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Uncontrolled urban sprawl intensifies socio-ecological pressures, demanding planning strategies that measurably
enhance urban ecosystem services. Urban agriculture is a promising lever, yet its long-term ecosystem services
contributions remain insufficiently quantified. This study addresses two critical questions: (1) How can suit-
ability analysis guide the spatial integration of urban agriculture to optimize long-term ecological benefits? and
(2) How can a landscape approach-based urban agriculture planning strategy be designed to align with
ecosystem services enhancement goals? We develop a transparent, reproducible pipeline linking machine-
learning suitability modeling (XGBoost with SHAP), deep-learning land use simulation, and monetary
ecosystem services valuation. Using Rotterdam as a case study, we simulate three development scenarios for
2030 and 2050: Business-as-Usual (BAU), Suitability-Based Autonomous Transformation, and Suitability-Based
Landscape Approach Transformation. Suitability-guided scenarios outperform BAU, with the landscape-
approach scenario delivering the most stable multi-decadal outcomes for regulating and cultural services.
However, provisioning services can plateau or even decline when ecological protection constraints limit inten-
sive production, revealing the limits of land allocation alone. We conclude by offering thresholds and rules that
translate suitability and scenario outputs into a transferable urban agriculture planning model, enabling planners
to embed urban agriculture within a landscape approach as part of broader sustainable urban transformation.

1. Introduction

Cities around the world are experiencing rapid urbanization, which
often exacerbates challenges such as poverty, inequality, environmental
degradation, and public health risks (Roggema, 2020; McMichael,
2000). As cities grapple with escalating socio-ecological challenges
driven by rapid urbanization (Elmqvist et al., 2019; Geels, 2002;
Holscher & Frantzeskaki, 2021), enhancing ecosystem services in cities
is one of the most significant ways to help cities get out of the woods. The
consolidation of ecosystem services contributes to the harmonization of
people and nature and promotes the positive and stable development of
society (Daily, 1997). Precisely because humans are considered part of
nature, natural ecosystems within the urban context cannot be ignored
as well (Bolund & Hunhammar, 1999). Therefore, integrating ecosystem
services into planning systems for urban transformation is crucial for
promoting sustainable urban development (Cortinovis & Geneletti,
2018). In recent years, extensive attention has begun to be paid to the
impacts of agroecosystem services on urban dwellers, particularly urban

agriculture (Aerts et al., 2016). As an inclusive and integrated concept,
urban agriculture is proved to be relevant to almost all urban sustainable
development goals (Pradhan et al., 2024). Urban agriculture’s influence
of ensuring food security, creating employment opportunities, and
enhancing habitats has gained significant attention and recognition
(Azunre et al., 2019; Ilieva et al., 2022; Waffle et al., 2017). In this way,
advocacy for the integration of agriculture into urban ecosystems is
proved to address a variety of contemporary issues (Feagan, 2007;
Lovell, 2010). Taken together, urban agriculture has achieved substan-
tial progress in the urban transformation process by delivering
ecosystem services (Morgan, 2015; Langemeyer et al., 2021; Mackenzie
& Davies, 2019).

However, in urban development catalogues, especially urban plan-
ning and design, it is the pursuit of long-term resilient provisioning of
ecosystem services that promotes human well-being (McPhearson et al.,
2015). Because the spatial and temporal response of land use change to
ecosystem services in urban transformation and city planning is sub-
stantial (Cui et al., 2021), urban agriculture should play a key role as a
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multifunctional land use strategy. Although there is widespread support
for urban agriculture to provide provisioning, regulating and cultural
values (Zasada, 2011), some of its ecological impacts call into question
its ability to provide long-term ecosystem services. For example, inten-
sive urban agricultural development may displace high-value natural
habitats or green spaces, potentially harming biodiversity, carbon
sequestration, and other regulating services in the long run (Barthel and
Isendahl, 2013; Portela and Aguirre, 2000). In addition, the spatial
configuration, integration, and management of urban agriculture are
fundamental to ensuring its long-term sustainability and its contribution
to the ecological fabric of cities (Gomez-Villarino et al., 2021). But some
scholars find that although urban agriculture like gardens on vacant lots
can improve ecosystem services in the short term, its long-term sus-
tainability remains contentious due to potential trade-offs in resource
consumption and landscape transformation (Drake and Lawson, 2014;
Padgham et al., 2015). This highlights a key issue: while expanding
urban agriculture seems to be an immediate solution, longevity is a
major challenge. Therefore, arranging urban agriculture to provide
ecosystem services from a long-term perspective in conjunction with a
rational spatial logic is a major task in advancing its operability in urban
transformation.

From a multi-level perspective, urban transformation models
emphasize the institutional embedding of niches, which refers to inno-
vative practices in urban agriculture and serve as the main object for
validating changes in ecosystem services (Geels, 2002; Ernst et al.,
2016). Within broader landscape structures, institutions are made up of
multiple policy and regulatory mechanisms that together determine
whether a niche can be implemented and diffused (Holscher & Frant-
zeskaki, 2021). From a practical standpoint, multi-perspective and
multi-scale approaches to urban transformation highlight the benefits of
placemaking, integrated systems thinking, and urban networks. Broader
landscape structures highlight the ability of urban agriculture to be in-
tegrated into landscape structures across scales and to have a broader
impact across cities (Arts et al., 2017; Wu, 2013). These are in line with
the principles of the landscape approach, which is a multidimensional,
cross-scalar integrative strategy that conceptualizes landscapes as the
dynamic interface between human and environmental interactions
(Sayer, 2009; Reed et al., 2015; Wascher, 2004). Therefore, considering
urban agriculture as a landscape approach to promote urban
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transformation has great potential in achieving sustainable urban
development and enhancing ecosystem services. The landscape
approach views cities as coupled human-land-environment systems and
advocates the coordination of multiple land uses (e.g. agriculture, con-
servation and urban development) to achieve synergistic effects on
ecosystem services (Arts et al., 2017; Nijhuis, 2022). However, there are
two major obstacles in exploring this path. First, few studies have
quantitatively assessed the dynamic changes of ecosystem services
within the city during urban development under a unified spatial
modeling framework (Huan et al., 2024a; Evans et al., 2022; Yuan et al.,
2022). This has led scholars and practitioners to remain skeptical and
vague about the contribution of urban agriculture to urban trans-
formation. Second, urban agriculture programs are often based on iso-
lated case studies, making it difficult to generalize the research results or
use them to guide the planning of the entire city (Pueyo-Ros et al.,
2024). These gaps not only limit theoretical advancement but pose a
practical bottleneck. Therefore, this urges us to not only validate and
assess the exact contribution of urban agriculture to ecosystem services
in the dynamics of urban transformation, but also to summarize and
propose a universal spatial intervention strategy based on these results.

