected for further investigation. For
simplicity in the following sections, they are referred to as shown in Table 4.6.

Strategy Short Name
D Greedy Addition
G Greedy Removal

Table 4.6: Naming conventions for selected Greedy Heuristic strategies.

4.3.3.2 Influence of Starting Location
The previous results indicate that some starting locations for the Greedy Heuristic yield higher
AEP than others. This observation raises the question of whether a spatial pattern exists that
could guide the choice of starting points. To investigate this, Fig. 4.15 maps each of the 64
possible initial positions onto the site, colouring each one by the total AEP achieved when the
Greedy Addition or Greedy Removal strategy is initialized at that point.

If a specific region of the layout consistently produced superior results, it would appear as
a cluster of dark circles in one area. Instead, the darkest and lightest points are scattered
throughout the entire farm. No single quadrant or ring of turbines shows a systematic advan-
tage for either addition or removal. In other words, high-AEP and low-AEP starting points
both occur in all directions and at all distances from the center.
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Figure 4.15: Starting points coloured according to total AEP found.

4.3.3.3 Number of Multistarts
Since there is no obvious region that consistently outperforms the rest, a resampling analysis
is carried out to quantify how reducing the number of multistarts (m) impacts both the energy
production and computational cost. For each value of m, 10,000 random subsets of m starting
points are drawn from the full set of 64 starting points. The average ratio of AEP for m
multistarts relative to all 64 is then calculated alongside the average ratio of total function
calls for m multistarts versus all 64. The results are presented in Fig. 4.16.
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Figure 4.16: Average ratio of AEP (left) and total function calls (right) using m multistarts
versus all 64. Derived from 10,000 random resamples for each m.

The results in Fig. 4.16 show that reducing the number of multistarts (m) leads to lower AEP
compared to using all 64 starting points. This drop is more noticeable for Greedy Removal,
where only a few starting positions give high AEP (see Fig. 4.15), making them easy to miss
when m is small. In contrast, Greedy Addition has more good starting points, so its AEP
recovers faster as m increases. The number of function calls increases almost linearly with m,
showing a clear trade-off between computational cost and performance. Taken together, these
trends show that m ≈ 32 suffices to recover over 99.99% of the full AEP at about half the cost.

Despite this, all N multistarts are used in the rest of the study to ensure that the best starting
points are always included, especially for the more sensitive Greedy Removal strategy.
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4.3.4 Summary of Recommended Settings
Through the tuning process, three strategies emerge as the most promising candidates for
down-selection, summarized in Table 4.7.

Table 4.7: Recommended strategies after tuning.

Name Settings / Variant Multistarts
Gradient-Based no interpolation, tol=10−3 100
Greedy Addition Strategy D N
Greedy Removal Strategy G N

For the Gradient-Based approach, Section 4.3.2 showed that no interpolation function is needed
(RAMP can be replaced by Linear), and that lowering the driver tolerance to 10−3 achieves
similar results with fewer function calls. With respect to multistarts, 25 runs were sufficient to
reach the peak AEP in the fewest calls, but 100 multistarts are recommended to ensure more
reliable exploration of the design space. The additional cost is acceptable because the number
of function calls scales approximately linearly with the number of starts.

For the Greedy Heuristic, Section 4.3.3 identified the Addition (D) and Removal (G) variants
as most effective. Since no spatial pattern was found to guide the choice of starting points,
a multistart strategy is required. While using around 32 multistarts recovers over 99.99% of
the maximum AEP at about half the cost, the number of function calls scales linearly with m,
making the computational penalty acceptable. To ensure robust performance, especially for
the more sensitive Removal variant, all N multistarts are retained in subsequent experiments.
Functions calls also scale linearly, so the additional cost is deemed acceptable.

In summary, the Gradient-Based, Greedy Addition, and Greedy Removal strategies are carried
forward with the tuned settings described above. Their relative performance is analyzed in
detail in the following section (Section 4.4).
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4.4 Comparison of Selected Strategies
This section compares the performance of the three strategies obtained in Section 4.3: Gradient-
Based, Greedy Addition, and Greedy Removal. First, the methodology used to compare the
strategies is described in Section 4.4.1. The benchmark case from Section 4.3.1 is then com-
plemented by five additional test cases of increasing complexity, described in Section 4.4.2.
Finally, the results are presented and discussed in Section 4.4.3.

4.4.1 Comparison Methodology
The comparison of the strategies is conducted on the benchmark and five additional test cases of
increasing complexity introduced in Section 4.4.2. All strategies are evaluated under identical
conditions, using the same turbine and wake model, and the recommended parameter settings
identified in Section 4.3.4.

The primary performance metrics are the achieved AEP and computational cost, which is
measured in terms of both the number of function evaluations and the wall-clock time. As
mentioned earlier, a multistart approach is applied to all methods to reduce sensitivity to
initialization, with the best-performing solution retained for each case.

This consistent protocol provides a fair basis for comparing solution quality and computational
efficiency across the three strategies.

4.4.2 Test Case Setup
The benchmark introduced in Section 4.3.1 serves as the reference case for tuning and initial
comparison. To assess the robustness of the strategies under different conditions, five additional
test cases are defined as extensions of the benchmark. Each case introduces a variation in either
the wind farm configuration or the turbine characteristics, thereby increasing the complexity
of the optimization task towards more realistic scenarios.

To aid the reader, Table 4.8 provides an overview of the benchmark and the additional test
cases, highlighting the key parameters that vary in each scenario. Test Cases A–E are described
in Sections 4.4.2.1 to 4.4.2.5, respectively.

Table 4.8: Overview of benchmark and test cases used for evaluating optimization strategies.

Name Effect of Occupancy [%] Available Positions Variable CT

Benchmark C(64, 32) 50 64 7

Test Case A Occupancy 50 – 90 64 7

Test Case B Variable CT 50 – 90 64 3

Test Case C Power Density 50 – 90 64 3

Test Case D Available Positions 50 – 90 36/64/94 3

Test Case E Scaled IEA-55 Layout 50 – 90 74 3
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4.4.2.1 Test Case A: Effect of Occupancy
Test Case A examines how the strategies perform under different levels of occupancy, defined
as the ratio of the number of turbines to the number of available positions:

Occupancy = # Wind Turbines
# Available Positions × 100 (4.4)

Table 4.9: Occupancy levels and corresponding number of wind turbines for Test Case A.

Occupancy [%] Wind Turbines
50 32
60 38
70 45
80 51
90 58

Occupancy levels between 50% and 90% are considered, with the closest corresponding integer
number of turbines shown in Table 4.9. The lower bound of 50% corresponds to the benchmark
case introduced in Section 4.3.1. The upper bound of 90% is motivated by ongoing industry
trends toward larger offshore turbines. The largest commercially available models currently
reach capacities of around 15 MW (e.g. Vestas V236-15.0 MW1), while prototypes under testing
approach 21.5 MW (e.g. Siemens Gamesa SG 21-276 DD2). Such developments imply that
future layouts may accommodate fewer but larger turbines, leading to higher occupancy levels
in down-selection scenarios. The chosen range therefore reflects both the reference benchmark
and realistic future design conditions.

4.4.2.2 Test Case B: Effect of Variable CT

Test Case B extends Test Case A by introducing a modified turbine model with a variable thrust
coefficient curve. This curve was generated using PyWake’s CubePowerSimpleCt function and
is shown in Fig. 4.17. Compared to the constant CT used in the benchmark and Test Case A,
this formulation provides a more realistic representation of turbine aerodynamics.

For consistency with the methodology described in previous sections, the corresponding mul-
tidimensional power and CT curves are generated and used by all strategies. An example of
these multidimensional curves is shown in Fig. A.3.

1https://www.vestas.com/en/energy-solutions/offshore-wind-turbines/V236-15MW
2https://www.rinnovabili.net/business/energy/wind-turbine-sg-21-276-dd-hits-21-5-mw-in-

denmark

https://www.vestas.com/en/energy-solutions/offshore-wind-turbines/V236-15MW
https://www.rinnovabili.net/business/energy/wind-turbine-sg-21-276-dd-hits-21-5-mw-in-denmark
https://www.rinnovabili.net/business/energy/wind-turbine-sg-21-276-dd-hits-21-5-mw-in-denmark
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Figure 4.17: Power (left) and CT (right) curves of the IEA-37 3.35 MW with variable CT .

4.4.2.3 Test Case C: Effect of Power Density
Test Case C extends Test Case B by evaluating the impact of the power density of the farm,
expressed in MW/km2. Three configurations are considered, corresponding to a high-density
(close-packed), original, and low-density (spaced-out) layout. The available positions for these
configurations are shown in Fig. 4.18, with key parameters summarized in Table 4.10.

