
A MULTIPROCESSOR SYSTEM
WITH

MULTITASKING FACILITIES

I. JURCA

A MULTIPROCESSOR SYSTEM WITH MULTITASKING FACILITIES

IV o
Vt o

BIBLIOTHEEK TU Delft

p 1117 6245

248254

ISBN 90 6231 038 9

A MULTIPROCESSOR SYSTEM WITH

MULTITASKING FACILITIES

PROEFSCHRIFT

ter verkrijging van de graad van Doctor in de
Technische Wetenschappen aan de Techni­
sche Hogeschool Delft, op gezag van de Rector
Magnificus Prof. Ir. L. Huisman, voor een
commissie aangewezen door het college van
dekanen te verdedigen op woensdag 8 juni

1977 te 14.00 uur

door

lOAN JURCA

elektrotechnisch ingenieur
geboren te Tapia - Roemenië /yy/ / ^ y ^ -

1
1977

Dutch Efficiency Bureau - Pijnacker

Dit proefschrift is goedgekeurd door de promotor
Lector Ir. G. L. Reijns

Pentru

Maria ji Adriana,

CU dragoste.

ACKNOWLEDGEMENTS

This thesis resulted from the work done with the support of a scholar­

ship granted by the Romanian Ministry of Education,for which I wish to

express my deep gratitude.The support of the Dutch Ministry of Education

and Sciences in meeting the printing costs is gratefully acknowledged.

I am profoundly indebted to ir.F.P.C.Pauwels,of the Laboratory for

Information Processing Machines of the Delft University of Technology,for

his continuous guidance and encouragement.

Special thanks are due to Mrs.J.B.Cavender-Bruner for her attempts to

correct the "English" in which the thesis was initially written.

I'inally,I wish to acknowledge the support received from the Electrical

Engineering Department of the Delft University of Technology during my stay

in the Netherlands.I am grateful to all those who took from their time to

help me bring this work to an end.

I.Jurca

VI

LIST OF ABBREVIATIONS

AST

ASTE

ATR

BR

CCS

CPU

CPUQ

CR

CR i

DBR

ER

FIFO

GCR

GT

I/O, 10

KST

LP

LPAV

MB

MM

MT

PC

PCB

PCCT

PCS

PE

PEM

PPM

PSB

PST

PSW

PT

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Active Segment Table

Active Segment Table Entry

Address Translation Register

Base Register

Central Capability Segment

Central Processing Unit

CPU Queue

Card Reader

Capability Register i

Data Base Register

Execution Ring

First In First Out

Generator for Card Reader

Generator for Terminal

Input/Output

Known Segment Table

Line Printer

Line Printer Available

Memory Block

Memory Module

Magnetic Tape

Program Counter

Process Control Block

Process Central Capability Table

Primary Capability Segment

Processing Element

Processing Element Memory

Parallel Programs Manager

Processor Status Block

Process Segment Table

Program Status Word

Page Table

V I I

SCT

SCTE

SDW

SPT

TST

System Capability Table

System Capability Table Entry

Segment Descriptor Word

System Page Table

Test and Set

Abbreviations used in references

AFIPS

CACM

FJCC

IEEE

IEEE

IEEE

R.A.I

Tr

Tr

.R

on

on

0.

C

S E

SJCC

American Federation of Information Processing

Communications of the Association for

Computing Machinery

Fall Joint Computer Conference

Institute of Electrical and Electronic

Engineers

IEEE Transactions on Computers

IEEE Transactions on Software Engineering

National Computer Conference

Revue Francaise d'Automatique, Informatique

et Recherche Opérationelle

Spring Joint Computer Conference

VIII

CONTENTS

List of abbreviations VII

INTRODUCTION 1

1. PARALLELISM IN COMPUTERS 3

1.1. Pipeline computers 4

1.2. Parallel computers 8

1.2.1. Array computers 8

1.2.2. Associative computers 10

1.3. Multiprocessor systems 12

References 14

2. BASIC CONCEPTS IN OPERATING SYSTEM DESIGN 16

2.1 Process coordination 16

2.1.1. Test-and-Set instruction 18

2.1.2. Semaphores 19

2.1.3. Shared variables and critical regions 22

2.1.4. Monitors 24

2.2 Resource allocation and scheduling 27

2.2. 1. Deadlock 28

2.2.2. Examples of scheduling algorithms 31

2.3 Information addressing and accessing 35

2.3.1. Protection mechanisms in computer systems 36

2.3.2. Addressing mechanisms 42

2.4 Outline of a methodology for operating system design 48

References 49

3. DESIGN OF THE PROCESS COORDINATION PRIMITIVES IN A MULTI­

PROCESSOR SYSTEM 51

3.1. General aspects of the system design 51

3.1.1. The main design decisions 51

3.1.2. The influence of the language Concurrent Pascal on

the structure of an operating system 56

IX

3.2. Kernel functional design 60

3.2.1. Analysis of the monitor primitive operations 61

3.2.2. The relation between the kernel and the interrupt

system 65

3.3. Kernel implementation 66

3.3.1. The implementation of a kernel queue 66

3.3.2. Processor allocation; the queue of ready processes 68

3.3.3. The implementation of the monitor procedures ' 76

3.3.4. A scenario for kernel calls 78

References 79

4. THE FUNCTIONAL DESIGN OF A MULTIPROCESSOR MULTITASKING OPERATING

SYSTEM 80

4.1. General description of the operating system 81

4.1.1. Objectives of the design 81

4.1.2. The partition of system activities into processes 83

4.2. Virtual memory organization 89

4.2.1. The class "virtual memory" , . 90

4.2.2. The core monitor 93

5. A SIMULATION MODEL OF THE PROPOSED COMPUTER SYSTEM . 102

5.1. Computer systems modelling and simulation 102

5.2. A description of the developed simulation model 104

5.3. Simulation experiments and results 113

References 120

6. CONCLUDING REMARKS 121

6.1. A review of the system structure 121

6.2. Conclusions 124

6.3. Directions for further work 125

References 127

X

Appendix 1. Introduction to Concurrent Pascal 129

Appendix 2. Fundamentals of the evaluation nets 140

Appendix 3. Histograms obtained from simulation 146

SAMENVATTING 160

Curriculum vitae 162

XI

INTRODUCTION

The starting point of the work reported in this thesis was a study

of the possibilities of increasing the performance of a computer system by

structural means. This is an alternative to increasing the performance by

using faster basic circuitry in a conventional structure. During the study,

the scope of the potential application areas of the various examined struc­

tures was also taken into account.

All structures examined in this initial study show a certain type of

parallelism in their operation. The concept of "parallelism" has been inter­

preted here in a very wide sense. In this sense, pipeline computers, array

and associative computers, and multiprocessor systems can all be considered

to include parallelism. The study has led to the conclusion that multiproces

sor systems offer the greatest flexibility and, therefore, the largest po­

tential area of applications. For these computers, an essential problem is

the availability of a suitable operating system.

The outcome of this preparatory work pointed to a further investigation

of the multiprocessor systems and in particular of their operating systems.

In this context, the means for expressing the coordination between processes

and, more generally, for a systematic design of the operating system are of

outstanding importance.

The programming language Concurrent Pascal is regarded by the author

as one of the best available tools for the design of an operating system

and has, therefore, been selected for the example system developed in this

thesis. Concurrent Pascal allows a flexible hierarchical organization of

1

the system and supplies powerful operations for process coordination.

During the design, some features that are specific to multiprocessor systems

have received special attention. These features stem from the possibility

that two or more processors can try to access the same data item simultane­

ously.

On a somewhat more generalized level, the thesis contains the functional

design of a complete operating system for a multiprocessor. The system is

supposed to be used in a combined batch and time-sharing processing environ­

ment. A particular feature of this system is the possibility of concurrently

executing several tasks originating from the same program. This feature is

called "multitasking" and a program divided into tasks, a "parallel program."

A simplified simulation model of such a system has been developed and

a simulation program has been written using the programming language SIMULA 67.

The simulation results indeed show a substantial reduction in the turn­

around time of the parallel programs compared to the turnaround time of the

same programs executed in a system without multitasking.

The thesis is divided into six chapters.

A review of the initial study on parallelism in computers is presented

in Chapter 1.

In Chapter 2 the general problems that should be solved in the design

of an operating system are introduced and exemplified for various systems.

The design of the operating system kernel is the subject of Chapter 3,

and the functional design of the operating system as a Concurrent Pascal

program is presented in Chapter 4.

The simulation model and the simulation experiments and results are

discussed in Chapter 5.

The last chapter contains a few conclusions and indicates possible di­

rections for further work.

2

Chapter 1

PARALLELISM IN COMPUTERS

According to the definitions given by Blaauw [d] , the architecture

of a system is "the functional appearance of the system to the user" and

the implementation refers to the system's "inner structure, considered

from a logical point of view."

In the attempt to build computers with greater computing power, within

the constraints of a certain technology, the implementation has an impor­

tant role. The basic idea behind all the implementations studied in this

chapter is to provide means for the simultaneous (i.e., parallel) execution

of several actions.

For specific application areas, e.g., for those involving intensive ma­

trix manipulation, special architectures have been proposed, which make the

parallel operations visible to the user. These systems are properly called

parallel computers.

In this chapter a few systems are discussed in order to emphasize the

technological problems of their implementation and the implications for pro­

gramming and application areas. At the end of the chapter, the reasons are

given for the selection of the multiprocessor systems for a more detailed

study. This chapter is based on an earlier report [9] prepared by the

author.

3

1.1. Pipeline oomputers.

Pipelining is an implementation technique in which an increase in the

number of instructions performed by a computer in a time unit is obtained

by overlapping the processing of several instructions. In the exemple pre­

sented below, the computer has a basically von Neumann-architecture, but

the technique of pipelining can also be applied for other architectures.

Among the systems that use this technique are IBM 360/91 [l] , MU 5 [8] ,

and Texas Instruments' ASC [14] .

Four main phases can be identified in the processing of an instruction:

fetch, decode, operand access (when required) and execution. In principle,

it is possible to overlap the phases of several successive instructions,

i.e., to start the fetch of the next instruction at some time before the

processing of the current instruction is completed. This principle is illu­

strated in Fig. 1.1. The computer completes more instructions in a certain

time than a computer without pipelining, although the execution time of

the individual instructions is the same.

^ time
De- Operand

. Fetch code access Execute „ , ̂ ,
1st instr I I I 1 I Result 1

2nd instr. , , , , Result 2 , , mem.
oper.

3rd instr. , , , , ,Rpsu1t 3 , , CPU
oper.

Fig. 1.1. The principle of pipeline operation.

In the text of this chapter, the term control unit (CU) refers to that

functional unit of a computer which obtains the successive instructions of

a program from the main memory, decodes them and sends the necessary con­

trol signals for the instruction execution to the execution units (EU).

An execution unit is a functional unit which can perform certain arithmetic

and/or logic operations on the data supplied to it, as directed by a CU.

The term "processor" or "central processing unit" (CPU) applies to a com­

bination of a CU and one or more execution units directed by the CU.

Taking into account these definitions, it is clear that the main influ­

ence of the pipelining approach appears in the structure of a CU, which has

to organize the instruction overlapping. However, an efficient implementa­

tion requires the other (possibly increased number of) functional units

to have the adequate features as well.

A few characteristics of the pipeline computers will now be discussed

with the aid of Fig. 1.2, which represents in a simplified form the imple­

mentation used for IBM 360/91.

It may be assumed that the instructions of a program are stored in

consecutive memory locations. If the memory is not divided into blocks,

the fetch of the next instruction cannot start before the memory cycle

that fetches the current instruction is completed. An interleaved memory

i.e., a memory unit which is divided into separately addressable blocks,

and has the consecutive locations in different blocks, removes this limi­

tation.

In the CU a number of buffers must be provided for the storage of the

instructions already fetched from memory, but not yet decoded. The unit

that controls the access to the memory system (called in IBM 360/91 system

the Main Storage Control Element - MSCE -) is also required to provide some

address and data buffers. The Storage Conflict Buffers are used to queue

addresses to busy storage modules. The presence of buffers is, in fact,

an essential characteristic of the pipeline computers. The buffers contri­

bute to the continuity of the information flow and thus to the efficient

use of the computer functional units.

The principle of pipelining can be extended to the internal organiza­

tion of the execution units. An adder, for instance, can be designed in

such a way that two additions are simultaneously in progress. Another way

to improve the performance of the arithmetic unit is to divide it into

smaller functional units which can work independently.

If successive instructions refer to different units, they can be exe­

cuted simultaneously. The TI ASC computer combines the two approaches: the

arithmetic unit is divided into 8 functional units and the execution of an

instruction means the successive activation of some of these units.

5

r

Interleaved memory

Address to storage :i
Data

Data from storage

to storage

:.n f
1,

n

Instr.
buffers

Branch
Target
Buffers

MSCE

Instruction
Register

Decode
area

I Storage
Conflict
Buffers

Address
generation

PSW

Storage
address
buffers

Storage
data
buffers

Control Unit
Arithmetic

unit

MSCE : Main Storage Control Element

Fig. 1.2. An example of pipeline implementation:
IBM 360/91.

The efficiency of the pipelining is strongly influenced by the inter­

dependence of the successive instructions in a program and by the number

of branch instructions. When an instruction uses the result of a previous

instruction as an operand, it cannot be executed until that result is

available which, of course, reduces the overall execution speed. For this

reason, techniques like "look-ahead" or "look-aside" [ll] have been pro­

posed for determining the independent instructions in a sequence of a cer­

tain length. The instruction buffer of the CU stores the instructions under

examination.

6

A further complication is introduced by the branch instructions, be­

cause it is not possible to know in advance which path will be chosen by

such instructions. Therefore, the IBM 360/91 is equipped with a set of

"branch target buffers" (see Fig. 1.2) in addition to the instructionbuf fers.

When a branch instruction is recognized, the CU requests from the main me­

mory two instructions starting at the branch target in addition to the in­

structions following the branch in the normal sequence. Obviously, the

execution of the instructions following the branch in either of the two

paths cannot be started until the branch decision is taken. The delay that

would be caused by the access to the memory is reduced, because even when

the target path is selected, the required instructions are already present

in the CU.

Another source of delays in pipeline computers is the interrupts. The

contents of the instruction buffers should be completely changed after an

interrupt, which causes a discontinuity in the operation of the processor.

However, if the interrupts are relatively infrequent their influence on the

performance is not significant.

In conclusion, it must be noted that pipelining is an implementation

technique, not a particular computer architecture. This technique has been

used in computers with different architectures, as is shown by IBM 360/91

and MU5. Most of the computers that have applied this technique have a

general-purpose architecture and can be classified as medium-to-large or

large systems. From a theoretical point of view [13] , the main difficulty

in obtaining an efficient implementation consists in the identification of

the independent instructions in a sequence of a certain length.

Generally, pipelining is not a modular technique, and therefore it of­

fers little flexibility for further improvements once a system is comple­

tely built. The technique does not require any special functions to be

incorporated in the operating system. It will profit however, from care­

ful programming which can result in a higher proportion of independent in­

structions. The pipeline technique is not recommended in systems with fre­

quent interrupts, where it cannot significantly improve the performance.

There is also a relation between the characteristics of a computer archi­

tecture, such as the type of instructions and the frequency of branch in­

structions, and the efficiency of a pipeline implementation.

7

1.2. Parallel oomputers.

There are some applications, for instance, matrix manipulation, image

processing and information sharing, in which the same operation must be

performed simultaneously on large sets of related data. This fact can be

made apparent in the architecture of a computer designed with such appli­

cations in mind. In the literature, the designation "parallel computers"

is specifically applied to these computers.

Two classes of architectures are discussed in this section: array com­

puters and associative computers.

1.2.1. Array computers.

The best-known design and implementation of an array computer is the

ILLIAC IV [2] . A block diagram of this computer is presented in Fig. I.3.

Routing Network

CU

p ^

•
•
•

Common Data Bus (Memo

.

control
signals

•« J r
PE

0

^ 0 k
PEM

o

^
•

h

"

^ ^

PE,

m ;

PEM

d n '

—

ry
-•
-•

•

-•
— •

address

• •

• •

and common operand)

W

^^6 3

0:
PEM^3

rf • b

Operand
fetch/store

Control Unit Bus (Instruction and Common operands)

Fig. l.S. The block diagram of an array computer:
ILLIAC IV.

Since the array processors must execute the same operation on multiple

data sets, a single CU is used to direct a number of identical execution

units. There are 64 execution units, called Processing Element (PE), in

ILLIAC IV. When CU decodes an instruction, it sends the control signals

to all the processing elements. However,each PE must have the possibility

of deciding whether it should execute the decoded instruction or not.

8

Some of the units must remain idle during certain instructions, because of

the results obtained in previous instructions or because the logic of the

program requires it.

One of the basic problems in the design and implementation of the array

computers is the interconnection of the EUs and the memory. Each instruc­

tion operates on a large number of operands, and therefore it is essential

that these operands are fetched from the memory in as short a time as pos­

sible. A description of the solution adopted by the ILLIAC IV designers

follows.

Each PE is provided with a block of memory, denoted as Processing Ele­

ment Memory (PEM), which contains both data and instructions and which can

be directly addressed by that PE. A "routing network" connects the proces­

sing elements with each other. Each PE has direct connections with four neigh­

bors. If the 64 PEs are numbered 0,1,2,...,n,...,63, then the element n is

connected with n-8, n-1, n+1 and n+8. This pattern of interconnection allows

the execution of an exchange of information between any two PEs in at most

7 steps, by steps of 1 or 8 elements. A PE obtains access to the PEM of

another processing element, exclusively via the routing network.

The CU has the ability to read the status bits of all PEs and, thereby,

to monitor the status of a certain operation. The CU also contains an in­

struction buffer with a capacity of 128 instructions, which is assumed

large enough to store the instructions of the inner loop of many programs.

In the programs where this assumption is valid, after the initial loading

of the buffer, the instructions for the next cycles of the loop are fetched

from the buffer with a minimal delay.

The successive instructions of a program are stored in successive PEMs

and due to the physical arrangement of the PEMs, 8 instructions can be ac­

cessed simultaneously.

Special programming problems arise for array computers. For ILLIAC IV

a high-level language, TRANQUIL, has been developed, which includes some

statements for specifying the memory allocation and has a control structure

similar to that of ALGOL. Inefficiencies result when the problem data struc­

ture does not match exactly the requirements of the PEMs arrangement. An

example of this is the processing of a 65x65 matrix in a system with 64 PEs.

Algorithms have been studied [10] to reduce this type of inefficiencies.

9

While useful in particular applications, the array processors cannot

be easily adapted to the requirements of a general computing environment.

They need a supplementary programming effort and the development of parallel

algorithms for the problems intended to be solved on such computers. Never­

theless, the research in this field continues, the structure of the inter­

connection between processing elements and memory modules receiving much

attention in the theoretical studies.

1.2.2. Associative computers

The associative computers are based on the availability of an "associative

memory" (also called "content-addressable memory"). A conventional (random-

access) memory used the address of a word in order to deliver the word con­

tents. An associative memory uses the (partial) contents that a word should

have in order to find the address of such a word. This implies, of course,

that the associative memories have a much more complex memory cell than the

conventional memories.

In most of the proposed architectures, the associative memory is exclu­

sively used for storing data. A separate memory, built with conventional

components is then provided for storing this programs.

The principle of the associative computers is explained with the aid

of Fig. 1.4. Specific examples are taken from the STARAN system, described

in Ref. [3] .

The memory matrix consists of n words of m bits each. Usually, m has

a larger value than in conventional memories (m=256 for STARAN) and, at

least in the current proposals, n is not larger than 4 k.

A number of registers are provided which assist the memory operation.

The mask register indicates the contents (or, more often, a part of the con­

tents) that the requested memory word must have. Wlien such a word is iden­

tified, its contents is transferred into the data register. The word mask

register specifies the memory word in which a search operation must be per­

formed. This register allows a partial search of the memory, an operation

which is required for complex search conditions that must be performed in

steps (e.g., a search on the condition "between limits"). In the same type

of operations, the match response register indicates in which words a cer­

tain condition is satisfied. The contents of this register is transferred

into the word mask register for the next search.

10

O I 1 I Data Register

I . Mask Register

Word 0

Word 1

word n- 1

m-1

0,1 1

1 1

•
•
•

Memory Matrix
•
•
•

m-1
1

^

I I 1 1 n-1

u
<u
4J

a>
• H

ao
(U

p j

(U
(0

a
o
p .
CO

<u
OS

J3
O
4J

J9
a

u
a
4 J
CO

• H
0 0
0)

OS

.̂ i-i
to
S
•o
V4
0
3

M
a>
u
CO

• H

ao
0)

Pi

CO
3

4-)
CO
i J

en

Fig. 1.4. The principle of an associative computer.

The status register shows which memory words are free at any moment.

It will be used during the write operations to select a free word.

A search operation, which is an intrinsic property of the associative

memories, is the basic operation of the associative computers. Supplemen­

tary arithmetic and logic operations should be added. Several approaches

to the structure of an arithmetic unit for these computers have been inves­

tigated. A "fully parallel system" is obtained if processing capabilities

are provided in each memory cell. Alternatively,it is possible to provide

a bit serial processing unit, which can perform an operation only on one

bit of each memory word at a time.

In the STARAN computer an intermediate solution has been adopted: 8 bits

out of a word of 256 bits are processed in parallel. This solution is a com­

promise between the high cost of a fully parallel unit and the low speed of

a serial unit.

The instruction list of an associative computer, like that of an array

computer, differs fundamentally from the instruction list of a von Neumann-

type computer. But in the associative computers this difference is even

11

more clearly marked than in the array computers.

A problem which is common to the associative and array computers is the

need of a conventional system to execute their software. For STARAN this is

a PDP-11 and for ILLIAC IV, a Burroughs B6500.

The associative computers are primarily useful in data base management

and image processing. Other possible applications include fast Fourier trans­

formation (FFT) and problems in which FFT is encountered, air traffic con­

trol, and radar signal processing. There are still problems connected to the

cost of constructing a large associative memory. Moreover, these computers

are even less suitable for general applications than the array computers.

1.3. Multiprocessor Systems.

The term "multiprocessor" is used in various senses in the literature,

as shown for instance in Ref. [7]. For the purpose of this thesis a multi­

processor system is defined as a computer which consists of a number of

identical CPUs connnected to a common main memory. Because each CPU posses­

ses a CU and an arithmetic unit, a multiprocessor system is capable of simul­

taneously executing several independent programs or programs that are parti­

ally independent, but cooperate in solving a certain problem.The CPUs (pro­

cessors) have a general-purpose architecture.

Modularity is an obvious characteristic of the multiprocessor systems.

The computing power of such a system can be increased by adding more CPUs,

provided the CPU-memory interconnection scheme (see Fig. 1.5) is appropria­

tely designed. The design of a suitable interconnection scheme is, in fact,

one of the most important stages in the development of the hardware of a

multiprocessor system. An adequate design must ensure that:

- all CPUs can obtain access to all memory modules;

- the delay caused by memory accesses does not produce a

substantial degradation of the system performance;

- adding new processors or memory modules produces only

an almost linear increase in the complexity and the cost

of the scheme;

- the total cost of the scheme is not prohibitive.

12

CPU

Memor

1

CPU

CPU -

interconnectio

y
Module (MM)

1

2
• • • CPU

n

memory

n scheme

MM # 2 • • • MM # m

Fig. I.e. Block diagram of a multiprocessor system.

A study of some implementations for the processors-memory interconnection

scheme and a proposal for a modular design of such a scheme can be found in

Ref. [6]. The recent availability of inexpensive microprocessors has given

new impetus to this field of research [12] .

The existence of more than one CPU in the system can be made visible in

the architecture of the system, by offering the users the possiblity of di­

viding their programs into parallel executable tasks and specifying the re­

lationship between the tasks. Alternatively, the software (specifically the

compilers) of a multiprocessor system can be written in such a way that

parallelism in programs is automatically recognized.

It should be noted that this kind of parallelisms differs from that en­

countered in pipeline, associative or array computers. A program task usually

consists of an entire routine or even of a group of routines. The parallelism

is then apparent at a level higher than the instruction level.

Regardless of the architecture of a multiprocessor system (i.e., whether

the parallelism at task level is made visible to the programmer or not),

the operating system of such a computer must ensure an efficient use of the

system resources. The structure of the operating system will not differ

essentially from that of a system for a multiprogrammed computer.

13

However, the existence of several processors adds a new degree of complexity,

especially in manipulating the information which defines the system status.

A methodical design of the operating system is a more stringent requirement

for a multiprocessor than for any other type of system.

The multiprocessor systems have a built-in capability for "fault-tole­

rance" and "graceful degradation" of the system performance. When a processor

fails, the software can re-configure the system and continue to operate at

reduced performance. Special "recovery routines" should be provided for this

purpose. The identical structure of the system processors is an essential

feature in obtaining the "fail-soft" operation. Note that the processors

may have different implementations (and thus performances), provided they

have an identical architecture.

Because each processor has a general-purpose architecture, a multipro­

cessor system can also be considered a general-purpose computer. The com­

puting power and/or the memory capacity required by a certain application

can be satisfied by a modular expansion of the system configuration. An in­

crease in the number of processors also means in increase in the complexity

of the system management and, thus, in the system overhead. Therefore, the

useful system computing power is smaller than the sum of the computing powers

of the constituent processors.

In conclusion>it can be stated that the multiprocessor systems offer,

among the studied configurations, the greatest flexibility in structuring

a computer that will correspond to the user's needs, provided an adequate

operating system is available. For this reason it has been decided to pro­

ceed with a more detailed study of the multiprocessors and, specifically,

of the appropriate design of their operating systems.

References

1. Anderson, D.W., et al., "The IBM System/360 Model 91: Machine Philosophy

and Instruction Handling," IBM Journal of R&D, Vol.11, No.1

(January 1967), pp. 8-24.

2. Barnes, G.H., et al., "The ILLIAC IV Computer," IEEE Tr. on C , Vol.17

No.8 (August 1968), pp. 746-757.

3. Batcher, K.E., "STARAN Parallel Processor Hardware," AFIPS National

Computer Conference, 1974, pp. 405-410.

14

4. Bell, J., et al., "An Investigation of Alternative Cache Organizations,"

IEEE Tr. on C , Vol.23, No.4 (April 1974), pp. 346-351.

5. Blaauw, G., "Computer Architecture," Elektronische Rechenanlagen, Vol.14,

No. 4, 1972, pp. 154-159.

6. Davis, R.L., et al., "A Building Block Approach to Multiprocessing,"

AFIPS Proceedings, SJCC, 1972, pp. 685-703.

7. Enslow, P.H. (ed.,) Multiprocessing and Parallel Processing, J. Wiley &

Sons, New York, 1974.

8. Ibett, R.N., "The MU-5 Instruction Pipeline," The Computer Journal,

February 1972, pp. 42-50.

9. Jurca, I., "Parallelism in Computers and its Relationship with Perfor­

mance and Application Areas of Computer Systems," Internal Report

051560-44 (1975)05, Laboratory for Information Processing Machines,

TH Delft.

10. Kuck, D.J., "ILLIAC IV Software and Application ProgramSj" IEEE Tr. on C ,

Vol. 17, No. 8 (August 1968), pp. 758-770.

11. Lee, F., "Study of 'Look-Aside' Memory," IEEE Tr. on C , Vol. 18, No. 11,

(Nov. 1969), pp. 1062-1064.

12. Swan, R.J., et al., "The Structure and Architecture of a Cm*; a Modular,

Multi-Microprocessor," Comp. Sci. Dept., Carnegie-Mellon University,

August 1976.

13. Tjaden, G.S. and Flynn, M.J., "Detection and Execution of Independent

Instructions," IEEE Tr. on C. Vol.19, No.10, (Oct. 1970)

pp. 889-895.

14. Watson, J., "The TI ASC - A Highly Modular and Flexible Super Computer

Architecture," AFIPS Proceedings, FJCC, 1972, pp. 221-228.

15

Chapter 2.

BASIC CONCEPTS IN OPERATING SYSTEM DESIGN.

In the evolution of computers, several important concepts common to the

majority of existing operating systems, general-purpose or dedicated, have

been identified and can serve as a basis for the design of new systems,

In a very general sense, these concepts are related to three main areas:

a) process coordination,

b) resource allocation and scheduling,

c) information addressing and accessing,

Each of these areas will be briefly discussed in this chapter, the most

relevant concepts defined, and some examples given to highlight specific

aspects of the concepts,

2,1. Process coordination

The activity taking place at a certain moment in a computer system can

be thought of as consisting of a number of asynchronous processes, A process

is a series of strictly sequentially-performed operations that result in

the fulfillment of a desired task. In other words, a process can be defined

as consisting of:

- a collection of programs,

- a collection of data on which the programs operate,

- the actual, sequential execution of the programs,

The most important feature of a process is the sequential nature of its

operations, A process also has the theoretical property that, provided e-

nough computer resources are available and programs appropriately written,

its actions can proceed without interference from other processes, simulta­

neously in execution in the same system (a collection of such processes will

subsequently be referred to as "concurrent processes"),

However, two important factors lead to some forms of communication be-

16

tween processes. In the first place, it is uneconomical to provide so many

resources that no interference among processes occurs. Generally, a process

will not be able to keep all its resources busy most of the time because of

the sequential nature of its operations: a new operation cannot start until

the previous one has been completed, and one operation usually involves on­

ly a small part of the resources,

Connected to the first factor, there is a second: as the amount of re­

sources is limited, the resources must be shared among processes. Thus a

cooperation between processes in this sharing is implied.

Therefore, the activity of the computer system must be organized with

the necessity of an efficient use of the resources in mind. It can happen

that this fact leads to a situation where a "producer/consumer" relation

exists between processes: results produced by one process are used for the

progress of another process (the two processes are said to cooperate).

Another form of process interaction is usually called "mutual exclusion":

there are instances when a process requires exclusive use of a resource, or

otherwise the results will be unpredictable. A simple example of this form

of interaction is that of a process requesting access to a location which can

also be accessed by other processes; if the process does not obtain exclu­

sive use of the memory location for the duration of the operation, it may

happen that the memory content is inadvertently modified while the opera­

tion is still in progress,

The design of the computer should provide means for the implementation

of the types of process interactions presented above, i,e,, means for pro­

cess coordination,

The computer system will have status information associated with every

resource (e,g,, for a magnetic tape or a printer, it should specify whether

the device is allocated or free; for a buffer used in the transmission of

results from one process to another, whether the buffer is empty or full).

All process coordination means must enable a process to access the status

information of a resource, examine it and possibly modify it, all in a

single, indivisible operation. Such an operation ensures that, when a pro­

cess needs the status information of a resource, the information is always

found in the correct state.

The remainder of this section is dedicated to a discussion of several

process coordination means,

17

2,1,1, Test-and-Set Instruction.

At the lowest level of organization (in view of the process coordination),

a computer must be designed with a machine instruction that allows the

reading, testing and subsequent writing of a memory location as an indivi­

sible operation.

Such an instruction is present in most of the third-generation computers

and appears generally under the name "Test-and-Set" (TST). The TST instruc­

tion operates as follows: the content of the addressed memory location is

read out, and if it is zero, a one-bit flag is set to "1" and, at the same

time, a "1" is written back into that memory location. Only after the write

operation is completed, does the memory location become available for other

processes. If the memory location does not contain a zero, the flag will

not be set to one and the location is simply rewritten,

Following the TST instruction, the process that has executed it will ha­

ve instructions to test the flag and take a decision about how to continue,

depending on the value of the flag.

It is easy to see that the TST instruction provides indeed the means re­

quired for process coordination. The "mutual exclusion" is attained by as­

sociating a memory location with the resource in question. Before using the

resource, the requesting process will issue a TST instruction for that me­

mory location. If the memory location is found to be zero, a "1" will be

written in that location and the process can continue with the use of the

resource. When the resource is no longer needed, the process resets the me-

meory location to zero. While the memory location is set to "1", it will be

understood that a process is using that resource and other processes issuing

TST will not be allowed to continue.