To this end, this study raises a key research question: how can urban
agriculture be embedded in a landscape approach to enhance long-term
ecosystem services (Fig. 1)? To address this issue, we construct an in-
tegrated research framework for validating and quantifying the dy-
namics of ecosystem services in different contexts. This not only
validates the capacity of the landscape approach in a long-term
perspective, but also provides designers with a useable toolkit for
spatial practice. Firstly, based on the research gaps suggested by the
literature review, we define three different urban development scenarios
to visualize the landscape approach and demonstrate its effects, using
Rotterdam as the experimental area. Given that the landscape approach
emphasizes the suitability assessment of interventions (Nijhuis, 2022),
the three scenarios are identified as (1) a Business-as-Usual (BAU) sce-
nario; (2) a Suitability-Based Autonomous Transformation scenario and
(3) a Suitability-Based Landscape Approach scenario. Following this, we
use the XGBoost algorithm combined with the SHAP interpretability
mechanism to conduct a machine learning-based suitability assessment
to identify the urban agriculture locations with the greatest develop-
ment potential. After accurate identification, considering that previous
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Fig. 1. Workflow of methodology.
Source: By author
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models relying on cellular automata or scenario trend analysis cannot
incorporate the multidimensional driving factors and spatial de-
pendencies unique to urbanization, we decide to use deep
learning-based tool for land use simulation (Liu et al., 2017; Li et al.,
2023; Jia et al., 2024). We choose two-time nodes, 2030 and 2050, to
represent the short- and long-term scenarios, respectively. Finally, by
calculating the ecosystem services valuation, we summarize the contri-
bution of urban agriculture as a landscape approach to inter-temporal
provisioning. Subsequently, combining the experimental results, theo-
retical basis and empirical experience, we propose a ‘micro-urban-re-
gional’ cross-scale spatial intervention strategy to optimize long-term
ecological benefits.

This study is positioned at the intersection of urban planning, land-
scape ecology, and data-driven spatial simulation. Rather than propos-
ing a new algorithm, this study contributes by: (i) integrating
established suitability modelling (XGBoost + SHAP) with deep-learning
land-use simulation (GeoTransformer) into a transparent, reproducible
pipeline for urban agriculture planning; (ii) providing multi-scenario,
multi-decadal evidence on how the landscape approach influences
ecosystem services trajectories in Rotterdam; and (iii) translating model
outputs into cross-scale planning guidance (local-urban-regional) that
practitioners can operationalize. Although the case is based in Rotter-
dam, the methodological framework and policy-relevant insights are
adaptable to cities worldwide that seek to balance land development
with ecological performance. The full dataset and code/notebook are
openly released with DOIs to support reuse and scrutiny.

2. Methods and materials

The study is carried out specifically after acquiring and pre-
processing the data, following the methodology shown in Fig. 1.

2.1. Study area and data source
Rotterdam, located in South Holland, the Netherlands, lies adjacent

to the Rhine and Nieuwe Maas Rivers and spans over 200 km?, with its
extensive port district occupying more than 100 km?. Situated in the

Fig. 2. Selected scope of the Rotterdam.
Source: By author
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low-lying Dutch delta, the city features flat terrain averaging approxi-
mately 7 m below sea level, characterized by mild winters, cool sum-
mers, and an annual precipitation of around 700 mm. The city’s diverse
landscape includes expansive estuaries, meandering rivers, and a subsoil
composed predominantly of clay, sand, and peat deposits. Beyond
serving as a major international hub for agri-food trade, Rotterdam is
also an important producer of agricultural goods. Urban agriculture has
notably thrived in recent years, benefiting from proactive governmental
initiatives and policies established since 2007 to promote sustainable
food systems. Rotterdam is selected as a case study for two distinct
reasons: the city’s abundant, high-quality, publicly accessible data
sources including those provided by the Central Bureau of Statistics
(CBS) and Public Services on the Map (PDOK), which facilitate precise
quantitative analysis; and its established policy framework and sub-
stantial municipal investment supporting urban agriculture initiatives.
For this study, multiple datasets on urban land use and socio-
environmental factors within Rotterdam are analyzed at the neighbor-
hood level. Given that some neighborhoods predominantly consist of
water bodies or uninhabited areas, the final analysis focuses specifically
on 16 selected neighborhoods (Fig. 2). This combination of robust data
availability, mature policy support, and active urban agricultural pro-
jects makes Rotterdam an ideal setting for this comprehensive
investigation.

To evaluate areas suitable for the development of urban agriculture
across Rotterdam, we implement a machine learning-based suitability
analysis using the XGBoost model in combination with SHAP inter-
pretability techniques. The dataset is constructed by integrating multi-
ple spatial indicators derived from authoritative sources, including the
Central Bureau of Statistics (CBS) and Public Services on the Map
(PDOK), and processed using QGIS to achieve consistent resolution and
coordinate systems (Table 1). The indicators encompass natural envi-
ronmental conditions, transportation accessibility, and socioeconomic
characteristics. The socio-economic variables include population den-
sity and road network density which are known to influence the distri-
bution and potential impact of urban agriculture (Hume et al., 2021;
Bellemare & Dusoruth, 2021; Ferreira et al., 2018). Environmental in-
dicators consist of elevation, slope, aspect, surface runoff, proximity to