4500 m

6000 m

7500 m

Figure 4.18: Available positions for the close-packed (left), original (middle), and spaced-out
farms (right).

Table 4.10: Summary of farm parameters for Test Case C.

Description Diameter [m] Available
Positions

Available Power
Density [MW/km2]

Minimum Distance
Between WTs

Close-Packed 4500 64 13.48 3.88D
Original 6000 64 7.58 5.17D

Spaced-Out 7500 64 4.85 6.46D
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4.4.2.4 Test Case D: Effect of Number of Available Positions
Test Case D extends Test Case B by varying the number of available turbine positions. Three
layouts are considered, containing 36, 64, and 94 predefined positions, obtained by removing
the outer ring, using the reference configuration, or adding an additional ring of turbines. For
each layout, occupancy levels between 50% and 90% are tested, consistent with the approach
in Test Case A. The layouts are shown in Fig. 4.19, with their parameters summarized in
Table 4.11, and the corresponding number of wind turbines for each occupancy level is reported
in Table 4.12.

4500 m
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7500 m

Figure 4.19: Available positions for compact (left), original (middle), and expanded farms
(right).

Table 4.11: Summary of farm parameters for Test Case D.

Description Diameter [m] Available
Positions

Available Power
Density [MW/km2]

Minimum Distance
Between WTs

Compact 4500 36 7.58 5.77D
Original 6000 64 7.58 5.17D

Expanded 7500 94 7.13 5.17D

Table 4.12: Occupancy levels and corresponding number of wind turbines for Test Case D.

Occupancy [%] Compact Original Expanded
50 18 32 47
60 22 38 56
70 25 45 66
80 29 51 75
90 32 58 85
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4.4.2.5 Test Case E: Effect of Scaled IEA-55 Layout
The final Test Case E evaluates the strategies on a more realistic layout derived from the
IEA-55 reference site of Kainz et al. [21]. This site features a regular grid arrangement of
turbine positions, designed originally for larger turbines. To ensure comparability with the
IEA-37 benchmark, the layout is uniformly scaled such that the minimum spacing between
turbines matches that of the IEA-37 farm (5.17D). The original and scaled layouts are shown
in Fig. 4.20.
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Figure 4.20: Available positions for the original IEA-55 layout (left) and the scaled version
used in Test Case E (right). Turbine diameters not shown to scale.

Table 4.13: Occupancy levels and corresponding number of wind turbines for Test Case E.

Occupancy [%] Wind Turbines
50 37
60 44
70 52
80 59
90 67
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4.4.3 Results and Discussion
Based on the benchmark and the additional test cases introduced in Sections 4.3.1 and 4.4.2,
the performance of the three strategies is now evaluated to highlight how they compare across
increasingly complex scenarios. The results are presented and discussed in Sections 4.4.3.1
to 4.4.3.6.

4.4.3.1 Benchmark
Figure 4.21 compares the AEP, number of function calls, and computational time required by
each optimization strategy at 50% occupancy. Greedy Addition achieves the highest AEP, fol-
lowed closely by the Gradient‐Based method, with Greedy Removal trailing behind. Although
both greedy heuristics execute over an order of magnitude more PyWake AEP evaluations
than the Gradient‐Based approach, their actual times differ by only a factor of two. The Gra-
dient‐Based method is roughly 50% faster than Greedy Addition, while Greedy Removal takes
about 50% longer.

The reason for the discrepancy between function calls and computational time is due to how
the calls are counted, as only the PyWake evaluations for AEP are included, while other time-
consuming operations are not. Additionally, although Greedy Addition requires more function
calls than Greedy Removal, it takes less time overall. This is because, at the start of Greedy
Addition, only a few turbines are in place, making the AEP evaluations faster. In contrast,
Greedy Removal begins with a nearly full layout, so each PyWake call involves more complex
wake interactions and takes longer to compute.
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Figure 4.21: AEP (left), function calls (center), and computational time (right) for 50%
occupancy using the three optimization strategies.

The AEP achieved by each strategy is directly linked to the layout it produces. Figure 4.22
shows the resulting layouts from the three optimization strategies. Overall, the layouts appear
quite similar. All methods place three turbines near the center and distribute the rest around
the edges of the farm. This pattern is reasonable, as turbines positioned near the boundaries
are less affected by wakes from other turbines and can capture more wind. Interestingly, the
Greedy Addition strategy is the only one that leaves the central position empty. This small
difference might reduce wake effects in the core of the layout and could help explain why it
achieves the highest AEP.
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Figure 4.22: Resulting layouts for 50% occupancy using the three optimization strategies.

Given the complexity of wake interactions and the number of design variables, it is challenging
to attribute performance differences to individual placement decisions. Therefore, subsequent
sections will focus on AEP trends rather than detailed layout comparisons.

In summary, at 50% occupancy, Greedy Addition produces the highest AEP, the Gradi-
ent‐Based method offers the best compromise between AEP and runtime, and Greedy Removal
performs worst on both metrics.

4.4.3.2 Test Case A: Effect of Occupancy
In this test case, the number of turbines is increased from 50% to 90% occupancy by placing
more turbines in the available positions, which leads to an increase in AEP. This overall rise
is much larger than the differences between optimization strategies, making these differences
difficult to distinguish when plotted on the same scale. To enable a clearer comparison, the
AEP results are normalized by the best value achieved at each occupancy level, defined as:

AEPbest = max(AEPGB, AEPAdd, AEPRem) (4.5)
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Figure 4.23: Normalized AEP (left), function calls (middle) and runtime (right) for the three
strategies at various occupancy levels.

Figure 4.23 shows the normalized AEP, the number of function calls, and the computational
time for each method across different occupancy levels. While it remains difficult to pre-
cisely explain why certain layouts outperform others, some trends are clear. Greedy Addition



4.4 Comparison of Selected Strategies 43

consistently finds the highest AEP across all occupancy levels. The Gradient-Based method
performs second-best for 50% and 60%, and matches the best result at 70%. Greedy Removal
underperforms at lower occupancies but eventually matches the best AEP beyond 60%.

As expected, both Greedy strategies require roughly an order of magnitude more function
calls than the Gradient-Based method. All three show a downward trend in function calls as
occupancy increases, which can be explained by the reduced number of possible layouts. As
illustrated in Fig. 4.24, the number of possible layouts drops sharply with higher occupancy,
which effectively reduces the complexity of the optimization problem.
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Figure 4.24: Number of possible layouts against occupancy.

Computational time shows a similar trend to AEP, decreasing as occupancy increases. Among
the three strategies, the Gradient-Based approach is consistently the fastest. This is because it
requires roughly an order of magnitude fewer PyWake calls than the Greedy methods. However,
the number of function calls alone does not fully explain the runtime behaviour. As discussed
earlier, only AEP evaluations via PyWake are counted as function calls, whereas other time-
consuming operations are excluded from this count.

The two Greedy variants display opposite patterns depending on occupancy. Greedy Addition
is faster at 50–70% occupancy because it begins with only a few turbines, making each early
AEP evaluation very cheap. On the other hand, Greedy Removal becomes faster at 80–90%
occupancy, as it needs to remove only a handful of turbines from an almost full layout, greatly
reducing the total number of expensive wake calculations. Because computational time is the
more relevant metric for strategy selection, plots of function calls are omitted in the following
sections.

In summary, Greedy Addition produces the highest AEP across occupancy levels, the Gra-
dient‐Based method is the quickest, and the Greedy Removal match the results of Greedy
Addition for high occupancies but for slightly lower runtimes.
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4.4.3.3 Test Case B: Effect of Variable CT

In this test case, the number of turbines again increases from 50% to 90% occupancy, but a
variable CT turbine is used. Figure 4.25 presents the normalized AEP and computational time
for each method across occupancy levels. The results are nearly identical to those from the
constant CT turbine of Test Case A.

This similarity arises because the inflow is uniform across all directions, with a constant wind
speed of 9.8 m/s corresponding to the rated speed of the IEA-3.35 MW turbine. Below this
rated speed, the variable CT curve aligns closely with the constant one, so that any wake-
induced wind speed deficits remain within the same flat region of the thrust curve. As a result,
wake losses and power production are nearly identical, and the resulting optimization surface
of the objective function changes very little. Consequently, all three optimization strategies
converge to almost identical results.
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Figure 4.25: Normalized AEP (left) and computational time (right) for the three strategies
at various occupancy levels, using a variable CT wind turbine.
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Figure 4.26: Difference in AEP (left) and computational time (right) between variable and
constant CT wind turbines at various occupancy levels, for the different approaches.

To discern the differences in AEP and computational time between the variable and constant



4.4 Comparison of Selected Strategies 45

CT cases, Fig. 4.26 is created. The computational time is pretty similar across strategies,
with differences less than 2.5% and no clear pattern across occupancy levels. Therefore the
computational times seem to be unaffected by the use of the variable CT turbine and the slight
differences can be attributed so small differences in computation conditions.

