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Dynamic rolling horizon scheduling of waterborne AGVs
for inter terminal transport®

Huarong Zheng!*, Chen Jin?, Xiling Luo?, Rudy R. Negenborn®, and Yuexuan Wang*

Abstract—The demand for transport between terminals
within port areas, known as inter terminal transport (ITT),
is increasing. This paper proposes a dynamic rolling horizon
scheduling strategy for ITT using waterborne Autonomous
Guided Vessels (waterborne AGVs). The strategy is dynamic in
that it can handle the dynamically arriving ITT requests and
adapt transport schedules accordingly in real time. Specifically,
every certain period of time, we formulate and solve a pick-
up and delivery problem considering the dynamic vessel states,
waterway network topology, and ITT requests over a future
time horizon. In the dynamic setting, waterborne AGVs are
allowed to divert from the previously scheduled destination.
Moreover, the distances between terminals are not calculated
simply as the Euclidean metric but based on the complex port
waterway network, which complicates the dynamic problem
even more. Time windows of ITT requests, capacity constraints
of waterborne AGVs and load/unload service times at terminals
are also taken into account. A waterborne ITT transport
network in the Port of Rotterdam is constructed. Simulation
results demonstrate the effectiveness of the proposed dynamic
scheduling strategy.

I. INTRODUCTION

The container throughput will increase to more than 30
million Twenty-foot Equivalent Unit (TEU) per year by 2035
in the Port of Rotterdam [1]. This large throughput is handled
partly by building automated container terminals where a
40% increase in productivity is foreseen due to automation
[2]. The container movement between terminals via road,
rail, or sea, i.e., inter terminal transport (ITT) [3], is currently
handled mainly by manned multi-trailer systems. Waterborne
Autonomous Guided Vessels (waterborne AGVs) [4] have
been previously proposed for ITT over sea considering that
the distances between some terminals are much shorter by
water than by land. In [4], a fully autonomous ITT system
using waterborne AGVs is achieved with transport requests
known a prior. However, in practice, transport requests most-
ly arrive gradually. Dynamic ITT with waterborne AGVs still
needs to be addressed.

Essentially, the scheduling of waterborne AGVs for ITT is
a vehicle routing problem (VRP) with pick-up and delivery
[5]. When all the ITT requests are received before the
decision is made and when the decision does not change
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thereafter, a static VRP problem for waterborne AGVs is
considered [4]. Along with the advances in information
and communication technologies, it is possible to collect
customer requests and system states in real time, which
facilitates the development of dynamic VRPs [6]. Dynamic
VRPs have been commonly applied in, e.g., the food or
meal delivery business [7] [8], taxi dispatching [9], and
also the deployment of emergency response vehicles [10].
Most dynamic VRPs require re-optimizations of the routes
one way or another due to the concurrently updated inputs.
According to [6], 11 criteria can be used to classify the
existing literature on dynamic VRPs. As for when to perform
the update of routes, it is customary to employ an event-based
mechanism. This event can be the arrival of a new request
[11] or the end of a predefined period of time [10]. Waiting
[12] and buffering [13] strategies have been proposed by
holding the request for a while before assigning it to a
vehicle. On the contrary, [14] explores the possibility to
further reduce the system cost by proposing an approximated
non-myopic dynamic pricing over a future infinite horizon
for the dynamic dial-a-ride problem. Similar with the waiting
strategy, the rolling horizon approach [8] [15] [16] [9]
that applies a myopic part of the planned routes is widely
adopted in dynamic VRPs. The repetitively solved online
optimization problems are largely an adaptation of the static
version of the problem and required to be solved quickly.
Therefore, heuristic approaches such as neighborhood search
[17], insertion with branch & bound check for feasibility
[18], branch-and-price [19] and approximate dynamic pro-
gramming [12] have been used in solving dynamic VRPs.
However, most of the mentioned dynamic VRPs do not allow
a vehicle to divert from its current destination, and are based
on simplified Euclidean metric networks.

