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1. Introduction
Global warming is known to intensify the water cycle, leading to an increase in climate extremes (Allen & 
Ingram, 2002; Easterling et al., 2016; IPCC, 2012). Historical data reveals increases in observed precipitation 
extremes (Alexander, 2016; Asadieh & Krakauer, 2015; Papalexiou & Montanari, 2019), and projections indi-
cate further intensification in the future (e.g., Donat et al., 2016; Fowler et al., 2021; Gründemann et al., 2022; 
Meredith et al., 2019; Moustakis et al., 2021; Pendergrass & Knutti, 2018; Pfahl et al., 2017; Tandon et al., 2018; 
Westra et al., 2014). Yet, these patterns and shifts are not uniform across the world. Factors such as topography, 
oceanic cycles and atmospheric patterns influence the spatiotemporal distribution and seasonality of extreme 
precipitation events (Dey et  al.,  2021; Fernandes & Rodrigues,  2018; Gründemann et  al.,  2023a; Haylock 
et  al.,  2006). In tropical regions for instance, extreme precipitation predominantly occurs during monsoon 
seasons, with monsoon-affected areas witnessing an expansion, intensification of rains, and a prolonged monsoon 
season (Chen & Sun, 2013; Kitoh et al., 2013). In contrast, mid-latitudes often experience precipitation extremes 
during the transitional seasons, with many Mediterranean basins observing a shift to earlier in the year (Tramblay 
et al., 2023). Polar regions, meanwhile, are witnessing an increase in precipitation extremes during summer, with 
a transition from snow to more rain (Landrum & Holland, 2020; Loeb et al., 2022; Wang et al., 2021).

Changes in seasonality of extreme precipitation can have negative impacts on hydrological systems, agriculture, 
and overall water resource management (Kundzewicz et al., 2018). Additionally, shifts in precipitation season-
ality affects flood patterns (Berghuijs et  al.,  2019; Blöschl et  al.,  2017; Wasko et  al.,  2020a, 2020b) and the 

Abstract Global warming impacts the hydrological cycle, affecting the seasonality and timing of extreme 
precipitation. Understanding historical changes in extreme precipitation occurrence is crucial for assessing 
their impacts. This study uses relative entropy to analyze historical changes in seasonality and timing of 
extreme daily precipitation occurrences on the global domain for 63 years of fifth generation of the European 
Reanalysis reanalysis data. Our analysis reveals distinct regional patterns of change. During the second half of 
the 20th century, Africa and Asia experienced high clustering of precipitation extremes. Over the past 60 years, 
clustering increased in Africa while becoming more spread out in Asia. North America and Australia had 
initially lower clustering and showed slight increases over time. Extreme events in extra-tropical land regions 
mainly occurred in summer, with modest shifts in timing. These findings have implications for risk assessments 
of natural hazard like flash floods and landslides, emphasizing the necessity for region-specific adaptation 
strategies.

Plain Language Summary Global warming is changing how and when heavy rain and extreme 
weather events happen. It is important to understand these changes for planning and preparing for floods and 
other water-related problems. In this study, we looked at long records of rainstorms to see how they have 
changed over time. We found that different regions have experienced different changes. During the second half 
of the 20th century, Africa and Asia were regions with the strongest seasonality. Over the 60 years we analyzed, 
seasonal clustering overall increased in Africa, while in Asia they became more spread out throughout the year. 
In Europe, North America and Australia, rainstorms were more spread out throughout the year but became 
slightly more concentrated. Most of the heavy rainstorms outside the tropics happened in summer, with a 
small shift in timing. These findings show how various regions have experienced different changes, which is 
important to take into account when planning and preparing for floods.
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occurrence of natural hazards, such as flash floods, landslides (Marc et al., 2018; Steger et al., 2023), and debris 
flow (Nikolopoulos et  al.,  2015). Moreover, these changes interact with other climate feedback mechanisms, 
such as snowmelt runoff, atmospheric rivers, and tropical cyclones, amplifying or mitigating the impacts of 
climate change on various parts of the hydrological cycle (Gershunov et al., 2017; Miniussi et al., 2020; Tarasova 
et al., 2023).