Tiny differences in AEP are noticeable since the CT curve deviates slightly from the constant
one near rated speed, altering wake strength and thus power production. The unusually larger
AEP gap at 80% occupancy for the Gradient-Based method occurs because the variable CT

turbine leads the optimizer to a slightly different local optimum. The two layouts are slightly
different, as illustrated in Fig. 4.27, which explains the larger performance discrepancy at that
occupancy level.

Constant CT (80%) Variable CT (80%)

Figure 4.27: Resulting layouts using the Gradient Based approach for 80% occupancy, using
a variable CT (left) and constant CT (right) wind turbine. Yellow dots mark selected positions
and red crosses mark rejected positions.

In summary, using a variable CT turbine yields results that are nearly identical to those of Test
Case A, primarily because the inflow is uniform across directions and fixed at the rated wind
speed of 9.8 m/s. Minor discrepancies, such as the larger AEP gap for the Gradient-Based
method at 80% occupancy, highlight the higher sensitivity of gradient-based optimization to
small differences in the CT curve. In contrast, the Greedy strategies are less affected by such
subtle aerodynamic changes, as their performance is driven more by the discrete placement
logic than by continuous variations in the turbine model. If a broader wind speed distribution
had been considered instead, the three strategies would likely have produced more distinct
results compared to the constant CT case. Nonetheless, the variable CT turbine is used in all
subsequent test cases to provide a more realistic aerodynamic representation.
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4.4.3.4 Test Case C: Effect of Power Density
In this test case, turbine count again increases from 50% to 90% occupancy, but three farm
power densities are compared. As expected, lower density reduces wake overlap and increases
AEP. Since this effect is independent of the optimization strategy, the detailed results are
provided in Fig. A.7, while Figure 4.28 focuses on the normalized AEP of each strategy across
all occupancies and densities.

Greedy Addition appears to always find the best AEP regardless of density. This is because
adding turbines one-by-one at the location of maximum AEP gain, makes this method adapt
effectively to any density. A lower density simply increases each turbine’s contribution, but
the selection rule remains valid and yields the best incremental AEP gain.

Greedy Removal also appears to find the best AEP regardless of density, but primarily at
higher occupancies (beyond 60%). This is for the same reason as Greedy Addition. The reason
it struggles at low occupancy is because it must remove many turbines from a fully packed
layout with strong, overlapping wakes, so each myopic “best removal” decision compounds
errors and leads away from the best layout.

Gradient–Based comes closer to the best AEP as density decreases. This is because lower
density produces a smoother, less rugged optimization surface, so SLSQP’s gradient estimates
and linear approximations become more accurate, allowing the continuous xi variables to
converge more reliably to the best 0–1 solution.
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Figure 4.28: Normalized AEP versus occupancy for all strategies under three farm power
density configurations.

Figure 4.29 shows that density has little direct effect on overall computational time. The
occupancy-driven patterns observed in Test Case A are again visible: Gradient-Based remains
the fastest overall, Greedy Addition is quicker at low occupancies, and Greedy Removal at
high occupancies.
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Figure 4.29: Computational time versus occupancy for all strategies under three farm power
density configurations.

To help understand how power density affects each method separately, Fig. 4.30 is provided.
For the Gradient–Based method, lower density reduces wake interactions and smooths the
optimization surface, requiring fewer PyWake evaluation and making the gradient steps more
reliable. This yields a clear speed-up at lower occupancies, although the benefit tapers off as
more turbines have to be placed.

By contrast, both Greedy Addition and Greedy Removal are driven almost entirely by how
many AEP evaluations they perform, so density has little direct effect on their runtimes. The
noticeable spike in Greedy Addition at 60% occupancy is likely due to the specific interaction
between the layout, distance between turbines, and windrose at that density. It reflects the
nature of the problem rather than a consistent trend.
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Figure 4.30: Computational time of each strategy separately.

In summary, Greedy Addition consistently delivers the highest AEP across all power densities
and occupancy scenarios, thanks to its one-by-one placement strategy. Greedy Removal catches
up at high occupancies, where only a few removals are needed. Gradient-Based remains the
fastest overall and benefits most from decreased density, as reduced wake interactions yield a
smoother optimization surface and quicker convergence.
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4.4.3.5 Test Case D: Effect of Number of Available Positions
In this test case, turbine count again increases from 50% to 90% occupancy, but now the three
farms have the same power density while having a different number of available positions: 36,
64 and 94. Figure 4.31 presents the normalized AEP of each strategy across all occupancies
and available position sets. It should be noted that the Gradient-Based approach uses 100
multistarts for all three farm sizes, while the Greedy Heuristics use as many multistarts as the
number of available positions (i.e. 36, 64 and 94).

Both Greedy strategies generally succeed in finding the best AEP across all three farm sizes.
However, Greedy Removal performs noticeably worse at 50% and 60% occupancy in the original
farm with 64 positions, while it performs well in the larger farm where wake interactions are
even stronger. This suggests that its underperformance is not solely due to wake effects, but
likely stems from a compounding of suboptimal “best removal” decisions that are sensitive to
the specific layout and occupancy level.

In contrast, the Gradient-Based method consistently struggles to find the best AEP, especially
in the largest farm with 94 available positions. One might argue that the increasing number
of multistarts used by the Greedy methods (equal to the number of candidate positions) gives
them an unfair advantage over the Gradient-Based approach, which uses a fixed number of
100. However, even in the smallest farm with 36 positions, the Gradient-Based method only
finds the best AEP at 50% occupancy, while both Greedy strategies, with just 36 multistarts,
succeed across all occupancies. This suggests that the Gradient-Based approach explores the
design space less effectively and is more prone to becoming trapped in local optima compared
to the Greedy Heuristics.
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Figure 4.31: Normalized AEP versus occupancy for all strategies under three sets of available
positions.

Figure 4.32 shows the computational time of each method across all occupancies and farm
sizes. As expected, increasing the number of candidate positions increases runtime for every
strategy, due to both the larger design space and the greater number of wake interactions per
AEP evaluation. It appears that the computational time of the Greedy Heuristics grows faster
with farm size compared to the Gradient-Based approach. This is because of two reasons: (i)
the choice to keep the number of multistarts equal to the number of available positions for
the former strategies, (ii) the Gradient-Based optimizer exploits derivative information and to
converge in few iterations.
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Figure 4.32: Computational time versus occupancy for all strategies under three sets of
available positions.

Additionally, one can observe that the slope of the computational time versus occupancy level
increases as the farm size increases. This makes sense as the number of possible layouts drops
more sharply the greater the number of available positions (see Fig. 4.24), so runtime drops
off faster as occupancy increases.
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Figure 4.33: Number of layout combinations against occupancy per farm size.

In summary, both Greedy strategies consistently find the best AEP across farm sizes, while
the Gradient-Based method struggles, especially in larger farms. This highlights the Greedy
approaches’ stronger ability to explore the design space effectively, though at the cost of higher
computational time as farm size grows. However, Gradient-Based shows a clear advantage in
terms of scalability.
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4.4.3.6 Test Case E: Effect of Scaled IEA-55 Layout
In this test case, the number of turbines again increases from 50% to 90% occupancy, but
this time a scaled-down version of the IEA-55 layout is used, containing 74 available positions.
Figure 4.34 shows the normalized AEP and computational time of each method across all
occupancy levels. The results are broadly consistent with the previous test cases.

Greedy Addition achieves the best AEP at all occupancy levels, while Greedy Removal performs
slightly worse at 50% occupancy, likely due to a compounding of suboptimal removal decisions
that depend on the initial layout and turbine density. The Gradient-Based method never finds
the best AEP, reflecting its poorer exploration of the design space and greater tendency to get
stuck in local optima. The dip at 70% occupancy likely stems from the specific characteristics
of the IEA-55 layout at that turbine count.

As for computational time, the same trends that were discussed before are observed. Gradient-
Based remains the fastest across all occupancies, while Greedy Addition is quicker at lower
occupancies and Greedy Removal is faster at higher ones.
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Figure 4.34: Normalized AEP (left) and computational time (right) for the three strategies
at various occupancy levels, using the 74 available positions of the scaled-down IEA-55 farm.

In summary, Greedy Addition remains the most effective in terms of AEP, while Gradient-
Based is consistently the fastest but least reliable. Greedy Removal performs well overall but
is sometimes sensitive to layout and occupancy interactions.
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4.5 Discussion
This chapter examined the down-selection problem in three stages: a broad screening and rank-
ing of candidate algorithms, a detailed tuning of the shortlisted strategies, and a comparative
evaluation across multiple test cases. While the preceding sections provided results at each
stage, the present discussion synthesises these findings to identify general lessons and broader
implications.