The waterway networks in port areas are characterized by
the geographical layouts of terminals which are in general
non-convex. The distances between terminals and the dis-
tances from a arbitrary vessel position to a terminal cannot
be simply calculated in the Euclidean space. The literature
on maritime VRPs sees more static scheduling problems [6]
[4] [20]. Due to the large magnitude of energy consumption
in the shipping industry, the so-called “slow-steaming” by
cruising at a low speed is usually considered in ship routing
[20]. The static “slow-steaming” problem in [20] is extended
to a dynamic sustainable ship routing problem in [21], where
nonlinear mixed integer programming problems are solved
online using particle algorithms. Capacity constraints are also
commonplace in ship routing problems [22] [23] due to the
relatively large volumes of cargoes. An exception is [15],
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where the fleet of vessels is scheduled for the maintenance
tasks of offshore wind farms. The dynamic scheduling prob-
lem is also solved in a rolling horizon framework in [15].
However, vessels are generally not able to divert if they
have already started to sail towards a destination wind farm
associated with relevant maintenance facilities.

In this paper, for the ITT using waterborne AGVs, we
propose a dynamic rolling horizon scheduling strategy con-
sidering the complex geographical layouts of terminals in
large ports. ITT requests with container pick-up and delivery
tasks within specified time windows arrive dynamically.
To adapt waterborne AGV routes to the dynamic requests,
every certain period of time, an online mixed integer linear
programming problem is solved at a decision epoch. The
most recent vessel states (positioning and loads on board),
dynamic topology of the waterway transport network, and
ITT requests over a future time horizon are incorporated in
the online problem. Vehicle diversion is possible as long as
the traveling distance is minimized, and the capacity as well
as timing constraints allow. A transport network based on
the waterways that connect the relevant terminals in the Port
of Rotterdam is constructed. To explore the influences of
different route updating interval and horizon lengths on the
scheduling performance, simulations of different settings are
carried out and compared. Results demonstrate the effective-
ness of the proposed dynamic scheduling strategy.

The remainder of this paper is organized as follows.
The overall problem statement for the dynamic ITT system
using waterborne AGVs is presented in Section II. Then
in Section III, the rolling horizon scheduling problem is
mathematically formulated. In Section IV, simulations and
results are presented, followed by the concluding remarks
and future research directions in Section V.

II. PROBLEM STATEMENT

We consider an autonomous ITT system using waterborne
AGVs. The port authority runs a fleet of waterborne AGVs
shuttling between terminals to transport containers within the
port area. The scheduling problem determines a route for
each waterborne AGYV, i.e., the sequence of terminals and
times to visit and to load or unload certain amount of contain-
ers. For large ports like the Port of Rotterdam, terminals with
different functions, e.g., empty container depot, transferring
stations to other modalities (rail, road), etc., are dispersed.
We are particularly interested in those terminals with shorter
distances by water than by road. Figure 1 shows the ITT
network for waterborne AGVs in the Maasvlakte area, Port
of Rotterdam. The yellow lines represent waterways that
connect the terminals by water. Apparently, due to the
complex geographical layout in the Maasvlakte area, the inter
terminal waterway distances cannot be simply calculated as
the Euclidean distance in the Euclidean metric space as most
existing literature does. Rather, the geodetic distance that is
defined as the shortest path of two nodes in a connected
graph [24] should be utilized. Therefore, along with solving
the scheduling problem, the shortest path that connects the
planned sequence of terminals is also determined via the

Fig. 1: ITT waterway network for waterborne AGVs in the
Maasvlakte area, Port of Rotterdam from Google Earth [25].

Dijkstra algorithm [24]. The path consists of the terminals
and waterway intersections as illustrated in Figure 1. Note
that since the problem is dynamic, the current waterborne
AGYV position is considered as a virtual terminal that is the
departure node of the waterborne AGV at the next scheduling
epoch. The main challenge in a dynamic ITT system is
that the nodes here refer not only to the static locations
of terminals, but also to the locations of waterborne AGVs
which could be evolving with time. The dynamic locations
of waterborne AGVs make the transport network topology
also dynamic, as to be modeled in Section III. The real-time
update of the geodetic distance complicates the scheduling
problem even more.