In recent decades, relative entropy has emerged as a valuable tool to study the seasonality of precipitation and 
its extremes. Rooted in statistical physics and information theory (Cover & Thomas, 2005; Greven et al., 2014), 
this method quantifies the statistical distance between the actual distribution of extreme precipitation occur-
rences and a uniform distribution (Kullback & Leibler, 1951). Feng et al. (2013) introduced this tool to the field 
of precipitation research to study the seasonality of monthly rainfall in tropical regions. Since, several studies 
have used relative entropy to study rainfall seasonality across different time scales and geographical regions (Bal 
et al., 2019; Limsakul, 2020; Moustakis et al., 2021; Pascale et al., 2015, 2016; Sahany et al., 2018). Hitherto, 
however, a comprehensive global scale assessment of historically observed changes in timing and seasonality of 
extreme precipitation is missing.

This study aims to bridge this gap by evaluating the seasonality and timing of extreme daily precipitation. Using 
the relative entropy measure, we assess the degree of seasonality in extreme precipitation and to evaluate histor-
ical trends. By defining extreme precipitation above a relative threshold, we investigate the spatial patterns of 
these changes across different regions. We use the fifth generation of the European Reanalysis (ERA5) reanalysis 
data set, which provides high-quality and relatively homogeneous precipitation data, allowing for a comprehen-
sive analysis of the observed changes in extreme precipitation seasonality.

2. Materials and Methods
2.1. Data

Precipitation data were obtained from the ERA5 reanalysis data set (Hersbach et al., 2018, 2020). This data set 
was chosen for its continuous coverage and relatively long temporal span at high spatial and temporal resolutions. 
While reanalysis data sets provide a comprehensive estimate of the global atmosphere-land-ocean system, it has 
known issues in accurately simulating convective processes, data assimilation inconsistencies, and limited obser-
vations over areas like oceans. The performance of ERA5 in capturing precipitation extremes varies depending 
on the intensity and location (Lei et al., 2022). ERA5 performs well over the extra-tropics, but exhibits larger 
errors over the tropics (Lavers et al., 2022). Notably, while ERA5 tends to underestimate the heaviest precipita-
tion events, it reliably captures their general patterns, locations, and magnitude of less intense events (Bandhauer 
et al., 2022; Hénin et al., 2018; Lavers et al., 2022; Shen et al., 2022).

Hourly precipitation data from 01-01-1959 to 31-12-2021 at a resolution of 0.25° latitude × 0.25° longitude 
(approximately 30 by 30 km at the equator). These data were aggregated into daily estimates covering 63 years. 
The analysis involved moving 30-year windows through the data set, starting with the first 30 years (01-01-1959 
to 31-12-1988) and shifting forward by one calendar year for each new 30-year segment. This resulted in 33 such 
30-year windows.

2.2. Precipitation Extremes

We defined precipitation extremes as the highest 3 events per year on average, corresponding to the highest 90 
events per 30-year window (or the 99.18th percentile of all day precipitation, or a return period of 0.335 years). 
Different thresholds were explored to quantify rainfall extremes across various regions, with little impact on the 
observed trends. Inclusion of more events reduced seasonality (see Figure S1 in Supporting Information S1), 
likely because that incorporates precipitation from various precipitation-generating mechanisms which may be 
characterized by different magnitudes and seasonal occurrence. This results in more evenly distributed occur-
rences throughout the year.

2.3. Relative Entropy as a Measure for Seasonality

To assess the seasonality of extreme precipitation occurrences, we use Relative Entropy, also known as 
Kullback-Leiber distance (DKL; Kullback & Leibler, 1951). Relative entropy is a measure of the statistical distance 
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between two probability distributions: (a) the actual monthly distribution of 
extreme precipitation occurrences and (b) the uniform distribution (Cover & 
Thomas, 2005). The calculation of relative entropy (DKL) is represented by 
the following equation:

𝐷𝐷KL =

12
∑

𝑚𝑚=1

𝑝𝑝𝑚𝑚 log2

(

𝑝𝑝𝑚𝑚

𝑞𝑞𝑚𝑚

)

 (1)

In this equation, pm represents the actual probability distribution of monthly 
extreme precipitation occurrences, while qm denotes the uniform distribution 
of monthly occurrences. pm is calculated by dividing the number of monthly 
extreme precipitation occurrences (nm) by the total number of occurrences 
(N = 90). Therefore, pm = nm/N. The uniform distribution (qm) is approxi-
mately 0.083 for each month, taking into account the actual number of days 
in each month. The resulting value of DKL is measured in bits, as the base of 
the logarithm is 2 (Cover & Thomas, 2005), with a range between 0.005 and 
3.7. Higher values indicate a clustering of extreme precipitation occurrences, 
while lower values suggest a more evenly spread distribution throughout the 
year. Figure  1 serves as a reference to aid in the interpretation of DKL. A 
single DKL value is calculated for each 30-year window, resulting in 33 values 

per grid cell. We note that if two areas have a similar DKL value, that does not mean that the rainfall events in both 
areas have similar magnitude, precipitation-generating mechanism, or timing.

