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Abstract

Navigation systems in an Autonomous Vehicles (AV) can be divided into two parts: a path
planning block which takes in the environmental data and rules to design a collision-free ob-
stacle and a vehicle control and tracking block which generates actuator inputs for the AV
to follow the reference path generated by the path planning block. Each task is fulfilled by
a different algorithm with its own performance indices. These algorithms are not usually de-
signed to get the best overall vehicle performance but the best performance of their respective
blocks. A planned path that the vehicle cannot follow can therefore be generated and can
lead to high tracking error and in some cases collision with obstacles. This can be solved by
integrating path planning and vehicle control blocks with the dynamics of the AV.

The goal of this graduation project is therefore to develop an integrated planning and vehicle
control algorithm for an Autonomous Vehicles (AV). This is done by integrating a novel-
Artificial Potential Fields (APF) with Model Predictive Control (MPC) to solve both path
planning and vehicle control using a single optimization problem. The addition of the AV
and the Obstacle Vehicle (OV) dynamics to the optimization problem as prediction models
along with recursive computation can determine accurate inputs to be given to the AV.

Unlike traditional APF-based path planning where the minimum potential path is generated
as the result of a gradient descent method applied on the available map data and obstacle
information, the APF is added as a cost to the objective function of the MPC based optimiza-
tion problem to find the minimum potential path. By using a receding horizon approach for
solving the final optimization problem, the potential field can be updated at each time step
to avoid moving obstacles. The dynamics of the vehicle added to the optimization problem
include both lateral and longitudinal dynamics and are linearized at each time step at the
current state of the AV.

This however generates a path which does not travel in the centre of the lane and makes risky
manoeuvres. Therefore, an Mixed-Integer Model Predictive Control (MIMPC) algorithm with
logical constraints is used to generate an optimal lane to travel in. This optimal lane is used
to generate a road potential which can guide the vehicle to the centre of the optimal lane.
The MIMPC and the APF-MPC algorithms are run successively to generate a collision-free
path.

The logical constraints, also called MLD constraints are converted into a set of linear inequal-
ities with the introduction of logical variables. These logical variables are used to represent
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ii Abstract

individual logical constraints based on the states of the system and on a combination of log-
ical and state constraints. A novel-APF inspired by the Yukawa Potential [1] is designed
to represent each obstacle. A convex representation of this non-convex obstacle potential is
formulated to simplify the optimization problem. The convex representation of the obstacle
APF is obtained by approximating it using a region-based APF where the region is defined
by the position of the AV around the obstacle. This is further simplified by approximation
using a quadratic Taylor-series expansion.

The simulation was performed on MATLAB on a two-lane road with multiple obstacles.
The thesis report ends with a discussion on future work to be taken to further enhance the
performance of the controller and to make it road-ready.
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Preface

The idea for this graduation dissertation comes from my interest in studying and developing
an ideal transportation system. The ideal transportation system integrates and controls
multiple sub-systems with high level of accuracy to obtain the optimal result at all fronts by
taking into account the uncontrollable and uncertain aspects. The lack of synchronisation
between these individual sub-systems can therefore create a cascading effect which can lead
the breakdown of the entire system.

Road Vehicles are one such important sub-system which form an important building block for
the ideal transportation network as it deals with most inland transportation of products and
people. The advent of autonomous counterparts to traditional road vehicles has helped de-
velop algorithms to integrate them seamlessly into the transportation system while increasing
efficiency.

An autonomous road vehicle is in itself divided into multiple functional blocks, each of which
perform a certain important aspect to move the vehicle to its goal. These functional blocks
are usually run by individual algorithms working independently. However, these blocks have
to run in synchronisation with each other to obtain the best performance. The idea of this
graduation dissertation was therefore to develop an algorithm to integrate the functional
blocks of the autonomous road vehicle to improve performance.
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Chapter 1

Introduction

The design of the Autonomous Vehicles (AV) technology has been in a state of constant
improvement since the first half of the 20th century when the idea of cars driving themselves
on "smart" roads gained widespread public exposure at the General Motors Futurama exhibit
in the New York World’s Fair in 1939. Though multiple tests for the development of AV
were performed in the next half century, the next landmark event in AV history appeared
in the form of the EUREKA Prometheus Project funded by European Commission [16] in
the 1980s which lead to the development of "VaMoRs", the first fully autonomous vehicle to
drive on a road at high speed with the help of computer vision to identify obstacles and road
signs. Further interest was created with the introduction of autonomous driving competitions
like the Defense Advanced Research Projects Agency (DARPA) Urban Challenge and the
DARPA Grand Cooperation Driving Challenge in the early 2000s [17, 18]. These challenges
and the increasing interest in both academic and industrial circles in the development of AV
lead to the Society of Automotive Engineers (SAE) to introduce the J3016 "Levels of Driving
Automation" standard in 2014, which defines six distinct levels of driver automation [19] as
shown in Figure 1-1.

With significant technological advancements as well as with the increase in speed and volume
of transport, AV have evolved to solve a number of problems. Those problems are : (1)
an increasing number of road accidents, (2) an increase in traffic volume leading to long
congestion and waiting time, and (3) better energy efficiency to reduce global climate impact.
The introduction of AV to mainstream transport can reduce these problems. AV are expected
to have a significant impact on the overall transport system as they remove the chance of
mistakes by the human element, can optimize their decisions over driving goals and can
communicate with other vehicles and infrastructure to reduce traffic congestion. Figure 1-2
which shows the strong influence of human factors on road-based accidents in Germany. The
removal of the human factor from driving can therefore reduce the number of accidents. With
the widespread implementation of AV and its relative infrastructure to reach large scale by
2030 [20] and its economic impact of about 0.2 to 1.9 trillion per year [21], it is necessary to
develop algorithms which can achieve safe and efficient methods to avoid obstacles.

The use of AV reduces the risk of collision due to human error, but adds to the complexity of
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Figure 1-1: Levels of Driving Automation [2],[3]

Figure 1-2: Percentage of Accidents caused by various factors [4]

the system, both in software and hardware. The functional architecture of an Autonomous
Vehicles (AV) can be divided into perception, path planning, vehicle control and system
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1-1 Functional Architecture 3

supervision based on a high level of abstraction [5].

1-1 Functional Architecture

Figure 1-3 shows the functional blocks as well as their inputs and outputs. The inputs to
the AV consist of sensor data as well as static maps, world rules, user input etc., and the
outputs are the actuator inputs which decide the movement of the AV. The role of each of
the functional blocks is discussed further.

Planning and
Decision

Motion and
Vehicle
Control

Perception

System Supervisor

Navigation

Sensor Data
Input Actuator Input

External Interaction: 
Maps, rules, user IO, 

world status, etc.

Functional
Architecture

Figure 1-3: Functional Architecture of an Autonomous Vehicles (AV) [5]

The perception block collects environmental data obtained by the sensors and uses this data
to perform localization. A basic description of different sensor types and the common sensors
used in AV are described in Figure 1-4. Readers interested in understanding more about the
different sensors are encouraged to see [3]. This sensor data coming from the heterogeneous
array of sensors is fused together with the aim of making a unified map of the surroundings
in which the AV can perform its function with high efficiency while maintaining a high degree
of safety.

The path planning block is central in the architecture of any AV as its goal is to generate a safe
and comfortable path while avoiding the different obstacles present in the environment. The
idea of path planning was first presented in [22] and consequently a large number of algorithms
to achieve path planning have been researched and developed for vehicle navigation over the
last few decades. Path planning algorithms can be classified as global or local path planning
algorithms. Global path planning algorithms uses static map data to plan a high-level path
determining which roads, highways, tunnels, etc, to take to reach the destination to the goal.
Local path planning algorithms use the global path generated as a stencil to follow while
taking into account collision avoidance with other dynamic obstacles on the road.
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of vision and need to be calibirated to detect OV.

Emits laser and measures the time of flight to find the distance to OV.
Similar to RADAR, but has higher accuracy and runs at higher frequency.
Has drawbacks in terms of sensitivity to weather conditions, generating a

large amount of sensor data as well as having a short range.

Satellite based navigation system which is used to find the absolute
location of the HV. It can provide accurate position and timing

information.

Measures the HV’s acceleration, heading angle, and relative position
with the help of a combination of accelerometers, gyroscopes, and

sometimes magnetometers. 

Description

*Active sensors emit energy (electromagnetic signals) into the environment 
*Passive sensors perceive electromagnetic signals already in the environment to detect obstacles 
*Proprioceptive sensors are sensors which measure values which are internal to the system 
*Exteroceptive sensors are sensors which acquire data about its surroundings

Figure 1-4: Basic description of the most used sensors used in most sensor fusion algorithm
[3],[6],[7],[8],[9]

The motion and vehicle control block is used to track the output from the path planning block
with maximum accuracy. It is the interface between the path planning block and the actual
dynamics of the vehicle, and generates the control signals to the actuators to run the AV
in the designed manner. It is therefore important for the block to incorporate the dynamics
of the vehicle to avoid collisions. The authors in [23] provide a deep insight to the different
algorithms used for path tracking.

The system supervisor block is used as a control centre to help communication between the
different blocks, to store required data, world rules, driving rules, user input, and other
external interactions. It is also responsible to handle functional safety mechanisms like fault
detection to activate safety critical systems when required.

1-2 Motivation and Challenges

The path planning block and the motion and vehicle control block are functional blocks to
allow for safe and collision-free travel and together form the navigation block. Most AV use A*
[24], Dijkstra [25], Rapidly-exploring Random Trees (RRT) [26] or APF [27] for path planning
due to their simplicity of implementation as well as their requirement of low computation
power [28]. However, many of these path planning algorithms take only the kinematics of
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1-3 Relevant Work 5

the AV into account while designing the path. This is done to simplify the path planning
algorithm and therefore reduce computation time. However, this makes the designed path
sub-optimal. For example, RRT is a sampling based path-planning algorithm that finds the
path with the least distance while avoiding collisions and was introduced by LaValle et al.
However, RRT does not take into account the kinematics of the AV and neither is it optimal.
RRT* [29] extends RRT such that it is asymptotically optimal as the number of samples goes
to infinity.

There can therefore be a mismatch between the path planned by the path planning block and
the path which can be tracked by the motion and vehicle control block and in turn the AV.
This is true if the dynamics of the HV as well as the OV are not captured well by the path
planning algorithm and can lead to large deviations from the planned path and collisions with
obstacles. One method to solve this problem and to generate a safe and collision-free path is
by integrating the path planning block and the vehicle motion and control block.

The motivation of this thesis is therefore to design an integrated path planning and vehicle
control algorithm that can avoid obstacles while meeting control requirements.

1-3 Relevant Work

MPC has been widely used as both a local path planning as well as a path-tracking controller
in both academia and industry due to its ability to handle multiple-input multiple-output,
non-linear systems along wiuth system and environmental constraints. MPC consists of a
prediction model of the system and an optimization algorithm. The prediction model of
the system helps predict and evaluate the future trajectory generated by the input sequences.
The optimization problem runs to optimize over the input sequences recursively to incorporate
the future predictions of the system trajectories to make sure that the system is collision-free
given a feasible initial state and long enough prediction horizon [30] [31]. The first value of
the optimal input sequence is then applied to the system and MPC is run again with the new
initial state. This is known as a receding horizon approach. There are multiple different ways
to integrate the path planning block and the vehicle motion and control block using MPC.

Paths from a global path planner can be re-planned by an MPC optimization problem to
overcome the lack of inclusion of dynamics of the vehicle in the path planning algorithm.
The authors in [32] use the A* algorithm as the global path planner and then use MPC as
a local path planner to avoid obstacles. The MPC algorithm takes into account the system
and obstacle dynamics as well as constraints of both the system and the surroundings.

MPC can be used together with parametric curves to represent the travelled path to integrate
path planning and vehicle control where the parametric curves are a function of the MPC
decision variable. The authors in [33] design the reference trajectory as a function of the
optimal decision variable generated by the MPC optimal control problem to capture both
path planning and trajectory tracking in a single MPC problem. To avoid dynamic obstacles,
the AV first checks if it can avoid collision by braking using a safe distance measure which is
dependent on the distance between the vehicles, the relative velocity, and maximum deceler-
ation. If braking cannot avoid a collision, a lane change manoeuvre is adopted. The authors
in [34] developed a b-spline-based MPC algorithm to integrate path planning and tracking
algorithm for autonomous underwater vehicles. Boundary and continuity constraints on the
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recursively planned and parameterized b-spline path along with an error-based prediction
model between the actual system and a reference system are used to define the MPC optimal
control problem.
A large number of algorithms have been developed for MPC to work with Artificial Potential
Fields (APF) to unify local planning and control with obstacle avoidance in AV. An APF
designates an attractive or repulsive nature to the goal and obstacles respectively by means of
a potential. Figure 1-5a shows an example of repulsive potential whereas Figure 1-5b depicts
an example of attractive potential. A gradient descent method is generally applied to the

(a) Repulsive Potential Field (b) Attractive Potential Field

Figure 1-5: Different types of Artificial Potential Fields (APF)

total potential of the surrounding area of the AV to find the minimum potential path to reach
the goal while avoiding obstacles. The authors of [35] use a linear state-space model linearized
at the current state of the AV with small angle approximations as the model for the nominal
MPC. It uses a road potential to keep the vehicle within the boundaries of the road along
with an obstacle potential for collision avoidance to find the minimum potential path. The
artificial potential field thus defined at the given time step is added as a cost to the objective
function of the MPC problem along with a stage cost to combine local path planning and
collision avoidance.
Of the above-discussed strategies to combine path planning and tracking control, the APF-
MPC strategy is the most interesting due to the ability to combine local path planning with
collision avoidance. The use of only MPC to generate an optimal path requires a large number
of constraints as well as a large horizon to avoid obstacles [36]. This can be solved by the
addition of an APF to the MPC optimization problem. While APF provides a continuous
risk assessment of surrounding obstacles and works well to avoid obstacles, the MPC helps
recursively find the optimal path in the presence of dynamic obstacles and adds the AV
dynamics and required constraints of the system and its surroundings. Path planning using
APF also has very low computation time [37]. Artificial Potential Fields are easy to generate
if the information about the surroundings and the obstacles are available. They also provide
a way to define different criteria or modes of operation depending on the shape of the APF.
However, the output of the APF-MPC strategy will not stick to the centre of the lane unless
a lateral position reference is given due to the shape of a general road potential used which
acts as a penalty function at the road boundaries. The selection of this lateral position
reference is generally based on assumptions and is not optimal in nature. This can be solved
by finding the optimal lane. As the lane number is an integer, Mixed-Integer Model Predictive
Control (MIMPC) is an ideal method to find the optimal lane as it can recursively find the
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1-4 Thesis Outline 7

optimal lane at every time step given constraints. Du et. al. [38] uses a hybrid/mixed integer
MPC by combining integer valued lane variables with continuous state variables to help lane
change manoeuvres. A simplified motion model to reduce computation time. The discrete
and continuous variables are combined into logical variables and are used to design logical
constraints which are further written as linear inequalities [39].

1-4 Thesis Outline

The previous sections discuss the history of the Autonomous Vehicles (AV) and its functional
components, the motivation behind the thesis and the relevant work which has happened in
the field to finally propose the basic path of the thesis. This section finalizes and outlines the
different tasks to be performed to achieve this goal and the assumptions which are used.

The contributions of the thesis are the design of two algorithm to generate an unified navi-
gation block and their comparison. The steps taken while designing each of these algorithms
are:

• APF-MPC algorithm

– Design of a quadratic road potential
– Design an obstacle potential to keep the problem convex as well as to maintain a

given distance between the obstacle and the AV.
– Design of the APF-MPC problem by using the above-designed road and obstacle

potentials

• MIMPC+APF-MPC algorithm

– Design a MIMPC optimal control problem to act as a higher level, strategic
decision-making model which decides when lane change and overtake manoeuvres
are desirable and feasible.

– Design a road potential which pushes the vehicle to the centre of that particular
lane.

– Design an obstacle potential to keep the problem convex as well as to keep the
vehicle at the correct distance from it.

– Design a APF-MPC problem by using the above-designed road and obstacle po-
tentials

• Comparison between the paths taken by the APF-MPC vs MIMPC+APF-MPC algo-
rithms

The body of the organized as follows; The fundamentals of autonomous driving that were
employed in this study are discussed in detail in Chapter 2. Chapter 3 discussed the design
of the APF potentials for the APF-MPC and MIMPC+APF-MPC algorithms. The design
of the APF-MPC and MIMPC+APF-MPC algorithms are covered in Chapter 4. Chapter 5
shows the results of each of the algorithms and also the comparison between the APF-MPC
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with MIMPC+APF-MPC algorithms. The conclusions of the graduation work as well as
recommendations for future research are given in Chapter 6.

This thesis also contain a number of appendices at the rear that give information that is too
lengthy to be presented as a part of the main body. It includes explanation of certain theory
and algorithms as well as large matrices used in this thesis. The thesis is concluded with the
bibliography and glossary, which includes a list of abbreviations.
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Chapter 2

Autonomous Driving: Basics

A thorough explanation to build on the basic ideas introduced in Chapter 1 is provided in
this chapter. Section 2-1 discusses the basic idea of path planning. Section 2-2 discusses the
concept of safe driving and the design of the safe distance measure, and the logic behind the
lane change manoeuvres. The chapter ends with assumptions made by the thesis in Section
2-3 in addition to those made in Section 1-4.

2-1 Path Planning

The goal of an AV is to navigate from the present position to a goal position while avoiding
obstacles. Having obtained the map of the environment and after having localized the OV
using sensor fusion, decisions are made on how navigation is achieved. The design of a path so
as to achieve collision-free motion in a given environment is defined as path planning. Given
below are the steps required for a basic path planning problem [40]

• Define the workspace, W ⊆ Rn .

• A region occupied by the obstacles, O ⊂ W is identified using sensors. O can be static
or dynamic.

• The systems is designed as a rigid body A ⊂ W or a collection of m links: A1, A2, . . .,
Am ∈ W.

• The configuration space C ⊆ W defines all the locations in W that the robot can reach.
We divide the configuration space based on O as a region occupied by the obstacles,
Cobs = C ∩ O and a region which the vehicle can safely traverse without collision,
Cfree = C \ Cobs.

• An initial configuration, qi ∈ Cfree and goal configuration qg ∈ Cfree is also defined.
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10 Autonomous Driving: Basics

The goal is to compute a (continuous) path, τ : [0, 1] → Cfree , such that τ(0) = qi and
τ(1) = qg.

Mobile robot navigation can be mainly classified into local planning and global planning [41].
While global planning deals with moving the robot towards a fixed goal, local planning works
with the dynamic conditions in the environment to adhere to certain constraints like collision
avoidance. Figure 2-1 shows the different classifications of path planning based on algorithm
type.

Classifications of Path
Planning Algorithms

Space based Algorithms

Sampling-Based
Decomposition

Cell Decomposition

Lattice
Representation

Path-Finding based Algorithms

Attractive and Repulsive Force
based Algorithms

Algorithms based on Parametric
and semi-parametric curves

Artifical Intelligence (AI) based
Algorithms

AI Logic based
Algorithms

AI Heuristic based
Algorithms

AI Approximate
based Algorithms

AI Human-Like based
Algorithms

Numerical Optimization based
Algorithms

Figure 2-1: Different Classifications of Path Planning Algorithms [10]

The explanation of all the algorithms shown in Figure 2-1 is outside the scope of this thesis;
see [10][28].

2-2 Safe Driving

The path generated by the path planning block has the following requirements [42]: (1) The
path designed must be done so by keeping the dynamics of the AV in mind so that there
is low tracking error, (2) The path designed should be collision-free, (3) The path should
be designed by keeping in mind the comfort of the passenger. The most important of the
above-mentioned requirements for a AV is to maintain the safety of its passengers/goods and
to find a path that is collision-free.

However, the idea of safety is not a quantifiable entity but a social construct based on a
number of factors such as vehicle capability, driving situations, driving conditions, and many
more. The authors of [43] have tried to quantify driving safety based on the idea of severe
traffic conflicts. A severe traffic conflict is defined as a traffic situation where a collision is
imminent between a set of road users unless no change is made in their present speed and
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2-2 Safe Driving 11

direction. Having identified a number of scenarios of severe traffic conflict, the authors also
define a number of safety metrics. These metrics can be divided into two different parts; (1)
maintaining a safe distance from the vehicle in front in case lane change is not possible and
collision is imminent by braking, (2) Changing its lane to avoid an imminent collision. Figure
2-2 shows the basic flowchart for different vehicle manoeuvres [44].

Figure 2-2: Flowchart of different lane change manoeuvres

This thesis used the calculation of the safe distance measure as an identifier to define different
vehicle manoeuvres i.e., to decide between lane change or braking manoeuvres. The theory
behind the calculation of the safe distance is discussed next.