Another dynamism of the system comes from the dynam-
ically revealed ITT requests to transport containers between
the terminals shown in Figure 1 by water. Each request is
characterized by the release and due times, the container
pick-up and delivery terminals, and the amount of containers
in TEUs. All the requests are sorted by their release times
and associated with an ID according to their order. Note that
since we also consider loading and unloading service times,
the release time is the earliest time that the loading service
can start and the due time is the latest time that the unloading
service should complete. The request information is not
known until their earliest starting time. The rolling horizon
scheduling scheme applies periodic updates of waterborne
AGYV routes. This means that any new requests that arrive
after the current decision step will be kept until the next
decision step. In addition, since delays or waiting times do
occur in reality and meeting hard time windows may fail in
finding a feasible solution, requests are allowed to service
within soft time windows, but customer inconvenience cost
will incur if not within hard time windows. Splitting of
request volume is not allowed.

Waterborne AGVs are designed for autonomous ITT sys-
tems. Each waterborne AGV has a finite capacity that can
accommodate mixed containers from different requests. Con-
tainers on board are kept track of, and cannot be transported
with transhipment, i.e., containers on board a waterborne
AGV can only be delivered to the destination terminal by
the same waterborne AGV. Localization and communication
devices are on board of waterborne AGVs so that real-time



positions can be measured and sent to the scheduling center.
Waterborne AGVs have three working modes: /) waiting at a
terminal being idle; 2) providing loading or unloading service
at a terminal; 3) moving towards a terminal to pick-up or
deliver containers. Waterborne AGVs move at a designed
constant speed. Note that they can stay at the park lot of any
terminal so that a central depot is not necessary.

III. DYNAMIC ROLLING HORIZON SCHEDULING OF ITT
USING WATERBORNE AGV'S

In the dynamic setting, the ITT requests are revealed
online concurrently with the execution of previously planned
routes. The routes are not necessarily completed when a
new decision epoch has reached. Together with the newly
arrived requests and the uncompleted requests, new decisions
are made satisfying various possibly conflicting objectives
considering transport tasks and system constraints. Next, we
present a dynamic rolling horizon scheduling approach based
on mixed integer programming for ITT using waterborne
AGVs. Following the problem scenario presented in the
previous section, we first introduce the system dynamic
states and relevant notations. Then, decision variables and
the mathematical model are presented. Furthermore, to re-
duce required computation times, the scheduling problem is
transformed into a mixed integer linear programming (MILP)
problem via mixed logic dynamic modeling.

A. Notations

We deal with a dynamic system over the time ¢ €&
[0, 00] with a fleet of n, waterborne AGVs denoted by V.
Waterborne AGVs that are in the process of executing the
previously assigned routes are in V,,. Since it is impractical
to optimize over the infinite time horizon and future ITT
requests are not known beforehand, we carry out a re-
scheduling with the interval of T§. Define time step k with
k =0,1,2,..., and then ¢ = kT,. At each time step k,
a re-scheduling problem is formulated over a future time
horizon [kT5, (k + N,)T;] based on the current system states
and the ITT requests whose release times are earlier than
(k + Np)T; and have not been finished by (k + N,)Ts. N,
is the scheduling horizon. At the next time step k£ + 1, new
system states are measured and new ITT requests over [(k+
Np)Ty, (k + Ny + 1)T] are incorporated. The re-scheduling
problem is then formulated over [(k+1)Ts, (k+ N, +1)T),
and thus accounting for the “rolling horizon”.

Consider at time step k, for each waterborne AGV v €
V, the set of uncompleted ITT requests from the previous
scheduling step is R, (k) = R2(k) URZ(k). RE(k) denotes
the set of uncompleted requests that have not been started yet
by kTy. R%(k) denotes the set of requests whose containers
are currently on board of waterborne AGV v and just have
not been delivered yet. The total containers on board water-
borne AGV v can then be identified as [, (k) which should
be less than the capacity (). The position of waterborne
AGV v is (x,(k),y»(k)) along the waterways. Since we
utilize the geodetic distances over the transport network, it
is also required to record the waterway segment waterborne

AGVs are currently in, denoted by g, (k). Due to the load-
ing/unloading service times at terminals, it is also possible
that a waterborne AGYV is in the middle of loading/unloading
operations. In these cases, waterborne AGVs are tagged with
a left service time s, (k) at the current position. Therefore,
the dynamic waterborne AGV states are characterized by
((mv(k)a yv(k))7 gv(k)a Sv<k)7 lv(k)’ Rv(k))s Vv € V. The
cruising speed of waterborne AGVs is w. It is assumed that
there is always a sufficient number of waterborne AGVs
available so that no ITT requests need to be rejected.
Actually, since we impose soft constraints for time windows
to be introduced in the following, it would always be possible
to serve all the requests on the price of delays whenever
necessary.