2.4. Timing

To evaluate the timing and duration of precipitation extremes, the centroid (C) and the spread (Z) of the seasonal 
distribution were computed as the first and second moments of nm, respectively. The formulas for calculating C 
and Z are as follows:

𝐶𝐶 =
1

𝑁𝑁

12
∑

𝑚𝑚=1

𝑚𝑚 × 𝑛𝑛𝑚𝑚 (2)

𝑍𝑍 =

√

√

√

√
1

𝑁𝑁

12
∑

𝑚𝑚=1

|𝑚𝑚 − 𝐶𝐶|

2 × 𝑛𝑛𝑚𝑚 (3)

C represents the timing, while Z indicates clustering of the extremes around the centroid. Even though C can 
be estimated for each grid cell, it is not useful for locations with low DKL values, as there is no clear clustering 
of extremes. These metrics were only estimated for gridcells where the mean DKL > 0.27, indicating clustering 
of extremes in less than 10 months. To address potential errors related to events around November to February, 
a 6-month shift was applied and C and Z were recalculated and then shifted 6 months back, yielding Cshift and 
Zshift. The choice between the original and shifted values depended on which produced a lower mean spread for 
each grid cell. The mean of the original C and Cshift as well as Z and Zshift are included in Figure S2 in Supporting 
Information S1. Another approach to do this is using the circular mean as in Dey et al. (2021), but it yields similar 
results.

2.5. Regional Analysis

The regional analysis was conducted for IPCC WGI reference regions (WGI-v4; Iturbide et al., 2020), focusing 
on land regions. We pooled all events within a region, weighed them by cell size, and calculated the regional DKL, 
C and Z (Equations 1–3). To ensure a focus on regions with significant precipitation patterns, areas with very 
low rainfall, such as the Sahara, were excluded from this study. These dry areas were identified as cells where 
the mean value of the 90th highest rainfall event in the 30-year windows was below 5 mm day −1 (gray cells in 
Figure 2a). In the regional analysis, we only included regions containing at least 50% of the cells meeting this 
criterion, excluding the Sahara, Arabian Peninsula, and Eastern Antarctica.

Figure 1. The value of the relative entropy DKL (Equation 1) when all extreme 
rainfall occurrences are evenly distributed over 1–12 months.
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2.6. Statistical Significance

Spearman rank correlation was performed to assess positive and negative monotonic relationships between DKL 
and C over time in grid cells and regions. The correlation coefficient (ρ) ranges from −1 to 1, indicating the 
strength of the relationship. Significance was determined for p < 0.05. We also have repeated this analysis testing 

Figure 2. Relative entropy of extreme daily precipitation occurrences (DKL, Equation 1). Presented as (a) the mean of all 30-year windows analyzed per grid 
cell, where a low value signifies an even distribution of extreme rainfall throughout the year, and a high value suggest clustering in a specific period. Panel (b) 
shows DKL calculated per WGI-v4 reference region over land. Panel (c) shows the difference in DKL between the first land last windows for each grid cell (Δ 
D = D1992−2021 − D1959−1988), with a negative Δ D indicating a more even distribution of rainfall extremes and a positive Δ D indicating more clustering. Panel (d) shows 
the same difference calculated per WGI-v4 reference region over land. Panel (e) shows the Spearman rank correlation coefficient of DKL over time, the non-white values 
indicate statistical significance (p < 0.05). Panel (f) shows the correlation coefficients calculated per WGI-v4 reference region over land. Dry areas, defined as cells 
with a mean value of the 90th highest rainfall event in all 30-year windows below 5 mm day −1, are masked in gray. Regions in panels (b), (d) and (f) only include those 
containing at least 50% of the cells.
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for field significance, following the false discovery rate approach described 
in Wilks (2016, Equation 3), with minimal impact detected (see Figure S3 in 
Supporting Information S1).