A
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Table 1
Land use simulation factors selection and source.
Form Data name Year Source Resolution
Site data Boundaries 2010 PDOK Raster
Land use 2010, 2017 PDOK + 30m
OSM (open
street map)
Natural DEM 2024 NASA 30m
environmental SRTM
factors Slope, Aspect 2024 NASA 30m
SRTM
Arable land 2024 PDOK Raster
Forest land 2024 PDOK Raster
Wetland 2024 PDOK Raster
Vegetation 2024 NASA 30m
cover SRTM
Wind speed 2023 PDOK Raster
Runoff 2020 PDOK 30m
Socio-economic Distance to 2024 PDOK Raster
factors water body
Distance to 2024 PDOK Raster
railway
Distance to 2024 PDOK Raster
highway
Population 2023 PDOK 1 km
density
Ecological factor Nature 2024 PDOK  Raster

reserve

water bodies, and the presence of ecological reserves, which are essen-
tial for assessing the viability and sustainability of urban agriculture
(Diekmann et al., 2019; Beniston and Lal, 2012; Cui et al., 2018; Raza
et al., 2019). Precipitation, temperature, and soil quality data are also
collected for the Rotterdam area. However, these variables are excluded
from the final suitability analysis due to limited spatial variation (pre-
cipitation and temperature) and data gaps in urbanized zones (soil
quality). Their exclusion ensures consistency and avoids bias in the
modeling framework. A labeled dataset for suitability modeling is
created through stratified sampling, assigning binary suitability labels
based on threshold-based evaluation of the above factors. XGBoost, an
ensemble-based classifier, is trained on this dataset, and model perfor-
mance is evaluated using standard cross-validation methods. SHAP
values are subsequently computed to interpret the influence of each
variable on suitability predictions, improving transparency in spatial
decision-making.

A consistent suite of spatial predictors is used as driving factors for
the GeoTransformer model to maintain scenario comparability.
Following previous land use simulation literature (Liang et al., 2021; Li
et al., 2023; Lin et al., 2020), we exclude only ecological reserves from
the dataset. Spatial predictors include topographical (elevation, slope,
aspect), hydrological (runoff, proximity to water bodies), infrastructural
(distance to roads), and socio-economic variables (population density,
urban greening). Land use data is reclassified into nine categories:
agriculture, forest, urban agriculture, urban green/grassland, wetland,
water, built-up area, transportation, and unused land. This reclassifi-
cation follows the PDOK system and is implemented through merging,
clipping, and raster transformation operations in QGIS. All layers are
spatially aligned and resampled to a common resolution to ensure
compatibility within the GeoTransformer simulation framework. This
methodological consistency ensures robust and interpretable results
across all simulated development scenarios.

2.2. Modelling of land use scenarios for urban transformation

2.2.1. Urban agriculture suitability assessment using XGBoost and SHAP
In this study, we implement a reproducible approach to assess urban

agriculture suitability by integrating the eXtreme Gradient Boosting

(XGBoost) algorithm with SHapley Additive exPlanations (SHAP).
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XGBoost constructs an ensemble of weak learners (typically decision
trees, Fig. 3) using additive training and regularization to minimize the
loss function:

n K
- 1
2(@)=Y 150y + D _Qfe). where Q(f) =T + 5 ilo|*
i=1 k=1

Here, y; is the predicted value, y; is the observed value, f; represents
each regression tree, and Q denotes the complexity penalty for regula-
rization (Chen and Guestrin, 2016). This formulation enables XGBoost to
efficiently handle large-scale, high-dimensional, and nonlinear re-
lationships common in spatial datasets.

To enhance model interpretability, SHAP (SHapley Additive exPla-
nations) is integrated post hoc. SHAP values decompose a model’s
output f(x) into additive contributions from each feature:

f(x) =20 +i®i

Where @ is the model’s base value and @; represents the Shapley value
of feature i,interpreted as the marginal contribution of feature i across all
possible feature coalitions (Lundberg and Lee, 2017). This approach
satisfies properties of consistency and local accuracy, ensuring reliable
interpretation even in complex black-box models.

This combination provides competitive accuracy for screening urban
agriculture opportunities and feeds subsequent scenario simulation and
ES valuation. This pipeline facilitates interpretable decision-making
regarding the spatial allocation of urban agriculture, aligning with
recent advancements in explainable artificial intelligence (XAI) applied
to spatial planning (Linardatos et al., 2020).

Fig. 4 visualizes the SHAP summary plot, where the x-axis represents
the SHAP value (i.e., the impact on the model output), and each point
corresponds to an individual prediction. The color gradient indicates
feature value (from low in blue to high in red). The model identifies
distance to rail, runoff, and population density as the top three

F= Fp_1+ fm)

Tree 1 :
e |
Tree 2
v
y Error Update
o
Tree m

Fig. 3. Schematic representation of the XGBoost architecture. The model iter-
atively adds decision trees to minimize the residuals from previous predictions.
At each iteration m, a new tree fy(x) is trained to correct the errors of the
ensemble F,,_; , producing an updated prediction F = Fpn_1 + fm(x)

Source: By author
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Fig. 4. SHAP dependence plot showing the contribution of each predictor variable to the urban agriculture suitability model. Distance to railway, runoff, and

population density exhibit the strongest influence on suitability predictions.

Source: By author

predictors influencing urban agriculture suitability. Shorter distances to
rail and higher runoff values consistently increase the probability of a
location being suitable, as shown by the clustering of high-value points

Distance to railway
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Aspect

Distance to highway
Nature reserve distribution
Elevation

Wetland distribution

in the positive SHAP value range. The high influence of ’distance to
railway’ is attributed to multiple factors. Proximity to railway networks
facilitates efficient transportation logistics, reduces operational costs for

Source: By author
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Fig. 5. Mean absolute SHAP value summary plot ranking the relative importance of predictor variables in the urban agriculture suitability model. Distance to
railway, runoff, and population density emerge as the top three predictors, indicating that accessibility and hydrological conditions are the dominant drivers of urban

agriculture suitability in Rotterdam.
Source: By author
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urban farmers, and aligns with municipal policies favoring transit-
oriented development. Additionally, areas close to transit infrastruc-
ture typically benefit from greater socio-economic accessibility,
enhancing community participation in urban agriculture (Haberman
et al., 2014; Taylor and Lovell, 2012). Complementing this, Fig. 5 shows
the mean absolute SHAP values for all features, offering a global inter-
pretation of feature importance. This bar plot highlights the dominance
of distance_rail, runoff, and pop_density, followed by distance_water and
slope. Interestingly, features such as elevation and wetland showed
minimal influence, suggesting their weaker discriminative power in this
specific urban context. These visualizations confirm the relevance of
infrastructure proximity and hydrological context in determining the
feasibility of urban agriculture development. The interpretability
enabled by SHAP supports more transparent decision-making in policy
contexts where spatial equity and environmental constraints must be
balanced.