The "producer/consumer" relationship is implemented in a similar way. The

producer process will signal that it has produced a new item by resetting a

memory location to zero. The same memory location is tested (TST) by the

consumer process when the item is needed,

While the TST instruction supplies the means for a correct process coor­

dination, it leaves too many details in charge of the programmer writing the

process programs. In particular, the programmer must decide what the process

will do when it is not allowed to continue. The simplest solution would be

to have the process continuously testing the condition until, presumably by

the action of another process, the condition is satisfied. This leads, how­

ever, to the so-called "busy waiting": the process keeps a CPU busy with

18

non-productive work. In order to eliminate the busy waiting, it must be pos­

sible that the implied process relinquishes the CPU, so that the CPU can be

allocated to another process.

The new process might eventually contribute to the fulfillment of the

condition expected by the first process.

A solution that possesses the property stated above has been proposed by

Dijkstra I 5] . This solution makes use of a special kind of variable, called

"semaphore.

2. 1.2. Semaphores.

A semaphore is an integer variable on which two indivisible operations,

called P ("passeren" = pass by, in Dutch) and V ("vrijgeven" = release, in

Dutch) are defined.

There is also a queue associated with a semaphore. If S is a semaphore va­

riable, the P and V operations can be defined as follows:

P(S): if S > 1 then S:=S-1 and continue process

else the process is put in the queue.

V(S): S:=S+1;

if queue is not empty then resume a process

from the queue else continue process that has

issued V(S),

At this point, a discussion about the process status (as seen from the

viewpoint of a processor - CPU or peripheral processor -) is in order.

An active process is one currently making progress by having its programs

executed. It often happens that a process might be active, but its programs

cannot be executed because all the available processors are currently wor­

king for other processes: such a process is said to be in the ready state.

Finally, there are situations when a process cannot continue because it de­

pends on a signal from another process, which has not yet arrived; the pro­

cess is then blocked.

A representation of the states of a process and of the transitions between

these states is given in Fig. 2.1.

Referring to the definition of the P and V operations, a process in the

queue will be blocked. In the V operations when the queue is not empty, it

was said that a process in that queue is resumed. This means that its sta­

tus is changed from "blocked" to "ready" or "active."

19

The process issuing the V operation makes, in this case, the transition from

the active state to the ready state.

f Ready j"

Fig,2.1. Process states and transitions.

The use of the semaphores for process coordination is now exemplified.

Example 1: A producer/consumer relationship. A typical instance of such a

relationship is that of an input process(produce^ placing new data records in

a buffer and a consumer process taking records out of the buffer. Let us

consider that the buffer can contain up to n records and that it is initial­

ly empty.

Two semaphore variables, NE (not empty) and NF (not full) are associated

with the buffer. NE is initialized to zero, and NF is initialized to n. The

code for the two processes can now be written as follows:

Producer

repeat

produce item;

P(NF);

put item;

V(NE);

end

Consumer

repeat

F(NE);

get item;

V(NF);

consume item;

end

A producer cannot continue if there is no free space in the buffer.

Therefore, after producing a new item, it should test the NF semaphore,

which must be strictfy positive in order that the producer process can conti­

nue; otherwise the producer is blocked.

After placing a new item (record) in the buffer, the producer signals this

fact by a V operation on the NE semaphore. If the buffer was previously emp­

ty, the consumer process can be in the queue of the NE. And if this is the

case, the process can now be resumed.

The consumer starts by executing a P(NE) operation in order to get a new

record from the buffer. After taking out the record, the consumer process

20

executes a V(NF) operation. If the buffer was previously full and the pro­

ducer process blocked in the queue of the NF, the producer process is now

resumed.

Examp1e 2: Mutual exclusion. Consider a set of processes competing for

exclusive access to one resource. A semaphore, MX, is associated with that

resource and initialized to 1. Before using the resource, a process must is­

sue a P(MX) and if the resource is already being used by another process,

MX is zero. Thus the process is placed in the queue of MX; otherwise MX will

be reset to zero and the process can continue.

When the process completes its work with the resource, it must execute a

V(MX) operation. The resource is made available for other processes.

The process code will thus contain the following section:

P(MX);

use the resource;

V(MX);

Since the P and V operations are indivisible, it can be proved [8] that

the solutions indicated above lead to correct results. With the use of the

semaphores, the "busy waiting" problem is reasonably solved. The P and V

operations can be implemented in hardware, but most likely they will be im­

plemented as software routines, making use of the TST instruction and/or of

the possibility to mask the interrupts in a computer. Although the program­

mer is relieved of some tedious work, the semaphores remain at a rather

primitive level, since the programmer is still concerned with a clear evi­

dence of the semaphores used in his program and of the correct sequence of

operations on these semaphores.

Since some of the inconveniences of the semaphores originate in the

rather simple nature of the semaphore variable and of the P van V opera­

tions, a proposal for the elimination of the semaphore disadvantages should

provide more powerful primitive operations and allow them to operate on mo­

re complex variables. This is achieved in a solution based on the introduc­

tion of shared variables.

21

2,1.3. Shared variables and critical regions.

A piece of program where a process needs exclusive use of a resource has

been called by Dijkstra a critical region. Hoare I 12] and Hansen I 2] have

proposed a new means to express process coordination, based on the concept

of shared variable. A variable is said to be shared when two or more proces­

ses can modify its values. A shared variable may be of any particular type

recognized in a certain programming language. Thus, if v is such a variable,

its declaration in a Pascal-like notation can be, for instance,

Var V : shared integer; or

var V : shared record a,b: real; c:boolean end;

By definition, a shared variable is accessible only inside a critical

region, and critical regions referring to the same shared variable exclude

each other in time.

A critical region using the shared variable v is coded as follows;

region v do S ;

where S represents the statement(s) of the respective critical region,

The construct, just introduced, allows only a simple representation for

the mutual exclusion type of relations between concurrent processes. To pro­

vide for process cooperation, a new language primitive, await, has been pro­

posed. It delays a process until the components of a shared variable v satis­

fy a condition B. The code for such a critical region is:

region v do

begin .,, await B , , , end;

The await primitive must be enclosed by a critical region. If critical

regions are nested, the condition B is associated with the innermost enclo­

sing region.

The implementation of these language constructs is illustrated in Fig.2.2

A process will be put into a "main process queue" Q when it needs to

enter a critical region associated with a shared variable v that is already

being used by another process. In this case the process is in the blocked

state. When its turn arrives to access the variable v, the process is taken

out of the Q , activated and allowed to start its critical region. When the
V

process encounters an await B, the condition B is evaluated. If the condi­

tion is true, the process continues. Otherwise, the process is again blocked

and put into an "event queue," Q .

22

Geleend op/Date of issue:

]] 7i\ ? 4 n «! 1 9 9 :̂
Uiterlijk terugbezorgen op/Date due:

22 05 1993

Terugbezorgd oplReturned on:

ParaaV Initials:

Documentgegevens/Received on loan:

Jurca, I ,
MULTIPROCESSOR SYSTEH WITH MULTITASKING FACILITIES

1200425 CBiiq bku i 11n 24825'

Gebruikersgegevens/Sorrower:

55011 Vries. J.C.W. de

Europasingel 106
2651 BW Bergschenhoek

1117.624.5 no

Bibliotheek TÜDelft
WMagaz^^Ê^ Pickh

I Ik wil dit document graag verlengen// would like to renew
! this loan.

in te vullen door de Bibliotheek TU Delft/fo be
completed bij the Delft University of Technology
Library

D verlengd tot/renewed until:

n niet verlengbaar, a.u.b. retour/renewa/ not
possible, please return the document

n opmerkingen/ofher:

c Briefkaart

FRANKEREN

ALS

BRIEFKAART

Aan de Bibliotheekvan de
Technische Universiteit Delft
Postbus 98
2600 MG DELFT

^

Another process can now enter its critical region for the variable v.

*\ Qv) *\v j ^

critical
region

Fig,2,2. Implementation of critical regions with

shared variables and auait primitives,

When a process changes y by a statement inside a critical region, it is

possible that one or more of the conditions expected by the processes in Q

will be satisfied. Therefore, after the completion of such a critical regioi^

all processes in the event queue Q are transferred to the main queue

Q . This enables the processes to re-enter their critical regions, to in­

spect again the shared variable y, and eventually to complete the critical

region. A certain amount of busy waiting can be caused by this technique: a

process may be transferred several times between Q and Q before the condi­

tion B for which it waits is satisfied.

In the end, the implementation of the constructs presented in this sub­

section will be based on the existence of a TST instruction and on an in­

terrupt system. The programmer, however, is not concerned with these imple­

mentation details. Moreover, it becomes possible for a compiler to check

whether the shared variables are used correctly, i.e., that they are opera­

ted upon only inside critical regions. This is an aid for ensuring the cor­

rectness of the program. The compiler is not capable of performing such a

check using semaphores. In this case, the programmer has the complete res-

ponsability for using P and V operations in the correct sequence.

The use of the shared variables is illustrated by the example of the

producer and consumer processes in subsection 2.1.2. Without providing de­

tails, two primitives, "put item" and"get item," are assumed to operate on

a buffer. The number of records momentarily present in the buffer is m, and

the capacity of the buffer is n, records. The initial value of m is zero,

and it is declared to be shared variable in a portion of the system exter­

nal to the two processes.

With these conventions, the example can be coded as follows:

23

var m: shared integer;

region m do m:=0;

"Producer" "Consumer"

repeat repeat

produce item;

region m do_ region m do

await m < n; await m > 0;

put item; m:=rrt-l;

m:=m+l; get item;

end; end;

end; consume item;

end;

The introduction of shared variables makes programming easier and provi­

des an automatic check for correct program constructs.

Still, each program should contain the code for operating on the shared

variables. At en even higher level, one can define a shared variable and

the operations allowed on it (implemented as procedures), as a separate u-

nit and can make the programs call a procedure of this unit whenever they

need the shared variable. In other words, all the critical regions for a

shared variable would be collected in one place.

This is the concept of the monitor, introduced by Hoare [11] and Hansen [3].

2.1,4, Monitors.

A monitor defines a shared data structure and all the operations that

processes can perform on it. These operations are implemented as monitor

procedures. A monitor also defines an initial operation that will be execu­

ted when its data structure is created. There is a similarity between the

monitor concept and the class concept defined in the programming language

Simula 67,

The monitor data can only be accessed through the monitors procedures,

which are executed strictly one at a time. Regardless of the number of pro­

cesses using a set of shared data implemented in a monitor, there is only

one copy of the monitor code, to which all process requests are directed,

A monitor can only be initialized once. After initialization, the shared

variables and the eventual monitor parameters exist forever,

They are called permanent variables. The eventual parameters and local

24

variables of a monitor procedure, however, exist only while the procedure

is being executed. They are called temporary variables.

A monitor procedure can only access its own temporary and permanent va­

riables, which are not directly accessible by other system components. Other

system components can, however, call procedure entries within a monitor.

It is possible to define constants, data types and local procedures with­

in monitors. The local procedures can only be called from other procedures

within the same monitor.

A monitor cannot call its own procedure entries (i,e,, its monitor proce­

dures) .

A monitor declaration will have the following general form [3] ,[1 1] :

type monitorname = monitor (.,,formal parameters..,);

declaration of the monitor (shared)data;

procedure entry procname (,.,formal parameters,,,);

begin , ..procedure body.,, end;

,,,declaration of other procedure entries;

,,,declaration of local procedures;

begin

initial operation;

end;

Note that the declaration of a monitor procedure is prefixed by procedure

entry, while the prefix for a local procedure declaration is simply proce­

dure .

A process calls a monitor procedure by making use of the "dot notation":

monitorname , procname;

Relative to the monitor implementation, several points should be dis­

cussed. First, a solution must be found for dealing with simultaneous calls

to the same monitor. This aspect is denoted by Hansen [3] as "short term

scheduling" and it arises from the mutual exclusion condition for the

execution of the monitor procedures,

A second aspect originates from the requirements of process cooperation:

there must be possible to delay a process, inside a monitor, for an indefi­

nite interval of time when a certain condition, expected by the process, is

not satisfied and to reactivate the process when an event of another process

makes that condition valid. This is "medium term scheduling,"

25

The actual monitor implementation will make use of the simpler concept

of semaphore, A semaphore controlling monitor access will take care of the

short-term scheduling. It is desirable for the execution time of a monitor

procedure to be as short as possible. The processes should not have to wait

long before being allowed to enter the monitor,

For process cooperation, the monitor implementation should provide two

primitives, delay and continue, and internal queues. When a process is de­

layed in an internal queue, it will lose its exclusive access to the moni­

tor, which can now be entered by the other processes. However, when a de­

layed process is reactivated by another process executing a continue in a

procedure of the same monitor, it should regain the exclusive use of the mo­

nitor iiranediately, without the possibility of yet another process inter­

fering.

The buffer example of the preceding subsections will be solved with the

aid of a monitor. A monitor called "buffer" is defined with two monitor

procedures, "put" and "get," operating on a data structure consisting of an

array of "pages" (a page is here the memory area necessary to store a buf­

fer item), three integer variables, and two queues. The three integer vari­

ables are "head," "tail" and "n," and the two queues are "empty" and "full."

The monitor code follows:

type buffer = monitor (limit:integer); ^ ,

var store:array [.0,,n-l,\ of page;

head, tail: 0,,n-l; : integer;

'• • • , . - .-. empty, full : queue;

procedure entri/ put (x : page);

begin i£_ n = limit then delay (full);

store [tail \ : = x;

•• ' • ' tail:=(tail+l)mod limit;

n:=n+l;

continue (empty);

end;

procedure entry get (var x : page);

bemn i£_ n=0 then delay (empty);

x:=store [head 1 ;

head:=(head+l)mod limit;

n:=n-l;

26

continue (full);

end;
"initial statement"

begin

n:=0; head:=0; tail:-0;

end;

The two processes, producer and consumer, can now be coded:

"producer" "consumer"

repeat repeat

produce x; buffer,get(x);

buffer,put(x); consume x;

end; end;

In a larger system in which "buffer," "producer" and "consumer" are several

components, there will be another component. This component initializes the

monitor "buffer"; i.e., the value of the parameter "limit" is specified,

space is reserved for the permanent variables "store," "head," "tail,"

"empty," "full," and "n," and the initial statement is executed.

The simplicity of the process coding is apparent from the completed

example, A compiler can easily verify the correctness of single monitor

calls. Therefore, once a monitor has been proved to work correctly, a pro­

gram using that monitor cannot cause an erroneous operation on the shared

data. This suggests the usefulnes of the monitor concept in the design of

hierarchical systems,

2,2. Resource allocation and scheduling,

As it has been shown in the previous section, the limited amount of re­

sources in a computer system is the principal reason for the need of pro­

cess coordination. This coordination must ensure a correct and efficient

sharing of the existing resources between the concurrent processes.

The concept of resource should be self-explanatory. In an very general

sense, a resource is any means that a computer system places at the dispo­

sal of its users. A computer has physical resources such as a CPU main me­

mory capacity, peripheral devices, etc. It has logical resources such as

compilers, program libraries, files, etc. A resource is sharable if it can

be used simultaneously by several processes or non-sharable if for a cer-

27

tain period of time, only one process can use it. Some resources are reus­

able (e.g., the CPU, the memory space); other are non-reusable (e.g., a

punched-card, an instance of a message between two processes). When a re­

source can be de-allocated, without many difficulties, from one process and

allocated to another process, that resource is pre-emptive. A resource

which does not have this property is non-pre-emptive (the CPU is a pre­

emptive resource, while a line printer is non-pre-emptive).

Resource allocation denotes the actual activity implied in the reserva­

tion of a resource for the use of a particular process, while resource

scheduling concerns the selection of one process out of the processes wai­

ting for the use of that resource. This scheduling is based on a certain

criteria designed to produce an efficient use of the resource. The selec­

tion criteria are expressed in scheduling algorithms.

The term resource management can be used to cover the aspects of both

resource allocation and resource scheduling,

The mechanisms for process coordination analyzed in Section 2.1. contri­

bute to the correct use of a resource. A supplementary problem in this area

is the deadlock. Solutions for it will be presented in this section. Subse­

quently, several techniques used in resource scheduling will be briefly dis­

cussed.

2.2.1. Deadlock.

Deadlock is "the situation in which one or more processes are blocked

forever because of requirements that can never be satisfied" [1 3] .

The most common situation in which deadlock occurs is that of two or more

processes unknowingly waiting for resources that are held by each other and

thus are unavailable.

Suppose there are two processes that both need the use of a card reader and

of a line printer. Assuming the existence of two monitors, "printer" and

"cardreader," each with two procedures, "reserve" and "release," the code

of the two processes could contain the following statements:

" process 1 " " process 2 "

cai'dreader,reserve; printer,reserve;

printer, reserve;
cardreader, reserve;

28

J 1 -, printer,release;
cardreader.release; '^ '

. ^ -, cardreader,release;
printer.release

The execution of the two processes proceeds asynchronously. Therefore,

there is no way of knowing in advance the sequence in which the operations,

displayed in the code of the two processes, will be executed. Suppose that

process 1 has just executed the operation "cardreader,reserve," while pro­

cess 2 is executing the portion of code after "printer,reserve" and that

both processes continue their execution.

When process 2 arrives at "cardreader.reserve," it will be blocked. The

samething will happen with process 1 at "printer.reserve." At this point,

both processes will be blocked, waiting for conditions which cannot be sa­

tisfied unless an external force intervenes. This is a deadlock.

The problem of deadlock was recognized early in the development of mul­

tiprogramming systems, and some ad-hoc procedures have been used to prevent

deadlock situations caused by competition for devices,

Generally, the strategies employed in operating systems for dealing with

deadlock belong to two categories:

1) - deadlock prevention

2) - deadlock detection and recovery

Holt [13] also mentions the "crash" or "no-strategy" strategy, when an

operating system has no provisions concerning a deadlock. If a deadlock oc­

curs, the system will "crash" and a manual recovery procedure must be ap­

plied.

A system in which measures are taken to completely avoid deadlock is

termed "safe" or "deadlock-free." It uses a strategy for deadlock preven­

tion,

A system is said to be using deadlock detection and recovery when the

possibility of deadlock occuring is not removed, but provisions are made

for its automatic detection and recovery,

In order to prevent deadlock, a process must satisfy the following con­

straints when requesting system resources [15]:

- declare in advance all the resources needed;

- before a resource is assigned, execute an algorithm to see if there is a

29

possible deadlock; if there is not, assign the resource; otherwise the

process must wait.

A less restrictive approach [15] to deadlock prevention requires a divi­

sion of the available resources into numbered classes, A process must re­

quest all the resources of a class that it needs at once. Requests for dif­

ferent classes must always be made in the ascending order of the class num­

bers. By assigning the class numbers carefully, an operating system which

uses this approach can offer a greater flexibility than a system in which

processes must specify from the beginning all the resources needed.

In a system with deadlock detection and recovery, processes do not have

to conform to any constraints when they request resources.

It has been proved that deadlock detection is always possible, but in some

cases it may be very difficult, or even impossible, to ensure recovery from

a deadlock. One of the algorithms for deadlock detection [15] assigns a

number (identifier) to each resource and to each process. It maintains two

tables: one indicate the process to which each resource is assigned and

the other shows the resources for which each process waits.

This algorithm works as follows.

When a process occupies a resource, it applies a "software lock" that makes

the resource unavailable for other processes.

If a process, j_, requests a resource k which is already assigned to another

process i (i.e. "locked"), with the aid of the tables mentioned above, one

can check if the process currently locking the requesting resource is also

waiting for some other resource,

If not, process j . will simply be put to wait for resource k, .If process _i

is also waiting for a resource, the next step is to determine which process

locks that resource. Assume that the resource is locked by a process that

is also waiting for a resource. In this case, the previous step is repeated

until a process that does not wait for a resource is encountered, when

nothing more should be done, or until the initial process j is again encoun­

tered, which means that a deadlock has occurred and a recovery procedure

must be applied.

The recovery procedure must, basically, ensure that one of the deadlocked

processes release one or more resources, while it is "backtracked" or "de-

computed" to a point to allocation of those resources. Backtracking is a

difficult operation and no general solution has been found yet,

The strategy selected for dealing with deadlock determines to a large

30

extent the scheduling algorithms for systems resources, thus the organiza­

tion of the queues required by the different techniques for process coordi­

nation, It also determines the selection of the processes to be resumed from

these queues.

2.2,2, Examples of scheduling algorithms,

When new user requests (jobs) arrive in a computer system, they are first

introduced in an input queue. This enables the jobs to be selected for exe­

cution in the order required by the system's policy towards the service of

its users,

The portion of the operating system concerned with the selection of the

group of jobs that will be taken into consideration for resource scheduling

is usually called "job scheduler," It examines the input queue and initi­

ates the scheduling operations, A description of several of the policies

used for job selection follows:

1, First come, first served (FCFS): The jobs are selected in the order

of their arrival in the system. - .

2, Shortest processing time first (SPF): Based on an estimation of the

required processor time, provided by the user, the job with the shortest

estimated time is the first to receive devices and memory.

3, Priority scheduling: At their introduction into the system, the user

jobs receive a "start priority," generally calculated on the basis of some

data provided by the user regarding the resources that the job needs. The

job scheduler will select the job with the highest priority. It is essential

to provide the means which the "start priority" of a job increases in

time, so that eventually each submitted job will be executed. • ,

Once selected, a job is regarded as a process by the computer. The sys­

tem allocates resources to this process.

For each type of system resource, different scheduling algorithms have

been devised and implemented in the existing operating systems. This sub­

section contains a review of some of these algorithms, applied to several

types of resources: processors, memory, peripheral devices,

a) Processor_scheduling. Once a process has obtained all the resources

it needs to continue, it is in the "ready" state. The process is able to

execute if a CPU is available, or, otherwise, it will wait in a process

queue (or "ready queue"). When a processor is released by another process,

it executes a "processor scheduling algorithm" in order to determine which

31

of the ready processes it will next execute. By saving the status of a pro­

cessor's registers, it can be pre-empted from a process. Therefore, proces­

sor pre-emption will not cause deadlock problems. Almost all processor

scheduling algorithms make use in some way of pre-emption. A process is not

allowed to keep the processor for itself longer than a specified time limit.

If the process has not released the processor because of completion, I/O

request or other causes, before that time expires, the processor is auto­

matically pre-empted. Another frequent reason for pre-emption is the inter­

rupt system present in almost every modem computer.

Apart form the cases of forced pre-emption, a processor can be scheduled

according to one of the following algorithms:

'• R°""d robin: Each process in the ready queue receives, in turn, a

processor for a "time quantum" (usually in the order of 100 ms). If a pro­

cess consumes its quantum and still needs more processor time, it is placed

at the end of the ready queue, so that in the next cycle it will receive

another time quantum.

2. Modified round robin: There are several variations, one of which

works as follows. When a process enters the ready queue for the first time,

it will receive a normal time quantum. If it consumes this quantum and

needs more time,the process is introduced in a supplementary ready queue,

which will be examined only when the main ready queue is empty. A process

in this queue, however, receives a double time quantum.

Several levels of such ready queues can be defined, each with a time quan­

tum twice as long as the quantum granted by the preceding queue [15] . After

an I/O operation, a process starts again in the main ready queue.

3. Priority: A process has an assigned or "purchased" priority, and the

process with the highest priority in the ready queue is chosen as the next

to receive a processor.

4. System balance: In order to keep I/O devices busy, a record of the

behavior of each process is maintained, and the "I/O bound" processes will

receive a higher priority for the use of an available processor.

b) Memory scheduling. Memory is generally a scarce and quite expensive

resource of a computer system. For these reasons memory management has re­

ceived much attention throughout the evolution of computers,

The least that a system must provide for multiprograiraning is a partitioned

memory, i,e,, the possibility to divide the memory into several areas (par­

titions) and to allocate each area to a process. Sometimes the number of

32

partitions and the size of a partition remain constant (e.g., in IBM OS/

MFT), but for greater flexibility, both the number of partitions and the

size of each partition should be variable (as in IBM OS/MVT).

Before a process can be put in the ready queue (to receive a processor),

memory must be allocated for its data and the code of the process brought

into the main memory. A technique called overlapping has been developed for

the cases where it would be uneconomical or impossible to keep the entire

code of a process in the main memory. When the process starts, only the

part of the code which is then required is brought into the main memory;

later, when some parts of the code are no longer needed, they are overwrit­

ten with new portions of the process code. The programmer is completely

responsible for the pre-planning of memory overlapping.

In the time-sharing systems, a memory scheduling technique called swap­

ping is often used. A time-sharing process will have a high priority in

processor scheduling, but for economic reasons, several such processes

share, in time, an area of main memory. When one process has received a

certain amount of processor time, its code is written back to secondary me­

mory and the code for another process is brought in the same area of main

memory.

An automatic overlapping can be achieved in a virtual memory system. In

such a system the amount of memory which can be logically allocated for the

set of concurrent processes exceeds the amount of main memory physically

present in the system. It has been observed that for relatively long peri­

ods of time a process remains inside a relatively small portion of its code

(this property is called "program locality"). This means that the pro­

cess can continue its execution even if only such a portion (its "working

set") of code is present in the main memory. If the total size of the all

working sets of the ready processes does not exceed the size of the physi­

cal memory, the system will work efficiently. It is the responsibility of

the operating system to detect modifications and to update the working set

of a process,

The code and data which are not part of the current working sets of the

processes are stored in the "secondary storage" or "background storage,"

usually on magnetic drums or magnetic disks,

The virtual memory can be divided into fixed partitions or variable par­

titions, or each process can have the illusion that the whole virtual memo­

ry space is available for itself.

33

The main memory is also a pre-emptive resource. Therefore, it cannot

cause serious deadlock problems. For a virtual memory, however, the opera­

ting system must make sure that the aggregate size of the working sets of

the ready processes is smaller than the physical memory size. If this is

not the case, one or more processes must be blocked, in order to avoid

thrashing [15]. The phenomenon of thrashing is produced by very high traf­

fic between the main memory and the background memory. This high traffic is

caused by the continual modification of the working sets of the processesi

from lack of main memory space. As a result, the background memory devices

are artificially overloaded, while the processors remain idle.

c) EsiÏElïêlSl-éÊYiSÊS• There is a very large variety of peripheral de­

vices used in present computer systems. From the point of view of schedu­

ling, these devices can be classified in three groups:

- dedicated devices,

- shared devices,

- virtual devices.

A dedicated device is a non-pre-emptive resource. Once allocated to a

process it will remain with that process until specifically released, when

the process does not need it any longer. Examples of devices in this group

are card readers, line printers and magnetic tape units. An incorrect sche­

duling of dedicated devices is very often the cause of a deadlock,

Shared devices are generally the direct access storage devices (DASD)

like disks and drums. More processes are allowed to request simultaneously

such a device, and the device scheduling is similar in certain respects to

that of a processor,

As an example, a technique very often used for moving-arm disks is to

collect the requests from the processes in a queue. When a previous request

is completed, the position of the disk arm is transmitted to the scheduling

algorithm. The algorithm determines the length of the arm movement that each

request in the queue would cause and selects the request producing the shor­

test arm movement. This request is the next to be served by the disk.

There are techniques which convert some normally dedicated devices (e.g.,

card readers) into shared devices. In a spooling system, for instance, the

jobs introduced from a number of card readers are collected into a job in­

put queue on a disk before being processed. The output from the completed

jobs is written into a job output queue on the same or other disk before

being printed.

34

A disk used for spooling would, thus, appear to be equivalent to several

virtual card readers. Such a technique is especially advantageous when it

can be applied to slow peripherals, becauffi it reduces the time that a pro­

cess must wait for the execution of an I/O request.

2.3, Informxtion addressing and accessing

During its execution, a process will make use of several program modules

(routines) that must have the possibility of calling each other. While

executing a certain routine, a specific set of data is available to the

process and a certain number of other routines may be called. These are the

access rights of the process at that moment. If the process enters another

routine for execution, this may cause a change in the process acces rights.

There may exist routines and data structures which are used in common by

several processes, as explained already in Section 2.1.

The information (code and data) that a process may address during its

execution forms the address space of the process. The information available

at a certain moment, as specified by the access rights, is the execution

domain of the process at that time.

The collection of hardware and software devices necessary to provide the

right of a process to access a certain piece of information constitutes the

protection system of that computer.

The means provided for the actual accessing of information are denoted

as information addressing techniques.

The purpose of this subsection is to provide a review of several pro­

tection and addressing techniques. These techniques are evaluated with

respect to the following two main requirements that they must satisfy:

- Provide means which enable the routine calls and the data accesses

required by the processes; and,

- Ensure that no improper actions can occur, i.e., that the routine calls

and the data accesssing take place only in a well-specified manner.

Another desirable feature is to allow for the sharing of information

between processes in a flexible manner. The merits of the different protec­

tion and addressing techniques in this respect are also underlined in the

case discussed in this section.

35

2.3.1. Protection mechanisms in computer systems.

The most elementary mechanism for information protection is provided by

the introduction of two modes of processor operation: supervisor-mode and

user-mode.

When the computer is in the supervisor mode, it may execute all the in­

structions in its instruction list without any restrictions. While in the

user mode, a group of privileged instructions cannot be directly executed:

first a routine of the operating system must be called.

The privileged instructions are intended for the manipulation of sensi­

tive data concerning the system behavior, and therefore only the routines

of the operating system, which usually run in supervisor mode, are allowed

to access them.

A user program will always run in the user mode, A change from the user

mode to the supervisor mode can occur as a result of an interrupt (the

interrupts are processed by routines of the operating system) or when a

user program explicitly calls a system function by trying to execute a pri­

vileged instruction (e.g., the start of an I/O operation).

To avoid interference between user programs running concurrently in a

multiprogramming system, the "lock-key" mechanism has been introduced.

It works as follows. The main memory is divided into equal-sized blocks

called pages, and a "lock" of usually 4 bits is added to each page. When

memory is assigned to a program, all memory pages involved (i.e., all the

pages of a memory partition) will receive the same value of the lock. On

the other hand, the program, and thus the process which will run it, is

provided with a "key" which has the same value as the lock. During execution,

at each memory access the key of the program is compared against the lock

of the addressed page. Access is permitted only when the key and the lock

coincide. Programs of the operating system are assigned a special key

(usually zero) which can access the entire memory,

Such a protection can be inadequate sometimes due to the following limi­

tations :

- It does not allow for the sharing of information between processes

running in different user programs, unless the shared information is part

of the operating system.

- Two modes of operation may not be enough for a flexible organization of

an operating system,

36

Before preceding to the discussion of other protection mechanisms which

try to remove the limitations mentioned above, the concept of segment, used

as a vehicle for information sharing, is introduced. In the existing sys­

tems, this concept has been defined and used with various meanings [l] ,

[16] . For the purpose of the presentation, a segment is the smallest

logical unit of information taken into account by an operating system for

memory management. Typically, a segment will contain either code or data,

but mixed segments may also be used. A code segment may consists of a

single routine or several interrelated routines.

A data segment may contain all the date available to a routine in a code

segment or only a part of these data (e.g., the elements of an array, or

the elements of a row or column of an array, etc.). The size of a segment

is generally variable, but it may have lower and/or upper limits,

The existence of segments as logical units for memory allocation suggests

the possibility of sharing information among processes at the segment

level.

The next protection mechanism that will be analyzed is implemented in the

MULTICS system] 18] ,[16] .[19] . It is based on protection rings and user

access rights to segments of information.

Protection rings are an extension of the supervisor/user mode. The rou­

tines of the operating system and those of the user programs are specified

as belonging to one of the 8 possible protection rings. Ring 0 has the most

powerful access rights and ring 7, the least powerful. On the other hand,

the entire information available in the system is divided into segments. For

each segment information is provided to specify the rings in which that

segment is accessible for read, for write and for execution (Fig,2.3.).

This information is maintained in a segment descriptor word (SDW).

The first two rings, 0 and 1, are reserved for the routines and data

segments of the operating system. The user programs can be spread over the

other 6 protection rings.