2-2-1 Safe Distance

There exists a large amount of research on the identification of a safe distance for the following
vehicle to maintain from a leading vehicle as a large proportion of accidents occur due to short
following distances: 13% in Europe [45] and almost 30% in USA [46]. The design of a safe
distance measure derived from the different safety metrics defined in the introduction of
Section 2-2 can be used to decide between different manoeuvres to avoid collisions. The safe
distance measure should encompass the following properties: (1) the safe distance should be
larger than the difference in distance travelled by the following and leading vehicle in case of
braking by the leading vehicle and (2) the time taken to detect the deceleration of the leading
vehicle should be taken into account. This thesis defines the safe distance measure between
the jth OV and the HV as [33]

dj,safe =
v2
x,HV

2amax,HV︸ ︷︷ ︸
A

−

(
vjx,OV

)2

2axmin,OVj︸ ︷︷ ︸
B

+ vx,HVt1︸ ︷︷ ︸
C

+ d0︸︷︷︸
D

(2-1)
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12 Autonomous Driving: Basics

where vx,HV is the longitudinal velocity of the HV, vjx,OV is the longitudinal velocity of the jth

OV, axmin is the maximum deceleration of the HV, axmin,OVj is the maximum deceleration of
the jth OV, t1 is the detection time and d0 is the minimum distance to be maintained between
the HV and an OV. A shows the distance travelled by the HV with maximum deceleration
and current longitudinal velocity of the HV, B shows the distance travelled by the OV with
maximum deceleration and current longitudinal velocity of the jth OV, C represents the
distance travelled by the HV during the time it takes to detect that the OV is decelerating
and D is the minimum distance to be maintained between vehicles. This safe distance is then
used as a measure to initiate lane changes and to generate reference HV velocity (braking).
Table 2-1 shows the constants used in for calculating the safe distance measure where ℓ is

Description Value Symbol

Detection time 0 t1

Minimum HV-OV distance 2ℓ d0

Table 2-1: Scalar values of constants used to calculate dj,safe

the length of the vehicle. Let us define a maximum safe distance dsafemax as the safe distance
when the HV is travelling at its maximum longitudinal velocity vmax,HV and the obstacle is
at a standstill.

As the thesis concentrates on local path planning, considering all the OV data when perform-
ing the navigation task can increase computation time. The thesis, therefore, only considers
vehicles that are within the Region Of Interest (ROI), i.e., the region centred around the HV
and extending dROI = 2dsafemax in front of and behind the current longitudinal position of the
HV. Figure 2-3 shows the ROI where the black vehicle represents the HV and red vehicles

Figure 2-3: Region Of Interest (ROI) of the HV

represents the OV and the blue box represents the ROI. All the OV data within the blue
region will be used for the navigation task and the excess data will be discarded.
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2-2 Safe Driving 13

2-2-2 Lane Change Maneuvers

Lane change manoeuvres are a fundamental behaviour of all vehicles and form the basis of
traffic behaviour. AV lane-change manoeuvres are complicated tasks that have to take into
account obstacles and environmental facts and require a high-fidelity model of the vehicle
to perform. The requirement to change both longitudinal and lateral velocity makes lane
change challenging. Lane change manoeuvres can also cause discomfort due to changes in
lateral acceleration. The lateral acceleration should be within the range of 0.03 - 0.98m/s2

for it to be comfortable [47]. Figure 2-4 shows how lane change decisions can be used to
avoid collisions in different scenarios where vehicles in shades of black represent the HV and

(a) Collision Avoidance using Braking

(b) Collision Avoidance using Lane Change

Figure 2-4: Collision Avoidance in different scenarios

vehicles in shades of red represent the OV with the vehicle colour getting lighter as time
moves forward. In Figure 2-4a the vehicle starts braking due to a slow-moving OV in front
of the HV and the presence of an OV in the adjacent lane preventing lane change whereas
in Figure 2-4b vehicle changes lane to avoid a slow-moving OV in front of the HV. The
authors of [48] devised a lane change model based on the safe spacing between vehicles to
avoid collisions. This minimum safe spacing can be replaced by the safe distance measure
formulated in 2-2-1. However, there are other factors that need to be taken into account along
with the safety distance measure to decide if a lane change is safe. Therefore, this thesis uses
a binary lane-change safety flag which depicts if the lane change is safe. Table 2-2 defines the
different flags used to calculate the safety of a lane change.

Let OVSL,f , OVAL,f and OVAL,r represent the vehicles in front of the HV in the same lane,
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14 Autonomous Driving: Basics

Flag Explanation

flagLC true if it is safe to change lane, false otherwise

flagδ true if there is an obstacle in front, in the same
lane of the HV, false otherwise

flagϵ1 true if there is an obstacle in the adjacent lane
and in front of the HV, false otherwise

flagϵ2 true if there is an obstacle in the adjacent lane
behind the HV, false otherwise

Table 2-2: Definition of flags used to calculate the safety of lane change.

the vehicle in front of the HV in the adjacent lane and the vehicle behind the HV in the
adjacent lane respectively. If multiple such vehicles exist within the ROI, the OV with the
minimum longitudinal distance is chosen in each case. Let dsafei,j , XOVi,j and vx,OVi,j be
the safe distance, the longitudinal position and the longitudinal velocity calculated for an
obstacle OVi,j where i ∈ {SL,AL} represents if the OV is in the same lane or the adjacent
lane of the HV respectively and j ∈ {f, r} represents if the OV is in front of or behind the
HV respectively. Equation (2-2) lists the multiple logical expressions used to calculate the
possibility of a lane change.

vx,OVSL,f
− vx,HV ≤ 0 (2-2a)

XOVSL,f
−XHV ≤ dsafeSL,f

+ d0 (2-2b)

vx,OVAL,f
− vx,OVSL,f

≥ 0 (2-2c)

XOVSL,f
−XOVAL,f

≤ dsafeSL,f
− dsafeAL,f

(2-2d)

XHV −XOVAL,r
≥ dsafeAL,r

+ d0 (2-2e)

Table 2-3 explains the different expressions in (2-2). However the values of dsafei,j , XOVi,j and
vx,OVi,j are undefined when there exists no OV in the i, j ∈ {{SL,AL} , {f, r}}.

The algorithm to check if a lane change is possible is given by Algorithm 1. The steps of
Algorithm 1 is given as follows:

• Line 2 checks if there exists an OV in front of the HV on the same lane. If the condition
is true then

– Line 3 checks if the velocity of the OVSL,f less than that of the HV. If the condition
is true then check if there are OV in the adjacent lane

∗ if there are no vehicles in the adjacent lane (Line 4)
· safe lane change is possible.

∗ if OVAL,f exists but not OVAL,r (Line 6) then
· Line 7 checks if the relative longitudinal distance between OVSL,f and HV

is less than the safe distance of OVSL,f plus constant. This is to make
sure that the distance available behind the OV in front of the HV in the
adjacent lane is greater so as to not cause a collision.
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Equation Explanation

(2-2a) true if the relative velocity of OVSL,f and HV is greater than zero, false
otherwise

(2-2b) true if the relative longitudinal distance between OVSL,f and HV is less
than the safe distance of OVSL,f plus constant, false otherwise

(2-2c) true if the relative velocity of OVAL,f and OVSL,f is greater than zero,
false otherwise

(2-2d) true if the relative longitudinal distance between OVSL,f and OVAL,f is
less than the difference in their safe distances, false otherwise

(2-2e) true if the relative longitudinal distance between HV and OVAL,r is
greater than the safe distance of OVAL,r, false otherwise

Table 2-3: Logical Expressions used in calculation of flagLC

Algorithm 1: Algorithm to calculate flagLC
Data: HV data, OV data, safe distance measure, flagδ, flagϵ1 ,flagϵ2
Result: flagLC

1 begin
2 if flagδ = true then
3 if (2-2a)=true then
4 if flagϵ1 = false & flagϵ2 = false then
5 Set: flagLC ← true
6 else if flagϵ1 = true & flagϵ2 = false then
7 if (2-2b)=true & (2-2c)=true & (2-2d)=true then
8 Set: flagLC ← true
9 else if flagϵ1 = false & flagϵ2 = true then

10 if (2-2e)=true then
11 Set: flagLC ← true
12 else if flagϵ1 = true & flagϵ2 = true then
13 if (2-2b)=true & (2-2c)=true & (2-2d)=true & (2-2e)=true then
14 Set: flagLC ← true
15 else
16 Set: flagLC ← false
17 else
18 Set: flagLC ← false
19 else
20 Set: flagLC ← false

· Line 7 checks if the relative velocity of OVSL,f and OVSL,f is greater than
zero. This is to ensure that the vehicle does not change lanes multiple
times.

· Line 7 checks if the relative longitudinal distance between OVSL,f and

Master of Science Thesis Josyula Viswanath Das
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OVAL,f is less than the difference in their safe distances. This is to make
sure that the distance available behind the OV in front of the HV in the
adjacent lane is greater so as to not cause a collision.

if the above conditions are true, lane change is allowed.
∗ if OVAL,r exists but not OVAL,f , (Line 9) then

· Line 10 checks if the relative longitudinal distance between HV and OVAL,r
is greater than the safe distance of OVAL,r. This is to prevent rear-end
collisions in case the HV has to suddenly apply brakes after a lane change.

if the above condition is true, lane change is allowed.
∗ if both OVAL,f and OVAL,r exist (Line 12), then

· Line 13 checks if the relative longitudinal distance between OVSL,f and
HV is less than the safe distance of OVSL,f plus constant. This is to make
sure that the distance available behind the OV in front of the HV in the
adjacent lane is greater so as to not cause a collision.

· Line 13 checks if the relative velocity of OVSL,f and OVSL,f is greater than
zero. This is to ensure that the vehicle does not change lanes multiple
times.

· Line 13 checks if the relative longitudinal distance between OVSL,f and
OVAL,f is less than the difference in their safe distances. This is to make
sure that the distance available behind the OV in front of the HV in the
adjacent lane is greater so as to not cause a collision.

· Line 13 checks if the relative longitudinal distance between HV and OVAL,r
is greater than the safe distance of OVAL,r. This is to prevent rear-end
collisions in case the HV has to suddenly apply brakes after a lane change.

if the above conditions are true, lane change is allowed.
∗ if all the above conditions are not true then the lane change is not safe (Line

16).
– if not true then the lane change is not safe (Line 18).

• if not true, the lane change is not safe (Line 20).

The algorithm is designed such that the expressions defined in (2-2) are not checked is a flags
representing the presence or absence of OVSL,f , OVAL,f and OVAL,r are false, there are no
errors.

2-3 Coordinate Systems

The thesis uses two different coordinate frames as seen by the black and blue coordinates
systems shown in Figure 2-5. The interpretation of the two distinctly coloured cars is as
follows: (1) the black car represents the state of the HV at the start of the control algorithm
and (2) the blue car represents the current state of the HV. In addition, two distinct coor-
dinate frames are visible. The black coordinate frame, with the lateral position on the right
lane boundary with longitudinal position coinciding with the CoG of the black car and has
its x-axis aligned with the longitudinal road direction, represents the global road coordinate
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Figure 2-5: Different coordinate frames used.

frame. The blue coordinate frame represents the local HV coordinate frame at the current
time and is fixed to the centre of gravity of the blue vehicle. The x and y axes of the local
HV coordinate frame are aligned with the direction of the current longitudinal and lateral
directions of the HV. The measurements of the longitudinal and lateral position are done in
the global road coordinate frame and other states are measured with respect to the local HV
coordinate frame.

2-4 Assumptions

Having understood the concept of safe driving and defining measures for collision avoidance
and lane changing, we now discuss some simplifying assumptions made during the design of
the APF-MPC and the MIMPC+APF-MPC algorithms. The relaxation of these assumptions
are considered as future research direction.

• The road is an infinitely long two-lane road with no curvature.

• All vehicles move from left to right on the road.

• A vehicle cannot have negative velocity.

• The size and shape of the OV are the same as that of the HV.

• OV data available to us is deterministic in nature and available at each control loop.

• OV travel at the centre of the lane at a constant speed.

• OV data available only include OV within the ROI.
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Chapter 3

Artificial Potential Fields

The APF method works by modelling the AV as a charged particle that moves under an
electric field toward an attracting target. Obstacles are represented by particles of opposite
charge that repel the AV. The concept was first introduced by Khatib et. al. [27] and has
been used widely in robotics for path planning. The APF method assumes that complete
information about the surrounding area is available before the start of the algorithm. The
basic idea of the APF method begins with the definition of the attractive and repulsive
potential, each representing the goal and the obstacles respectively. This chapter is divided
into three chapters. Section 3-1 explains the basic idea of an APF method for path planning.
Section 3-2 and 3-3 show the formulation of the potentials used further in this thesis.

3-1 Basics: APF

Given n obstacles, let X = [X Y ]T , Xg = [Xg Yg ]T and Xoj = [Xoj Yoj ]T where j = 1, 2, 3 . . . n
be any point under review in the environment, the goal position and the location of the jth

obstacle respectively in the 2-D plane. The basic attractive potential Uatt and the repulsive
potential for the jth obstacle U jrep are defined [27] as

Uatt(X ) = 1
2katt ∥ X − Xg ∥2 (3-1)

U jrep(X ) =


1
2krep

(
1

ρ(X ) −
1
ρj

o

)2
if ρ(X ) ≦ ρjo

0 if ρ(X ) > ρjo

(3-2)

where ρjo is the limit distance of the potential field influence defining the maximum distance
from its centre within which the obstacle has an influence and ρ(X ) is the distance to the
obstacle from X . Having defined the attractive and the repulsive fields, the total artificial
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20 Artificial Potential Fields

potential field Uapf is given by

Uapf(X ) = Uatt(X ) +
n∑
j=1

U jrep(X )

= Uatt(X ) + Urep(X ).
(3-3)

The environment is therefore assigned a potential value at each point. A gradient descent
method is used to find the path through the obstacles. The final path is defined using the
attractive force Fatt(X ) of the goal and the repulsive force for the jth obstacle, Frepj

(X ) is
given by

Fatt(X ) = −∇Uatt(X )
= −katt (X − Xg)

(3-4)

Frepj
(X ) = −∇U jrep(X )

=


krep

(
1

ρ(X ) −
1
ρj

o

)
1

ρ(X )2
∂ρ
∂X if ρ(X ) ≤ ρjo

0 if ρ(X ) > ρjo

where ∂ρ

∂X
=
[
∂ρ
∂X

∂ρ
∂Y

]T
.

(3-5)

The total force applied at X is given by

F (X ) = −∇Uapf(X )

= −∇Uatt(X )−
n∑
j=1
∇Urep(X )

= Fatt(X ) + Frep(X ).

(3-6)

The APF method is widely used as opposed to other strategies because it can consider the
issues of collision avoidance and direction estimation at the same time while having a small
computational burden. However, traditional APF method suffers from a number of problems
[49]:

• Lack of net artificial force at certain locations due to opposing forces from the obstacles
and the goal respectively may trap the vehicle in a local minimum.

• goal not being able to be reachable with obstacles nearby due to the repulsive potential
of the obstacles greater than that of the attractive potential of the goal.

A number of ideas have been proposed to solve the disadvantages of the APF method. Differ-
ent repulsive and attractive potential functions have been defined as repulsive potential fields
with spherical symmetry like a Gaussian shape do not create local minima [50]. Yang et al.
[51] also propose a potential field dependent on the Euclidean distance between the goal and
the vehicle to overcome the problem of the goal not being reachable. This thesis uses two
different repulsive potentials called the obstacle potential field and the road potential field.
Each of these potentials is used to denote a specific kind of obstacle that the HV should avoid.
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3-2 Obstacle Potential Field

The obstacle potential represents the task of avoiding other vehicles on the road. Superquadric
functions are used to denote every OV on the road as they mimic the shape of the obstacle
in the region around it while having spherical symmetry in the region away from it [50, 52].
The Yukawa potential is one such superquadric potential and represents an obstacle as an
exponential function of the euclidean distance between the HV and OV. Yukawa potential
acts like a penalty function that goes from zero in the region away from the obstacle to infinity
at the boundary and within the body of the obstacle. The mathematical expression for the
Yukawa potential of the jth obstacle is given by

U jyuk

(
X , Bj

)
= Ayuk

e−byukdist(X ,Bj)
dist (X , Bj) . (3-7)

where dist (X , ζ) is a function representing the euclidian distance between the coordinates
of X = [X Y ]T with the closest point in the coordinate set ζ, X is any point on the global
coordinate frame, Bj is the set of points representing the jth obstacle, j = 1, 2, . . . , NOV with
NOV representing the number of OV within the ROI and Ayuk and byuk are constants and are
given in Table 3-1.

Description Value Symbol

Scaling constant of the Yukawa potential 100 Ayuk

Constant to control the slope of the Yukawa potential 0.001 byuk

Table 3-1: Scalar values of constants used to calculate Uyuk

The euclidean distance function between the coordinates of X with the closest point in the
coordinate set ζ is defined as

dist (X , ζ) = min
b∈ζ
∥X − b∥ (3-8)

dist
(
X , Bj

)
= min

b∈Bj
∥X − b∥ (3-9)

Figure 3-1 shows a Yukawa potential. However, the design of the Yukawa potential has the
following problems: (1) The vehicle detects the change in potential due to the obstacle only
after it reaches close to the vehicle making it dangerous in case of sudden braking by the
obstacle, (2) As the shape of the potential follows the shape of the obstacle, the HV does not
get any help to make smooth lane change manoeuvres and maintain a safe distance from the
obstacle.

A new obstacle potential is therefore proposed to combat these problems exhibited by the
Yukawa potential. First, the negative exponential part of the Yukawa potential is replaced by
an inverse logarithm so as to extend the range of influence of the potential. Figure 3-2 shows
the comparison between the 2-D versions of the Yukawa potential and the newly designed
potential for clarity.

The second improvement is the addition of a wedge-shaped block behind the obstacle for
maintaining a safe distance and aid smooth lane changes [1] as seen in Figure 3-3 where blue
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Figure 3-1: Yukawa Potential

Figure 3-2: Comparison of the curvature of between the 2-D version of the Yukawa potential (in
red) and defined obstacle potential (blue)

represents the actual obstacle, grey represents the wedge-shaped block added to maintain a
safe distance and to aid lane change. The height of the wedge-shaped block is given by the
safe distance measure defined in Section 2-2-1. The mathematical formulation of the new
obstacle APF for the jth obstacle is therefore given by

U jobs

(
X , Bj

)
= −Aobs ln

(
bobsdist

(
X , Bj

))
dist (X , Bj) (3-10)

where Aobs and bobs is a positive constant given in Table 3-2 and Bj is is extended to include
wedge-shaped block and is dependent on the safe distance of the jth OV.
The orthogonal view of the new obstacle potential is shown in Figure 3-4. This newly designed
potential will be referred to as the obstacle APF further in this thesis. It can however be seen
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Figure 3-3: Representation of the different parts of the obstacle

Description Value Symbol

Scaling constant of the Obstacle APF 1 Aobs

Constant to control the slope of the Obstacle APF 0.01 bobs

Table 3-2: Scalar values of constants used to calculate Uobs

Figure 3-4: 3-D orthogonal representation of the obstacle APF

that the obstacle potential is non-convex in nature and therefore increases the complexity
of the control strategy. To reduce computation time and simplify the control strategy, a
convex approximation of the obstacle APF is proposed. The idea is to divide the region
around the obstacle into regions and define a convex approximation of the obstacle APF in
any given region. First, the area around the obstacle is divided into ten different regions
as seen in Figure 3-5 where vi where i = 1, 2, . . . , 5 are the vertices of the jth obstacle and
Le (X ) := AeX +BeY +Ce where e = 1, 2, . . . , 10 are lines which divide the area around the
jth obstacle into regions Re. The upcoming subsections give some basic theory required for
the convexification of the obstacle APF.
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Figure 3-5: Division of the obstacle’s surroundings into multiple regions

3-2-1 Location of a point with respect to a line

This subsection defines how to find the location of a point with respect to a line. This is used
to find the region RHV around a given OV the HV lies in. Given a line L (X ) = AX+BY +C
and Xp = [Xp Yp ]T be a point. The idea is to check if the point is above/ in front or below/
behind a given line. Table 3-3 shows the multiple combinations of the line and point and the
expression to be used to check the location of the point with respect to the line. For example,

Orientation of the Line Expression Used

AXp +BYp + C ≥ 0

AXp +BYp + C ≤ 0

AXp +BYp + C ≥ 0

AXp +BYp + C ≤ 0

YL − Yp ≤ 0

YL − Yp ≥ 0

XL −Xp ≤ 0

XL −Xp ≥ 0

Table 3-3: Expression to be used to check the relative location of Xp with L (X )
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it can be checked if a point is above a given line by replacing the coordinates of the point in
the line and checking if it is greater than zero and vice versa.

3-2-2 Distance of a Point from a Line Segment

This subsection formulates the minimum distance of a point from a given line segment. Let
endpoints of the line segment LS are XLS1 = [XLS1 YLS1 ]T and XLS2 = [XLS2 YLS2 ]T and
Xp = [Xp Yp ]T be the point from which we have to find the distance. The basic idea of this
formulation comes from the idea of projection of the line segment joining one of the vertices
of the LS with Xp onto LS (using the dot product) and normalizing it. Readers can refer to
[53, 54] for more information and the derivation of the equations.