3. Results
Figure 2a displays the relative entropy (DKL) of daily extreme precipitation 
occurrences as the mean value over all 30-year windows per grid cell. DKL 
follows geographical features like mountain ranges and coastlines. Notably, 
mountain peaks exhibit low DKL values, while slopes have higher values. 
Examples are found in the Andes, Patagonia, Scandinavia, Ural Mountains, 
and Himalayas. Coastlines also display distinctive DKL patterns, with land 

areas often exhibiting higher values compared to adjacent oceans, seen around western Europe and Morocco, 
the Red Sea, the coast of eastern Africa, eastern Madagascar, western India, Myanmar, eastern Malaysia, and 
western Australia. In ERA5, DKL is generally higher on land than over oceans, with the exceptions of the South 
Pacific ocean, subtropical Atlantic and Arabian Sea. Panel b shows the DKL for each WGI-v4 reference region 
over land, with regions like Madagascar, Western Africa, and parts of Asia displaying the highest regional DKL 
values. Conversely, Eastern and Western United States, Southern South America, Southeast Asia and Southern 
Australia and New Zealand exhibit the lowest DKL values on land.

When comparing the relative entropy of extreme precipitation occurrences in ERA5 (Figure 2a) to that of extreme 
precipitation of gauge data and a regional climate model in the US (Moustakis et al., 2021, their Figures 7a and 
7b), the results look largely similar. The main difference is that our threshold of extreme events exhibits a stronger 
seasonality along the entire west coast and lower seasonality in Arizona and Utah than Moustakis et al. (2021, 
their Figures 7a and 7b). Furthermore, a comparison of our results to that of monthly precipitation in GPCC 
(Pascale et al., 2015; Pascale et al., 2016, their Figure 1c), CMAP (Pascale et al., 2015, their Figure 1d), and 
CMIP5 historical simulations (Pascale et al., 2016, their Figure 1d), similar patterns emerge again. However, the 
relative entropy of extreme occurrences is higher, indicating a greater clustering of extreme events compared to 
monthly precipitation. Regions such as northern North America, northern Europe, and various parts of Asia show 
a particularly pronounced clustering of extremes. Additionally, the geographical features of mountain ranges and 
coastlines are more prominent in the relative entropy of extreme occurrences compared to monthly precipitation.

Figures 2c and 2d demonstrate the changes in relative entropy between the first and last window for each grid 
cell and for WGI-v4 reference regions, respectively. The observed changes display a mixed pattern of increases 
and decreases in precipitation seasonality. Notably, Sub-Saharan Africa, Australia, and North America exhibit 
increasing trends, suggesting a greater clustering of extreme events. Western Africa and North-Eastern Africa 
shows the highest increase in DKL, indicating a further intensification of extreme event clustering. Conversely, 
Asia, the Caribbean and North-East South America display decreasing trends, implying a transition toward a 
more even distribution of extreme events.

Figures 2e and 2f present the Spearman rank correlation coefficient of DKL over time. The correlation patterns 
align closely with those seen in Δ DKL, albeit with stronger signals. The correlation coefficient is statistically 
significant (p < 0.05) in 73.0% of all cells and 73.4% of land cells (see Table 1). Out of the significant cells, 
approximately half of the land cells have become more and less clustered. When correcting for field significance, 
the results obtained in Figure 2e do not change appreciably (see Figure S3a in Supporting Information S1).

Figures 3a and 3e showcase the zonal means of DKL for each latitude on respectively the global domain and over 
land only. Lower DKL values are evident in the southern hemisphere, with greater variability observed over land. 
The subtropics and most northern latitudes exhibit high DKL values. Drier areas display the highest inter-annual 
spread, encompassing the southernmost and northernmost latitudes, as well as the range between approximately 
−15 and −5° latitude.

The multidecadal variability in DKL for each WGI-v4 land region are depicted in Figures  3b–3d and  3f–3h. 
Regions such as the Caribbean, South American Monsoon and Northern Australia display substantial variability, 
whereas regions such as Western Africa or eastern South Africa show long-term increasing trends. Conversely, 
regions such as East North America, Southern South America, the Mediterranean, and New Zealand exhibit 
consistent relative entropy patterns over the years analyzed. Moreover, the highest values of DKL, so the highest 

Global Global land

Correlation coefficient significant 73.0% 73.4%

  - of which positively 47.9% 50.1%

  - of which negatively 52.1% 49.9%

Note. Dry areas, namely the cells in which the mean value of the 90th highest 
rainfall event in the 30-year windows is below 5 mm day −1, are not included.