Address Length Rl R2 R3 R W E Gate

Access indicator

Fig. 2.3, A Segment Descriptor Word (SDW) in Multics,

When a process executes a certain routine, the protection ring of the

routine is stored in an extension to the instruction counter (IC) register

37

(this is called "the execution ring" of the process at that moment). If

during execution an address outside the current segment is developed, the

descriptor word of the segment that contains that address must be first

accessed. The intended sort of access (read, write or execute) is deter­

mined by the instruction in which the address was developed. For a write

access, if the bit W (write mask) in the SDW (Fig. 2.3.) is 1, (i.e., if

writing is at all possible), the execution ring (ER) of the process is

compared with the value of Rl. The access is permitted only if ER < Rl.

The rings 0 to Rl are called the write bracket of the segment.

Similarly, a read access is allowed if the bit R is 1 when the ER of

the process is in the read bracket of the segment, i.e., ER <^R2.

The execution access is allowed from an execution ring ER if the bit E

is 1 and the relation Rl < ER < R2 is valid. The execution bracket of a

segment is thus (Rl, R2).

A process is allowed to call a segment as a routine even from outside

the execution bracket if the process is currently executing in a ring ER

which satisfies the relation

R2 + 1 <_ ER £ R3.

In this case, however, the access can only take place through a number

of control points or gates, provided immediately at the beginning of the

segment. The field "Gate" of an SDW is used to check that the attempted

access is not to an address higher than the value specified in the gate

field. The rings (R2, R3) are the extension gate of the segment.

In connection with routine call operations, it should be noted that it

is relatively easy to implement in hardware [l 9] a "downward call" i.e., a

call from high-numbered rings to lower-numbered rings and the subse-;uent

"upward return." The upward calls and downward returns, however, require

software intervention, because Lhey involve the reduction of the access

rights. This operation has been considered by MULTICS designers too complex

to be completely implemented in hardware.

The protection rings technique offers a greater flexibility than the

lock-key mechanism. Specifically it allows a rather straightforward imple­

mentation of information sharing. Nevertheless, the implicit "ring property

may sometimes become an impediment, because it allows only a rather

restricted number of execution domains with predetermined relations between

their access rights. This limitation can be removed in a system based on

38

capabilities.

A capability is a unique identifier of an information segment] 7] . A

routine cannot access a segment unless it posesses a capability for that

segment. Capabilities are acquired partially when a program is compiled

and partially during the execution of a process. The Plessey System 250

will be used as an example of a capability-based system. It is worth noting

that this computer does not offer the highest flexibility attainable with

capabilities, but it shows a reasonable compromise between flexibility and

implementations costs.

The Plessey System 250 [6] divides the information segments into two

classes; capability segments, in which the words are interpreted as capa­

bilities for accessing other segments, and data segments, denoting what are

usually called code segments and data segments. The processor has a set of

eight capability registers, identified as CRO, CRl, ..,, CR7. The content

of such a register is interpreted always as a capability for a segment.

These registers can be operated upon only by a group of capability manipu­

lating instructions and are completely separate from the data registers

of the computer. There is no possibility that the data-manipulating in­

structions will modify the content of a capability register or that a

capability-manipulating instruction will operate on a data register. The

existence of the Capability Register provides a means for fast access to

segments during program execution.

At compilation time, a program is divided into packages. A package

consists of a Central Capability Segment (CCS) and a number of satellite

segments, which may include other capability segments. The CCS must define

at least one code segment and the data structure on which the code segment

will operate (Fig. 2.4.). A program package is similar to an execution

domain of a process, as defined at the beginning of the section.

While a process is executing in a certain package, two of the capability

registers are dedicated, by a hardware convention, to the following tasks:

- Register CR7 contains the capability for the code segment that is

being executed. When a "Jump" instruction changes the current code segment

to another code segment in the same package, the capability for the new

segment is simply loaded into CR7.

- Register CR6 contains the capability for the CCS of the package. The

other six capability registers can be used to store capabilities for other

segment of the package and, unlike CR7 and CR6, they are accessible to the

39

programmer,

CR7

RWD

JU

.Mi

Ml

Code

Segm.A

CR6 CCS

CCS

Data

Data

ED

m
F.n

FD

PP
m^r.

FC

F,c;

Segment Â

1
1

1

z CCS

Segment A

Code

Code

CAPS

PI

mm

F,P

F,li

RWn

EC

Code

Code

Data

_E4.

Fig, 2,4. Protection through capabilities in Plessey System 250,

The CCS contains not only the identifier (capability) for each segment,

but also information about the kind of access permitted. Thus, the abbrevia­

tion ED in Fig. 2.4 means "execute data"; i.e,, the corresponding segment is

a data segment (in the System 250 sense), and its contents will be inter­

preted as instructions. Analogously, the meaning of RD, "read data," and RV,T),

"read write data," should be obvious. RWC in the CCS of the package PI

means "read write capability" and provides access to another capability

segment of the package.

The CCS also contains capabilities which allow the routines in the

package to call routines in other program packages. One of the most impor­

tant features of the system originates from the kind of access provided by

such capabilities. This type of access is denoted in Fig. 2.4 by EC, "enter

40

capability."

A CALL statement must have two parameters:

- an Enter-type capability for the CCS of the called package.

- tlie index in that CCS of the Execute-type capability for the first

code segment of the called routine.

The Execute-type capability will be loaded into CR7 at the same time that

the Enter-type capability is loaded into CR6. However, before CR6 and CR7

are overwritten, their old values, together with the value of the

instruction address register, are preserved in a stack so that these values

can subsequently be restored by a Return instruction.

When CR6 is overwritten, the EC access type is automatically changed to

a RC, "read capability," which can then be used by the called routine to

read the information in the CCS of its own package.

The result of the operations described above is that the execution domain

of the process has been changed: the CR6 register points to a new CCS, Thus,

all further references are controlled by the capabilities contained in that

segment.

There is no possibility for the calling routine to access information in

the package of the called routine directly. The EC type of access allows

only the passing of the control from one package to another; the packages

are completely protected from each other. One can consider the package as

the "protection unit" in this system,

A RETURN instruction will restore the contents of the processor registers

to the values that they had before the corresponding CALL. Thus, the execu­

tion domain is again in the package of the calling routine.

It is important to realize that the sharing of information between

program packages is not excluded: segments of code or data can be used in

common by several packages (a common data segment is indicated in the

packages P2 and P4 of Fig. 2.4). The packages are separated by their central

capability segment. These segments specify the access rights to the other

segments of the package. It will often happen that the access rights of two

packages to a common segment are different.

The organization of the System 250 around capabilities makes a privileged

mode of operation for the processors superfluous. Moreover, there is no in­

trinsic relation between the protection properties of the execution domains

(packages), as was the case with the protection rings of MULTICS, In a

system based on protection rings, a process, while executing in a highly

41

protected ring, can access every segment of information available in the

less protected rings of process. The capabilities offer a greater flexi­

bility in the sense that a process executing in a certain package has access

only to the information strictly required in that package,

The protection properties of a program package make it a suitable device

for the implementation of the monitors discussed in subsection 2,1.4. The

package organization ensures that its data structure is not directly

accessible from outside. A package can be entered only by calling one of

its procedures.

2.3,2, Addressing mechanisms,

The usual direct, indirect and indexed addressing modes are not in the

scope of this subsection. Instead, the addressing operations necessary to

determine the place in main memory of the segment containing the requested

address will be considered. In this way, the systems without segmentation

are completely excluded from the discussion,

The main problems can then be stated as follows:

1) If the segment is not yet in the main memory, the system must

initiate and perform the actions required to bring it there,

2) When the segment is already present in the main memory, the

process must receive a "segment descriptor," which indicates the location

of the segment,

3) After the access rights of the process have been established by

the protection mechanism,the procedures to be followed for routine calls

and for data addressing must be specified,

4) The system must provide means for reducing, whenever possible,

the time consumed for accessing a segment.

As stated above, these aspects of addressing cannot be completely se­

parated from the protection mechanism used in a certain computer. Actually,

in the case of protection through capabilities, the routine calls and the

data accessing operations are an integral part of the protection,

The two example systems considered in this subsection are again MULTICS

and Plessey System 250,

In MULTICS, the system maintains a table, AST (Active Segment Table), of

all the segments currently present in the main memory. For each segment, an

entry, identified henceforth as ASTE, contains the segment name, its length,

a "Connection list" which identifies the processes currently using the

42

segment, and several other items. Apart from the AST, each process has its

own Process Segment Table (PST), shown in Fig. 2.5. The PST is divided into

two parts: a "Descriptor Segment" DS and a "Known Segment Table" KST. A

list of several items of an entry in the Process Segment Table follows:

- an indication of whether the segment is in the main memory,

- the address of the segment when it is "active,"

- protection information,

- the symbolic name of the segment.

Theoretically, a process may try to access every segment for which it

can provide a valid symbolic name. At the first attempt to access a segment

there is no entry in the PST for this segment; therefore a "trap" to the

operating system occurs, where the following operations are performed (see

Fig.2,5). First, the AST is searched to determine whether the segment is

already active (the same copy of the segment will be used by all the

processes that need it). If this is 'the case, the "branch pointer" is copied

from the corresponding ASTE and is placed as a new entry into the KST.

The process identifier is added to the connection list of the ASTE.

If the segment is not found in the AST, the system must reserve an entry

in AST for it. This action may result in the deactivation of another segment

if all ASTE have been already reserved. Subsequently, the operating system

performs a search of the segment in a hierarchy of directories. Directories

are tables used to maintain a record of all the segments that exist in the

system. They have a hierarchical organization in order to facilitate the

searching. T'.ierefore an entry in such a directory can point either to

another directory or to a segment. An entry pointing to a segment is called

a branch and contains the information displayed in Fig. 2.5.

When the searched segment is found, some information from the directory

branch is copied into ASTE. A switch in the branch is set to indicate that

the segment is active. Then, operations identical to those of an active

segment are performed.

Now the segment is known to the process, but it cannot yet be referenced.

A new attempt to access this segment will activate another system routine

which obtains the segment access attributes for the current process (user)

from the segment branch and stores them in the corresponding entry of DS.

The flag F of the same entry is turned to "ON" to indicate that the segment

is present in memory. The next attempt to access the segment can be com­

pleted, subject to the protection constraints.

43

Segmentindex

S

DBR = Data Base Register

Core L

7

us

Segment descriptor word

Core

Directory

(SDW)

KST

Path
name

Branch
pointer

\
\ ASTE

- Length

- Connection list

- Branch pointer

- Entry name

- Length

- Active switch

- ASTE pointer

- User 1 access
rights

- User 2 access
rights implicit mapping

temporary mapping

^ mapping needed to
invalidate a tempora­
ry mapping

Fig, 2,5, Basic tables used for memory addressing in MULTICS.

In the Plessey System 250, the sharing of the same copy in main memory

of a certain segment is achieved also by providing the system with a ge­

neral segment table. The operations involved are explained with the aid of

Fig. 2.6., which illustrates the executions of a "Load Capability" in­

struction.

The System Capability Table (SCT) provides an entry for each segment in

main memory. This entry specifies the memory module where the segment is

stored (the field STORE in Fig. 2.6), the address in that module of the

word zero of the segment (BASE) and the segment length (LIMIT).

A capability, as it is specified in the CCS, contains an access field

and an offset in the SCT, rather than the actual address of the segment.

It should also be noted that the access rights are not given in the

entry of the SCT for a segment, but they are indicated separately for each

program package. Thus, the access rights to the same segment may be dif­

ferent in different program packages.

An instruction like "Load Capability into CR3 from (CR6)+ offset" is

executed in the following way. Using the offset specified in the instruction,

the CCS is accessed where the offset in the SCT for the required segment is

44

obtained. The corresponding entry in the SCT is then accessed, and the in­

formation in the fields STORE, BASE and LIMIT is copied into CR3. Finally,

the ACCESS rights, as indicated in CCS, are also written into CR3.

CR6

CR3

STORE

ACCESS
BASE
LIMIT

»

•

offset
(from ,

instruction)

1

Access
SCT
offset

Keqi Required segment

System capability table (SCT)

"Load Capability
into CR3 from
(CR6) + offset"

ACCESS types

X X X X X X

Capability

types

enter-EC —

write-WC
read-RC

Data
types

execute-ED

write-WD
read-RD

Fig, 2,6, Tables for capability addressing in Plessey System 260,

The programs should not be allowed to access a segment while its position

in the main memory is being modified. Therefore, a bit in the capability of

the segment indicates that the capability is invalid for the duration of the

position modification. An attempt from a program to access the segment in

this state leads to a "trap," i.e., a jump to a routine that will passivate

the program until the capability is again valid.

During the time that a segment is stored in the secondary memory, a

capability for the segment will indicate the segment address in the secon­

dary memory. Therefore, when the segment is brought into the main memory,

the operating system must take care that the capabilities for the segment

are accordingly modified. A reverse modification should be performed when

45

the segment is rewritten into the secondary memory.

The operations required for routine calls and for data accessing in a

system using capability addressing have been discussed in the previous

section. It remains, thus, to examine here the execution of these operations

in the MULTICS system.

A code segment is always accompanied by a "link segment" in MULTICS. The

code segment has only one copy in the system, whereas there is a corres­

ponding link segment in each process using that code segment. The infor­

mation in the link segment is used to perform the address mapping required

by the fact that there is no restriction in the way that segment numbers

are allocated in the Process Segment Table (PST). Therefore, in a code

segment conventional addresses will be used for the other segments required.

Each process will provide the link segment with the data required for the

transformation of the conventional addresses into the corresponding indices

in the PST of that process. Details will be given with the aid of Fig. 2.7.

Process 1 Link Main

PC

BR

PC

BR

2

1

.
.'

„ ^

J ^

2

3
4

Process 2

0

3

c 0

1

?

3

4

Process Segment

r idDie î rai;

RE •

RE •-

RW *—
R •

Process Segment

laoie \r:yL)
KK •

RW •

RE •—

R •

R *^

0

1
2

-•

2
4
3

Tint '̂ iih

0
1

2

0

^ DATA 1
for

process
1

MAIN

CALL,1
ACCESS, 2

Link Main

0

1

2

3

0

4

1

1 [f

SUB

T.lnk Siih
-
Ó
1

2

2
_

DATA
for

process
2 1

Fig, 2, 7, Routine calls and data accessing in MULTICS,

46

During process execution, the processor must know the index of the cur­

rent code segment in the PST. This index is specified in the Program Counter

(PC) register. The processor must also know the index of the corresponding

link segment. The Base Register (BR) provides this information. The two

processes shown in Fig. 2.7. share the code for the main program, MAIN, and

for a routine, SUB, Each process, however, uses its own data segment.

When process 1 encounters the statement "ACCESS,2" in the segment MAIN,

the statement will be interpreted as follows: the process requests access to

the data segment with the index 2 in the link segment of MAIN. The link

segment can be accessed because BR specifies its index in the PST. The entry

with the index 2 of the link segment indicates, in turn, the index in the

PST of the required data segment. In this case it is segment 3. In process

2, the same operation would refer to the segment 1 in its PST.

A procedure call "CALL,1" in MAIN leads to the following sequence of

operations when executed in process 1. The segment index present in the

statement, in this case the index 1, is interpreted again as referring to

the link segment of MAIN, There, the index 4 identifies the descriptor in

the PST of the link segment of the called procedure, SUB, By convention, the

first entry in this link segment defines the index in the PST of the actual

code segment for SUB, In this case it is segment 0, The contents of regis­

ters PC and BR must be saved in a "process stack segment,"

Subsequently PC will be overwritten with the PST index of the new "current

segment code," In this case it is 0, BR will be rewritten to point to the

new link segment; thus, it will contain 4.

A RETURN statement will restore the old contents of the PC and BR

registers, using the values saved in the process stack.

The fourth objective listed at the beginning of this subsection, namely,

the reduction of the time necessary to access a segment, is generally

achieved by providing a set of high-speed processor registers dedicated to

information addressing.

In a computer like the Plessey System 250, the set of 8 capability re­

gisters serves, in fact, this purpose: these registers supply immediately

the addresses of the most frequently used segments. Thus they avoid the

time-consuming operations of accessing the Central Capability Segment and

the System Capability Table.

A similar approach is found in MULTICS and in the majority of the systems

using segmentation. The addresses of the most recently used segments are

47

maintained in a set of registers. The manipulation of these registers is

completely controlled by the system, whereas in a capability-based system

the programmer can access the set of capability registers by means of seve­

ral instructions.

2.4, Outline of a methodology for operating system design,

In recent years there have been many attempts to define a methodology

for operating systems design; examples can be found in [10], I 14] , [20] . The

general picture which emerges from all these works is that the functions of

an operating system ought to be hierarchically organized.

At the lowest level of the hierarchy, the system hardware is available,

particularly the processors with their machine instructions. Each new level

in the hierarchy defines a virtual machine which may use the functions

specified in the lower levels and defines, in turn, functions that will be

used at higher levels. Thus, the virtual machine defined in the first level

of the operating system uses the functions provided in hardware and im­

plements new functions. The virtual machine at level 2 will be built as if

the "hardware" at its disposal provides both the functions of the computer

hardware and those of the virtual machine at level 1, and so on,

If such a view of the operating system is adopted, a very difficult

problem of the design is the definition of the necessary system functions

and the selection of their hierarchichal level. Afterwards, decisions

should be made concerning the implementation of these functions,

In this context, it is useful to make a distinction between level and

module [10] : a level is a set of functions implemented with the aid of

functions defined in lower levels, whereas a module comprises some data

structures (possible) and a set of functions which share knowledge about a

particular design decision (e,g,, the details of the data structure of the

module). The distinction makes it possible to divide, during implementation,

the functions of a certain level into several modules and, on the other

hand, to implement in the same module functions from different hierarchical

levels.

In the definition and, naturally, in the implementation of the system

functions, the available hardware configuration with its specific features

and the intented use of the system will have an important role,

48

References

1. Bensoussan, A., et al,"The MULTICS Virtual Memory: Concepts and Design,"

CACM, Vol.15, No,5 (May 1972), pp. 308 - 318.

2. Brinch Hansen, P., "Structured Multiprogramming," CACM, Vol.15, No.7

(July 1972), pp. 574 - 578.

3. Brinch Hansen, P., "The Programming Language Concurrent Pascal," IEEE

Tr. on S.E., Vol.], No.2 (June 1975), pp. 199 - 207.

4. Daley, R.C. and Dennis J.B., "Virtual Memory, Processes, and Sharing in

MULTICS," CACM, Vol.]], No.5 (May]968), pp. 306 - 312

5. Dijkstra, E.W., "The Structure of the THE Multiprogramming System,"

CACM, Vol.n, No,5 (May J 968), pp. 341 - 346.

6. England, D,M,, "Capability Concept Mechanism and Structure in System

250," R.A.I.R,0., Vol.9, B3, (Sept.1975), pp. 5 - 18.

7. Fabry, R.S., "Capability Based Addressing," CACM, Vol.17, No.7 (July

1974) , pp. 403 - 412.

8. Haberman, A.N., "Synchronization of Communicating Processes," CACM,

Vol.15, No.3 (March J972), pp. 171 - 176.

9. Haberman, A.N., "Prevention of System Deadlocks," CACM, Vol.12, No.7

(July 1969), pp. 373 - 377, 385.

10. Haberman, A.N., et al., "Modularization and Hierarchy in a Family of

Operating Systems," CACM, Vol.19, No.5 (May 1976),

pp. 266 - 272.

11. Hoare, C.A.R., "Monitors:An Operating System Structuring Concept,"

CACM, Vol.17, Mo.10 (Oct.1974), pp. 549 - 557.

12. Hoare, C.A.R., "Towards a Theory of Parallel Programming," Inter­

national Seminary on Operating Systems Techniques,

Belfast, North Ireland, Aug.-Sept. 1971.

13. Holt, R.C, "Some Deadlock Properties of Computer Systems," ACM

Computing Surveys, Vol.4,No.3 (Sept.1972), pp.

179 - 196.

49

14. Lampson, B.W. and Sturgis, H.E., "Reflections on an Operating System

Design," CACM, Vol.19,No.5 (May 1976), pp. 251 - 265.

15. Madnick, S.E. and Donovan, J.J., Operating Systems, Mc Graw Hill, New

York, 1974.

16. Organiek, E.I., Computer System Organization. The B5700/B6700 Series,

Academie Press, 1973, New York.

17. Organiek, E.I., The MULTICS System: An Examination of Its Structure

and Implementation, M.I.T. Press, Cambridge, Mass.,1972.

18. Saltzer, J.H., "Traffic Control in a Multiplexed Computer System,"

Ph.D. Thesis, M.I.T. , July 1966.

19. Schroeder, M.D. and Saltzer, J.H., "A Hardware Architecture for

Implementing Protection Rings," CACM, Vo.15, No.3

(March 1972), pp. 157 - 170.

20. Wulf, W. et al., "HYDRA: The Kernel of a Multiprocessor Operating

System," CACM, Vol.17, No.6 (June 1974), pp. 337 - 345.

50

Chapter 3.

DESIGN OF THE PROCESS COORDINATION

PRIMITIVES IN A MULTIPROCESSOR SYSTEM.

The hierarchical approach to operating system design outlined at the end

of Chap.2 will serve as a basis for the organization of the remainder of

this thesis. The language Concurrent Pascal, defined by P.Brinch Hansen[l],

will be used for system implementation.

At the beginning of this chapter, the main design decisions and the

peculiar features of Concurrent Pascal are introduced, followed by a dis­

cussion of their influence on the system design. Subsequently, the chapter

presents the kernel of the operating system, i.e., the virtual machine on

which Concurrent Pascal is executed.

3,1. General aspects of the system design,

3.1.1. The main design decisions

The availability of a multiprocessor system is the starting point of

the design developed in this thesis. The system must be able to accommo­

date several identical computational processors (denoted henceforth as CPUs

or simply processors) connected to a common main memory which is divided

into separately addressable blocks. The input/output operations are per­

formed under the control of a number of I/O processors or channels. A CPU

must, however, prepare in advance and store in the main memory the channel

51

r" Main Memory

MB

CPU 0

CR CR

MB 1 MB 2

Interconnection Scheme

CPU 1 1 0 If)

LP LP ''MT \ (M T \

MB 3

J

10 1

Yy
^

- ^

Fig, 3,1, Multiprocessor configuration.

program, and afterwards initialize the channel. A channel program consists

of one or more commands, i.e., control words that are recognized by the

channels as describing the details of an I/O operation. A channel works

independently after it has received form a CPU, during the initialization

of an I/O operation, the start address of the channel program. The channel

has the possibility of obtaining the commands of that program, one by one,

from the main memory. It interprets the commands and sends the necessary

control signals to the appropriate I/O device.

A peripheral device is permanently connected to a certain I/O processor.

This means that an input/output operation which involves a particular

device must always be executed by the I/O processor to which the device is

connected.

Fig, 2.2. The graph of a parallel program.

The CPUs and the channels of the system communicate with one another by

means of a control bus and with the memory by means of a processor-memory

53

interconnection scheme. The logical design of this interconnection scheme

constitutes a major problem in the development of the system hardware, Tlie

scheme must ensure an optimum communication between the processors and the

memory. The optimum is achieved when the conflict situations between two

or more processors trying to access simultaneously the same memory block

are reduced to a minimum. However, since the design of an operating system

for a multiprocessor is the main topic of this thesis, the particular

problems associated with the interconnection scheme are not further pursued.

A possible configuration of the system hardware is illustrated in Fig.

3.1,

Another major design decision refers to the kind of processing provided

for user programs. The system offers to its users the possibility of ob­

taining a short turnaround time for large jobs if the users divide these

jobs into smaller units, designated here as tasks, and specify which of the

tasks may be executed simultaneously. If system resources are available, such

tasks will be indeed processed simultaneously when the program is being exer

duted. Due to this feature, the design system is denoted as a multitasking

multiprocessor system. For convenience, a program divided into tasks will

be referred to as a parallel program.

The multitasking facility can be usefull for a computation-intensive

program where independent computations are discernable, as well as for an

l/O-bound program that involves several distinct peripheral devices. The

programmer has been made responsible for the separation of a program into

tasks rather than providing an automatic recognition of the parallelism

for the following reasons:

- The automatic recognition of parallelism in programs (ARPP) is an

operation that requires a substantial amount of processing time; the costs

involved may be justified for certain production programs, but: are pro­

hibitive in a program development system,

- The ARPP is oriented mainly toward discovering the possible parallel

computations inside a statement of a higher-level programming language

(e,g., a FORTJiAN assignment statement). This is not suitable for a multi­

processor, because a computation does not usually require more than one

hundred machine instructions, and therefore the overhead involved in

frequent switching of a CPU from one computation to another would be of the

same order of magnitude as the useful computations.

- The ARPP cannot, at least with known techniques, extract the most

54

efficient kinds of parallel operations in a program written in the existing

higher level programming languages.

It has been suggested [2] that in a multiprocessor system the length of

a task should be of at least 50 statements of a higher level programming

language. This will make the time consumed in processor switching negligible

in relation to the time spent for useful computations.

Figure 3.2. shows the graph of a parallel program; a task is represented

as a numbered circle and the ordering of the tasks is indicated with the

aid of arrows and of the sign ® ,

The program graph should be interpreted as follows. When task 1 is com­

pleted, tasks 2, 3 and 4 may start simultaneously. At the completion of

task 2, task 5 or task 6 will be selected, based on a certain result ob­

tained in task 2. When task 4 is completed, tasks 7 and 8 may start simul­

taneously. In order to start task 9, three tasks, namely 3, 7 and 8, should

have been completed. The last task of the program, 10, may start when task

9 and the task selected out of tasks 5 and 6 are completed.

From the program graph presented in Fig. 3.2., it is apparent that, at

different points of the program execution, there are tasks which can be

processed simultaneously provided processors are available. The design

developed in this work allows each task to act as an independent program

in a process dedicated to the execution of user programs.

Finally, it has been decided to use the language Concurrent Pascal for

system implementation. This language (see Appendix 1) has the following

advantages:

- It offers a very general method, namely monitors, for the description

of inter-process communications.

- It allows the verification of the correctness of most of the operations

at compile time, simplifying the system testing.

- It permits a hierachical implementation of the system and prevents

new components from destroying those already tested. Old components cannot

call new ones,and the new ones can only call the old ones through routines

that have already been tested.

The fact that the language admits only a fixed configuration of the

operating system can be considered to be a disadvantage. The language

requires a new compilation of the system whenever the configuration must

be changed. However, since configuration changes do not occur frequently

this disadvantage is not very important.

55

3,1,2, The influence of the language Concurrent Pascal on the structure of

an operating system.

Concurrent Pascal is a language designed for the implementation of ope­

rating systems. Its main feature [1] is the introduction of several abstract

data types considered to be useful in structuring a system. An abstract data

type is defined by Brinch Hansen [l] as "the combination of a data structure

and the operations used to access it." The operations mentioned in this

definition are implemented as routines that can be called by other system

components. Except for calls to these routines, there is no other possi­

bility to act upon a component declared to belong to an abstract data type.

An operating system appears as a Concurrent Pascal program constructed

from components of the following abstract data types: processes, monitors

and classes. Processes are the active components of the system in the sense

that they control the execution of the sequential programs submitted by

users or system programmers. Processes synchronize and exchange data with

each other by means of monitors and access their own data using classes.

The introduction of abstract data types has important consequences for

the reliability of a Concurrent Pascal program. An appropriately written

compiler can verify the correctness of the operations on abstract data

components before the program is put into operation. In other words, a

compiler can ensure that such components are accessed only in the manner

permitted by their definition. Consider again the monitor that implements

a buffer, defined in Section 2.1.4. It is relatively easy to verify during

the compilation that a program using the buffer will do so only by calling

the monitor routines "put" and "get." The buffer data are, therefore,

protected from erroneous operations, a fact which contributes to an in­

crease in program reliability.

The verifications at compile time of the programming relationships that

remain unchanged for long periods of time is a feature permanently pursued

in the definition of Concurrent Pascal. This approach to system design

produces programs whose interactions with each other are practically correct

even before testing, but one must be aware that there are also certain

inconveniences. The very strict type checking makes it necessary, for

instance, to duplicate definitions which are otherwise almost identical:

a buffer for the transmission of memory pages of 1024 bytes and a buffer

for pages of 256 bytes must be declared as distinct types, although they

56

perform the same operations,

The number of processes and the function of each process in an operating

system is determined by the system configuration. In principle, a number of

processes direct the execution of user programs, while other processes

control the operation of I/O devices. Once the system has been initialized,

the number of processes, monitors, and classes remains constant until an­

other initialization takes place.

A graphical representation of the definition of an process is given in

Ref. [l] and reproduced here as Fig. 3.3, The access rights of a process

specify the type of monitors that the process may call in order to coope­

rate with other processes. The private

data of the process are either classes or

variables and constants of other standard

types. A sequential program describes the

activity of the process. When the opera­

ting system is initialized, the access

rights of each process are established

(i.e., the actual monitors are indicated)

and the sequential programs of all system

Fig, 3,3. Process definition processes are activated.

An essential requirement provided for by

Concurrent Pascal is the possibility of a sequential program calling other

sequential programs and transmitting parameters during these calls. Suppose

that a process has the function of executing user programs in a single-user

system. Initially, this process will execute a program which can accept and

interpret commands from the user. If a compilation command arrives, the

initial program must be able to call the appropriate compiler and to indi­

cate to the compiler the place where the source code is found. During

compilation, it will be necessary to create temporary files by calling

another program: "file." A process has a component called "program stack"

which implements the operations required by program calls.

The interaction between the sequential programs and the operating system

takes place through interface procedures defined in the operating system,

In accordance with the principles of Concurrent Pascal, a compiler must

check that the programs do not attempt to interact with the system other

than through the permitted interface procedures. Besides, not all the pro­

grams necessarily have identical rights in calling system procedures.

57

Access rights

Private data

Sequential
Program

Before starting the translation of a program, a compiler must have, there­

fore, a list of the interface procedures available to that program. The

list is called the program prefix and contains the names of the interface

routines, together with the parameter types of each routine. A program is

rejected if it tries to call the system for an operation that is not spe­

cified in the program prefix. There is no supplementary access rights

checking for routine calls during program execution.

Separate prefixes are provided for the different categories of programs.

The system determines the category of a particular program according to a

set of criteria defined by the system designer. The compiler receives in­

formation about the category of a program and must be able to select the

appropriate prefix.

The implementation of the interface procedures is the responsibility of

the system processes. It should be noted that not all processes execute

complex programs, and therefore there are processes which are not provided

with separate interface procedures,

An interface procedure transforms the calls presented in a general form

by a program into specific calls to the proper routines of the monitors

that can be accessed from that process.

The structure and the role of monitors have been discussed in Sec.2.1.4.

In the definition of a process, the monitors required for the coordination

with other processes are specified as formal parameters. During system

initialization, the processes and the monitors are declared as variables

of an initial process. In this way it becomes possible to specify the actual

parameters of each process. The hierarchical organization of the system

demands that the monitors are also provided with parameters and that they

can call each other. These requirements produce nested monitor calls and

influence the internal organization of the monitors, A process that has

entered a monitor in anouter level of the hierarchy maintains its exclusive

access to that monitor until the request passed to the monitors of the

inner levels is satisfied. As a result a process whose request entails a

sequence of hierarchical monitor calls can be delayed only in a queue of

the last monitor to which the request was passed,

Classes are introduced as abstract data types that describe components

private to a certain process. Classes simplify the process code, providing

routines by which the process can operate on its own data.

This means that the programmer need not be concerned with the details of

58

the respective data structure every time an operation on that data is re­

quired,

Classes may also have parameters which are monitors or other classes, A

class may, in turn, be a monitor parameter but, by definition, it cannot

be a process parameter. Due to the definition of a class abstract data type,

a class component is always declared as a variable of a certain process

and is initialized by that process.

The implementation of the class does not create particular problems.

However, the virtual machine executing a Concurrent Pascal program must

possess the set of primitive operations required by monitors.

The entire system appears as a hierarchy of functional levels, as re­

presented schematically in Fig. 3,4.