To standardize model outputs for spatial comparison, the raw suit-
ability predictions are normalized using min-max scaling, resulting in a
continuous scale from 0 to 1. This method commonly refers to as min-
max normalization and rescales values according to the minimum and
maximum values of the dataset and is widely used in spatial multi-
criteria evaluation and machine learning to ensure comparability
across heterogeneous indicators (Malczewski, 1999).

&
Suitability score=P(y=1 | x) = 11 dm

2.2.2. Geotransformer based land use simulation

GeoTransformer is the core tool selected for land use modelling in
this study. GeoTransformer’s architecture consists of multiple layers of
fully connected neurons, positional encoding, and spatial embedding
modules, which allow for fine-grained control over location-specific
transition probabilities. Its ability to process multi-source spatial
drivers in parallel makes it highly scalable and well-suited for modeling
rapid land transformations in urban and peri-urban regions. It is a land
use simulation framework built upon deep learning architectures, spe-
cifically designed to capture spatiotemporal dynamics in complex and
heterogeneous landscapes (Jia et al., 2024). The model is inspired by
Transformer-based attention mechanisms, which have revolutionized
sequential data processing in natural language processing (Vaswani
et al., 2017) and have recently been successfully adapted for spatial
modeling tasks in remote sensing (Dosovitskiy et al., 2020; Aleissaee
et al., 2023). These mechanisms enable GeoTransformer to capture
long-range spatial dependencies and context-aware interactions among
geospatial variables, significantly outperforming rule-based or cellular
automata approaches in urban land simulation scenarios (Zhao et al.,
2023).

The core mechanism of the GeoTransformer model is designed to
simulate spatiotemporal land use transitions by learning from geospatial
context. The model takes as input encoded representations of spatial
regions ("query region") and their contextual surroundings ("value re-
gions"), retrieved through sparse matrix indexing. These regions are
passed through a multi-head geospatial cross-attention module that
computes attention weights based on both spatial proximity and
entropy-based importance. The attention mechanism learns the influ-
ence of surrounding land patches on the target patch, enabling context-
aware prediction. The deep representation is further processed through
a stack of transformer blocks, each composed of feed-forward layers,
normalization, and linear projection, ultimately producing a predicted
land use class. This architecture allows the model to generalize across
heterogeneous and non-contiguous spatial data, offering improved ac-
curacy in highly dynamic urban environments.

2.2.3. Transformative scenarios design
Scenario simulation is an essential method for describing ecosystem
service dynamics and regional-scale landscape change trajectories
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(Schroter et al., 2005). To explore the potential pathways of urban
transformation, three contrasting land use scenarios are designed
(Table 2). The first is the "Business-as-Usual (BAU)" scenario, which
assumes continuity in current land use trends and policy frameworks.
This scenario functions as a control benchmark and reflects outcomes
under minimal intervention conditions. The second scenario is the
"Suitability-based autonomous transformation" scenario, which in-
tegrates the spatial suitability outputs derived from the XGBoost + SHAP
model as soft constraints in the GeoTransformer simulation. Unlike BAU,
this scenario allows land use change to evolve more organically, guided
by spatially explicit suitability patterns. This form of scenario simulation
has gained increasing recognition for its ability to align data-driven in-
sights with future-oriented spatial policy (Batty, 2013). The third sce-
nario is the "Suitability-based landscape approach transformation"
scenario. The scenario draws from landscape ecological principles that
emphasize multifunctionality, spatial connectivity, and the integration
of human-nature relationships across scales (Opdam et al., 2003; Wu,
2013). Landscape approaches offer a temporal perspective that ac-
knowledges that ecological and social processes unfold at different rates,
thus supporting adaptive long-term land strategies (Sayer et al., 2013;
Nijhuis, 2022). Landscape-based strategies integrate ecological struc-
ture, urban form, and cultural values, allowing for resilient and adaptive
territorial transformation that aligns long-term landscape goals with
short-term planning decisions. The implementation of this scenario
supports emerging calls for integrated urban landscape planning in
response to climate change and ecological degradation (Ahern, 2013).

2.3. Ecosystem service values

There are numerous quantitative approaches for assessing ES based
on land use change. For example, the widely applied InVEST model
quantifies ecosystem services such as carbon storage, biodiversity, and
soil retention based on land use, climate, and soil data (Ouyang et al.,
2016). Similarly, the ARIES model employs artificial intelligence to
dynamically simulate ecosystem services (Villa et al., 2014). Although
both methods are suitable for regional and larger-scale assessments, they

Table 2
Scenario framework detailing the development logic, guiding mechanisms, and
land use transition rules.

Scenario Development Guiding Land Use
Logic Mechanism Transition Rule
BAU Urban land No suitability All transitions
evolves freely analysis permitted with
without regulatory  considerations no spatial
or ecological preference;
constraints. outcomes driven
by historical land
use patterns and
model learning.
Suitability-based Urban agriculture Suitability derived Land use
autonomous expands in areas from XGBoost + transitions are
transformation assessed as SHAP more likely in
suitable by the high-suitability
model. areas, but not
restricted by
landscape
approach
principles.
Suitability-based Urban agriculture Combines Urban
landscape follows both the XGBoost + SHAP agriculture
approach principles of suitability with allowed only in
transformation suitability and hard landscape suitable areas

landscape
approach.

planning
constraints.