Let t be a variable defined as

t = (Xp −XLS1) (XLS2 −XLS1) + (Yp − YLS1) (YLS2 − YLS1)
(XLS2 −XLS1)2 + (YLS2 − YLS1)2 . (3-11)

Table 3-4 shows the meaning of different values of t. The minimum distance between Xp and

Orientation of the Line

t t < 0 o ≤ t ≤ 1 t > 1

Table 3-4: Meaning of different value of t

LS is given by

dp−ls (Xp, LS) =



√
(Xp −XLS1)2 + (Yp − yYLS1)2 if t < 0

√
(Xp − (XLS1 + t (XLS2 −XLS1)))2 + (Yp − (YLS1 + t (YLS2 − YLS1)))2

if 0 ≤ t ≤ 1

√
(Xp −XLS2)2 + (Yp − YLS2)2 if t > 1

(3-12)

3-2-3 Convex Approximation of the Obstacle APF

This section discusses the method of formulating the convex approximation of the obstacle
APF. The basic idea is to first find the region in which the HV lies using the theory explained
in Section 3-2-1 and define a region-specific obstacle APF using the theory in Section 3-2-2.
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Region Calculation: Let v1, v2, v3, v4 and v5 be the vertices of the jth obstacle respectively
as shown in Figure 3-6. Table 3-5 shows the logical constraints used to find the region of a given

Figure 3-6: Boundaries of the OV

OV that the HV lies in. These expressions are dependent on XHV = [XHV YHV ]T representing
the coordinates of the CoG of the HV and Xvi = [Xvi Yvi ]T represent the coordinates of the
vertices of the jth OV . Let us define RHV as the region around the jth OV that the HV lies

Region Logical Expression

R1 XHV −Xv1 > 0 ∧ YHV − Yv1 ≤ 0 ∧ YHV − Yv5 > 0

R2 XHV −Xv1 ≥ 0 ∧ YHV − Yv1 > 0

R3 XHV −Xv1 < 0 ∧ YHV − Yv1 > 0 ∧XHV −Xv2 ≥ 0

R4 XHV −Xv2 < 0 ∧A7XHV +B7YHV + C7 ≥ 0

R5 A3XHV +B3YHV +C3 > 0∧A7XHV +B7YHV +C7 < 0∧A8XHV +
B8YHV + C8 ≥ 0

R6 A8XHV +B8YHV + C8 < 0 ∧A9XHV +B9YHV + C9 ≥ 0

R7 A4XHV +B4YHV +C4 < 0∧A9XHV +B9YHV +C9 < 0∧A10XHV +
B10YHV + C10 ≥ 0

R8 XHV −Xv4 ≤ 0 ∧A10XHV +B10YHV + C10 < 0

R9 XHV −Xv1 ≤ 0 ∧XHV − xv4 > 0 ∧ YHV − Yv5 < 0

R10 XHV −Xv1 > 0 ∧ YHV − Yv1 ≤ 0

Table 3-5: Logical expressions to check the region around an OV the HV lies in.

in.

Euclidian Distance Calculation: Let LS1, LS2, LS3, LS4 and LS5 be the line segments
between v5 and v1, v1 and v2, v2 and v3, v3 and v4 and v4 and v5 respectively as shown in
Figure 3-6 representing the boundaries of the jth OV.

The minimum distance of the CoG of the HV from the jth OV in a given region is equal to
the distance between the CoG of the HV and the boundary of the jth OV in the respective
region. Therefore, the distance function dist

(
X , Bj

)
used in (3-10) is replaced with the

distance function dp−ls (Xp, LSl) formulated in (3-12) in the region RHV to generate a convex
obstacle APF for each region where LSl is the line segment representing the boundary of the
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jth obstacle bordering RHV with l = 1, 2, . . . , 5. The convex obstacle APF for the jth obstacle
for then becomes

U j,lobsconv
(XHV, LSl) = −Aobs ln (bobsdp−ls (XHV, LSl))

dp−ls (XHV, LSl)
(3-13)

Table 3-6 shows the line segment representing the nearest boundary of the jth OV for each
region around the OV. If the HV is in regions R1, R3, R5, R7 and R9, the closest distance

Region Closest Line Segment

Region 1 and Region 2 LS1

Region 3 and Region 4 LS2

Region 5 and Region 6 LS3

Region 7 and Region 8 LS4

Region 9 and Region 10 LS5

Table 3-6: Line Segment used to calculate dp−ls (Xp, LSl) based on region

will be the minimum distance between XHV and the closest point on the corresponding line
segment whereas if the HV is in regions R2, R4, R6, R8 and R10, the closest distance will be the
minimum distance between the CoG of the HV and the closest endpoint of the corresponding
line segment. Figure 3-7 show the physical representation of dp−ls (Xp, LSl) when the HV is
in R1 and R2 respectively.

(a) (b)

Figure 3-7: Distance between the CoG of the HV and the closest point on the OV for (a) R1
and (b) R2

The algorithm that describes the process used to calculate the convex approximation of the
jth obstacle APF, U j,lobsconv

(XHV, LSl) is given by Algorithm 2.
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Algorithm 2: Algorithm to calculate the convex approximation of the obstacle APF
Data: XHV, Aobs, bobs, Ae, Be, Ce, Xvi , X1,LSl

, X2,LSl

Result: U j,lobsconv
(XHV, LSl)

1 begin
2 RHV=CalculateHVRegion(XHV, Ae, Be, Ce, Xvi)
3 switch region do
4 case RHV== R1 do
5 dp−ls (XHV, LS1)= CalculateDist(region, XHV, X1,LS1, X2,LS1) break
6 case RHV== R2 do
7 dp−ls (XHV, LS1)= CalculateDist(region, XHV, X1,LS1, X2,LS1) break

8
...

9 case RHV== R10 do
10 dp−ls (XHV, LS5)= CalculateDist(region, XHV, X1,LS5, X2,LS5) break

11 U j,lobsconv
(XHV, LSl) = −Aobs ln(bobsdp−ls(XHV,LSl))

dp−ls(XHV,LSl)

where Xvi are the coordinates of the vertices of the jth OV, X1,LSl
and X2,LSl

are the coor-
dinates of the endpoints of line segment LSl, RHV = R1, R2, . . . , R10 is the current region in
which the HV lies in, CalculateHVRegion is a function used to calculate the current region
around the OV in which XHV lies and CalculateK is a function to generate the correct value
of dp−ls (Xp, LSl) to be used in (3-13) to generate the obstacle APF based on the current
region. The algorithms for these function definitions are given in Appendix B. The algorithm
works as follows:

• Calculate the region around the OV which the HV lies in using the CalculateHVRegion
function. The input to the CalculateHVRegion function is the position of the CoG of
the HV, the heading angle of the HV, the vertices of the obstacle APF and the data
about the lines dividing the area around the OV into regions. The algorithm of the
CalculateHVRegion function is described by Algorithm 5.

• A switch case is used to calculate the correct value of dp−ls (XHV, LSl) using the Calcu-
lateDist function described by Algorithm 6. The closest boundary of the OV is selected
based on Table 3-6. The input to the CalculateDist function is the position of the CoG
of the HV, the heading angle of the HV, the vertices of the obstacle APF and the data
about the lines dividing the area around the OV into regions.

• The obtained value of dp−ls (XHV, LSl) is used to obtain the convex approximation of
the jth obstacle potential, U j,lobsconv

(XHV, LSl) by replacing dist (X , ζ) used in (3-10) with
dp−ls (Xp, LSl).

Figure 3-8 shows the contours of the obstacle APF before and after approximation. It can be
seen that the contours follow each other well.

The obtained convex approximation of the obstacle APF can be further simplified with the
help of a quadratic approximation of the obstacle APF obtained as the output of Algorithm 2.
Let us define a function quad (U) used to calculate the quadratic Taylor-series approximation
of any potential U . Appendix A shows the definition of quad (U). The quadratic Taylor-series
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(a) (b)

Figure 3-8: Contour of the obstacle APF for (a) the obstacle APF, (b) the convex approximation
of the obstacle APF for all the regions

approximation of the convex approximation of the jth obstacle APF can therefore represented
as

quad
(
U j,lobsconv

(XHV, LSl)
)

The total obstacle APF is defined as the sum of the quadratic Taylor-series approximation of
the convex approximation of all obstacle APF and is represented as

Uo (XHV) =
NOV∑
j=1

quad
(
U j,lobsconv

(XHV, LSl)
)

(3-14)

3-3 Road Potential Field

The road potential field is used to keep the HV away from the edges of the road to ensure safe
driving within the road boundaries. The road APF therefore has two important requirements:
(1) to keep the HV from leaving the road boundaries and (2) to prevent the HV to drive very
close to the road boundary. Road potentials are an integral part of any APF based collision
avoidance algorithms. This thesis uses simple definitions of road potential to reduce the
complexity of the control strategy. The two different formulations of the road potential used
in the thesis are defined in the following subsections.

3-3-1 Road APF for APF-MPC algorithm

The road APF for the APF-MPC algorithm is a basic road potential which fulfils the two
requirements of the road potential. The road potential is given by a combination of penalty
functions at each of the road boundaries. The mathematical expression for the road potential
field is expressed as [1]

Ur (X ) = 1
2η
∑
i

(
1

Y − Y road
i

)2

(3-15)
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Figure 3-9

Figure 3-10: Orthogonal View of the Road Potential Ur (X )

Figure 3-11: Side View of Quadratic Road Potential Ur (X )

where Y road
i is the lateral position of the road boundaries in global road coordinates, i ∈ {1, 2}

and η is a scaling factor. Table 3-7 shows the values of constants used in (3-16). Figure 3-10
shows the 3-D orthogonal view of the road potential.

This road potential however does not keep the vehicle in the lane centre as the potential is
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Description Value Symbol

Scaling constant of the Road APF for APF-MPC algorithm 1 η

Right lane boundary 0 Y1

Left lane boundary 6 Y2

Table 3-7: Scalar values of constants used to calculate Ur (XHV)

not zero away from the edges of the road as seen in Figure 3-11. The road potential slopes
such that there is a minimum at the centre of the road. This road potential is approximated
to a quadratic potential around the CoG of the HV by a Taylor series approximation defined
in Appendix A to simplify the MPC optimal control problem. The quadratic road potential
for the APF-MPC algorithm is therefore given by

Urquad
(X ) = quad (Ur (X )) (3-16)

3-3-2 Road APF for MIMPC+APF-MPC algorithm

The road APF for the MIMPC+APF-MPC algorithm is a road potential that generates a
convex potential which is skewed towards the centre of a given lane. The road potential is a
combination of two basic potentials; (1) a road potential which goes to infinity on the edges
of the road and is almost flat elsewhere (3-16) and (2) a LINear EXponential (LINEX) loss
function [55] to skew it towards the centre of the given lane. The combined mathematical
expression is given by

UL∗,r (X ) = br,∗
(
ear,∗(Y−Ylane) − ar,∗ (Y − Ylane)− 1

)
︸ ︷︷ ︸

LINEX Loss Function

+ 1
2η
∑
i

(
1

Y − Y road
i

)2

︸ ︷︷ ︸
Penalty Function

(3-17)

where ar,∗ and br,∗ are constants used to tune the shape of the road potential where ∗ ∈ {0, 1}

Lane Description Value Symbol

Lane 0

Rate of Change of Skew for the LINEX loss function −2 ar,∗

Scaling Factor for the LINEX loss function 1× 105 br,∗

Centre of the lane 1.5 Ylane

Lane 1

Rate of Change of Skew for the LINEX loss function 2 ar,∗

Scaling Factor for the LINEX loss function 1× 105 br,∗

Centre of the lane 4.5 ylane

Table 3-8: Scalar values of constants used to calculate UL∗,r (XHV)

defines if the road potential is for Lane 0 or Lane 1, Ylane is the lateral position of the given
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lane centre, Y road
i is the lateral position of the road boundaries in global road coordinates,

i ∈ {1, 2} and η is a scaling factor. Table 3-8 shows the values of the different constants used
in (3-17) for both lanes.

Figure 3-12a and Figure 3-12b show the orthogonal view of the skewed road potential when
the selected lane is Lane 0 or Lane 1 respectively. This road potential is approximated to a

(a) (b)

Figure 3-12: Orthogonal View of Quadratic Road Potential (a) UL0,r (XHV), (b) UL1,r (XHV)

quadratic potential around the CoG of the HV by a Taylor series approximation defined in
Appendix A to simplify the MPC optimal control problem. The quadratic road potential for
the MIMPC+APF-MPC algorithm is therefore given by

UL∗,rquad
(X ) = quad (UL∗,r (X )) (3-18)
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Chapter 4

Vehicle Control System (VCS)

The race to provide increasingly better systems for driver support has led to competition
between automotive manufacturers. This is true even for autonomous vehicles with manu-
facturers competing with increasingly better features. However, it is to be kept in mind that
each of these subsystems has to be integrated into a single module to coordinate with each
other to provide high performance of the AV.

Vehicle Control System performs the task of integrating the different goals of the subsystems
into a single task and effectively finding a set of actuator inputs to help fulfil these goals.
These tasks include but are not limited to energy efficiency, passenger comfort, reference
tracking etc. These tasks can be pre-programmed like the bounds for acceleration or jerk
which can lead to discomfort of the passengers or can be generated onboard like the path
to track generated by the path planner for the vehicle controller to follow. An AV can
however only give a certain number of control inputs to track these goals. These inputs for
an autonomous ground vehicle are the throttle and the steering angle. VCS also have to deal
with both longitudinal and lateral control.

MPC is an optimization-based control strategy which has been widely used in the design on
VCS due to its incorporation of the model and constraints of the system and its surroundings,
support for multi-input multi-output and the wide range of problems it can solve [56][57].
This chapter is divided as follows; Section 4-1 discusses the formulation of MPC for standard
MPC and MIMPC. Section 4-2 introduces the system models used in the APF-MPC and
MIMPC+APF-MPC control strategies respectively. Section 4-3 and Section 4-4 expand upon
the formulation of the different vehicle models in each strategy and formulates the APF-MPC
and MIMPC+APF-MPC control strategies respectively.

4-1 Model Predictive Control (MPC)

Model Predictive Control (MPC) is a control strategy in which the control input to be applied
to the system is attained by solving a finite horizon optimal control problem online by using

Master of Science Thesis Josyula Viswanath Das



34 Vehicle Control System (VCS)

the current state of the system as its initial state. The design of MPC is divided into two
parts: (1) the system model defined based on the mathematical model of the system to be
controlled and (2) the optimization problem used to attain the desired control input. Figure 4-
1 shows the basic block diagram of MPC control strategy and its interaction with the system
under consideration. The system model predicts the system’s response to a set of control

Figure 4-1: Block diagram of Model Predictive Control (MPC)[11]

inputs. The set of control inputs represents the control inputs given to the actual system
over a finite number of steps. The number of steps represents the prediction horizon of the
MPC problem. The optimization defines the cost function and the constraints as a function
of the above-mentioned set of control inputs. The cost function obtains the state closest to
the reference state by optimizing over the set of control inputs.

Having been first introduced almost half a century ago as Model Predictive Heuristic Control
by Richalet, J et.al. [58], MPC has spread its presence over most industries due to ease of
implementation, its ability to accurately handle nonlinear dynamics and to cope with hard
constraints on controls and states.

If the principles behind the system to be modelled are known, the prediction model is de-
rived using differential equations for the continuous time systems and difference equations for
discrete-time systems. Some systems which are a function of both continuous and discrete-
time variables are written as hybrid systems. The authors in [59] discuss the different hybrid
systems used with MPC. If the system is a black box and only the input/output data is
available, then the model of the system is developed using system identification. Multiple
system models which can be identified from input-output data are shown in [60]. MPC can
be classified into standard MPC and MIMPC depending on the presence of integer variables
in the system model, cost or constraints. The next two subsections discuss the basic theory
of standard MPC and MIMPC respectively.

Let k = 1, 2, . . . Np represent the prediction steps of the MPC optimal control problem,
q = 1, 2, . . .∞ represent the number of loops outside the MPC optimal control problem and
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the generalized notation hq+k|q indicate the value of the variable h at loop number q and
prediction step k based on the value of h from loop zero to q. This notation is followed
throughout the thesis. The prediction horizon of the MPC problem is denoted by Np.

4-1-1 Standard MPC Formulation

In this section, we consider the case when all variables associated with the optimal control
problem are real-valued. The general form of a discrete-time prediction model with initial
state xq|q is given by

xq+k|q = f(xq+k−1|q,uq+k−1|q) (4-1)

where xq+k−1|q ∈ Rn is the state vector, uq+k−1|q ∈ Rm is the input vector, f(xq+k−1|q,uq+k−1|q)
is the state equation and xq+k|q represents the successor state. The k steps forward solution
of (4-1) is denoted as xq+k−1|q = ϕ

(
q + k − 1; xq|q,uq+k−1

)
where uq+k−1 = {uq+0|q,uq+1|q,

. . . ,uq+k−1|q} is the set of inputs which lead the system from xq|q to xq+k. The case when
(4-1) is a linear time-invariant system is given by

xq+k|q = Axq+k−1|q +Buq+k−1|q (4-2)

where A ∈ Rn×n is the state transition matrix and B ∈ Rn×m is the input matrix

The optimization problem consisting of the objective function, the system dynamics, the
system constraints and the terminal constraints is given by

PNp

(
xq|q

)
:=



min
uq+Np−1

VNp

(
xq|q,uq+Np−1

)
s.t. xq+k|q = Axq+k−1|q +Buq+k−1|q

xq+k|q ∈ Xq+k

uq+k−1|q ∈ Uq+k−1

xq+Np+1|q ∈ Xf

(4-3)

where Xq+k ⊆ Rn is the state constraint, Uq+k−1 ⊆ Rm is the input constraint, xq+Np+1|q
is state of the system after Np prediction steps, Xf ⊆ Rn is the terminal constraint and
VNp

(
xq|q,uq+Np−1|q

)
is the objective function given by

VNp

(
xq|q,uq+Np−1

)
=

Np∑
k=1
{Vs(xq+k−1|q,uq+k−1|q)︸ ︷︷ ︸

stage cost

}+ Vf(xq+Np+1)︸ ︷︷ ︸
terminal cost

. (4-4)

where Xq+k is convex, closed set ∀ q, k, Uq+k−1 is a convex and compact set at ∀ q, k and
each of them contains the origin. The objective function encodes performance and safety
requirements that have to be optimized under the given constraints. Equation (4-4) shows
how the objective cost function of an MPC problem is divided. Vs is the stage cost is the cost
associated with the input-state pair at each prediction step and Vf is the terminal cost which
is the cost associated with the state after the final prediction step of the MPC optimal control
problem. The system constraints include state, input, output and state-input constraints.
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As the constrained optimization problem leads to a non-linear control law, proving closed-
loop stability is done using the Lyapunov theory. The objective function can be used as the
Lyapunov function if a terminal equality constraint Xf = 0 is added to the stage cost [61].
This idea has then been extended with the addition of a terminal constraint set containing
the origin, xq+Np+1|q ∈ Xf ⊂ Xq+k and the addition of terminal cost to the stage cost. The
sufficient conditions for proving closed-loop stability and recursive feasibility of a constrained
MPC problem when terminal cost or constraints are added to the objective function [62] are:
(1) the terminal constraint set is a subset of the state constraint set and is closed, (2) A
locally stabilizing controller is employed within the terminal set (3) the terminal constraint
set is positively invariant for the locally stabilizing controller employed and (4) the terminal
cost function is a local Lyapunov function in the terminal constraint set.

4-1-2 Mixed Integer MPC Formulation

MIMPC is an extension of the standard MPC algorithm when the problem contains discrete
variables along with continuous variables. A specific form of the MIMPC system model which
integrates continuous and logical variables called MLD systems was discussed in [39] and is
given by [59]

xq+k|q = A1xq+k−1|q +B1uq+k−1|q +B2∆q+k−1|q +B3zq+k−1|q

E2∆q+k−1|q + E3zq+k−1|q ≤ E4xq+k−1|q + E1uq+k−1|q + E5
(4-5)

where x = [ xc xd ]T ∈ Rnc × Bnd is the system state, u = [ uc ud ]T ∈ Rmc × Bmd is the
system input, ∆ ∈ Brd is the set of logical variables and z ∈ Brc is the set of compound
variables which represent the product between the logical variables and the system states
and inputs. xc and uc represent the continuous state and input variables and xd and ud
represent the integer/discrete state and input variable. The matrices A1 ∈ R(nc+nd)×(nc+nd),
B1 ∈ R(nc+nd)×(mc+md), C1 ∈ R(pc+pd)×(nc+nd), D1 ∈ R(pc+pd)×(mc+md), B2 ∈ R(nc+nd)×(rd)

and D2 ∈ R(pc+pd)×(rd), B3 ∈ R(nc+nd)×(rc),and D3 ∈ R(pc+pd)×(rc) are real constant matrices
respectively and E5 is a scalar vector.

