
Constraint Aware
Reinforcement Learning
for Aeroelastic Aircraft
A hybridization of Reinforcement Learning with
Model Predictive Control

Patrick Kostelac

Constraint Aware
Reinforcement Learning
for Aeroelastic Aircraft

A hybridization of Reinforcement Learning with Model
Predictive Control

Thesis report

by

Patrick Kostelac

to obtain the degree of Master of Science

at the Delft University of Technology

to be defended publicly on July 2, 2025 at 13:00

Thesis committee:

Chair: Dr.ir. Erik-Jan van Kampen

Supervisors: Dr. Anahita Jamshidnejad

Dr. Xuerui Wang

External examiner: Dr. Azita Dabiri

Place: Faculty of Aerospace Engineering, Delft

Project Duration: December, 2024 - July, 2025

Student number: 5238676

An electronic version of this thesis is available at

https://brightspace.tudelft.nl/d2l/le/content/560234/Home.

Faculty of Aerospace Engineering · Delft University of Technology

https://brightspace.tudelft.nl/d2l/le/content/560234/Home

Copyright © Author Name here, 2023

All rights reserved.

Preface

The completion of this thesis marks the end of my Master’s degree in Aerospace Engineering. It has

been one of the most rewarding parts of my academic journey, it has been challenging, engaging, and

genuinely enjoyable. This project gave me the opportunity to explore a topic I am deeply interested in,

while also pushing me to grow as a researcher. From long hours spent puzzling over technical issues

to the satisfaction of seeing ideas finally come together, the experience has been both intellectually and

personally fulfilling.

I am grateful to my friends and family for their support throughout this process. While their help wasn’t

always technical, their encouragement, patience, and ability to lift my spirits made all the difference during

more difficult periods. I truly appreciate their continued support in anything I do. I would also like to thank

my mentors, Anahita and Sherry, for their guidance throughout the project. Their input helped steer my

work in the right direction and challenged me to approach problems more critically.

Thank you for reading my work.

Patrick Kostelac

Delft, June 2025

ii

Contents

List of Figures vii

List of Tables viii

I Literature Review & Research Definition 1

1 General Introduction 2

2 Literature Review 4

2.1 Model Predictive Control . 4

2.1.1 MPC: Principles and Formulation . 4

2.1.2 MPC in Aerospace . 9

2.1.3 Conclusion . 12

2.2 Reinforcement Learning . 13

2.2.1 RL: Principles and Formulation . 13

2.2.2 Reinforcement Learning in Aerospace . 19

2.2.3 Conclusion . 23

2.3 Combining MPC and RL . 25

2.3.1 MPC as a Policy within RL . 25

2.3.2 RL adjusting MPC parameters . 29

2.3.3 RL modifying MPC outputs. 34

2.3.4 MPC Supervising an RL Controller . 35

2.3.5 RL and MPC Running in Parallel . 36

3 Research Questions 38

4 Project Plan 39

4.1 Methodology . 39

4.2 Expected Results . 39

4.3 Planning. 39

References 46

II Scientific Article 47

5 Control & Simulation Msc Thesis Paper 48

III Additional Results 81

6 More Results 82

6.1 Second-Order Discretization of Nonlinear Dynamics . 82

6.2 Dynamic Feasibility of LPV-MPC Assumptions . 85

6.3 Numerical Validation of LPV Accuracy . 87

6.4 Justification of Second-Order Truncation in State Update 88

6.5 Controller Configurations. 91

6.5.1 MPC Controller parameters . 91

6.5.2 RL Controller parameters . 91

6.5.3 RL-MPC Controller parameters . 92

iii

Contents iv

7 Conclusions & Recommendations 94

7.1 Conclusions. 94

7.2 Research Questions . 94

7.3 Recommendations . 96

Nomenclature

List of Abbreviations

ADP Approximate Dynamic Programming

AI Artificial Intelligence

ANN Artificial Neural Network

CAPS Consistent Action Policy Smoothing

D-MPC Distributed Model Predictive Control

DDP Dynamic Programming

DDPG Deep Deterministic Policy Gradient

DP Dynamic Programming

DPG Deterministic Policy Gradient

DQN Deep Q-Networks

DRL Deep Reinforcement Learning

GLA Gust Load Alleviation

IADP Incremental Approximate Dynamic Pro-

gramming

KS Kreisselmeier-Steinhauser function

LPV Linear Parameter-Varying

LQR Linear Quadratic Regulator

LSTM Long Short-Term Memory

LTI Linear Time-Invariant

MARL Multi-Agent Reinforcement Learning

MAV Micro Aerial Vehicle

MBRL Model-Based Reinforcement Learning

MC Monte Carlo

MCTS Monte Carlo Tree Search

MDP Markov Decision Processes

MIMO Multiple Input Multi Output

ML Machine Learning

MLA Maneuver Load Alleviation

MOR Model Order Reduction

MPC Model Predictive Control

NLP Nonlinear Programming

NMPC Nonlinear Model Predictive Control

PID Proportional-Integral-Derivative

PPO Proximal Policy Optimization

qlMPC Quasi-Linear MPC Framework

QP Quadratic Programming

RL Reinforcement Learning

RMPC Robust Model Predictive Control

ROM Reduced Order Model

SAC Soft Actor-Critic

SQP Sequential Quadratic Programming

TD Temporal Difference

TD3 Twin Delayed Deep Deterministic Policy

Gradient

UVLM Unsteady Vortex Lattice Method

VTOL Vertical Take-Off and Landing Aircraft

ZOH Zero-Order Hold

List of Symbols

α Learning rate for value function updates

at Action vector at time step t

st State vector at time step t

ui Predicted control input at step i

uk Control input at step k

x0 Initial state

xi Predicted state at step i in the horizon

xother,k State of agents other than i at step k

v

Nomenclature vi

xNP Terminal state at the end of prediction hori-

zon

y(t) Continuous-time output

yk Vector-valued output at time step k

δx Deviation from nominal trajectory

∆t Discrete time step

γ Discount factor for future rewards

f̂(xk,uk) Approximate system model

A Action space

C Set of system constraints

S State space

Uθ Input constraint set parameterized by θ

Xθ State constraint set parameterized by θ

∇θJ(θ) Policy gradient of expected return with

respect to parameters θ

π′(s) Greedy policy w.r.t. current value function

π(a | s) Probability of taking action a in state s
under policy π

π∗(s) Optimal policy

πMPC(s) MPC-derived policy

πθ(a | s) Policy parameterized by θ

τ Trajectory tuple in reinforcement learning

Θ Set of admissible policy parameters

θ Policy parameters for RL agent

Ã Stacked state transition matrix for MPC

prediction

B̃ Stacked input matrix for MPC prediction

A Discrete-time state matrix

A(ρk) State matrix parameterized by scheduling

variables

Ac Continuous-time state matrix

at Action at time step t

B Discrete-time input matrix

B(ρk) Input matrix parameterized by scheduling

variables

Bc Continuous-time input matrix

C Discrete-time output matrix

C(ρk) Output matrix parameterized by schedul-

ing variables

Cc Continuous-time output matrix

dk Disturbance at time step k

E Matrix representing inequality constraints

on inputs

f(xk,uk) True system dynamics

G Vector representing bounds in input in-

equality constraints

Gt Return starting from time step t

J Total cost over the prediction horizon

l Stage cost function

NC Control horizon length

NP Prediction horizon length

P Terminal cost weighting matrix

P (s′ | s, a) Transition probability of reaching state

s′ from state s after taking action a

Q State weighting matrix in the cost function

Q(s,a) Action-value function

Q∗(s, a) Optimal action-value function

Qπ(s, a) Action-value function under policy π

R Control weighting matrix in the cost func-

tion

rt Reward at time step t

st State at time step t

T Episode length or time horizon

Ts Sampling time used for discretization

V (s) State-value function

V ∗(s) Optimal state-value function

V f(xNP) Terminal cost function

Vπ(s) State-value function under policy π

yk System output at discrete time k

List of Figures

2.1 Simplified block diagram of an MPC-based control loop. The optimization block computes

control inputs based on the predictive model. Symbols: r is the reference signal, u the

control input, y the system output, and w external disturbances. 5

2.2 Standard feedback control loop. The control action is computed based only on current error

signals. 5

2.3 Agent-Environment Interaction in Reinforcement Learning. The agent selects an action at
based on the current state st, receives a reward rt, and transitions to a new state st+1. This

interaction follows the MDP framework. Adapted from [45] 14

4.1 Project Timeline . 40

6.1 Visualization of system behavior in time and frequency domains 85

vii

List of Tables

6.1 Dominant frequency for each state obtained via Fourier analysis. 86

viii

Part I
Literature Review & Research Definition

1

1
General Introduction

The evolution of aerospace engineering has led to lightweight, flexible structures aimed at enhancing

fuel efficiency and performance [1, 2]. While beneficial, these designs introduce complex challenges in

maintaining flight stability and control. aeroelastic wings are particularly prone to aeroelastic phenomena

such as flutter, divergence, and control reversal, where the interaction between aerodynamic forces and

structural deformations can compromise structural integrity and flight safety [3]. Effectively managing these

rapid, nonlinear dynamics remains a critical challenge, requiring control strategies capable of adapting

online to the unique, time-varying behavior of aeroelastic structures.

The growing use of aeroelastic aircraft in commercial and research applications has created a need for

advanced control strategies capable of managing the unique challenges of aeroelastic behavior [3, 4].

These designs involve complex interactions between structural deformation, unsteady aerodynamics, and

nonlinear dynamics, making precise control challenging, especially during rapid state changes and in

the presence of external disturbances [1, 5]. Traditional methods such as Linear Quadratic Regulators

(LQR) [6, 7] and Model Predictive Control (MPC) [8], rely on linear models, struggle with the coupled,

nonlinear dynamics of aeroelastic structures and can break down under large deformations or transonic

effects, leading to safety risks [9, 10, 11]. In contrast, Reinforcement Learning (RL) provides a data-driven

alternative that can adapt to complex, nonlinear dynamics without precise model linearization [12, 13] but

lacks the stability guarantees needed for safety-critical aerospace applications, highlighting the need for

innovative control strategies that can address these challenges without compromising performance or

safety [3, 14, 4].

MPC and RL have traditionally been used separately, but when combined, they offer a promising approach

for aeroelastic aircraft control [15, 16, 17]. MPC provides model-based stability and constraint handling,

while RL introduces adaptability for complex, nonlinear dynamics, making the combination well-suited for

both predictable behavior and unmodeled disturbances, the main challenges of aeroelastic control [8, 18,

13, 19]. However, existing hybrid methods often either embed MPC within RL [20] or use RL to tune MPC

parameters [21], without fully exploiting the complementary strengths of both. These approaches tend to

address specific challenges without offering a comprehensive, adaptable solution for various real-world

conditions. Given the rapid state changes, model mismatch, and external disturbances typical of aeroelastic

wings, there is still significant potential for improving the efficiency, scalability, and robustness of these

hybrid controllers. Particularly for real-time, scalable control of highly flexible, gust-sensitive structures,

where maintaining stability under unpredictable loads remains a critical challenge [22, 23].

The objective of this thesis is to investigate the strengths and weaknesses of MPC and RL as standalone

controllers for aeroelastic aircraft, identify their limitations in handling nonlinear dynamics, rapid state

changes, and external disturbances, and then develop a complementary hybrid approach that integrates

the advantages of both MPC and RL. This will involve analyzing each method individually to understand

their limitations, followed by designing a combined controller that leverages the insights gained from the

analysis to integrate the most promising features of both MPC and RL. The resulting hybrid controller

should maintain stability and performance across a wide range of conditions, including severe gusts and

rapid structural deformations, while remaining computationally efficient for real-time deployment. The thesis

is expected to contribute to the development of more robust and adaptable control strategies for aeroelastic

aircraft, improving their safety and performance in real-world conditions. By integrating MPC and RL into a

2

3

scalable, online framework, this work aims to address critical gaps in existing control methods, potentially

enhancing flight stability, reducing operational risks, and supporting the next generation of aeroelastic,

high-performance aircraft. While the primary focus is on aeroelastic flight control, the underlying approach

may also be extended to other systems with nonlinear dynamics and rapidly changing environments.

2
Literature Review

To address the challenges identified in the previous sections, this literature review examines the theoretical

foundations and practical implementations of MPC and RL for aeroelastic aircraft. It first outlines the

principles, advantages, and limitations of MPC, followed by a discussion on the role of RL in adaptive

control for nonlinear, time-varying systems. The review then explores existing efforts to combine these

approaches, highlighting the potential benefits of integrating MPC and RL for enhanced performance,

scalability, and robustness. While general hybrid methods have been proposed, few have specifically

addressed the unique demands of aeroelastic aerospace structures, underscoring the need for more

specialized solutions, which this thesis aims to address.

2.1. Model Predictive Control
This section introduces MPC, an optimization-based control strategy that has gained prominence in

applications requiring constraint handling and multivariable control. Unlike classical controllers such as

Proportional-Integral-Derivative (PID) or Linear Quadratic Regulators (LQR), MPC explicitly optimizes

future control actions over a finite prediction horizon, considering system dynamics, constraints, and

disturbances. By solving an optimization problem at each time step, MPC provides real-time adaptability

to system changes. The fundamental principle of MPC is to minimize a cost function that is typically made

up of state deviations, control effort, and sometimes control smoothness while ensuring compliance with

constraints on inputs, outputs, and system states.

MPC is particularly well-suited for systems that require constraint handling, multivariable control, and

future prediction. It is widely used in process control, autonomous systems, robotics, power systems,

and aerospace applications, where safe and efficient operation depends on the enforcement of actuation

limits, state constraints, and trajectory optimization. Unlike traditional controllers that respond reactively to

system changes, MPC proactively adjusts control inputs by solving an optimization problem at each time

step, allowing it to anticipate disturbances and optimize performance over a defined horizon. Its ability to

handle multi-input multi-output (MIMO) systems makes it a powerful choice for complex interconnected

dynamics, particularly in applications requiring trajectory planning, energy-efficient actuation, and precision

control. However, the computational cost of repeatedly solving optimization problems remains a chal-

lenge, especially for high-speed or embedded applications, necessitating efficient solvers and real-time

implementation strategies.

This chapter is divided into two sections. The first section, 2.1.1 MPC: Principles and Formulation, details

the mathematical foundations of MPC, including its optimization structure, cost function formulation, and

constraint handling. It also discusses different classes of MPC, such as Linear, Nonlinear, and Linear

Parameter-Varying (LPV) MPC, with an emphasis on LPV approaches for handling nonlinear systems. The

second section, 2.1.2 MPC in Aerospace, explores the use of MPC in aerospace applications, summarizing

existing research and identifying gaps that motivate further innovation with the focus on the assumptions

and simplifications taken in the current research.

2.1.1. MPC: Principles and Formulation
MPC is a class of optimization-based control strategies that utilizes an explicit system model to predict

and optimize control inputs over a finite prediction horizon [24]. Unlike classical controllers such as

4

2.1. Model Predictive Control 5

Proportional-Integral-Derivative (PID) and Linear Quadratic Regulators (LQR), MPC explicitly handles

constraints and can accommodate multi-variable interactions, making it particularly advantageous for

complex and constrained systems[25].

Cost Function and Objective Formulation

MPC operates by solving an optimization problem at each time step, minimizing a quadratic cost function

subject to system dynamics and constraints. The cost function typically penalizes deviations from a desired

reference trajectory as well as excessive control effort:

J(xk,uk) =

k+Np−1∑
i=k

(
x>
i Qxi + u>

i Rui

)
+ x>

k+NpPxk+Np (2.1)

where xi represents the system state, ui the control input, and Q, R, and P are positive semi-definite

weight matrices that penalize deviations in the state, control effort, and terminal state, respectively. Only

the first optimal control input is applied at each iteration, and the procedure is repeated at the next time

step in a receding horizon fashion.