The literature-based ranking in Section 4.2 showed that Gradient-Based optimization and the
Greedy Heuristic are the most promising strategies for down-selection. Their strengths are
complementary: the Gradient-Based approach scales well to larger farms, while the Greedy
Heuristic requires little parameter tuning and is straightforward to implement. Metaheuristics
such as GA, BPSO, and VNS were penalised by their reliance on hyperparameter calibration
and weaker scalability, and exact formulations like MILP proved less suitable in this setting
because they require linearisation of the objective. These findings emphasise that the choice
of strategy depends not only on theoretical performance but also on practicality and usability.
At the same time, the wider literature suggests that different contexts can shift the balance.
For example, robust optimization with Pareto-front exploration requires computational speed,
making pre-computation of wakes and gradient-based approaches particularly attractive. Con-
versely, if linearisation is acceptable, exact methods such as MILP or QIP offer the guarantee
of optimality, provided they are handled by experienced users. When ease of implementation
is prioritised, genetic algorithms remain appealing, especially since ready-to-use implementa-
tions are available in frameworks like TOPFARM, though their effectiveness depends on careful
tuning.

The tuning study in Section 4.3 highlighted important sensitivities in strategy performance.
For the Gradient-Based approach, the observation that no interpolation outperformed the
tested smoothing functions indicates that discretisation aids should be applied with caution,
as they may reduce solution quality. Likewise, the limited influence of driver tolerance and
multistarts on AEP demonstrates that default parameter settings can be unnecessarily con-
servative, resulting in wasted computational effort. For the Greedy Heuristic, tuning revealed
that refining by ascending individual AEP contribution (Greedy Addition) can achieve similar
results with fewer function calls than the baseline strategy, while removing turbines from a
full layout (Greedy Removal) offers a promising alternative. The strong dependence of the
final outcome on the starting solution confirmed that a multistart approach is essential to
ensure better exploration. Although the number of multistarts was kept relatively high in this
study, the results showed that comparable AEP levels could be achieved with substantially
fewer runs, with the number of function calls scaling approximately linearly with the number
of starts. Together, these results suggest that careful parameter selection is at least as critical
as algorithm choice in shaping down-selection performance.

The comparative test cases in Section 4.4 confirmed and extended these insights. Table 4.14
summarises the relative performance of the three algorithms across all cases, illustrating how
the trade-off between AEP and runtime persists under different problem conditions.
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Table 4.14: Overview of relative performance of Gradient-Based (GB), Greedy Addition (GA)
and Greedy Removal (GR) across the benchmark (BM) and all test cases.

Case Effect of AEP Time Notable Observations
BM C(64, 32) GA GB Confirms general trade-off
A Occupancy GA GB GR competitive at high occupancy
B Variable CT GA GB GB highly affected by CT

C Power Density GA GB High density slows down GB
D Available Positions GA/GR GB GB easily trapped but scalable
E Scaled IEA-55 Layout GA/GR GB GB never reached best AEP

The results across the benchmark and test cases highlight a consistent trade-off between accu-
racy and computational cost. The Gradient-Based approach was always the fastest and scaled
well with problem size, but it was unable to reliably achieve the highest AEP and often became
trapped in local optima. Greedy Addition reliably delivered the highest AEP, yet at high oc-
cupancies Greedy Removal achieved comparable solutions in less time by eliminating turbines
from a full layout rather than constructing one sequentially. These patterns indicate that
no single strategy dominates across all conditions. Instead, their suitability depends on the
problem context: Gradient-Based methods are appealing when runtime is critical, Greedy Ad-
dition is most effective for maximising AEP in low-occupancy scenarios, while Greedy Removal
is preferable in high-occupancy cases.

Taken together, the findings of ranking, tuning, and comparative evaluation suggest that there
is no universally superior algorithm. Instead, the performance of each strategy depends strongly
on problem characteristics such as occupancy level, farm size, and available computational
budget. The broader implication is that algorithm selection in down-selection should not be
treated as a one-time choice but as a context-dependent decision. Furthermore, the consistent
influence of tuning parameters indicates that future applications should invest in systematic
calibration to unlock the full potential of each method.

In conclusion, this chapter shows that while greedy heuristics provided the most effective means
of maximising energy yield within the tested scenarios, their computational cost cannot be
ignored. Gradient-based relaxations offer a scalable alternative when runtime is the dominant
constraint, but their accuracy is limited. The interplay between algorithm choice, tuning, and
problem conditions is therefore central to effective down-selection, and the insights from this
chapter form the basis for the subsequent analysis of the broader impacts in Chapter 5



CHAPTER 5
Impact of Down-Selection (RQ2)

This chapter addresses the second research question (RQ2) of the thesis. It begins with an
overview of the methodology in Section 5.1, followed by a description of the experimental
setup in Section 5.2. The chapter concludes with a presentation and discussion of the results
in Section 5.3. For reference, RQ2 is stated as follows:

RQ2. What is the impact of down-selection on the final wind farm layout?

1. How does the performance of the down-selected farm compare to an optimal layout
designed directly for higher-rated turbines?

2. How does the performance of the down-selected farm change when the initial layout
already satisfies the minimum spacing for higher-rated turbines?

3. How does the comparison between down-selected and directly optimized farms change
when all layouts are generated using a larger minimum spacing constraint?

4. How does down-selection influence the spatial distribution of turbines within the layout?

5.1 Methodology
To investigate the effects of down-selection, optimal layouts must first be established for both
the lower-rated and higher-rated turbines. The layout of the smaller-rated turbines defines the
set of candidate positions for the down-selection procedure, while the layout of the larger-rated
turbines serves as a benchmark for comparison.

Once again, the IEA-55 offshore site is selected for its publicly available data. While the
literature provides both regular and irregular layouts for 74 IEA-10 MW turbines at this
site (see Kainz et al. [21]), no equivalent layouts exist for turbines of different ratings with
comparable installed capacity. Therefore, two new optimized layouts are created: one with
N1 = 74 of the IEA-10 MW turbines (740 MW) and one with N2 = 50 of the IEA-15 MW
turbines (750 MW). The small difference in installed capacity (≈1.3%) is considered acceptable
but should be kept in mind when comparing AEP results.

The general procedure for RQ2 is as follows. First, an optimal layout is generated for the
10 MW case. A down-selection procedure is then applied to obtain reduced layouts suitable
for 15 MW turbines, subject to minimum spacing constraints (Smin,1, Smin,2). These down-
selected layouts are compared against directly optimized 15 MW layouts in terms of energy
production and turbine distribution within the layout. This procedure is repeated under three
different spacing assumptions, which form the basis of the test cases described below.
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The general procedure for RQ2 is illustrated in Fig. 5.1. For each turbine rating, a grid
of candidate positions is first generated with the prescribed minimum spacing constraints
(Smin,1, Smin,2). From this grid, multiple initial layouts are produced and refined through
continuous optimization to obtain a set of candidate solutions. The best-performing layout
from this set is retained as the optimal layout for that turbine size.
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Figure 5.1: General procedure for evaluating the impact of down-selection (RQ2).

In the next stage, the optimal layout for the 74 lower-rated turbines serves as the pool of
available positions for the down-selection procedure. The Greedy Heuristic is applied across
multiple starts (as many as the available positions, i.e. 74) to generate 50-turbine layouts that
satisfy the minimum spacing constraint, and the layout with the highest AEP is retained.

Finally, the resulting down-selected layout is compared against the directly optimized 15 MW
layout. Each block of this process is described in more detail in the following subsections.

5.1.1 Minimum Spacing Constraint and Test Case Definition
The minimum spacing constraint not only governs layout feasibility but also provides the basis
for defining the three test cases examined in RQ2. The constraint is expressed as a minimum
separation distance Smin between turbines, relative to rotor diameters. Here, D1 = 198 m
and D2 = 240 m denote the rotor diameters of the IEA-10 MW and IEA-15 MW turbines,
respectively.

There is no universally accepted value for Smin. For example, the IEA-55 reference layout
applies Smin = 2D [21], whereas other studies use values exceeding 5D depending on objectives
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and modeling assumptions [46]. In this work, the selected values balance the scope of this work
and the limitations and the reliability of the engineering wake model.

Three test cases are defined in Table 5.1. Test Case A provides the baseline for RQ2.1 by
comparing down-selected and directly optimized layouts under moderate spacing. Test Case
B addresses RQ2.2 by ensuring the initial 10 MW layout already meets the 15 MW spacing
requirement. Test Case C addresses RQ2.3 by examining the effect of wider separations. The
effect of down-selection on the spatial distribution of turbines (RQ2.4) is examined within each
of the three test cases.