The solution of (4-5) is represented as

xq+k−1|q =ϕ
(
q + k − 1; xq|q,uq+k−1,∆q+k−1, zq+k−1

)
=A(q+k−1)

1 xq|q + Cu
q+k−1uq+k−1 + C∆

q+k−1∆q+k−1 + Cz
q+k−1zq+k−1

(4-6)

where uq+k−1 = {uq+0|q,uq+1|q, . . . ,uq+k−1|q}, ∆q+k−1 =
{

∆q+0|q,∆q+1|q, . . . ,∆q+k−1|q
}

and

zq+k−1 =
{

zq+0|q, zq+1|q, . . . , zq+k−1|q
}

are the set of inputs, logical variables and compound
variables which lead the system from x0 to xq+k and

Cu
q+k−1 : =

[
B1 A1B1 · · · Aq+k−1

1 B1

]
C∆
q+k−1 : =

[
B2 AB2 · · · Aq+k−1B2

]
Czq+k−1 : =

[
B3 AB3 · · · Aq+k−1B3

] (4-7)
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The optimization problem for MIMPC consisting of the linear or quadratic objective function,
linear system dynamics and linear system constraints is given by

PNp

(
xq|q

)
=:



min
uq+Np−1,∆q+Np−1,zq+Np−1

VNp

(
xq|q,uq+Np−1,∆q+Np−1, zq+Np−1

)
s.t.

xq+k|q = A1xq+k−1|q +B1uq+k−1|q +B2∆q+k−1|q

+B3zq+k−1|q,

E2∆q+k−1|q + E3zq+k−1|q ≤ E4xq+k−1|q

+E1uq+k−1|q + E5,

(4-8)
where VNp

(
xq|q,uq+Np−1,∆q+Np−1, zq+Np−1

)
is the objective function given by

VNp

(
xq|q,uq+Np−1,∆q+Np−1, zq+Np−1

)
=

Np∑
k=1

Vs
(
xq+k−1|q,uq+k−1|q,∆q+k−1|q, zq+k−1|q

)
(4-9)

4-2 Vehicle Model

The design of a vehicle model used in MPC should be done carefully as it plays a major role
in the formulation of the control law. The vehicle model in an MPC based control strategy is
used to predict the future states of the system given a set of control inputs over the prediction
horizon. The mathematical model of a vehicle may consist of vehicle kinematics and/or vehicle
dynamics. There are multiple representations of both the vehicle kinematics and dynamics,
each with different levels of complexity [63].
Multiple vehicle models are used in this thesis with each to be used for different parts of the
control algorithm. Section 4-3-1 describes the mathematical model as the combination of the
kinematic vehicle model [64] and the non-linear bicycle model [65], linearized at the current
state as the HV and is used in the APF-MPC algorithm. A simplified continuous dynamics
which follows the Forward-Euler for vehicle velocity is used to denote the HV in the MIMPC
algorithm along with a binary vehicle lane variable as seen in Section 4-4-1. The motion of
the obstacles is represented by a Constant Velocity (CV) model is discussed in Section 4-3-2.

4-3 APF-MPC Control Strategy

The design of the APF-MPC control strategy brings together the advantages of the APF such
as obstacle avoidance and that of MPC and integrates path planning and vehicle control as
explained in Section 1-3.
The APF-MPC algorithm uses standard MPC methods as discussed in Section 4-1-1. The
formulation of the algorithm is divided into; (1) the formulation of the system model of the
HV, (2) the design of the tracking model of the OV, (3) the selection of the time period and
the prediction horizon, (4) the formulation of the state and input constraints, (5) the design
of the reference trajectories, and (6) the formulation of the cost/ objective function of the
APF-MPC algorithm.
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4-3-1 HV Model (APF-MPC)

The vehicle model for the APF-MPC algorithm uses both the kinematic vehicle model repre-
senting the motion of the HV in the global road coordinate frame [64, 66] and the non-linear
bicycle model representing the interaction between the longitudinal and lateral dynamics of
a vehicle [65]. The bicycle model also called a single-track model is a commonly used vehicle
dynamics model due to its balance between the representation of actual system dynamics
and model complexity. It is called a bicycle model/single track as the left and right wheels
(seen in grey) are assumed to behave equally and therefore combined to be represented as a
two-wheel model (seen in black) as seen in Figure 4-2. where ℓf and ℓr is the distance between

Figure 4-2: 4-wheel model (grey) vs bicycle model (black)

the CoG and the front and rear wheel axles respectively, wheelbase ℓ = ℓf + ℓr and the track
t are vehicle dimensions of the vehicle chassis, and l and w are the length and width of the
vehicle.

The states of the vehicle model are the longitudinal and lateral position of the HV with
respect to the global road coordinate XHV, YHV ∈ Yx := [0, Ymax] respectively, the lateral
and longitudinal velocity of the HV vx,HV ∈ Vx := [0, vx,max], vy,HV ∈ Vy := [−vy,max, vy,max],
the yaw angle θHV ∈ T := [−θmax, θmax] and the rate of change of yaw angle θ̇HV ∈ R :=
[−rmax, rmax]. The control inputs to the system are defined as the vehicle longitudinal acceler-
ation ax,HV ∈ Ax := [−ax,max, ax,max] and the steering wheel angle δHV ∈ D := [−δmax, δmax].
Figure 4-3 shows the free-body diagram of the bicycle model

where Flf and Flr are the longitudinal tire forces on the front and the rear wheel, Fcf
and Fcr

are the lateral tire forces on the front and the rear wheel, vf and vr are the velocities at the
front and the rear wheel respectively, αf and αr are the slip angles at the front and the rear
wheel respectively, m is the mass of the vehicle and F = m ax,HV is the external longitudinal
force applied to the CoG due the acceleration input.

The kinematics of the vehicle is represented as the combination of a translation and rotation
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Figure 4-3: Free body diagram of the bicycle model of the HV

of the local HV coordinates to the stationary global road coordinate and are given by [66]

ẊHV = vx,HV cos (θHV)− vy,HV sin (θHV)
ẎHV = vx,HV sin (θHV) + vy,HV cos (θHV)

(4-10)

The equations denoting the mathematical model of the non-linear bicycle model representing
the HV dynamics are derived from the free body diagram shown in Figure 4-3 using Newton’s
laws of motion and are given by [67, 68]

v̇x,HV = θ̇HVvy,HV +
2Fxf

m
+ 2Fxr

m
+ ax,HV

v̇y,HV = −θ̇HVvx,HV +
2Fyf

m
+ 2Fyr

m

θ̈HV =
ℓfFyf

Iz
− ℓrFyr

Iz

(4-11)

where Iz is the inertia of the vehicle over the axis passing through the CoG of the HV
perpendicular to the X-Y plane, and the forces Fxf

, Fxr , Fyf
, Fyr represent the forces applied

on the CoG of the HV due to the longitudinal and lateral tire forces and are given by

Fx∗ = Fl∗ cos (δ∗,HV)− Fc∗ sin (δ∗,HV)
Fy∗ = Fl∗ sin (δ∗,HV) + Fc∗ cos (δ∗,HV)

(4-12)

Master of Science Thesis Josyula Viswanath Das



40 Vehicle Control System (VCS)

where ∗ ∈ [f, r]. As the thesis assumes that only the front wheels of the vehicle are controllable
using the steering angle, δr,HV = 0 and δf,HV = δHV. The longitudinal tire force Fl∗ and lateral
tire force Fc∗ can be generally represented as

Fl∗ = fl(α∗, µ, s, Fz)
Fc∗ = fc(α∗, µ, s, Fz)

(4-13)

where µ is the friction coefficient of the road, s is the slip ratio describing the ratio of the
difference between the wheel velocity (the longitudinal velocity of the vehicle based on the
angular velocity of the wheel) and the measured longitudinal velocity with the latter and Fz
is the vertical load of the HV. This thesis assumes that the wheels do not slip on the road
and therefore the longitudinal tire forces of the vehicle are assumed to be zero. The lateral
tire forces are given by

Fcf
= −Cfαf

Fcr = −Crαr
(4-14)

where Cf and Cr are the stiffness parameters of the front and rear wheels. Under small angle
assumptions, the tire slip angles can be denoted as

αf = δHV −
vyHV + lf θ̇HV

vxHV

αr = vyHV − lrθ̇HV
vxHV

(4-15)

By substituting (4-12)-(4-15) in (4-11) the non-linear bicycle model with linear tire response
is given by

v̇x,HV = θ̇HVvy,HV +
(2Cf
m

)(
δHV −

vy,HV + ℓf θ̇HV
vx,HV

)
sin δHV + ax,HV

v̇y,HV = −θ̇HVvx,HV −
(2Cf
m

)(
δHV −

vy,HV + ℓf θ̇HV
vx,HV

)
cos δHV −

(2Cr
m

)(
vy,HV − ℓrθ̇HV

vx,HV

)

θ̈HV = −
(
ℓfCf
Iz

)(
δHV −

vy,HV + ℓf θ̇HV
vx,HV

)
cos δHV +

(
ℓrCr
Iz

)(
vy,HV − ℓrθ̇HV

vx,HV

)
(4-16)

The final state equation of the HV with states xHV = [ vx,HV XHV YHV vy,HV θ̇HV θHV ]T and inputs
uHV = [ ax,HV δHV ]T is given by

ẋHV =



v̇x,HV

ẊHV

ẎHV

v̇y,HV

θ̈HV

θ̇HV


=



θ̇HVvy,HV +
(2Cf

m

)(
δHV −

vy,HV+ℓf θ̇HV
vx,HV

)
sin δHV + ax,HV

vx,HV cos (θHV)− vy,HV sin (θHV)

vx,HV sin (θHV) + vy,HV cos (θHV)

−θ̇HVvx,HV −
(2Cf

m

)(
δHV −

vy,HV+ℓf θ̇HV
vx,HV

)
cos δHV −

(
2Cr
m

)(
vy,HV−ℓr θ̇HV

vx,HV

)
−
(
ℓfCf

Iz

)(
δHV −

vy,HV+ℓf θ̇HV
vx,HV

)
cos δHV +

(
ℓrCr
Iz

)(
vy,HV−ℓr θ̇HV

vx,HV

)
θHV


(4-17)
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The continuous time output equation is defined as

yHV =



vx,HV

vy,HV

θ̇HV

θHV


=



1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


︸ ︷︷ ︸

Cc

xHV (4-18)

Description Value Symbol

Distance between the CoG of the HVand the front axle 1.7 ℓf

Distance between the CoG of the HV and the rear axle 1.7 ℓr

Wheelbase of the HV 3.4 ℓ

Track of the HV 1.2 t

Length of the HV 4.5 l

Width of the HV 1.8 w

Stiffness coefficient of the front wheel of the HV 98 389 Cf

Stiffness coefficient of the rear wheel of the HV 198 142 Cr

Mass of the HV 1900 m

Inertial coefficient of the HV 2865.61 Iz

Table 4-1: Value of different constants of the HV model (APF-MPC)[12, 13, 14]

Let the current state of the system in loop q be given by x(q) = xq|q and the current input
to the system in loop q be u(q) = uq|q. The linearized model of the HV at the current state
and input is written as

ẋHV = AHVxHV +BuHV

yHV = CHVxHV
(4-19)

The expansions of AHV, AHV and AHV are given in Appendix C.

As the implementation of the APF-MPC controller needs a discrete-time controller, the model
obtained above is discretized. As the input to the system model between two steps of an MPC
algorithm is piecewise constant, an ZOH method is used to discretize the model [69]. The
selection of a sampling time T is discussed in Section 4-3-3. Therefore, the discrete-time
state-space model of the HV obtained at each loop is given by

xHVq+k|q = Ad,HVxHVq+k−1|q +Bd,HVuHVq+k−1|q

yHVq+k|q = Cd,HVxHVq+k|q

(4-20)
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where the discrete-time matrices are calculated as

Ad,HV =eAHVT

Bd,HV =BHV

∫ T

0
eAHVTdT

Cd,HV = CHV

(4-21)

Let us define the vehicle state and input at q = 0 as

xHVbase
=
[
vx,HVbase

XHVbase
YHVbase

vy,HVbase
θ̇HVbase

θHVbase

]T
uHVbase

=
[
ax,HVbase

δHVbase

]T (4-22)

and the maximum total velocity vtot,max of the HV. Let the coordinates of the CoG of the
HV in loop q and prediction step k be represented as XHVq+k|q = [XHVq+k|q YHVq+k|q ]T

4-3-2 OV Model

Prediction models are important because they allow for the accurate calculation of the optimal
value of the system input given constraints and the objective function. Though the inclusion
of these models helps predict the system’s future trajectories, there is a need to predict the
trajectories of the OV around the HV to generate vehicle inputs that can avoid collisions.
The prediction model used to track the evolution of the OV is called as a motion model. A
Constant Velocity (CV) motion model is used in this thesis due to its simplicity. The CV
motion model is a linear motion model which assumes that the system acceleration is zero.
The state transition equation of the CV model is given by

xOVq+k|q =



1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1


︸ ︷︷ ︸

COV

xOVq+k−1|q (4-23)

where xOV = [XOV vx,OV YOV vy,OV ]T are the states of all the OV and T is the sampling time
of the MPC control algorithm. XOV and YOV are the longitudinal and lateral position and
vy,OV and vy,OV are the longitudinal and lateral velocities of the OV.

xOVq+k−1|q =



XOVq+k−1|q

vx,OVq+k−1|q

YOVq+k−1|q

vy,OVq+k−1|q


(4-24)
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4-3-3 Sampling Period and Horizon Length

The selection of the sampling period and horizon length while designing a generalized MPC
optimal control problem should be chosen based on the control task it performs. The selection
of these two parameters should obtain good control performance while keeping the computa-
tion cost low. Long horizons and small sampling time can help achieve the best performance
[70] but this can lead to a very heavy computational load. The selection of the sampling time
must also take into account practical considerations such as the frequency of data obtained
from the perception block as well the speed of the bus used. While RADAR systems work
in the frequency range of 24-79 Hz [71], cameras and LiDAR systems operate at a higher
frequency. The frequency of obtaining data after being processed by the perception block is,
therefore, slower than 24 Hz. The sampling period is therefore limited by these factors. A
sampling time of 0.1 s or a sampling period of 10 Hz is therefore selected.
The selection of the horizon length is a complicated task that varies based on traffic scenarios.
The horizon length can be equated to the amount of time a driver takes to respond to an
obstacle and to react to it. The authors in [72] studied the response time of participants
driving in a simulator in a cut-in scenario. An average response time of 1.05s with a standard
deviation of 0.43 s was seen. A similar study by [73] analyzes the response time of drivers in
real-time traffic for a braking scenario. The response time of the participants was between
0.433-1 s. Therefore a horizon length of 1 s is chosen with a sampling time of 0.1 s with 10
prediction steps.

Description Value Symbol

Sampling time 0.1 T

Prediction horizon 10 Np

Table 4-2: Constants of the APF-MPC control strategy

4-3-4 Constraints

The constraints in the APF-MPC optimization problem are designed to take into account
the limits of the vehicle actuators, the comfort of the human passengers, the limits in terms
of road boundaries and rules of traffic and are integrated into the optimization problem to
generate a safe and comfortable path for the HV to follow. The constraints are

• The constraint on the longitudinal velocity of the HV is given by the

vxmin ≤ vx,HVq+k|q ≤ vxmax (4-25)

where the minimum value of the longitudinal velocity of the HV vxmin is zero as the
vehicle cannot move in the reverse direction as assumed in Section 1-4 and vxmax is the
maximum longitudinal velocity of the HV and is calculated as [74]

vxmax = vtot,max cosβmax (4-26)

where βmax is the maximum vehicle sideslip angle.

Master of Science Thesis Josyula Viswanath Das



44 Vehicle Control System (VCS)

• The constraint on the lateral position of the HV is given by

ymin ≤ YHVq+k|q ≤ ymax (4-27)

where ymax and ymin are the lateral position of the road boundaries.

• The constraint on the lateral velocity of the HV is given by the

vymin ≤ vy,HVq+k|q ≤ vymax (4-28)

where is vymax is the maximum lateral velocity of the HV and vymin is the minimum
value of the lateral velocity of the HV is equal to −vymax . The maximum lateral velocity
is given by [74]

vymax = vtot,max sin βmax (4-29)

• The constraint of the rate of change of heading angle of the HV is given by

θ̇min ≤ θ̇HVq+k|q ≤ θ̇max (4-30)

where is θ̇max is the maximum yaw rate of the HV and θ̇min is the minimum yaw rate of
the HV is equal to −θ̇max. The maximum yaw rate is a function of the friction coefficient
of the road µ and the longitudinal velocity of the host vehicle and is given by

θ̇max = µg

vx,HVq+k|q

(4-31)

where g is the acceleration due to gravity.

• The constraint on the HV heading angle is given by

θmin ≤ θHVq+k|q ≤ θmax (4-32)

where is θmax is the maximum yaw rate of the HV and θmin is the minimum yaw rate
of the HV is equal to −θmax.

• The constraint on the longitudinal acceleration of the HV is given by the

axmin ≤ ax,HVq+k−1|q ≤ axmax (4-33)

where axmax is the maximum acceleration and axmin is the maximum deceleration of the
HV. The maximum acceleration of the car is a function of the friction coefficient of the
road. Assuming a wet road for better traction, the maximum acceleration/ deceleration
of the car is given by

axmax = −axmin = µg (4-34)

• The constraint on the steering angle of the HV is given by

δmin ≤ δHVq+k−1|q ≤ δmax (4-35)

where is δmax is the maximum yaw rate of the HV and δmin is the minimum yaw rate
of the HV is equal to −δmax. The maximum steering wheel angle is given by [74]

δmax = ℓµg

v2
x,HVq+k|q

(4-36)
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These constraints are grouped together for loop q and prediction step k and the group of
linear constraints are of the form

Aineq,APF−MPCq+k

 xHVq+k|q

uHVq+k−1|q


︸ ︷︷ ︸
ψAPF−MPCq+k|q

≤ bineq,APF−MPCq+k
(4-37)

and the extension of ψAPF−MPCq+k|q over the prediction horizon be defined as

ΨAPF−MPCq+Np|q =
[
ψAPF−MPCq+1|q ψAPF−MPCq+2|q . . . ψAPF−MPCq+Np|q

]
(4-38)

Description Value Symbol

Maximum total velocity 41.667 vtot,max

Maximum vehicle sideslip angle 3
180π βmax

Friction coefficient 0.4 µ

Acceleration due to gravity 9.86 g

Maximum yaw rate 5
180π θmax

Table 4-3: Constants to calculate the constraints of the APF-MPC control strategy

4-3-5 Reference Trajectories

The calculation of reference values for output yHV and input uHV is discussed below where
the outputs and inputs are as defined in (4-20).

The output reference at loop q and prediction step k yHV,refq+k|q consisting of reference values
for all the output variables as defined in (4-18)is given by

yHV,refq+k|q =



vx,HV,refq+k|q

vy,HV,refq+k|q

θ̇HV,refq+k|q

θHV,refq+k|q


(4-39)

where vx,HV,refq+k|q is the longitudinal velocity reference, vy,HV,refq+k|q is the lateral velocity
reference, θ̇HV,refq+k|q is the reference for rate of change of the heading angle and θHV,refq+k|q
is the reference for heading angle at loop q and prediction step k.

The design of the longitudinal velocity reference vx,HV,refq+k|q depends on the five aspects; (1)
longitudinal position XOVSL,fq+k|k

, longitudinal velocity vx,OVSL,fq+k|k
, safe distance measure

Master of Science Thesis Josyula Viswanath Das



46 Vehicle Control System (VCS)

dsafeSL,fq+k|k
of OVSL,f , (2) the maximum safe distance dsafemax as defined in Section 2-2-1, (3)

flags flagδq+k|k
and flagLCq+k|k

as defined in Section 2-2-2, (4) longitudinal position XHVq+k|k

and longitudinal velocity vx,HVq+k|k the HV and (5) longitudinal vehicle velocity at q = 0
vx,HVbase

as defined in (4-22).

Let the equations in (4-40) represent the logical expressions to be used to calculate vx,HV,refq+k|q .
These expressions are used to ensure the safety of the vehicle to prevent collision due to sud-
den deceleration of OVSL,f when the lane change is not possible. Equation (4-40a) checks if
the velocity of the HV is less than that of OVSL,f . Equation (4-40b) checks if the relative
distance between the HV and OVSL,f is greater than the maximum safe distance plus a term
dependent on their relative velocity to always maintain a distance greater than the maximum
safe distance to have enough time to react to any sudden deceleration.

vx,HVq+k|k − vOVSL,fq+k|k
≤ 0 (4-40a)

XOVSL,fq+k|q
−XHVq+k|k ≤ dsafemax + 2NpT

(
vx,HVq+k|k − vOVSL,fq+k|k

)
(4-40b)

Algorithm 3 shows the algorithm used to obtain the correct longitudinal velocity reference.

Algorithm 3: Algorithm to calculate vx,HV,refq+k|q

Data: XHVq+k|k , vx,HVq+k|k , xOVSL,fq+k|k
and vOVSL,fq+k|k

, dsafeSL,fq+k|k
, dsafemax , flagδq+k|k

,
flagLCq+k|k

, vx,HVbase

Result: vx,HV,refq+k|q

1 begin
2 if flagδ ← true then
3 if flagLC ← false & (4-40a)← true & (4-40b)← true then
4 Set: vx,HV,refq+k|q = vOVSL,fq+k|k

5 else
6 Set: vx,HV,refq+k|q = vx,HVbase

7 else
8 Set: vx,HV,refq+k|q = vx,HVbase

The working of Algorithm 3 is as follows: The algorithm

• sets the reference velocity equal to the velocity of OVSL,f if

– if OVSL,f exists
– if Algorithm 1 decides that lane change is not possible.
– if the velocity of the OVSL,f is greater than vx,HVq+k|k

– if the distance between the HV and OVSL,f is greater than the maximum safe
distance plus a term based on the relative velocity

• else the reference velocity is set as vx,HVbase
.

• checks if OVSL,f exists. If yes
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– checks if
∗ if lane change is not possible (Algorithm 1)
∗ if the velocity of the OVSL,f is greater than vx,HVq+k|k

∗ if the distance between the HV and OVSL,f is greater than the maximum safe
distance plus a term based on the relative velocity

if all the above conditions are true then sets the reference velocity equal to the
velocity of OVSL,f

– else sets the reference velocity equal to the velocity of vx,HVbase

• if no then sets the reference velocity equal to the velocity of vx,HVbase

The idea behind the algorithm is to maintain a distance greater than that of the maximum
safety distance from OVSL,f if the lane change is not possible and if the velocity of OVSL,f is
greater than that of the HV which can lead to a collision if the HV does not decelerate. The
idea behind checking in two steps rather than using a single if statement is due to the fact
that the longitudinal position XOVSL,fq+k|k

, longitudinal velocity vx,OVSL,fq+k|k
, safe distance

measure dsafeSL,fq+k|k
of OVSL,f are undefined when flagδ = 0.