A key distinction between MPC and traditional control methods lies not just in the use of a model, but

in how that model is utilized within the control framework. Traditional control methods compute control

actions based solely on the current error signals, without explicitly considering how the system will evolve

over time. This structure is illustrated in Figure 2.2, where the controller reacts to the present state without

forecasting future behavior. In contrast, as shown in Figure 2.1, MPC incorporates an internal model

within an optimization block that predicts future system behavior and determines the control inputs over a

specified prediction horizon. At each time step, MPC simulates the effect of a sequence of control inputs

on the model to evaluate how the system is expected to respond. Based on this prediction, it selects

the optimal control sequence, but only the first control input is applied to the real system. This predictive

optimization allows MPC to anticipate future events, enforce constraints directly, and apply corrective

actions before deviations occur, thereby improving overall system performance.

Figure 2.1: Simplified block diagram of an MPC-based control loop. The optimization block computes

control inputs based on the predictive model. Symbols: r is the reference signal, u the control input, y the

system output, and w external disturbances.

Figure 2.2: Standard feedback control loop. The control action is computed based only on current error

signals.

2.1. Model Predictive Control 6

Predictive Models and State-Space Representation

MPC relies on a predictive model of the system, often described using a discrete-time state-space

representation:

xk+1 = Axk +Buk, yk = Cxk, (2.2)

where A, B, and C define the system dynamics, control influence, and measured outputs, respectively.

Given this model, the future system states can be predicted over the control horizon Np using recursion:

x = Ãxk + B̃u, (2.3)

where x is a stacked vector containing future states, and u contains future control inputs. The matrices Ã
and B̃ are constructed as follows:

Ã =


A

A2

...

ANp

 , B̃ =


B 0 . . . 0

AB B . . . 0
...

...
. . .

...

ANp−1B ANp−2B . . . B

 . (2.4)

This formulation allows the prediction of system trajectories over the horizon and facilitates the formulation

of the optimization problem [8].

The control input sequence is computed by minimizing the following quadratic cost function [8]:

J(xk,u) = xTQNx+ uTRNu, (2.5)

where QN and RN are block diagonal matrices constructed from Q and R. The control inputs must satisfy

input and state constraints, which can be expressed as:

Eu ≤ G, (2.6)

where E and G define the feasible control region. These constraints ensure that the computed control

actions remain within physically realizable limits.

Linear vs Nonlinear MPC

MPC can be broadly categorized into linear MPC and nonlinear MPC (NMPC), depending on the nature

of the system model. Linear MPC assumes that the system dynamics can be approximated by a linear

time-invariant (LTI) models, which simplify the control problem significantly. In this setting, a quadratic

programming (QP) problem is solved at each time step to minimize a cost function of the form previously

defined in (2.1). This cost function penalizes both state deviations and control effort over a finite prediction

horizon using weight matrices Q, R, and a terminal weight P . Linear MPC is computationally efficient

and well-suited for systems where linear models provide a sufficiently accurate approximation over the

prediction horizon.

While linear MPC assumes that the system dynamics can be approximated by a LTI model, many real-world

systems, particularly in aerospace applications, exhibit strong nonlinearities arising from aerodynamic

forces or structural flexibility. In such cases, the assumption of linearity can lead to suboptimal or even

unstable control performance. To account for these effects, we consider systems governed by nonlinear

dynamics of the form:

xi+1 = f(xi,ui), (2.7)

where f(·) captures the nonlinear system behavior. Importantly, we retain the quadratic cost structure

introduced in (2.1), as it enables computationally efficient optimization formulations. This can be taken

a step further by solving a fully nonlinear problem, in which both the dynamics and the cost function

are nonlinear. However, this approach results in a nonlinear programming (NLP) problem at each time

2.1. Model Predictive Control 7

step, which incurs a high computational burden and may be unsuitable for real-time applications. Instead,

we focus on controlling systems with nonlinear dynamics using a quadratic cost, and seek alternative

formulations that preserve tractability while capturing the essential nonlinear behavior.

NMPC has been successfully applied in various industries, including chemical processes, robotics, and

aerospace, where accurate handling of nonlinear dynamics is crucial for stability and performance [26].

However, the increased computational burden and the potential for local minima make NMPC challenging

to implement in real-time systems.

This challenge is particularly relevant for onboard aerospace applications, where computational resources

are limited. Real-time execution requires that optimization problems be solved within tight timing con-

straints, making the high computational cost of NMPC a significant drawback. As a result, many practical

implementations favor linear or LPV-based MPC formulations, which offer a compromise between model

accuracy and feasibility for embedded systems.

Linear Parameter Varying MPC

To handle nonlinearities efficiently while maintaining computational tractability, Linear Parameter-Varying

(LPV) MPC is often used. LPV-MPC dynamically updates linearized models around the current operating

point, providing a trade-off between computational efficiency and model accuracy. This approach constructs

a set of linear models that approximate the nonlinear system behavior over different operating regions,

allowing the controller to adapt as the system state changes [11].

An LPV system can be represented as a linear system with parameters that vary over time, often written in

the form:

xk+1 = A(ρk)xk +B(ρk)uk, yk = C(ρk)xk, (2.8)

where A(ρk), B(ρk), and C(ρk) are parameter-varying system matrices, and ρk is a vector of scheduling

parameters that capture the current operating conditions. These parameters are typically chosen to reflect

key nonlinear aspects of the system dynamics, such as the angle of attack in an aircraft or the flow rate in

a chemical reactor.

The cost function for LPV-MPC retains the quadratic structure defined in (2.1), but is evaluated using a

parameter-varying system model. Specifically, the system dynamics at each step are governed by a locally

linearized model of the form:

xk+1 = A(ρk)xk +B(ρk)uk. (2.9)

This local linearization allows LPV-MPC to handle moderate nonlinearities without incurring the full compu-

tational overhead of NMPC. However, it relies on accurate parameter scheduling to ensure that the linear

approximations remain valid across the entire operating range [11].

It is important to distinguish LPV-MPC from gain-scheduled MPC. While both use scheduling parameters

to account for changing operating conditions, gain-scheduled MPC typically relies on a predefined set of

linear controllers, each tuned for a specific operating point. The controller switches between these based

on the current value of the scheduling variable. In contrast, LPV-MPC updates the model continuously

and solves a new optimization problem at each time step using the current parameter values. This allows

LPV-MPC to adapt more smoothly and flexibly to nonlinear behavior without relying on discrete controller

switching.

LPV-MPC has been successfully applied in controlling complex systems such as autonomous underwater

vehicles, chemical reactors, and aeroelastic aircraft, demonstrating its versatility and effectiveness [27].

By switching or interpolating between these models during operation, LPV-MPC can effectively manage

nonlinearities with reduced computational burden compared to fully nonlinear approaches.

Discrete vs. Continuous-Time MPC

MPC can be implemented in both discrete-time and continuous-time domains, depending on the nature

of the system and the desired control performance. In practice, Discrete-Time MPC is more commonly

used, particularly in digital control applications where the controller operates at fixed sampling intervals.

This approach relies on a discretized version of the system model, which can be expressed as:

2.1. Model Predictive Control 8

xk+1 = Axk +Buk, yk = Cxk, (2.10)

where A, B, and C are the discrete-time system matrices, typically obtained from a continuous-time

model using a zero-order hold (ZOH) or other discretization methods. The relationship between the

continuous-time and discrete-time system matrices is given by:

A = eA
cTs , (2.11)

B =

∫ Ts

0

eA
cτBc dτ, (2.12)

where Ts is the sampling time, and Ac, Bc are the continuous-time system matrices. The matrix exponential

eA
cTs captures the effect of continuous-time dynamics over a discrete sampling period.

In contrast, Continuous-Time MPC operates directly on the continuous-time system equations:

ẋ(t) = Acx(t) +Bcu(t), y(t) = Ccx(t), (2.13)

where the control actions are computed continuously over time. While this approach can offer more

accurate representations of high-speed dynamics, it is computationally more intensive and often requires

more sophisticated solvers, such as differential dynamic programming (DDP) or direct collocation methods.

The cost function for continuous-time MPC is typically formulated as:

J(x(0),u(·)) =
∫ T

0

(
x(t)>Qx(t) + u(t)>Ru(t)

)
dt, (2.14)

where the integral accounts for the continuous nature of the system. In contrast, discrete-time MPC uses

a summation over a fixed prediction horizon, as shown in (2.1), highlighting a key difference in how the

control objectives are defined and optimized.

Despite the theoretical advantages of continuous-time MPC, most practical implementations involve

discretizing the system model to facilitate numerical computations on digital platforms. This process can

introduce approximation errors and increase computational complexity, as the continuous dynamics must

be accurately captured within the discrete framework. For this reason, many industrial MPC applications

rely on discrete-time formulations, which are directly supported by widely used control software packages

such as MATLAB’s Model Predictive Control Toolbox [28].

2.1. Model Predictive Control 9

2.1.2. MPC in Aerospace
MPC has been widely applied in aerospace for tasks ranging from flight control to disturbance rejection and

structural load alleviation. Its predictive capabilities and constraint handling capabilities make it well suited

for aerospace applications, where safety, performance, and robustness are paramount. Key applications

include gust load alleviation (GLA) and maneuver load alleviation (MLA) to reduce structural loads from

atmospheric disturbances and aggressive maneuvers, vibration suppression to mitigate aeroelastic instabil-

ities in aeroelastic aircraft, and flight control for trajectory tracking and stability enhancement. Additionally,

MPC is used in some fault tolerance cases, where the controller performance needs to be maintained

under actuator or system failures. As all of these are real-time implementations the computational feasibility

of MPC is also a topic of high interest. These implementations often rely on simplifying assumptions

regarding system dynamics, disturbances, and computational constraints. The following sections reviews

these primary areas where MPC has been employed in aerospace, highlighting the approaches taken to

tackle them.

GLA and MLA

One of the major challenges in aircraft control is mitigating gust-induced structural loads, which can

significantly impact passenger comfort, structural integrity, and aircraft performance. MPC has been

widely used in GLA systems, leveraging its predictive nature to proactively counteract gust disturbances.

Many studies employ LPV MPC, where the controller adapts dynamically to variations in flight conditions,

structural deformations, and aerodynamic effects [11]. The response errors between the LPV and the

nonlinear models remain small, making it reasonable to use the LPV model to represent nonlinear dynamics

[29]. Some implementations integrate real-time gust preview data from sensors such as LIDAR or nose-

mounted probes to enhance disturbance rejection by allowing the controller to anticipate incoming gusts

before they impact the aircraft [30]. The integration of unsteady aerodynamic modeling has played a crucial

role in improving GLA strategies. Some studies employ high-fidelity aerodynamic solvers such as the

Unsteady Vortex Lattice Method (UVLM), which effectively captures the dynamic response of aeroelastic

aircraft under gust disturbances [31]. Additionally, model order reduction (MOR) techniques, including

balanced truncation and oblique projection, are often used to retain the dominant aeroelastic modes while

simplifying computational complexity [11]. The use of time-varying Kalman filters to estimate unmeasured

states has further improved the real-time applicability of these methods [29].

Many GLA strategies assume that the environment is static and that future gust disturbances can be

accurately measured within the prediction horizon [30] [29] and that the aerodynamic response to these

disturbances is sufficiently captured by reduced-order linearized models [31]. There are a lot of additional

assumptions on the gust itself, some papers simplify gusts and assume them to be uniform [31] [11]. As

well as the assumptions on the gusts, there are also assumptions on the deformations caused by the

gusts, deformations are sometimes based only on the steady state and ignore the transient behavior [11].

Additionally, the interaction between flexible structures and aerodynamics is often simplified, limiting the

ability of these controllers to address highly nonlinear effects and strong gust interactions [11].

MPC is also extensively used for manoeuvre load alleviation (MLA) to reduce structural stresses induced

by aggressive manoeuvres. This is particularly relevant for aeroelastic aircraft, where load management is

critical to ensuring structural longevity. MPC-based MLA frameworks typically regulate control surface

deflections to redistribute aerodynamic loads, reducing peak structural stress without compromising

handling performance [32].Some studies implement distributed MPC (D-MPC) for MLA, where multiple

local controllers work in parallel to optimize load distribution across the aircraft[10]. This decentralized

control architecture allows for scalability and modularity, making it suitable for large, aeroelastic airframes.

Additionally, state-dependent MPC formulations have been introduced to enhance adaptability by adjusting

control gains based on the instantaneous structural state [32].

While MLA strategies are effective for reducing maneuver-induced loads, some studies highlight the

potential implications of neglecting gust disturbances during maneuvers. One study emphasizes the

reduction of static loads through MLA strategies but acknowledges that while MLA effectively mitigates

maneuver-induced loads, it may inadvertently increase the impact of dynamic gust loads on the final

design, underlining the importance of considering gust effects in load alleviation strategies [33]. In contrast,

another study investigates the combined effects of gusts and maneuvers on aircraft loads, exploring the

use of coordinated deflections of outer ailerons and spoilers to alleviate both gust and maneuver loads.

This approach demonstrates the necessity of control strategies that address both factors simultaneously,

2.1. Model Predictive Control 10

ensuring that load alleviation measures do not inadvertently introduce new challenges under varying flight

conditions [34].

Many studies also adopt quasi-static load redistribution models, neglecting transient aeroelastic effects that

might introduce additional challenges in real-world conditions[32] [10]. Importantly, many MLA strategies

are designed under the assumption that loads are solely maneuver-induced, without explicitly accounting for

gust disturbances that may occur simultaneously with a maneuver [32] [10] [33]. Since these approaches

do not incorporate GLA techniques, the same challenges associated with gust load alleviation also persist

in these MLA implementations, further limiting their robustness in realistic flight scenarios. These can also

lead to underestimated load predictions and potentially insufficient control actions if unexpected gusts

increase structural stresses beyond the anticipated maneuver-induced loads [34].

Vibration Suppression

The increasing trend towards lightweight, high-aspect-ratio wings has introduced new challenges related

to aeroelastic vibrations, which can degrade structural integrity and flight performance. MPC has been

extensively employed to mitigate these vibrations by actively adjusting control inputs based on predicted

structural responses [11]. Many implementations leverage reduced-order models (ROMs) to approximate

the aeroelastic dynamics while maintaining computational efficiency [29]. These ROMs, often derived

using modal truncation techniques, aim to capture the dominant aeroelastic modes while filtering out less

significant dynamics. However, simplifications in the modeling process can lead to inaccuracies in real-time

implementations.

Some studies enhance MPC-based vibration suppression by incorporating Kalman filters to estimate

unmeasured structural states, ensuring robust performance under varying flight conditions [31]. Addition-

ally, Linear Parameter-Varying (LPV) MPC formulations have been introduced to account for changing

structural characteristics due to different flight regimes and external disturbances [35]. These controllers

dynamically adjust their parameters based on real-time flight conditions, improving adaptability while still

maintaining computational feasibility. Moreover, recent approaches have integrated smooth-switching

LPV control techniques to enhance vibration suppression by reducing abrupt control transitions between

different operating conditions, thereby improving stability and robustness in highly aeroelastic aircraft [35].

Additionally, certain control approaches assume that scheduling parameters, can be measured in real-time

without uncertainty, neglecting potential sensor noise or delays that could affect controller performance

[35].

Many vibration control strategies assume that wing deformations can be effectively captured using modal

approximations, which focus on dominant structural modes while neglecting higher-order or nonlinear

interactions [11]. Furthermore, some methods assume uniform gust distributions across the aircraft,

simplifying turbulence effects but potentially misrepresenting localized aerodynamic interactions [35].

Whereas some approaches assume that the environment is static and that it can be measured by LIDAR

and thus predicted [29].