At the lowest level in the hierarchy one finds the system hardware,

Above this level, a virtual machine which supports the primitive operations

required in the implementation of monitors is created. The set of proce­

dures written for this purpose is designated as the kernel of the operating

system. Once the kernel exists, the remainder of the operating system can

be written as if running on a machine that has, in its instruction set,

operators for entering and leaving monitors and for delaying and continuing

processes in monitor queues. The number of CPUs is irrelevant above this

level,

The portion designated as "operating system" in Fig. 3.4. contains, in

fact, in a real system, several hierarchical levels implemented as a set

of monitors which can call one another. At the outer level of the operating

system, processes realize the interface with the utility and user programs.

At this point a few words ought to be said about the programming

languages used in writing the kernel routines and the user programs. The

kernel routines must implement operations that do not exists in Concurrent

Pascal, In principle it is possible to write these routines in a higher

level language, e,g,, sequential Pascal, and let the compiler translate

them in machine language,

However, in practical situations the kernel will be written most likely

in the assembler language of the machine, mainly for reasons of efficiency,

On the other hand, the system must be prepared to accept user programs writ­

ten in any programming language, provided that the compiler of that language

respects the conventions of the program-process interface,

59

Program
A

Program^ Program^
C

Programs

(class 3) Operating
^ system

Kernel

Hardware

\y
Processors

Fig, 3,4. Schematic representation of the system hierarchical levels.

3,2, Kernel functional design

The role of the kernel is to create a virtual machine which appears, to

an operating system written in Concurrent Pascal, to be equipped with a

number of processors equal to the number of processes in the system and to

be able to perform the scheduling operations required by the monitors.

Thus, the kernel must implement, with possible aid from the machine hardware,

the allocation of the CPUs to the processes ready to execute. On the other

hand, the kernel must provide the routines for the primitive operations

required by monitors.

The kernel routines will appear as operating at two different levels.

The monitor primitives have the possibility of calling explicitly the

60

routines dedicated to processor allocation.

This section contains a functional description of the activities that

should take place in the kernel. A subsequent section will be dedicated to

the detailed description of the implementation of the kernel.

3.2.1. Analysis of the monitor primitive operations

According to the monitor description, there are four primitive operations

required in the implementation of the monitor concept:

- enter a monitor;

- leave a monitor;

- delay a process in a monitor queue;

- continue a process that is waiting in a monitor

queue.

Each of these operations may produce modifications in the status of the

process executing the operation and/or in the status of other processes in

the system. The system provides a data structure that always contains the

relevant information about a process.

Important items (process attributes) in this data structure are the contents

of the processor registers at the moment when the process was blocked, the

execution priority, the resources allocated to the process, etc. Such a data

structure is further denoted as a Process Control Block (PCB). The changes

in the status of a process are reflected in the modification of the contents

of its PCB.

It has already been stated that the access to a monitor is controlled by

a semaphore. From the definition of the semaphores it results that the

kernel must have a queue of PCBs as one of its data structures. Another

reason for providing queues of PCBs in the kernel is the probability that

the number of processes ready to execute at a certain moment is larger than

the number of system processors. In such a case, the available processors

will be allocated to the ready processes having the highest priority. The

other processes must continue to wait in a queue of ready processes, until

another processor becomes available.

Assuming that the system has more than one processor, it may occur that

two or more processors will try to access a certain queue at the same time.

Therefore, it is essential to protect each queue with a lock against in­

advertent access. This is a fundamental requirement in a multiprocessor

system. It may bring about cases in which "busy waiting" must be accepted.

61

The implementation of the queue lock requires that the CPUs are able to

execute a TST instruction (see Sec. 2.1.1.). In this situation, a lock will

be a memory location associated with the queue. A request for access to the

queue must always start with a TST instruction on that memory location. The

access to the queue is permitted if the lock is "open" and denied otherwise.

The processor that has been denied access to a queue remains in a test loop

until the access is granted. The last operation executed during the access

to a queue must reset the lock to "open . Another processor may now pass

the lock test.

Provided that PCBs and PCB queues exist, the monitor primitives can be

described as follows.

The primitives "enter a monitor" and " leave a monitor" are in fact,

identical with the P and V operations on a semaphore. The designer must

provide a semaphore for each monitor of the system. A request from a cer­

tain process to enter a monitor is always directed to the corresponding

semaphore, where a P operation is performed. Thus, if there is no other

process operating in the monitor, i.e., if the value of the semaphore is 1

(or "true"), the process is allowed to continue and the semaphore becomes

zero ("false"). Otherwise, the PCB of the process is added to the semaphore

queue, the process status information is saved, and the processor must be

reallocated.

When a process leaves a monitor, it performs a V or "leave" operation

on the semaphore of that monitor. Thus, the process examines first the

semaphore queue. If it is empty, the semaphore value is restored to 1 and

the process continues. Otherwise, the first process is taken out of the

semaphore queue and its PCB is introduced in the queue of ready processes.

One of the attributes of the process, its priority in relation with the

other processes, will determine whether a reallocation of the processors

should take place at this moment.

The 'delay' and "continue" primitives are more complex. A monitor can be

provided with internal queues, i.e., data structures that can hold a

reference to, at most, one process at a time . Note that these internal

queues are not related in any way to the kernel queues introduced above.

When a process must be delayed in a monitor because a certain expected con­

dition has not been satisfied, the address of its PCB is stored in the

associated internal monitor queue. The status information of the process is

saved in the PCB, and afterwards the queue associated with the semaphore of

62

the monitor is examined. If the queue is not empty, the first process in the

queue is added to the queue of ready processes; otherwise, the semaphore is

set "free ". A processor reallocation takes always place after a delay

operation, because the processor is preempted from the delayed process.

The operation "continue" consists of the following actions. The monitor

queue that is indicated as a parameter of "continue" is examined. If it is

found empty the operation is identical to "leave ."Otherwise, the process

from the monitor queue is introduced in the queue of ready processes and

the process that has issued the "continue" leaves the monitor, without al­

tering the value of the monitor's semaphore. The process that had been

delayed, whose control point remained in one of the monitor's routines, can

therefore continue its operation without interference from other processes

trying to access the same monitor).

A flowchart representation of the four monitor primitives is given in

Fig.3.5. The operation "reallocate" in the "leave monitor" and "continue"

primitives is indicated with a dotted line in order ro suggest that this

operation is actually performed only when process priority conditions

require it. The details of introducing a PCB in and taking a PCB out of a

kernel queue and the details of the reallocate operation will be examined

in the section dedicated to the kernel implumentation. At the level of

functional description, these functions may be considered as elementary

operations.

A separate copy of the routines enter, leave, delay and continue may be

provided for each monitor. However, such a solution would require a large

amount of memory space, because of the large number of monitors in a

complex system. A better solution is, therefore, to write the routines as

re-entrant code and to use a single copy of this code for all the monitors.

The re-entrant code will allow a processor to start the execution of a

routine before another processor completes an earlier-started execution of

the same routine. In this way, the execution speed is not substantially

affected and the memory space is more efficiently used. Obviously, there is

a separate semaphore with the additional queue for each monitor. Pointers

to these variables must be parameters in a call to one of the four routines.

63

(Enter >v
moni to r / C Leave \

on i to r J

semaphore^

T no

save process
status

i
put PCB in
semaphore queue

i
reschedule

i
semaphore:=0

1
select monitor

procedure

V̂. queue
— empty/"''̂

Tno

get first PCB

i
put PCB in ready
process queue

\

i
semaphore:=l

\
continue
process

1 reschedule |
L 1

C delay ^

i
save process

status

i
put PCB in inter­
nal monitor queue

A
^^semaphore^\no
\aueue emptv^

Ĵ yes

•
semaphore:=1

' '

{ continue

i
^.-^onitor ^ \
^v^ueue emptv^

get first PCB

f
put PCB in
ready process

queue

i
reschedule

no
7

V yes

put PCB in the
queue of ready
processes

__^ i___
1

1 reschedule
L

\
leave
monitor

1
1

-J

r

Fig. 3.5. Flowcharts of the monitor x>rimitives

64

file:///aueue

3.2.2. The relation between the kernel and the interrupt system.

It has been stated in Sec. 3.1.2. that the activity of each peripheral

device is controlled by a process, identified in the following discussion

as the driver. Since all the I/O operations are buffered, when a process

needs to transfer data to or from a certain device, it operates on the

corresponding buffer. The buffer is implemented as a monitor, and the

monitor routines take care of the coordination between the calling process

and the driver. Usually, the driver process is written as a cyclically

operating piece of code. After having performed an I/O operation it waits

in a monitor queue until a monitor routine determines that an I/O operation

must be performed again. In this situation, the driver is reactivated (by

a "continue" operation). When it obtains a CPU, the driver prepares the

I/O operation; i.e., it builds a channel program and sends the address of

this program to the appropriate channel (I/O processor). Afterwards, the

channel will start the execution of the I/O operation, while the driver

enters a special monitor and waits there until the completion of the I/O

transfer. When the transfer has been completed, the channel must have the

possibility to reactivate the driver. The driver will eventually reactivate

the process that has requested the I/O operation, and then it will delay

itself in the buffer, completing its operation cycle.

The system's drivers may differ in detail from the one in the example

sketched above, but the principle of all the drivers remains the same.

The driver executes on a CPU in order to prepare an I/O operation. Then

the actual execution of the I/O operation is controlled by an I/O processor.

When the I/O operation has been completed, the driver will again need

a CPU to record the effect of I/O completion and to try to obtain further

work.

In a system organized as the one illustrated in Fig. 3.1., there is no

possibility for an I/O processor to access directly the queue of ready

processes in the kernel. Therefore, the I/O processor places a signal on

the Control Bus, and the logic of the Control Bus must ensure that even­

tually a CPU will be required to observe this signal.

An interrupt system is provided for this purpose. It is usual to define

several priority levels for the interrupt signals, and likewise a priority

level is always specified for a program running on a CPU. The priority

level of a program is stored in the Processor Status Word (PSW).

65

An interrupt signal can be taken into consideration only by a processor

executing a program at a priority level lower than the priority of the

signal. I'/hen an interrupt signal is acknowledged, an interrupt routine must

be performed in order to examine the cause of the interrupt and to take the

necessary actions. The interrupt routine is a piece of code, and therefore

it should also have a certain priority, but this priority should not neces­

sarily be the same as the interrupt signal that activated it.

The approach taken in this work regarding the treatment of interrupts is

to consider an interrupt signal as being a request to enter the monitor

where the driver has delayed itself after starting an I/O operation. A

routine in that monitor will execute a "continue" operation to place the

driver again in the queue of ready processes.

3.3. Kernel implementation.

This section is dedicated to the detailed description of the kernel

procedures and to the examination of possible hardware aids for the kernel

operations. The kernel procedures are described in Concurrent Pascal. This

is not necessarily the language in which the routines will be written for

an actual system. Indeed, Concurrent Pascal does not provide a construct

equivalent to a TST instruction, required in several occasions. Some other

"non-standard" constructs are introduced to express a few peculiar

operations required in the kernel. The selection of Concurrent Pascal was

determined by its features concerning the representation of data structures

and by the desirability of using a single programming language for all the

examples contained in the thesis.

3.3.1. The implementation of a kernel queue.

A queue of PCBs has been indicated in Sec. 3.2.1. as a basic element in

the organization of the kernel. Formally, the queue can be defined as a data

structure consisting of two address pointers and a Boolean variable, "lock",

together with the operations "testlock," empty," "get" and "put". The two

address pointers serve to indicate the location of, respectively, the first

and the last element in the queue. A queue element (a PCB), thus, must con­

tain in turn two pointers that allow its chaining in a certain queue. The

"lock" indicates whether the queue is "free" (i.e., it can be operated upon)

or not. Every access to the queue must start with testing the lock value,

i.e., with the operation "testlock." A new element is introduced in the

66

queue as the last element with the aid of the procedure "put." The function

"get" gives the pointer to the first (the longest waiting) element in the

queue. Finally, "empty" determines whether there are any elements in the

queue at the moment of the call.

The queue data type is presented below as a Concurrent Pascal monitor.

type queuetype = monitor;

var succ, pred: (Squeuetype;

lock: boolean;

procedure testlock;

begin I : if look = false then goto I;

lock : = false;

end;

procedure entry put (neaelem :® queuetype);

var last.-® queuetype;

begin testlock;

last :- pred;

pred := newelem;

newelem. pred := last;

newelem. suae := last.succ;

last.succ := newelem;

lock := true;

end;

function entry get :@ queuetype;

var first, second :@ queuetype;

begin testlock;

get := nil;

if succ <> this queuetype then

begin first := succ;

second .•- first, succ;

succ := second;

second.pred := first.pred;

get .•- first;

end;

lock := true;

end;

67

function entry empty : boolean;

begin testlock;

empty := suae - this queuetype;

lock := true;

end;

"initialization"

begin

suae := this queuetype;

pred := this queuetype;

end;

There is indeed a resemblance between a queue and a monitor. In both cases

simultaneous requests to enter the data structure can exist, but the

operations on the data structure exclude each other in time. One should be

aware, however, that the scheduling of the simultaneous requests is not the

same for a queue and for a monitor.

Each queue must be represented by its own queue variables (i.e., the two

pointers and the lock), but there is only one copy of the code for the queue

operations, written as re-entrant procedures.

The initialization of a queue data structure is an operation executed at

the request of the kernel component where the queue is used. The request

will appear during the initialization of that component at system loading.

The procedure "testlock" is actually implemented with the aid of a TST

instruction, but this fact cannot be expressed in Concurrent Pascal.

3.3.2. Processor allocation; the queue of ready processes.

The interface between the computer hardware (more precisely, the CPUs)

and the operating system is implemented by the kernel routines dedicated to

processor allocation. These routines accept as their input data the

collection of processes ready to execute (provided by the routines implemen­

ting the monitor primitives) and information about the status of the CPUs

(provided by the hardware). Based on these data, the routines allocate

processors to the ready processes, in priority order. In other words, in a

system with N processors, if the number of all processes ready to execute

at a certain moment is higher than N, the first N processes in descending

68

priority order will be actually running.

The collection of processes ready to execute is in fact organized as a

group of kernel queues, one queue for each process priority level. For the

sake of brevity, the set of queues is further referred to as "the queue of

ready processes ."Note, however, that this name designates more than one

queue. The basic priority of a process, i.e., its priority when not

requesting a system function, is established in the operating system and is

recorded in the PCB of the process. The kernel can modify temporarily the

effective priority of a process, e.g. when a process is executing in a

monitor or when a process prepares or examines the result of an I/O

operation. The kernel routines can easily identify a situation when the

process priority must be increased. Due to the possibility of nested monitor

calls, a complication occurs however in determining whether the process

must return to its basic priority. This problem is solved by providing an

entry into the PCB, "nesting," which indicates the level of nested monitor

calls. The value of "nesting" is increased by one whenever the process

enters a monitor and is decreased by one when the process leaves a monitor.

When the "nesting" is strictly positive, the process has a higher priority;

otherwise it has the basic priority.

The kernel provides a routine which introduces a ready process in the

corresponding queue. This routine can be called during the execution of one

of the monitor primitives.

Another situation which may occur in the system is the following. A

process releases its processor (e.g., after a "delay" operation), but there

are no other ready processes. Temporarily, the processor becomes idle. It

is desirable that in such a case the processor does not execute instruction

fetch cycles. Thus, it does not access the main memory. This will enable

the active processors to access the memory with less contention delay. A

speciall instruction, WAIT, is provided in the instruction list of the

CPUs for this purpose.

The instruction has the following effect. The processor priority is

reduced to the lowest level, and the instruction fetch cycle is stopped.

When the next interrupt signal occurs, the idle processor will be the one

selected to acknowledge the signal and to leave the idle state.

The operation of process preemption and processor allocation to a

process with a higher priority, mentioned above requires a certain kind of

communication between the CPUs which is realized by using the Control Bus.

69

A predominantly software-implemented solution for this problem is

possibly the following. In addition.to the PCBs, the kernel maintains

information about the status of each processor in the form of Processor

Status Blocks (PSBs). When a new process is introduced in the queue of

ready processes, the PSBs are examined. If a processor is found running at

a priority level that is lower than the priority of the new ready process,

a request is placed on the Control Bus addressing that processor. Such a

request is equivalent to an interupt signal and will be acknowledged by the

addressed processor at the end of its current instruction. The appropriate

kernel routine is selected and performs the "switching" of the processor

from one process to another.

In the present work, however, the hardware of the Control Bus has been

extended in order to achieve a faster process switching. The Control Bus

organization for this solution is represented in Fig. 3.6. The scheme

contains a Bus Master connected to the system processors via three buses:

an interrupt request bus, a current priority bus and a master request bus.

The interrupt request bus is used by the CPUs and the I/O processors to

place an interrupt signal. A signal from a CPU is raised whenever that CPU

introduces a process in the queue of ready process.

CPU
1

(

CPU
2

.

Master
Request

* « • CPU
n

Current

Bus
Master

Interrupt request
I

lOP

1

*
o

lOP

m

Fig, 3,6, Logic structure for the Control Bus.

70

The current priority bus is connected only to the system's CPUs. A CPU

can place on this bus the priority of the process that it is currently run­

ning, the CPU address (identifier) and a signal to request the attention

of the Bus Mester.

The master request bus is the output of the Bus Master. (•Then a processor

(CPU) arrives at an interruptible point (in principle after each instruc­

tion), it examines the master request bus. A line on this bus indicates

whether a request is pending, while the other lines carry the address of

the processor to which the request is directed and information about the

nature of the request.

The Bus Master continuously examines the signals on the interrupt request

bus and compares their priority with the priority of the CPUs. If a CPU with

a priority lower than that of an interrupt signal is found, the Bus Master

places a signal on the master request bus and waits until this signal is

acknowledged,

Whenever a CPU changes its priority during the execution of a process

(e.g., when it leaves a monitor and returns to the basic priority of the

process or when it enters a monitor and raises its priority level), it

must inform the Bus Master about the modification. A special instruction

has been provided for this purpose.

The effect of this instruction is now described.The new priority level,

together with an "attention signal" and the processor address are placed

on the current priority bus. Subsequently, the operation of the processor

is continued only after it receives, over the same bus, an acknowledgement

from the Bus Master that the request has been honored. The Bus Master

accepts the request and updates the information it maintains about the

processor's priority.

A processor does not acknowledge requests on the master request bus if

they have priority level lower than that of the processor. Therefore, if

the current request concerns the processor that has just modified its

priority, the Bus Master should compare the new priority level with the

priority level of the request. If the latter is lower, the request must

be re-computed, to reflect the new system status.

Another problem that should be solved in a detailed design of the Bus

Master arises from the existence of a finite time between the acknowledge­

ment by a CPU of a request on the master request bus and the completion of

the process switching operation.

71

Assume that the request has been to take a process from the ready

processes queue and that the process has been the only one on its priority

level. In this case the signal on the corresponding line of the interrupt

request bus must be dropped. This should happen before the Bus Master takes

a new decision concerning the same interrupt level. Otherwise the Bus Master

might decide to take again the same process from the ready processes queue.

A possible solution to this problem is based on the temporary invalida­

tion of the lines of the Interrupt Request bus. Thus, after accepting a

request for process switching and before sending an acknowledge signal to

the Bus Master, a processor invalidates the interrupt level of the request.

In this way, the next decision of the Bus Master can be made, without

taking into consideration the invalidated level. Alternatively, the Bus

Master can be so designed that it waits until the interrupt level is re­

validated. This will happen later in the routine that accomplishes the

process switching.

It is required that a Bus Master implementation provides a circuit

which indicates, before each new decision, the processor having the lowest

priority and the value of that priority. If there are several such proces­

sors, the circuit indicates the first processor encountered. Assuming that

this circuit has a serial operation, the examination of the priority levels

of the processors may always start with the same processor. However, a

more uniform processor utilization is achieved if the examination is done

in a round-robin fashion, i.e., starting a new cycle from the processor

that follows, in a conventional numbering, the one used as the starting

point in the previous cycle.

The round-robin examination is also useful for the processing of the

clock interrupt. If a System Clock is provided as a peripheral device, it

is easy to direct each clock interrupt to another processor, by using the

round-robin mechanism.

With the newly introduced hardware features, the routines that operate

on the queue of ready processes can be written as follows:

const maxpriority = 15;

maxreg = 16;

72

type PCB = record

registerarea : array [. 1..maxreg.] of integer;

succ,pred : ® queuetype;

aallparam : array [. 1..4.\ of integer;

callcode : integer;

priority, nesting, basepriority : integer;

slice : integer : time : integer;

overtime : boolean;

end;

type processref -@ PCB;

type processqueue - sequence of processref;

var ready = class

var_ ready queue : array [.0. .maxpriority.] of processqueue;

procedure entry put (p:processref);

var i:integer;

begin i:=p (s.priority;

readyqueue [.i.] .put (p);

interruptbus .set(i);

interruptbus .enable(i);

end;

function entry get (i:integer): processref;

begin select: = readyqueue [.i.] .get;

if readyqueue \.i.] .empty then

begin interruptbus. reset (i);

interruptbus. enable (i);

end;

end;

begin var i: integer;

for i: = 0 to_ maxpriority do

begin readyqueue [.i.] .initialize;

interruptbus . reset (i);

interruptbus . enable (i);

end;

end;

73

The procedure "enter" introduces a new process in the ready processes

queue at the appropriate priority level and sets a signal with that priority

on the interrupt bus. The function "select" gives as a value the pointer

to the first ready process with the priority indicated as a parameter and

resets the interrupt signal if the queue remains empty.

The two routines, together with the queue of ready processes, are

organized as a class, "ready." At system loading, the data structure and

the interrupt bus must be initialized as indicated by the initial operation.

In order to describe the routines it has been necessary to define two

constants and three data types. The constants are the number of processor

registers "maxreg," assumed to be 16, (this number is implementation-depen­

dent) and the number of priority levels, "maxpriority." Priority 0 is con­

sidered the lowest and 15, the highest level.

A "processref" has been defined as the pointer to a process control block.

"Processqueue" designates a queue of PCBs.

The PCB has been defined as a record providing items already discussed

(succ, pred, priority, nesting, basepriority, registerarea) and several new

items serving the following purposes:

- "callcode" records in a codified form the nature of a call to the

kernel and serves to select the appropriate routine.

- "callparam" is an area used to transmit, if necessary, parameters to

a kernel routine.

- "slice" and "time" indicate, respectively, the interval since the

last process activation and the total time used by the process for

the current program.

- "overtime" is a Boolean variable which becomes "true" when the

process has consumed more CPU time than an allowed quantum, without

being blocked,

The last three items of the PCB are not directly related to the kernel

operations. They will serve for process scheduling in a time-sharing system

and for accounting purposes.

When a processor enters or leaves a monitor or when it is preempted and

allocated to another process, the processor uses a few routines in order

to update the contents of the corresponding PCB(s). These routines are

collected as a class, "runaid," and will be called during the execution of

the monitor primitives.

74

In writing the routines, it is assumed that a processor has a register,

"user," which contains the pointer to the PCB of the currently running

process, and a register, "priority," which indicates the current priority

of that process. Another register, "processorid," maintains permanently

the processor identifier.

The coding of these routines follows.

var runaid - class;

procedure entry incmest;

begin

with user @ do

begin nesting:= nesting •/• 1;

Busmaster.request (processorid, 25);

end;

end;

procedure entry decrnest;

begin with user® do

begin nesting := nesting-1;

if nesting = 0 then

begin priority := basepriority;

busmaster.request (processorid, priority);

end;

end;

end;

procedure preempt;

begin with user @ do

begin registerarea ."= reg;

priority := priorityreg;

ready.put (user);

end;

end;

75

procedure entry serve (i : integer);

var p : processref;

begin if userOO then preempt;

p := ready.get (i);

reg := p@ . registerarea;

user := p;

busmaster.request (processorid, user®, priority);

end;

In a system where a time sharing operation is also possible, supplementary

routines must be introduced for the processing of the clock interrupts. A

request for the current priority bus is represented in the routines written

above as a Concurrent Pascal-like statement;

busmaster. request (processorid, priority).

This statement specifies the important parameters: the processor identifier

and the new priority level of the processor.

3.3.3. The implementation of the monitor promitives.

The preceding two subsections have provided the routines required for

processor allocation and a few other auxiliary operations. It is now pos­

sible to write the routines that implement the monitor primitives described

in Sec. 3.2.1. Since the kernel must use a separate semaphore for each

monitor, there is an analogy between these routines and a Concurrent Pascal

class. The name "gate" used for this class is borrowed from Ref.['J .

The coding is as follows:

type gate - class;

var open : boolean;

waiting : processqueue;

procedure entry enter;

begin runaid. inamest;

if open then open: - false else

begin waiting . put (user);

user := 0;

end;
end;

76

procedure entry leave;

var p: processref;

begin if waiting . empty then

open := true else

begin p := waiting . get;

ready . put (p);

end;

runaid.decrnest;

end;

procedure entry delay;

var p : processref;

begin user® .reg:= reg;

if not waiting . empty then

begin p :- waiting . get;

ready . put (p);

end else open := true;

user := 0;

end;

procedure entry continue (var p : processref);

begin i£_ p = nil then leave else

begin ready . put (p);

runaid . decrnest;

end;

end;

procedure entry inigate (var g : gate);

begin g:= new (gate);

g® . initialize;

end;

begin runaid . incmest;

open := false;

waiting . initialize;

runaid . decrnest;

77

A supplementary routine, "initgate," is provided for use at system

loading. It reserves the necessary memory space (this is the measing of the

keyword "new" in "initgate") and then initializes a new gate.

3.3.4. A scenario for kernel calls.

While a process is executing on one of the system's CPUs, it will expli­

citly call a kernel routine if it needs to perform one of the following

actions:

- obtain access to a monitor,

- leave a monitor,

- delay itself in a monitor queue,

- reactivate another process waiting in a monitor queue.

In addition to these situations, an executing process is abandoned and

the kernel is called under two conditions:

- a process with a higher priority becomes ready,

- an interrupt signal with a higher priority arrives.

It will be assumed that the kernel routines are permanently kept in the

main memory at fixed locations, so that the address at which a certain

routine is found will always be known.

The actions performed by the requesting process in case of an explicit

kernel call are now specified.

First, the address of the required kernel routine is stored in the PCB

of the process as "callcode" while the necessary parameters (e.g., the

identifier of the monitor to be entered) are introduced in the "callparam"

area of the PCB. Subsequently, the processor issues a special instruction,

TRAP, which causes the control to pass to a fixed address in the main

memory. At that address an instruction, SRC (£ub r̂ outine £all) , is provided

with the address part pointing, in the indirect mode, to the "callcode"

entry of the PCB. In this way the correct routine can be selected, and at

the completion of that routine, the control returns to the address fol­

lowing SRC. There, a test should be performed to determine whether the

processor has been preemted during the execution in the kernel (as after

a "delay"). If this is true, a WAIT instruction must follow which causes

processor to wait for the next interruption signal. Otherwise, a SRR

(£ub Routine R^eturn) instruction passes the control back finally, to the

point in the process where the kernel has been entered.

78

In Concurrent Pascal-like notation, these actions can be expressed as

follows:

kncall: case user® . callcode of

1: enter;

2: leave;

3: delay;

4: continue;

5: initgate;

end;

knexit: t£ user = 0 then

begin busmaster . request (processorid, 0);

wait;

end;

return;

An interrupt signal is processed in a similar way. This time, however,

the processor receiving the interrupt must store the codification of the

interrupt nature in an internal register. Subsequently the control passes

to a fixed location in the main memory, other than the location used for

explicit kernel calls. The processing of an I/O interrupt causes a new

process to enter the ready queue. An interrupt for a ready process with a

higher priority causes the processor to relinquish its current process,

which is reintroduced in the queue of ready processes, and to start proces­

sing the new process. The return from the kernel takes place in the same

way as for explicit kernel calls.

References

1. Brinch Hansen, P., "The Programming Language Concurrent Pascal,"

IEEE Tr. on S.E., Vol.1, No. 2 (June 1975), pp.199-207.

2. Qonzales, M.J. and Ramamoorthy, C.V., "A Survey of Techniques for

Recognizing Parallel Processable Streams in Computer

Programs," AFIPS Proceedings, FJCC 1966, pp. 1-15.

79

Chapter 4

THE FUNCTIONAL DESIGN OF A MULTIPROCESSOR MULTITASKING OPERATING SYSTEM

An operating system implemented in Concurrent Pascal appears as a pro­

gram written in this language. The elements of a virtual machine capable

of executing such a program have been explained in the previous chapter.

From a very general point of view, the system hierarchy has in this case

the following levels: the machine hardware, the kernel and the operating

system written in Concurrent Pascal. Actually, the structure of the ope­

rating system is not directly influenced by the fact that the system has

only one processor or is a multiprocessor: the kernel provides as many

virtual processors as there are processes in the operating system.

Obviously, several functional levels can be identified in a more de­

tailed examination of the operating system. The purpose of this chapter

is to identify and describe these levels.

The approach of the general design of the system has been "bottom-up"

(i.e., hardware - kernel - operating system). For the internal organization

of the operating system, with the peculiar features of Concurrent Pascal

in mind, a "top down" approach seems more suitable. It gives, in the

author's opinion, a better understanding of the design requirements and

ensures a clearer functional description, because it starts with the most

general characteristics and gradually introduces new details.

80

4.1. General description of the operating system.

4.1.1 Objectives of the design

The most important feature of the system is its ability to accept re­

quests from a user program for multiasking, i.e.,for executing in parallel

tasks of the same program. As already mentioned, the programmer or the

compiler is responsible for dividing the program into tasks and for pro­

viding the information about the relationship between these tasks.

The operating system is able to accept requests for batch processing

from a number of input units and to deliver the results of these requests

to the indicated output units. The requests, as well as the results of their

processing, are buffered on disk queues.

Another way to enter the system is from a set of time-sharing terminals.

The time-sharing requests are either processed directly or, at the user's

indication, introduced into the queue of batch requests. The directly pro­

cessed time-sharing requests have precedence over the batch requests, in

order to ensure an acceptable response time. It is assumed that these re­

quests generally need a short processing time.

The system does not admit real time processing. The main purpose of this

thesis is to develop an example system that is capable of processing paral­

lel tasks, not necessarily a system with the most general structure.

Another limitation in the generality of the system is the fact that it

accepts requests for parallel processing in the batch mode only. It is pos­

sible, however, to introduce such requests from a time-sharing terminal

and route them to the batch input queue. This decision has been taken in

order to simplify the overall structure of the system. Also, it has been

estimated that parallel programs require a large amount of processing time,

and therefore they would produce an unacceptably long response time if they

were allowed to operate as time-sharing requests.

The parallel programs receive a higher priority in the batch input queue

than the programs that indicate a strictly sequential processing. In this

way, it is still possible to attain for the parallel programs a shorter

turnaround time than would be the case if these programs were not divided

into tasks.

81

Multiprogramming, in the sense of concurrent execution of several pro­

cesses, is an intrinsic feature of an operating system written in Concur­

rent Pascal. The multitasking facility introduces a new dimension of multi­

programming, namely, between the tasks of the same program. The level of

multiprogramming, i.e., the number of processes for which programs are

simultaneously present in the main memory of the computer, must be deter­

mined by the memory capacity.

In a system operating without virtual memory, the degree of multipro­

gramming is limited by the fact that each process reserves the maximum

amount of memory that it may need. In a system with virtual memory, how­

ever, too high a degree of multiprogramming may cause thrashing.

Therefore, the system must be able to control the degree of multiprogram­

ming in order to ensure that thrashing is avoided.

Each peripheral device of the system, the time-sharing terminals inclu­

ded, is under the control of a separate process. Algorithms have been de­

veloped for serving the requests to the sharable devices in such a way as

to obtain a high degree of device utilization and a short average service

time for individual requests.

The system implements a virtual memory in which a segment is the unit

for memory sharing. Partially, information sharing is a result of the

features of Concurrent Pascal. In addition, the system offers the possi­

bility that several processes use, whenever feasible, the same copy in

the main memory of a certain program. This is desirable, for instance, for

an editor program accessed in common by the time-sharing users, or for a

compiler called simultaneously by two or more processes.

Programs and data are stored on background memory units as files.