In terms of requests, the concerned request set at time step
kis U,cp Ro(k) U Ruew(k), where Rpew(k) is the set of
newly revealed requests over [(k + N, — 1)T5, (k + N,)T5].
For each request i € J,cy Ro(k) U Ryew(k), denote a 7-
element tuple (4, p;, d;, t; min, timax, ¢, 5;) to represent the
associated information as described in Section II, i.e., request
ID, pick-up terminal, delivery terminal, release time, due
time, volume, and service time. For each pick-up location p;,
a positive load +g; is attached, and each delivery location
d;, a negative load —g; attached.

For modeling the ITT pick-up and delivery network, define
the set of starting nodes of all waterborne AGVs as V, (k) =
{1,...,n,} and the set of virtual end nodes as V.(k) =
{ny, +2n(k) + nqg(k) + 1, ..., 2n, + 2n 4+ ng}, with n(k) =
S |RE(K)| + |Ruew(k)| being the number of pick-up and
veV

delivery pair requests and n4(k) = |R%(k)| being the number
of delivery-only requests. The pick-up node set is P(k) =
{ny +1,ny +2,....,n, + n(k)} and the delivery node set
is D(k) = {n, + n(k) + 1,ny, + n(k) + 2,...,n, + 2n(k)}.
For the delivery-only requests R%(k), an addition-
al delivery-only node set is defined as D'(k) =
{ny + 2n(k),...,n, + 2n(k) + ngq(k)}. Since the container-
s of the delivery-only requests have already been on a
waterborne AGV and since transshipment is not allowed,
each delivery-only node is sure to be visited by the same
waterborne AGV. Define the corresponding visiting water-
borne AGVs for D'(k) as V4(k). Following the previous
definition, the service time at node i € V,(k) is s,(k) and
the service time at node ¢ € P(k) UD(k) UD' (k) is s;(k).
For convenience, s;(k) is used in the following for i €
P(k)UD(k)UD'(k)UV,(k). Then, our scheduling problem
is defined over the virtual graph G(k) = (N (k), A(k)) with
node set N (k) = P(k) UD(k) UD' (k) UVo(k) UV, (k) and
arc set

A(k) = {(i, )]

(i,5) € (P(k) UD(k) UD'(k)) x (P(k) UD(k) UD'(k)))
U{(4,7) i € Vo(k),j € P(k)UD(k)UD'(k)}

U{(i,5)li € P(k) UD(k) UD'(k),j € Ve(k)},i # j}.

Actually, for each (i,j) € A(k), since nodes 7 and j are
not connected by straight lines but a sequence of waterway



segments, as shown in Figure 1, a path attribute is further
defined for G(k) as S(k) and S(k) = {p(i,j)}. Here,
{p(i,4)} is the detailed waterway path connecting node ¢
and node j. Note that since the waterborne AGV states are
evolving with time, G(k) is dynamic. Denote d;; as the
travel distance between nodes ¢ and j for all (i,5) € A(k).
Since d;; is the geodesic distance over the graph, when
calculating d;;, it is essential also to know which waterway
segment the waterborne AGV is currently in. Furthermore,
since waterborne AGVs stay at their final service terminals,
the locations for virtual end nodes V, vanish and distance
dij =0if i € P(k)UD(k) UD' (k) UVo(k),j € Ve(k).

B. Rolling horizon scheduling problem

The overall schedule goal is to fulfill all the ITT requests
minimizing the travel distance, the waiting and delays times
of all waterborne AGVs. The following decision variables are
involved in the dynamic rolling horizon scheduling problem:

o Binary variables: z;;,(k) for (¢,j) € A(k) and v € V
equals to 1 if waterborne AGV v travels from node
i — j and 0 otherwise;

« Binary variables: z;, (k) for i € N'(k) and v € V equals
to 1 if node 7 is visited by waterborne AGV v and 0
otherwise;

« Integer variables: y;(k) for ¢ € N(k) denotes the load
in TEUs on board the waterborne AGV upon arriving
node 7;

« Continuous variables: A;(k) for i € N (k) specifies the
arrival time at node i;

« Continuous variables: w; (k) for i € N'(k) is the waiting
time at node i;

« Continuous variables: d;(k) for i € N'(k) is the delay
time at node .