Flight Control

MPC has been widely applied in flight control to enhance trajectory tracking, attitude stabilization, and

fault-tolerant capabilities. Unlike conventional controllers such as PID or LQR, MPC explicitly accounts

for input and state constraints, making it particularly suitable for aerospace applications where actuator

saturation and operational limits must be strictly enforced. Many flight control implementations utilize

Linear Time-Invariant (LTI) or LPV models to balance computational feasibility with accuracy, allowing

controllers to adapt dynamically to changing flight conditions [36].

Several studies have demonstrated the effectiveness of MPC in different flight control contexts. It can be

particularly useful with highly aeroelastic aircraft where structural deformations should also be minimized.

One approach applies real-time MPC for controlling unmanned aeroelastic aircraft, showcasing its capa-

bility to improve stability and disturbance rejection despite the presence of structural deformations and

aerodynamics-induced uncertainties. The study highlights the practical implementation of MPC in flight

tests and discusses the computational challenges associated with real-time operation [37]. Another study

explores MPC for aeroelastic aircraft dynamics, focusing on the use of nonlinear reduced-order models to

capture structural deformations while maintaining computational efficiency. This method allows controllers

to anticipate structural oscillations and adjust control inputs accordingly, significantly improving handling

qualities in highly aeroelastic aircraft [36].

2.1. Model Predictive Control 11

MPC has also been applied to fault-tolerant flight control, particularly in cases of severe actuator failures.

A case study on El Al Flight 1862 demonstrates how an MPC-based reconfiguration strategy could have

helped prevent the fatal crash by redistributing available control authority to compensate for actuator

failures. This study employs a reference model-based approach, where MPC continuously updates its

internal model based on fault-detection inputs, allowing the aircraft to maintain stable flight despite extensive

control surface failures [38]. A similar MPC framework is proposed for tiltrotor eVTOL aircraft, incorporating

data-driven control to improve performance and adaptively compensate for the unmodeled dynamics. This

approach leverages both model-based and data-driven predictive control strategies, showing promising

results in increasing fault tolerance while ensuring stability in novel aircraft configurations [39].

Several studies have focused on reducing the computational burden of MPC for flight control, particularly

in applications with large-scale constrained optimization problems. One approach introduces constraint ag-

gregation using the Kreisselmeier-Steinhauser (KS) function, which replaces multiple individual constraints

with a smooth, nonlinear approximation. This method reduces the number of constraints explicitly handled

in the optimization process, making it easier to solve in real-time using Sequential Quadratic Programming

(SQP). While this approach can significantly decrease computational cost and allow for longer prediction

horizons, it also introduces a trade-off—overly conservative constraints may limit controller performance

more than necessary [40]. Another approach improves computational efficiency by using Laguerre or-

thonormal basis functions to approximate control trajectories, which simplifies the MPC formulation for

aeroelastic aircraft. By integrating this method into a quasi-linear MPC framework (qLMPC) with a Kalman

filter, this approach enables accurate reference tracking while reducing overall computing time by a factor

of approximately 8 compared to traditional MPC implementations. While the Laguerre-based method

can improve tracking performance, it also introduces a trade-off—controllers designed with strict stability

guarantees may be less efficient than those that prioritize computational speed [41].

Many MPC-based flight control implementations assume linearized or quasi-linear system representations,

which may not fully capture the nonlinear aerodynamic and structural interactions present in real-world flight

conditions. This is particularly relevant in aeroelastic aircraft dynamics, where nonlinearities significantly

affect the control response [36]. Despite the heavy reliance on the linearized systems not many papers

study the effect of model mismatch. During strong gusts and fast maneuvers high accelerations can cause

significant structure deformations which leads to large model mismatch during which the controllers were

found to perform poorly [40]

Additionally, some methods rely on accurate aerodynamic models, which may not generalize well across

varying flight regimes especially when the fault tolerant control is in question, this can lead to potential

control performance degradation under unmodeled disturbances [38]. Certain studies assume perfect fault

detection and identification, meaning that control reconfiguration is based on real-time, accurate information

about actuator failures. However, this may not always be the case in practice, as fault diagnosis and

estimation errors could lead to incorrect control actions [38]. Some approaches also neglect measurement

uncertainties, assuming perfect state estimation with no sensor noise or time delays, which may not hold

in real-world conditions where sensor inaccuracies impact control performance [37].

MPC implementations for very aeroelastic aircraft assume that constraint aggregation using Kreisselmeier-

Steinhauser (KS) functions sufficiently preserves the feasible control region, despite the fact that these

aggregations introduce conservatism and may eliminate optimal control actions that could have been

feasible with a full constraint set. This introduces a trade-off between computational efficiency and controller

performance [40]. Additionally, some control strategies assume that reducing the number of constraints will

not significantly affect stability, implicitly assuming that the controller’s stability and effectiveness remain

intact. However, this may not hold in cases where strongly coupled aeroelastic effects dominate the

aircraft dynamics, potentially leading to overly conservative control actions or loss of performance [41].

Additionally, most of the MPC formulations assume that disturbance effects, such as gusts or modeling

errors in transition-phase dynamics, can be adequately handled by simple predefined disturbance models.

For example, disturbances in [39] are modeled as an external vertical acceleration of the form:

d(t) = M
1− cos(2πt/p)

2
(2.15)

where M and p denote the magnitude and period of the disturbance. This simplified approach assumes

that disturbances can be represented by periodic or well-characterized acceleration profiles, which may

2.1. Model Predictive Control 12

not be representative of real-world turbulent conditions or more complex unsteady aerodynamic effects.

As a result, control schemes based on such assumptions may fail to compensate for highly nonlinear

or rapidly changing disturbances, leading to degraded tracking performance and stability in operational

environments.

2.1.3. Conclusion
The current research on MPC-based control in aerospace highlights its applications in GLA, MLA, vibration

suppression, and flight control. Across these domains, MPC has been adopted due to its ability to handle

constraints and predict system behavior over a finite horizon. Many implementations employ LPV-MPC to

adapt to changing flight conditions, structural deformations, and aerodynamic effects [11]. LPV-MPC also

provides a practical balance between the simplicity of linear MPC and the high computational demands of

full nonlinear MPC, making it well-suited for onboard applications with limited processing capacity. Some

research integrates real-time state estimation techniques such as Kalman filtering to compensate for

unmeasured disturbances [31], and some employ reduced-order models (ROMs) to retain computational

efficiency while capturing dominant aeroelastic behaviors [29]. Despite these advancements, many existing

approaches rely on assumptions that limit their applicability in broader aerospace scenarios.

One of the major limitations is that most studies focus on a single objective, either reference tracking,

load alleviation, or vibration suppression, without addressing how these goals interact in a unified control

framework. For instance, while MPC-based MLA methods effectively redistribute loads to minimize

peak structural stresses [32], they often do not account for simultaneous gust disturbances that could

exacerbate structural loads [33]. On the other hand some GLA approaches do not incorporate MLA

strategies, potentially leading to conflicting control objectives when both disturbances and maneuvers

occur simultaneously [34]. Some GLA approaches rely on previewed gust information from LIDAR [30]

and assume perfect knowledge of the upcoming gusts which is not a realistic scenario as the environment

is dynamic rather than static.

Disturbance modeling is a significant limitation in many studies. Many studies only consider simplified

disturbances, often assuming uniform gusts or predefined periodic profiles [31] [11]. Some approaches

assume perfect knowledge of future disturbances through LIDAR-based sensing [30], which may not be

reliable in all operational conditions. With realistic turbulence models such as Dryden or Von Kármán

turbulence models, which introduce stochastic and multi-scale disturbance effects, being often neglected,

limiting the robustness of these controllers in real-world conditions [29].

Actuator delay is also frequently overlooked. Most MPC implementations assume instantaneous actuation,

overlooking the time lag between command execution and response. However, even small delays can

degrade control performance, especially in fast-dynamic aerospace systems. Studies in other domains

have shown that actuator delay can significantly impact stability and tracking accuracy [42], yet it remains

largely unaddressed in aerospace MPC research. Without compensating for this delay, controllers risk

generating suboptimal inputs.

Model mismatch presents an additional challenge. Many controllers assume that the underlying system

dynamics remain constant and accurately modeled, disregarding variations due to environmental conditions,

structural changes, or damage. However, real-world aerospace systems experience model deviations due

to factors such as icing, changing altitudes, or structural degradation over time [40]. Without incorporating

robust adaptation mechanisms or considering potential model mismatch, these MPC implementations may

fail to maintain performance in off-nominal conditions.

Although MPC has been demonstrated to work effectively for many specific scenarios, there has yet

to be a generalized framework that can simultaneously handle multiple objectives, account for realistic

disturbances, and adapt to model uncertainties. Future research must address these limitations to develop

more robust and universally applicable MPC strategies for aerospace applications, ensuring enhanced

reliability and performance across diverse flight conditions.

2.2. Reinforcement Learning 13

2.2. Reinforcement Learning
This section introduces RL, a learning-based control strategy that has gained prominence in applications

requiring adaptive decision-making in uncertain and high-dimensional environments. Unlike classical

control methods such as PID, LQR, or MPC, RL does not necessarily require an explicit system model

and instead learns optimal policies through interaction with the environment. By leveraging experience,

RL can adapt to changing conditions, optimize performance over time, and handle complex state-action

relationships that may be difficult to model explicitly.

RL is particularly well-suited for applications where the system dynamics are highly nonlinear, uncertain,

or difficult to model accurately. It is widely used in robotics, autonomous systems, aerospace, power

systems, and various real-time decision-making tasks. Unlike traditional controllers that rely on pre-defined

rules or optimization-based receding horizon planning, RL-based controllers learn optimal behaviors

by maximizing cumulative rewards over sequential interactions. This makes RL a powerful tool for

complex control problems, including trajectory optimization, adaptive flight control, and autonomous

decision-making. However, RL faces challenges such as high sample complexity, stability concerns, and

safety-critical constraints, which require careful formulation and robust training methodologies to ensure

reliable deployment.

This chapter is divided into two sections. The first section, 2.2.1 RL: Principles and Formulation, details

the mathematical foundations of RL, including Markov Decision Processes (MDPs), value functions, policy

optimization, and model-based versus model-free approaches. The second section, 2.2.2 RL in Aerospace,

explores the use of RL in aerospace applications, summarizing existing research and identifying gaps that

motivate further innovation.

2.2.1. RL: Principles and Formulation
Fundamentals of Reinforcement Learning

RL is a framework for sequential decision-making, where an agent interacts with an environment to

maximize cumulative rewards over time. Unlike traditional control methods that rely on explicit system

models, RL enables learning from experience, making it particularly useful in complex and uncertain

environments.

The core idea of RL is to allow an agent to associate rewards with actions that contribute to achieving a

goal. The agent is not explicitly told what the goal is but instead learns by executing actions, observing state

transitions, and receiving feedback in the form of rewards. This learning mechanism resembles natural

trial-and-error learning, similar to how a child learns to walk or an animal learns conditioned behavior. RL

has been successfully applied to high-dimensional tasks, such as playing board games at a superhuman

level and controlling robotic arms to mimic human dexterity [43, 44].

A typical reinforcement learning (RL) system consists of:

• Agent: The decision-making entity.

• Environment: The system in which the agent operates.

• State (st): The representation of the environment at time t, where st ∈ S.
• Action (at): A choice made by the agent at time t, where at ∈ A, that affects the environment.

• Reward (rt): A scalar signal received at time t, indicating how beneficial the previous action was.

• Policy (π): A strategy that maps states to actions, i.e., π : S → A.

The interaction between the agent and the environment in reinforcement learning is typically modeled as a

Markov Decision Process (MDP). In this framework, the agent observes the current state st, selects an
action at according to its policy, and receives a reward rt from the environment. The environment then

transitions to a new state st+1, which the agent uses to refine its decision-making strategy. This ongoing

cycle is visually represented in Figure 2.3, which illustrates the flow of information between the agent and

the environment [45].

2.2. Reinforcement Learning 14

Figure 2.3: Agent-Environment Interaction in Reinforcement Learning. The agent selects an action at
based on the current state st, receives a reward rt, and transitions to a new state st+1. This interaction

follows the MDP framework. Adapted from [45]

This process can be captured mathematically as a Markov Decision Process (MDP), which is defined by

the tuple (S,A, P, r, γ):

• S is the set of possible states.

• A is the set of possible actions.

• P (s′ | s, a) is the transition probability function, which defines the likelihood of moving from state s to
state s′ after taking action a.

• r(s, a) is the reward function, providing scalar feedback for each state-action pair.

• γ is the discount factor (0 ≤ γ ≤ 1) that determines the importance of future rewards.

One of the key properties of MDPs is the Markov property, which states that the future state st+1 depends

only on the current state st and action at, and not on any past states or actions. This memoryless

property simplifies the decision process and allows RL algorithms to make predictions and optimize policies

efficiently [45]:

P (st+1, rt | st, at) = P (st+1, rt | s1, s2, . . . , st, a1, a2, . . . , at). (2.16)

The sequence of interactions between the agent and the environment is recorded as a trajectory τ , which
consists of a chain of state-action-reward-next state tuples over time [45]:

τ = (s0, a0, r1, s1, a1, r2, . . . , sT , aT , rT). (2.17)

A transition in reinforcement learning can be either deterministic or stochastic. In a deterministic process,

the next state is uniquely determined by the current state and action [45]:

st+1 = f(st, at). (2.18)

In contrast, in a stochastic process, the next state is sampled from a probability distribution:

st+1 ∼ p(st+1 | st, at). (2.19)

A sequence of transitions forms a trajectory or episode, which represents a complete interaction from an

initial to a terminal state, such as an entire game session.

A fundamental aspect of reinforcement learning is the reward signal, which serves as the primary measure

of an agent’s performance. The reward is designed to incentivize behavior that leads to desirable outcomes.

The cumulative sum of rewards over time is known as the return Gt [12]:

Gt = G(st:T−1,at:T−1) = r(st, at) + γr(st+1, at+1) + γ2r(st+2, at+2) + · · ·+ γT−t−1r(sT−1, aT−1). (2.20)

The discount factor γ ∈ [0, 1] determines how much future rewards contribute to the return. A higher

γ makes the agent more ”far-sighted,” prioritizing long-term rewards, while a lower γ makes the agent

”myopic,” focusing on immediate gains.

2.2. Reinforcement Learning 15

The agent’s decision-making process in reinforcement learning is governed by a policy π(a | s), which
defines the probability of selecting action a given state s [12]:

π(a | s) = P (at = a | st = s) (2.21)

In this formulation, we use lowercase notation at and st to refer to both random variables and their

realizations when the distinction is clear from context, as is common in reinforcement learning literature.

Policies can be either deterministic, where a specific action is always chosen for a given state, or

stochastic, where actions are selected based on probability distributions. The primary objective of

reinforcement learning is to optimize the policy π such that it maximizes the expected return over time.

The Bellman Equation and Value Functions

Value functions are central to reinforcement learning, as they quantify the expected cumulative rewards

an agent can obtain from a given state or state-action pair. These functions serve as the foundation for

optimizing policies and predicting future rewards.

The state-value function Vπ(s) represents the expected return when starting from a state s and following

a policy π [45]:

Vπ(s) = Eπ [Gt | st = s] = Eπ

[∞∑
k=0

γkrt+k+1 | st = s

]
. (2.22)

The action-value function Qπ(s, a) extends this definition by considering the expected return when taking

a specific action a in state s, and then following the policy π thereafter [45]:

Qπ(s, a) = Eπ [Gt | st = s, at = a] = Eπ

[∞∑
k=0

γkrt+k+1 | st = s, at = a

]
. (2.23)

These functions are critical for evaluating the long-term desirability of different states and actions, guiding

decision-making in RL algorithms.

A fundamental property of value functions in reinforcement learning is that they satisfy recursive relation-

ships, known as the Bellman equations. These equations express that the value of a state or state-action

pair can be decomposed into immediate rewards and the discounted value of successor states.