Table 5.1: Minimum spacing constraints for each test case. Smin,1 and Smin,2 denote the
spacing applied to the 10 MW and 15 MW turbines, respectively.

Test Case Smin,1 Smin,2

A 3.5D1 3.5D2
B 3.5D2 3.5D2
C 5.0D1 5.0D2

With these spacing assumptions defined, the following subsections describe how optimal layouts
are generated for each turbine rating and how the down-selection procedure is applied.

5.1.2 Optimal Layouts
To generate the optimal layouts used as benchmarks in RQ2, a two-stage procedure is followed:
(i) an initial placement of turbines using the Smart-Start heuristic (explained below), and
(ii) refinement through continuous optimization with SLSQP. An illustrative example of this
process is shown in Fig. 5.2.

Hexagonal Grid
Spacing: 3.5D1

Smart-Start
AEP: 3464.19 GWh

SLSQP
AEP: 3478.16 GWh

Figure 5.2: Example of the procedure used to generate one of the candidate layouts for the
optimal 10 MW case under a 3.5D1 spacing constraint.
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First, hexagonal grids of candidate points are generated within the farm boundaries using
spacings of Smin,1 and Smin,2 for the IEA-10 MW and IEA-15 MW turbines, respectively.
Hexagonal grids are chosen over square ones because they maintain more uniform spacing
between adjacent turbines in all directions, reducing the likelihood of directional bias in wake
interactions. The grid resolution is set equal to the minimum spacing constraint, as a finer
resolution would substantial increase the computational cost.

From each grid, turbine positions are selected using the Smart-Start algorithm provided in
TOPFARM. Smart-Start is a greedy heuristic that functions similarly to Greedy Addition
without refinement (see Strategy A in Table 4.5): it sequentially places turbines in the locations
that maximize AEP given the turbines already positioned. The algorithm includes a parameter
controlling the probability of making random instead of greedy selections. In this work, that
random selection percentage is set to zero, following Valotta Rodrigues et al. [46], to ensure
reproducibility and to avoid introducing unnecessary stochastic variation.

Once the desired number of turbines has been placed with Smart-Start, the layout is refined
through continuous optimization using the SLSQP algorithm. As in RQ1, SLSQP is chosen
for simplicity and consistency with the gradient-based optimization approach. The optimizer
is run for up to 1000 iterations, with a convergence tolerance of 10−3 and an expected cost of
10−6. These settings were adopted from the IEA-55 benchmark GitHub repository, since they
are not explicitly detailed in the corresponding publication.

Because SLSQP is highly sensitive to initial conditions, the Smart-Start + SLSQP procedure
is repeated 50 times with different seeds. While Smart-Start is deterministic for a given seed
when the random selection percentage is zero, changing the seed alters the position of the first
turbine, resulting in different initial layouts. This approach allows a controlled exploration of
multiple starting configurations while maintaining reproducibility. Among these 50 runs, the
layout with the highest AEP is retained as the optimal solution for both the 74 × 10 MW and
50 × 15 MW configurations.

The choice of 50 repetitions represents a balance between exploration and computational ef-
fort. A smaller number of runs would risk missing promising configurations, since SLSQP can
converge to different local optima depending on the starting layout. Conversely, increasing
the number far beyond 50 yields diminishing returns while significantly extending runtime.
Preliminary testing indicated that 50 runs provided sufficient diversity to reliably capture
high-quality layouts while keeping the analysis computationally manageable.

5.1.3 Down-Selection
The 74 optimal turbine positions generated for the 10 MW case are considered as the candidate
locations for the down-selection process. Since RQ1 demonstrated that the Greedy Heuristics
consistently outperforms the Gradient-Based method in terms of AEP (see Table 4.14), the
first approach is selected for RQ2.

For this case, 50 turbines must be placed among 74 available positions, resulting in an occu-
pation rate of approximately 68%. As shown in Section 4.4.3.6, where the same site was used,
Greedy Addition and Greedy Removal achieved very similar performance in terms of both AEP
and computational time. Since neither approach consistently outperforms the other, both are
retained here. This allows potential differences that may arise once the minimum distance



5.1 Methodology 57

constraint is introduced to be observed, and provides continuity with the comparison carried
out in RQ1.

The original implementation of the algorithms does not enforce a minimum distance between
turbines, which would result in infeasible layouts in RQ2. To address this, a modification of
the algorithms is necessary. While such a modification is more straightforward for Greedy
Addition than for Greedy Removal, both are adapted in an equivalent way to avoid ruling out
one prematurely and to ensure that any differences in performance can be attributed solely to
the choice of Addition versus Removal.

Details on how the minimum distance constraint is incorporated are provided in Section 5.1.3.1,
while the relative performance of Greedy Addition and Greedy Removal is presented in Sec-
tion 5.1.3.2.

5.1.3.1 Incorporation of Minimum Distance Constraint
The modifications to the Greedy Heuristic are introduced to ensure feasibility of the resulting
layouts. Stage 1 of the original algorithms, where turbines are either added (Addition) or
removed (Removal) one by one, remains unchanged. A new intermediate step, referred to as
Stage 1.5, is introduced to handle any violations of the minimum distance constraint before
proceeding to the final refinement stage (Stage 2). By applying the same additional step
to both algorithms, the comparison remains consistent: the only methodological difference
between them lies in whether turbines are initially added or removed.

In Stage 1.5, any turbines that violate the minimum distance constraint are first removed from
the layout. The algorithm then attempts to reinsert them one-by-one into available positions
that comply with the constraint. For each turbine, the location yielding the highest increase
in AEP is selected. This process continues until the desired number of turbines is placed. If no
constraint violations are present in the layout generated by Stage 1, then Stage 1.5 is skipped
entirely. However, if Stage 1.5 fails to restore a layout with the full number of turbines, the
constraint-violating layout from Stage 1 is passed directly to Stage 2, in the hope that the
refinement process will resolve the remaining violations.

Stage 2 (refinement) then attempts to improve the layout by relocating individual turbines.
First, turbines are sorted in ascending order based on their individual AEP contributions.
Each turbine is then considered for relocation to all empty candidate positions. The key
modification introduced here is that only positions satisfying the minimum distance constraint
are considered during this step. This additional check ensures that the refined layout either
maintains validity or resolves any remaining violations from previous stages. For each turbine,
the position that results in the highest increase in total AEP is selected. The procedure is
repeated for all turbines and continues iteratively until no further improvements are observed.

5.1.3.2 Greedy Addition or Greedy Removal?
To evaluate the two variants of the Greedy Heuristic under spacing constraints, both the Greedy
Addition and Greedy Removal algorithms were applied within RQ2 Test Case A, which uses a
minimum spacing of 3.5D. In this setting, the down-selection algorithm is tested only on the
subset-selection step, i.e. generating a 50-turbine layout from the 74 available positions.
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As shown in the distribution of AEP values across independent runs in Fig. 5.3, the performance
of the two methods is generally comparable. However, Greedy Addition achieves a slightly
higher maximum AEP, and is therefore chosen as the down-selection method for the remainder
of the analysis.
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Figure 5.3: Comparison of AEP values from Greedy Addition and Removal across indepen-
dent runs using the constraint-respecting algorithm.

The final layout is selected using a two-step criterion: (i) prioritize layouts with the fewest
spacing violations, and (ii) among those, select the one with the highest AEP. This means
that if feasible layouts exist (zero violations), the chosen solution is both high-performing and
feasible. If no perfectly feasible layout is found, the algorithm still returns the best-performing
solution among those with minimal violations.

A more detailed comparison between the constraint-respecting algorithm and the original un-
constrained version is included in Appendix B.2.

5.1.4 Additional Considerations
As in the original work by Kainz et al. [21], wake effects are evaluated over a discrete grid of wind
conditions, using increments of 1 m/s in wind speed and 1◦ in wind direction. This resolution
provides a sufficiently detailed characterization of the inflow while keeping computational cost
manageable, and is consistent with common practice in large-scale wind farm layout studies.
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5.2 Setup
To answer RQ2, the IEA-55 reference offshore site is selected due to its publicly available
wind resource data, as described by Kainz et al. [21]. The corresponding wind rose used for
this study is shown in Fig. 5.4. While the sectoral Weibull distributions and corresponding
frequency data are not reproduced here, they can be found in the original publication.
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Figure 5.4: Wind rose from the IEA-55 reference site.

The turbines used in this study are the IEA-10 MW and IEA-15 MW reference models. Their
power and thrust coefficient (CT ) curves are shown in Fig. 5.5, with data sourced from Bor-
tolotti et al. [9] and Gaertner et al. [15], respectively. An overview of their rotor diameters
and hub heights is provided in Table 5.2.
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Figure 5.5: Power (left) and CT (right) curves for the IEA-10 MW and IEA-15 MW reference
turbines.
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Table 5.2: Diameters and hub heights of the IEA-10 MW and IEA-15 MW reference turbines.