A file may be either a segment or a collection of related segments. A file

system catalogues the available information and controls the access to it.

It must work in a very close cooperation with the virtual memory system.

The file system uses the information supplied by processes in order to

verify whether the current program has the right to access a particular

file. The right of a program to access a file is established either by

the programmer, if the file is created in that program, or is given by the

system according to the category of the program.

82

4.1.2. The partition of the system activities into processes.

This section presents the types of processes that must exist in the

system in order to provide the facilities stated as objectives of the de­

sign. It also specifies the monitors that are used for the direct com­

munication between processes.

From the design objectives it results that the system operates basical­

ly in the batch processing mode. Therefore, the processes required for the

batch mode are introduced first.

A spooling system introduces new jobs and displays the results of job

processing. A job is a request from a user for a specific processing acti­

vity. It will generally imply a sequence of processing steps, e.g., the

compilation of a source program, the preparation for execution of the ob­

tained object program, and the actual execution of this program. The job

is the unit of interaction between a user and the system. For a user ac­

cessing the system in time-sharing, a job is equivalent to a "terminal

session," i.e., the actions performed from the moment that the user "logs

in" until the user "logs out." However, a batch request originating from

a terminal for batch processing becomes a separate, independent job.

The batch jobs are introduced from a number of card readers and are

collected in an input queue on one of the disk units provided in the system.

As Fig. 4.1. shows, each card reader is controlled by a card reader pro­

cess which transmits card images to a buffer in the main memory. This buf­

fer is implemented as a monitor and provides separate zones for several

cards from each card reader process. If a buffer zone is full, the card

reader process delays itself in a monitor queue.

An input process takes card images from the card reader buffer and

transmits them a uisk data buffer from which they will be transferred to

the disk containing the input queue. The input process reactivates the de­

layed card reader processes. When the disk buffer is full, the input pro­

cess enters a monitor with a request to obtain access to the disk.

83

It must be possible for the disk process to introduce data belonging to a

job at the corresponding priority level in the batch input queue.

The system must ensure that each submitted job is eventually executed;

thus,that there is a possibility to gradually increase the initial priori­

ty of a job. In this way, each job becomes the job with the highest prio­

rity in the input queue, and therefore it is selected for execution. The

processes involved in the job execution are represented in Fig. 4.2.

A job scheduler process updates the priority of the jobs in the input

queue and selects the job with the highest prioriy to be executed. The

selected job is introduced in the ready jobs buffer, which is implemented

as a monitor. A set of user processes (only two such processes are repre­

sented in Fig. 4.2) will take the ready jobs and control their execution.

If there are no ready jobs, the user processes delay themselves in inter­

nal queues of the buffer. The operation of placing a new item in the ready

jobs buffer always includes an attempt to activate a "sleeping" user process.

If a user process discovers during the execution of a job the existence

of parallel tasks, the process will request the assistance of a coordinator.

There are several coordinators in the system (only two are shown in Fig.4.2),

which wait in a coordinator request monitor when they are inactive. A co­

ordinator examines the relations between the tasks of a parallel program

and sends the simultaneously executable tasks in the buffer for ready jobs.

Subsequently, the coordinator is delayed in a queue of this monitor. The

user processes will select for execution the parallel tasks and will report

the completion of each task. After a task completion, the coordinator is

reactivated to determine the effect of this task on the other tasks of the

program. Whenever new tasks may start executing, the coordinator places

them in the ready jobs buffer.

When the completion of the last task of a parallel program is reported,

the coordinator that has been involved in the execution of that program

delays itself in an internal queue of the coordinator request monitor.

The user processes and the coordinator are also provided with access

rights to the disk containing the batch input queue, but this fact is not

represented in Fig, 4.2,

84

CRI

Card reader
process 1

CR2 K> Card reader
buffer

Disk data
buffer

Disk requests
buffer

Card reader
process 2

Input
process

Disk
process

Fig. 4.1. Processes for building the batch input queue.

The access to the disk is controlled by a disk process. This examines

the disk requests buffer where the pending requests are recorded and se­

lects one of them according to a scheduling algorithm. Each request must

specify the identity of the process that has issued it, the data buffer to

be used and the disk address involved in the transfer. When a transfer is

completed, the process that has initiated it is reactivated. If there are

no other requests, the disk process is delayed in a queue of the disk re­

quests buffer. From there it is reactivated when a new request arrives.

Note that two buffers are required for the communication between the

input process and the disk process: one buffer containing the data to be

transmitted and the other containing the requests for disk access. The

same disk can be requested by several processes. Each process must then

provide a separate data buffer, but there is only one buffer for access

requests. It should also be noted in Fig, 4.1. and in the following figu­

res of this section that arrows are used to indicate the access rights of

a process, not the direction of information flow.

All the card reader processes have the same structure, because they per­

form identical functions. This means that all these processes can use the

same copy of the programs directing the operation. The card reader processes

are differentiated by assigning an index to each process.

The batch input queue is organized into several subqueues, as determined

by the priority allocated to each job. The priority of a job is calculated

by the input process, based on several parameters that the user must pro­

vide on a job control card which is always the first card of a new job.

85

Ready jobs

Input disk Job Coordinators
process scheduler

Fig. 4.2. Processes involved in job scheduling.

User processes

The number of coordinators and user processes in a particular system

are established during the system initialization, by taking into account

the physical resources of the system. The buffer of ready jobs is organi­

zed into several priority levels. Tasks originating from parallel pro­

grams will have a higher priority in this buffer than the ordinary jobs.

Figure 4.3. shows the relationship between the user processes and the

processes of the disks containing the input and the output queues, res­

pectively. For simplicity it is assumed that the two queues are construc­

ted on separate disk units, but it is possible to design a system having

both queues on the same disk.

86

Input disk User process User process Output disk
process 1 2 process

Fig. 4.3. Access rights of user processes.

The output queue contains the results of job processing that must be

printed or otherwise transmitted to the users.

With the assumption that only printers are available, the processes in­

volved in printing the results are represented in Figure 4.4.

An output process is responsible for taking out entries from the output

queue and for sending them to a set of printer processes. Notice that a

job may request that its results be sent to a particular printer and, there­

fore, that the output process must be capable of recognizing such a request.

A line printer process is, in a way, similar to a card reader process. It

takes the image of a line from the printer buffer and controls the actual

printing of the line. When the corresponding slot in the buffer is empty,

the printer process is delayed until the next request arrives.

Apart from the two disk units dedicated to the spooling system, the com­

puter has other disk units, as well as magnetic tapes and other types of

peripheral devices. It is assumed that the tape units are used mainly as

intermediary devices for creating or reading new files or for off-line

storage. The collection of files directly accessible in the system is found

on the disk units.

87

Output disk process Output process Printer
process 2

Fig. 4.4. Processing of the job results.

A file catalog, implemented as a monitor, maintains a hierarchy of file

directories to help in accessing the desired file. There will be a sepa­

rate disk process for each disk of the system, and the role of the file

catalog is to activate the process for the disk containing the file re­

quested by a user. A more detailed description is given later in the sec­

tion dedicated to the virtual memory.

The access rights of a terminal user process are represented graphical­

ly in Fig. 4.5.

Terminal user Input disk process
process

Fig. 4.5. The access rights of a terminal user process.

88

Each terminal is represented by a process denoted as a terminal user.

A terminal user process must have the possibility of communicating with

the disk holding the input queue in order to route jobs for batch proces­

sing. Further, the terminal user process must have access to the file cata­

log and must be able to call several standard programs (e.g., the compilers,

the editor). It must be able to interpret a set of commands introduced by

the user which are in principle identical to the job control cards.

4.2. Virtual memory organization.

The address space of a program, i.e., the information that the program

may access, is partially established during compilation. When the program

is executed, the interface routines, provided by the process that controls

the execution, enable the program to access other units of information in

addition to its own routines and data. Specifically, one of the interface

routines allows the program to call other programs, if it can supply a

valid program identifier and the required parameters. In this way, the ad­

dress space varies during execution.

Compiled programs are stored as files in the file system of the compu­

ter. A compiler cannot verify the legitimacy of particular program calls

because it may happen, for instance, that the called program does not yet

exist in the system at that moment. The compiler can only verify that the

call is made according to the rules imposed by the interface procedure.

At run time, the called program must verify at least that the parameters

supplied by the caller correspond in number and type with the formal para­

meters in the definition of the program.

Because every program is executed under the control of a certain process,

it is convenient to consider the address space to be a property of the pro­

cess. In principle, the address space of a process may contain the entire

information available in a computer system.

Each process can regard the data defining its address space to be pri­

vate information and, therefore, defined as a class. This class will be cal­

led the virtual memory of the process. It implements the mapping of infor­

mation between the file system and the main memory of the computer. For this

purpose, the virtual memory class has access to two monitors: file catalog

and core monitor.

89

The file catalog is able to find the location of the file required by

a program and to supply certain information about the file to the vir­

tual memory class.

The core monitor maintains an account of the allocation of the main

memory space and has the ability to allocate space for new requests and

to reclaim unused space. It also initiates the I/O operations required for

the transfer of information between the main memory and the secondary

memory.

4.2.1. The class "virtual memory."

The internal organization of the virtual memory class is influenced

by the information addressing technique used in the computer and by the

provisions concerning the information protection and sharing. It is as­

sumed henceforth that the information is divided into segments of variable

size and that a segment is the unit for information sharing. A single main

memory copy of a segment is used by all the processes that must access

that segment.

The system discussed in this thesis uses an addressing technique which

is based on capabilities. This technique is in many ways similar to that

provided in the Plessey System 250. A capability is essentially a unique

identifier of a segment, for instance the value of the system clock at

the moment when the segment was created. During the entire existence of a cer­

tain system, the same identifier cannot be attributed to two or more segments.

The segments are further divided into fix-sized pages. Since a segment

in this system contains generally a program routine or a small number of

data items or capabilities, the page size should not be larger than 128

or (in the extreme) 256 computer words.

A program and its private data are organized as a package consisting

of several segments. A segment contains either capabilities or data and

program code. A program package should always have a Primary Capability

Segment (PCS) which contains capabilities for all the segments directly

accessible to that package. These segments contain the code of the pro­

gram routines, the program data or capabilities for other segments.

A Process Central Capability Table (PCCT) is associated with a process.

This PCCT consists of entries defining the monitors, classes and the inter­

face routines that the process may access, as well as the PCS of the cur-

90

rently active program. When another program is called, the capability for

the PCS of the old program must be saved for a subsequent return. For this

purpose, the process has a program stack, pointed to by another entry of

the PCCT.

A stack frame is defined whenever a program is called. The first infor­

mation introduced in a new stack should be the capability for the PCS of

the old program. Further, the space in the new stack frame is used in cal­

ling the program routines and for storing the local variables of these

routines. The processors must have a "stack-relative" addressing mode for

the access to local variables.

Further details about the addressing are given with the aid of Fig. 4.6.

Process Capability PCTT

monitors and
classes acces-^
sible to the
process.

*
*

__

\

rent
prog

Interface procedures

Program stack

PCS (not included in the vir­
tual memory class)

code and
data segments

• of the current
program

• ^

• » •

• ^
• to.

Fig. 4.6. Addressing structure in the proposed system.

Each entry in the PCCT has a predetermined function. The first entry always

points to the PCS defining the interface procedures. The second contains

the capability for the program stack, and the third entry points to the PCS

of the current program. Further, there are entries pointing to the monitors

and classes accessible to this process. The allocation of the entries in the

last category is process-dependent and will be performed by the Concurrent

Pascal compiler during the compilation of the process definition. Because

the interface routines are also included in the process definition, it is

possible to completely specify the virtual addresses required in the inter­

face routines. The compilers for all other programming languages possibly

91

used in the system should know only the conventions for the first three

entries in the PCCT.

To the items of a Process Control Block, described in the previous chap­

ter, should be added a capability for the PCCT. When a process is executing,

this capability is stored in an internal processor register, indicated as

Process Capability in Fig. 4.6.

A virtual address in this system consists of the following fields:

-"Package," used as an index in the PCCT for selecting the desired

program package;

-"Segment," the index of the desired segment in the PCS of its

package;

-"Page," the index of the desired page in the segment;

-"Displacement," indicating a particular memory word in the page.

The transformation of a virtual address into a real address is illustra­

ted in Fig. 4.7. The first step of the transformation consists in accessing

the PCCT (as determined by the Process Capability and the Package field of

the virtual address) in order to obtain the capability for the appropriate PCS.

Using this capability and the contents of the "Segment" field, a CPU can

obtain from the PCS the capability of the desired segment. With this capabi­

lity, the Page Table (PT) of the segment can be accessed, producing the base

address of the page indicated in the "Page" field.

The "Displacement" field is used to select, in the last step of the trans­

formation, the particular memory word.

In order to reduce the time consumed in the address transformation, each

processor should be equipped with a set of high-speed registers which store

the capabilities of the most recently used segments and pages.

A capability for a certain segment will indicate whether the segment

is active or not. A segment is said to be active when it has a PT in the

main memory. If the segment is not yet active, a routine of the virtual

memory class obtains the control and calls the core monitor to activate the

segment and bring (part of) it into the main memory. While the transfer is

in progress, the requesting process must be blocked. When a process calls

a new program, it must receive a capability for the PCS of that program.

The name of this program, supplied as a parameter by the calles, is trans­

mitted by the virtual memory to the file system. This searches the pro­

gram name in the file directories and returns a capability for the PCS of

the program and indicates whether this segment is already active, due to

92

the program being already used by another process. At this stage, it is

also possible to verify whether a certain user (whose identity is provided

by the process) has the right to access the program.

If the PCS of the new program is already active, the process can continue.

Otherwise, the segment must be activated by the core monitor.

Process Capability Package Segment Page Displacement

YZ& zz

PCTT
^ Z2

PCS

^ Z2

Page Table
Fig. 4. 7. Transformation of virtual addresses

into real addresses.
^ ^

Page

4.1.2. The core monitor.

The core monitor administers the main memory space and initiates the

I/O operations for the information transfer between the main memory and

the secondary memory.

The core monitor operates mainly on the information maintained in two

tables. The first table, called the System Capability Table (SCT), contains

the capabilities and the Page Tables of the active segments. The second

table, called the System Page Table (SPT) provides an entry for each page

frame of the main memory.

The organization of these tables is explained with the aid of Fig. 4.8.

The SCT is a "hash" table, accessed by using the capability of a segment

as the hash key. An entry in this table, denoted as SCTE, contains the fol­

lowing information about a segment: the capability, the address in the se­

condary memory, the length, the access mode, the Page Table and a reference

counter.

93

Capability

Addresses in the
secondary memory

ngth I Arcpss I Rpf. counter

Page Table

a) Entry in the System
Capability Table

Presence bit

write bit t
Ref.counter Page index in SPT

b) Entry in the Page Table

Sta

1

tus Flag

Forward
pointer

Backward
pointer

SCT 1
pointer |

c) Entry in the SPT

Fig. 4. Some data structures used in the core monitor.

A segment has a fixed address in the secondary memory. For an active

segment, this address is stored in the SCTE and can be used when a page

of the segment must be transferred between the main memory and the secon­

dary memory.

The reference counter indicates the number of processors which currently

have copies of the segment capability in one of their internal registers.

This information is used in the allocation and de-allocation of entries

in the SCT and of page frames in the main memory, A segment whose reference

counter has the value zero is said to be an unreferenced segment.

Because the entries in the SCT have a fixed length, the system imposes

a maximum size for the segments: a segment cannot have more pages than the

number of entries in the Page Table. The optimum values for the number of

entries in the Page Table and for the size of a page should be determined

from studying the average segment length and the reference pattern distri­

bution in the system. Such a study has not been performed in this thesis.

It may be assumed, however, that with a page size of 128 words, the page

table need not provide more than 32 entries.

There is also a reference counter for each page, having the same meaning

as the reference counter of a segment. However, it will be used only for

the allocation of the page frames in the main memory, A page whose reference

94

counter has the value zero is an unreferenced page.

Further, an entry in the Page Table of a segment contains a presence bit

and a write bit. The presence bit contains a "1" when the page is in the

main memory and a "0" when it is not. A value of "1" for the write bit indi­

cates that the page has been modified since the last time that it was brought

into the main memory. The last item in the Page Table is the index of the

page frame of the main memory allocated to this page. It is used as an index

for accessing the SPT and, at the same time, as the base address of the page

for the translation of virtual addresses into real addresses.

The SCTE contains two control fields, defining the length of the segment

and the type of access permitted to the segment. Both fields are used during

the address translation.

The second table of the core monitor is the System Page Table (SPT). An

entry in this table contains the following information about the correspon­

ding page frame: a status flag, two pointers for linking in a list and a

pointer to the SCTE of the segment to which the page belongs.

The status flag consists of two bits which indicate the page status ac­

cording to the code shown below:

00 - free page;

01 - page being transferred;

10 - unreferenced page;

1 1 - page in use.

The pointers are used to connect into one list the free pages and, into

a separate list, those pages which are still present in the main memory,

but not currently referenced by any processor (unreferenced pages). The

core monitor should keep, as separate variables, pointers to the head and

the tail of each of the two lists. A new entry is always appended at

the tail of a list, and the entry selected for use when requested is always

taken from the head of the list.Therefore,this is the entry that has stayed

for the longest time in the list.

The pointer to the SCTE is used during the removal of a page from the

main memory.

It can be stated that the core monitor is basically concerned with the

translation of virtual addresses into real addresses. In this operation, the

core monitor is aided by the hardware of the system processors. In the solu­

tion developed here, it is assumed that the only hardware aid for the core

95

monitor is a set of high-speed registers denoted henceforth as Address

Translation Registers (ATS), with which all CPUs are equipped.

Further support means could be incorporated in the processors-memory

interconnection scheme, if required.

The structure and the use of ATRs are illustrated in Fig. 4.9. An ATR

consists of an associative section and a conventional (random access) section.

The associative section has fields for the package, segment and page indices.

The random access section contains the segment capability, the page frame

index and a reference counter.

The ATRs are used for indicating the most recently referenced pages du­

ring the execution of a certain process. When a virtual address is deve­

loped in a CPU, the package, segment and page fields of the address are

compared with the corresponding fields in the associative section of the

ATRs. If a match occurs in an ATR, the page frame index of that register

is concatenated with the displacement value contained in the virtual ad­

dress, producing immediately the real address. The core monitor need not

be accessed, saving thereby execution time.

If the comparison does not produce a match, the virtual memory class

and/or the core monitor must be called for help. At the same time, an

ATR should be reserved for the newly referenced page. The reference coun­

ter, which consists of a few binary positions (values between 4 and 8 are

considered at the most probable) indicates which register will be selected.

Several criteria can be used for the selection. One of them is based

on incrementing the counter by 1 for every access to the page represented

in that ATR, Whenever the counter passes through zero, the counters of all

ATRs are reset to zero. The counters are also reset to zero for each new

page descriptor introduced in one of the registers.

In this way it is possible to keep an account of the reference frequen­

cy to all the pages currently in use in the processor. The least frequently

used page (i.e., the page described in the register with the lowest value

in the reference counter) is selected for replacement. When more than one

register counter contains the minimum value, the processor selects one

of these registers at random,

96

Virtual address

Package

Refe rence C a p a b i l i t y
Coun te r

Segment Page

' 7

• *

D i s p l a c e m e n t

, Page f r

•

ame

^

;̂ 1
Rig e

Re

D i s p l a c e m e n t

al a d d r e s s

Associative memory

Fig. 4.9. Address translation with the aid of the ATRs.

If no ATR contains a capability for the requested segment (such a situ­

ation is a "segment fault"), the virtual memory class of the process should

be called to produce this capability. Otherwise, the capability is obtained

from an ATR, which means that only a "page fault" has occurred. In calling

the core monitor, the segment capability and the page index are provided as

parameters. The core monitor must determine whether the addressed page is

present in the main memory. Therefore, it uses the segment capability to

access the SCT, The result can be that there is already an entry in this

table for the requested segment of that the segment is not active.

Assume that the segment is active. In this case, with the page index

transmitted as a parameter, the core monitor accesses the Page Table of

the segment. The presence bit in the Page Table entry is first examined,

If this bit is zero, the page is not in the main memory and a page trans­

fer should be initiated. Otherwise, the operation continues by examining

the reference counter.

A strictly positive value of the reference counter indicates that the

page is certainly in the main memory. Therefore, the page frame index sto­

red in this entry can be transmitted to the processor. Simultaneously,

the reference counter of the page is increased by one. Note that when the

segment capability is obtained from the virtual memory class, the reference

counter of the segment should also be increased.

If the reference counter of the page is zero, the core monitor accesses

97

the SPT to determine whether the page is still in the main memory. This

is indicated by the bits of the status flag, which should be 10. If so, the

value is changed to 11 (page in use), the SPT entry is taken out of the

list of unreferenced pages, and the core monitor enters again the SCT.

Here, it increases the page reference counter completing, by this, the

operation requested by a process.

If the status flag has the value 01 when the core monitor examines the

SPT, the page is not available in the main memory. The presence bit in the

SCTE must be reset, and then the core monitor must reserve a page frame

for the referenced page and initiate the necessary I/O transfer.

In reserving a page frame, the core monitor examines first the list

of free pages. If this list is empty, the monitor selects the first entry.

Otherwise, it selects a page from the list of unreferenced pages. The value

of the status flag in the selected entry becomes 01. The core monitor must

also examine the write bit of this page and, if the bit is "1," transfer

the page back into the secondary memory (at the address indicated in the

SCT). Finally, the core monitor initiates the transfer of the new page.

A process waits in a core monitor queue until the I/O transfer, that it

has requested, is completed. In this way, other processes are allowed to

enter the core monitor.

Until now it has been assumed that the referenced segment is active.

If this is not the case, the core monitor should first activate the segment.

With the segment capability supplied by the calling process as a parameter,

the core monitor tries to find a free entry in the corresponding hash zone.

If the core monitor cannot find a free entry, it searches for a segment,

in the same zone, with a zero reference counter. Such a segment, if found,

can still have some pages in the main memory (in the unreferenced state).

Therefore, its Page Table is scanned. When the presence bit of a page is 1,

the core monitor resets this bit and then accesses the SPT to set the sta­

tus flag to 00 and to introduce the entry in the list of free pages.

In the case that no entry can be found for the new segment, the reques­

ting process is delayed and the request is introduced in a list where it

waits until the reference counter of a segment in the corresponding hash

zone become zero.

Now the situations in which the reference counters should be decremen­

ted will be examined.

98

Obviously, the reference counters are decremented when an ATR is de-allo­

cated. It is relatively easy to determine by hardware means whether this

has been the last register addressing a certain segment. If so, both the

segment reference counter and the page reference counter are decremented.

Otherwise, only the page reference counter is affected.

The reference counters are also decremented when a process is delayed.

Therefore, each "delay" operation includes a call to the core monitor, if

the process is not currently executing in the core monitor. The time that

a process remains delayed is always assumed to be long in comparison with

the time required for process switching. The core monitor examines, for a

"delay" operation, all the ATRs and reduces the corresponding reference

counters. In this way, the memory occupied by a delayed process can be re­

used for other processes.

For the duration that a process waits in a semaphore queue before obtain­

ing access to a monitor (short-term scheduling), the reference counters

are not modified, although the processor is, possibly, re-allocated to an­

other process. A general assumption has been that all monitor routines are

short and, therefore, the waiting time in a semaphore queue is not long

enough to justify the de-activation of pages and segments. Instead, the con­

tents of the ATRs are saved on the process stack whenever the processor is

re-allocated. The first operation of a new process should be the reloading

of the ATRs.

The core monitor is also called when an I/O process completes the trans­

fer of a page. It changes the status flag of the page (the page index is

given as a parameter by the I/O process) to 11 and continues the process

that has requested the page. The presence bit in the Page Table of the

SCTE must be set to 1.

Until now it has been tacitly assumed that only one process waits for a

certain page to be transmitted into the main memory or for a certain segment

to be activated. In the following a description is given of how the core

monitor treats the cases when more than one process is waiting for the same

segment or page.

Processes waiting for the activation of the same segment are linked into

a list. When the request can be satisfied, the core monitor continues the

first process in the list. This process receives, however, a parameter spe­

cifying that there are more processes waiting, and therefore it calls again

99

the core monitor for the continuation of another process. The procedure

is repeated until the list is empty.

The processes waiting for a page are treated in a similar way when the

transfer of that page is completed.

With the increase in the number of processors and in the size of the main

memory in a system, the core monitor can become a bottleneck in the system

operation. A possible solution for avoiding this is suggested below. This

solution divides the functions of the core monitor between several separate

monitors, organized as shown in Fig. 4.10.

from processes

SPT monitor
1

monitor

Fig. 4.10. An alternative organization for memory management.

The page reference counters are now maintained in the System Page Table,

which is divided between n SPT monitors, one monitor for each memory block.

A process calls the SCT monitor whenever a new page descriptor must be

introduced in an ATR. But the process operates in this monitor only for a

short time, to obtain the index of the page frame, if the page is present in

the main memory. Subsequently, the SPT monitor takes care of the updating of the

SPT monitor
n

100

reference counters or, when the page is not present in the main memory, of

the allocation of a page frame with the aid of the page allocation monitor.

The page allocation monitor operates on the lists of free and unreferenced

pages.

During the execution in the core monitor, no page faults or segment faults

may occur. A straightforward technique which ensures this consists of pro­

viding the processors with the possibility of specifying whether the address

calculated during an instruction is virtual or real.

For real addresses, the translation mechanism is not used. All the opera­

tions in the core monitor must specify real addresses. Therefore, the routines

and data structures of the core monitor must be permanently kept in the main

memory. The kernel routines and data structures should also be permanently

present in the main memory.

101

Chapter 5

A SIMULATION MODEL OF THE PROPOSED COMPUTER SYSTEM

This chapter begins with some general remarks about the modelling and

simulation of computer systems. Subsequently, it contains a simulation

model of the system proposed in the previous two chapters. Specific problems

encountered during the construction of the model are emphasized. The results

obtained from a simulation program written in SIMULA 67 are presented and

discussed in the last section of the chapter.

5.1. Computer systems modelling and simulation.

The evaluation of the performance of an existing computer system is

based on measuring the adequate system parameters: the time that the CPU is

active, the amount of raain memory occupied at every moment, the utilization

factor of each I/O channel, etc. From the measurement results, variables

which indicate the quality of system performance to the designer or user

can be obtained, e.g., equipment utilization, program service time, etc.

However, a study into the possibilities of modifying or extending an exis­

ting system or a study of a new design must be based on a system model.

The model reproduces the features of the proposed system, at the level of

detail desired by the model designer. The model will predict the values

of the essential performance variables and the influence that modification

of certain system parameters (CPU speed, memory capacity, number of I/O

channels, scheduling algorithms, etc.) will have on the values of the

102

performance variables.

There are two basic types of computer system models:

- Analytic models, developed as extensions of the queuing

theory, which aim at determining some mathematical relations

between the performance variables and the system parameters.

- Simulation models, which aim at reproducing the dynamic

behavior of the system.

Studying a system with simulation models has an experimental nature: the events

of interest are recorded during the experiments and the system performance

variables are obtained by the statistical analysis of the recorded events.

In both types of models, the necessary calculations are almost always

performed with the aid of a computer. Therefore, the models will be trans­

lated generally into computer programs.

The analytic models describe the system behavior in a simplified form.

Nevertheless, a well-designed model can give very useful information which

is often sufficient to evaluate system performance. Moreover, the analytic

models need less computing time than the equivalent simulation models.

When a more detailed reproduction of the system behavior is required

or when the mathematical relations between the system parameters and the

performance variables cannot be easily expressed, a simulation model should

be used. In this case, the simulation experiments must be planned judiciously.

If wise planning does not occur, too much computing time will be required

and the danger exists that the experiments might not produce the necessary

information.

Every computer model includes a description of the system workload,

in addition to the description of the system structure and operation. The

workload is the collection of user jobs that are submitted for execution

in a certain period of time. It is important that the workload in a com­

puter model has the same characteristics as the real workload. Only in this

case, assuming that the system structure and operation are correctly repre­

sented, can the modelling results be valid.

In constructing a simulation model it is also useful to have an adequate

method for describing the system structure and the relations that exist be­

tween the various components during operation. This is particularly impor­

tant for the models of complex, general-purpose operating systems. A basic

requirement of the description method is its property that it allows a

103

straightforward translation of the model into a computer program.

Various programming languages are used in modelling. The analytic models

are solved in most cases with the aid of a general-purpose programming lan­

guage.However , special languages have been developed for simulation, but

general-purpose languages are also used. The aim of the special-purpose

languages is to simplify the writing of the simulation program and, to a

lesser extent, to reduce execution time.

The model described in the next section has been developed based on these

general considerations.

5.2. A description of the developed simulation model.

One of the features of the computer system proposed in the preceding

chapters is multitasking. This feature has been introduced with the pur­

pose of reducing the turnaround time of some large programs by dividing

them into simultaneously executable tasks, i.e,, by writing them as paral­

lel programs. In a multiprocessor system, the simultaneously executable

tasks may indeed be processed in parallel.

Obviously, the turnaround time of the parallel programs will be reduced

in comparison with the turnaround time of the same programs in a system

without multitasking. It is of interest, however, to study how significant

this reduction is and how multitasking influences the service that other

types of programs receive from the system. Not all parallel programs will

have the same internal structure, i.e., the same number of tasks and re­

lations between tasks.Therefore,various structures for parallel programs

should also be taken into account in the system study.

A simulation model is preferable to an analytic model in this case.

Especially the different structures of the parallel programs are diffi­

cult to represent in an analytic model, but there are also other features,

like the scheduling algorithms, which suggest the use of a simulation model.

By studying some of the available methods for elaborating a simulation

model, the author has come to the conclusion that the "evaluation nets"

(E-nets) described in Ref. I 3] (see also Appendix 2) are the most conve­

nient for representing the simultaneous actions that take place in an ope­

rating system.

104

The developed model does not reproduce in detail the structure of the

operating system designed in Chapter 4. It only describes the flow of the

user programs through the system. This simplification has been considered

permissible due to the restricted purpose of the model: to give indications

about the effect of multitasking on the service received by the user pro­

grams. Moreover, the model is constructed in such a way that the system over­

head remains approximately the same, regardless of whether the system uses

multitasking or not. Therefore, the system overhead is left out of consi­

deration in this first version of the model.

Other simplifications introduced in the model concern the main memory

and the internal structure of the parallel programs.

Memory constraints are not taken into account; the main memory capacity

is considered to be sufficient for storing the information required by all

active processes. The effect of information sharing between processes is

discarded based on the same consideration given for the system overhead.

In specifying the system workload, only a small number of different

parallel program structures have been considered. The model requires that

each parallel program structure be expressed as a separate E-net (a macro

E-net in the terminology introduced in Appendix 2). For practical reasons,

only a limited set of such macro E-nets could be developed. The selected

parallel structures contain, however, the types of inter-task relations

supposed to appear most often in real programs.

The configuration of the modelled system is represented schematically

in Fig. 5.1. The input devices for the batch jobs are card readers, and the

job results are sent to a number of line printers. The time sharing jobs

enter the system from remote terminals. The secondary storage consists of

disk devices only.

The number of terminals, card readers, line printers, disks and CPUs

are parameters of the model.

A simplified version of the model is illustrated in Fig. 5.2, which is

explained below.

First the symbols used in Fig. 5.2 will be explained briefly. The E-nets

operate with locations and transitions. A location, depicted graphically by

a circle, represents a certain condition in the system, which can be satis­

fied or not at a given moment. A transition is depicted by a vertical line

and represents an activity of the system. A transition has input locations

105

Tl c^

T15 C^

V'

CPU 1

Memory

Mainframe

CPU 2
l —

t

I

(D O
Disk O Disk 1

CR 1

CR 4

LP 1

LP 4

Fig. 5.1. System configuration for simulation experiments.

and output locations. When the conditions represented by the input loca­

tions are satisfied, the transition "fires" and modifies the state of its

output locations. One can say, therefore, that the locations describe the

system state; whereas the transitions describe the dynamic behavior of the

system from one state to another. Rectangles in Fig. 5.2. denote macro

E-nets, i.e., parts of the system that have not been represented at the level

of detail required by the locations and transitions. The rectangles deno­

ted Al and A2 are token absorbers and those whose name starts with a "G"

are token generators. A token is a dot which, when present in a location,

signifies that the condition represented by that location is satisfied. A

special symbol, an ovoid, is used to represents queues (macro-locations).