For a given policy π, the Bellman equation for the state-value function Vπ(s) is derived as follows [12]:

Vπ(s) = Eπ [Gt | st = s] (2.24)

= Eπ

[∞∑
k=0

γkrt+k+1 | st = s

]
(2.25)

= Eπ

[
rt+1 + γ

∞∑
k=0

γkrt+k+2 | st = s

]
(2.26)

= Eπ [rt+1 + γVπ(st+1) | st = s] (2.27)

=
∑
s′,r

p(s′, r | s, π(s)) [r + γVπ(s
′)] (2.28)

This recursive relationship states that the value of a state is equal to the immediate reward plus the

discounted expected value of the next state.

Similarly, the Bellman equation for the action-value function Qπ(s, a) is [12]:

Qπ(s, a) = Eπ [rt+1 + γQπ(st+1, at+1) | st = s, at = a] . (2.29)

These equations form the backbone of many reinforcement learning algorithms, enabling iterative value

updates.

2.2. Reinforcement Learning 16

The goal of reinforcement learning is to find an optimal policy π∗ that maximizes expected returns. The

corresponding optimal value functions satisfy the Bellman optimality equations [45]:

V ∗(s) = max
a∈A

{E [rt+1 + γV ∗(st+1) | st = s, at = a]} (2.30)

Q∗(s, a) = E
[
rt+1 + γmax

a′∈A
Q∗(st+1, a

′) | st = s, at = a

]
(2.31)

These equations form the basis of control algorithms including Q-learning, which iteratively refines estimates

to approximate the optimal policy.

In practical RL algorithms, the Bellman equation is used to iteratively update value function estimates. A

commonly used update rule is given by [45]:

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)] , (2.32)

where α is the learning rate that controls the step size of updates. This formulation is widely used in

temporal difference (TD) learning and serves as the foundation for many RL methods. The Bellman

equation serves as a fundamental building block for RL algorithms, enabling agents to evaluate actions,

optimize policies, and make long-term decisions.

The Bellman equation is central to optimizing policies in reinforcement learning. By recursively estimating

values, RL agents can evaluate state or action quality by estimating expected future rewards, refine policies

iteratively through value-based methods, and improve decision-making by leveraging recursive updates.

Many RL algorithms, including Dynamic Programming (DP), Monte Carlo (MC), and Temporal Difference

(TD) methods, use these recursive formulations to update policies and enhance learning efficiency. The

Bellman equation remains a key component in reinforcement learning research, enabling effective policy

evaluation and control.

Dynamic Programming

Dynamic Programming (DP) is a class of algorithms used to solve MDPs when the full model of the

environment is known. DP methods leverage the Bellman equation to iteratively compute value functions

and improve policies in a structured manner. These methods provide exact solutions to MDPs under certain

assumptions, but their applicability is limited due to computational constraints in large-scale problems.

DP approaches solve MDPs by systematically computing value functions and improving policies based on

recursive updates. Given a known transition model P (s′ | s, a) and reward function r(s, a), DP algorithms

iteratively update the value function until convergence. The fundamental idea behind DP is to decompose

the problem into smaller subproblems, solving them optimally in a bottom-up manner. The two main

DP-based approaches for solving MDPs are Value Iteration and Policy Iteration.

Value Iteration is an approach that directly computes the optimal value function by iteratively applying the

Bellman optimality equation [45]:

V ∗(s) = max
a∈A

∑
s′

P (s′ | s, a) [r(s, a) + γV ∗(s′)] . (2.33)

The algorithm initializes V (s) arbitrarily and updates it iteratively until convergence. Once V ∗(s) stabilizes,
an optimal policy can be extracted by selecting actions that maximize expected returns:

π∗(s) = argmax
a∈A

∑
s′

P (s′ | s, a) [r(s, a) + γV ∗(s′)] . (2.34)

Value Iteration is computationally efficient for small MDPs but becomes intractable as the state space

grows due to the need to update every state in each iteration.

Policy Iteration is a dynamic programming method that alternates between two key steps [45]:

1. Policy Evaluation: Compute the value function Vπ(s) for the current policy π:

Vπ(s) =
∑
a

π(a | s)
∑
s′

P (s′ | s, a) [r(s, a) + γVπ(s
′)] . (2.35)

2.2. Reinforcement Learning 17

2. Policy Improvement: Update the policy by selecting actions that maximize expected returns:

π′(s) = argmax
a∈A

∑
s′

P (s′ | s, a) [r(s, a) + γVπ(s
′)] . (2.36)

These steps are repeated until the policy stabilizes, ensuring convergence to an optimal policy π∗. Policy

Iteration is often more sample-efficient than Value Iteration, as it typically requires fewer iterations to

converge.

While DP methods provide exact solutions, they suffer from several practical limitations. First, they are

affected by the Curse of Dimensionality, where the number of possible states grows exponentially in

high-dimensional problems, making DP computationally infeasible. Additionally, DP methods rely on a

fully known transition model P (s′ | s, a), which is often unavailable in real-world applications, creating a

significant barrier to practical use. Finally, the memory and computation costs associated with storing and

updating value functions for all states and actions become prohibitive for large-scale problems.

Due to these limitations, DP is rarely used for real-world reinforcement learning tasks. Instead, approximate

and model-free methods, such as MC and TD learning, are preferred. While Dynamic Programming

provides exact solutions, it requires full environment knowledge and becomes impractical in large state

spaces. Model-Free RL overcomes this by learning optimal policies directly from experience, making it

more scalable and adaptable to complex environments.

Model-Free RL vs. Model-Based RL

Reinforcement learning methods can be broadly categorized into model-free and model-based approaches,

depending on whether they rely on an explicit model of the environment. This distinction plays a crucial

role in determining the efficiency, stability, and applicability of RL algorithms.

Model-Based Reinforcement Learning (MBRL) explicitly constructs a predictive model of the environment

dynamics, allowing the agent to simulate interactions before executing real actions. Given a learned

transition model P (s′ | s, a) and reward function r(s, a), the agent can plan optimal actions using various

methods, including Dynamic Programming (DP), which utilizes full knowledge of the environment to

iteratively solve for optimal policies, MPC, which optimizes actions over a finite horizon using the learned

model, andMonte Carlo Tree Search (MCTS), which simulates future trajectories to guide decision-making

in discrete action spaces [46]. MBRL is generally more sample-efficient than model-free methods, as it can

leverage simulations instead of relying purely on real interactions. However, the accuracy of the learned

model is critical, model errors can lead to poor decision-making and instability.

Model-Free Reinforcement Learning does not require an explicit model of the environment. Instead,

it learns optimal policies directly from interactions by estimating value functions or optimizing policies.

Common model-free approaches include Q-Learning, which learns the optimal action-value function

Q∗(s, a) through trial and error, Deep Q-Networks (DQN), which use neural networks to approximate

Q∗(s, a) in high-dimensional spaces, and Policy Optimization Methods, which directly optimize policies

using algorithms notably Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) [46]. While

model-free methods are typically more flexible and robust to model inaccuracies, they often require a large

number of interactions to learn optimal behavior, making them less sample-efficient than model-based

approaches.

Two key model-free learning paradigms in reinforcement learning are Monte Carlo (MC) Methods and

Temporal Difference (TD) Learning.

MC methods estimate value functions by averaging observed returns from complete trajectories [45]:

V (s) ≈ 1

N

N∑
i=1

Gi(s) (2.37)

where Gi(s) is the total return obtained from an episode starting at state s. MC methods do not require a

model but can only update value estimates at the end of an episode, making them inefficient in continuous

learning environments.

2.2. Reinforcement Learning 18

In contrast, TD Learning updates value estimates incrementally after each step using the Bellman equation

[45]:

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)] . (2.38)

TD methods leverage bootstrapping, allowing them to update values without waiting for entire episodes to

finish, making them more suitable for ongoing learning and large-scale applications.

Comparison of Monte Carlo and TD Learning

• Monte Carlo methods provide unbiased estimates but suffer from high variance.

• Temporal Difference methods introduce bias but have lower variance and enable more frequent

updates.

• TD methods are generally preferred for online learning, while MC methods are more useful in episodic

settings.

Trade-offs Between Model-Free and Model-Based RL

• Model-Based RL is more sample-efficient but sensitive to model inaccuracies.

• Model-Free RL is more robust but requires extensive interactions with the environment.

• The choice between the two depends on computational constraints, data availability, and application

requirements.

Hybrid approaches that combine model-based and model-free techniques are an active area of research,

aiming to balance sample efficiency and robustness.

Policy-Based RL and Policy Optimization

Reinforcement learning methods can be broadly categorized into value-based and policy-based approaches.

While value-based methods, such as Q-learning and Deep Q-Networks (DQN), estimate value functions to

derive optimal policies, policy-based methods directly optimize policies without requiring value function

approximation.

Policy-based reinforcement learning is centered around policy gradient methods, which aim to optimize

a parameterized policy πθ(a | s) by directly maximizing expected returns. Unlike value-based methods,

policy gradient approaches do not rely on value functions to determine optimal actions, but instead learn

a direct mapping from states to actions through optimization techniques. The policy gradient theorem

defines how the policy parameters θ are updated using the gradient of expected rewards [45]:

∇θJ(θ) = Eπ [∇θ(log πθ(a|s))Qπ(s, a)] . (2.39)

This approach forms the basis of several widely used algorithms, including [47]:

• REINFORCE: A Monte Carlo policy gradient method that updates policies based on complete

episodes.

• Proximal Policy Optimization (PPO): A method that constrains policy updates to improve stability

and sample efficiency.

• Trust Region Policy Optimization (TRPO): A policy optimization method that enforces a trust-region

constraint to prevent excessively large updates.

• Soft Actor-Critic (SAC): A method that incorporates entropy regularization to improve exploration

and robustness.

Policy-based methods offer several advantages over value-based methods [48]:

• Continuous Action Spaces: Policy gradient methods are well-suited for problems with continuous

actions, whereas value-based methods struggle in such settings.

• Stochastic Policies: Policy-based approaches can naturally model stochastic policies, which are

beneficial in multi-agent and uncertain environments.

• High-Dimensional Tasks: Value-based approaches suffer from overestimation bias and instabil-

ity in complex, high-dimensional problems, making policy-based methods preferable in deep RL

applications.

2.2. Reinforcement Learning 19

However, policy-based methods also have drawbacks:

• Sample Inefficiency: Policy gradient methods require large amounts of data to converge, making

them less sample-efficient than value-based approaches.

• High Variance: The estimation of policy gradients introduces variance, requiring variance reduction

techniques such as baseline functions or entropy regularization.

In many real-world applications, RL is combined with traditional control strategies to improve stability and

performance. Residual learning is an approach where RL refines an existing control policy, such as MPC,

PID, or LQR, rather than learning from scratch. This method allows RL to handle dynamic and uncertain

environments while leveraging established control methodologies.

Hybrid RL-model-based control techniques are also an area of active research, combining model-

based planning with policy-based learning to improve sample efficiency and robustness. These hybrid

approaches aim to strike a balance between the data efficiency of model-based methods and the flexibility

of policy-based learning, making them particularly suited for high-stakes applications such as robotics and

autonomous systems.

Policy-based RL remains a key area of study, enabling RL agents to directly optimize policies in complex

environments. The next section will explore further advancements, including model-based approaches

and the integration of RL with control systems.

2.2.2. Reinforcement Learning in Aerospace
RL has emerged as a powerful tool for aerospace applications, offering adaptive and data-driven control

solutions in environments where traditional model-based approaches face limitations. Unlike conventional

controllers that rely on explicit system models, RL learns control policies through interaction with the

environment, making it particularly suited for handling nonlinearities, uncertainties, and high-dimensional

state spaces.

The adaptability of RL has led to its exploration in several key aerospace domains. In autonomous

flight control, RL has been investigated for aircraft stabilization, adaptive maneuvering, and fault-tolerant

control, allowing aircraft to respond dynamically to changing conditions. In guidance and navigation,

RL-based controllers optimize flight trajectories, improve obstacle avoidance, and enhance decision-

making for UAVs and autonomous aircraft. Additionally, RL has been applied to structural load alleviation,

where it learns control strategies to mitigate gust-induced and maneuver-induced structural stresses

in aeroelastic aircraft. Another emerging application is model mismatch approximation, where RL is

leveraged to compensate for discrepancies between theoretical models and real-world behavior, improving

the robustness of model-based controllers. While RL presents significant potential, its application in

aerospace comes with challenges, including sample inefficiency, safety concerns, and computational

feasibility. The following sections delve into these RL applications, highlighting key developments and

challenges in each area.

Autonomous Flight Control

Reinforcement Learning has been increasingly explored in aerospace for adaptive flight control, especially

where traditional model-based controllers struggle with nonlinearity, uncertainties, and unmodeled distur-

bances. Unlike conventional controllers that require predefined models and tuning for specific operating

conditions, RL-based controllers have demonstrated the ability to learn optimal control strategies dynami-

cally. Several studies have investigated the use of RL for aircraft stabilization, adaptive maneuvering, and

fault-tolerant control, offering promising results in handling unpredictable flight conditions. Among these,

model-free RL controllers have been applied to aircraft attitude stabilization [18, 49], deep reinforcement

learning (DRL) techniques have been utilized for trajectory tracking and maneuvering [50, 19], and hybrid

RL-based methods have been explored for fault-tolerant control in failure scenarios [51, 52].

The studies on RL-based aircraft stabilization primarily focus on developing controllers that can regulate

attitude in real-time without relying on explicit system models. In [18], an actor-critic neural network

framework is used to approximate the optimal control policy for an aircraft attitude system. The controller

works online without requiring any knowledge of the dynamics of the system. The controller adapts to

varying flight conditions, making it effective for stabilization tasks where traditional methods might require

precise system identification. Similarly, [49] introduces a Q-learning approach enhanced with fuzzy logic

2.2. Reinforcement Learning 20

to improve discrete action selection, ensuring smoother attitude control. Both approaches demonstrate

how RL can be used to replace or complement classical flight controllers in environments where accurate

system models are unavailable or where dynamic adaptation is required.

In the domain of adaptive maneuvering, RL has been explored to enable aircraft to learn optimal control

policies for trajectory tracking and aggressive maneuvers. [50] presents an adaptive attitude and altitude

controller that uses an RL-based algorithm to estimate controller parameters during deployment, enhancing

stability and accuracy in nonlinear systems. The approach outperforms conventional PID controllers in

trajectory tracking and altitude control, demonstrating improved adaptability under dynamic conditions.

[19] develops an Incremental Approximate Dynamic Programming (iADP) controller, which continuously

identifies a locally linearized model and optimizes control policies over an infinite horizon. Unlike offline-

synthesized control laws, iADP adapts in online to changing aircraft conditions, making it effective for

failure recovery. The study details controller integration and validation, culminating in real-world flight tests

on a CS-25 class aircraft, marking the first demonstration of an online RL-based automatic flight control

system for this category.

Fault-tolerant control has also been a major area of research, leveraging RL to handle actuator failures

and system uncertainties. [51] employs Soft Actor-Critic (SAC) reinforcement learning to develop a

controller capable of stabilizing an aircraft under actuator degradation and other failure scenarios. The

study highlights the advantages of RL in discovering control strategies that traditional methods might not

be able to predefine. Another approach is presented in [52], where a neural-network-based observer is

integrated with RL to estimate system states and compensate for unknown faults. This hybrid strategy

allows for real-time adjustments to unexpected changes in actuator effectiveness, making it highly relevant

for fault-tolerant aerospace applications.