# Turbine Diameter (Di) [m] Hub Height (zref,i) [m]
1 IEA-10 MW 198 119
2 IEA-15 MW 240 150

To account for differences in height between the wind resource data and the hub height of the
IEA-15 MW, the wind speed distributions are adjusted using the power law:

U(z) = Uref

(
z

zref

)α

(5.1)

The reference height and shear exponent for the IEA-55 site are zref = 119 m and α = 0.08,
respectively. This adjustment is applied to the scale parameters of the Weibull distributions
in each wind direction, using the PowerShear functionality in PyWake. The directional fre-
quencies (i.e. the wind rose) remain unchanged, as they are assumed to be independent of
height.

The optimal layouts used for Test Cases A, B, and C, generated following the procedure in
Section 5.1.2, are shown in Figs. 5.6 to 5.8. These layouts define the starting point for the
down-selection procedure and are therefore considered part of the setup, while the subsequent
analysis focuses on the impact of down-selection itself.
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Figure 5.6: Optimal layouts for Test Case A. Constraint radii drawn to scale.
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Figure 5.7: Optimal layouts for Test Case B. Constraint radii drawn to scale.
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5.3 Results
The results of the three Test Cases for RQ2 are presented below. To enhance understanding and
maintain coherence, the layouts are displayed in a format that mirrors the previously presented
flowcharts. Additionally, the percentage of wind turbines located along the perimeter of each
farm is shown in the bottom right corner of each figure. Also, the following term is used:

Untapped Energy Potential =
AEPOpt, 15 MW − AEPDown, 15 MW

AEPOpt, 10 MW
× 100 (5.2)

5.3.1 Test Case A: Using a 3.5D Spacing

Optimal 74× 10 MW
(using 3.5D1) | 3478.16 GWh

Violating

Non-Violating

Optimal 50× 15 MW
(using 3.5D2) | 3656.64 GWh

Turbine

Boundary

Down-Selected 50× 15 MW
(from 3.5D1) | 3652.70 GWh

Empty

Would Violate

Would Not Violate

70.3% 74.0%

78.0%

Percentage of Wind Turbines
on the Perimeter

Figure 5.9: Optimal and down-selected layouts for Test Case A. Positions left empty are
classified as potentially violating or not. Constraint radii drawn to scale.
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The results from using a minimum spacing constraint of 3.5D can be found in Fig. 5.9. As
expected, all three layouts place the majority of wind turbines along the perimeter of the
farm to maximize exposure to clean inflow wind. Notably, the optimal layouts show the
highest concentration of turbines in the bottom-left side of the boundary, which aligns with
the predominant wind direction originating from that area.

One can observe a significant difference in AEP of almost 5% between the optimal configura-
tions, as reported in Table 5.3. The slightly higher farm capacity of 750 MW compared to
740 MW explains part of the difference in AEP. However, other factors such as the higher
hub height and the presence of fewer turbines leading to fewer wakes, also contribute to this
significant difference, showcasing the advantage of choosing fewer higher-rated turbines.

Table 5.3: Reduction in AEP compared to optimal 15 MW layout. Values are reported with
high numerical precision to ensure consistency with later tables where differences are smaller.

Layout AEP
[GWh]

Difference
[%]

Optimal 50 × 15 MW 3656.642 –
Optimal 74 × 10 MW 3478.158 -4.881

Down-Selected 50 × 15 MW 3652.696 -0.108

Moving on to the more interesting comparison, one can see that down-selection yields around
0.1% lower AEP compared to the optimal configuration with 15 MW turbines. Depending on
the cost of conducting another seabed survey for the positions of the optimal 15 MW layout
that do not overlap with those already surveyed for the 10 MW layout, and other factors (i.e.
cost of cabling etc.), one can determine whether this untapped energy potential is acceptable.
The reason for the difference in AEP is that despite the down-selected configuration having a
higher percentage of its turbines on the perimeter, the SLSQP optimizer used for the optimal
layout could take advantage of the continuous design domain, thus placing more wind turbines
more favorably. For example, it has manged to place more on the bottom-left side that aligns
with the predominant wind direction. As a side note, one can also observe that the constrained
Greedy algorithm has managed to place all turbines without any violations and has correctly
identified and avoided the two positions (in violet) that would violate the minimum spacing
constraint.
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5.3.2 Test Case B: Using a 3.5D2 Spacing for the 10 MW Layout

Optimal 74× 10 MW
(using 3.5D2) | 3477.05 GWh

Violating

Non-Violating

Optimal 50× 15 MW
(using 3.5D2) | 3656.64 GWh

Turbine
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Down-Selected 50× 15 MW
(from 3.5D2) | 3654.03 GWh

Empty

Would Violate

Would Not Violate

66.2% 74.0%

82.0%

Percentage of Wind Turbines
on the Perimeter

Figure 5.10: Optimal and down-selected layouts for Test Case B. Positions left empty are
classified as potentially violating or not. Constraint radii drawn to scale.

The results for Test Case B, where a minimum spacing of 3.5D2 is applied to the 10 MW layout,
are shown in Fig. 5.10. Similar turbine distribution patterns as in Test Case A can be observed.
However, in this down-selected layout, the Greedy algorithm manages to place more turbines
along the side aligned with the predominant wind direction, and no empty (violet) positions
remain that would have violated the spacing constraint. This is expected, as the starting layout
was already optimized under the stricter 3.5D2 constraint used for the higher-rated turbines.

The untapped energy potential of the down-selected layouts is summarized in Table 5.4. No-
tably, the percentage of perimeter turbines increases from 78% in Test Case A to 82% here,
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and the down-selected layout experiences a small increase in AEP compared to its counterpart
in Test Case A. As expected, this leads to a smaller untapped energy potential when compared
to the optimal 15 MW configuration.

Table 5.4: Untapped energy potential of down-selected layouts for different spacing require-
ments of the 10 MW layouts.

Test Case Optimal 15 MW
AEP [GWh]

Down-Selected 15 MW
AEP [GWh]

Difference
[%]

A 3656.642 3652.696 -0.108
B 3656.642 3654.031 -0.071

The effect of the increased spacing on AEP of the 10 MW layouts is summarized in Table 5.5.
The optimal 10 MW layout shows a slight drop in performance, which is reasonable as the
tighter 3.5D2 constraint gives the optimizer less flexibility to adjust turbine positions, poten-
tially leading to less efficient placements. For instance, the percentage of turbines placed on the
perimeter drops from 70.3% in Test Case A to 66.2% here. In contrast, the down-selected lay-
out benefits from starting with a layout that already respects its minimum spacing constraint,
offering a more suitable starting point for the down-selection process.

Table 5.5: Changes in AEP resulting from increased spacing in the initial 10 MW layout.

Layout Test Case A
AEP [GWh]

Test Case B
AEP [GWh]

Difference
[%]

Optimal 74 × 10 MW 3478.158 3477.051 -0.032
Down-Selected 50 × 15 MW 3652.696 3654.031 0.037

Despite the relative differences being small in this test case, the above results lead to the con-
clusion that taking a small hit on the power production of the lower-rated layout by designing
with the higher-rated spacing in mind, could lead to greater power production if a higher-rated
turbine ends up being used. However, a more rigorous analysis of the costs associated with
each layout should be done before further decisions can be made.
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5.3.3 Test Case C: Using a 5D Spacing

Optimal 74× 10 MW
(using 5D1) | 3477.57 GWh

Violating

Non-Violating

Optimal 50× 15 MW
(using 5D2) | 3656.41 GWh

Turbine

Boundary

Down-Selected 50× 15 MW
(from 5D1) | 3651.18 GWh

Empty

Would Violate

Would Not Violate

67.6% 74.0%

72.0%

Percentage of Wind Turbines
on the Perimeter

Figure 5.11: Optimal and down-selected layouts for Test Case C. Positions left empty are
classified as potentially violating or not. Constraint radii drawn to scale.

The results from using a stricter minimum spacing constraint of 5D can be found in Fig. 5.11.
Again, similar general turbine distribution patterns as in Test Case A can be observed. How-
ever, here it is immediately apparent that the down-selected layout has a greater number of
potentially violating empty positions (in violet) compared to Test Case A. This is logical as,
as the stricter 5D constraint has left less empty space around the wind turbines in the optimal
10 MW layout when compared to Test Case A. Therefore, when the down-selection happens,
there is less empty space to accommodate the spacing constraint of the 15 MW. Additionally,
the reason that all the potentially violating empty positions are located on the side aligning
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with the predominant wind direction is that this is the region where the optimal 10 MW layout
has the highest density of turbines.