The lateral velocity reference vy,HV,refq+k|q is given by [75]

vy,HV,refq+k|q = vx,HV,refq+k|q tan βss (4-41)

where βss is the steady state vehicle side slip angle defined as the angle between the longitu-
dinal direction of the local HV coordinate frame and the direction of movement of the host
vehicle and is given by

βss = 2ρ

ℓr − mℓfv
2
x,HVq+k|k

ℓCr

 (4-42)

where ρ is the curvature of the path taken by the HV and is given by [76]

ρ = 1√
ℓ2r + ℓ2 cot δHVq+k|k

(4-43)

As only straight roads are considered in this thesis, and with the assumption that the vehicle
changes heading angle for only a very short period of time when it changes lanes, the heading
angle reference θHV,refq+k|q is assumed to be zero. This also leads to the yaw rate reference
θ̇HV,refq+k|q to be set as zero.

θHV,refq+k|q = 0
θ̇HV,refq+k|q = 0

(4-44)

The input reference at loop q and prediction step k is given by uHV,refq+k|q consists of reference
values for all the input variables of the APF-MPC prediction model and is given as

uHV,refq+k−1|q =

ax,HV,refq+k−1|q

δHV,refq+k−1|q

 (4-45)
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As the number of changes in reference vehicle velocity is very low while travelling on a highway
due to a low number of interactions with OV, the longitudinal acceleration ax,HV,refq+k−1|q
reference is taken as zero to avoid erratic behaviour due to transient changes in reference
acceleration. As this thesis assumes a straight road, the HV is driving a straight line in the
majority of driving situations, the reference steering wheel angle δHV,refq+k−1|q to be zero.

ax,HV,refq+k−1|q = 0
δHV,refq+k−1|q = 0

(4-46)

Description Value Symbol

Maximum safe distance 230 dsafemax

Length of Region Of Interest around the HV 460 dROI

Table 4-4: Constants to calculate the references of the APF-MPC control strategy

4-3-6 Objective Function

The objective function of a generic MPC algorithm is used to fulfil the required goals of the
control task and depends on the problem domain. The objective function generally consists
of multiple costs each corresponding to a particular goal.

The integration of the planning and vehicle control blocks is achieved by the addition of
weighted obstacle APF for all the obstacles (3-14) and road APF (3-16) as terms to the MPC
objective function. Quadratic approximations of the obstacle potential is used to reduce the
computation time. The objective function used for the APF-MPC algorithm of a single step
of the MPC optimal control problem for loop number q and prediction step k is given by

Vk,APF-MPC
(
xq|q, ψAPF−MPCq+k|q

)
= ∥ yHVq+k|q − yHV,refq+k|q ∥

2
Wy︸ ︷︷ ︸

A
+ ∥ uHVq+k−1|q − uHV,refq+k−1|q ∥

2
Wu︸ ︷︷ ︸

B

+ ∥ uHVq+k−1|q − uHVq+k−2|q ∥
2
Wũ︸ ︷︷ ︸

C

+ Uo
(
XHVq+k|q

)
Wo︸ ︷︷ ︸

D

+Urquad

(
XHVq+k|q

)
Wr︸ ︷︷ ︸

E

(4-47)

where W∗ where ∗ ∈ {y,u, ũ, o and r} represents the weights on the output, input, rate of
change of vehicle input, the obstacle potential and the road potential respectively, yHV,ref
and uHV,ref are the reference values for output and input variables respectively and ∥ Γ ∥2W∗=
ΓTW∗Γ where Γ is a variable vector. The different costs associated with the objective function
are given as follows: A represents the cost used to keep selected vehicle states close to their
respective reference values, B represents the cost used to keep the vehicle inputs close to their
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Description Value Symbol

Weight on the output variables



5 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1000


Wy

Weight on the input variables

0 0

0 1000

 Wu

Weight on the rate of change of input variables

0 0

0 100

 Wũ

Weight on the total approximated obstacle potential 0.25 Wo

Weight on the road potential 0.1 Wr

Table 4-5: Weights of the objective function of the APF-MPC control strategy

reference value, C represents the cost on the rate of change of vehicle inputs, D represents
the total potential of all the obstacles and E is the cost of the total road potential. As the
costs are convex and quadratic in nature, the computation load of the optimization problem
is low even with the additional approximations of the obstacle potentials.

Figure 4-4 shows the flowchart of the APF-MPC algorithm. The algorithm starts by receiving

Figure 4-4: Flowchart of the APF-MPC Control Strategy

the position and velocity data from all the OV within the ROI as well as the states of the HV.
This data is used to calculate the safe distance measures for all OV as discussed in Section
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2-2-1 and the lane change flag as discussed in Section 2-2-2. The OV data, the calculated
safe distance measures and flagLC are given as input to the reference generation block which
generates the required references. The values of the calculated safe distance measures and
flagLC remain do not change for a given loop q. The generation of the convex obstacle potential
and its quadratic approximation along with the quadratic approximation of the road potential
occurs at each prediction step k whereas the linearization of the HV model every loop q.

The reference data along with OV data, HV data, and the safe distance measures are given
as the input to the APF-MPC block which solves the optimal control problem. The final
APF-MPC optimization problem for a given loop q is given by

PAPF−MPC,Np

(
xq|q,xOVq|q

)
:=



min
ΨAPF−MPCq+Np|q

Np∑
k=1

Vk,APF-MPC
(
xq|q, ψAPF−MPCq+k|q

)
s.t.

xHVq+k|q
= Ad,HVxHVq+k−1|q

+Bd,HVuHVq+k−1|q

with xHV(q) = xq|q

xOVq+k|q
= COVxOVq+k−1|q

with xOV(q) = xOVq|q

Aineq,APF−MPCq+kψAPF−MPCq+k|q
≤ bineq,APF−MPCq+k

(4-48)
where xOVq|q is the state of the OV in loop q. The generated optimized vehicle input is then
given as input to the vehicle actuators.

4-4 MIMPC+APF-MPC Control Strategy

The MIMPC+APF-MPC control strategy uses MIMPC and APF-MPC algorithms succes-
sively in a loop to produce a safe path. While the MIMPC uses a hybrid model with MLD
constraints to generate an optimal lane to travel in, the APF-MPC algorithm takes this opti-
mal lane as an input to design a road potential unique to the optimal lane generated to change
lanes while avoiding obstacles. This section is divided into three subsections: Section 4-4-1
shows the MIMPC algorithm along with defining logical constraints to select the optimal lane
based on OV data, Section 4-4-2 extends the APF-MPC algorithm defined in Section 4-3
to work with the lane input. The final MIMPC+APF-MPC control strategy is discussed in
Subsection 4-4-3.

4-4-1 MIMPC

The basic idea of an MIMPC optimal control problem has been discussed in Section 4-1-
2. The MIMPC optimal control problem is based on the framework developed in [39] for a
system with linear dynamics with both real and integer-valued variables conditioned on a set
of logical constraints which are a function of both logical and real-valued variables. The idea
is to rewrite these logical constraints as a set of linear inequalities and therefore to write the
overall MIMPC optimal control problem to be solved using an MIQP solver.

The formulation of the algorithm is divided into: (1) the formulation of the system model of
the HV, (2) the formulation of the tracking model of the OV. The model defined in Section
4-3-2 is used as the tracking model, (3) the time period and the prediction horizon of the
MIMPC and APF-MPC parts of the MIMPC+APF-MPC control strategy are the same as
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discussed in Section 4-3-3, (4) the design of the reference trajectories and (5) the formulation
of the MLD constraints as well as the state and input constraints, the formulation of the cost/
objective function of the APF-MPC algorithm.

HV Model (MIMPC)

The vehicle model used for the MIMPC algorithm represents the evolution of the longitudinal
velocity vHV ∈ V := [0, vmax] of the HV. The vehicle evolution is controlled by the longitudinal
system acceleration aHV ∈ A := [−amax, amax]. Both vHV and aHV are continuous decision
variables. The evolution of the velocity is denoted by a Forward-Euler scheme and is given as

vHVq+k|q = vHVq+k−1|q + TaHVq+k−1|q (4-49)

where T is a predefined time period.

The system dynamics also contains discrete decision variable lHV used to select the lane on
which the HV travels. As this thesis works with a road with only two lanes, lHV ∈ B is
represented as a binary variable. The value of T is given by the sampling time of the MPC
algorithm and is discussed further in this chapter.

Let us define the velocity metric vj,HVq+k|q , distance metric dj,HVq+k|q and lj,HVq+k|q lane metric
which represents the relative velocity, the relative longitudinal distance and the lane difference
between the host and the jth obstacle vehicle and are defined as

vj,HVq+k|q = vjx,OVq+k|q
− vHVq+k|q (4-50a)

dj,HVq+k|q = dj,HVq+k−1|q + τvj,HVq+k|q where dj,HVq|q = Xj
OVq|q

(4-50b)

lj,HVq+k|q = ljq+k|q − lHVq+k|q (4-50c)

Let us also define flagLCq|q
as the lane change flag and lj,HVq|q as the current lane of the HV

for loop q.

Reference Trajectories

This section discusses the generation of the reference trajectories used in the MIMPC part
of the MIMPC+APF-MPC control strategy. References on the the velocity of the the HV
vHVq+k|q and the acceleration input aHVq+k−1|q are used in this thesis.

The velocity reference of the MIMPC part of the MIMPC+APF-MPC control strategy
vHV,refq+k|q is set using the same procedure as vx,HV,refq+k|q as discussed in Section 4-3-5
(Algorithm 3). The acceleration reference aHV,refq+k−1|q is set to zero because the number
of changes in reference velocity are low due to low interaction between HV and OV while
driving on a highway and to reduce transient changes in reference acceleration.

vHV,refq+k|q = vx,HV,refq+k|q

aHV,refq+k−1|q = 0
(4-51)
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Constraints

Two different sets of constraints are used in the MIMPC algorithm. There are boundary
constraints for the continuous and binary variables and MLD constraints

Boundary constraints: Boundary constraints are used to limit the maximum and minimum
value of the continuous and discrete variables and are given by

vmin ≤ vHVq+k|q ≤ vmax (4-52a)

amin ≤ aHVq+k−1|q ≤ amax (4-52b)

lHVq+k|q ∈ B := {0, 1} (4-52c)

The values of vmax, vmin, amax and amin are equal to the values of vx,max, vx,min, ax,max and
ax,min defined in Section 4-3-5. The value of lHV is binary as this thesis uses a two-lane road.

MLD constraints: Mixed-Logical Dynamical (MLD) constraints are constraints based on
logical expressions. These expressions are functions of the continuous and integer variables
used by the hybrid model representing the HV. Each of these logical expressions can be
rewritten as a set of linear inequalities and therefore the MIMPC optimization problem can
be converted into a MIQP problem.

Three logical constraints are defined to fulfil a certain role. The first logical constraint is used
to maintain the longitudinal safety of the host vehicle i.e, have a relative distance between
the HV and the OV in the same lane in-front of the HV to be greater than a given safe
distance (Equation (4-53a)). The second and third logical constraints are used to not let
the HV not change lanes when flagLC = 0 (Equation (4-53b)-(4-53c)). These constraints are
mathematically written as

[lj,HVq+k|q = 0]︸ ︷︷ ︸
α1,jq+k|k =1

∧ [dj,HVq+k|q ≥ 0]︸ ︷︷ ︸
α2,jq+k|k =1

=⇒ [dj,HVq+k|q ≥ dj,safeq|q ]
(4-53a)

[lj,HVq+k|q = 0]︸ ︷︷ ︸
α1,jq+k|k =1

=⇒ [lHVq+k|q − lHVq+k−1|q = flagLCq|q
]

(4-53b)

[lj,HVq+k|q = 1]︸ ︷︷ ︸
α3,jq+k|k =1

=⇒ [lHVq+k|q − lHVq+k−1|q = −flagLCq|q
]

(4-53c)

Let us now define α1,jq+k|k = 1, α2,jq+k|k = 1 and α3,jq+k|k = 1 which can be written as

[α1,jq+k|k = 1] =⇒ [lj,HVq+k|q ≤ 0] ∧ [lj,HVq+k|q ≥ 0] (4-54a)

[α2,jq+k|k = 1] =⇒ [dj,HVq+k|q ≥ 0] (4-54b)

[α2,jq+k|k = 1] =⇒ [lj,HVq+k|q ≤ 1] ∧ [lj,HVq+k|q ≥ 1] (4-54c)

Let us further define logical variables to obtain a one-on-one logical representation of each
logical expression defined in (4-54) as

[β1,jq+k|k = 1] =⇒ [lj,HVq+k|q ≤ 0] (4-55a)
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[β2,jq+k|k = 1] =⇒ [lj,HVq+k|q ≥ 0] (4-55b)

[β3,jq+k|k = 1] =⇒ [lj,HVq+k|q ≤ 1] (4-55c)

[β4,jq+k|k = 1] =⇒ [lj,HVq+k|q ≥ 1] (4-55d)

Each of these logical expressions can be written as a set of linear inequalities using the
relationships provided in Table 4-6. Therefore the equations in (4-54) can be written as

Representation Logical Implication System of Inequaties

S≥ (δ, f (x) , c) [δ = 1] ⇐⇒ [f (x) ≥ c]

{
(c−m) δ ≤ f (x) −m

(M − c− ϵ) δ ≥ f (x) − c+ ϵ

S≤ (δ, f (x) , c) [δ = 1] ⇐⇒ [f (x) ≤ c]

{
(M − c) δ ≤ M − f (x)

(c+ ϵ−m) δ ≥ ϵ+ c− f (x)

S∧ (δ, ρ, γ) [δ = 1] ⇐⇒ [ρ = 1] ∧ [γ = 1]


−ρ+ δ ≤ 0

−γ + δ ≤ 0

ρ+ γ − δ ≤ 1

S∨ (δ, ρ, γ) [δ = 1] ⇐⇒ [ρ = 1] ∨ [γ = 1]


ρ− δ ≤ 0

γ − δ ≤ 0

−ρ− γ + δ ≤ 1

S⇒ (g, f (x) , δ) [δ = 0] ⇒ [g = 0] , [δ = 1] ⇒ [g = f (x)]

{
mδ ≤ g ≤ Mδ

−M (1 − δ) ≤ g − f (x) ≤ −m (1 − δ)

Table 4-6: Basic Logical Implications and associated system inequalities
(f : R→ R Linear Function, M = max

x∈X
f(x), m = min

x∈X
f(x), X Compact Set, c ∈ R,

ϵ > 0, δ, ρ, γ ∈ B) [15]

(4-54a) =⇒


S≤
(
β1,jq+k|k , lj,HVq+k|q , 0)

)
S≥
(
β2,jq+k|k , lj,HVq+k|q , 0)

)
S∧
(
α1,jq+k|k , β1,jq+k|k , β2,jq+k|k

) (4-56a)

(4-54b) =⇒ S≥
(
α2,jq+k|k , dj,HVq+k|q , 0

)
, (4-56b)

(4-54c) =⇒


S≤
(
β3,jq+k|k , lj,HVq+k|q , 1)

)
S≥
(
β4,jq+k|k , lj,HVq+k|q , 1)

)
S∧
(
α3,jq+k|k , β3,jq+k|k , β4,jq+k|k

) (4-56c)

Using the above definitions the equations in (4-53) can be written as

α1,jq+k|kα2,jq+k|k

(
dj,HVq+k|q − dj,safeq|q

)
≥ 0 (4-57a)

α1,jq+k|k

(
lHVq+k|q − lHVq+k−1|q − flagLCq|q

)
= 0 (4-57b)
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α1,jq+k|k

(
lHVq+k|q − lHVq+k−1|q + flagLCq|q

)
= 0 (4-57c)

As the expressions in (4-57) are nonlinear in the vehicle state and the defined logical variables,
new logical variables are defined to make the equations in (4-57) linear inequalities. The
relationship defined for the product of these variables are

• Variables which are combinations of two logical variable,

ϕ1 := ϕ2ϕ3.

where ϕ2 and ϕ3 are logical variables. Then the variable can be written as a set of
inequalities given by

S∧ (ϕ1, ϕ2, ϕ3) .

• Variables which are combinations of a logical and a continuous variable,

ϕ1 := ϕ2ϕ3.

where ϕ2 is a logical variable and ϕ3 is a continuous variable dependent on the state of
the vehicle. Then the variable can be written as a set of inequalities given by

S⇒ (ϕ1, ϕ3, ϕ2) .

By further introducing variables γ1,jq+k|q , γ2,jq+k|q , γ3,jq+k|q , γ4,jq+k|q , γ5,jq+k|q and γ6,jq+k|q to
represent the product between two MLD variables or between an MLD variables and a system
variable, the equations in (4-57) can be rewritten as

γ2,jq+k|q − γ1,jq+k|qdj,safeq|q ≥ 0 (4-58a)

γ3,jq+k|q − γ4,jq+k|q − α1,jq+k|q flagLCq|q
≥ 0 (4-58b)

γ5,jq+k|q − γ6,jq+k|q + α2,jq+k|q flagLCq|q
≥ 0 (4-58c)

where γ1,jq+k|q , γ2,jq+k|q , γ3,jq+k|q , γ4,jq+k|q , γ5,jq+k|q and γ6,jq+k|q can be expanded as

γ1,jq+k|q := α1,jq+k|qα2,jq+k|q =⇒ S∧
(
γ1,jq+k|q , α1,jq+k|q , α2,jq+k|q

)
, (4-59a)

γ2,jq+k|q := γ1,jq+k|qdj,HVq+k|q =⇒ S⇒
(
γ2,jq+k|q , dj,HVq+k|q , γ1,jq+k|q

)
, (4-59b)

γ3,jq+k|q := α1,jq+k|q lHVq+k|q =⇒ S⇒
(
γ3,jq+k|q , lHVq+k|q , α1,jq+k|q

)
, (4-59c)

γ4,jq+k|q := α1,jq+k|q lHVq+k−1|q =⇒ S⇒
(
γ4,jq+k|q , lHVq+k−1|q , α1,jq+k|q

)
, (4-59d)

γ5,jq+k|q := α2,jq+k|q lHVq+k|q =⇒ S⇒
(
γ5,jq+k|q , lHVq+k|q , α2,jq+k|q

)
, (4-59e)

γ6,jq+k|q := α2,jq+k|q lHVq+k−1|q =⇒ S⇒
(
γ6,jq+k|q , lHVq+k−1|q , α2,jq+k|q

)
, (4-59f)

By defining Ml and ml as the maximum and minimum values of lj,HVq+k|q and lj,HVq+k−1|q and
Ml and ml as the maximum and minimum values dj,HVq+k|q respectively in their respective
domains, the equations in (4-56), (4-58) and (4-59) can be written as linear inequalities.
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The total number of MLD constraints are given by 39NOV + 3 where 39 represents the total
number of linear inequalities obtained after converting the logical constraints with 3 boundary
constraints.