Despite these advancements, several limitations remain, making these controllers unsuitable for direct

implementation in my work. Many of these studies assume that RL controllers will have access to sufficient

training data and the ability to conduct extensive offline learning, which is not always feasible for real-world

aerospace applications. [51] highlights the extensive offline training required for the Soft Actor-Critic

(SAC) controller, stating that achieving a reliable policy necessitated training on normal plant dynamics

for over 106 time steps before deployment. Safe exploration is another challenge, as many RL methods

rely on trial-and-error learning, which is impractical in flight applications. [19] suggests that deterministic

policy-based methods such as Incremental Approximate Dynamic Programming (iADP) improve training

stability but at the cost of reducing adaptability to unforeseen conditions. While RL-based controllers have

been tested in simulations and, in some cases, real-world trials, they often assume structured environments

with predefined disturbances, reducing their robustness to unexpected failures. [49] presents an RL-based

stabilization controller that utilizes Q-learning but highlights challenges in non-linearity and stability, requiring

careful reward function design and hyperparameter tuning to ensure convergence, suggesting potential

limitations when applied to highly dynamic and uncertain flight conditions. Model-free approaches, while

adaptive, suffer from sample inefficiency and long training times. In [50], a reinforcement learning-based

controller is used to actively estimate and tune control parameters, yet the study emphasizes the difficulty of

obtaining a well-trained policy without extensive iterative tuning. Many RL implementations focus on specific,

predefined failure cases, limiting their generalizability across different flight conditions. [52] evaluates an

RL-based fault-tolerant controller that integrates a neural network-based observer to estimate system

disturbances online. While this enables adaptation, the method inherently relies on accurate estimation of

system parameters, suggesting that performance may depend on how well the controller has learned from

previous conditions. While RL has been successfully applied to aerospace control, existing approaches

remain highly specialized and task-specific, lacking a generalizable solution for diverse conditions and

disturbances. Dependence on structured environments, predefined failure cases, and extensive tuning

limits adaptability to unforeseen scenarios. Trade-offs between safety, sample efficiency, and robustness

further highlight the need for careful design and controlled application of RL-based controllers in aerospace.

Guidance and Navigation

Aircraft navigation and trajectory planning require controllers that can efficiently adapt to changing conditions,

optimizing factors such as fuel efficiency, airspace constraints, and obstacle avoidance. Here, RL offers a

data-driven approach that allows controllers to learn adaptive policies through interaction with dynamic

environments, making it well-suited for handling uncertainties and optimizing complex decision-making

processes. RL has been applied to waypoint tracking, collision avoidance, and landing optimization. [53, 54]

2.2. Reinforcement Learning 21

explore RL-based waypoint navigation, demonstrating robust trajectory tracking and maneuver execution.

For collision avoidance, [55] develops a multi-agent RL framework for UAV coordination in congested

airspace. [56] integrates RL with PID control to enhance UAV landing stability under environmental

disturbances. While these studies highlight RL’s potential, challenges remain in generalization and real-

time feasibility.

Waypoint navigation has been a key focus area where RL enables aircraft to determine efficient flight

paths dynamically. In [53], a deep reinforcement learning controller was developed for a high-performance

aircraft using a deep deterministic policy gradient (DDPG) approach. The study highlighted the capability

of RL to handle high-dimensional control tasks such as rapid waypoint transitions and maneuvering in

complex scenarios. Additionally, [54] introduced a Twin Delayed Deep Deterministic (TD3) Policy Gradient

algorithm for quadrotor waypoint navigation, demonstrating successful waypoint tracking in both nominal

conditions and under disturbances. These studies underscore RL’s ability to adapt to different navigation

environments and optimize waypoint selection strategies dynamically.

For collision avoidance, RL-based multi-agent decision-making has been investigated to prevent mid-

air conflicts between multiple aircraft. [55] presents a deep multi-agent reinforcement learning (MARL)

framework that applies an actor-critic model to train UAVs for cooperative collision avoidance. The

study formulates the problem as a multi-agent Markov game, where agents interact and learn real-time

policies to avoid collisions while maintaining efficient route planning. The use of long short-term memory

(LSTM) networks within the guidance decision-making neural network enhances scalability and adaptability,

allowing UAVs to navigate congested airspace more safely.

Landing and approach optimization have also been explored using RL to enhance landing precision under

challenging conditions. [56] integrates RL with a conventional PID-based guidance system to improve UAV

landing stability, demonstrating how RL can be used to enhance existing controllers rather than replace

them. The study leverages deep Q-networks (DQN) for adaptive PID tuning, allowing real-time adjustment

of landing parameters based on feedback. By optimizing control gains through reinforcement learning,

the approach improves the UAV’s ability to handle environmental disturbances such as wind shear and

crosswinds.

Despite these advancements, challenges remain in generalizing RL-based navigation policies across differ-

ent operating conditions. Many studies assume structured training environments where disturbances are

predictable and sensor feedback is noise-free. For example, [54] highlights that while its trained controller

successfully navigates waypoints, its generalization is limited when faced with significant disturbances

not encountered during training. Similarly, [55] formulates RL-based collision avoidance as a multi-agent

guidance problem trained in a structured simulation environment. While the approach effectively reduces

conflicts in controlled settings, further optimization is needed for real-time implementation, particularly in

handling unexpected agent behaviors and rapidly changing airspace conditions. Furthermore, [56] de-

scribes extensive training processes, including thousands of training episodes and careful hyperparameter

tuning to ensure controller stability. While the study demonstrates RL’s ability to optimize UAV landing

performance, the reliance on computationally intensive training and parameter adjustments suggests

challenges in achieving real-time implementation in dynamic, safety-critical environments. While RL has

demonstrated its ability to improve aircraft navigation through waypoint tracking, collision avoidance, and

landing optimization, its application remains constrained by computational demands and limited gen-

eralization across varying conditions. Many approaches rely on extensive offline training in structured

environments, making them less adaptable to real-time changes and unforeseen disturbances. As a result,

RL-based navigation controllers require careful tuning and cannot be deployed for online adaptation without

prior training on a sufficiently diverse range of scenarios.

Load Alleviation

Aircraft are subjected to significant structural loads due to atmospheric disturbances and maneuvering

forces, which impact both safety and operational efficiency. RL has been explored as a data-driven

approach to mitigate these effects by enabling real-time adaptation to changing aerodynamic conditions.

Recent studies have focused on RL-based strategies for GLA [13, 57], MLA [58, 59], and active aeroelastic

control for vibration suppression [60]. These approaches highlight RL’s ability to optimize control responses

dynamically, reducing reliance on predefined load alleviation strategies.

Gust Load Alleviation (GLA) has been a key application where RL is used to counteract wind gusts by

2.2. Reinforcement Learning 22

adjusting control surfaces dynamically. [13] investigates a learning-based approach using a Soft Actor-

Critic (SAC) algorithm to train an adaptive control strategy for micro aerial vehicles (MAVs) operating under

wind disturbances. The study compares RL-based control with traditional model-based adaptive control

and demonstrates that RL can achieve superior disturbance rejection without requiring explicit system

modeling. Similarly, [57] develops an RL-based gust alleviation framework for camber-morphing wings,

significantly reducing gust impact by autonomously adjusting wing shape in real time. Notably, the study

finds that RL-enabled controllers require fewer onboard sensors while maintaining effective performance,

reducing computational and sensing overhead.

In the domain of maneuver load alleviation (MLA), RL has been employed to optimize aerodynamic

load distribution during high-G maneuvers. [58] applies deep reinforcement learning to an airfoil control

system, optimizing control surface deflections to reduce aerodynamic loads under aggressive maneuvers.

The study demonstrates that RL-based MLA can improve structural longevity by dynamically distributing

forces across the airframe. Meanwhile, [59] explores RL-derived high-alpha aerobatic maneuvers, where

reinforcement learning is used to refine control strategies for maintaining stability in confined spaces.

These studies highlight RL’s capability to enhance maneuverability while minimizing structural stress.

Active aeroelastic control has also been studied using RL for vibration suppression in aeroelastic-wing

aircraft. [60] develops an RL-based strategy for active flutter suppression using trailing-edge circulation

control, reducing oscillation amplitudes by 92%. The study emphasizes the benefits of model-free learning

in handling nonlinear aeroelastic interactions, which are difficult to capture using conventional modeling

approaches. By iteratively optimizing control actions in a wind tunnel environment, the RL-based controller

learns to adjust jet intensity dynamically, minimizing flutter-induced vibrations.

Despite these advancements, RL-based load alleviation faces several challenges, particularly in real-time

applicability and generalization across different flight conditions. Just as in autonomous flight control

and guidance and navigation, similar challenges persist, including the reliance on structured training

environments, computational efficiency concerns, and the need for stability guarantees. Many RL-based

load alleviation studies train controllers in structured environments where disturbances are modeled within

predefined parameters. [13] demonstrates an RL-based gust load alleviation strategy trained in a controlled

simulation environment, while [57] applies RL to camber-morphing wings, focusing on predefined gust

rejection scenarios. While these approaches show promise, their adaptability to unmodeled perturbations

remains an open challenge. Additionally, computational efficiency remains a concern, as RL controllers

often involve complex training processes and hyperparameter tuning before deployment. [60] applies deep

reinforcement learning to active vibration control, highlighting the need for extensive parameter adjustments

to achieve stability and performance. Another limitation is the need for stability guarantees, as RL policies

may require additional constraints to prevent excessive control actions. [58] applies reinforcement learning

to maneuver load alleviation but restricts actuation to discrete control values, highlighting the need for

predefined constraints to ensure safe operation.

These factors indicate that while RL-based load alleviation has demonstrated potential in mitigating

structural loads and improving aircraft performance, its real-world deployment remains challenging. Issues

such as computational complexity, stability concerns, and limited adaptability to unmodeled disturbances

must be addressed before RL can be reliably integrated into operational aerospace systems. Future

research should focus on improving real-time learning efficiency, incorporating safety constraints, and

enhancing generalization across diverse flight conditions to ensure robust and practical implementation.

Model Mismatch Approximation and System Identification

The accuracy of aerospace control systems is often limited by discrepancies between theoretical models

and real-world aircraft behavior due to factors such as environmental variability, structural deformations,

and unmodeled dynamics. RL has been explored as a tool for improving model fidelity by learning system

dynamics, enhancing state estimation, and compensating for inaccuracies in control frameworks. Several

studies have investigated RL’s role in system identification and adaptive estimation, demonstrating its

ability to refine predictive models in dynamic aerospace environments [61, 62, 63].

System identification has been a longstanding challenge in aerospace applications, where accurate models

are essential for robust control. [61] presents an RL-based approach to system identification, where

forward models are learned through reinforcement signals rather than supervised learning, allowing the

system to adapt to nonlinear and time-varying dynamics. Unlike conventional supervised methods that

2.2. Reinforcement Learning 23

suffer from error accumulation over long prediction horizons, RL-based techniques can iteratively refine

the model by minimizing long-term prediction errors. Additionally, [63] introduces a parameter-informed

RL method that improves aircraft system identification by leveraging both prior knowledge and real-time

sensor data, ensuring enhanced adaptability to varying flight conditions.

State estimation is another critical aspect where RL has been applied to improve accuracy in high-

dimensional nonlinear systems. [62] proposes a reinforcement learning-based reduced-order estimator

(RL-ROE), which incorporates a stochastic policy to correct errors in reduced-order models (ROMs). The

study highlights RL’s ability to compensate for inaccuracies in traditional model reduction techniques by

dynamically adjusting the estimator based on real-time sensor measurements. By integrating RL into state

estimation, the method demonstrates robustness in handling complex dynamical systems, outperforming

conventional Kalman filtering approaches in specific scenarios.

Despite these advancements, RL-based model approximation and state estimation face several chal-

lenges, particularly in real-time implementation and stability. Many studies assume structured training

environments with predefined dynamical models, limiting their generalizability to unmodeled perturbations

[61]. Additionally, computational efficiency remains a concern, as RL-based estimation methods often

require extensive training to achieve reliable performance [62]. The lack of formal stability guarantees

further complicates deployment in safety-critical aerospace applications, as RL-generated policies may

introduce unforeseen control actions [63]. While RL has demonstrated promise in improving system

identification and model mismatch compensation, further research is needed to ensure its robustness in

real-world aerospace operations. Future efforts should focus on hybrid approaches that integrate RL with

physics-based models, safe RL frameworks to enforce stability constraints, and efficient training techniques

to reduce computational costs for real-time applications.

2.2.3. Conclusion
RL has been explored across various aerospace applications, demonstrating its potential to improve

flight control, navigation, load alleviation, and system identification. In flight control, RL-based controllers

have shown adaptability in handling nonlinearities, enhancing maneuvering capabilities, and providing

fault tolerance in aircraft stabilization [18, 49, 50, 19, 51, 52]. RL has also been applied to guidance and

navigation tasks such as waypoint tracking, collision avoidance, and landing optimization, where it enables

improved decision-making under uncertain conditions [53, 54, 55, 56]. In load alleviation, RL-driven

strategies have been employed for gust load alleviation (GLA), maneuver load alleviation (MLA), and active

vibration suppression, demonstrating effectiveness in dynamically reducing structural stresses [13, 57,

58, 59, 60]. Furthermore, RL has been leveraged in system identification to refine predictive models and

improve state estimation accuracy [61, 62, 63].

Despite the increase in popularity, RL-based methods continue to face significant challenges across all

domains. One major limitation is the reliance on structured training environments that assume well-defined

disturbances and ideal sensor feedback, limiting the ability of RL-based controllers to generalize to real-

world uncertainties [49, 19, 13, 54, 55]. Many RL implementations assume access to large amounts of

training data and the ability to conduct extensive offline learning, which is often infeasible in aerospace

applications where real-world testing is costly and constrained [51, 57]. This results in significant sample

inefficiency, as RL-based controllers typically require millions of training steps to develop reliable policies

[50, 60]. Safe exploration remains another critical concern, as RLmethods traditionally rely on trial-and-error

learning, which is impractical in safety-critical aerospace environments [19].

Computational constraints present another major limitation, particularly during the training phase. Many

RL algorithms require high-performance computing resources and extensive simulation time to converge,

which poses a significant challenge in aerospace applications where access to large-scale data is limited

and testing certain failure modes on real systems is often infeasible [52, 61]. However, once training is

completed, the resulting RL policies are typically lightweight and can be executed efficiently in real-time

on embedded aerospace systems. Additionally, stability and safety guarantees remain a major concern.

RL-based controllers lack formal stability assurances, making them difficult to certify for safety-critical

applications [63]. Convergence guarantees are also generally absent, with a risk of the policy settling

into suboptimal or unstable behavior. The opaque nature of many RL architectures, particularly deep

neural networks, further limits explainability, making it difficult to verify, interpret, or trust the policy’s

decision-making process. The risk of unforeseen control actions during operation further complicates their

2.2. Reinforcement Learning 24

adoption, as RL policies may generate unpredictable responses when faced with unmodeled disturbances

[58]. Some studies have integrated neural network-based observers to estimate system disturbances, but

these approaches often rely on highly accurate prior data, which reduces their adaptability to dynamic

flight conditions [52].

While these limitations are substantial, they do not preclude the future use of RL in aerospace. Instead,

they highlight the need for refined methodologies that address these challenges. One promising direction

is the integration of RL with traditional model-based controllers, such as MPC or adaptive robust control, to

leverage the strengths of both approaches. These hybrid frameworks can provide stability guarantees

while allowing RL to adapt to complex and uncertain conditions. Further research should also focus

on safe RL techniques that enforce stability constraints and prevent unpredictable control actions [51,

60]. Additionally, improving sim-to-real transfer methods will help RL-trained policies generalize better

to real-world conditions, reducing their reliance on structured training environments [54, 13]. Finally,

optimizing RL architectures for sample efficiency and computational feasibility will be essential to ensure

practical real-time implementation in aerospace systems.

While RL has shown great promise in aerospace applications, the literature highlights several fundamental

limitations that must be addressed before it can be widely deployed in operational systems. Future work

should prioritize hybrid approaches, safe RL methodologies, and computational optimizations to enhance

RL’s reliability and robustness for aerospace control and decision-making systems.