Pairs of numbered triangles are used as connectors between the various

parts of the model.

The input and output locations are connected to a transition by arrows.

A small vertical bar on an arrow denotes a conditional path for the tokens.

In the model, the system terminals are represented as token generators,

GT, - GT . They produce terminal requests (also called time-sharing requests)
1 n

which are gathered into a "terminal requests queue," QTERM.

106

Bibliotheek TU Delft
I Magazijnslip/P/c/r/V7gs//jD^^^H

Ik wil dit document graag verlengen// would like to renew
this loan.

In te vullen door de Bibliotheek TU Delft/fo be
completed bij the Delft University of Technology
Library

D verlengd tot/renewed until:

n niet verlengbaar, a.u.b. retour/renewal not
possible, please return the document

D opmerkingen/of/jer:

c Briefkaart

FR/

BRI

Aan de Bibliotheek van
Technische Universiteit
Postbus 98
2600 MG DELFT

de
Dei

n

n

r>

Geleend op/Date of issue: Terugbezorgd opl Returned on:
1991

Uiterlijk terugbezorgen op/Date due:
ParaaV Initials:

OoouvcïetïtgegevenslReceived on loan:

T I f' ' E S 5 0 R V y ^ , ' r : , • : i T [i :. T l T A S K I N G F A C I L I T I E S

1 ï: ...: ^ "̂ ^ C 8 ill 9 b k u i 11 n 2 1 8 ? 5 1

Gebruikersgegevens/Borroiver :
1 1 6 1 8 B r u i n , J , A . R . de

'̂ p r i n 9 0 ;i il 0 V ;• * '

2 2 9 ' . ?^' K w l i ^ f s h e u l

. : ? . . , 5

•
1
1
1
1
1

The batch input stations (card readers) are also token generators,

GCR -GCR . The generated batch jobs are written into an "input queue," INPUT,

maintained on the disk unit 0. The operation of the disk units is not re­

presented in Fig. 5.2. This figure shows, however, that a write request is

sent to the disk through connector 1 and that the disk reports the com­

pletion of the request through connector 2. A token placed in location b„

signifies that a new job has been introduced in the input queue.

The system provides a number of process control blocks (PCBs) for the

user processes. The free PCBs will be found in a queue, denoted in Fig. 5.2

as PCBQ.Once a PCB (thus a user process) has been allocated to a job or

task, it remains allocated until the job or task is completely executed.

The jobs are divided into three priority levels: time-sharing requests

(each request is considered as an independent job) have the highest priority,

followed by parallel programs and then by the simple batch jobs.

The Parallel Programs Manager (PPM) provides several coordinators which

have the role described earlier in Chapter 4. The number of simultaneously

active parallel programs is limited by the number of coordinators. Because

the batch input queue is processed in FIFO order, the input queue processing

is temporarily stopped when a parallel program appears at the head of the

input queue and no coordinator is available.

The PPM collects in the queue b, all parallel tasks ready to be execu­

ted. In order to decide which job will be activated when a PCB becomes

available, the general job scheduler (transition a.) examines the terminal

requests queue, the parallel tasks queue and the location b. (indicating a

"simple batch" request), in this order. It selects the request at the head

of the first non-empty queue or, when both queues are empty, the simple

batch request.

All active programs, i.e., those having a PCB allocated, enter the CPU

queue (CPUQ) where they wait for a free CPU. When a CPU becomes free, it

takes the first job from the CPUQ in FIFO order. If the queue is empty, the

CPU remains idle. Once execution of a program has started in CPU, that pro­

gram maintains control of the CPU until an I/O operation is requested or

the program completes execution.

When an I/O operation is requested, the CPU directs the request to the

corresponding peripheral device (here a disk) and then tries to start the

next job in the CPU queue. Programs for which an I/O operation is completed,

are returned to the tail of the CPU queue.

107

801

Terminals

Batch input

«5

T)

>-(O
00
1-1
Pi
Q

a (U
3
U

00

•Tl
'T)

;<
II

T !
B)
i-(
BJ
l~^

»—' fD
1—'

25

+ • (2) *

B>*

I/O
request

110

13

Answer
terminal

1 Ö \ disk 0

disk 1

II 1

-h'7o>

Terminal done 31

PCff-aóne
PCB done

Parallel L/r~\
task,^d V 2 5 /

a Parallel

job
done ^ b

+*(5^

29

'23

PCB done

simple

'30

-KSH>
-o

Signal PPM

Al

o
Fig. 5.2(contd.). Simulation

VLPAV/"

>-(3)-
Disk
done

33

"KSHï̂
Disk

request

I '^^vll.V"^ done 1

A2

Job

completed

' conatpuated with E-nets,

When a CPU is released because of job completion, the transition a„_

examines the nature of the job: terminal request, parallel task or "simple"

job(the last task of a parallel program is included in this last category).

In all cases, the PCB must be released (transition a) and introduced in

PCBQ.

For terminal requests, an answer should be sent through the transition

a to the terminal that has issued the request.

The completion of a parallel task is signalled to the PPM through the

transition a and the connector 9.

For job completion^ a notice that a new set of job results if avail­

able is first introduced in the output queue, OUTPUT. Then, the transition

a. verifies whether the job has been the last task of a parallel program

or a simple batch job. In the first case, a signal will be sent to the PPM.

In the second case, nothing will be done and, therefore, the token will be

absorbed in Al.

From the output queue, the job results are sent to an available line

printer. The line printer issues disk requests to obtain the results and,

when the printing is completed, introduces a new dot in the queue of avail­

able line printers, LPAV. A dot is also absorbed in A2, denoting that the

job has left the system.

Special problems have occurred in the workload specification, because

no real system has been available for measurements. For terminal requests

and for simple batch jobs, some data indicated in the literature [4] have

been used. However, no data have been found about parallel programs. There­

fore, a number of "patterns" of parallel programs have been devised for this

model. One such pattern (the simplest) is represented in Fig. 5.3.a, using

again E-nets. Figure 5.3.bshows the relationship between the four tasks of

the program. A short explanation of the pattern follows.

Signals are received from a coordinator through connector 30. The token

placed in location BP3 specifies whether the signal concerns the start of

the first task or the completion of one of the tasks. In the last case, the

identity of the task is also given.

The first task of the program is ready for execution immediately after

a signal is received from the coordinator. The signals reporting a task

completion should be further processed. When task 1 is completed, the model

shows (transition acq) that task 2 and task 3 may start. They are succes-

110

sively sent in location BP13 (task ready). From there, through connector 31,

the ready tasks are transmitted to the PPM which will introduce them in

queue b, (see Fig. 5.2). The last task of the program, task 4, can only

start when task 2 and task 3 are completed, as transition a,, shows.
b 1

x?>
57

Start TI
'62

-M^P?V4+^-<^?VJ Start T2 LjJ^V*
'58

TI
compl.

T2 compl.

T3 compl

Start T2

Start T3

6̂1

Start T4

a)

Fig. 5.3. Example of a parallel program pattern.

For the other three parallel program patterns used during the simula­

tion experiments reported in the next section, the relationship between

tasks is indicated in Fig. 5.4.

The following parameters have been chosen to characterize a job:

- time of arrival in the system;

- nature of the job (terminal, simple batch, parallel program);

- average execution time between I/O requests;

- number of I/O requests;

- identifier of the assigned PCB.

Supplementary parameters are used for the specific needs of the ter­

minal requests and of the parallel jobs. For instance, a terminal request

11 1

Fig. 5.4. Parallel programm patterns used in simulation.

112

carries an identifier of the terminal that has issued the request. A parallel

job is provided with an identifier of the coordinator that has been assigned

to the job and, due to the limitations of the present model, with an iden­

tifier of the pattern chosen for the job. Each parallel task carries an

identifier, not only for the job to which it belongs, but also for itself.

The I/O operations related to the reading of a new batch job in the

system and to the printing of the job results are always directed to the

same disk (unit 0). All other I/O operations are uniformly distributed among

the disk units present in a certain configuration.

A terminal issues a request and then waits for the answer. When the answer

arrives,it is assumed for the model that the terminal issues the next request

after an exponentially distributed "thinking time." The batch jobs arrive

at the card readers in accordance with a Poisson distribution (i.e., the

intervals between successive arrivals are exponentially distributed). A cer­

tain percentage of the batch jobs are parallel programs.

5.3. Simulation experiments and results.

A simulation program for the developed model has been written in the

programming language SIMULA 67 [l] , [2] . This language has certain features

which are related to Concurrent Pascal, and this fact is one of the reasons

for its selection.

The writing of the simulation program is simplified by observing that

a direct connection can be established between the E-nets concept of "transi­

tion" and the SIMULA concept of "class": each transition of the model has

been translated as a SIMULA class. The main program must only initialize

the system, start the simulation, test for the condition to end the program

execution, and print the results.

In the first series of experiments three different scheduling policies

have been used. These scheduling policies are described below:

1. Parallel jobs maintain their priority over simple batch jobs in PCB

allocation, but only one parallel job at a time can be active.

2. Several parallel jobs can be simultaneously active, but each job

has at most one active task at a time.

3. Parallel jobs are executed in multitasking; i.e., the restriction

introduced in the second scheduling policy is removed.

113

The first scheduling policy is very restrictive in the treatment of the

batch requests. Once the execution of a parallel job has started, the proces­

sing of the batch input queue can only continue until the next parallel job

is encoutered. From that moment, no other jobs are taken out of the input

queue until the parallel job in execution is completed. The tasks of this

job are executed one by one; thus each new task must compete with the ter­

minal requests for a PCB.

The second scheduling policy approaches the situation in a common multi­

programming system. In order to make the comparison with the multitasking

scheduling system possible, however, it is assumed that tasks from the paral­

lel jobs are executed independently. In normal multiprogramming, the entire

parallel job would be executed as a single "task;" i.e., it would have to

compete only once to obtain a PCB.

With tasks executed independently, the second and the third scheduling

policies introduce the same amount of system overhead.

During these first experiments, the system configuration has been constant:

- 2 CPUs,

- 4 card readers,

- 15 terminals,

- 2 disk units,

- 4 line printers.

The workload parameters have also remained constant at the values indi­

cated below.

- Proportion of parallel programs: 50%;

- Number of parallel programs patterns: 4;

- Terminal "thinking" time: 30 seconds;

- Batch job interarrival time: 120 seconds;

- Average execution time for I/O requests: 200 msec;

- Time required for printing the results of a job: uniformly

destributed between 20 and 90 seconds.

The number of I/O operations and the interval between two successive

I/O requests are given in Table 1, for each category of jobs. For the parallel

programs, the figures given in Table 1 refer to a task, not to an entire job.

It has been assumed that the parallel programs are, in general, more CPU

bound than the simple batch jobs, which in turn are more CPU-bound than the

terminal requests.

114

Table 1. The I/O parameters of the workload.

Category of jobs

Terminal requests

Simple batch jobs

Parallel programs

Number of
I/O requests

5

40

10

Interval between
requests (msec)

200

400

600

Only one coordinator is required by the first scheduling policy.

In the other two scheduling policies, 4 coordinators have been used.

For each scheduling policy the experiment consisted of a program run

for 5 PCBs, another run 10 PCBs and a third run for 20 PCBs.

The output of a simulation run provides the items of information listed

below.

- Histograms of the response (turnaround) time for the job in the

three categories;

- Histograms of the job execution time for each job category;

- Histograms of the job waiting time in the CPU queue;

- Data about resource utilization;

- Total simulated time.

A simulation run was stopped after the execution of 80 parallel programs.

The recording of the system events necessary in calculating the simulation

results was started only after the completion of the first 20 parallel pro­

grams. In this way, it may be assumed that the simulation results refer to

a system in steady-state operation.

The program was executed on the CDC CYBER 73 and CYBER 173 computers,

under the NOS/BE 1.1 operating system, at the Stichting Academisch Reken­

centrum Amsterdam (SARA). The NDRE SIMULA compiler was used. A program run

required between 400 and 600 seconds of CPU time.

A synopsis of the results obtained is shown in Table 2. Several histograms

of the turnaround time and waiting time in the CPU queue are included in

Appendix 3.

For the first scheduling policy, the turnaround time of the batch pro­

grams has very high values and the utilization of the system resources is low

in comparison with the other scheduling policies. As expected, the terminal

requests receive a very good service, because there are not many batch

115

Table 2. Simulation pesults for a system with 2 CPUs.

Parameters

Average response time

(sec)

Terminal requests

Simple batch jobs

Parallel programs

Average execution time

(sec)

Terminal requests

Simple batch jobs

Parallel programs

1 coordinator
no multitasking

5 10 20
PCBs PCBs PCBs

3.59 3.32 3.48

1090.0 291.0 359.0

1220.0 411.0 481.0

1.20 1.18 1.18

15.6 16.S 16.4

48.7 48.1 40.6

4 coordinators
no multitasking

5 10 20
PCBs PCBs PCBs

8.11 6.55 5.82

173.0 119.0 114.0

294.0 208.0 187.0

1.19 1.20 1.19

17.1 15.8 16.2

48.6 50.5 48.9

4 coordinators
multitasking

5 10 20
PCBs PCBs PCBs

5.84 5.99 5.47

105.0 105.0 . 112.0

146.0 149.0 141.0

1.17 1.20 1.18

17.0 15.7 16.3

45.8 46.4 49.1

Table 2. (contd.) Simulation results for a system with 2 PCUs.

Parameters

1 Resource utilization

(Z)

CPU 1

CPU 2

Disk 0

Disk 1

LP 1

LP 2

LP 3

LP 4

Throughput in 1 hour

Terminal requests

Simple batch jobs

Parallel programs

1 coordinator
no multitasking

5 10 20
PCBs PCBs PCBs

72.3 73.6 74.4

72.3 73.3 74.9

28.9 29.7 30.2

28.0 29.0 29.7

40.0 36.4 36.5

37.2 36.4 37.7

38.3 38.1 41.5

35.6 41.8 42.8

1581 1633 1652

50 51 56

52 52 52

4 coordinators
no multitasking

5 10 20
PCBs PCBs PCBs

92.6 85.9 83.3

92.4 85.5 83.4

34.1 32.2 31.3

30.5 30.8 29.9

57.4 50.2 44.7

51.C 53.5 44.5

57.6 51.2 52.8

53.5 51.3 43.3

1419 1497 1495

64 66 57

81 71 67

4 coordinators
multitasking

5 10 20
PCBs PCBs PCBs

80.7 74.6 72.5

80.5 74.6 72.5

31.0 28.7 29.1

29.8 27.8 27.9

51.0 45.6 37.8

50.1 44.5 40.4

47.8 41.3 40.2

47.0 40.6 37.1

1515 1486 1511

73 57 54

60 56 50

requests to compete for the available PCBs. The system throughput increased

slowly with the number of PCBs. The turnaround time is improved when 10 PCBs

are used instead of 5 PCBs, but becomes worse in a system with 20 PCBs.

Therefore, this first scheduling policy might be recommended for a system used

primarily for time-sharing processing, but it is, as expected, not suitable

for the system studied in this thesis.

An aspect worth noting in a comparison between the results obtained

with the second and the third scheduling policies is the substantial impro­

vement in the turnaround time of the parallel programs when multitasking

is used. This improvement is obtained, however, at the expense of a lower

resource utilization and, thus, a lower throughput. Therefore, the second

scheduling policy is recommendable in a system with the configuration and

workload as specified here, when the throughput is the main performance ob­

jective. On the other hand, multitasking should be used if the most impor­

tant requirement is the turnaround time and some decrease in the throughput

can be accepted.

A further examination of the results obtained when multitasking is

used shows that the general system performance is reduced if the number of

PCBs increases. This can be explained by the increase of the time that a

PCB must wait in a CPU queue, when the ratio between the number of PCBs and

the number of CPUs is too high (see the histograms of the waiting time,

included in Appendix 3). The probability that tasks of the same parallel

program will be executed simultaneously in such a system is low because too

many tasks are allowed to compete for an available CPU.

In the second scheduling policy, the response time for the parallel

programs is noticeably improved when the number of PCBs increases, although

it remains worse than the response time obtained with multitasking. A possi­

ble explanation for the improvement is that the probability of a PCB being

available, when a task is ready for execution, increases with the number of

PCBs. Moreover, there are no tasks of the same parallel program to compete

with each other.The histograms of the waiting time for a CPU, included in

Appendix 3, show indeed that the average waiting time is shorter for this

scheduling policy than for multitasking.

A supplementary series of experiments was performed in order to study

the effect of additional CPUs on the results obtained with the second and

the third scheduling policies. In these experiments, the number of PCBs

1 18

Table 3. Simulation results for 10 PCBs and

variable number of CPUs.

Parameter

Average response time (sec)

Terminal requests

Simple batch jobs

Parallel programs

Average execution time (sec)

Terminal requests

Simple batch jobs

Parallel programs

Resource utilization (%)

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

Disk 0

Disk 1

LP 1

LP 2

LP 3

LP 4

Throughout in one hour

Terminal requests

Simple batch jobs

Parallel programs

4 CPUs

2nd
policy

2.37

84.6

124.0

1.18

15.8

45.7

38.8

38.5

38.9

38.9

-

-

31.3

30.7

37.0

43. 1

44.0

42.5

1692

53

57

3rd
policy

2.46

81.8

105.0

1. 18

16.6

49.5

44.2

43.6

44.3

44.0

-

-

33.9

33.3

79.4

46.3

50.6

49.3

1753

66

67

6 CPUs

2nd
policy

2.20

83.20

121.0

1.17

16.5

49.6

25.2

25.5

26.0

25.1

25.1

25.1

30.4

30.1

38.0

39.5

40.0

39.7

1694

54

53

3rd
policy

2.29

82.50

99.7

1.20

16.9

48.5

26.1

26.1

25.7

25.5

26.2

26.5

31.8

30.0

39.6

42.8

40.6

43.7

1670

59

53

119

remained constant at a value of 10. For each policy a configuration with

4 CPUs and a configuration with 6 CPUs were simulated. The other character­

istics of the system (equipment and workload) were maintained at the same

values as in the previous experiments. The results obtained are presented

in Table 3.

The most important fact indicated by these results is that, for the

considered configurations, multitasking is superior from all points of view.

However, the used workload is insufficient for a system with 6 CPUs, and

therefore, the results concerning such a system are less significant than

those for a system with 4 CPUs.

In conclusion, when the turnaround time of certain programs must be

reduced, multitasking is recommendable. For some system configura­

tion and workload parameters, multitasking can also produce an improvement

of the system throughput in comparison with other scheduling policies.

But, in general, a reduction of the turnaround time is accompanied by a

reduction of the throughput. The relation between the workload parameters,

system configuration and scheduling policy is very complex, and each case

must be, perhaps, individually studied.

References.

[1] Birtwistle, G.M., et al., SIMULA Begin, Studentlitteratur, Lund, 1973/

Petrocelli Charter, New York, 1974.

[2] Dahl, O.J., et al., SIMULA Information,Common Base Language, Norwegian

Computing Center, Oslo, 1970.

[3] Noe, J.D. and Nutt, G.J., "Macro E-nets for Representation of Parallel

Systems," IEEE Tr.on C , Vol. 22, No.8 (Aug. 1973) pp. 718-727.

[4] Sherman, S., et al., "Trace-Driven Modelling and Analysis of CPU

Scheduling in a Multiprogramming System," CACM, Vol.15,

No. 12 (Dec. 1972), pp. 1063-1069.

120

chapter 6

CONCLUDING REMARKS

After a brief review of the system proposed in the thesis, this chap­

ter contains a few comments and indicates some problems which, in the

author's opinion, deserve further investigation.

6.1. Review of the system structure.

In the previous chapters, the characteristics of the proposed computer

system have been gradually introduced, as needed for the implementation of

the design decisions stated at the beginning of Chapter 3. Here, a complete

description of the system, as it has emerged from the design, is given.

At the same time, a few more details are given about the structure of the

I/O section.

The system considered in this thesis is a multiprocessor system, consis­

ting of a number of identical CPUs connected to a common main memory by means

of an interconnection scheme whose structure has not been detailed. The

main memory is divided into separately addressable blocks (modules). Specia­

lized, programmable I/O processors, each capable of independently accessing

the main memory through the same interconnection scheme as the CPUs, control

the I/O section. Each peripheral device is permanently connected to a cer­

tain I/O processor and, therefore, can be operated upon only by that pro­

cessor. The connection between a peripheral device or a group of periphe­

ral devices of the same type is implemented as a "logical channel," i.e.,

121

\

an independent control and data path. In this way, an I/O processor can

have several simultaneously active devices, one for each logical channel,

provided that the access from the I/O processor to the main memory is fast

enough to accomodate the information implied in the transfer on all logical

channels.

The computer uses a virtual memory. For each process, the virtual me­

mory consists theoretically of the entire information known to the file

system. The virtual memory is divided into segments, each segment containing

one or more pages. It has been assumed that the page size is 128 memory

words and that a segment cannot have more than 32 pages. The page frame

(i.e., an area of the size of a page) is the unit for main memory allocation.

The pages of a certain segment may occupy non-contiguous page frames in

the main memory.

It has been assumed that the operating system should be written in

Concurrent Pascal. In this case, the operating system consists of a set of

cooperating processes which create an environment for combined batch and

time-sharing processing. A specific feature of the system is its ability to

concurrently execute tasks of the same program (multitasking). This pro­

duces a shorter turnaround time for the programs divided into tasks

(such programs are denoted as "parallel programs").

A special hardware device - Bus Master - is provided for the alloca­

tion of the CPUs to the processes ready to execute. The Bus Master is con­

nected to the CPUs and to the I/O processors through three buses: an in­

terrupt request bus, a current priority bus and a master request bus.

This device ensures that the processors are always allocated to the ready

processes having the highest priority levels. The priority of a process,

being primarily determined by the function currently performed by the process,

may vary during the process execution.

The language Concurrent Pascal requires a few primitive operations in

order to implement the monitor concept used for process coordination. These

primitive operations are provided in the system as kernel routines whose

code contains several special instructions. The basic one among these in­

structions is "Test and Set" (TST) which allows a CPU to read, examine and,

if required, modify the contents of a memory location, without interference

from other processors.

Other instructions are imposed by the presence of the Bus Master. They

allow a processor to inform the Bus Master about the modification of the

122

priority of a process, to validate and invalidate an interrupt level and

to issue an interrupt request at the appropriate priority level.

For the operating system in this design, the number of processors

(CPUs) in a certain instalation is irrelevant. The kernel ensures that the

available processors, all having the same architecture, are correctly used.

From another point of view, one can say that there is no privileged pro­

cessor, because all can execute anyone of the functions required in the

operating system. •

Another major objective in the system design has been the sharing of

information. This is implemented by using a capability based addressing

scheme and by allowing all processes that use a segment to share a single

copy of that segment in the main memory. The segment is thus the unit of

information sharing and protection. A capability is a unique identifier

of a segment: during the entire existence of the system, once a certain

capability is allocated to a segment (when the segment is created), it is

not used again to identify another segment.

The protection problem is solved by organizing the segments into pro­

gram packages and specifying the access rights to the packages and to the

individual segments almost entirely during compilation. Inside a package,

the access rights are completely established by the compiler. For outside

calls, the compiler ensures that a standard procedure is obeyed, which

allows a complete protection between the execution environments of the

calling and of the called packages. : . . .

In order to increase the instruction execution speed, each CPU is

equipped with a set of Address Translation Registers (ATRs) which keep the

information required for a direct access to the memory pages most recently

used by a process. Unlike other implementations based on capability addres­

sing, the approach taken here has been to provide for an automatic mani­

pulation of the contents of these registers. This approach is, in fact,

imposed by the use of a page as the unit of main memory allocation, but

not as a unit of information separately identifiable by the programmers.

The CPUs must have at least two special instructions related to the ATRs:

one to save the contents of the ATRs in a process stack when a processor

is de-allocated and the other to restore the ATRs when the processor resumes

a process. It is also required that two addressing modes be used: real

addresses and virtual addresses. There are some operations, like those in­

volved in processing a page fault (i.e., the need to address a page which

123

does not have a descriptor in an ATR), which can be executed only by using

real addresses.

The structure of an I/O processor has not been specified to the same

level of detail as the structure of a CPU. An I/O processor can execute

channel programs which always use real memory addresses. A component of

the operating system, the core monitor, ensures that the memory pages in­

volved in an I/O transfer are not reallocated before the transfer is

completed.

A channel program must be prepared by a CPU,which is also responsible

for the start of the I/O operation when the logical channel to the reques­

ted device becomes available. An I/O processor must be able to report, by

means of an interrupt signal, the completion of an I/O transfer. After­

wards, the Bus Master takes care that the appropriate I/O process is acti­

vated in order to analyze the effect of the transfer completion.

The I/O processor is also able to examine a set of fixed location in

the main memory, one location for each logical channel, from which it ob­

tains the starting address of a new channel program.

6.2. Conclusions. • " •

The work reported in this thesis indicates a possible way of specifying

and designing a multiprocessor system. Its main purpose has been to identify

the specific problems which appear in the multiprocessor systems, to ana­

lyze these problems and to suggest possible solutions and useful tools for

the implementation of these solutions.

A hypothetical system has been used to illustrate the discussed pro­

blems and to introduce, when required, some details. However, the thesis

does not contain the complete specifications of the system, nor a detailed

design of all the specified parts.

A simulation model has been developed in order to study the useful­

ness of a particular system feature, namely, multitasking. The model re­

presents the main features of the system described so far, but contains a

number of simplifications for practical reasons. The model has indicated a

substantial improvement in the turnaround time of the programs using multi­

tasking at the exoense of a reduction of the system throughput, at least

in some system configurations.

124

6. 3. Directions for further work.

Some of the general problems concerning the multiprocessor systems

which have been identified during the work for this thesis are listed below.

(Part of these problems have been treated in various levels of detail in

the thesis).

The most important hardware problems can be stated as follows:

- To provide a suitable processor-memory interconnection.

- To provide suitable machine instructions for implementating process

coordination.

- To find ways in which functions, normally performed by the operating

system, can be advantageously implemented in hardware, in order to in­

crease the computer performance.

The basic software problems are now formulated:

- To design an efficient higher level programming language for the implemen­

tation of operating systems (Such a language must contain powerful

means of expressing the process coordination and must enable the designer

to produce operating systems with a high degree of reliability).

- To provide the methods and the service routines for system recovery and

reconfiguration in case of failure.

- To ensure a flexible service for the user jobs.

- To provide flexible methods for information sharing between the users

and between the processors.

From the beginning, in fact, the system design process should not

be separated into hardware design and software design. Only after analyzing

the global system requirements, can the division of the system functions

between hardware and software be decided. In this first stage of the design,

a system model is a valuable tool. The model should be hierarchically built,

in order to allow a study of the system at each required level of detail.

A multiprocessor system with processors having an identical archi­

tecture, as considered in this thesis,has the advantage of an improved

reliability and allows a graceful degradation. This is obtained because

each processor is able to execute any of the functions required by the

system.

125

It has also been assumed in the thesis that the process-memory inter­

connection scheme gives no preference to a certain processor for a certain

memory module. Separate address mapping devices are provided in each com­

putational processor.

In some recent studies [5] of multiprocessor systems based on LSI

microprocessors, each processor has fast access to a local memory. When a

processor needs information from another processor's local memory, this is

obtained with some delay through a mapping scheme used in common by all

processors.

Multiple copies of a piece of information (e.g., a memory page) may

exist in such a system. When one of the copies is modified by a processor,

all other copies should be accessed and updated accordingly. This creates

supplementary problems.

It would be of interest to study different implementations for the

processor-memory interconnection scheme and for the mapping scheme used

with microprocessors and to compare the performances that can be obtained

with the two approaches. This is considered as one of the areas deserving

further study. It is certain that the second approach introduces some new

requirements for the system software. It is preferable that the information

currently addressed by a processor should be placed in the processor's

local memory in order to reduce the mapping delays.

Capability addressing is preferable to other addressing methods when

a flexible information sharing and protection is an important system re­

quirement. Therefore, it seems to be the most suitable addressing method

for multiprocessor systems. The capability implementation proposed in this

thesis is only one of many possibilities. Several other implementations

are described in the literature. For this reason, a second direction in

which further work can be done is the study of alternative capability im­

plementations, perhaps with more precise protection specifications. A chal­

lenging problem [4] is to design a system which will allow a segment to

contain both data and capabilities.

The concepts of process, monitor and class, introduced in the pro­

gramming language Concurrent Pascal, are very useful tools for a systematic

specification of the structure of an operating system. The implementation

of these concepts is facilitated by using capability addressing.

126

Concurrent Pascal introduces, however, a few limitations, for example,

the strict type definitions and a fixed system configuration (invariable

number of processes). This programming language is, in fact, still in deve­

lopment and, to this author's knowledge, there is only one complete imple­

mentation of a system written in Concurrent Pascal. The available litera­

ture about this system [l] , [2] , [3] shows that the designer has extended,

during the work, the previously known definitions of some of the concepts.

No proposals for other extensions can be made here. Some experimental

designs of simple operating systems using Concurrent Pascal as the imple­

mentation language are one way of acquiring the necessary practical know­

ledge about the language limitations and desirable extensions.

Finally, a few words will be said about the system modelling and si­

mulation. Writing the simulation program and the operating system in the

same programming language, or in related languages, has certainly a metho­

dical advantage: changes in the operating system can be easily translated

into chages in the simulation program and vice versa. This seems to be the

case with an operating system written in Concurrent Pascal and a simulation

program written in SIMULA.

The simulation model developed in Chapter 5 must only be considered

as a first attempt and does not provide enough information to derive de­

finite conclusions about the usefulness of multitasking and, particularly,

about the relation between the turnaround time and the system throughput.

A new version of the model, which takes into account the system overhead

and the memory limitations should be developed as the first step in exten­

ding the scope of the work reported in this thesis.

References

Brinch Hansen, P., "The Solo Operating System: A Concurrent Pascal

Program," Software-Practice and Experience, Vol. 6,

(April-June 1976,) pp. 141-149

Brinch Hansen, P., "The Solo Operating System: Processes, Monitors

and Classes," Software-Practice and Experience, Vol. 6

(April-June 1976,) pp. 165-200.

Brinch Hansen P., "The Solo Operating System: Job Interface,"

Software-Practice and Experience, Vol.6, (April-June 1976,)

pp. 151-164

127

4 . C o s s e r a t , D . C . , "A Data Model Based on t h e C a p a b i l i t y P r o t e c t i o n

Mechanism," R . A . I . R . 0 , . V o l . 9 (S e p t . 1 9 7 5) , B -3 , pp . 6 3 - 6 8 .

5 . Swan, R . J . , e t a l . , "The A r c h i t e c t u r e of Cm*: a M o d u l a r , M u l t i -

M i c r o p r o c e s s o r , " Carnegie Mel lon U n i v e r s i t y , Aug. 1976

128

Appendix 1

INTRODUCTION TO CONCURRENT PASCAL

The programming language Concurrent Pascal has been proposed by

P. Brinch Hansen as a language for operating system implementation [I] .

It extends the sequential programming language Pascal and also uses some

concepts of SIMULA.

An essential feature preserved from Pascal is the statement which

allows a programmer to define explicitly data types. The information in

the type definitions is used by a compiler to check for the consistency of

a program. In this way, a more extensive verification of program correct­

ness can be performed during compilation, which improves the "reliability"

of a large program.

The global data structure of an operating system can be divided into

units of closely related data. A set of operations (procedures) is then

associated whith each such unit. The combination of one of these data units

with its associated operations is denoted an abstract data type. An opera­

ting system can be designed in such a way that a certain data structure is

always accessed by calling one of its associated procedures. This rule can

be, in principle, enforced by a compiler. The procedures associated with a

data structure are then the only means of accessing that data structure.