In the following, the time dependence of the variables,
i.e., -(k), will be omitted for notational simplicity. It should,
however, be kept in mind that the scheduling problem is
dynamic. At each time step k, a mixed integer programming
problem is formulated as follows:

min ¢; Z ||Ai||1+622 Z Tijodijtes||lwll +calld],

1€V, (k) veV (i,j)EA

(1)
subject to
Z Ziw = 1, Vi e N(k), )
veV
Ziv = Z(i+n)v Vi e P(k),v eV,

3
zii = 1, Vi € Vo(k), “4)
Ziv = 1, Vi € D'(k),v € Vq4

&)
injv = Z%‘iv:«zw, Vie N(k),v eV,
JEN JEN

(6)

> e =1, Yo eV, (7)

Z Tivgw = 1, Yv eV, (8)
€NV,
A, = kT, Yo € Vy(k), 9
Ai < Aita, Vi € Pu(k), (10)
Tijo = 1= (11)
max(A;, timin) + Si + dui =A4;, V(i,j) e Ak),veV,
timin — Wi < a; < timax — Si +diy Vi€ N(k), (12)
0 < w; < Wimax, Vi € N(k), (13)
0 < d; < dmax, Vi € N(k), (14)
Yo, = lo, Vv eV, (15)
Tijo =1 =y + @ = yj, Vie N(k),v eV,
(16)
0<y: <Q, Vi € N(k), (17)
Tijv, ziw € {0,1} V(i,j5) € A(k),v € V.
(13)

In (1), there are four cost terms to be minimized. The first
term minimizes the starting times of waterborne AGVs so
that the known set of requests could be finished as soon
as possible. The second term minimizes the total travel
distance of all waterborne AGVs which relates to the energy
consumption. The third and the fourth terms account for
customer inconvenience incurred by waiting and delay times,
respectively. The trade-off among these cost penalties is
balanced by weight parameters cq, - - - , c4.

Compatibility, time consistence, capacity and binary vari-
able constraints are imposed by (2) — (18). Specifically,
constraint (2) ensures that each node is visited exactly
by one waterborne AGV. Constraint (3) defines that, for
a paired request r € RE(k) U Ryew(k), the pick-up and
delivery nodes are visited by the same waterborne AGV. By
constraints (4) and (5), waterborne AGVs are guaranteed to
visit their own starting nodes and to visit the delivery nodes
if the corresponding containers are on board, respectively.
Constraint (6) restricts that a waterborne AGV only enters
and leaves a node if it visits that node. Constraints (7) and (8)
impose that each waterborne AGV starts and ends at the right
locations, respectively. Constraints (9) — (16) together impose
time constraints. Specifically, equality constraint (9) ensures
the time continuity for waterborne AGVs that are carrying
out tasks at time step k. Inequality (10) guarantees that
pick-up nodes are visited before delivery nodes. Constraint
(11) enforces time consistency where the max operation
indicates that loading/unloading services cannot start earlier
than the release times of requests. Time window constraints
are specified by (12) - (14). Load consistence and capacity
constraints are introduced via (15) — (17). Binary variables
are defined in (18). By solving (1)-(18), we have, for each
waterborne AGV v € V, the sequences of terminals to visit,
the corresponding arrival times as well as the stopping times.

IV. SIMULATIONS AND DISCUSSIONS

To demonstrate the effectiveness of the proposed dynamic
scheduling strategy, simulations are carried out. Overall, the
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ITT scenario is based on the waterway transport network
in the Port of Rotterdam, as shown in Figure 1. There are
eight terminals and a fleet of three waterborne AGVs initially
staying at one terminal being idle. We consider a set of
10 ITT requests generated from a Port of Rotterdam ITT
simulator [26]. Furthermore, we run the simulations with
different settings to explore the influences of different lengths
of scheduling horizons and different re-scheduling intervals
on the system performance.