2.3. Combining MPC and RL 25

2.3. Combining MPC and RL
RL and MPC represent two distinct yet complementary approaches to control design. RL provides a

data-driven mechanism for learning optimal policies through interaction with an environment, while MPC

relies on explicit optimization to generate control inputs that satisfy system constraints and performance

objectives. The integration of RL and MPC has gained significant attention as it enables the combination

of learning-based adaptability with model-based optimization, addressing many of the limitations inherent

in each individual approach [22, 64].

A primary motivation for combining RL with MPC is balancing exploration with constraint satisfaction. While

RL excels at discovering novel control strategies through trial-and-error learning, it often struggles with

enforcing safety and stability constraints, particularly in high-risk applications such as autonomous driving,

robotics, and power systems [65]. In contrast, MPC provides a structured decision-making framework that

guarantees constraint satisfaction at each time step but is limited by its reliance on an accurate system

model. By integrating RL and MPC, control systems can retain the feasibility guarantees of MPC while

benefiting from RL’s capacity for adaptation and learning [20].

The integration of RL and MPC can be structured in various ways depending on the control objective.

One widely explored approach is using MPC as a policy within RL, where MPC serves as a function

approximator for generating control actions, providing structured decision-making within an RL training loop

[66]. This formulation ensures that learned policies remain feasible while RL gradually refines cost function

weights, constraints, or prediction models. Another approach is RL tuning MPC parameters, where RL

operates as an outer-loop adaptation mechanism that dynamically adjusts MPC’s internal parameters,

such as weight matrices, prediction horizons, or system constraints, optimizing the trade-off between

control performance and computational cost [67].

In addition to these direct integrations, RL and MPC can also function in hierarchical or parallel structures.

In hierarchical frameworks, MPC supervises an RL controller, ensuring that RL-generated actions remain

safe by filtering out unsafe control inputs before execution [65]. Conversely, RL can refine MPC outputs,

modifying MPC-generated control decisions to account for unmodeled disturbances, improving adaptability

without compromising feasibility [68]. Parallel architectures allow RL and MPC to operate independently

while coordinating through shared objectives, where RL optimizes long-term decision-making while MPC

ensures short-term feasibility, as seen in microgrid energy management and multi-agent coordination

problems [69].

Despite the advantages of combining RL and MPC, several challenges remain. Computational complexity

is a significant concern, as RL learning processes require extensive exploration, and MPC involves

solving optimization problems at every control step [70]. Furthermore, stability and robustness must be

carefully managed, as RL-driven adaptations can introduce parameter fluctuations that destabilize an

MPC-controlled system if not properly regulated [71]. Additionally, ensuring data efficiency in RL remains

an open challenge, as many RL algorithms require large amounts of training data, which may be impractical

in real-world control applications [23].

This section explores variousmethods by which RL andMPC are integrated, includingMPC as a policy within

RL, RL-tuned MPC, hierarchical RL-MPC frameworks, and parallel RL-MPC architectures. By reviewing

existing approaches, challenges, and real-world applications, it provides insight into how combining RL

and MPC enables flexible, efficient, and safe control strategies across diverse domains [64, 22].

2.3.1. MPC as a Policy within RL
MPC has emerged as a powerful alternative to traditional policy representations in RL, providing a structured

optimization-based approach for decision-making. Unlike conventional RL policies, which often rely on

function approximators such as neural networks, MPC explicitly solves an optimization problem at each

time step, ensuring constraint satisfaction and stability in control applications [22]. This makes MPC

particularly attractive for safety-critical systems, robotics, and autonomous control, where model-based

decision-making can provide improved interpretability and reliability [65].

One of the main motivations for integrating MPC into RL is to leverage its ability to incorporate system

constraints directly into the decision-making process. Traditional RL policies often struggle with safety and

feasibility constraints, requiring additional mechanisms such as constrained optimization layers or safety

filters to ensure compliance. In contrast, MPC naturally enforces these constraints within its optimization

2.3. Combining MPC and RL 26

framework, making it a well-suited policy representation for applications requiring high reliability [20].

Furthermore, while standard RL policies rely on extensive trial-and-error learning, MPC incorporates a

model of system dynamics, allowing it to make informed predictions about future states and reducing the

amount of data required for effective learning [64].

Incorporating MPC within RL can take multiple forms, each offering unique advantages depending on the

application context. One approach is to use MPC as a policy approximation, where RL leverages MPC’s

optimization framework to generate control actions while learning to refine the underlying cost functions,

constraints, or prediction models over time [20]. In multi-agent reinforcement learning (MARL), MPC-based

policies can be extended to decentralized, cooperative, or competitive settings, where multiple agents

interact within a shared environment and optimize their respective objectives [66]. Furthermore, ensuring

safety and robustness in RL-MPC policies remains a key research challenge, with techniques such as

safe exploration strategies, Lyapunov stability constraints, and uncertainty-aware control being explored to

mitigate risks associated with RL-driven decision-making [65].

A fundamental characteristic of MPC in RL is its ability to optimize control actions based on a predictive

model of system dynamics, rather than relying purely on trial-and-error learning. By solving an optimization

problem at each step, MPC provides a structured way to determine actions that balance immediate rewards

with long-term performance. A general framework for MPC as a policy can be defined as:

πMPC(s) = argmin
u

Np−1∑
k=0

l(xk,uk) + V f(xNp) (2.40)

subject to the system dynamics:

xk+1 = f(xk,uk) (2.41)

and operational constraints:

(xk,uk) ∈ C, ∀k ∈ {0, . . . , Np − 1} (2.42)

where Vf(xNp
) represents a terminal cost function guiding long-term behavior, and C is the set of admissible

state-action pairs. Within an RL framework, the MPC policy can either remain fixed while RL optimizes high-

level tuning parameters, or be adapted iteratively as RL refines its decision-making based on interaction

data [22].

While MPC offers many advantages in RL, it also introduces computational challenges. Unlike standard RL

policies that execute pre-trained neural networks in constant time, MPC requires solving an optimization

problem at each step, which can be computationally expensive, particularly in high-dimensional systems

[20]. Additionally, the effectiveness of MPC depends on the accuracy of its predictive model—if the model

does not accurately capture real-world dynamics, the resulting policy may be suboptimal or even unsafe

[64]. Research efforts have explored techniques for adaptive model learning and exploration strategies

informed by value function uncertainty to address these limitations and improve the robustness of RL-MPC

frameworks [72].

To illustrate how MPC is used as a policy within RL, the following pseudo-code outlines a basic structure

where RL interacts with an MPC-based policy without modifying its core optimization structure dynamically:

Algorithm: MPC as a Function Approximator for RL Policies

Initialize MPC parameters θ (e.g., cost function weights, constraints)

for each episode do

Observe current state st

Compute action at ←MPC_policy(st, θ)

Execute action at, observe reward rt, and next state st+1

Store transition (st, at, rt, st+1) in replay buffer

end for

This framework highlights how RL leverages MPC as a structured control policy while gradually improving

decision-making through learning. The following sections will explore the various ways in which MPC is

integrated as a policy within RL, including its role as a function approximator, its application in multi-agent

settings, and strategies for ensuring safety and robustness in RL-MPC frameworks.

2.3. Combining MPC and RL 27

MPC as a Policy Approximation

MPC has gained attention as a structured policy approximation method within RL, providing an alternative

to black-box function approximators such as deep neural networks [22]. Unlike standard RL policies, which

learn a direct mapping from states to actions through function approximation, MPC explicitly solves an

optimization problem at each step, considering system constraints and dynamics [65]. This structured

decision-making process enables RL to integrate model-based control strategies while still adapting to

real-time data.

One of the key ways MPC is used as a policy approximation is by embedding the optimization problem

within the RL loop, where RL tunes the parameters of the MPC controller, such as cost function weights

and constraints, to enhance the closed-loop system performance [64]. The resulting MPC-based policy is

defined by the optimization problem in Equation (2.40), subject to the system dynamics in Equation (2.41)

and the operational constraints in Equation (2.42), where Vf(xNp
) serves as a terminal cost function to

guide long-term optimization.

This formulation ensures that RL improves MPC parameters over time, refining the policy based on real-

world interactions [20]. By structuring RL in this manner, MPC serves as an adaptive policy that evolves

through RL’s learning process while maintaining constraint satisfaction and stability [64].

The primary advantage of using MPC as a policy approximation is its structured nature, which enables

explicit handling of constraints and improved interpretability compared to function approximators [22].

Because MPC optimizes over a receding horizon, it considers both short-term and long-term objectives,

leading to higher sample efficiency compared to model-free RL approaches, which often require vast

amounts of training data [65]. Another crucial benefit is safety and stability, as MPC inherently satisfies

system constraints and prevents violations of operational limits [73]. Unlike neural network-based RL

policies, which require additional modifications such as constrained optimization layers, MPC directly

integrates constraints within its decision-making process [64]. However, a significant drawback of using

MPC as a policy approximation is computational complexity. Unlike traditional RL policies that execute a

trained model in constant time, MPC requires solving an optimization problem at each time step, which

can be computationally expensive [20]. This challenge is particularly relevant in high-dimensional systems

or applications that demand fast control rates [72]. Additionally, the accuracy of the predictive model used

within MPC is a critical factor. If the model poorly represents the real system dynamics, the performance

of the RL-MPC combination may be suboptimal [22].

Several studies have explored MPC as a policy approximation within RL. One study investigates how

RL can adjust the cost function weights of an MPC-based policy to improve adaptability and optimize

performance in dynamic environments [22]. Another study examines different ways in which MPC can be

integrated into RL frameworks, distinguishing between approaches that use MPC as a direct policy versus

those that use it as part of an adaptive control strategy [20]. Additional research has introduced techniques

to address MPC’s typically conservative decision-making tendencies by incorporating variance-based

exploration strategies [72]. Since traditional MPC formulations tend to prioritize feasibility and stability,

they often limit exploration in RL settings. By integrating mechanisms that allow for controlled exploration,

these approaches ensure that the RL agent can refine the MPC-based policy while still benefiting from its

structured optimization process. Other studies further explore how MPC-based policies can be leveraged to

improve generalization across tasks, particularly in cases where system constraints and physical limitations

play a crucial role in policy execution. These works demonstrate the versatility of MPC when used as a

policy within RL, offering a structured yet adaptable alternative to conventional policy representations that

can be fine-tuned to different control scenarios.

MPC as a policy approximation offers a structured and interpretable alternative to traditional RL policies

while significantly enhancing sample efficiency and stability [64]. However, computational cost and model

dependency remain key challenges [20]. Future research directions include reducing computational

overhead, improving adaptive model learning, and enhancing exploration strategies to ensure RL-MPC

frameworks can be widely deployed across various applications [22].

Multi-Agent RL with MPC as Policy

In multi-agent reinforcement learning (MARL), multiple agents interact within a shared environment, each

optimizing their respective objectives while often influencing one another. When MPC is used as the policy

for each agent, the system benefits from the structured decision-making of MPC while leveraging RL

2.3. Combining MPC and RL 28

to enhance coordination, adaptability, and learning efficiency [66]. Unlike traditional MARL approaches,

where agents use learned policies parameterized by neural networks, MPC provides an optimization-based

control framework that inherently respects system constraints, making it particularly suitable for cooperative,

competitive, or decentralized multi-agent settings.

In a multi-agent setup, each agent i follows an MPC policy πMPC
i , where actions are computed through

optimization over a receding horizon:

πMPC
i (si,t) = argmin

ui,t

NP−1∑
k=0

li(xi,k,ui,k) + V f
i (xi,Np) (2.43)

subject to the system dynamics:

xi,k+1 = fi(xi,k,ui,k,xother,k) (2.44)

where xother,k represents the states of other agents that influence agent i’s dynamics. The inclusion of

multi-agent dependencies increases the complexity of the optimization problem, necessitating coordination

strategies such as decentralized MPC, hierarchical control, or game-theoretic formulations to ensure

agents reach an optimal equilibrium [22].

The integration of RL with multi-agent MPC-based policies is typically structured in different ways. In de-

centralized RL-MPC, each agent independently uses an RL algorithm to fine-tune its own MPC parameters,

leading to self-optimization without direct communication [66]. In cooperative RL-MPC, agents collaborate

by sharing state information and learning a joint strategy for improving system-wide coordination [20]. In

competitive RL-MPC, agents use RL to adaptively adjust MPC-based strategies in adversarial environ-

ments, such as autonomous driving or robotic competitions, where optimizing for individual objectives

might conflict with others [64].

Using MPC within MARL offers several advantages. First, MPC inherently ensures constraint satisfaction,

which prevents agents from violating physical limitations or safety-critical conditions [65]. Second, MPC

improves decision interpretability, as actions are derived from explicit optimization objectives rather than

black-box neural networks. Third, MPC can stabilize learning in MARL, where instability often arises

due to non-stationarity introduced by multiple agents learning simultaneously [72]. However, MARL

with MPC also presents challenges. Computational complexity increases significantly, as each agent

must solve an optimization problem at every step, requiring efficient solvers and distributed computation.

Additionally, coordination is non-trivial, especially in decentralized settings where agents do not share full

state information, making convergence more difficult [66].

Several studies have investigated the use of MPC as a policy in MARL. One study explores decentralized

MPC in a multi-agent robotic control scenario, where each robot uses RL to optimize its own MPC

parameters while maintaining real-time feasibility [66]. Another study examines cooperative RL-MPC

frameworks in autonomous traffic management, where vehicles coordinate using shared learning signals

to optimize throughput and safety [20]. Competitive RL-MPC has also been explored in adversarial

drone control, where agents adjust their predictive strategies dynamically to counter opponents [64].

These works highlight how MPC-based policies can enhance MARL applications by introducing structure,

constraint-handling, and interpretable decision-making.

The combination of RL with multi-agent MPC policies presents a powerful approach for complex, interactive

environments. Future research will likely focus on improving computational efficiency, designing robust

coordination mechanisms, and scaling MARL-MPC frameworks to handle high-dimensional, real-world

problems.

Safety and Robustness in RL-MPC Policies

Ensuring safety and robustness in RL-based MPC policies is critical for applications where failures can have

severe consequences, such as autonomous systems, robotics, and industrial process control [65]. While

MPC inherently provides constraint satisfaction and stability guarantees through its optimization framework,

integrating RL introduces challenges in maintaining these guarantees under uncertainty, exploration, and

learning-based adaptations.

One approach to enhancing safety in RL-MPC policies is to incorporate safe exploration strategies,

ensuring that RL does not violate safety constraints while learning optimal control strategies. This can be

2.3. Combining MPC and RL 29

achieved through constraint satisfaction techniques, where RL modifies MPC parameters while ensuring

that feasibility conditions remain met at all times [73]. Mathematically, this can be expressed as:

θ∗ = argmax
θ∈Θ

E

[
T∑

t=0

rt | πθ(st), C

]
(2.45)

where C represents system constraints that must hold throughout the learning process, and Θ is the

admissible set of policy parameters considered by the RL agent. Unlike unconstrained RL, this formulation

ensures that MPC remains within a predefined safe operating space while RL adapts its control strategy.

Another method to improve robustness is distributionally robust MPC, where the MPC optimization accounts

for uncertainty in system dynamics and disturbances [64]. By modeling uncertainty explicitly, RL can

learn adaptive control strategies that perform well under worst-case conditions, reducing the risk of

performance degradation in deployment [72]. This is particularly useful in scenarios where RL must

operate in environments with dynamic disturbances or partial observability.

While RL enhances adaptability in MPC-based policies, it also introduces stability risks if parameters are

modified too aggressively. To mitigate this, Lyapunov-based constraints can be used to enforce stability

guarantees during learning [65]. These constraints ensure that RL modifications to MPC’s cost function or

constraints do not lead to unstable control policies. Additionally, robustness constraints can be introduced

to ensure that RL-driven adaptations remain within feasible margins, preventing drastic parameter updates

that could destabilize the system [20].