Other components of the operating system need only know what operations

may be performed on the data structure, but can ignore the details of car­

rying out these operations.

To make such a system organization possible. Concurrent Pascal intro­

duces three generic abstract data types: processes, monitors and classes.

Program variables declared to belong to one of these generic types are cal­

led system components. An entire system will appear as a Concurrent Pascal

program.

129

A process consists of a set of private data, a (set of) sequential pro-

gram(s) and a set of access rights to other system components (Fig. Al.l.a).

One process cannot operate on the private data of another process, but con­

current processes can share certain data structures by means of monitors.

A system component of the type "process" is an active component; i.e., it

is responsible for starting and conducting activities required in the ope­

ration of the system. A system can be, therefore, imagined as a collection

of processes operating simultaneously (concurrently).

Access rights

Private data

Sequential
program(s)

a) Process

Access rights

Shared data

Synchronizing
operations

Initial
operation

b) Monitor

Access rights

Private data

Access
operations

Initial
operation

c) Class

Fig. Al.1. Abstract data types defined in Concurrent Pascal.

A monitor (Fig. Al.l.b) defines a shared data structure and all the

operations that individual processes may perform on it. These operations

are called monitor procedures. A monitor also defines an initial operation

executed only once, when the monitor data structure is created. A monitor

can have access to other system components of the type "monitor" or "class".

If several concurrent processes simultaneously call procedures of the

same monitor, these procedures must be executed strictly one at a time.

While operating, a monitor procedure has, thus, exclusive access to the

monitor data. The machine that runs an operating system written in Concur­

rent Pascal must be able to delay processes for short periods of time,

until they can enter a monitor.

A process may find, while executing a monitor procedure, that an expec­

ted condition is not satisfied. In such a case, the process must be delayed

in an internal monitor queue and the monitor can be entered by other processes.

130

A primitive operation, "delay," is defined for this purpose. Another process

will, eventually, fulfill the condition expected by the previously delayed

process. The delayed process is then resumed with the aid of another primi­

tive operation, "continue."

A class (Fig. Al.l.c) defines a set of private data and operations al­

lowed on these data. It has a structure similar to that of a monitor, but

the class procedures are not implemented to have exclusive access to the

data. This is not necessary because the design of a system must ensure that

simultaneous calls to the procedures of the same class cannot occur. No

provisions for delaying a process inside a class are required.

The design of a simplified spooling system is outlined below. This

will serve to illustrate the use and the notations of Concurrent Pascal.

The spooling system considered here accepts input from a card reader

and transmits the card images to a disk unit. From the disk unit, the infor­

mation is accessed and updated, and then the results are transmitted from

the disk to a line printer which constitutes the output device of the spooling

system.

Three activities which may proceed concurrently can be identified in

this system:

reading cards and creating an "input queue";

updating the data of the input queue and creating with the

results an "output queue"; . .

printing the contents of the output queue.

Each of these activities will be defined as a separate process type.

The system will need one component of each type. Henceforth, the three pro­

cess types will be referred to as "input process," "job process" and "output

process," respectively.

The input process must have access to the card reader and to the input

queue on the disk unit. It shares the information in the input queue with

a job process. Therefore, the access to the input queue must be controlled

by a monitor of the type "disk buffer."

The job process must be able to access both the input queue and the

output queue on the disk unit. The need of a monitor for the input queue

has already been discussed. The output queue is shared between the job

process and the output process and for this reason a monitor is also re­

quired to control the access to the output queue.

131

Disk

private disk 1 private disk 2

CR buffer 1 v"
Reader

Ml

Sr̂
Master

M2 buffer 2

>ƒ
Water

LP

Fig. Al.2. A single spooling system.

Finally, the output process must have access to the output queue and

to the line printer.

The monitors for controlling the access to the two disk queues perform

identical functions. With the assumption that in both cases the quantity

of information implied in a single disk transfer is the same, one type of

monitor will be sufficient. This type is denoted as "disk buffer" and the

system must declare two components of the type "disk buffer."

Each disk buffer can be written as if it had its private disk unit.

Therefore, a class, "virtual disk," is introduced to describe the data or­

ganization on the disk and the disk read and disk write operations. Again,

there may be an unique type definition, but the system will declare two

components of this type, one in each disk buffer.

The fact that the system has only one disk unit must be made apparent

in the definition of the virtual disk class. This class is given access

to a monitor, "resource," which takes care that only one class at a time

is allowed to perform an operation on the existing disk unit. The system

will declare one component of the type "resource."

The relationship between the components of the system whose functional

design was given above can be represented graphically as shown in Fig. Al.2

In this figure, process components are depicted as circles, monitors as

132

rectangles and classes as ovoids. The card reader, the disk and the line

printer are represented by the usual symbols. Arrows are used to indicate

the access rights of each component. Note the differences between the names

of the components represented in Fig. Al.2. and the names of the types to

which these components belong. A component is a variable of a certain type.

The different names have been selected with the purpose of emphasizing

this distinction. The private disk components are shown to have direct

access to the real disk unit. In the code of the virtual disk class, how­

ever, such an access is always preceded by a call to the resource monitor.

Therefore, when the actual access of performed, the disk is certainly al­

located to that class. At the completion of a transfer, the resource monitor

is called again, to release the disk and, possibly, to allocate it to a

waiting process.

At this point, the functional design of the spooling system is comple­

ted. The coding of the different system types can now start.

Two approaches may be used in writing the code: to follow the same

order used in the functional design (processes-disk buffers-virtual disk-

resource) or to follow the reverse order. The reverse order might have the

advantage that it does not use any types that are not yet defined. For this

reason, the second approach is selected and the coding of the resource moni­

tor is the first to be discussed.

The resource monitor has two procedures: "Request" and "release." The

procedure "request" allocates the disk in FIFO order to the incoming requests.

When a request cannot be satisfied, the process that has issued the request

is delayed in an internal monitor queue, "q." The procedure "release" de­

allocates the disk from the process that has used it and continues the first

process waiting in the monitor queue. If the monitor queue is empty, the

disk becomes free.

The code of the "resource" monitor follows.

type resource = monitor;

var free: boolean ; head, tail, length: integer;

q: array [.0..2.] of queue;

procedure entry request;

var arrival: integer;

begin if free then free: - false else

begin arrival: - tail;

133

tail:= (tail+1) mod 3;

length: = length+1;

delay (q(. arrival.));

end;

end;

.procedure entry release;

var departure: integer;

begin if length=0 then free: = true else

begin departure: = head

head: = (head+1) mod 3;

length: = length-1;

continue (q(.departure));

end;

end;

"initial statement"

begin free: = true; length:=0; head:-0; tail:=0; end;

There are three internal queues in this monitor. It may indeed happen

that all three processes of the system must wait in the "resource" monitor

until a previous disk operation is completed.

Notice that the primitive operations "delay" and "continue" should

only specify the queue element implied in the operation. It is the respon­

sibility of the virtual machine that implements Concurrent Pascal to know

the identity of the affected process and to save (or restore) the neces­

sary information about the process status.

The input/output (I/O) operations are performed in Concurrent Pascal

under the control of a standard procedure, "io":

io (block, param, device)

where

"block" is a main memory buffer which contains or receives the trans­

ferred data;

"param" is a variable of type record;

The record "param" has the structure indicated below.

var param: record

operation : iooperation;

result : ioresult;

pageno : integer;

134 end;

"device" is an identifier of the requested peripheral unit. The type

"iooperation" specifies the possible kinds of I/O operations: read, write,

rewind, seek, etc. The type "ioresult" specifies the manner in which an

I/O operation is completed: normal, transmission error, device error, etc.

The component "pageno" in the variable "param" indicates, for a disk, the

address of the disk page referenced in the transfer.

With these details about the I/O operations, it is possible to write

the code for the "virtual disk" class. This class must have access to a

monitor of type "resource" and provides two procedure entries: "read"

and "write," It can be coded as follows.

type virtualdisk = class (diskaccess: resource);

const disk =7; "the physical address of the real disk"

var param - record

operation : iooperation

result : ioresult

pageno : integer; end;

procedure entry read (pageint : integer; var blook:page);

begin with param do

begin operation:= read;

pageno: = pageint;

end;

diskaccess.request;

io (block, param,disk);

diskaccess.release;

end;

procedure entry write (pageint:integer; block:page);

begin with param do

begin operation: = write;

pageno : = pageint;

end;

diskaccess.request;

io (bloak,param,disk);

diskaccess.release;

end;

begin end;

135

Both procedures require two parameters: "pageint," the address of a

disk page and "block," a page of the main memory. The qualifier var for the

parameter "block" in the "read" procedure indicates that the contents of

this page will be changed. No initial operation is indicated in this class

because it does not have any permanent variables (i.e., variables declared

before the procedure definitions).

A "disk buffer" monitor must have access to a "resource" monitor, in

order to transmit this access to the "virtual disk" class declared in the

disk buffer. Two other parameters, "base" and "limit" are used to establish

the buffer zone on the real disk. The disk buffer provides two procedure

entries:

- "send," used in writing a page to the disk,

- "receive," used in reading a page from the disk.

The code of the disk buffer monitor is given below.

type diskbuffer = monitor (diskaccess:resource;base,limit:integer);

var disk: virtualdisk; sender, receiver:queue;

head, tail, length: integer;

procedure entry send (block:page);

begin if length = limit then delay (sender);

disk.write (base+tail, block);

tail:=(tail+1) mod limit-

length:= length+1;

continue (receiver);

end;

procedure entry receive (var block: page);

begin if length = 0 then delay (receiver);

disk.read (base+head, block);

head:- (head+1) mod limit;

length:^ length+1 *

continue (sender);

end;

begin init disk (diskaccess);

head:=0; tail:-0; length:=0 ',

end;

136

A disk buffer monitor has the following permanent variables:

- "disk," a class of the type "virtualdisk."

- "sender" and "receiver," two internal queues.

- "head," "tail" and "length," used to indicate the status of

the buffer space.

A process which requests a write operation to the disk (procedure "send")

is delayed in the queue "sender" if the buffer space on the disk is full. A

process is delayed in the queue "receiver" during an attempt to read while

the buffer is empty.

The disk buffsr monitor must initialize, during its initial operation,

the class variable "disk." A standard procedure, "init," is used for this

purpose. The "init" procedure is part of the execution environment of Concur­

rent Pascal, but it should not be incorporated in the kernel of the operating

system. The "init" procedure may use, however, functions provided in the ker­

nel .

A simplified coding of the three types of processes is now presented.

For the input process, the code shown below can be used.

type inputprocess = process (buffer:diskbuffer);

var block: page'

cycle

readcards (block);

buffer.send (block);

end;

The statement "readcards (block)" should be interpreted as a call to

a program (not shown here) which takes care of the details of reading cards

and transmitting the card images to the memory page called "block" until

this page is full. The structure cycle . . . end indicates an infinite re­

petition of the statements contained in its body.

The code of a job process can be written as follows.

type jobprocess = process (input, output:diskbuffer);

var block: page •

cycle

input.receive (block);

update (block);

output.send (block);

end;

137

Again, "update (block)" is a call to a program whose details are not

given,

The output process is now defined.

type outputprooess = process (buffer:diskbuffer);

var block: page;

oyole

buffer.receive (block);

print (block) ;

end;

The program "print" contains the details of transmitting successive

lines of text to the line printer.

The spooling system, like any other system written in Concurrent Pascal,

is generated and initialized (started) in a so-called "initial process."

This special process consists of three sections:

- the definitions of all system types;

- the declaration of the system components;

- the initialization of the system components.

The initial process must be executed with the aid of a human operator

who provides some of the data required during the initialization of the

system components.

For this simple spooling system, the initial process is coded as shown

below.

type resource

virtualdisk

diskbuffer

inputprocess

jobprocess

- monitor .

- class

= monitor .

= process .

= process

= process

.. end;

.. end;

.. end;

.. end;

.. end;

.. end;

var diskaccess : resource;

buffer 1, buffer 2', diskbuffer;

reader: inputprocess;

master: jobprocess;

writer: outputprooess;

138

begin init diskaccess;

buffer 1 (diskaccess, base 1, limit 1);

buffer 2 (diskaccess, base 2, limit 2);

reader (buffer 1); writer (buffer 2);

master (buffer 1, buffer 2);

Reference

[1] Brinch Hansen, P., "The Programming Language Concurrent Pascal,"

IEEE Tr. on S. E., Vol.1, No. 2 (July 1975), pp. 199-207.

139

Appendix 2

FUNDAMENTALS OF THE EVALUATION NETS

The evaluation nets (E-nets) have been proposed and developed [ijby

G.J. Nutt and J.D. Noe, as a technique for graphical and formal represen­

tation of the structure and behavior of a computer system. Therefore, the

E-nets have functions which are similar to those of block diagrams and

flowcharts. They are superior, however, in the possibilities offered for

the representation of concurrent activities and of the system resources.

The E-nets have evolved from the Petri nets and partially maintain

the symbols and the concepts used in the theory of Petri nets.

An E-net contains a set of locations connected over a set of allowable

transitions.

Locations represent conditions that can exist in a system for a period

of time; they are depicted as circles. Locations represent, thus, the system

status.

Transitions represent the activities that take place in the system when

certain conditions are satisfied. A transition is graphically represented

by a vertical line. Associated with each transition are:

1) a transition schema, denoting the locations related to the transi­

tion and their type of connection;

2) a transition time, i.e., the duration of the activity represented

by the transition;

3) a transition procedure, describing the effect of the transition

on the system status.

140

Another basic concept is the token, graphically represented as a

dot inside a location. The presence of a token in a certain location

signifies that the condition represented by that location is satisfied;

whereas an empty location means "condition not satisfied." A token may

carry attributes (e.g., a token representing a job can specify the job

name, memory requirements, CPU time, etc.).

A transition has a set of input locations and a set of output locations.

Graphically, the input and the output locations are connected to the transi­

tion by arrows. Let us consider a simple transition with one input and

output location, \n\en the input location is occupied by a token and the

output location is empty, the transition "fires" and after some time the

input location becomes empty and the output location, occupied.

If the output location is not empty, the transition cannot fire, not­

withstanding the status of the input location. A location cannot hold,

thus, more than one token at a time. The transition procedure must specify,

for each output location that receives a token, the attributes of that

token.

Five primitive transitions have been defined which are represented

in Fig. A2. 1.

In a T-transition, when a token resides in the input location î and

the output location ô is empty, the transition fires. After some delay

(the transition time), the token is removed from i and appears in o_.

The transition schema is T(i,o).

The F transition ("fork transition") fires when a token is present in

î and ô. and o„ are both empty. After firing, the token from i disappears

and both Oj and o receive tokens. The token attribute may be altered by

the transition procedure. Moreover, the resulting tokens need not be iden­

tical. The transition schema is F (i,o ,o^).

The J transition ("join transition") fires when token exists in both

i and i , but not in £. The tokens are removed from i. and i_, and a token

appears in ô. The transition procedure specifies the attributes (if any)

of the resulting token. The transition schema is J(i ,i ,o).

The X transition uses a resolution procedure (incorporated in the

transition procedure) to decide whether the token from i should go to o or

to o„. VJhen a token arrives in i, the resolution procedure is activated.

If the resolution procedure indicates zero, this means that the path to o

should be followed; whereas if it indicates 1, the path to o.̂ is selected.

141

file:///n/en

T transition

o. o-o.
J transition F transition

^o -o»
X transition Y transition

Fig. A2.1. Primitive transitions.

The transition can fire if the selected output location is empty. In the

graphical representation of the transition schema, the arrow to the output

locations are marked by short vertical bars to suggest that the arrows

represent conditional connections. The transition schema is X(i,o ,o).

The Y transition fires when a token appears in one of the input loca­

tions, provided the output location is empty. When tokens are simultaneously

present in i and i„, a resolution procedure must be activated to decide

which one of the tokens is allowed to pass to the output location.

Bars on the arrows from the input locations to the transition indicate

conditional paths. The transition schema is Y(i ,i„,o).

A resolution procedure has the ability to examine the status of cer­

tain locations of the net at the moment of the procedure activation, in

order to make a decision about the route of the tokens.

The set of logical relations between the input and output locations

contained in the five primitive transitions is sufficient to express most

of the inter-component relations encoutered in a computer system.

From the moment that a transition fires until the activity of the

transition procedure is completed (thus after a delay specified by the

transition time), the status of its input and output locations must be

considered as undefined. This is particularly important in the writing

142

of a simulation program which reproduces the behavior of an E-net.

It often happens in the construction of an E-net model of a computer

system that some functions appear in different parts of the model. The model

gains in convenience and clarity if the partial E-nets representing these

functions are separately defined in terms of the five primitive transitions

and then introduced in the general model as macro E-nets. The resulting

general model is then a macro E-net model.

A macro E-net used as a transition is called a macro-transition, and

one used as a location is called a macro-location. Figure A2.2 shows some

of the most useful macro E-nets.

In the X macro-transition, a resolution procedure is activated when-
n

ever a token arrives in the input location _i. This procedure will select

one of the n input locations, to which the token should pass. When that

location is free, the transition will fire. An X macro-transition has,
n

therefore, the function of a multiplexer.
The Y macro-transition fires when a token appears in one of the

n

n input locations and the output location is empty. If tokens exist

simultaneously in several input locations, a resolution procedure should

be activated to decide which of the tokens is allowed to pass.

X Y

i . . o i o

:ion Y macro-tr
n

OQ*0*
X macro-transition Y macro-transition Queue macro-location
n n

ba

b̂

Token generator Token absorber
macro-location macro-location

Resource handler macro-location

Fig. A2. 2. Examples of macro E-nets.

143

A Y macro-transition has the function of a selector.
n

The usefulness of the X and Y macro-transitions is especially appa­

rent in representing a set (more than two) of concurrent processes operating

in a critical region. The general case is exemplified in Fig. A2.3. At the

input of the model, the priority between the simultaneous requests to enter

the critical region is decided by a Y macro-transition.
n

Process 1 _./ \J_«.

i'rocess 2 /" \ .

^rocess n ^f ^ i

Semaphore free

check
sema-

\ y ' phore

"3lJ

critical critical
region region

completed

Process 1

I /" 'M'rocess 2

>Q"--
Fig. A2.3. Concurrent process in a critical region.

An X macro-transition at the output of the model routes a token denoting

the completion of the critical region to the corresponding process, indi­

cated by an attribute of the token.

A queue macro-location appears very often in E-net models of computer

systems. The inner logic of the queue may vary from one case to another and

must be specified in the separate E-net describing the queue in terms of

primitive E-nets. The general model of a queue is always denoted by Q [m] ,

where n is the number of locations provided in the queue and m is the number

of token attributes. A queue may contain, thus, up to n tokens, each with

m attributes.

Because most of the E-net models will be developed as a basis for

simulation studies, it is necessary to introduce macro-locations which

can generate tokens (denoted by G in Fig. A2.2) or absorb tokens (denoted

by A in Fig. A2.2).

The resource handler (RH macro-location) controls a resource which

can be allocated in portions. An example of such a resource is the main

memory. A request for such a resource is introduced in the location b ,

where the token must have an attribute specifying the size of the request.

The location labeled b , (assign), receives a token from RH when the request
a

can be satisfied. When quantities of the resource are released, they are

144

returned to the resource handler through the location b (return).

The macro E-nets are suitable for constructing models of computer systems

in a hierarchical manner. At each level of the hierarchy, only the details

considered as essential for that level are introduced, the other components

of the system being replaced by macro E-nets. These macro E-nets can be

further detailed in the lower levels of the hierarchy.

Reference

[1] Noe, J.D., Nutt, G.J., "Macro E-nets for Representation of Parallel

Systems," IEEE Tr. on C., Vol.22, No. 8 (Aug. 1973), pp.718-727

145

Appendix 3

HISTOGRAMS OBTAINED FROM SIMULATION

The first nine histograms reproduced in the following pages refer to

the response (turnaround) time obtained in a system with 2 CPUs and 10 PCBs,

for the terminal requests, single batch jobs and parallel programs,respec­

tively. For each of these categories of jobs, three histograms are presented,

corresponding to the three scheduling policies used in simulation.

The last four histograms show the time that parallel programs must

wait in a CPU queue in a system with 2 CPUs, when the second and the third

scheduling policies are used. The first of these histograms were obtained

when 5 PCBs were used and the other two histograms when 10 PCBs were used.

All time values printed in the histograms are expressed in millisec­

onds. An exponential notation is used. Thus, 3.22" +004 represents 3.22 x
4

10 milliseconds, or 32.2 seconds. Each histogram is headed by the mean

value, standard deviation, minimum value and maximum value of the variable

represented in the histogram. The total number of entries is also indicated.

The values printed in the column at the left of the histograms are the

interval limits. The column at the right of the histograms indicates the

number of entries in each interval and, between brackets, their percentage

from the total number of entries. The histograms were automatically scaled

in relation to the interval containing the maximum number of entries.

146

HI5''or,7A'< TFPKINSL lESPOHSE ''IME

STn.n':vr»''nn= g.7f*o(u.
NIN.VOL'IE- 6 . 1 1 " t l i a i
•(AX,\/«LIIF= LT i ' - tOO"!
Ko. iF EMT'',i,':";=i<;n5

r;,'.-,'l Ẑ-

<2.00"or?
J.i)i- ."tOO'?-<t.5T'»nr3

(..if'-'^crj-e.!" v»(in3

6. ir."«-of 3-e.c)"»oo.i

8 . i i " » n p . i - i . r V f O i x .

l . l P " » i] C (. - 1 . 2 T ' t O n i i

l , i , r . " (. i n i , - i . f , ? " n j n i .

l .% i i " *0 ') i t - l .n T'^oni.

1 . 1i '"».T'"»-2.' ' l">3nii

2. 1 [" *3 r i , - 2 .2 .) " * (l ' " i "

j . (i i v t ' i r i , - 2 . e , T ' (. n o i .

^.6i•.••^:l•'l•-^.8V•*D'!<4

j . i r i " + i i a i . - ' . r ' i " * ' i r i .

3 . ')1"»3?'»- ' ' .21"»0f l4

3 .2S"»' ! r i . -3 . ' .0"»0(>i .

3.'t i " * 3 d t - 3 . f v m n i i

3. i f t ^ r ! , - (, . ' • • v ' t n n i .

>i , ,nj"»TP't

««4>«««*1»««»M« « « « » « « « « * * V « « « « * « « « « « « « V « < ^ « « « * « « « » « « « * « « « »««*««««««*«*«
> « « , « « « * « « « «) « « « * » ¥ * « « « * « » « « « « « * « « * « • « « « « « * « * • « « • « « « « * « « « « « « * « « « « « 4 I » « « * « « « « * «

« » « « « « « « « « « » « # « « * * « « ¥ « « * * « « « « * « » « « « * « « * « » * • « « «

l « * « « « * W * « *

5 6 3 1 2 9 . 5 5)

3 6 7 (1 9 . 2 7)

10Z(5 . 3 5)

<tO(2 .10)

1 9 (1 . 0 0 I

9(.<t7)

51 . 2 6)

2 (. l U)

I I . 0 5)

0 (0 . 0 0)

0 (0 . 0 0)

0 (0 . 0 0)

0 (0 . 0 0)

0 (0 . 0 0)

0 (0 . 0 0 I

01 0 . 0 0)

o(0 .00)

o(0 .00 I

o(0 .00)

01 0 . 0 0)

Hg. At.i, Rttponat timt ftminal rtqmêt,
first sehtduling ptliay

HT'iTfir,"»). TfpMTi»L RESPONSS f1<K VeJi/Sil.-Ui

IFAN i;«LijE= ft.s-j-fOr»

ttl«i.v»LiK= .'». fin"»noi - -.- - -

MO.OF KN"'CIf^=l?l'<» _
<?.00-*0I)1 I . . , , . . . , . , . ^ „ » „ . , . . , . „ , . . , „ , „ „ . , , 2»W1>,*7-»

2.10"»in-I..OO"K)!)3 . » . . » . . . - » • * » •» . . . » . . » . . . » . . . „ . . » . , . » .«» , . . . » ,»„» . • , »» , . . . » ._ . — Ï»9«8J.97 »

k.lO'tlO^-ft.O 0"*0l)3 •*••••«»•••»••••••••••••••••»••••»•••»••••••••••••••••»• a8<17.07 > -

5.00"»in-«.(lS"»0in • • • • • •» • • • • • • • " • • • •«" • • • • • " • • • • • • • • • • • . . lV9llt.56)

8.10"»ll(!T-l.lHl">0n"> • • • • • < • « • • • • » • • • • • • • • • » • • • • • • » • - i e n - 4 . * 9 >

LIB-f-OOU-LZfl-tOO". • • • • • • • « • • • • • > • • • • • » » • • • • • » • _ - _ - «l«-«-».J*—I

l.20"*1ll<»-l.'4(l"H)l!l. " • • • • • • • • • - • • • • • _ tat ».»9 >

t.l.fl"»1101>-1.6ll"»00i. • • • « • • • » • • • » . . _ _ « 4 S.h'i t

l .f .n"*flCI.-1.8l)".00l. • • • • • » < » . .gg^ 2riT^-»

l .«0"»ni lk -? .00"*00i . • • • • • • • Zl< 4 . 6 3 I

a.n(i"»n!«.-?.20"»00i. • • • • . M l ,7a I -

».711"m Cl-?.'t')"»00'> •»• - _ - * | .J,7)

i».i,«"*no4-?,f>i)"»ao<. "• . • — . - 44 . 3 1)

?.f.n"HCU-2.80"»00li ' " . . ._ 2^- . I f r »

2.8n"H)(?lw-3.0 T't-OOl. • . -_ e< ».40 >

.i.nn"»ii)<»-3.?0"*oi)i> • . . _ a+^.^aft->

T.J')"»')Oit-3.'ill"»(J0'. • 1. _ . H •*»-»

3.l»0"»11)k-1.60"»0ll<. • -M 0.^9-)

:i.f>o"*(tiHi-3.«o"»i)0'» • . _ . e< 0.46) -

T.80"»noi»-it.oo"»ooi» • - - . «(ft.oe^ I —

>i..<in-»coi. • 44 9.9i } —

Pig, AS.Z. Reaponee time terminal request,

second scheduling policy.

HTSTXf.Ail TERHINat «E^OOMSE TIME ^iJi^=ÜIPSJi/"
MEA'i vaLu-= f . tq ' - tOOJ
STD.D'^UiaTi I N - 2 . J t) . ' K | ; ;
HI'i.V»LUE= b.ZVUHi
NAX•V^LII!:= 3."»l"*f!0l .
SO. IF £ r i T D i : r = i 6 5 i '

l « « . « V 4 » W * « i t « « « * « « * « « W « 4 1 « V « « ¥ « « . * * « J . * » V « 4 1 « « 4 » V « « 4 t # « « » « « V « * * * « W V * « « « « « * « * «

2. 00"*C23-^.03"*Ofl3 «.••<»»«4»*»»'»» •••»•»!•*•••*••».•»•* ««««««««*«»«4i«j,«4,»««««»v«« ««««««««««««««««•»«««««««««««« v«9« _ ^ 6 7 < g 6 . 2 9)

' t . 33 " • 30 3-6 • o j " * n G3 I » « • * * * • • » » • • • « • # » * » • • » ¥ » * • • • • • • • » • » • • • * • • * 2 1 8 (1 2 . 7 2 1

6.00"*3P3-f.C T'*053 •»»•»«»«»•.»»»»»»»•»»•»»••»••••» 155(9,39)
t « « « . * l , W ^ » « ¥ « * « « « » « * ¥ « ¥ ¥ 4 » « 4 r « « » «

8 . 1 T ' » 0 C 3 - l , r r ' t O n t !»»»»4i»«»»»»o»».»»»»»»»»4(_ j , 2 j (7.33. .»—
t J f « « . » « « « « « 4 » » « « » « » « « *4»4P4,4»

1.50"*0.'"»-1.20"»a(Hi ! • •»»•• • •»•»•• • • • •»• . . - 9't̂ (- 5.69)

l ,23"«-JC<t- l . ' . :"K101i M * » » » » " » » » * " » » » » - »7(5 .27) _

1.<).)"»')01.-1.60".OI14. ! » » • • . • • - • . » . • . . 6 9 4 l l » l « i

1.5fi"»3.'!'»-i.e:"miiii <•••»••« . _ _ 374—2.2* »—

1.8.'i"<-jri'.-2.c:"4-(ii<'. • • • * • . . . 19 (. 1 . 1 S . * .-

2. 0*"* . ')01t -2 .?r ' tn f i l . • • • • 1 6 4 - - , 9 7 >.-.

2.^.{'"*il'it-?..'.ri"taou ! • • - » • — » i f « J —
I • •

2.1 l ,1"*Ji) ' . -2 .6Vtni ' l4 • • . . . -At-- . ,36 > _
2.60"»5(U>-2.eO"HI(li. • . . • • . . _ _ - 24- ,-12. »-

I

2. iii-nrfc-^.r :"»3oi. • IM e.oo)—
t •

3. iB"*ocfc- - ï .? ')"»3 ' ' i . • . - fl(a . o a j _
f

3.».1"»]0fc-3. ' . l"»<ICi. ! . JI.C .a,4M)~ 1 —
t

3.'tr i"*lC<t-^.e.r '»i)P<. ! - •• I I - , 0 6)

!
3.6C"*]OI.-?:.8r'*OPii • . - . . B(0,00)

t

3.1 f . *>1Dl . - l , . f V t O P I . • 0 1 « . 0 0 >

>l i .DJ"tnpi . • o (- « , - 0 6 >

fig. A3.i. BcaponM tlm fmlttat rtquut,

third tahtduUiig potieg.

o

mT,T'ir.r:fi SI»"=LE " (TCH jm-, IE^PONSE T I I E VEi):,Hii^'T!..
HEAM UAtUT= ? . ^ l " f 0 1 5_ ... _,
S n . T ^ V I A ' ^ I)H= 1 .5n ' '» .1 i l6
MIN.VALUE- ó . ^ » " H) n i , . . _ _ . .
HAX.UM.lPF- 7 . H " * » Ü E
NO.OF F ' i T ? i c r = >>n . - -

<2.0n"tpi'i, • «4 «.«o t -

z,nn"ninit-i,,t)"*r\oi, : • . , . . . _ - , , . — » < o.oo » -

<i.'i.'!"»o^'.-5.c..i"taoit '. «(. o.00 >

8, o.'*... ^ f i , - ! , f V'+'T 115 • * • • » • • • » • * ¥ » * • » # • » • • » , * » • • • • • * _. g(0.33 I

1. T l " * 3 r 5 - l . r V + n i s » . * • . • * » ¥ • * ¥ » » • • • » • « • , » » , • • * * • • • » » # • • » • * » • » _ 7<H,67—^

1.2C"*:05-1. ' . J"t-"55 • • • » » • • • » » » » » • • » • • • « • • • . » —it4-6,67 I

i.'.>"*ao5-i.fv»on5 <••••»• - . _. , — n.t»*7^4-

1.5)"*1P?-1.».''"*H!15 • • • •« •» . . .- 1.4-t,-67 >-

1.1j"«-035-2.C.)"*Oll'; . . . » . - . . - • • 24^3. 33 I -

2. n.l"»0C5-?.?T'»0n'; . » » « . » • » • • • • • » » • . • • • » * . . » 1»«-6,67.|

j,:>,-l..ti].'<5-2.'.1"*'in5 !•»»».»»»»••• _ — . . _ —21 j,.jj_,__

2.'t i"*'n5-2.6. VHH5 • • • • • • » « " • • • • • « • • » • « • • • » » . . . - . -44 ^ 4 7) _

2 . 6 (" < - 1 " 5 - 2 . B 5 " » n l 5 • ' • - . - — «« 0 . 0 0 »--

2,8fi"t. ;.15-3,? V'»n!)5 I . . » • • « • » • • » » _ . . 24 3.33 \~-

3. l)^"tf|.15-3.?l"*n55 1 . » • . . . • • , 24 -3 . - ï 3^ -

3. 2Ü"«-3C?-3.'..1"*0'15 ! • « • » • • • • • • • • . . ,. — 2-«-.3,-**->—

3.i,r."»an5-j.e,.:.".or? ? di «.«o > .
I

3.6Vtl05-7.PV.JC5 !•••••» 14 1,67 »

3.')ri"»or5-it.c T'tons (• • • • • • • • • • • • « • • • » » » » » » » » . . . _ . 64.0,47-» .