Table 1 
Statistical Significance (p < 0.05) of DKL Trends With Time, Using the 
Spearman Rank Correlation Coefficient

 19448007, 2023, 24, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
105200 by T

u D
elft, W

iley O
nline L

ibrary on [28/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

GRÜNDEMANN ET AL.

10.1029/2023GL105200

6 of 11

clustering of precipitation extremes, are observed in geographically diverse regions, specifically Western Africa, 
Madagascar, Tibetan Plateau, Eastern Siberia, Russian Arctic, and Northern Australia.

The mean seasonal centroid C, which represents the timing of extreme precipitation occurrences, is presented 
in Figure 4. Panel a displays the mean of all 30-year windows for each grid cell, while panel b shows C per 
WGI-v4 reference region over land. The centroid of extreme precipitation occurrences over extra-tropical land 
regions predominantly falls in the summer months, with December-February in the Southern Hemisphere and 
June-August in the Northern hemisphere. The exception is the Mediterranean and west central Asia, where C 
occurs in winter (January - February). These patterns are comparable to those observed in the GPCC data set over 
land (Pascale et al., 2015; Pascale et al., 2016, respectively their Figures 15a and 1g), and CMIP5 historical simu-
lations (Pascale et al., 2016, their Figure 1h), indicating a similarity between the centroid of extreme precipitation 
occurrences and all precipitation. Furthermore, our results closely align to those of Dey et al. (2021, their Figures 
2a and 2d), who estimated the timing of extreme precipitation over Australia, defined as the maximum consecu-
tive 5-day precipitation, using the circular mean instead of C.

Figures 4c and 4d present the difference in the number of days between the centroids of the first and last 
window. In most WGI-V4 regions, there is a difference of only a few days between the first and last window, 

Figure 3. The relative entropy DKL indicating seasonality of extreme daily precipitation occurrences (Equation 1) presented as: (a) mean value for each latitude across 
grid cells and (e) across land cells. The colorbar in the legend of these panels indicate the middle of a 30-year window. The mean value across all 30-year windows is 
presented by the dashed black line. Panels (b–d and f–h) show DKL calculated for each WGI-V4 land region. Each line corresponds to a region with the same color as 
shown on the map in that panel. The x-axis presents the middle of a 30-year window. Dry areas, defined as cells with a mean value of the 90th highest rainfall event 
below 5 mm day −1 in all 30-year windows, are removed from this analysis.
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indicating minimal changes in the timing of extreme precipitation occurrences. In some specific regions, such 
as Australia, western South America, northeastern Europe, the Mediterranean and South Asia, the centroid 
falls a few days earlier in the year. Conversely in Western North America, South Central America, the Carib-
bean, eastern South America, and most regions in Sub-Sahran Africa, the centroid occurs a few days later in 

Figure 4. Mean seasonal centroid of the seasonality of extreme daily precipitation occurrences (C, Equation 2). Presented as (a) the mean of all 30-year windows 
analyzed per grid cell, and (b) calculated per WGI-v4 reference region over land. Panel (c) shows the difference in C between the first and last window for each grid 
cell in number of days (Δ C = C1992−2021 − C1959−1988), with a negative Δ C indicating that the central date of extreme rainfall occurrences are taking place earlier in 
the year and a positive Δ C indicating later in the year. Panel (d) shows the same difference calculated per WGI-v4 reference region over land. Panel (e) shows the 
Spearman rank correlation coefficient of C for each grid cell, the non-white values indicate statistical significance (p < 0.05). Panel (f) shoes the correlation coefficients 
calculated per WGI-v4 reference region over land. Cells with DKL < 0.27 (rainfall occurrences occurring in more than 10 months) are excluded. Also dry areas, defined 
as cells with a mean value of the 90th highest rainfall event in all 30-year windows below 5 mm day −1, are masked in gray. Regions in panels (b), (d), and (f) only 
include those containing at least 50% of the cells based on the two criteria above.
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the year in the last window compared to the first. The pattern for West Africa is in agreement with findings 
by Van de Giesen et al. (2010), who noted that the onset of the rainy season has shifted to 10 days later in 
the year.