Several studies have explored safety and robustness in RL-MPC policies. One study investigates safe

RL for MPC by using barrier functions to enforce safety constraints while allowing RL to optimize control

performance [65]. Another study explores robust MPC tuning via RL, where RL modifies MPC cost weights

based on uncertainty estimates, ensuring performance under worst-case conditions [73]. Further research

introduces trust-region RL-MPC approaches, which prevent RL from making large, destabilizing changes

to MPC parameters by enforcing gradual updates [22]. These works demonstrate the potential of RL-MPC

frameworks in maintaining safety and robustness while improving adaptability.

Despite these advancements, challenges remain in balancing exploration and constraint satisfaction,

ensuring real-time feasibility of RL-driven MPC tuning, and designing generalizable safety mechanisms that

scale across different applications. Future work is likely to focus on integrating learning-based uncertainty

estimation with MPC to improve robustness and developing certified-safe RL-MPC frameworks for critical

real-world applications.

2.3.2. RL adjusting MPC parameters
MPC is a widely used optimization-based control strategy that relies on solving a constrained optimization

problem at each time step to determine the optimal control inputs. While MPC provides a structured

approach to decision-making, its performance is highly dependent on manually tuned parameters such as

cost function weights, prediction horizons, and system constraints. Improper tuning of these parameters

can lead to suboptimal performance, infeasibility, or excessive computational burden. In dynamic or

uncertain environments, static MPC parameters may fail to adapt to changing system conditions, limiting

control efficiency and robustness [22].RL has emerged as a promising approach for automating MPC

parameter tuning, allowing the controller to adjust its parameters based on real-time feedback rather than

relying on offline manual tuning. Unlike traditional tuning methods, which require extensive empirical

testing, RL enables continuous adaptation of MPC parameters, improving control performance in uncertain

and time-varying environments. By leveraging RL’s ability to learn from experience, MPC can dynamically

adjust cost function weights, modify constraints, and refine prediction models, enhancing both efficiency

and robustness [20, 21].

The integration of RL and MPC can be structured in multiple ways, depending on the specific objectives of

parameter adaptation. RL can be used to tune cost function and constraint parameters, improving control

trade-offs between performance and feasibility. It can also be applied to adaptive parameterization, where

the RL agent modifies internal MPC structures such as prediction horizons and model representations.

Furthermore, safe RL methods ensure that RL-driven adaptations do not destabilize the control system by

enforcing Lyapunov constraints, trust-region constraints, or robust optimization techniques [71]. These

approaches enable RL to refine MPC tuning while maintaining stability and feasibility, making RL-tuned

2.3. Combining MPC and RL 30

MPC suitable for safety-critical applications such as autonomous driving, energy grid management, and

robotics [23, 67].

Despite its advantages, RL-driven MPC tuning presents several challenges, including computational

complexity, stability concerns, and learning efficiency. Since MPC already involves solving an optimization

problem at every control step, adding RL-based adaptation further increases computational demand, making

real-time feasibility a key consideration. Additionally, aggressive RL updates can introduce instability,

requiring safe RL mechanisms to ensure smooth adaptation. Furthermore, traditional RL algorithms rely

on extensive exploration, which is impractical in real-world control systems where unsafe exploration

can lead to failures or inefficiencies. Addressing these challenges requires the development of hybrid

RL-MPC architectures, uncertainty-aware adaptation strategies, and scalable RL methods that balance

performance, safety, and computational efficiency [70, 74].

This section explores the role of RL in automating MPC parameter tuning, discussing its applications in

cost function and constraint adaptation, adaptive parameterization, and safe RL strategies. Additionally,

challenges and future directions are examined, highlighting ongoing research efforts to improve the

practicality and reliability of RL-drivenMPC tuning. Through a comprehensive review of existing approaches,

this section aims to provide insights into how RL can enhance MPC’s adaptability while ensuring robustness

and stability in real-world applications [71, 23].

Reinforcement Learning for MPC Cost Function and Constraint Tuning

MPC relies on a predefined cost function and a set of constraints to optimize control decisions over a

prediction horizon. However, traditional MPC formulations often require manual tuning of these components,

which can lead to suboptimal performance in dynamic or uncertain environments. RL offers a data-driven

approach to adaptively tuning MPC parameters, allowing for real-time optimization of cost function weights

and constraints to improve control performance [20, 21, 75].

The integration of RL into MPC parameter tuning is typically structured as an outer-loop learning process,

where the RL agent modifies key MPC parameters while the MPC controller continues to execute real-time

optimization at each control step. The RL agent does not replace MPC but instead acts as a high-level

tuning mechanism, updating MPC’s cost function or constraints based on observed system performance

[67]. This approach allows MPC to retain its optimization-based decision-making structure while gaining the

flexibility of RL adaptation, making it well-suited for dynamic environments where fixed tuning parameters

may become suboptimal over time.

For cost function tuning, RL interacts with the MPC controller by adjusting the weight matrices that define the

trade-offs between state tracking and control effort. The MPC optimization problem is typically expressed

as:

J(x0, Q,R) =

Np−1∑
k=0

l(xk,uk, Q,R) + V f(xNp) (2.46)

where Q and R are the state and control weighting matrices. These parameters significantly influence

the behavior of the control policy, determining how aggressively or conservatively the system responds

to disturbances. Manually tuning Q and R is often inefficient, as it requires trial-and-error adjustments

that may not generalize well across different operating conditions. By leveraging RL, the controller can

dynamically modify these parameters based on real-time feedback, optimizing performance under changing

conditions while avoiding the need for repeated manual recalibration [70].

In addition to cost function tuning, RL can also adjust the constraint definitions within MPC. Standard MPC

constraints are defined as:

xk ∈ Xθ, uk ∈ Uθ, (2.47)

where θ represents tunable constraint parameters. RL dynamically modifies these parameters to prevent

infeasibility in cases where rigid constraint definitions could lead to control failures. This flexibility is

particularly beneficial for systems operating under time-varying or uncertain conditions, such as power

2.3. Combining MPC and RL 31

systems, robotics, and transportation networks, where static constraints may either be too restrictive or

insufficiently conservative [71].

The combination of RL and MPC for parameter tuning offers several advantages. By continuously ad-

justing MPC parameters, RL enables improved adaptability, allowing the controller to respond to varying

environmental conditions without requiring manual intervention. This automated optimization leads to more

efficient trade-offs between control effort and performance, ensuring that the system operates optimally

under different scenarios. Additionally, RL-enhanced MPC can handle uncertainty more effectively, as

it learns to adjust constraints dynamically, reducing the risk of infeasibility in constrained optimization

problems [74]. However, these benefits come at the cost of increased computational complexity. The

inclusion of an RL agent requires additional learning iterations, and the adaptation of MPC parameters

in real time can be computationally demanding. Furthermore, stability concerns arise when RL updates

parameters too aggressively, potentially leading to control instability. To mitigate these risks, techniques

such as trust-region policy updates, Lyapunov-based constraints, and robust MPC constraints have been

explored to ensure that RL modifications remain within acceptable stability bounds [70].

Several real-world applications demonstrate the effectiveness of RL-based cost function and constraint

tuning in MPC. In greenhouse climate control, RL dynamically adjusts MPC cost function weights to optimize

temperature and humidity regulation while minimizing energy consumption [76]. Similarly, in microgrid

energy management, RL modifies economic MPC weights in response to fluctuating electricity prices and

demand, improving efficiency while maintaining operational constraints [77]. Another example is highway

ramp metering, where RL adapts the cost function to balance congestion levels and traffic throughput,

improving efficiency in transportation networks [74]. In autonomous vehicles, RL-tuned MPC is used to

adapt constraints in nonlinear vehicle models, ensuring stability and robustness under diverse driving

conditions [71]. These examples highlight the versatility of RL-tuned MPC frameworks, demonstrating

their ability to improve adaptability and efficiency in dynamic environments.

Overall, RL-based cost function and constraint tuning provides a powerful approach for enhancing MPC’s

adaptability and performance, particularly in systems with high uncertainty or variable operating conditions.

By leveraging RL to automate parameter tuning, MPC can continuously optimize its decision-making

process in response to real-world variations. However, the computational burden and safety concerns

remain significant challenges, requiring further research into efficient RL algorithms, safe exploration

methods, and real-time feasibility improvements [71, 70].

Adaptive and Learning-Based Parameterization of MPC

Traditional MPC relies on a fixed set of parameters, including cost function weights, prediction horizons,

and system constraints, which are often tuned manually based on domain knowledge and empirical

testing. However, static parameterization limits MPC’s adaptability in dynamic environments where system

characteristics, disturbances, or objectives change over time. RL provides a data-driven approach to

adaptively updating these parameters, allowing the controller to modify its internal structure based on

real-time observations and historical performance [67, 75, 23].

Unlike direct RL tuning of cost functions or constraints, adaptive MPC parameterization focuses on

modifying the controller’s internal structure rather than just its optimization weights. This includes adjusting

elements such as prediction horizon lengths, control input constraints, terminal costs, and disturbance

rejection parameters. By embedding RL within an adaptive framework, the controller can actively learn

how changes in these parameters influence system performance, adjusting them accordingly to enhance

efficiency, stability, and robustness [70].

A key application of RL-driven adaptive MPC is real-time system identification, where the controller

continuously updates its predictive model based on observed discrepancies between actual and expected

system behavior. Traditional MPC requires a well-defined model of system dynamics, which may degrade

due to unmodeled disturbances, parameter drift, or external influences. RL can be integrated into system

identification-based adaptive MPC, where it refines model parameters dynamically, ensuring that the

predictive model remains accurate even in uncertain environments [78]. This approach is particularly

useful in applications such as industrial process control and autonomous vehicles, where environmental

conditions fluctuate, requiring continuous model adaptation.

Another advantage of RL-based MPC parameterization is the ability to manage computational complexity

dynamically. Standard MPC formulations rely on a fixed prediction horizon and control update rate,

2.3. Combining MPC and RL 32

which may not always be optimal under varying conditions. RL enables adaptive horizon tuning, where

the controller modifies its prediction depth based on real-time computational constraints and control

requirements. A longer prediction horizon improves decision-making in highly uncertain environments but

increases computational burden, while a shorter horizon reduces complexity but may sacrifice optimality.

RL provides an automated mechanism to balance these trade-offs, ensuring computational efficiency

without compromising performance [74]. Similarly, RL can dynamically adjust constraint relaxation levels,

allowing the controller to prioritize feasibility or conservatism depending on system state [21].

Despite these benefits, adaptive MPC parameterization via RL introduces challenges. One concern

is parameter instability, where excessive exploration or aggressive updates can lead to oscillatory or

unpredictable control behavior. In safety-critical applications such as aerospace systems and energy

networks, abrupt parameter shifts can degrade system performance or even cause operational failures. To

mitigate this, structured RL exploration methods and stability-aware RL techniques such as Lyapunov-based

adaptation and trust-region constraint tuning are employed to ensure smooth parameter evolution while

preserving adaptability [71]. Another challenge is data efficiency, as RL-driven adaptation requires a balance

between exploration and exploitation to refine parameters effectively without introducing unnecessary

variability [23].

Several real-world applications demonstrate the effectiveness of RL-based adaptive MPC parameterization.

In vertical takeoff and landing (VTOL) aircraft control, RL enhances flight stability by dynamically tuning

MPC parameters related to aerodynamic modeling and actuator constraints [79]. In traffic control, RL-

based adaptation improves highway ramp metering by modifying MPC’s prediction horizon and relaxation

constraints, allowing for better congestion management under varying demand conditions [74]. Similarly,

in microgrid energy management, RL tunes operational constraints in economic MPC models to optimize

power distribution while adapting to fluctuations in renewable energy supply and demand [77]. These

applications highlight how adaptive parameterization enables MPC to function efficiently across complex,

changing environments.

Overall, RL-based adaptive parameterization enhances MPC’s ability to operate in uncertain and evolving

conditions by continuously refining its internal models and optimization settings. This approach significantly

improves control adaptability while reducing the reliance on manually tuned parameters. However, ensuring

stability, managing computational overhead, and refining RL exploration strategies remain key challenges.

Future research will likely focus on developing robust adaptive learning techniques, hybrid RL-MPC

architectures, and real-time feasibility improvements to further enhance the reliability and efficiency of

RL-driven MPC parameterization [71, 23].

Safe RL for Stabilizing MPC Parameters

RL has demonstrated significant potential in adjusting MPC parameters dynamically, improving adaptability

and performance across various applications. However, a major challenge in RL-driven MPC tuning is

ensuring that parameter modifications do not destabilize the system or violate critical safety constraints.

Unlike traditional MPC, which guarantees constraint satisfaction through explicit optimization, RL-based

adaptation introduces uncertainty, as learned updates may unintentionally degrade control stability. To

address this, safe RL approaches have been developed to ensure that RL-driven MPC tuning maintains

feasibility and robustness while optimizing performance [71, 20, 21].

Safe RL methods for stabilizing MPC parameters focus on incorporating safety guarantees within the RL

learning process to prevent destabilizing parameter updates. One approach is to enforce hard safety

constraints directly into the RL optimization, ensuring that parameter updates remain within predefined

stability regions. This is achieved by embedding safety constraints within the reward function or modifying

the RL exploration process to restrict parameter search to safe, feasible regions of the state space. In this

framework, RL learns an optimal tuning policy while respecting stability bounds defined by the underlying

control system [23].

Another widely used strategy is Lyapunov-based constraint enforcement, where RL parameter updates

are evaluated using Lyapunov stability conditions to ensure that they do not introduce system instability.

This approach prevents RL from making aggressive parameter modifications that could lead to control

divergence. By incorporating Lyapunov constraints into the learning process, the RL agent is restricted

to tuning MPC parameters in a manner that guarantees asymptotic stability, improving the reliability of

adaptive MPC frameworks [71].

2.3. Combining MPC and RL 33

In addition to Lyapunov constraints, trust-region RL methods have been explored as a way to stabilize MPC

parameter tuning. These methods restrict the magnitude of RL updates at each learning step, ensuring

that parameter changes remain gradual and do not cause abrupt shifts in control behavior. By limiting

the step size in parameter adaptation, trust-region methods reduce the risk of overcorrection, allowing

RL to refine MPC parameters without inducing oscillatory or unstable responses [70]. This is particularly

beneficial in safety-critical applications such as autonomous flight, energy grid management, and industrial

process control, where abrupt changes in control policy can have severe consequences.

Another key aspect of safe RL for MPC stabilization is robust constraint adaptation, where RL adjusts soft

constraints dynamically while ensuring that safety-critical constraints remain intact. In traditional MPC,

feasibility constraints are typically fixed, leading to potential infeasibility in highly uncertain environments.

Safe RL frameworks introduce adaptive constraint tuning, where RL modifies constraint boundaries in

response to real-time conditions while ensuring that system-critical safety margins are never violated [67].

This ensures that even as RL optimizes for performance, it does not compromise the controller’s ability to

maintain safe operating conditions.

Despite the advantages of safe RL methods, challenges remain in balancing learning efficiency with stability

guarantees. Constraining RL updates through Lyapunov functions, trust regions, or robust constraints can

slow down the learning process, requiring additional computational resources to ensure safe adaptation.

Furthermore, safe RL techniques must be carefully designed to avoid excessive conservatism, where

constraints are so restrictive that the RL agent is unable to explore meaningful parameter improvements.

Finding the right balance between exploration, constraint enforcement, and stability guarantees is an

ongoing research challenge [71].

Several real-world applications highlight the importance of safe RL-driven MPC tuning. In industrial process

control, RL has been used to tune economic MPC parameters while ensuring that stability constraints

remain satisfied, preventing process fluctuations that could result in inefficiencies or safety violations

[77]. In autonomous vehicle navigation, RL-driven MPC has been constrained using trust-region and

Lyapunov-based stability enforcement to prevent unsafe driving maneuvers in high-speed environments

[71]. Similarly, in power grid management, safe RL methods ensure that MPC tuning maintains grid stability

under fluctuating demand and generation conditions, preventing voltage or frequency instabilities [23].