The linear inequalities representing the MLD constraints together with boundary constraints
are grouped together for loop q and prediction step k and are written as

Aineq,MIMPCq+k
ψMIMPCq+k|q ≤ bineq,MIMPCq+k

(4-60)

where

ψMIMPCq+k|q = [ vHVq+k|q lHVq+k|q aHVq+k−1|q α1q+k|k β1q+k|k γ1q+k|k ... γNOVq+k|k ] . (4-61)

is a variable used to simplify the set of linear inequalities into a compact form where αjq+k|k =
[ α1,jq+k|k ... α3,jq+k|k ], βjq+k|k = [ β1,jq+k|k ... β4,jq+k|k ] and γjq+k|k = [ γ1,jq+k|k ... γ6,jq+k|k ]. Let the
extension of ψMIMPCq+k|q over the prediction horizon be defined as

ΨMIMPCNp
=
[
ψMIMPCq+1|q ψMIMPCq+2|q . . . ψMIMPCq+Np|q

]
(4-62)

Objective Function

The objective function for the MIMPC algorithm is a quadratic cost and the different terms
of the cost are:

• Cost for reference tracking of the longitudinal velocity of the HV

• Cost for reference tracking of the longitudinal acceleration of the HV

• Cost for the rate of change of input

The total objective function for loop q and prediction step k is given by

Vk,MIMPC
(
vq|q, dq|q, lq|q, ψMIMPCq+k|q

)
= ∥ vHVq+k|q − vHV,refq+k|q ∥

2
Wv︸ ︷︷ ︸

velocity reference tracking

+ ∥ aHVq+k−1|q − aHV,refq+k−1|q ∥
2
Wa︸ ︷︷ ︸

acceleration reference tracking

+ ∥ aHVq+k−1|q − aHVq+k−2|q ∥
2
Wã︸ ︷︷ ︸

acceleration increment

(4-63)

where W∗ where ∗ ∈ {v,a and ã} represents the weights on the velocity, acceleration and rate
of change of vehicle acceleration respectively and vHV,ref and aHV,ref are the reference values
for velocity and acceleration respectively. The references for velocity and acceleration used
for the cost function are the same as the reference of longitudinal velocity and longitudinal
acceleration used for the cost function in Section 4-3-5. The algorithm of the MIMPC optimal
control problem is as follows: (1) Receiving of obstacle data from the perception block, (2)
calculation of the safe distance measures for all the obstacles within the ROI with obstacle
data and HV data as input, (3) generation of the references for the MIMPC optimal control
problem, (4) MIMPC optimal control problem is optimized to find the optimal lane input
which includes the objective function, formulation of the MLD and boundary constraints, the
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Description Value Symbol

Weight on velocity 1 Wv

Weight on acceleration 0.01 Wa

Weight on the rate of change of acceleration 10 Wã

Table 4-7: Weights of the objective function of the MIMPC part of the MIMPC + APF-MPC
control strategy

Forward-Euler HV model defined in Section 4-4-1 as well as a CV model for the obstacles
defined in Section 4-3-2. The final MIMPC optimization problem for a given loop q is given
by

PMIMPC,Np

(
vq|q, dq|q, lq|q,xOVq|q

)
:=



min
ΨMIMPCNp

Np∑
k=1

Vk,MIMPC
(
vq|q, dq|q, lq|q, ψMIMPCq+k|q

)

s.t.
vHVq+k+1|q = vHVq+k|q + τaHVq+k|q

with vHV(q) = vq|q and lHV(q) = lq|q

xOVq+k|q = COVxOVq+k−1|q with xOV(q) = xOVq|q

Aineq,MIMPCq+k
ψMIMPCq+k|q ≤ bineq,MIMPCq+k

(4-64)

4-4-2 APF-MPC algorithm with lane input

The APF-MPC part of the MIMPC + APF-MPC control strategy uses the optimal lane input
produced by the MIMPC algorithm in Section 4-4-1 (as a solution to (4-64)) as an input for
the APF-MPCalgorithm. The optimal lane is used to select the correct road potential to
move the vehicle to the correct lane and to help the vehicle stay in the centre of the lane. The
sampling time and horizon length, the constraints, and the references used in the APF-MPC
part of the MIMPC + APF-MPC control strategy are the same as discussed in 4-3. However,
the objective function is extended to select the correct road potential based on the optimal
lane input and is given by
Vk,APF-MPC

(
xq|q, ψAPF−MPCk , lHV,opt

)
= ∥ yHVq+k|q

− yHV,refq+k|q
∥2

Wy︸ ︷︷ ︸
A

+ ∥ uHVq+k−1|q
− uHV,refq+k−1|q

∥2
Wu︸ ︷︷ ︸

B

+ ∥ uHVq+k−1|q
− uHVq+k−2|q

∥2
Wũ︸ ︷︷ ︸

C

+Uo

(
xHVq+k|q

)
Wo︸ ︷︷ ︸

D

+

(1 − lHV,opt)UL0,rquad

(
XHVq+k|q

)
Wr︸ ︷︷ ︸

E

+ lHV,optUL1,rquad

(
XHVq+k|q

)
Wr︸ ︷︷ ︸

G
(4-65)
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where lHV,opt is the optimal lane generated as the output of the MIMPC algorithm,
UL0,rquad

(
XHVq+k|q

)
is the road potential used if the optimal lane input is zero and

UL1,rquad

(
XHVq+k|q

)
is the road potential used if the optimal lane input is one and are defined

in Section 3-3-2.

Description Value Symbol

Weight on the output variables



50 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


Wy

Weight on the input variables

100 0

0 100

 Wu

Weight on the rate of change of input variables

100 0

0 1000

 Wũ

Weight on the total approximated obstacle potential 0.5 Wo

Weight on the road potential 10 Wr

Table 4-8: Weights of the objective function of the APF-MPC part of the MIMPC + APF-MPC
control strategy

The algorithm runs as follows: (1) Gathering the OV and HV data, (2) calculation of the safe
distance measures for all OV, (3) Calculation of the reference trajectories, (4) start of the
APF-MPC optimal control problem with an extended objective which includes road potential
based on optimal lane input, combined obstacle potential for all the OV after convexification
and quadratic approximation, cost on reference tracking for the input and for selected states,
and cost on the rate of change of input (4-65). The optimal control problem of the APF-MPC
algorithm for loop q is given by

PAPF−MPC,Np

(
xq|q,xOVq|q

, lHV,opt
)

:=



min
ΨAPF−MPCNp

Np∑
k=1

Vk,APF-MPC
(
xq|q, ψAPF−MPCk , lHV,opt

)
s.t.

xHVq+k|q
= Ad,HVxHVq+k−1|q

+Bd,HVuHVq+k−1|q

with xHV(q) = xq|q

xOVq+k|q
= COVxOVq+k−1|q

with xOV(q) = xOV0

Aineq,APF−MPCq+kψAPF−MPCq+k|q
≤ bineq,APF−MPCq+k

(4-66)
where xOVq|q is the state of the OV in loop q.
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4-4-3 Combining APF-MPC and MIMPC

The MIMPC algorithm and the APF-MPC algorithm are used successively in a loop to
generate a set of optimal inputs for the HV. The idea behind combining APF-MPC algorithm
with and MIMPC algorithm is to generate a road potential based on the optimal lane output
of the MIMPC algorithm. The advantage of the improved road potential is the movement of
the HV towards the centre of the optimal lane while taking into account the system dynamics
and constraints while also maintaining a safe distance from OV in front. The road potentials
for each of the lanes are defined in Section 3-3-2. Figure 4-5 shows the flowchart of the APF-
MPC and MIMPC control strategy and how the MIMPC algorithm formulated in Section
4-4-1 is combined with APF-MPC algorithm defined in Section 4-4-2. Algorithm 4 shows

Figure 4-5: Flowchart of the MIMPC+APF-MPC Control Strategy

the basic pseudo code for the The algorithm works as follows: (1) The vehicle takes the

Algorithm 4: Algorithm MIMPC+APF-MPC Control Strategy.
Data: xq|q,xOVq|q ,xHVbase

,uHVbase
, T,Np, vtot,max

Result: ΨAPF−MPCNp

1 begin
2 flagLCq|q

=CalculateLCFlag /* using Algorithm 1 */
3 dj,safeq|q , dsafemax = CalulateSF() /* Calculate the Safe Distance Measures for

all OV (2-1) */
4 vHV,refq+k|q , aHV,refq+k−1|q ,yHV,refq+k|q ,uHV,refq+k|q = GenerateRefTraj() /* Generate

Reference Trajectories for MIMPC and APF-MPC algorithms using
(4-39)-(4-46), (4-51) */

5 lHV,opt=Solve: PMIMPC,Np

(
vq|q, dq|q, lq|q,xOVq|q

)
/* Generate Optimal Lane (4-64)

*/
6 uHV,opt=Solve: PAPF−MPC,Np

(
xq|q,xOVq|q , lHV,opt

)
/* Generate Optimal Input

(Acceleration and Steering Angle) for the HV (4-66) */

HV and OV data to calculate the lane change flag using the CalculateLCFlag function as
defined by Algorithm 1 and calculate the safe distance measures for all the OV within the
ROI represented by the CalculateSF function respectively, (2) The reference trajectories for
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the MIMPC and the APF-MPC algorithm are generated based as discussed in Section 4-4-1
and Section 4-3-5 respectively and is represented by the GenerateRefTraj function, (3) the
MIMPC optimal control problem is run using the above calculated data along with the HV
and OV data to generate the optimal lane, (5) this optimal lane along with the input given to
the MIMPC optimal control problem is given as an input to the APF-MPC optimal control
problem. This calculates the quadratic approximations of the road and obstacle potentials as
defined in Chapter 3 and the optimal input for the HV is generated.
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Chapter 5

Simulations and Results

This chapter presents the results of simulations that run the APF-MPC and the MIMPC+APF-
MPC control strategies defined in Chapter 4. The simulations were run using the help of the
YALMIP toolbox for MATLAB to model the optimization problems.

YALMIP [77] is a MATLAB toolbox specifically designed to model and solve optimization
problems using a set of inbuilt or external solvers. The use of YALMIP to solve optimization
problems simplifies the development of the optimization problem. Initially introduced to solve
Semi-Definite Programming and Linear Matrix Inequalities based optimization problems,
YALMIP has evolved to support quadratic and second-order cone problems. This thesis has
two different kinds of optimization problems to solve. While the APF-MPC control strategy,
as well as the APF-MPC part of the MIMPC+APF-MPC control strategy, are represented
by quadratic programming problems with quadratic objective function and linear equality
and inequality constraints, the MIMPC part of the MIMPC+APF-MPC control strategy is
a MIQP problem. As YALMIP is a toolbox used to simplify the modelling of optimization
problems, external solvers are required to solve the quadratic and MIQP based optimization
problems.

Gurobi [78] is one such state-of-the-art commercial solver for linear, quadratic and mixed
integer programming with advanced resolve methods used to simplify optimization problems.
As Gurobi can solve both quadratic programming and mixed integer problems efficiently, it
is used as the solver to solve the APF-MPC and the MIMPC+APF-MPC control strate-
gies. Gurobi uses a simplex or parallel barrier algorithm to solve the quadratic programming
problem and a branch and bound-based algorithm to solve the MIQP problem.

5-1 Simulation Results

The thesis simulates the APF-MPC and the MIMPC+APF-MPC control strategies in four
different scenarios. These scenarios reflect real-world situations an AV will face while driving.
These situations are divided into two different categories based on the velocity of the OV
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• Scenarios where OV are moving at constant velocity.

– Single lane change: Single lane change by the HV to avoid an OV in front of it.

– Deceleration of HV: Deceleration by the HV to avoid collision with vehicles moving
at a slower velocity as no lane change is possible

– Double Lane change: Double lane change by the HV to avoid multiple OV on the
road.

• Scenarios where the velocity of the OV changes.

– Deceleration of the OV: Deceleration of the HV to match the speed of the OV in
front to avoid collision in case of sudden deceleration by the OV.

This section compares the APF-MPC and the MIMPC+APF-MPC control strategies by
overlapping the results from both on a single graph.

Each of the scenarios above is presented as follows: (1) plot initial states of the HV and all the
OV and the length of the road that the simulation is conducted over, (2) plot/s showing the
different key points of the simulation in terms of lane change and deceleration/acceleration,
and (3) plot showing the path of the HV and OV, the other states of the HV and the flags
generated during the simulation after the end of the simulation.

Let us now introduce some general terminology and representation of objects used in the
results shown in the upcoming sections.

• The obstacles are represented as a rectangle with a wedge attached to its end as discussed
in Figure 3-3. The length of the wedge changes as the velocity of the HV and the
respective OV changes over time. The HV and OV in a control strategy are represented
as seen in Figure 5-1. However, as the vehicles travel at different velocities at each time
instant for each of the control strategies, every plot will contain two different sets of
images for the HV and OV respectively.

(a) (b) (c) (d)

Figure 5-1: Representation of the (a) HV in the MIMPC+APF-MPC control strategy (b) HV
in the APF-MPC control strategy, (c) OV in the MIMPC+APF-MPC control strategy, (d) OV in
the APF-MPC control strategy during simulations

• The road selected has different lengths based on the type of simulation. Figure 5-2
shows an empty road with a road of length 1000 m.
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Figure 5-2: Representation of the lane centres and boundaries

• Table 5-1 shows the legend representing the different variables used in this thesis. Some
legends represent multiple variables over different plots. For example, the red line
represents all the variables representing the HV during the APF-MPC control strategy.
It represents the path when the different paths for different strategies are compared,
the velocity of the HV when the velocity of the different strategies are compared and so
on. As a colour represents one variable at a time within a plot, the chance of confusion
is minimal.

Representation Description Color Line Properties

MIMPC Green Solid

APF-MPC Red Solid

MIMPC+APF-MPC Blue Solid

Lane Boundaries Black Solid

Lane Centers Black Dashed

Reference Data (MIMPC+APF-
MPC)

Magenta Dashed

OV Data (MIMPC+APF-MPC) Pink Solid and Bold

flagδ (MIMPC+APF-MPC) Purple Solid and Bold

flagLC (MIMPC+APF-MPC) Orange Dashed and Bold

OV Data (APF-MPC) Turquoise Solid and Bold

Reference Data (APF-MPC) Dark Green Dashed

flagδ(APF-MPC) Dodger Blue Solid and Bold

flagLC (APF-MPC) Brown Dashed and Bold

Table 5-1: Representation of different variable during Simulation

• As the results are a combination of lane changes and braking/accelerating manoeuvres
depending on the scenario 5-1, the results are shown as a combination of plots, each of
which represents one manoeuvre.
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A manoeuvre representing a lane change contains two plots. The first plot shows the
path taken by the HV to reach the point before the start of the lane change manoeuvre
and the second plot shows the same at the end of the manoeuvre.
A manoeuvre representing the braking/acceleration of the HV also contains two sets
of plots, each with two individual plots. The first set plots at the beginning of the
manoeuvre and the second set of plots show the plots at the end of the manoeuvre. The
two plots within a set are: (1) a plot to show the path taken by the HV to reach the
point and (2) a plot to show the velocity at that point.

• The results of both control strategies are shown in each plot to compare the variables
for each of the control strategies.

The simulation results in the scenarios discussed are discussed in the introduction of Section
5-1 for the MIMPC+APF-MPC and the APF-MPC control strategies are shown next.

5-1-1 Single Lane Change

A single lane change scenario shows the response of the integrated control strategies designed
in this thesis to the presence of an OV in the same lane and in front of the HV with no OV
in the adjacent lane. The initial state of the HV at the start of the scenario is given as

xHVbase
=
[
35 0 1.5 0 0 0

]T
, xOVbase

=
[
10 500 1.5 0 0 0

]T
(5-1)

where xHVbase
and xOVbase

are the base values of the HV and OV at the start of the simulation
and the road length is 1000 m. Figure 5-3 show the initials states of the system on the road.

Figure 5-3: Initial state of the HV and OV for the Single Lane Change scenario

The single lane change manoeuvres for the MIMPC + APF-MPC control strategy and the
APF-MPC control strategy occur at different points in time. Figure 5-4 shows the instances
of the simulations where the lane change manoeuvres start and end for both control strategies.

The following sections explain the reasoning behind the manoeuvres shown in Figure 5-4.

MIMPC + APF-MPC control strategy

Figure 5-4a and Figure 5-4b show the points in the simulation of the MIMPC + APF-MPC
control strategy right before and after the HV changes lane. The lane change starts due to

Josyula Viswanath Das Master of Science Thesis



5-1 Simulation Results 65

(a)

(b)

(c)

(d)

Figure 5-4: Manoeuvres during the simulation of Single Lane Change scenario

Figure Explanation

5-4a Start of the lane change for the HV in the MIMPC+APF-MPC control strat-
egy

5-4b End of the lane change for the HV in the MIMPC+APF-MPC control strategy

5-4c Start of the lane change for the HV in the APF-MPC control strategy

5-4d End of the lane change for the HV in the APF-MPC control strategy

Table 5-2: Basic explanation of different sub-figures shown in Figure 5-4

the presence of an OV within the ROI, in the same lane and in front of the HV (Line 2,
Algorithm 1). When the HV notices the OV within its ROI, it checks if there exists an OV
in the adjacent lane (Line 4-Line 16, Algorithm 1). As there is no OV in the adjacent lane in
this scenario, the HV changes lane. The MIMPC part of the MIMPC + APF-MPC control
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strategy (Equation (4-64)) uses the above data to generate an optimal lane. This lane input is
used to select the correct road potential and generate the optimal path to travel in (Equation
(4-65)).

APF-MPC control strategy

Figure 5-4c and Figure 5-4d show the points in the simulation of the APF-MPC control
strategy before and after the HV changes lane. The HV changes lane very close to the OV
unlike that of the MIMPC + APF-MPC control strategy as the lane change and lane keeping
characteristics are controlled only with the help of the potential functions defined. The HV
drifts to the centre of the road due to the shape of the road potential as shown in Figure 3-11.
The HV moves away from the lane centre as it passes the OV in the adjacent lane due to the
higher weight of the obstacle potential with respect to the road potential.

Figure 5-5: Final state of the HV and OV for the Single Lane Change scenario

Figure 5-5 shows the plot of the states of the HV after the end of the simulation of the single
lane change scenario. It can be seen from Figure 5-5 (4) that the acceleration of the HV has
small spikes when the HV passes by an OV in the adjacent lane. This is due to the influence
of the changing regions of OV and happens when entering from a region where 1 ≤ t ≤ 0
when calculating the euclidian distance Kobsconv to a region where t > 1 or t < 0. This change
in acceleration and the influence of the obstacle potential also generates a small change in
steering angle as shown in Figure 5-5 (6).

5-1-2 Deceleration of the HV

This section shows the response of the integrated path planning and control algorithms de-
signed in this thesis to the presence of obstacles in both lanes of the road that are moving
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slower than the base velocity of the HV and, thus no lane change possible. Figure 5-6 shows
the initial state of the HV at the start of the scenario and is given as

xHVbase
=
[
41.6 0 1.5 0 0 0

]T
, xOVbase

=

20 600 1.5 0 0 0

20 600 4.5 0 0 0


T

(5-2)

with a simulated road length of 1000 m. The simulation for this section consists of a braking

Figure 5-6: Initial state of the HV and OV for the Deceleration of the HV scenario

manoeuvre by the HV behind a pair of slower-moving OV. The braking manoeuvre for each
of the control strategies starts and ends at different instances and are shown in Figure 5-7
and 5-8. The simulations are divided into two separate figures due to space limitations. Table
5-3 gives a basic explanation of the different sub-figures shown in Figure 5-7 and 5-8. The

Figure Explanation

5-7a Start of braking by the HV in the MIMPC+APF-MPC control strategy

5-7b Start of braking by the HV in the APF-MPC control strategy

5-7c Start of braking by the HV in the APF-MPC control strategy

5-8 End of braking by the HV in the MIMPC+APF-MPC control strategy

Table 5-3: Basic explanation of different sub-figures shown in Figure 5-7 and 5-8

following sections explain the reasoning behind the manoeuvres shown in Figure 5-7 and 5-8.

MIMPC + APF-MPC control strategy

Figure 5-7a and Figure 5-8 show the instances in the simulation of the MIMPC + APF-MPC
control strategy right before and after the HV starts braking behind the OV. As lane change
is not possible due to the presence of an OV in the adjacent lane within a given distance (Line
6-Line 8, Algorithm 1), the velocity reference to the HV changes to the velocity of the OV in
front of it in the same lane and the HV starts decelerating (Algorithm 3).

APF-MPC control strategy

Figure 5-7b and Figure 5-7c show the instances in the simulation of the APF-MPC control
strategy right before and after the HV start and end of braking behind the OV. The reason
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(a)

(b)

(c)

Figure 5-7: Manoeuvres during the simulation of Deceleration of HV scenario- 1

for the deceleration is the same as in the case of the MIMPC + APF-MPC control strategy.
However, in this case, the distance between the HV and the OV in front of it before the start
of deceleration of the HV is lower than that of the MIMPC + APF-MPC control strategy.
This is due to the fact that the MIMPC + APF-MPC control strategy uses logical constraints
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Figure 5-8: Manoeuvres during the simulation of Deceleration of HV scenario-2

to maintain a minimum distance from the OV and change lanes (Equation (4-53)).

Figure 5-9 shows the states of the vehicle after the end of the simulation. It can be seen clearly
that the rate of change of acceleration between the two control strategies is very different. Let

Figure 5-9: Final state of the HV and OV for the Deceleration of the HV scenario

us define rmsjerk and rmsaccel as the Root Mean Square (RMS) values of the rate of change
of acceleration and acceleration over the simulation and let q = 1, 2, 3, . . . , n be the total
number of loops over the simulated road. Equation (5-3) shows the mathematical equations
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for calculating rmsjerk and rmsaccel.

rmsjerk =

√√√√ 1
n

n∑
k=1

(
ax,HVq+k−1|q − ax,HVq+k−2|q

)2

rmsaccel =

√√√√ 1
n

n∑
k=1

(
ax,HVq+k−1|q

)2
(5-3)

Table 5-4 shows the RMS values of the acceleration and jerk for the control strategies. It
can be seen that the MIMPC + APF-MPC control strategy has lower values of RMS jerk
and acceleration when compared to the APF-MPC control strategy. This leads to a more
comfortable ride for the passengers of the HV.

Root Mean Square MIMPC + APF-MPC APF-MPC

rmsaccel 1.4689 1.7010

rmsjerk 0.2265 0.2883

Table 5-4: RMS values of the acceleration and jerk for the control strategies for simulation of
the Deceleration of HV scenario

5-1-3 Double Lane Change

A double-lane change scenario shows a combination of lane change and braking/acceleration
manoeuvres in order to perform a double-lane change. This scenario consists of two obstacles
whose initial states are shown in Figure 5-10. The initial states of the obstacles and the host

Figure 5-10: Initial state of the HV and OV for the Double Lane Change scenario

vehicle before the start of the simulation are

xHVbase
=
[
41.6 0 4.5 0 0 0

]T
, xOVbase

=

10 400 1.5 0 0 0

25 300 1.5 0 0 0


T

(5-4)

with the simulation road length of 1400 m. Figure 5-11, 5-12, 5-13 and 5-14 show the different
manoeuvres that the HV performs to avoid obstacles and move forward in order of occurrence.
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(a)

(b)

(c)

(d)

Figure 5-11: Manoeuvres in the simulation of Double Lane Change scenario-1
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(a)

(b)

(c)

(d)

Figure 5-12: Manoeuvres in the simulation of Double Lane Change scenario-2

The key instances are divided into four figures for clear visualization and the basic explanation
of a manoeuvre/s represented in each figure is described in Table 5-5. The manoeuvres for
the double lane change in the order of occurrence are:

• Deceleration of the HV to match the velocity of the OV in front of the HV in the same
lane as lane change is not possible.
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(a)

(b)

(c)

Figure 5-13: Manoeuvres in a simulation of Double Lane Change scenario-3

• Acceleration of the HV as lane change becomes possible.