outside key
ecological zones
(e.g., forests,
wetlands) in
which landscape
factors are
protected.
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require large datasets, complex parameterization, and extensive
computational processes. Additionally, the InNVEST model is designed to
evaluate specific ecosystem services rather than providing an integrated
assessment, making it challenging to analyze comprehensive ES dy-
namics. To address these limitations, we seek a simpler approach that
facilitates data acquisition and computation, while remaining applicable
to both urban and regional scales. After evaluating multiple methods, we
select ecosystem service valuation. Ecosystem services value refers to
the monetization of ecosystem benefits, capturing the economic, social,
and environmental contributions of ecosystem processes (Costanza
et al., 1997). Compared to other approaches, ecosystem services value
provides a tangible monetary representation of ecosystem significance
and can be effectively integrated with land use change analysis (Brander
et al., 2024; Costanza et al., 2014). Given the heterogeneity in urban
agriculture practices, including rooftop farming, community gardens,
and greenhouse horticulture, we refined the ecosystem service valuation
by assigning practice-specific coefficients, reflecting distinct ecological
and social values derived from recent studies (Langemeyer et al., 2021;
Gomez-Villarino et al., 2021). This approach captures more accurately
the diversity and specificity of ecosystem services provided by various
urban agriculture types. In 2016, Statistics Netherlands and Wageningen
University conducted a national assessment of Dutch terrestrial
ecosystem services, encompassing crop production, timber production,
water filtration, air purification, carbon sequestration, pollination, rec-
reational value, and amenity services (Horlings et al., 2020). Based on
this report, we identify ecosystem service values for each land use type
(Table 3). However, since urban agriculture is not explicitly listed, but
greenhouse agriculture is included, we assume that all urban agriculture
land corresponds to greenhouse horticulture. Additionally, we conduct a
comparative analysis of specific ecosystem services using their per-
centage contributions to the total ecosystem services value (Table 4).
Finally, we adopt ESVr, to represent the total ecosystem service value,
and ESVyrovisionings  ESVregulating and ESVynrq to denote the values of
provisioning, regulating, and cultural services, respectively. The specific
relationships are defined as follows:
n

ESVrya = »_ (ESVi*Aj)

i=1

n

ESVProV!'siuni"g.regulating.cultural = Z <ESVi*Ai*pPi.ri.ci>

i=1

where ESV; represents the unit value per hectare of the ith ecosystem
service, A; represents the area of the ith ecosystem service, pyirii rep-
resents the percentage of provisioning, regulating and cultural services,
respectively, and n is the total number of site types.

3. Results
3.1. Suitability analysis for urban agriculture

This study employs a machine learning-based framework to evaluate
the spatial suitability of urban agriculture across the municipality of
Rotterdam. Suitability is assessed using an eXtreme Gradient Boosting
(XGBoost) classifier trained on spatial predictors representing environ-
mental, infrastructural, and demographic attributes. Each pixel in the
study area is assigned a continuous suitability score between 0 and 1,
indicating its relative favorability for urban agriculture development
under current landscape conditions (Fig. 6).

The spatial distribution of suitability scores reveals a clear

Table 3
Value of ecosystem services (euro/ha).
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differentiation across the municipality. High-suitability areas, predom-
inantly located within and around the central urban districts, are char-
acterized by proximity to dense transportation networks (e.g., roads and
railways), moderate slopes, and higher population densities. These
factors, as identified by SHAP analysis, collectively contribute to
creating favorable conditions for urban agricultural development in
these zones. Conversely, low-suitability areas are mainly found in the
northwestern port zones and peripheral industrial districts, where
extensive land sealing, ecological protection restrictions, or poor
accessibility significantly limit agricultural feasibility. This distinct
spatial polarization highlights that urban agriculture opportunities in
Rotterdam are closely tied to the interplay between infrastructural
accessibility, existing land use intensity, and biophysical constraints. It
underscores the importance of integrating transportation planning and
land recycling strategies when promoting urban agriculture in dense
metropolitan contexts.

After obtaining the suitability results for urban agriculture devel-
opment, we simulate land use spatial distribution outcomes under sce-
narios with and without suitability constraints (Fig. 7). Simulations for
2030 and 2050 without suitability constraints show: built-up areas
continue to expand along major corridor routes and port peripheries,
accompanied by scattered residual open spaces. Conversely, under
suitability constraints, part of the 2030 growth is reallocated to
brownfield and infill development opportunities marked as highly
suitable within the central urban area and inner ring corridors. This
approach preserves and stitches together the suburban green-blue belts
in the south and east. By 2050, this constraint mechanism will form a
more coherent urban-rural mosaic pattern of agriculture and green
spaces, particularly along riverfronts and secondary road networks. This
pattern effectively curbs the encroachment on low-suitability industrial/
port zones observed in the unconstrained scenario. Overall, this com-
parison demonstrates that embedding suitability stratification into
allocation rules does not suppress urban expansion. Instead, it guides
development toward areas possessing conditions conducive to support-
ing sustainable urban agriculture. This approach reduces land frag-
mentation, enhances green corridor connectivity, and minimizes
conflicts with high-intensity land uses.

3.2. Scenario-based land use simulation outcomes

This section presents the simulated land use patterns in Rotterdam
under three different scenarios: Business-as-Usual (BAU), Suitability-
Based Autonomous Transformation, and Suitability-Based Landscape
Approach Transformation. As shown in Fig. 8, the BAU scenario main-
tains the existing land use dynamics, resulting in only marginal expan-
sion of urban agriculture by 2030 and 2050, predominantly confined to
isolated parcels with favorable conditions. Under the Suitability-Based
Autonomous Transformation scenario, the spatial distribution of urban
agriculture significantly broadens, with new urban agriculture parcels
emerging not only at the urban periphery but also interspersed within
built-up areas where suitability conditions are favorable. This expansion
is more spatially fragmented but overall more extensive compared to the
BAU projection. The Suitability-Based Landscape Approach Trans-
formation scenario exhibits a more structured pattern. Urban agriculture
primarily concentrates along ecological corridors, near urban green
spaces, and adjacent to natural reserves, reflecting an intentional inte-
gration of ecological connectivity considerations. Compared to other
scenarios, this approach results in more compact and strategically
positioned agricultural patches.

Spatially, as illustrated in Fig. 9, the evolution of urban agriculture

Agriculture Forest Urban Agriculture Urban Green/Grassland

Wetland Water Built-up area Transportation Unused Land

2655 6730 707 4183

3768 787 137 259 229
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Table 4
Percentage share of provisioning, regulating and cultural ecosystem services(%).
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Type of service Agriculture Forest Urban Agriculture Urban Green/Grassland Wetland Water Built-up area Transportation Unused Land
Provisioning 25.43 1.97 12.50 0 0 0 0 0 0
Regulating 4.43 12.32 0 9.68 4.79 0.95 31.08 17.24 0
Cultural 70.14 85.71 87.50 90.32 95.21 99.05 68.92 82.76 0

E= Rotterdam border

- 0

25 5 7.5 10km

)

Fig. 6. Results of the suitability analysis of urban agriculture.
Source: By author

under different scenarios demonstrates clear divergence by 2050. While
BAU maintains a relatively static and limited distribution, the
Suitability-Based scenarios markedly enhance the quantity and spatial
integration of urban agriculture, particularly in suburban and peri-
urban regions. These outcomes highlight the critical influence of plan-
ning strategies in shaping future urban land dynamics and their poten-
tial to support sustainable urban agricultural expansion.