>i,.p:"..ir5 , , , . , , . . , . . . , . . , . , . . „ . . . , , , • , , , , , . , , , , . , , „ , , , . . , , , , . . . , . , , , , , , „ „ , 4 „ , „ , , | „ , , , „ » „ , » , , , _ .1*42*.«0 4—

Fig. AZ.4. Turnaround time batch jobe,
firet ecHaduling policy.

http://HAX.UM.lPF

MI«;Tor,PAH '5I'"'LF 8ATCH lOBS RESPCN5F TIME t ' / . « . , l \
HEAN V»LUE= 1.19"K'>»'=
STn.nEÏTATION= •».3(l-*1(>«'
«IN.V»LUE= "ï.ltO-tOO»
I<AX.V(HJ>:= 2 . 2 ' " H ' (I ' :
HO.OF ENTPIF<;= 57

_ ___ -̂ .____ „

<2.00"t-D0li •• * 01 0.00)

2.n(i"tooh-ii.oii"nii)'> • a(0.00)

ii.<10"*!)ll't-6.i)0"»OI)"t " « • • • » • l (1 . 7 5)

s.no"»'ic<.-8.no"too<i .••••••»•»••»••••••••»•»•••••»•»•»•••••••••••»••• e(i^.o<t)

1.0n"t«Ck-l.BO"»Oll5 . . . • . • . . * , » . » . . . , , . . • » » . „ » . » . « , , . » , » „ » , „ , , » . , „ , . . „ • . . 11 (19 .3 0 >

i.no"»no';-i.?o"H)05 «..»•••«•..»*.«t»........»»»..•»...•»•..».....••.•••.....••,..».•....«•••»••••»•••»•»•»••»»••••• t6(2B.07)

I . ? 0 " ' » 0 0 ' i - l . < t 0 " » 0 0 5 . 7 (1 2 . 2 8)

t . * o " * i) 0 ' ; - i . (i O " » o i J 5 j i 5 , 2 6)

l . f , 0 " * i a ' ; - i . s (i " n) a ' ; . . « • . . - • • • i, I 7 . 0 2 >

1.80"K)C«i-?. (l l)"»01)5 . 3J 5 . 2 6)

2.10"»'>l l ' ; -Z.2n"»01!S • • 2 (3 . 5 1)

?. 'n"*i i !) • ; -? .<>O"ton5 2 (3 . 5 1 >

? . < . 0 " n i i i ^ - 2 . 6 n " » n n 5 •• 0 (0 . 0 0)

.
?.RO"*io";-ï.80"»on5 . • oi 0.00)

. - • • . • . . ' .

7.80"*oc';-3.no"»oo5 • . D(O.OO »

3.H()"KIOF-3.2 0"H10') •• 0(0.00)

ï . 2 0 " m o ' ; - j . i i O " » o o 5 • — , - , g i 0 , 0 0 >

3.<.0".finF-3.6Il"»00'i • • 0(0.00)

T-fiO"»i)o«;-:'.8 0"»oi)s ^ o(0.00)

LBO-'^OIB-IfOll-tOO? « 0(0.00)

xt-ci '- ïoo"; • D (0.00)

fig. A3. S Turnaround t-inie battii Jaba,

seoond eoh*duting jpolien.

Ht^nr.TA'» 3IKP1.F TATCH I l l s fiESPONSE TIME ^ ^ ^\
MEA!1 VALUS= i.a5"t005 . .! \ "
STn.D'='VIA''nM= ?.fll."»fl(15 . " '
NIN.VALI)r= 3. 9!"l-03<i , . . . _
MAX. I/ALIIF= 1.71"»IJ05
NO.OF ENTRIES^ 6li .. _

<2. ja"*3I" i ! .. . " ~ '[" . " " " " . . 91 O.OO (_

z . io - ta i i t - i t .c j " tnoi t i „ . . _ u t . s t i
I . . . « . . .

't. 10"*0.T(-6.['0"*nil<t . _ . ' t ! 6.25.x
i . « .

6. 5 1 " * 301 . -8 . : 3 " * Q 11't . l*«2t. «7 I
t . . « . « . . . « « * .

8. 3 r "»33 ' . - l .C j "«305 ! . • • » " • • • • • » " • • • • ' » • • • • » • • • • • » • • • • ' > • • • • • • • • • » • • • • • • » * • • • • • • • • » . • • . » . • » • • ' > * . • • . . . • . . . » » . » . » . • » • .14«2i .87)

1. 3 ü • ' • 3 3 5 - l . ^ : • ' ^ 0 (1 5 . _ __ . 9 < 1 * . 06) „

< * . « « .
1 , 9 ' ^ " +] 0 5 - l . ' t V * 3 OS i . 7 (1 0 94)

1 .

l.'tCi"*a05-l.f3"»0Q5 t . • • - • • » » • " • • • • • • • • • • • • * • » • • • ' " ' • « • » • • • • • • " • • » • » • • • • • » ' • ' ' • • • • • •_ _ 9C1'<.J16 (.
! . . . « . • • • . •

1.6CI"t3C5-1.83"t0(l5 t ... , . . 61 9,37)
I .

1.'iJ"»3D5-2.f •'"•005 ! . . . _ . ILO.OO I
I

2. la" * JJ5-2.23"»305 • . _ _ «.f. JltflO_l.
t

2. 2r"t3.'<5-?.'tJ"tOC5 < ILi. A.00 J
1

2. i in"*335-2.6:"»0!!5 ' . _ 0 (i) . « f l u l _
•

2.60"»a35-2.8 V»0C5 • _ _ . j jlJ_fl._aO 1.
t

2.S0"»335-3.f 3"»055 • . . _ . „ ' . _ . . L . 01 0.08 I
•

3. 3D"»315-3.2';"*3?5 • . _ . _ 0(0. U) » .
t

3. 2:"»3.35-7.'.3"»0'i5 • _ .: 0(O.JIO J_

3.'t.""» IJF-J.eO-fOtS • . . 01 O.JIfl.)_

3.%fi"»315-3.83"*3'»5 • 04 0.00)
I

3. 9i"*1'?5-lt.C 3"»0e5 ! J l 0.O0.J_.

>li.!")"*3(!5 '- . ! 0(0.00 1

fig, A3,e. Turnaround tifne batch jobs.

third scheduling poliey

HI'^TX.-'A< PAPSlLî L 1A"^';H J T T ; RESPONSE TIME & - J , i ^ ü ^ i ü '
MEAM V3Li|';= i t . l f t a t S
STT.DEJIA''nn- 1.51"t i06
MI'LVALD":- n.''6"»Sil'.
"AX.VAL'IE= 1.16"*nöE
N0.3F E'IT",:r£= 61 _J.

«2.aT'*af ' t • [" " " ox.a,jia ».

2. ï r i " t - lo i t - i t . f T'*a3'. 1 . i;(0.00 }

II. 1l'"+1l"i-6.C l"»!'0'i • fl(«,«0)

6. 31"»3C'.-8.CT'»3<"i • 01 0.00)

S.i iö-.OOlt- i . f T'^nr? ! • » • J.(1.6I|)

1.'in"»in5-l.rT'*iiO'; • „. .. . n« n.nn i

l .?a"t - iü5- l . '»3"*3 ' '5 • • • • - l t _J j . t l i _ l _
t . . .

l.<,,-l-.n;5-l.f.T't035 ! . . » • » 21-3.28 i._
I

1.61".Q05-l.BT'*nr5 • • • • . . _ , „ 1(l.)><t 1
t . . .

1. 8ll"+005-2.r'l"t3C5 < . » . • _ . . ?(3. PR I
t

2. 3R"»5:i5-2.21"*0i'5 1 « . » . _ _ 3((,, 92 i
I

2.ÜC"*335-2.'-:"'*ani; _ . L(_ l . i 4 X .
t . . «

2.',3".335-2.f.l"*0r!5 • » . . . « . 2(3.2a »

,
2.6ri"t.O''5-2.8T'*0(!5 , • • • • . _ 3 (a,.20 i _
2.1,l"*3!'5-3.ril"*0.''5 1 .« • « . ^ a t 4.32 J .

I . *

3. 1D"t335-~.21"*9ti5 • • • • . . . „_ -l(_.i..6ft).
I . . .

3.20". 305-3.'.V'*005 • » » • » • • • » _ it9.i4_l-

3.i,r>".0'F.7.f,2"t005 2(3,2a (.
«

.3.5:."»3n5-7.e)"»ao5 •••• . _ i i i .64 i
t « . .

3. 8.':"t.iJ.15-',.r l-tO'S 4L 6.56 I

>l,..13"»'ir5 , . , , , . . . » « . » • » • « . • « » » » • . . » . » « . » . . . • . . » • • • • • • • • • » • • • • « . 26162.62_»-.

fig. AZ. 7. Turnaround time parallel programs,

first scheduling poliey.

oi HTjTnr.oAN ojPAll^l. HATijM l(»"5 RESPONSE TWE t ' .• , : i
lEAN »AtUF= ï . c ' - . e r ' -
<>Tn.OF';lATI0M= <i.2?-."0t
ITN.VALtE' F.Tq-'.nok
HAX.VALUF^ l..ltfi".on«-
HO.CF ENTPIE-Ï^ 61

<2. 00"»001 • 0< 0.00 I

2.<io"ton'i-'..on"»oi)'i ' o(o.oo i

k.')0"*nO't-6.(IO"»00'i • 0(0.00)

6.nO"*1 0'i-8.fl0"»0l)lt • . » . • • • . • . • . . • . . • • . . » » • . » • • • • • • • • • 3(i,.92 I

8.nn"»no'i-i.oi"»in)s • 0(o.oo)

l.nn"*'<HF-l.?ll"tOO'; • » . • • . . • « . • . . . « • • . . 2(3.28 >

l.?0"no';-i."iO"toa5 • . . • • • . . » . • » • • • • . . » » . . . • . 6(9.84)

l,'tn".n(3«;-i.M)"tnos » » • • . • * • * • • . . . * • « • . » • * • • . . » • • . « • . . • . • • * . • • » • . . 9(l ' t .75 1

i , f ,n"nicF-i .8 0"»(ii)'; " • . • . . . « . . . • . « • . ; , a,2o)

i.8n"'nii';-7.oa"toos • « • • • . . . « • » » . . » • « • . » » • « . » » . • . . . • » • • » » . » . . . • » . » » . , . . » « • » » • » . » . » . . 9 (n , 7 5 >

2 .00 • •nn ' ; -7 .20"mos . 7 (i i , 4 « >

2.»n".nn'^-2.i.0"»oo'; . , , , 6,56)

2.k0"»n C5-2.R0"»005 • . » • • . « j , 1,64)

2.60"»'! CJ-^-SO^'mOS • . . . • » . • . • . . . • • » . . 31 ^ ,92)

2.80"»')05-3.0n".03S 1 . J^ ^ ,92)

3.<10".n tF-3 .?0"»00i ; i » « . . • • 2(3 . 28)

3.?(|"«.flOF-3.l,0"H)0'; 1 , 4.64 I

3.1.0"*nr)r,.T.6n"»00'i • « • . « » • . . » . » . » • . . . • • » . 4 , 6.56)

.T.Mt"»"lIt';-3.8""»0l)5 • 0(0,00)

T.80"»i(i';-'..iin"*oo5 . . . - . « « . • • . . j , 1.64)

>it.B'J-*C05 • • • • • • 1 , 1,64)

Kg, AS,S. Turnaround time paratiet program,
teaond scheduling poliey

MI-ÏTOG^AM PARALLEL 1.>TCH 1013 RESPONSE TIME & > (/ , - V l l ' . l / ; '
MEAN VflLU1= l . l (' 3" t005
STO.OEVIATION= 3 . ' i l " » (n 5
MIM.V«LIJF= 5 .66"»00 ' i
fAX. V«L'IE= 2.51"*- tC5
NO.OF EHTRIFf= fi'

«2 .03" tDr ' t 1 • 0(0 .00)

2. '!r!"*3Ol.- l»,C;">0D'i ! 0 (0 .00 J

't. 3 3 " » 3 t l < t - 6 . n " * 0 C i i ! » . » . » . . 1 (1 , 6 1 I
t

6.30"t -or i , -R . r T't-oct • _ o(o.oo i

8. 3 n " + 3 9 u - l , t 3"*0CF 1 . 6 (9 , 6 8 I
I .

1 . 0 C " * 3 n 5 - l . ? T ' * O C ! 5 1 . 8 (1 2 . 9 0 t

1.2 i)"«-305-1 . ' .3"* BUS % . . . , . . , , » . » , » • . » • » » » . . « • . » » » • » » 1(1(22.58 1

1 . Ifti". i n s - l . 6 T'tOfl*! t . 1 0 (1 6 . 1 3)
t • • • . • * . • • * . * • »

1 . 6 ^ " . n n 5 - 3 , 8 3 " + n f 5 t . . » . 1 0 (1 6 . 1 3)

i . s n " i . 3 3 5 - 2 . r a " * n P 5 i . . » » » . . » . 31 ;,,a<i >

2 . i) (i " .QC5-2 . r '3" tp^5 ! . . « » " " « m e.iiS)

.
2 , 2 p " » C 3 5 - 2 . ' t : " * n n 5 . (,(a.'tS)

t .

Z.' tO"*0'"5-2 .6f • • •01 ' ; 2 , 3 , 2 3 >

2.^r i" t015-2 .B: i" t f l f l5 ! 0(0 .00 >

2 . 8 0 " » 3 0 5 - 3 , r i l " * 0 C 5 '. ' ' . 0 (0 . 0 0 I

3 . n 3 " » 0 3 5 - 3 . 2 : " * 0 0 5 • 0 (0 . 0 0 1

3. 20"«3f B-S./tO-tOOS ! 0(0 .00 I

3 . ' ,n" ta05-7 .6C." *005 •. 0(0 .00)

3. 6ri"tO?!5-:!.6?"'»ln5 ! 0 (0 . 08 I

3. 80"»3'»5- ' t . f 3"»llf5 • 0(0 .00)

> i i . n i " « a P 5 ! o (0 . 0 0 i

fig. A3.9. Turnaround time parallel programs,

third eoheduling policy.

HT;TiF,::f I .:oti k a m r, r-,- r.,» »» .? iLua loss
iClr l VJLU> 3 . i 3 - » j ' . *
3T0. .1 '" / IA'^nr = J .01~ . f «
HlN.l/AL IT» . . 3 ? " » - (' 3
MAX.7^ .J^- i . 7S"» ' .' k
no.riF MTr ; i . ; r= e i

« 4 . v J " » < . r 3 , , . . . , , , . . _ . . .

• .
' • . 3 ' ^ " * . J 5 - 8 . f ; " » J r 3 • . . . , .

t

8, l ' " * Ji r . - i . .'̂ . "•i ' - 'k f * • " _ . .
t * . . » -

1 .2 ."»;^k-1 .6 ."»gtk
. r . * « * « .

1.6; " • l . ' . -Z . l i"»».)k .
2. V "•wC'. - . ! . ' t Ï " t 0 .Tk • • . • • . • * • . . • « . • • . . • • • . • • • • * . . •

i * .

. 2 , V.."* j O k - ^ , 8 i'^iJCt ! • • • • . « * » . . * # . J É * t ï . . j t . • • . • . * « . . • - . . • . * * « * * - . .
I .

2.8t. "•JJk-3.? ^"*Oflk t . . . * • . . • » . • . . . • . . . • . . . • » . . • « . * . . •_..
t .

4,2v"*-0. .)k«3.6 / ' . o o k t . t t * j L t l L . - « . * • . . # . # « « • * # * « * • _ „
I « « * . . » « « « « * . 9 . . « 9 4

3. 6 . " • Tvk- ' t . t }". ' l ' ik t • . • . • . . • . - • " . « • • • • • . • . • . • • • # « * t t t t j t

, . .««.« * . . *«« * .
4 . O J " * j .•k-'. « k j ' i . j T k ; « . . • . • . . • * • • « . * • • • V .

I . . . t . . ^ .

k. ' t ' ."* ï Jk-k • 6u"*?i 'k • . • • . . » * . . < • . . * * • • • * . « - . .

- 4 . 8. " • ; j k - ; - . ;>,••. I.'̂ » • . » . . . ,_

- S, 2. " • J Jk-r-tó i^'.^'-k • . . » • . • • • • • — . . _

.5,6i.."» j i k - 6 . i j"t.1.:.k ! . , • . . - _

6. 3i "•3 !H-t..''3"*''ik ! _-.

6 .k . . . "»3 jk -ü .A l"t 1-k ! „ _ . . _

6.8..."t j j k - 7 . ? ; " t . j r k • ... - . . . -

7 .J -1"* j . | k - r . t 7 ' tnf 'k !
I

7. 6v" *3 jk -6 .C - . " t t l t k "
f

- »6.>,v"».'5k ! • - . . - _ - -_

fig. A3.10. CPU waiting time parallel programs,

no multitasking, £ VBCs,

«(«.00->-

- M 8.20

6(9,4»*-»--

S(8.20 I

k(6.56-t-

9(14.75 I

8(13.11)

-14 1.6k

-24 ï,-2«

-04 0.00-t-

-•4-«,-0*-»-

--04 0.00-»-

—»(0.^0 ̂ -

— « (- O T O O ^ -

—01

m n

» • 1

: : I 3

» » » » • »
a :

: ? •

m * * *

I I
+•

?
I I

! i

't" t •*•

lil

• » * » «I *

s :
4- *

* »

0

« *
« •

: :
» w
* «•

* «1

» * • •
* •

* • * * » • * * 4- * «1 » « *
» » 4 4 » * *

» • • «j
« * * » 4 4 4 » » « '

* * 4 • * 4 *
4 4 4 4 4

«.* » 4 4 ' 4 » » 4 - » 4 4 4 4 4 4 4 4

4 - 4 V 4 4 4 4 4 4 - 4 4 4 4 4 4 4 4 4
4 4 4 4 4 i 4 4 4 4 4 * « 4 4 4 4 4 4
» 4 4 4 W > 4 - 4 * 4 4 4 « 4 4 » * 4
4 4 4 4 4 * 4 4 * 4 4 4 * 4 4 4 4 4

4 - 4 4 4 » 4 4 4 4 4 4 4 » 4 » 4 » 4
« i 4 4 » 4 4 4 t 4 4 » « 4 » 4 » 4 4 - 4
» 4 » » » » » 4 4 4 4 * 4 » » » » *

» * « 4 4
* 4 4 » 4
4 4 » 4 4'

» » » 4 4 «•

4 4 » 4 4 » 4 4 » 4 :
4 4 4 * 4 4 ' » » » 4 * * 4 » * * * 4 * * 4 | * * 4 4 4 » *

4 4 4 4 4 4 * * * 4 4 4 4 4 4 4 * 4 4 4 * 4
4 * 4 4 4 ' • * • 4

* 4 4 4 4 4
4 * 4 * *

4 4 » 4 4 4 4 * 4 * » 4 * 4 * 4
» « «> « 4 *

****** * » * » ' « » * * » 4 * * *

» 4 4 4 * 4 * 4 * 4 4 * 4 4 4 * 4 4 4 4 4 4 4 4
« * » 4 4 » » * 4 * « 4 » 4 * 4 * 4 4 4 * 4 4 4
4 - 4 * 4 4 * » 4 * 4 4 « 4 4 4 4 * * 4 4 * 4 4 4
4 4 * 4 4 « 4 * » 4 4 « 4 4 4 4 * * * * 4 4 « *

4 4 4 » * * * * * * « » « 4 * * * 4 4 4 4 4 * 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 t 4 4 4 » » » > * 4
• t *
« 4 * * * 4 * 4 4 * * * 4 * » » « « * * * * * *

C,. in t j •->
3 * -D O *^ c^
a : • * + *D
o -r̂ w' : :

in ir —
a- • II ro .< II
-^ isi i : • • i/j
c' "^ .9 trv u
t " tl M • H
— I .t h II [l ü.'
t - ~ «ï I4. U t-
f j M T r 2-
H ' t 5" J _I lU
3- > ii' <r *!•

o :> > U.

e- O li

4 A A

J 4

} l^ t^ -i •£ ti ,z t

157

HIfïTOGPA»' CPU ««TTJUC TIME F<W P«l»»I.Let JMS (' ' ' \ , r -
NFAK VAIUE= •5.'!7"»l'<!k . .
STT.nEVIATIPN= a . M - . ' i o '
HÏN.VALIJE= 9.k3".002 . _. _
HAX.VALUE' 1. " ! • •»•" " •
MC.OF ENTPIFS= 61 • . . , . . -

c k .on - .oo i . . » . ; ; ; ; . ; . . . " " * - — - — — — - -— - - — — - — — _ - - — . _ _ . „ ^^ j.z^)

k.na"*no3-8.o(i"»nn3 . • « . . . « . . . » 3(%.92 >

S.'IO"»'» 03-1.2O"tOOk • ' . • « » . . « 2(3.28 »

l . 2 0 " » 3 0 k - 1 . 6 n " » n O k . • • • • • • • . • • " . 3 (V . 9 2 t

l.fiO"*CI)k-?.OI)"H10k ' . . . • » . . 2(3,2t I

2.'10".31)'>-2.k0".00k • . . . » " . _ . 2(3.28)

2.ltO".l)0k-2.8O"»00k 2(3.28)

».80"H10l.-1.?0"»liak • . . • . . « • 2(3,28)

3. '0"»'>l ' ' t - ' .10"»00k « . • . . • • • » • • • • • • • • • • • • 5 1 g.20)

3 . 6 0 " » 0 tk - t i . 0 0 " » n O k « • • . • . . . 2(3.28)

k,nO".nOk-k.kll"»OOk * 0(0.00)

• • .kff tnik-k .8 0"»OI)k • • 0(0.00)

k.80"*1(lk-';. '»0"»00k • 0(0.00 I

•;. ' (' "»iofc-s.6a"»nok » « « . . . • « J M » » » » » » » » 5(a.20 i

5.6l)".''0''-6.00"»00k 3(^.92)

6.1(l" . 'Hk-5.k0"»0nk 3(i,.92 |

. . ,
R.fcO"»" Ok-6.8')"»00k • 0(0.00 (

fi.8r"»(>0k-7.?i)"«(!0k 3(^,92 I

7.20"'.00k-' ' .6')"»0llk 2(3.28)

7 . 6 0 " . n 0 k - 8 . 0 3 " » 0 0 k . ^ , 6 . 5 6)

>".OI)"Kl?k . • • • » • • • • • • » . • . . . • • • « . . • . . • . . « » . « « » » . » » » • » » » » » » » » » » » » « » » » » » » » » » » » » 16(26.23)

fig. A3.12. CPU waiting time parallel prograna,

no multitasking, 10 PCBs.

http://ck.on-.ooi

HI1TT ; " .< .1 CPU kAITIN^l TTM- =1R "ïATALLEL JO Ŝ
icAN vaLu:= r . » v *] O k
STo.oi:vT»TnM= • • . C O - . T : ;
MIS. V,*L'ir= 3.3ï"»CI>2
MAX.Vi\L'I'^= 1.7T't.»"16
NO.OF ENTRIEf: 62

<k.33"»''r3 t » . , . . , . , . , . . ^j .6i45)

.
k. 30"*303-8.r T'tOC3 « . . . • . » . . » « 21.J..23_1_

t

8.30"*333-1.2:"*Ci0k 1 . . • . . « 2(3,23 1.
i .2:".ack-i.6;"*3i!i , . « . . • • ^, j . 6 j >

i
l . ' iD"*3' 'k-2.C r ' tOrk 1 3«Jl.flk)

f

2.3t ••• jDk-2 .k } " .0 ' ' k t . ,_.. 1(1 , 6 1 1 . .

2.' i0"»0i 'k-2.R3"t3i ik t.»»»»"»»»» _ 2 (. 3 . 2 3 . 1 _
•

2.8Ci"t.3Ck-3.?T'»3<!k • « 11 .1.61 L
t

3.»D".30k-3.63"t30k • 01.0.00.)

3.6il"*0Ck-k.'?3"»(ink 1 . __ . k(6,'|5 l

k. 10"*0i;k-k.k VtOOk ! « » . . • 5 1 . 8 . 0 6 I

.
k.' iü"»3Pk-k.n)"fOf)k t . . . « . . . « . . • . . . » • _ 1,1 6.kS)

l i .8£!".3(k-5.2 3"*0''k ! . • • « • • • • • • • • • • • _ 34 k.8k)

5 .2 : " .?0k-F.6 J"»0Pk t " 1(. 1.61 l

5,6D"t-3nk-6.r J^'t^O"! •» .»»• _ 1(1.61—L.
I

6.*ti"*aC(t-6.a3"+n'ii. ! • • • • * _ _ H 1.61 I
l « « « 4 «

6«flD"*]f l*-7.?;"*'J' ' i i » • * • •» • • •« * • • * *# . _ __ 3t 4,afc 1
f « « » « « « • « » « « « « « «

7.6ü"*QC'(f-S.r j'-fOO*! ! * • • • * • • • • « • • » • • * » * » • __ fc(6.i*5 I

.Pî . A3.13. CPU waiting time parallel programs,

multitasking, 10 PCBa.

SAMENVATTING

Het in dit proefschrift beschreven onderzoek is begonnen met een voor­

studie naar de mogelijkheden tot opvoeren van de prestatie van computer­

systemen door middel van structurele verbeteringen, in plaats van het

toepassen van snellere basis-schakelelementen in een conventioneel op­

gezet systeem. Tijdens deze voorstudie is getracht om de verscheidenheid

van toepassingsmogelijkheden, waarvoor de aldus onderzochte structuren

doelmatig kunnen worden toegepast, af te schatten.

Alle onderzochte structuren vertonen een zekere mate van "parallelisme"

in hun werking. Het begrip "parallelisme" wordt hier gehanteerd in uit­

gebreide zin: het omvat "pipeline"-computers, "array"-computers, "associa-

tive"-computers, en "multi-processof"-systemen. De voorstudie leidde tot

de conclusie dat "multi-processor"-systemen in het algemeen het meest fle­

xibel zijn en dus de meeste potentiële toepassingsmogelijkheden hebben.

Essentieel is daarbij wel het voorhanden zijn van een geschikt "operating

system".

Naar aanleiding van de resultaten van deze voorstudie is een nader onder­

zoek van "multi-processor"-systemen ondernomen, waarin bijzondere aandacht

is besteed aan de "operating-systems". Hierbij zijn van speciaal belang

de middelen waarmee de coördinatie tussen de werkzame processen kan worden

aangegeven, en meer in het algemeen het systematisch ontwerp van het

"operating systeem".

Een van de beste beschikbare instrumenten voor het ontwikkelen van een

"operating systeem" is de programmeertaal Concurrent PASCAL, welke in dit

proefschrift is gebruikt voor het ontwerp van een model-systeem. Concurrent

PASCAL maakt een veelzijdige, hiërarchisch opgebouwde organisatie van het

systeem mogelijk, en verschaft doeltreffende middelen voor de coördinatie

van de processen.

Het ontwerp van een "kernel" voor het "operating system" wordt beschre­

ven, die de implementatie vormt van de basis-operaties van Concurrent PASCAL,

en waar de toewijzing van de onderling gelijke verwerkingseenheden aan de

hiervoor in aanmerking komende processen wordt geregeld. Bij dit ontwerp

worden enkele eigenschappen die specifiek zijn voor "multi-processor

operating systems" nader belicht. Deze bijzonderheden komen voort uit de

160

omstandigheid, dat twee (of meer) verwerkingseenheden tegelijkertijd het­

zelfde gegeven trachten te verwerken, zodat maatregelen nodig zijn om dit

in goede banen te leiden.

Het functionele ontwerp van een "operating system" voor een "multi­

processor" wordt uitgewerkt. Het systeem is geschikt voor een combinatie

van "batch"- en "time-sharing"-verwerking. Een bijzondere eigenschap van

dit systeem is de mogelijkheid tot het simultaan uitvoeren, door twee of

meer verwerkingseenheden, van "parallel tasks"; gedeelten van ëên program­

ma die tegelijkertijd verwerkt kunnen worden, onder supervisie en coördina­

tie van het systeem.

Voor dit "operating system" is een simulatie-model opgesteld, en de wer­

king ervan onder diverse omstandigheden is gesimuleerd met behulp van de

programmeertaal SIMULA 67. De resultaten van deze simulatie wijzen op een

aanzienlijke verbering in de totale verwerkingstijd van programma's met

"parallel tasks", vergeleken met de situatie in een systeem dat de mogelijk­

heid van simultaan-verwerking binnen één programma niet kent.

Het proefschrift is ingedeeld in zes hoofdstukken.

Een overzicht van de voorstudie over parallelisme in computers wordt

gegeven in hoofdstuk 1.

In hoofdstuk 2 worden de vraagstukken die verbonden zijn aan het ontwerp

van "multi-processor"- "operating systems" aangegeven en toegelicht aan

de hand van diverse systemen.

Het ontwerp van de "kernel" van het model-systeem wordt behandeld in

hoofdstuk 3.

In hoofdstuk 4 vindt men het functionele ontwerp van het "operating

system", beschreven als een Concurrent-PASCAL-programma.

Het simulatie-model en een bespreking van de resultaten van de ondernomen

simulatie vormen het onderwerp van hoofdstuk 5.

Tenslotte bevat hoofdstuk 6 de uitwerking van enige conclusies die uit

het onderzoek te trekken zijn, vergezeld van aanbevelingen voor moge­

lijke voortzetting en uitbreiding van dit onderzoek.

161

CURRICULUM VITAE

Born August 2, 1947 in Tapia, Romania.

Basic schooling in Tapia and Lugoj, Romania, from 1954 to 1961.

Attended the secondary school in Lugoj between 1961 and 1965.

Studied Electrical Engineering at the Polytechnic Institute of

Timisoara , Romania from 1965 to 1970. Specialized in Computer Science and

was granted the diploma of Electrical Engineer in 1970.

Joined the staff of the Computer Science Laboratory at the Polytechnic

Institute of Timisoara in September 1970 and worked as a teaching and re­

search assistent until November 1973. The main tasks in this period inclu­

ded the organization of a laboratory for peripheral devices and the assi­

stance in several courses in programming languages.

Since December 1973 engaged in a Ph.D. project at the Delft University

of Technology, The Netherlands, with a scholarship granted by the Romanian

Ministry of Education.

162

S T E L L I N G E N

1.Multiprocessing,due to its inherent advantages, is the direction in

which the development of large computer systems will evolve.

2.For a large class of applications,multitasking,as defined in this

thesis, is superior to other forms of job scheduling.

3. "Reliable sof tware" production is facilitated by a programming

language which allows a hierarchical development of a system and which

makes apparent and strictly controls the relations between the system

components.

4.A correct description of the system workload in computer system

modelling is at least as important as the correct description of the

internal structure and operation of the system.But it is more difficult

to define the variables that realistically characterize the workload than

to describe correctly the system structure.

5.The selection of a higher level programming language to be taught

to novice programmers deserves more attention than it generally receives

at present.Such a language should not conceal the computers' limitations,

but on the other hand it should not introduce many limitations of its own.

6.It is encouraging to see that English is almost universally accepted

as the language of computer science.But it is deplorable to find that

different terms are used to denote the same notion or,even worse,that the

same term is used to denote different notions.

7.The social and economic implications of the rapid development of

microprocessors should not be underestimated.Job requirements will be

profoundly affected by bringing decentralized automation to the factory

floor.The designers of systems that include microprocessors must ensure

that the task of controlling such systems maintains a sufficient level

of job satisfaction.

8.The excessive use of abbreviations in documents intended for a

large audience impedes communication and should be made,perhaps,a

punishable offence.

9.History does not repeat itself.

10.For the sake of the spiritual well-being of its citizens,a town

council must pay the utmost attention to increasing the number of

singing birds that live in the town.

I.Jurca

ISBN 90 6231 038 9