Figures 4e and 4f present the Spearman rank correlation coefficient of C over time. Like with Figures 2e and 2f, 
the correlation patterns are similar with those seen in ΔC. Figure S3b in Supporting Information  S1 shows 
Figure 4e correcting for field significance, displaying very similar patterns. The regional Spearman rank corre-
lation coefficient is significant in 30 of the 38 included regions, half of them have a positive and negative corre-
lation coefficient.

When comparing the significant trends of the relative entropy (DKL, Figure 2f) and seasonal centroid (C, Figure 4f) 
interesting global patterns emerge. In Australia, the Mediterranean and northwest North America, the value of 
DKL increases while C decreases. This means a higher degree of clustering combined with extremes that occur 
earlier. In southern Asia, northwest South America and southeastern Africa, the value of DKL decreases while C 
decreases too, so more evenly spread out extremes and earlier in the year. In western Africa, central Africa, east-
ern Southern Africa and Madagascar, both DKL and C are increasing. The same is observed over western North 
America and Greenland.

4. Conclusions
In this study, we examined the seasonality of extreme daily precipitation occurrences using a metric based on 
relative entropy (DKL) as an indicator of intra-annual clustering. By analyzing more than 60 years of precipitation 
data from ERA5 (1959–2021), our findings highlight significant historical shifts in the seasonality of extreme 
precipitation occurrences across different regions. In Africa, characterized by large seasonality at the beginning 
of the analyzed time period, we observed a further increase in the concentration of extreme precipitation events 
during specific times of the year. In Asia, although initial DKL values were also high, a decrease in clustering 
was observed over time. Australia and North America, characterized by initially low DKL values, experienced an 
increase in the clustering of extreme precipitation events. In parts of South America DKL has decreased, whereas 
in Europe DKL has remained relatively constant. Future work may seek to extend this analysis and that of Pascale 
et al. (2015, 2016) by evaluating whether historical climate model simulations capture the trends in extreme rain-
fall seasonality we observed in ERA5 reanalysis. Such an approach could then be used for improved projections 
of future changes in extreme precipitation seasonality.

Examining the timing of extreme precipitation occurrences, we found that the peak of extreme events over 
extra-tropical land regions typically falls within summer. The observed patterns align with those of monthly 
precipitation, suggesting a similarity in the seasonality between extreme event occurrence and total precipitation 
amounts. The observed shift in timing of the centroid usually just spans a few days, suggesting a modest change in 
the timing of the extreme precipitation events. Changes in the timing of precipitation extremes have implications 
for flood risk (Blöschl et al., 2017; Wasko et al., 2020a, 2020b), for instance when earlier extreme precipitation 
occurrences are combined with earlier snowmelt due to increasing global temperatures (Tarasova et al., 2023). 
Conversely, when extreme events occur outside of the main rainy season, the probabilities of soil erosion and 
landslides are higher (Steger et al., 2023). As such our work highlights the importance of taking changes in timing 
of extremes into account in climate adaptation scenarios.

Data Availability Statement
ERA5 data (Hersbach et  al.,  2018,  2020) were downloaded from the Copernicus Climate Change Service 
(C3S) (2023) Climate Data Store, using era5cli version 1.3.2 (van Haren et al., 2022). CDO version 1.9.3 was used 
to pre-process ERA5 data to go from hourly time steps to daily time steps. Data were analyzed using netCDF4 
version 1.5.5 (Whitaker et al., 2020), numpy version 1.21.1 (Harris et al., 2020), pandas version 1.3.3 (Reback 
et al., 2021; Wes McKinney, 2010), regionmask version 0.8.0 (Hauser et al., 2021), scipy version 1.7.1 (Gommers 
et  al.,  2021; Virtanen et  al.,  2020) and xarray version 0.19.0 (Hoyer et  al.,  2021; Hoyer & Hamman, 2017). 
Figures were made with cartopy version 0.20 (Met Office, 2010 - 2015; Elson et al., 2022) and Matplotlib version 
3.4.3 (Hunter, 2007). The python scripts and NetCDF data for repeating our analyses and recreating the figures 
and table in this manuscript are stored on the 4TU Repository (Gründemann et al., 2023b).
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