3.3. Ecosystem services dynamics under different scenarios

This study quantitatively evaluates the changes in ecosystem services
value across the scenarios for 2030 and 2050 (Table 5, Fig. 10). Under
the BAU scenario, total ecosystem services value exhibits a continuous
decline, dropping from 20.11 million in 2024 to 19.07 million in 2030
and further to 18.77 million in 2050. This downward trend is mainly
driven by a substantial reduction in urban green/grassland area (from
9.40 million to 9.05 million) and a marked loss of wetland ecosystems
(from 433,056 m? to only 29,584 m?). Simultaneously, built-up areas
remain relatively stable, indicating that ecological land loss occurs
without a proportional increase in urban densification. In the
Suitability-Based Autonomous Transformation scenario, ecosystem ser-
vices value demonstrates slight overall growth, increasing from 20.04
million in 2030 to 20.18 million in 2050. This stabilization is primarily
due to the significant expansion of urban agriculture land (from
approximately 978,311 m? to 988,556 m?), which partially offsets the
decline in traditional green spaces. However, compared to the landscape
approach, this scenario still exhibits moderate reductions in wetland and
forest areas, suggesting a limited capacity to fully preserve high-value
ecological land. The Suitability-Based Landscape Approach scenario
achieves the greatest improvement in ecosystem services value, rising
from 21.18 million in 2030 to 21.44 million in 2050. Agricultural land
shows a remarkable increase, from approximately 6.90 million m? to
6.90 million m? (maintained at a high level), and wetland areas are
better preserved (around 1.58-1.60 million m?). In addition, built-up

and transportation areas remain relatively constrained, indicating suc-
cessful ecological prioritization in land conversion processes. This sce-
nario thus most effectively balances urban development demands with
ecological conservation objectives.

Comparative analysis reveals that while all scenarios maintain stable
water surface areas, the key factors influencing ecosystem services value
dynamics are the variations in agricultural land, urban green/grassland,
and wetland distribution. The findings emphasize that integrating
spatial suitability assessments with landscape ecological frameworks
can markedly enhance the resilience and multifunctionality of urban
ecosystems over long-term planning horizons.

Moreover, a decomposition of ecosystem services value into cultural,
provisioning, and regulating services (Fig. 11a-c) reveals notable dif-
ferences among scenarios. Cultural services exhibit a consistent decline
under the BAU scenario but significantly increase under both suitability-
guided pathways, particularly in the Landscape Approach scenario.
Provisioning services show modest variations across scenarios, with
Scenario 3 achieving the highest provisioning service value by 2050.
Regulating services remain relatively stable under BAU and Suitability-
Based Autonomous Transformation scenarios but substantially improve
under the Landscape Approach scenario by 2050, underscoring its su-
perior capacity to strengthen long-term ecological regulation functions.

4. Discussion

4.1. Landscape approach-based urban agriculture enhances long-term
ecosystem services

This research provides empirical evidence supporting the critical role
of landscape approach-based urban agriculture in enhancing long-term
ecosystem service provision. Compared to other decentralized urban
nature-based solutions approaches or sectoral green infrastructure
planning, landscape approach uniquely integrates suitability assessment
with multifunctional landscape connectivity. While decentralized
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Fig. 7. Land use simulation with/without suitability assessment in 2030 and 2050.
Source: By author
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Fig. 8. Simulated land use patterns for Rotterdam under three scenarios (Business-as-Usual, Suitability-Based Autonomous Transformation, and Suitability-Based
Landscape Approach Transformation) for the years 2030 and 2050.
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2030 Suitability-based landscape approach transformation
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Fig. 9. Spatial distribution of urban agriculture land under three scenarios (Business-as-Usual, Suitability-Based Autonomous Transformation, and Suitability-Based

Landscape Approach Transformation) for 2030 and 2050.
Source: By author

Table 5
Area-based ecosystem services value estimations for each land use type under different scenarios and years.
Scenarios Agriculture Forest Urban Urban Green/ Wetland Water Built-up Transportation  Unused Total
Agriculture Grassland area Land
BAU 2030 5086050.68 539678.72 300651.75 9399356.53 433056.24 1714936.32 1007028.13 489067.11 98701.29 19068526.77
BAU 2050 5513293.32 540890.11 295179.57 9048456.52 29584.24 1459806.33 996202.35 568810.62 116096.13 18568319.19
Scenario 2 4609823.41 2705661.92 978311.25 6536272.09 1526718.22 1763454.54 804298.23 612330.39 139838.84 19676708.89
2030
Scenario 2 4593813.83 2852241.33 988555.68 6662766.11 1608785.33 1756584.42 795630.24 608274.45 140972.42 20007623.81
2050
Scenario 3 6900398.11 869785.24 334630.17 9041680.02 1585725.11 2014263.52 888364.17 338064.93 101401.21 22074312.48
2030
Scenario 3 6902309.69 881899.18 328330.82 9146338.72 1608446.21 1985346.91 883173.24 336969.36 116116.74 22188930.87
2050

nature-based solutions excel in rapid local implementation, they often
lack mechanisms for regional ecosystem services synergy, which is a
critical gap identified in urban resilience frameworks. Similarly, sectoral
approaches may optimize single ecosystem service but overlook trade-
offs inherent to urban agriculture. Our scenario simulations reveal
that among 3 conditions, urban agriculture guided explicitly by land-
scape ecological principles such as multifunctionality, ecological con-
nectivity, and spatial heterogeneity (Sayer et al., 2013), outperform
actions that ignore landscape dimensional thinking. Specifically, our
results illustrate how adopting a landscape-based approach significantly
increases biodiversity, ensures stable delivery of regulating services (e.
g., climate regulation and flood mitigation), and enhances overall urban
ecological resilience.