• Lane change of the HV.

• and repeat three manoeuvres.
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(a)

(b)

(c)

(d)

Figure 5-14: Manoeuvres in a simulation of Double Lane Change scenario-4

MIMPC + APF-MPC control strategy

Figure 5-11a (2) and 5-11b (2) show the longitudinal velocity at the start and end of the first
change in reference velocity respectively while following the OV in front of the HV in the
same lane. This is due to the fact that the distance between the OV and the HV becomes less
than the safe distance and because the lane change is not possible (Line 6-Line 8, Algorithm
1). As soon as lane change is possible due to the movement of the OV in the adjacent lane,
the velocity reference increases back to the base value as defined in (5-4) (Algorithm 3). This
also leads to the beginning of the lane change which starts in Figure 5-11b (1) and ends in
Figure 5-11d (1). However, when the HV crosses the centre of the road during the process
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Figure Explanation

5-11a Start of deceleration by the HV in the MIMPC+APF-MPC control strategy
due to change in reference velocity

5-11b End of deceleration and the start of lane change and the start of acceleration
by the HV in the MIMPC+APF-MPC control strategy

5-11c End of acceleration and start of deceleration by the HV in the MIMPC+APF-
MPC control strategy due to change in reference velocity

5-11d End of lane change by the HV in the MIMPC+APF-MPC control strategy

5-12a Start of lane change by the HV in the APF-MPC control strategy

5-12b Start of deceleration by the HV in the MIMPC+APF-MPC control strategy
due to change in reference velocity

5-12c End of lane change by the HV in the APF-MPC control strategy

5-12d End of deceleration by the HV in the APF-MPC control strategy

5-13a End of deceleration by the HV in the MIMPC+APF-MPC control strategy

5-13b Start of lane change and acceleration by the HV in the APF-MPC control
strategy

5-13c Start of lane change and acceleration by the HV in the MIMPC+APF-MPC
control strategy

5-14a End of lane change by the HV in the MIMPC+APF-MPC control strategy

5-14b End of acceleration by the HV in the APF-MPC control strategy

5-14c End of lane change by the HV in the APF-MPC control strategy

5-14d End of acceleration by the HV in the MIMPC+APF-MPC control strategy

Table 5-5: Basic explanation of different sub-figures shown in Figures 5-11-5-14

of changing lanes, the distance between the OV in the newly entered lane and the HV will
become less than the safe distance measure if the HV continues with the same velocity and
therefore the velocity reference changes again as shown in Figure 5-11c (2) (Equation (4-53a)).
This leads to the deceleration of the HV which ends in Figure 5-13a (2). The start and end of
the next lane change are shown in Figures 5-13c (1) and 5-14a (1) respectively. The reference
velocity also changes back to the base velocity as defined in (5-4) with the start of the second
lane change leading to the acceleration of the HV (Algorithm 3). The start and end of this
change in velocity are shown in Figures5-13c (2) and 5-14c (2).

APF-MPC control strategy

Figure 5-12a (1) and 5-12c (1) show the start and of the first lane change. The lane change
starts due to the potential of the OV in front of the HV in the same lane (OVSL,f ) (Equation
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(4-47)). The lane change is followed by a change in reference velocity as soon as it crosses
the centre of the road to keep outside wedge shaped block of the OV potential (Algorithm
3). This leads to the change in reference velocity and therefore deceleration of the HV whose
start and end are shown in Figures 5-12b (2) and 5-12d (2).

The start of the second lane and velocity reference change are shown in Figures 5-13b (1)
and (2) and ends in Figures 5-14c (1) and 5-14b (2) respectively. The velocity reference
changes before the lane change begins because the velocity reference changes as soon as there
is a possibility for lane change (Algorithm 3 but the lane change only happens when the HV
moves close to the OV in front of it (Equation (4-47)).

Figure 5-15: Final state of the HV and OV for the Double Lane Change scenario

Figure 5-15 shows the final path for both the controllers taken by the different states of the
HV. It can be seen that the acceleration of the APF-MPC control strategy changes more
rapidly because of the higher influence of the potentials and the tighter steering angles when
compared to the MIMPC + APF-MPC control strategy. The RMS values of the vehicle
longitudinal acceleration and jerk are given in Table 5-6.

Root Mean Square MIMPC + APF-MPC APF-MPC

rmsaccel 1.4252 1.8364

rmsjerk 0.3622 0.8614

Table 5-6: RMS values of the acceleration and jerk for the control strategies for simulation of
the Double Lane Change scenario
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5-1-4 Deceleration of the OV

The deceleration of the OV scenario shows the response of both the algorithms in case of a
sudden velocity change of the leading OV. The initial state of the HV and the OV at the
start of the scenario is given by

xHVbase
=
[
41.6 0 4.5 0 0 0

]T
, xOVbase

=

15 450 1.5 0 0 0

20 450 4.5 0 0 0


T

(5-5)

and is shown in Figure 5-16.

Figure 5-16: Initial state of the HV and OV for the Deceleration of the OV manoeuvre

Figure 5-17, 5-18 and Figure 5-19 show the key instance of the scenario. The scenario consists
of two deceleration situations,

• Deceleration behind the OV in front in the same lane due to no possibility of the lane
change.

• Deceleration behind the OV in front in the same lane due to no possibility of the lane
change and to adapt to decelerating OV.

Table 5-7 gives the basic explanation of the different sub-figures showing the different key
instances during the simulation of the Deceleration of OV scenario.

MIMPC + APF-MPC control strategy

Figure 5-17a (1) and 5-17a (2) shows the position and velocity of the HV at the beginning of
deceleration of the HV to follow the OV in front. The deceleration is due to the change in
reference velocity used to maintain a safe distance from the OV in front (Equation (4-53a)).
The velocity of the HV reduces to that of the OV in front over time and the deceleration
becomes zero as seen in Figure 5-18b (Algorithm 3). Figure 5-18d shows the response of the
HV to the deceleration of the OV. As the OV on both lanes decelerate, the reference velocity
of the HV also reduces leading to further deceleration of the HV. Figure 5-19b shows the
position and velocity of the HV after the relative velocity between the OV and HV becomes
zero.
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Figure Explanation

5-17a Start of braking by the HV in the MIMPC+APF-MPC control strategy

5-17b Start of braking by the HV in the APF-MPC control strategy

5-18a End of braking by the HV in the APF-MPC control strategy

5-18b End of braking by the HV in the MIMPC+APF-MPC control strategy

5-18c Start of braking by the HV in the APF-MPC control strategy

5-18d Start of braking by the HV in the MIMPC+APF-MPC control strategy

5-19a End of braking by the HV in the APF-MPC control strategy

5-19b End of braking by the HV in the MIMPC+APF-MPC control strategy

Table 5-7: Basic explanation of different sub-figures shown in Figure 5-17 and 5-19
.

(a)

(b)

Figure 5-17: Manoeuvres in a simulation of Deceleration of OV scenario- 1

APF-MPC control strategy

The HV in the APF-MPC control strategy follows a very similar pattern of deceleration.
Figure 5-17b (2) and 5-18a (2) shows the start and end of the deceleration of the HV in
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(a)

(b)

(c)

(d)

Figure 5-18: Manoeuvres in a simulation of Deceleration of OV scenario- 2
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(a)

(b)

Figure 5-19: Manoeuvres in a simulation of Deceleration of OV scenario- 3

response to the change in reference velocity of the HV. Figure 5-18c (2) and 5-19a (2) shows
the deceleration of the HV in response to the braking of the OV. However, the velocity of the
HV follows the change in reference velocity without delay. This shows that the HV is more
responsive in the APF-MPC control strategy.

Figure 5-20: Final state of the HV and OV for the Deceleration of the OV manoeuvre
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Figure 5-20 shows the final states and path of the system. It can be seen that the lane change
flag for the HV was initially true due to the staggered position of the HV on both the lane but
as it moved closer to the OV in front of it, the HV does not change lane due to the presence
of the OV in the adjacent lane. Table 5-8 shows the RMS values of acceleration and jerk for
both the control strategies.

Root Mean Square MIMPC + APF-MPC APF-MPC

rmsaccel 1.1884 1.3614

rmsjerk 0.1548 0.2385

Table 5-8: RMS values of the acceleration and jerk for the control strategies for simulation of
the Deceleration of OV scenario
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Chapter 6

Conclusion and Future Work

The goal of this thesis was the design of a control algorithm which can integrate the path
planning and motion control blocks of an AV. The APF method was chosen to achieve
this goal as it can help integrate the path planning and motion control blocks of an AV
by acting as a cost to be added to the objective function of an optimization-based control
strategy for collision avoidance. An MPC based framework was chosen to formulate the
path planning problem and was motivated due to the advantages of working with multi-
input multi-output systems, the inclusion of system dynamics and constraints and re-planning
nature of an MPC based control strategy. The design of the APF potential for obstacle and
road was formulated such as to keep the vehicle away from the OV at a safe distance in
case of sudden deceleration by the OV and to aid lane change and to keep the HV away
from the road boundaries. As the obstacle potential was non-convex in nature, the obstacle
potential underwent a convexification process to simplify the optimization problem. The
obtained obstacle APF is further simplified using a Taylor series approximation to obtain a
quadratic objective function of the APF-MPC optimal control problem. The model of the
HV is linearized at each loop to obtain a prediction model of higher accuracy. The simulation
on MATLAB shows that the HV avoids obstacles by keeping a safe distance even in complex
scenarios.

However, this control strategy suffers from a few disadvantages: first, the HV does not stay
in the centre of its lane but drifts to stay on the centre of the road due to the lack of an
APF to guide the HV to its particular lane centre, second, the HV can take risky manoeuvres
and third, the obstacle cannot follow an OV well. To overcome these problems, an MIMPC
+ APF-MPC control strategy was defined. This control strategy runs an MIMPC algorithm
and an APF-MPC successively on each loop to calculate the optimal inputs to the actuators
of the HV. The MIMPC algorithm uses a set of logical constraints to maintain a safe distance
from the OV in front of it and uses a lane change flag to decide when to change lanes. The
lane change flag is designed such that the HV does not perform risky manoeuvres. Each
of these logical constraints are converted into a set of linear inequalities to transform the
MIMPC problem into an MIQP problem with a quadratic objective function. The output
of the MIMPC optimal control problem is the optimal lane to travel in based on simplified
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vehicle dynamics and above-defined linear inequalities. Having obtained the optimal lane to
travel in, a set of road potentials are designed so that they can help guide the HV to the
optimal lane. The obstacle APF is convexified and a quadratic approximation is obtained to
be used in the objective function of the APF-MPC part of the control strategy. The objective
function also contains the road potential chosen based on the value of the optimal lane. This
simulation also avoids obstacles and also overcomes the disadvantages that the APF-MPC
control strategy entailed. However,MIMPC + APF-MPC control strategy also has its own
set of disadvantages: first, the time taken for the calculation of the MIMPC + APF-MPC
control strategy is considerably higher than the other due to the computation complexity
of an MIQP problem and second, the vehicles are much less dynamic in nature due to the
dependence of the lane change flag on the OV in the same lane and the adjacent lanes and
on the safe distance measure.

The simulations for both the APF-MPC and MIMPC + APF-MPC control strategies are
carried out in multiple scenarios as discussed in Section 5-1. The simulations also consider
multiple obstacles vehicles to check how well each of the algorithms works in complex scenar-
ios. The control strategies were however not tested on real vehicles.

6-1 Future Work

The implementation of the MIMPC + APF-MPC control strategy for hardware-in-loop sim-
ulations is the first logical recommendation to understand its performance. The model of
the HV and the OV can be improved for better prediction of their respective states over the
prediction horizon. Though the use of a non-linear prediction model of the HV is not rec-
ommended due to a large increase in computation time, a better tire model like the Pacejka
Magic tire formula [79] can be used to better handling capabilities of the prediction model
to be closer to that of the actual HV. Another improvement could be the additional con-
sideration of other external forces affecting the HV such as air drag or rolling resistance can
improve the real-world application of the algorithm. The stability and robustness of the con-
trol strategy should be studied thoroughly for real-world application as sensor data obtained
is never deterministic in nature. After ample testing in simulation, the control strategy has
to be implemented on an actual vehicle for validation.

The second area of improvement is the extension of this thesis to work in a large number of
different environmental conditions. This would extend the idea of this thesis limited to straight
roads, a single friction coefficient and the shape of all OV being the same to different kinds of
road profiles including but not limited to different road curvatures, banking angles, different
friction coefficients and a multitude of road participants. This can lead to the formulation
of a control strategy which can work well in multiple different environmental conditions and
make it ready for real-world implementation.

A major issue while designing the control strategies was the tuning of the weights in the
objective function. A trial and error method was used to find the current weights but they
are far from optimal. A machine learning or neural network-based model can be used to tune
the model online to obtain better performance from the controller [80].

It can be seen from the results that the rate of change of the steering angle of the HV is not
smooth. The controller can therefore be redesigned to use a steering torque-based control
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strategy instead of the steering angle-based control strategy with the advantages of lesser
control effort and smoother steering angle. The use of steering torque as a control input
to the HV leads to more human-like driving characteristics where the controller gives more
importance to smooth and continuous steering characteristics rather than staying at the lane
centre at the end of a lane change manoeuvre. As most vehicles run on fly-by-wire systems,
a steering torque control input removes the necessity for the conversion of the steering wheel
angle to steering torque which needs to be applied to the wheels.

The idea of this thesis was to generate a collision-free path using an integrated path planning
and vehicle control block for the HV. However, the idea can be extended to work with all
the vehicles on the road within a given distance from the HV so as to design a multi-vehicle
autonomous driving coordination problem that can generate the respective inputs for all the
considered vehicles for safe and efficient driving [15]. The advantage of this idea is to make
sure that all the vehicles can satisfy their respective goals while taking into account the goals
of the others to generate a path which works the best for all the given vehicles.
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Appendix A

Quadratic Taylor-series approximation

The Taylor-series approximation generates an pth-order polynomial as its approximation for a
given p-times differentiable function around a given point. As the function under consideration
is a convex function, a quadratic approximation with p = 2 is used. The general form of a
multi-variable quadratic Taylor-series approximation for a function h dependent on variable
x around given point x0 is given by

Th = h (x0) +∇h (x0) (x− x0) + 1
2 (x− x0)T Hh (x0) (x− x0) (A-1)

where ∇h (x0) and Hh (x0) are the partial derivative and the hessian of h (x) at the given
point x0. The partial derivative and the hessian of h (x) where x = [ x y ] at the given point
x0 = [ x0 y0 ] for a quadratic Taylor-series approximation can then be written as

∇h (x0) =
[
hx (x0, y0) hy (x0, y0)

]

Hh (x0) =

hxx (x0, y0) hxy (x0, y0)

hyx (x0, y0) hyy (x0, y0)

 (A-2)
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where hx and hy are first order partial derivatives and hxx, hxy, hyx and hyy are the second-
order partial derivatives with respect to x0. By substituting (A-2) in (A-1), we get

Th =h (x0, y0) +
[
hx (x0, y0) hy (x0, y0)

] x− x0

y − y0

+

1
2

x− x0

y − y0


T hxx (x0, y0) hxy (x0, y0)

hyx (x0, y0) hyy (x0, y0)


x− x0

y − y0


=h (x0, y0) + hx (x0, y0) (x− x0) + hx (x0, y0) (y − y0) + 1

2hxx (x0, y0) (x− x0)2 +

hxy (x0, y0) (x− x0) (x0, y0) + 1
2hyy (x0, y0) (y − y0)2

=h0 + h1

x
y

+ 1
2

x
y


T

h2

x
y



(A-3)

where h0, h1 and h2 are defined as

h0 = h (x0, y0)− hx (x0, y0)x0 − hy (x0, y0) y0 + 1
2hxx (x0, y0)x2

0 + hxy (x0, y0)x0y0+
1
2hyy (x0, y0) y2

0

h1 =

hx (x0, y0)− hxx (x0, y0)x0 − hxy (x0, y0) y0

hy (x0, y0)− hyy (x0, y0) y0 − hxy (x0, y0)x0


h2 =

hxx (x0, y0) hxy (x0, y0)

hyx (x0, y0) hyy (x0, y0)



(A-4)

This can therefore be extended to work with the road and obstacle potential. The Taylor-series
approximation of a general potential U for the future position XHVq+k|q = [XHVq+k|q YHVq+k|q ]T

around the current position XHVq+k−1|q = [XHVq+k−1|q YHVq+k−1|q ]T is calculated by replacing
the general function h with potential U , x with XHVq+k|q and x0 with XHVq+k−1|q in (A-3)
and (A-4). Let us define functions equivalent to h (x0, y0), hx (x0, y0), hy (x0, y0), hxx (x0, y0),
hxy (x0, y0), hyx (x0, y0) and hyy (x0, y0) when defining the quadratic Taylor-series approxima-
tion for a general potential U for the future position XHVq+k|q = [XHVq+k|q YHVq+k|q ]T around
the current position XHVq+k−1|q = [XHVq+k−1|q YHVq+k−1|q ]T as
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h (x0, y0)⇒ U
(
XHVq+k−1|q , YHVq+k−1|q

)
hx (x0, y0)⇒ UXHVq+k|q

(
XHVq+k−1|q , YHVq+k−1|q

)
hy (x0, y0)⇒ UYHVq+k|q

(
XHVq+k−1|q , YHVq+k−1|q

)
hxx (x0, y0)⇒ UXHVq+k|qXHVq+k|q

(
XHVq+k−1|q , YHVq+k−1|q

)
hxy (x0, y0)⇒ UXHVq+k|qYHVq+k|q

(
XHVq+k−1|q , YHVq+k−1|q

)
hyx (x0, y0)⇒ UYHVq+k|qXHVq+k|q

(
XHVq+k−1|q , YHVq+k−1|q

)
hyy (x0, y0)⇒ UYHVq+k|qYHVq+k|q

(
XHVq+k−1|q , YHVq+k−1|q

)

(A-5)

Table A-1 further simplifies the expressions in (A-5) for easier representation. The final

Actual Expression Simplified Representation

U
(
XHVq+k−1|q , YHVq+k−1|q

)
U01

UXHVq+k|q

(
XHVq+k−1|q , YHVq+k−1|q

)
UX

UYHVq+k|q

(
XHVq+k−1|q , YHVq+k−1|q

)
UY

UXHVq+k|qXHVq+k|q

(
XHVq+k−1|q , YHVq+k−1|q

)
UXX

UXHVq+k|qYHVq+k|q

(
XHVq+k−1|q , YHVq+k−1|q

)
UXY

UYHVq+k|qXHVq+k|q

(
XHVq+k−1|q , YHVq+k−1|q

)
UY X

UYHVq+k|qYHVq+k|q

(
XHVq+k−1|q , YHVq+k−1|q

)
UY Y

Table A-1: Simplified representation of expressions in (A-5)

approximated potential is given by

Uq+k|q ==U0 + U1

XHVq+k|q

YHVq+k|q

+ 1
2

XHVq+k|q

YHVq+k|q


T

U2

XHVq+k|q

YHVq+k|q

 (A-6)

where values of U0, U1 and U2 are given by

U0 = U01 − UXXHVq+k−1|q − UY YHVq+k−1|q + 1
2UXXX

2
HVq+k−1|q

+ UXYXHVq+k−1|qYHVq+k−1|q +
1
2UY Y Y

2
HVq+k−1|q

U1 =

UX − UXXXHVq+k−1|q − UXY YHVq+k−1|q

UY − UY Y YHVq+k−1|q − UXYXHVq+k−1|q


U2 =

UXX UXY

UY X UY Y


(A-7)
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Equation (A-6) therefore defines the quadratic approximation of a given potential U at pre-
diction step k in loop q. Let us define a function quad

(
U
(
XHVq+k−1|q

))
which is a simplified

representation of Equation (A-6) such that

Uq+k|q = quad
(
U
(
XHVq+k−1|q

))
(A-8)
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Algorithms

Algorithm 5 gives the algorithm for the CalculateHVRegion and is used to check the region
around a given OV that the HV lies in. Let Ai, Bi1 and Ci1 be vectors representing the
coefficients of the lines Li1 where i1 ∈ {1, 2, . . . 10} around the jth OV which divide the
area around the given OV into ten regions. Let Xvi2

where i1 ∈ {1, 2, . . . 5} represent the
coordinates of the vertices of the jth OV. The current position of the HV is given by XHV =
[XHV YHV ]T and the heading angle, θHV.

The algorithm receives the data about the lines dividing the region around the jth OV into
ten regions given along with the vertices of the vehicle and the position and heading angle
data of HV as input. The algorithm runs a nested if-else tree for the different values of theta
within each region is calculated. The algorithm uses the logical expressions shown in Figure
3-5 for different values of θHV.