For other simulation settings, the maximum capacity of
waterborne AGVs is four TEUs, i.e., Q = 4. The load-
ing/unloading service time of each move of a quay crane of
two TEUs is requires 120s. Therefore, for all the considered
ITT requests, service times are the same as ts = 120s.
The weight parameters in cost functions (1) are set as:
c1 = 10%,¢; = 10%,¢3 = 105, ¢4 = 105. A waterway ITT
simulation environment is also built. All the simulations are
run on a platform with Intel (R) Core (TM) i7-10710U CPU
@1.10 GHz.

A. Comparisons of different scenarios

Different combinations of re-scheduling interval 7; and
scheduling horizon N, are set for the dynamic rolling horizon
scheduling algorithm. For the set of ITT requests, the time
windows are all satisfied and no waiting or delay times are
incurred, as to be further analyzed in Figure 5. Therefore,
we mainly compare the index of total travel distance in
different settings, as shown in Figure 2. Specifically, the re-
scheduling interval 75 is set as 10 min, 20 min, - - -, 60 min.
The scheduling horizon NV, is set as 1, - - -, 5. Therefore, we
run 30 simulations with time horizon 73N, ranging from 10
min to 5 hours. The travel distance costs is affected by both
the time horizon and the re-scheduling interval. Overall, the
trend is that longer time horizons have lower travel distances,
since more ITT requests could be planned as a whole with
longer time horizons. The total travel distance is defined as
the sum of the distances traveled by all waterborne AGVs
completing all ITT requests. Shorter re-scheduling intervals
could also improve optimality.

Figure 3 further compares the mean solver times per
time step of different 7y and IV, combinations. It can
seen that longer time horizons result in unacceptably long
computational times which are not suitable for real-time

solver time (s)

Fig. 3: Solver times with different 7s and N,

Berth ID
>
£
|

275 28 28 29 295 3 305 31
Time (s) x10%

Fig. 4: Scheduled routes of waterborne AGV 1 at k& = 10.

applications. In view of the scheduling performance and
computational time, we next analyze the scheduling results
from the simulation with T = 40 min and N, = 3 in more
details.

B. Scheduling results

In a dynamic scenario, the set of ten ITT requests are
assigned to only one waterborne AGV, waterborne AGV 1.
Figure 4 plots the scheduled routes of waterborne AGV 1 at
time step k¥ = 10. The small rectangles are one TEU contain-
ers and the numbers attached identify IDs of requests that
the containers belong to. The shown containers are those on
board the waterborne AGV when it departs from a terminal.
The schedule contains the information on the sequence of
terminals to visit, the corresponding arrival and departure
times as well as the load/unload operations at each terminal.
For the schedule in Figure 4, the waterborne AGV first starts
from Terminal 4. Then, it goes to Terminal 5 to pick up
one container from Request 6 and then go to Terminal 8
to pick up one container from Request 5. At Terminal 6,
the waterborne AGV performs multiple unload and load
operations, first unloading the container from Request 6,
unloading the container from Request 5, and then loading
two containers from Request 4 which are then delivered
to Terminal 4. The waterborne AGV finishes the assigned
tasks at Terminal 4 and will stay there until the next task is
assigned.

Each ITT request should be completed within the release
and due times. Figure 5 shows the specified time windows
(red bars) and the actual duration time (green bars) specified
by the waterborne AGV’s arrival at the origin terminal and
departure from the destination terminal. All actual duration
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times are within required time windows, i.e., time windows
of all requests are satisfied by the scheduling problem.

V. CONCLUSIONS AND FUTURE RESEARCH

For the novel type of container transport vehicles, water-
borne AGVs, this paper proposes a dynamic rolling horizon
scheduling strategy in view that ITT requests are actually
revealed in real-time. By adopting the rolling horizon strat-
egy, a pick-up and delivery re-scheduling problem is solved
every certain period of time. System states of the fleet of
waterborne AGVs including positions, waterway segments
and containers on board, dynamic waterway transport net-
work, and newly arrived ITT requests are incorporated to
update the previously assigned routes. Time windows, capac-
ity constraints and container load/unload service times are
also considered. Simulation results based on the waterway
transport network in the Port of Rotterdam demonstrate that
with proper scheduling horizon and intervals, the proposed
strategy can be applied in real-time to address the scheduling
problem an autonomous ITT system. Future research will
develop fast solution, probably heuristic, approaches to solve
the online re-scheduling problems more efficiently.
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