The effect of the increased spacing on AEP is summarized in Table 5.6. The optimal 10 MW
layout shows a slight drop in performance, which is reasonable as the tighter 5D constraint
gives the optimizer less flexibility to adjust turbine positions, potentially leading to less efficient
placements. For instance, the percentage of turbines placed on the perimeter drops from 70.3%
in Test Case A to 67.6% here.

Table 5.6: Relative reduction in AEP due to increase in minimum spacing for each layout.

Layout 3.5D
AEP [GWh]

5D
AEP [GWh]

Difference
[%]

Optimal 74 × 10 MW 3478.158 3477.567 -0.017
Optimal 50 × 15 MW 3656.642 3656.412 -0.006

Down-Selected 50 × 15 MW 3652.696 3651.184 -0.041

A similar trend is observed for the optimal 15 MW layout, but this time the percentage of
turbines placed on the perimeter has remained constant at 74%. The drop in AEP could
potentially be linked to the fact that here only 17 turbines are placed on the side aligning with
the predominant wind direction, compared to 18 in Test Case A.

Moreover, it is evident that as the minimum spacing is increased, the optimal 10 MW layout
exhibits a larger AEP reduction than the optimal 50 MW layout. This could partially be
because of various reasons such as the coarser grid provided to Smart-Start, but both config-
urations should be affected equally. The main reason for the greater reduction is that the
stricter 5D constraint gives the optimizer less flexibility to adjust turbine positions, and the
larger number of turbines in the 10 MW configuration amplifies this effect, resulting in a more
pronounced difference.

This in turn leads to worse initial conditions for the down-selection, leading to an even greater
drop in AEP as the minimum spacing is increased. The worse initial conditions are highlighted
by the increase in potentially violating empty positions mentioned before, and by the fact that
the percentage of turbines placed on the perimeter has dropped from 78% in Test Case A to
72% here.

The greater loss in AEP of the down-selected layout compared to the optimal 10 MW layout,
when comparing Test Case C with A, explains why the untapped energy potential of the down-
selected layout is more pronounced at the larger 5D spacing, as can be seen from Table 5.7

Table 5.7: Untapped energy potential of down-selected layouts for different spacings.

Test Case Optimal 15 MW
AEP [GWh]

Down-Selected 15 MW
AEP [GWh]

Difference
[%]

A 3656.642 3652.696 -0.108
C 3656.412 3651.184 -0.143

Overall, the results lead to the conclusion that the untapped energy potential of the down-
selected layout increases as the minimum spacing constraint increases.
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5.4 Discussion
The results of RQ2 demonstrate that down-selection is a highly effective strategy for adapting
layouts of lower-rated turbines to higher-rated machines. Across all three test cases, the AEP of
the down-selected layouts was almost indistinguishable from that of directly optimized layouts,
with untapped energy potentials consistently below 0.15%. From an aerodynamic perspective,
this shows that re-optimization with larger turbines provides only marginal gains in energy
yield compared to down-selection from an existing smaller-turbine layout.

The influence of spacing constraints emerged as the most important factor in explaining the
small residual differences. When the initial 10 MW layout already satisfied the spacing re-
quirement of the larger turbines (Test Case B), the untapped potential dropped to 0.07%, the
smallest of all cases. Conversely, when stricter 5D spacing was applied to both layouts (Test
Case C), the untapped potential increased to 0.14%. This pattern is illustrated in Fig. 5.12,
which shows that the gap between optimal and down-selected layouts remains consistently
small but grows with stricter spacing requirements. These results suggest that down-selection
is most effective when compatibility of spacing constraints is ensured from the outset.
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Figure 5.12: Comparison of optimal and down-selected layouts for the 15 MW turbine under
different spacing constraints. The smallest gap occurs when the initial 10 MW layout already
satisfied the spacing constraint of the larger turbine (Case B).

More broadly, the results imply that there may exist a threshold spacing beyond which down-
selection would no longer be feasible, because the algorithm could not place all turbines without
violating the constraint. The precise point of failure would depend on farm geometry, wind
conditions, turbine rating, and the ratio of lower to higher-rated turbines. If such a threshold
is encountered, several options exist: (1) design the lower-rated layout already using the spac-
ing constraint of the larger turbines, (2) allow small positional adjustments to resolve spacing
conflicts if financially acceptable, or (3) tolerate minor violations if they result only in accept-
able increases in fatigue loading. These considerations show that down-selection should not be
regarded as a rigid process but as a flexible design strategy that can be adapted depending on
site-specific conditions and economic trade-offs.

In addition to spacing, the comparisons revealed differences in spatial distribution of turnines.
Down-selected farms tended to retain more turbines along the perimeter of the site. While
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this effect did not measurably influence AEP in the present study, it may have implications for
secondary design aspects such as cabling length, support structure design, or visual footprint.
These considerations highlight that the impact of down-selection should not be evaluated solely
on aerodynamic performance but also in relation to other practical design drivers.

From a practical perspective, the advantages of down-selection extend beyond computational
savings. Re-optimising a site for larger turbines may require new seabed surveys, updated
bathymetric assessments, or additional environmental studies, all of which involve significant
cost and time. The ability to adapt existing layouts with minimal loss in AEP therefore has
direct economic value. At the same time, the method’s effectiveness is conditional: anticipating
spacing requirements during the initial design stage strongly improves the feasibility of later
down-selection. This positions down-selection not as a reactive workaround but as part of
a broader robust design strategy that balances current efficiency with adaptability to future
turbine upgrades. Future work should also extend the analysis beyond spacing to include
constraints such as bathymetry, cable routing, exclusion zones, and grid connection, in order
to capture the full impact of down-selection.



CHAPTER 6
Conclusion and Outlook

6.1 Main Conclusions
This thesis addressed two research questions:

RQ1. Which optimization strategies are suitable for down-selection?
The ranking of candidate algorithms showed that Gradient-Based methods and Greedy Heuris-
tics were the most suitable strategies for down-selection. Their strengths were complementary:
Gradient-Based approaches scaled well to larger problems but risked convergence to local op-
tima, while Greedy Heuristics required little parameter tuning and were straightforward to
implement. Other approaches such as metaheuristics (e.g. GA, BPSO, VNS) and exact for-
mulations (MILP, QIP) were less suitable in this context, either due to high sensitivity to
parameter calibration, weaker scalability, or the need for linearisation of the objective func-
tion. These methods may still be valuable in different settings, but were not competitive under
the criteria defined in this study. Comparative evaluation of the shortlisted strategies further
confirmed that no single method dominates across all conditions. Gradient-Based optimisa-
tion consistently produced results with the shortest runtimes and scaled well with problem
size, whereas Greedy Heuristics generally achieved the highest energy yields. Among them,
Greedy Addition performed best in low-occupancy layouts, while Greedy Removal was prefer-
able at high occupancy. These findings indicate that algorithm selection should be guided by
the characteristics of the problem: Gradient-Based methods are most suitable when computa-
tional budget is the limiting factor, while Greedy Heuristics are preferable when maximising
energy yield is the primary goal. Across all cases, careful parameter tuning was shown to be
as critical as the algorithm itself, highlighting the importance of calibration before applying
down-selection methods in practice.

RQ2. What is the impact of down-selection on the final wind farm layout?
The results demonstrated that down-selection can reproduce the performance of directly op-
timised layouts with only marginal aerodynamic losses. Across all test cases, the untapped
energy potential of down-selected layouts was below 0.15%, confirming that down-selection is
a practical approach for adapting designs to larger turbines. The performance gap was small-
est when the initial layout already satisfied the spacing requirement of the larger turbines,
and largest when both layouts were subject to a stricter spacing. This indicates that spacing
constraints govern the effectiveness of down-selection: compatibility between initial and final
constraints leads to nearly lossless transitions, whereas mismatched constraints reduce perfor-
mance. In addition to energy yield, down-selection also influenced the spatial distribution of
turbines, with more turbines retained along the perimeter of the site. While this had little ef-
fect on energy yield in the present study, it may have implications for secondary design drivers
such as cabling layout, support structure design, or visual impact.

Taken together, the conclusions of this thesis show that down-selection is a viable and efficient
strategy for handling turbine upgrades in offshore wind farm design. Its success, however,
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depends on matching the strategy to the problem context and anticipating future spacing
requirements during the initial design stage.

6.2 Future Work and Outlook
This thesis highlighted both the potential and the limitations of down-selection, and several
directions for further work can be identified.