Empirical studies from international contexts reinforce these in-
sights. For example, Berlin’s city-wide network of dispersed community
gardens, explicitly developed under landscape ecological guidelines, has
sustainably delivered extensive cultural and ecological services over
long periods. These gardens not only maintained ecological connectiv-
ity, facilitating species movement and genetic diversity, but also sup-
ported various ecosystem services such as microclimate regulation,
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habitat provision, and cultural engagement (Langemeyer et al., 2021).
Similarly, Gomez-Villarino et al. (2021) emphasizes through their
empirical work that the strategic spatial configuration of green infra-
structure, which incorporates multifunctional and connected green
spaces, significantly enhances urban ecosystem functions, reinforcing
theoretical assumptions about landscape ecology and spatial sustain-
ability. By combining these empirical validations with our
scenario-based simulations, this study confirms and expands upon
landscape approach theory as it relates to urban agriculture. Thus, this
research not only validates existing theoretical propositions but also
provides additional empirical foundations for integrating urban agri-
culture into broader landscape approach-based planning and manage-
ment frameworks.

4.2. Suitability analysis as an essential Component within the landscape
approach

Our findings underscore that spatial suitability analysis is not merely
advantageous but fundamentally necessary within the landscape
approach-based planning framework for urban agriculture. The
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Temporal trends in total ecosystem services value (ESV) across the three urban
transformation scenarios from 2024 to 2050.
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Fig. 10. Temporal trends in total ecosystem services value across the three urban transformation scenarios from 2024 to 2050.

Source: By author

XGBoost + SHAP suitability approach employed in this study signifi-
cantly improves our ability to systematically identify optimal urban
agriculture sites by clearly interpreting the critical environmental, so-
cial, and infrastructural factors affecting spatial decisions. These meth-
odological advancements greatly reduce the potential for conflicts,
ecological risks, and inefficiencies in urban agriculture implementa-
tions, thus setting a firm groundwork for subsequent landscape
approach-based spatial interventions. From a theoretical perspective,
suitability analysis plays a pivotal role within landscape ecology prin-
ciples, particularly those articulated by Forman (1995) and Wu (2013).
Landscape approach emphasizes spatial configuration, connectivity, and
multifunctionality, which require precise spatial assessments to oper-
ationalize effectively. Suitability analysis fulfills this role by systemati-
cally integrating ecological criteria with socioeconomic factors to
optimize spatial decision-making processes. Without robust suitability
analysis, landscape approach-based strategies risk becoming spatially
fragmented, diminishing their ecological coherence and long-term
sustainability.

The necessity of suitability analysis is further reinforced by recent
landscape sustainability theories, highlighting its role as a crucial
interface between theoretical ecological principles and practical spatial
planning (Opdam et al., 2018). Suitability analysis ensures targeted
spatial interventions are aligned with broader landscape objectives,
translating theoretical insights into practical applications. Thus, it be-
comes indispensable for achieving landscape-level sustainability, resil-
ience, and spatial equity within contemporary landscape urbanism
theories. Conclusively, our empirical analysis demonstrates that suit-
ability analysis is not just methodologically advanced but theoretically
essential for landscape approach-based urban agriculture planning. It
effectively operationalizes critical landscape approach concepts,
providing planners with concrete, evidence-based spatial guidance
essential for achieving long-term ecosystem service goals.

4.3. Long-term effects fatigue and imbalance in specific service types on
land use change

In this study, the three urban agriculture scenario simulations pro-
posed (Business-as-Usual, Suitability-Based Autonomous Trans-
formation, and Suitability-Based Landscape Approach Transformation)
provide a detailed comparative analysis of the long-term ecological
impacts of urban agriculture. By quantifying the dynamics of ecosystem
services under these three scenarios, although the third scenario per-
forms excellently in most ecosystem service types, we also identify a
significant decline in its long-term performance. A more in-depth
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analysis, particularly of the growth rates in provisioning services, re-
veals concerning trends and suggests that relying solely on land use
change cannot fully mitigate the slowdown of long-term effects in urban
transformation.

Although Scenario 3 initially performs well, the growth rate signif-
icantly slows down over time, and its final growth rate is lower than that
of Scenario 2. This finding is especially evident in the growth curve of
ecosystem service value, where the ecosystem service value under Sce-
nario 3 almost stagnates by 2050. The observed decline in provisioning
services under Scenario 3 is linked to systemic trade-offs inherent in the
landscape approach, particularly competition between land allocated
for ecological conservation and urban agriculture productivity.
Ecological zones prioritized for conservation under landscape planning
frameworks often constrain intensive agricultural activities, thereby
limiting the scope for provisioning service enhancement (Barthel and
Isendahl, 2013; Lovell, 2010). However, Scenario 2 continues to grow at
a faster rate. Further examination of the specific service types, in pro-
visioning services, Scenario 3 is the only one which experiences negative
growth. In contrast, Scenario 1 shows the best performance in provi-
sioning services, despite its overall lower performance. This phenome-
non reveals that urban agriculture cannot effectively cope with the
pressures of long-term development, especially in the provisioning ser-
vice sector when lacking a proper spatial integrated method. For this
phenomenon, we draw the following conclusion: The fatigue of
long-term effects and the imbalance in specific service types suggest that
relying solely on land use change without cross-temporal and spatial
thinking is insufficient to ensure balanced growth across all ecosystem
service sectors. In the long-term planning process of urban agriculture, it
is necessary to combine multi-scale and multi-dimensional strategies,
particularly by integrating suitability analysis and precise spatial in-
terventions in specific service areas. This can avoid the slowdown or
imbalance in ecosystem service growth caused by the limitations of a
single strategy.

4.4. Landscape approach-based spatial strategies for urban agriculture
planning

Building upon the theoretical insights and empirical findings of this
research, Fig. 12 outlines a landscape approach-based spatial strategy
for enhancing ecosystem services by urban agriculture. The strategy
covers the four levels of policy, assessment, action and impact, closely
fitting the layered approach of the landscape approach (Huan et al.,
2024b). Central to this strategy is the foundational role of suitability
analysis, which systematically informs spatial interventions by
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Fig. 11. Provisioning(a), Regulating(b), Cultural(c) ecosystem service value
under the Business-as-Usual (BAU), Suitability-Based Autonomous Trans-
formation (Scenario 2), and Suitability-Based Landscape Approach (Scenario 3)
scenarios for 2030 and 2050.

identifying optimal locations and ensuring targeted ecological and so-
cioeconomic outcomes. Toronto has successfully integrated diverse
forms of urban agriculture within a hierarchical spatial network,
aligning with city-wide green infrastructure initiatives (Nasr & Komisar,
2012). Therefore, summarizing and developing a spatial strategy with
universal applicability is of extreme operational importance.