Algorithm 6 gives the algorithm to calculate the value of the Euclidean distance for the
region that the HV lies in. Let us define LSi2 as a line segment representing the edge of
the extended obstacle as seen in Figure 3-5. Let us also define X1,LS = [X1,LS Y1,LS ] and
X2,LS = [X2,LS Y2,LS ] as the vertices of any given line segment LS. It is to be remembered
that X1,LS and X1,LS are a subset of Xvi2

. The algorithm is then given by

The algorithm receives the vertices of the line segment corresponding to the respective region,
the position of the CoG of the HV along with the constants of the obstacle APF as given in
Table 3-2 as its input. The value of t is calculated as defined in (3-11) based on the relative
position of the CoG of the HV and the selected line segment LS. Based on the value of t,
calculate the corresponding euclidian distance function, Kobsconv based on (3-12) . The value
of Kobsconv thus obtained is used to form the convex approximation of the obstacle APF.
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Algorithm 5: Algorithm for CalculateHVRegion
Data: XHV, Ai1 , Bi1 , Ci1 , Xvi2
Result: region

1 begin
2 if θHV < 0 then
3 if (A1XHV +B1YHV + C1 < 0) ∧ (A2XHV +B2YHV + C2 ≤ 0) ∧

(A3XHV +B5YHV + C5 > 0) then
4 region= R1

5
...

6 else if (A1XHV +B1YHV + C1 < 0) ∧ (A5XHV +B5YHV + C5 ≤ 0) then
7 region= R10

8 else if θHV = 0 then
9 if (XHV −Xv1 > 0) ∧ (YHV − Yv1 ≤ 0) ∧ (YHV − Yv5 > 0) then

10 region= R1

11
...

12 else if (XHV −Xv1 > 0) ∧ (YHV − Yv1 ≤ 0) then
13 region= R10

14 else if θHV > 0 then
15 if (A1XHV +B1YHV + C1 > 0) ∧ (A2XHV +B2YHV + C2 ≤ 0) ∧

(A3XHV +B5XHV + C5 > 0) then
16 region= R1

17
...

18 else if (A1XHV +B1YHV + C1 > 0) ∧ (A5YHV +B5YHV + C5 ≤ 0) then
19 region= R10

Algorithm 6: Algorithm for CalculateDist
Data: region, XHV, X1,LSi2

, X2,LSi2
Result: Kobsconv

1 begin
2 t = (XHV−X1,LS)(X2,LS−X1,LS)+(YHV−Y1,LS)(Y2,LS−Y1,LS)

(X2,LS−X1,LS)2+(Y2,LS−Y1,LS)2

3 if t < 0 then
4 dp−ls (XHV, LS5) =

√
(XHV −X1,LS)2 + (YHV − Y1,LS)2

5 else if 0 ≤ t ≤ 1 then
6 dp−ls (XHV, LS5) =√

(XHV − (X1,LS + t (X2,LS −X1,LS)))2 + (YHV − (Y1,LS + t (Y2,LS − Y1,LS)))2

7 else
8 t > 1
9 dp−ls (XHV, LS5) =

√
(XHV −X2,LS)2 + (YHV − Y2,LS)2
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Matrices of the Bicycle Model

Given the current state of the system x(q) = xq|q and the current input to the system
u(q) = uq|q, the matrices of the linearized HV model are given by.

ẋHV = AHVxHV +BuHV where

AHV =



A1,1 0 0 A1,4 A1,5 0

cos θHV 0 0 − sin θHV 0 A2,6

sin θHV 0 0 cos θHV 0 A3,6

A4,1 0 0 A4,4 A4,5 0

A5,1 0 0 A5,4 A5,5 0

0 0 0 0 0 1


(x0,u0)

, BHV =



1 B1,2

0 0

0 0

0 B4,2

0 B5,2

0 0


(x0,u0)

, CHV = Cc

(C-1)
where

A1,1 =
2Cf sin δHV

(
vy + ℓf θ̇HV

)
mv2

x,HV

A1,4 = θ̇HV −
2Cf sin δHV
mvx,HV

A1,5 = vy,HV −
2Cf ℓg sin δHV
mvx,HV

A2,6 = −vx,HV sin θHV − vy,HV cos θHV

A3,6 = vx,HV cos θHV − vy,HV sin θHV

A4,1 =
2Cr

(
vy,HV − ℓrθ̇HV

)
mv2

x,HV
−

2Cf cos δHV
(
vy,HV + ℓf θ̇HV

)
mv2

x,HV
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A4,4 = 2 (Cf cos δHV − Cr)
mvx,HV

A4,5 = −vx,HV + 2Crℓr
mvx,HV

+ 2Cf ℓf cos δHV
mvx,HV

A5,1 = −
Crℓr

(
vy,HV − ℓrθ̇HV

)
Izv2

x,HV
−
Cf ℓf cos δHV

(
vy,HV + ℓf θ̇HV

)
Izv2

x,HV

A5,4 = Crℓr + Cf ℓf cos δHV
Izvx,HV

A5,5 =
−Crℓ2r − Cf ℓ2f cos δ)HV

Izvx,HV

B1,2 =
2Cf

(
vx,HV sin δHV +

(
vx,HVδHV − vy,HV − ℓf θ̇HV

)
cos δHV

)
mvx,HV

B4,2 =
2Cf

(
vx,HVδHV − vy,HV − ℓf θ̇HV

)
sin δHV − vx,HV cos δHV

mvx,HV

B5,2 =
Cf ℓf

(
vx,HVδHV − vy,HV − ℓf θ̇HV

)
sin δHV − vx,HV cos δHV

Izvx,HV

Josyula Viswanath Das Master of Science Thesis



Bibliography

[1] M. T. Wolf and J. W. Burdick, “Artificial potential functions for highway driving with
collision avoidance,” Proceedings - IEEE International Conference on Robotics and Au-
tomation, pp. 3731–3736, 2008.

[2] B. Cottam, “Transportation planning for connected autonomous vehicles: How it all fits
together,” Transportation Research Record: The Journal of the Transportation Research
Board, vol. 2672, March 2018.

[3] D. J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, “Sensor and sensor fusion
technology in autonomous vehicles: A review,” Sensors, vol. 21, no. 6, pp. 1–37, 2021.

[4] T. Winkle, “Safety Benefits of Automated Vehicles: Extended Findings from Accident
Research for Development, Validation and Testing,” pp. 335–364, 2016.

[5] G. Velasco-Hernandez, D. J. Yeong, J. Barry, and J. Walsh, “Autonomous driving archi-
tectures, perception and data fusion: A review,” pp. 315–321, 2020.

[6] J. Van Brummelen, M. O’Brien, D. Gruyer, and H. Najjaran, “Autonomous vehicle
perception: The technology of today and tomorrow,” Transportation Research Part C:
Emerging Technologies, vol. 89, no. February, pp. 384–406, 2018.

[7] Z. Wang, Y. Wu, and Q. Niu, Multi-Sensor Fusion in Automated Driving: A Survey,
vol. 8. Institute of Electrical and Electronics Engineers Inc., 2020.

[8] E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby, and A. Mouzakitis, “A
Survey on 3D Object Detection Methods for Autonomous Driving Applications,” IEEE
Transactions on Intelligent Transportation Systems, vol. 20, no. 10, pp. 3782–3795, 2019.

[9] A. Singh Rathore, “State-of-the-Art Self Driving Cars: Comprehensive Review,” Inter-
national Journal of Conceptions on Computing and Information Technology, vol. 4, no. 1,
pp. 2345–9808, 2016.

Master of Science Thesis Josyula Viswanath Das



96 BIBLIOGRAPHY

[10] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of motion planning for
highway autonomous driving,” IEEE Transactions on Intelligent Transportation Systems,
vol. 21, no. 5, pp. 1826–1848, 2020.

[11] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control: an
engineering perspective,” The International Journal of Advanced Manufacturing Tech-
nology, vol. 117, pp. 1327–1349, November 2021.

[12] “Average car length guide (car lengths in meters and inches),” Jan 2022.

[13] D. Fernandez, “How wide is the average car? [inc. 20 examples],” Vehicle HQ, March
2020.

[14] H. Yang, J. Zhang, Z. Chen, F. Zhao, and H. Liu, “Curb weight probability distribution
and the recommended gross weight of passenger car in mechanical parking garage design,”
Journal of Asian Architecture and Building Engineering, pp. 1–13, 2022.

[15] F. Fabiani and S. Grammatico, “Multi-vehicle automated driving as a generalized
mixed-integer potential game,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 21, no. 3, pp. 1064–1073, 2020.

[16] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A Survey of Autonomous Driv-
ing: Common Practices and Emerging Technologies,” IEEE Access, vol. 8, pp. 58443–
58469, 2020.

[17] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,
J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang,
S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van
Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler,
A. Nefian, and P. Mahoney, “Stanley: The robot that won the darpa grand challenge,”
pp. 1–43, 2006.

[18] “Grand Challenge 2004 Final Report,” tech. rep., Defense Advanced Research Projects
Agency, 2004.

[19] On-Road Automated Driving (ORAD) committee, “Taxonomy and definitions for terms
related to driving automation systems for on-road motor vehicles,” Ground Vehicle Stan-
dard J3016_202104, SAE International, April 2021.

[20] European Commission. (EC), “Sustainable and Smart Mobility Strategy—Putting Eu-
ropean Transport on Track for the Future,” 2020.

[21] J. Manyika, M. Chui, J. Bughin, R. Dobbs, P. Bisson, and A. Marrs, “Disruptive tech-
nologies: advances that will transform life, business, and the global economy,” tech. rep.,
McKinsey Global Institute, 2013.

[22] T. Lozano-Pérez, J. L. Jones, P. A. O’Donnell, and E. Mazer, Handey: A Robot Task
Planner. Cambridge, MA, USA: MIT Press, 1992.

[23] M. Rokonuzzaman, N. Mohajer, S. Nahavandi, and S. Mohamed, “Review and perfor-
mance evaluation of path tracking controllers of autonomous vehicles,” IET Intelligent
Transport Systems, vol. 15, 05 2021.

Josyula Viswanath Das Master of Science Thesis



BIBLIOGRAPHY 97

[24] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination
of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4,
no. 2, pp. 100–107, 1968.

[25] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische math-
ematik, vol. 1, no. 1, pp. 269–271, 1959.

[26] S. LaValle, “Rapidly-exploring random trees : a new tool for path planning,” The annual
research report, 1998.

[27] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in Pro-
ceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2,
pp. 500–505, 1985.

[28] D. González, J. Pérez, V. Milanés, and F. Nashashibi IEEE Transactions on Intelligent
Transportation Systems.

[29] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How, “Real-time motion
planning with applications to autonomous urban driving,” IEEE Transactions on Control
Systems Technology, vol. 17, no. 5, pp. 1105–1118, 2009.

[30] X. Qian, I. Navarro, A. de La Fortelle, and F. Moutarde, “Motion planning for urban
autonomous driving using bézier curves and mpc,” in 2016 IEEE 19th International
Conference on Intelligent Transportation Systems (ITSC), pp. 826–833, 2016.

[31] C. Liu, S. Lee, S. Varnhagen, and H. E. Tseng, “Path planning for autonomous vehicles
using model predictive control,” in 2017 IEEE Intelligent Vehicles Symposium (IV),
pp. 174–179, 2017.

[32] J. Li, M. Ran, H. Wang, and L. Xie, “MPC-based Unified Trajectory Planning and Track-
ing Control Approach for Automated Guided Vehicles,” IEEE International Conference
on Control and Automation, ICCA, vol. 2019-July, pp. 374–380, 2019.

[33] H. Guo, C. Shen, H. Zhang, H. Chen, and R. Jia, “Simultaneous Trajectory Planning and
Tracking Using an MPC Method for Cyber-Physical Systems: A Case Study of Obsta-
cle Avoidance for an Intelligent Vehicle,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 9, pp. 4273–4283, 2018.

[34] C. Shen, Y. Shi, and B. Buckham, “Integrated path planning and tracking control of an
AUV: A unified receding horizon optimization approach,” IEEE/ASME Transactions on
Mechatronics, vol. 22, no. 3, pp. 1163–1173, 2017.

[35] C. Ko, S. Han, M. Choi, and K. S. Kim, “Integrated path planning and tracking control
of autonomous vehicle for collision avoidance based on model predictive control and
potential field,” International Conference on Control, Automation and Systems, pp. 956–
961, 2020.

[36] J. Dentler, Real-time Model Predictive Control of Cooperative Aerial Manipulation. PhD
thesis, University of Luxembourg, 10 2018.

Master of Science Thesis Josyula Viswanath Das



98 BIBLIOGRAPHY

[37] S. Scheggi and S. Misra, “An experimental comparison of path planning techniques ap-
plied to micro-sized magnetic agents,” in 2016 International Conference on Manipulation,
Automation and Robotics at Small Scales (MARSS), pp. 1–6, 2016.

[38] Y. Du, Y. Wang, and C.-Y. Chan, “Autonomous lane-change controller,” in 2015 IEEE
Intelligent Vehicles Symposium (IV), pp. 386–393, 2015.

[39] A. Bemporad and M. Morari, “Control of systems integrating logic, dynamics, and con-
straints,” Automatica, vol. 35, p. 407–427, March 1999.

[40] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Berlin, Heidelberg: Springer-
Verlag, 2007.

[41] S. Campbell, N. O’Mahony, A. Carvalho, L. Krpalkova, D. Riordan, and J. Walsh, “Path
Planning Techniques for Mobile Robots A Review,” 2020 6th International Conference
on Mechatronics and Robotics Engineering, ICMRE 2020, pp. 12–16, 2020.

[42] N. Berger, “Lane Change Path Planning: with State-Dependent Safety Constraints,”
master’s thesis, TU Delft, February 2018.

[43] J. Souman, K. Adjenughwure, E. van Dam, M. van Weperen, and A. Tejada, “Quantifi-
cation of safe driving,” Tech. Rep. TNO 2021 R12632 0.1, TNO, December 2021.

[44] S. Zhang, W. Deng, Q. Zhao, H. Sun, and B. Litkouhi, “Dynamic trajectory planning
for vehicle autonomous driving,” pp. 4161–4166, 10 2013.

[45] B. van Kampen, “Case study: Rear end or chain accidents,” tech. rep., 2003.

[46] W. G. Najm, B. Sen, J. D. Smith, B. Campbell, et al., “Analysis of light vehicle crashes
and pre-crash scenarios based on the 2000 general estimates system,” tech. rep., United
States. National Highway Traffic Safety Administration, 2003.

[47] K. N. de Winkel, T. Irmak, R. Happee, and B. Shyrokau, “Standards for passenger
comfort in automated vehicles: Acceleration and jerk,” Applied Ergonomics, vol. 106,
p. 103881, 2023.

[48] H. Jula, E. B. Kosmatopoulos, and P. A. Ioannou, “Collision avoidance analysis for
lane changing and merging,” IEEE Transactions on vehicular technology, vol. 49, no. 6,
pp. 2295–2308, 2000.

[49] Y. Koren and J. Borenstein, “Potential field methods and their inherent limitations
for mobile robot navigation,” in Proceedings. 1991 IEEE International Conference on
Robotics and Automation, pp. 1398–1404 vol.2, 1991.

[50] P. Khosla and R. Volpe, “Superquadric artificial potentials for obstacle avoidance and
approach,” in Proceedings. 1988 IEEE International Conference on Robotics and Au-
tomation, pp. 1778–1784 vol.3, 1988.

[51] X. Yang, W. Yang, H. Zhang, H. Chang, C.-Y. Chen, and S. Zhang, “A new method for
robot path planning based artificial potential field,” in 2016 IEEE 11th Conference on
Industrial Electronics and Applications (ICIEA), pp. 1294–1299, 2016.

Josyula Viswanath Das Master of Science Thesis



BIBLIOGRAPHY 99

[52] R. Volpe and P. Khosla, “Manipulator Control with Superquadric Artificial Potential
Functions: Theory and Experiments,” IEEE Transactions on Systems, Man and Cyber-
netics, vol. 20, no. 6, pp. 1423–1436, 1990.

[53] D. Eberly, “Distance between point and line, ray, or line segment,” March 1999.

[54] J. Perina, “Shortest distance between a point and a line segment,” May 2009.

[55] F. S. Al-Duais and M. Y. Hmood, “Bayesian and non-bayesian estimation of the lomax
model based on upper record values under weighted linex loss function,” Periodicals of
Engineering and Natural Sciences (PEN), vol. 8, no. 3, pp. 1786–1794, 2020.

[56] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control: theory, computa-
tion, and design, vol. 2. Nob Hill Publishing Madison, WI, 2017.

[57] Y.-G. XI, D. Li, and S. Lin, “Model predictive control — status and challenges,” Acta
Automatica Sinica, vol. 39, p. 222–236, March 2013.

[58] J. Richalet, A. Rault, J. Testud, and J. Papon, “Model predictive heuristic control:
Applications to industrial processes,” Automatica, vol. 14, no. 5, pp. 413–428, 1978.

[59] A. Bemporad, W. Heemels, and B. De Schutter, “On hybrid systems and closed-loop
mpc systems,” IEEE Transactions on Automatic Control, vol. 47, no. 5, pp. 863–869,
2002.

[60] M. Verhaegen and V. Verdult, Filtering and System Identification: A Least Squares
Approach. Cambridge University Press, 2007.

[61] C. Chen and L. Shaw, “On receding horizon feedback control,” Automatica, vol. 18, no. 3,
pp. 349–352, 1982.

[62] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, pp. 789–814, June
2000.

[63] J. Hebib and S. Dam, “Vehicle dynamic models for virtual testing of autonomous trucks,”
master’s thesis, Linköping University, February 2019.

[64] V. Patil, “Generic and complete vehicle dynamic models for open-source platforms,”
master’s thesis, TU Delft, August 2017.

[65] R. Rajamani, Vehicle Dynamics and Control. January 2006.

[66] W. Jansen, “Lateral Path-Following Control of Automated Vehicle Platoons,” master’s
thesis, TU Delft, July 2016.

[67] M. Isaksson Palmqvist, “Model Predictive Control for Autonomous Driving of a Truck,”
master’s thesis, Kungliga Tekniska Hgskolan (KTH), 2016.

[68] F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, and D. H. , “Mpc-based approach to active
steering for autonomous vehicle systems,” International Journal of Vehicle Autonomous
Systems, vol. 3, no. 2-4, pp. 265–291, 2005.

Master of Science Thesis Josyula Viswanath Das



100 BIBLIOGRAPHY

[69] K. J. Åström and B. Wittenmark, Computer-Controlled Systems: Theory and Design
(2nd Ed.). USA: Prentice-Hall, Inc., 1990.

[70] A. Wysocki and M. Ławryńczuk, “On choice of the sampling period and the horizons in
generalized predictive control,” in Recent Advances in Automation, Robotics and Measur-
ing Techniques (R. Szewczyk, C. Zieliński, and M. Kaliczyńska, eds.), (Cham), pp. 329–
339, Springer International Publishing, 2014.

[71] I. Bilik, O. Longman, S. Villeval, and J. Tabrikian, “The rise of radar for autonomous
vehicles: Signal processing solutions and future research directions,” IEEE Signal Pro-
cessing Magazine, vol. 36, pp. 20–31, September 2019.

[72] M. Lee, S. Kim, D. Jung, H. Lee, J. Choi, H. Han, and J. H. Yang, “Simulator-based
study of the response time and defensive behavior of drivers in unexpected dangers at an
intersection,” in Adjunct Proceedings of the 14th International Conference on Automotive
User Interfaces and Interactive Vehicular Applications, AutomotiveUI ’22, (New York,
NY, USA), p. 10–14, Association for Computing Machinery, 2022.

[73] P. Droździel, S. Tarkowski, I. Rybicka, and R. Wrona, “Drivers’ reaction time research
in the conditions in the real traffic,” Open Engineering, vol. 10, pp. 35–47, January 2020.

[74] E. Snapper, “Model-based Path Planning and Control for Autonomous Vehicles using
Artificial Potential Fields,” master’s thesis, TU Delft, January 2018.

[75] J. Ji, A. Khajepour, W. W. Melek, and Y. Huang, “Path planning and tracking for
vehicle collision avoidance based on model predictive control with multiconstraints,”
IEEE Transactions on Vehicular Technology, vol. 66, no. 2, pp. 952–964, 2017.

[76] R. N. Jazar, Steering Dynamics, pp. 379–454. Boston, MA: Springer US, 2008.

[77] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in matlab,” in In Pro-
ceedings of the CACSD Conference, (Taipei, Taiwan), 2004.

[78] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2022.

[79] H. B. Pacejka, “Chapter 4 - semi-empirical tyre models,” in Tyre and Vehicle Dynamics
(Second Edition) (H. B. Pacejka, ed.), pp. 156–215, Oxford: Butterworth-Heinemann,
second edition ed., 2006.

[80] B. Zarrouki, V. Klös, N. Heppner, S. Schwan, R. Ritschel, and R. Voßwinkel, “Weights-
varying mpc for autonomous vehicle guidance: a deep reinforcement learning approach,”
in 2021 European Control Conference (ECC), pp. 119–125, 2021.

Josyula Viswanath Das Master of Science Thesis



Glossary

List of Acronyms

DARPA Defense Advanced Research Projects Agency
AV Autonomous Vehicles
APF Artificial Potential Fields
MPC Model Predictive Control
SAE Society of Automotive Engineers
CV Conventional Vehicles
LiDAR Light Detection And Ranging
RADAR RAdio Detection And Ranging
RRT Rapidly-exploring Random Trees
HV Host Vehicle
OV Obstacle Vehicle
MIMPC Mixed-Integer Model Predictive Control
MLD Mixed-Logical Dynamical
ROI Region Of Interest
USA United States of America
CoG Center of Gravity
LINEX LINear EXponential
VCS Vehicle Control System
CV Constant Velocity
ZOH Zero Order Hold
MIQP Mixed Integer Quadratic Programming
MATLAB MATrix LABoratory
YALMIP Yet Another LMI Parser
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SDP Semi-Definite Programming
LMI Linear Matrix Inequalities
RMS Root Mean Square
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