For optimisation strategies (RQ1), future research should explore a broader set of methods
beyond those tested here. Exact approaches such as MILP or QIP could be valuable when lin-
earisation of the objective function is acceptable, while metaheuristics like Genetic Algorithms
may remain appealing when ease of implementation is a priority, especially since ready-to-use
implementations are available in frameworks such as TOPFARM. Hybrid strategies that com-
bine the scalability of Gradient-Based approaches with the solution quality of Heuristics may
also be worth investigating. In addition, systematic studies of parameter tuning, including
adaptive or problem-specific calibration, would help reduce unnecessary computational effort
while preserving accuracy. Applying these strategies to larger and more realistic farm settings
would further test their robustness.

For the down-selection process itself (RQ2), this thesis focused on spacing as the primary
constraint. Future work should extend the analysis to include other practical drivers such as
bathymetry, cable routing, exclusion zones, and grid connection requirements. These factors
may interact with turbine distribution effects observed in down-selected layouts and could shift
the trade-offs identified here. It would also be valuable to quantify the economic implications
more explicitly, including potential savings from avoiding new seabed surveys or environmental
assessments. Incorporating cost-of-energy metrics would provide a more holistic view of the
benefits and limitations of down-selection.

Finally, the results emphasise that anticipating future turbine upgrades at the initial design
stage is crucial for ensuring the feasibility of down-selection. Future work could therefore
focus on embedding down-selection within a robust design framework that balances present-
day efficiency with adaptability to evolving turbine technology. This would help developers
design farms that remain both competitive and flexible over their lifetime.



APPENDIX A
Strategies for Down‑Selection (RQ1)

A.1 Comparison of Candidate Strategies

Table A.1: Comparison of Mosetti Case III results (derived from Tables A.2 and A.3).

Research Paper Approach Improvement
in Power [%]

Mosetti et al. [28] GA –
Turner et al. [44] MILP 1.19
MirHassani and Yarahmadi [25] MILP 2.95
Cazzaro and Pisinger [10] VNS 0.99

Table A.2: Mosetti Case III with 15 WTs according to MirHassani and Yarahmadi [25]

Reference Power [kW]
Mosetti et al. [28] 23,883
Turner et al. [44] 24,168
MirHassani and Yarahmadi [25] 24,587

Table A.3: Mosetti Case III with 15 WTs according to Cazzaro and Pisinger [10]

Reference Power [MW]
Mosetti et al. [28] 5.05
Cazzaro and Pisinger [10] 5.10

A.2 Tuning of Gradient Based

A.2.1 Modification of Existence Bounds
When using the [0, 1] bounds for the existence with the SLSQP driver, it is observed that some
of the runs fail. The happens because the driver does not completely respect the boundaries
when calculating the gradients close to the bounds. As such, it looks for existence values
outside of [0, 1] in the PowerCtNDTabular, thus failing.

A way to counter the problem is to decrease the bounds of the existence by a small ϵ, that is
[0 + ϵ, 1 − ϵ]. After some trial and error, it is observed that a value of ϵ = 10−6 is sufficiently
small for the problem to stop occurring.
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Another approach to counter the problem would be to increase the values of PowerCtNDTabular
by a similar amount, that is [0−ϵ, 1+ϵ], while keeping the bounds given to TopFarmProblem as
[0, 1]. This is approach does not seem to fail when the driver seeks for existence values outside
of [0, 1] in the PowerCtNDTabular. However, that implies that negative existence values can
be used, and thus negative power and CT . To avoid more unforeseen future problems, the first
prevention method is selected.

A.2.2 Effect of Wind Speed Sampling on AEP Evaluation
A preliminary investigation was conducted to assess the influence of wind speed sampling
on the annual energy production (AEP) estimates obtained with the ExistenceWindTurbine
implementation in TopFarm. As shown in Table A.4, the AEP of a single turbine was compared
using the standard NormalWindTurbine and the ExistenceWindTurbine for different numbers
of wind speed samples (wsp_samples). The results show that ExistenceWindTurbine yields a
lower AEP than the NormalWindTurbine when only a few samples are used, but the difference
rapidly decreases as the number of samples increases. At 1000 or more samples, the discrepancy
becomes negligible (< 0.1%), making the results directly comparable to those obtained with
the greedy heuristic.

Based on this observation, the optimization is performed with ExistenceWindTurbine, while
the final AEP calculations are carried out using the NormalWindTurbine to ensure consis-
tency across methods. The impact of the sampling resolution was further examined by testing
wsp_samples values of 10, 100, 1000, and 10000 across four values of the ramping parameter q
and ten multistarts. As illustrated in Fig. A.1, increasing the number of samples generally im-
proves both the median and maximum AEP values, albeit at the cost of longer computational
times. However, diminishing returns are observed beyond 1000 samples, which consistently
achieve higher peak AEP than 100 samples while remaining computationally feasible. There-
fore, 1000 wind speed samples are adopted as the default setting for this thesis.

Table A.4: Comparison of AEP values obtained with Normal and Existence wind turbines
for different numbers of wind speed samples.

Wind Turbine Wind Speed Samples AEP [GWh] Difference [%]
Normal – 29.346 –

Existence 10 22.115 24.641
Existence 100 28.630 2.441
Existence 1000 29.321 0.085
Existence 10000 29.339 0.025
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Figure A.1: Effect of wsp_samples on AEP and total computational time at different q
values.

A.2.3 Finite Difference vs Automatic Differentiation
So far, finite differences were used to calculate all gradients used by the SLSQP solver. The
performance could be improved by using analytical gradients and automatic differentiation
(autograd) instead. For the sum constraint, the derivative with respect to the existence is just
1, while for the RAMP function the derivative is as seen in Eq. (A.1).

dx̃

dx
= 1 + q

(1 + q(1 − x))2 (A.1)

An analytical expression for the derivative of the AEP function does not exist, thus the
autograd can be used. To make the comparison between finite differencing and automatic
differentiation fair, five different RAMP q factors are tested. For each of those, five optimiza-
tions are performed using random initial existences x0, and the average AEP and optimization
time are calculated. The five random seeds used are exactly the same between the two ap-
proaches. The results are shown in Fig. A.2, where it is clear that the average AEP is pretty
similar between the two approaches, while the optimization time of the autograd is around
five times lower. Additionally, when comparing individual runs, the difference in AEP in less
than 0.5% for all 25 cases. Thus, the faster method will be used from this point forward.
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Figure A.2: Comparison of finite differencing with autograd in terms of AEP (left) and
optimization time (right). Average of five runs per RAMP q factor.
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Figure A.3: Power and CT curves for sample existence values of the ExistenceWindTurbine
with variable CT , based on the IEA-37 3.35 MW reference turbine.

To further explain the differing runtime trends between the Greedy Addition and Greedy
Removal strategies, Fig. A.4 includes additional results from their respective variants that
omit the refinement step (strategies A and E in Table 4.5).
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Figure A.4: Function calls (left) and computational time (right) with and without greedy
refinement over varying occupancy levels, for Test Case A.
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APPENDIX B
Impact of Down-Selection (RQ2)

B.1 Generation of Optimal Layouts

Table B.1: Summary of hexagonal grids for Test Case A. Other cases are omitted for brevity.

Hex Grid Target Spacing [D] Spacing [m] Gridpoints Turbines /
Gridpoints [%]

74×10 MW 3.5D1 693 439 16.9
50×15 MW 3.5D2 840 297 16.8

B.2 Greedy Addition or Greedy Removal?
At first glance it might seem that unconstrained Greedy Addition is the best option. However,
it managed to find only two layouts that respect the minimum distance constraint of 3.5D,
while both Addition and Removal that used the constraint respecting algorithm found a non-
violating layout for each of the multistarts. Looking closer at the results of table, it is evident
that Constrained Greedy Addition actually managed to find the highest non-violating AEP.

Addition
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Removal
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Figure B.1: AEP of unconstrained and constrained Greedy Addition and Removal.
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Figure B.2: Violations of unconstrained and constrained Greedy Addition and Removal.

Table B.2: Maximum AEP values and best feasible (non-violating) results for each algorithm.

Algorithm Constrainted Max AEP
[GWh]

Max Feasible
AEP [GWh]

Greedy Addition 7 3652.884 3652.577
Greedy Removal 7 3652.851 –
Greedy Addition 3 3652.696 3652.696
Greedy Removal 3 3652.647 3652.647



APPENDIX C
General

C.1 Use of Artificial Intelligence
Artificial intelligence tools were used throughout the thesis to support both writing and techni-
cal tasks. ChatGPT1 assisted with refining scientific language, improving structure and clarity
in written sections, and troubleshooting or generating Python code. AI-powered platforms
such as Litmaps2 and Connected Papers3 were also used to explore relevant literature and
map connections between studies. All AI-generated content was carefully reviewed, verified,
and edited by the author to ensure accuracy, relevance, and academic integrity.

1https://chatgpt.com/
2https://app.litmaps.com/
3https://www.connectedpapers.com/

https://chatgpt.com/
https://app.litmaps.com/
https://www.connectedpapers.com/
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