The strategy is explicitly structured at three spatial scales. At the
local scale, the strategy emphasizes building-integrated urban agricul-
ture solutions, such as rooftop farms, vertical gardening, and indoor
hydroponics. These practices optimize spatial efficiency, reduce pres-
sure on urban green space, and enhance urban food system resilience.
Such targeted local interventions effectively operationalize landscape
approach principles by embedding multifunctionality within dense
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urban fabrics, facilitating immediate and tangible ecological benefits. At
the urban scale, the strategy proposes a systematic transformation of
urban infrastructure and open spaces to integrate multifunctional agri-
cultural uses. Spatial interventions include green corridors, multifunc-
tional parks, and ecological buffers. These practices strategically
enhance ecosystem services such as flood regulation, urban heat miti-
gation, and biodiversity conservation, while simultaneously revitalizing
underutilized urban spaces. Urban agriculture at this scale becomes a
critical tool for achieving landscape-level connectivity and multi-
functionality, key objectives articulated within landscape ecological
frameworks. At the regional scale, the strategy promotes interconnected
networks of urban agriculture sites, forming cohesive ecological and
social landscapes. By integrating peri-urban agricultural sites with urban
centers through systematic spatial planning, this scale of intervention
strengthens ecological corridors, fosters biodiversity at broader scales,
and enhances regional ecosystem resilience. Such comprehensive
regional integration exemplifies the landscape method’s emphasis on
cross-scale ecological coherence and social connectivity.

Additionally, to operationalize the proposed multi-scale spatial
strategy, we recommend governance instruments such as zoning ad-
justments to safeguard agricultural areas, economic incentives to pro-
mote UA integration in urban infrastructure, participatory planning
processes involving local communities, and cross-sectoral coordination
frameworks. These governance mechanisms provide actionable path-
ways to effectively mediate competing land-use priorities, ensuring both
housing and urban agriculture coexist sustainably (Mansfield and
Mendes, 2013; Azunre et al., 2019). In summary, by integrating sys-
tematic suitability analysis with multi-scale spatial interventions, our
proposed strategy provides urban planners with a practical and theo-
retically robust framework. It operationalizes critical landscape
approach theories and transforms them into scalable planning practices,
significantly contributing to sustainable urban transformations and
resilient urban ecosystems.

5. Conclusion

This research demonstrates that embedding urban agriculture within
a landscape approach can significantly enhance the long-term provision
of ecosystem services, while also revealing important considerations for
sustainable urban planning. Rather than introducing a new algorithm,
we contribute a reproducible, evidence-backed workflow that links
suitability, scenario simulation, and monetary ecosystem services
valuation. Through an integrative methodology, our study provides
empirical evidence that a landscape approach-guided strategy for urban
agriculture outperforms a conventional trend in maintaining ecosystem
services over multiple decades. In the Rotterdam case, the Suitability-
Based Landscape Approach scenario led to greater biodiversity sup-
port, improved regulating functions (such as climate regulation and
flood mitigation), and higher cultural service values by 2050 compared
to a BAU scenario. These findings validate the theoretical assertions of
landscape ecology that spatially coordinated, multifunctional land-use
planning can yield superior ecological outcomes and extend them by
quantifying long-term benefits in an urban context.

Importantly, our results also highlight that while a landscape
approach markedly boosts ecosystem services, it is not a panacea for all
aspects of sustainability. We observed a diminishing growth rate of total
ecosystem service value in the later decades under the landscape-
focused scenario, with provisioning services eventually plateauing.
This “long-term effects fatigue” suggests that relying solely on optimized
land use allocation has limits; continuous gains across all service cate-
gories may stall without complementary interventions. Urban agricul-
ture’s contribution to provisioning services may decline over time if not
bolstered by innovations in practice or policy. Therefore, planners
should adopt multi-scale and adaptive strategies: combining site-level
technological improvements and community engagement, city-level
green infrastructure integration, and regional landscape connectivity
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Fig. 12. A conceptual spatial strategy paradigm of urban transformation guided by urban agriculture in the perspective of landscape approach.

Source: By author

to sustain growth in ecosystem services.

Building on these insights, we propose a cross-scale landscape-based
planning framework for urban agriculture. At the local scale, incorpo-
rating urban agriculture into buildings and underutilized spaces (e.g.,
rooftop farms, vertical gardens) can deliver immediate benefits without
consuming scarce land. At the city scale, establishing green corridors
and networks of agricultural parks enhances connectivity and multi-
functionality, amplifying regulating and cultural services. At the
regional scale, linking urban agriculture with peri-urban farms and
natural areas creates a cohesive ecological network that supports
biodiversity and broad resilience. This tiered strategy operationalizes
the landscape approach principles across scales, ensuring that urban
agriculture contributes to ecosystem services in a balanced and sus-
tained manner over time.

In conclusion, our study not only introduces a machine learning-
based methodological framework for planning urban agriculture, but
also provides generalizable knowledge and practical guidance for urban
sustainability. By quantitatively confirming the long-term value of a
landscape approach to urban agriculture, we address a critical gap in the
literature and offer planners a robust toolset for ecosystem-based urban
transformations. While this study focuses on Rotterdam, the integrated
approach developed herein is not specific. The combination of suit-
ability modeling, scenario simulation, and cross-scale planning can be
adapted to diverse urban contexts worldwide, provided that local
ecological, social, and institutional factors are considered. Cities with
varying levels of urbanization, green infrastructure, and planning ca-
pacity can tailor this framework to support evidence-based decisions
that align urban agriculture with long-term sustainability goals. In doing
so, our approach contributes not only to academic discourse but also to
globally relevant planning practices under the evolving pressures of
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climate adaptation, land competition, and food system resilience.
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