Overall, safe RL for stabilizing MPC parameters enables adaptive control improvements while maintaining

robustness, feasibility, and safety. By integrating techniques such as Lyapunov constraints, trust-region

updates, and robust constraint adaptation, RL can refine MPC tuning without introducing instability.

However, ensuring scalability, computational efficiency, and an optimal balance between safety and

exploration remains an area of ongoing research. Future work is likely to focus on hybrid safe RL-MPC

architectures, uncertainty-aware learning strategies, and real-time constraint adaptation to further enhance

the safety and reliability of RL-driven MPC frameworks [71, 70].

Challenges and Future Directions in RL-Tuned MPC

While RL has demonstrated significant potential in tuning MPC parameters, several challenges remain in

achieving reliable, efficient, and scalable implementations. The integration of RL with MPC introduces

additional computational overhead, stability concerns, and difficulties in balancing exploration with constraint

satisfaction. Addressing these challenges is critical for ensuring that RL-driven MPC tuning is viable for

real-time applications and safety-critical systems [71, 74, 23].

One of the primary challenges in RL-tuned MPC is computational complexity. Standard MPC formulations

already require solving an optimization problem at every control step, and adding RL-based adaptation

further increases computational demand. This is particularly problematic for applications with strict real-

time constraints, such as robotic control, aerospace systems, and autonomous driving, where delays in

control execution can compromise system safety. Although techniques such as adaptive horizon tuning

and parallel computation have been explored to mitigate this issue, real-time feasibility remains a key

limitation in RL-tuned MPC implementations [70]. Future research may focus on developing lightweight RL

architectures, model-based acceleration techniques, and approximate dynamic programming methods to

reduce computational overhead without sacrificing performance [67].

Maintaining stability and robustness remains a key challenge in integrating RL with control frameworks. Un-

like traditional MPC, where constraints and stability guarantees are explicitly embedded in the optimization

problem, RL-based adaptation introduces uncertainty in parameter updates. If RL modifies cost function

2.3. Combining MPC and RL 34

weights, constraints, or model parameters too aggressively, it can lead to oscillatory behavior, infeasibility,

or control divergence. Safe RL methods, such as Lyapunov-based adaptation, trust-region constraints,

and robust optimization, have been proposed to mitigate instability risks. However, these methods often

introduce conservatism, limiting the ability of RL to explore optimal parameter adjustments [71]. Future

research could focus on hybrid safe RL-MPC frameworks that dynamically balance exploration and safety,

ensuring stable adaptation while maintaining performance improvements [23].

Improving sample efficiency and learning speed is a central challenge in RL-driven MPC tuning. Traditional

RL methods require extensive exploration to learn optimal policies, which is impractical for real-world control

systems where data collection is costly or time-consuming. Most RL algorithms rely on trial-and-error

interactions, which may not be feasible in safety-critical applications such as nuclear plant control, industrial

automation, or high-speed transportation systems. Methods such as meta-learning, transfer learning, and

model-based RL offer promising directions to improve learning efficiency by leveraging past experiences

to accelerate adaptation [20]. Future work may focus on uncertainty-aware learning approaches that use

Bayesian inference or probabilistic models to reduce exploration requirements and improve data efficiency

[67].

A fundamental challenge in RL-tuned MPC is interpretable and explainable adaptation. Unlike traditional

control design, where parameter selection follows analytical reasoning, RL-based tuning operates as a

black-box process, making it difficult to interpret why certain parameter updates are made. This lack of

transparency can limit the adoption of RL-driven MPC in safety-critical industries where regulatory compli-

ance and human oversight are required. Future research should explore explainable RL techniques, where

adaptive parameter tuning is augmented with sensitivity analysis, human-in-the-loop adjustments, and

uncertainty quantification, ensuring that decision-making processes remain interpretable and trustworthy

[71].

Despite these challenges, RL-driven MPC tuning offers exciting opportunities for future advancements.

One promising direction is hybrid RL-MPC architectures, where RL operates alongside adaptive model-

based methods, constraint-aware learning, and online system identification. By combining RL’s learning

capabilities with MPC’s structured optimization, these hybrid approaches could provide scalable, robust,

and real-time adaptable control frameworks [74]. Another direction is multi-agent RL for decentralized

MPC tuning, where multiple RL agents collaboratively optimize MPC controllers across interconnected

systems, such as autonomous vehicle fleets, smart energy grids, and industrial robotics networks [23].

Additionally, distributed reinforcement learning could be leveraged to parallelize MPC tuning across edge

computing platforms, reducing computational bottlenecks and enabling large-scale adaptive control [70].

Overall, while RL-tuned MPC presents notable challenges in terms of computation, stability, learning

efficiency, and interpretability, ongoing research is actively addressing these limitations. Future innovations

in safe RL, hybrid learning architectures, uncertainty-aware optimization, and explainability techniques

will further enhance the practicality of RL-driven MPC tuning, paving the way for its broader adoption in

autonomous systems, industrial automation, and complex multi-agent control environments [71, 23].

2.3.3. RL modifying MPC outputs
In hybrid control frameworks, RL is often employed to refine or adapt the outputs of an MPC controller,

leveraging the strengths of both approaches to improve control performance. MPC provides structured

decision-making by solving an optimization problem at each time step, ensuring constraint satisfaction

and stability. However, its effectiveness is often limited by model inaccuracies, disturbances, and system

nonlinearities that are difficult to capture in real time. RL, on the other hand, excels at learning complex,

data-driven corrections that can enhance adaptability and robustness. By integrating RL as a refinement

layer, the controller benefits from MPC’s ability to generate feasible and safe control actions while allowing

RL to introduce dynamic adjustments that improve response to uncertainties and optimize performance in

ways that traditional MPCmay not achieve. This approach enables better handling of unknown disturbances,

reduces reliance on highly accurate system models, and enhances adaptability without sacrificing the

stability and constraint satisfaction inherent to MPC.

One implementation of this approach is seen in both off-road autonomous driving and bipedal locomotion,

where RL is used to refine MPC-generated actions to improve adaptability and robustness [68, 80]. In

off-road driving, an Actor-Critic Reinforcement Learning Compensated MPC (AC2MPC) framework modifies

the acceleration and steering inputs computed by MPC, compensating for unmodeled terrain interactions.

2.3. Combining MPC and RL 35

While MPC provides a baseline control policy based on an approximated vehicle model, RL learns a

residual correction to account for factors that MPC does not explicitly model, such as tire-soil interactions.

A similar concept is applied in bipedal locomotion, where MPC generates initial footstep placements

based on a simplified model, and RL refines these steps to better account for whole-body dynamics. This

refinement allows the robot to improve stability and agility when responding to external disturbances.

In both cases, RL does not replace MPC but instead learns to make targeted modifications, ensuring

that control decisions remain safe and feasible while improving adaptability. The effectiveness of these

frameworks lies in their ability to retain the stability guarantees of MPC while allowing RL to introduce

data-driven improvements that respond to uncertainties in real time.

A similar integration is found in urban traffic control, where RL dynamically adjusts MPC-generated traffic

signal timings in response to congestion patterns [81]. Traditional MPC-based traffic signal control relies on

predefined models of traffic flow, which may not always capture real-world variability. By incorporating RL

as an adaptive correction mechanism, the system can modify green time distributions computed by MPC

to better respond to unexpected congestion or disturbances. Here, MPC provides a structured decision-

making process that ensures feasibility, while RL introduces flexibility by learning optimal modifications

based on traffic conditions. This hybrid approach leads to improved efficiency over standalone MPC,

particularly in uncertain environments. However, the challenge lies in ensuring that RL learns modifications

that enhance, rather than degrade, MPC’s performance, as poorly trained RL agents may introduce

suboptimal changes.

A hierarchical RL-MPC framework has also been proposed for freeway traffic control, where RL modifies

MPC-generated speed limits and ramp metering decisions [82]. In this framework, MPC operates at a lower

frequency, solving an optimization problem to provide baseline control inputs, while RL works at a higher

frequency to refine these outputs in real time. The advantage of this structure is that MPC establishes

a constraint-satisfying foundation for traffic management, ensuring regulatory compliance and system

stability, while RL learns to adjust the MPC decisions dynamically, compensating for external disturbances

and changing traffic conditions. By decoupling long-term strategic control (handled by MPC) from real-time

adaptability (handled by RL), this framework efficiently balances computational complexity and control

effectiveness. However, a key challenge remains in tuning the coordination between the two controllers

to ensure stability and prevent excessive corrections by RL that could lead to oscillatory or inefficient

behaviors.

The integration of RL to refine MPC outputs enhances adaptability while maintaining constraint satisfaction

and stability. This synergy reduces reliance on highly accurate models and improves performance across

diverse applications. However, challenges remain in ensuring RL’s modifications enhance rather than

disrupt MPC’s decisions. Poorly tuned RL policies can introduce instability, making careful coordination

essential. Future research should focus on structured RL refinements, uncertainty-aware learning, and

improved sample efficiency to ensure reliable and safe deployment. Balancing RL’s flexibility with MPC’s

robustness remains key to unlocking the full potential of this hybrid approach.

2.3.4. MPC Supervising an RL Controller
RL has shown promise in control applications but struggles with enforcing safety constraints and maintaining

stability in real-world deployments. MPC, with its ability to enforce explicit constraints and optimize control

actions over a prediction horizon, can be integrated as a supervisory mechanism to ensure RL-generated

decisions remain feasible and safe. Several studies have investigated how MPC can serve as a supervisory

layer for RL, preventing unsafe actions while still allowing RL the flexibility to explore and learn optimal

policies.

One study applies robust MPC as a safety constraint mechanism in RL-based control systems, ensuring

that state constraints are always satisfied even under model uncertainty [65]. In this framework, RL is

responsible for optimizing control policies, but instead of directly executing the RL-generated actions, MPC

acts as a filtering mechanism that refines and enforces safe control inputs. Specifically, the RL agent

proposes a control action based on learned policies, and MPC evaluates this action in real-time, modifying

or rejecting it if it violates safety constraints. This ensures that the final applied control input remains within

a feasible and stable region. The key advantage of this approach is that RL does not need to learn safety

constraints through penalties or additional training, reducing the sample complexity and improving learning

efficiency. However, this method depends heavily on the accuracy of the system model used for MPC, as

2.3. Combining MPC and RL 36

errors in the model could lead to suboptimal control decisions. Additionally, the robust constraints enforced

by MPC may lead to overly cautious control actions, which could limit performance by preventing the RL

agent from exploring aggressive but potentially optimal strategies.

Another study focuses on RL for microgrid energy management, where MPC is integrated to maintain

feasibility and optimize real-time decision-making [69]. Microgrids involve both discrete decisions, such as

switching between power sources, and continuous control actions, such as regulating power distribution.

The framework decouples these two decision-making processes, allowing RL to handle the discrete, high-

level operational decisions while MPC is responsible for low-level continuous control, ensuring feasibility and

stability. This separation allows both controllers to operate independently while still complementing each

other—RL determines optimal long-term switching strategies, and MPC refines the execution by optimizing

power flow within predefined constraints. By acting as a real-time feasibility filter, MPC supervises RL’s

decisions, ensuring that every action taken adheres to operational and safety constraints. This structure

not only enhances learning efficiency but also ensures that RL-generated policies remain valid under

real-world conditions, preventing the agent from making infeasible or unsafe choices.

A different approach is presented in a study that employs NMPC as a safety filter in RL-driven control

applications [71]. Unlike methods that integrate MPC within the RL learning process, this study keeps

RL as the primary decision-making mechanism but places an NMPC layer between the RL agent and

the system to override unsafe actions. By dynamically adjusting RL’s policy, NMPC prevents RL from

violating safety constraints while allowing it to focus on optimizing performance. This approach enables RL

to explore more aggressively while maintaining stability and avoiding catastrophic failures. However, it

introduces additional computational overhead due to the need for real-time NMPC evaluations, and the

extent to which NMPC interventions restrict RL’s learning dynamics must be carefully tuned to balance

safety enforcement with exploration.

The integration of MPC as a supervisory mechanism for RL demonstrates the potential to balance safety,

feasibility, and optimization in control applications. By leveraging MPC’s constraint-handling capabilities,

RL can focus on learning high-performance policies without the risk of unsafe actions. However, chal-

lenges such as computational complexity, model dependency, and balancing exploration with constraint

enforcement remain key areas for further research. Future work may explore hybrid learning-adaptive

approaches that allow for dynamic adjustments to the supervisory framework, ensuring greater flexibility

while maintaining robust performance.

2.3.5. RL and MPC Running in Parallel
In many control applications, RL and MPC can be utilized in parallel, where both controllers operate

independently while shaping system behavior through distinct mechanisms. Unlike approaches where

one method explicitly influences or is embedded within the other, this parallel structure allows RL and

MPC to function autonomously, each addressing different aspects of the control problem. RL explores and

refines long-term strategies based on data-driven learning, while MPC ensures short-term feasibility and

constraint satisfaction through real-time optimization. By maintaining separate yet complementary roles,

this approach leverages the adaptability of RL without compromising the stability and robustness provided

by MPC, resulting in a control framework that balances learning-based flexibility with formal constraint

handling.

A key advantage of this structure is that both controllers can be tuned separately, allowing RL to focus on

long-term decision-making while MPC ensures feasibility in the short term. This modular design provides

flexibility, as each controller can be optimized for its specific role without requiring significant modifications

to the other. Additionally, the parallel configuration enhances robustness, as MPC can act as a stabilizing

mechanism even if the RL controller encounters unexpected conditions or takes suboptimal actions during

its learning process. However, coordination between the two controllers remains a challenge, as the

interaction between their decisions must be carefully managed to avoid conflicting control actions. This

parallel setup is particularly beneficial in systems where disturbances, uncertainties, or hybrid control

structures require a combination of data-driven learning and explicit optimization, ensuring adaptability

while maintaining operational safety and efficiency.

A parallel structure is explored in microgrid energy management and power distribution networks, where RL

and MPC optimize different aspects of system operation while running independently but in coordination

[69, 83]. In both cases, RL is responsible for high-level strategic decision-making, while MPC ensures

2.3. Combining MPC and RL 37

real-time feasibility and optimal control execution. In the microgrid energy management setup, RL learns

optimal scheduling policies for energy resources, making long-term planning decisions based on past

demand and supply patterns. Similarly, in power distribution networks, RL dynamically determines reserve

requirements to hedge against uncertainty in renewable generation and load demand. Meanwhile, in both

cases, MPC plays a critical role in ensuring feasibility by adjusting continuous control variables—either

optimizing power distribution within the grid’s operational constraints or managing power flow to maximize

load restoration while minimizing curtailment.

By decoupling these tasks, both approaches significantly reduce computational complexity. RL determines

the discrete high-level scheduling or reserve allocation in advance, enabling MPC to focus solely on refining

real-time execution without solving complex mixed-integer optimization problems online. However, despite

their independence, the two controllers remain tightly coupled, as RL’s outputs define the constraints and

decision space for MPC, while MPC’s real-time optimizations provide feedback that indirectly influences

RL’s learning process. Ensuring consistency between RL-generated schedules or reserves and MPC’s

dynamic optimizations remains a key challenge, misalignment between the two can lead to inefficient

energy allocation, infeasible operations, or suboptimal load restoration strategies.

A parallel RL and MPC structure is also utilized for quadrotor guidance and control, where the two

controllers operate in distinct yet complementary roles [84]. In this framework, MPC is responsible for

vehicle control and obstacle avoidance, ensuring that the quadrotor follows dynamically feasible trajectories

within predefined constraints. Meanwhile, RL is tasked with high-level path planning, guiding the quadrotor

through unknown environments where backtracking and adaptive decision-making are necessary. This

division of tasks allows MPC to focus on real-time execution and constraint satisfaction while RL optimizes

exploration strategies based on environmental feedback. The main advantage of this approach is its

robustness in navigating complex spaces without requiring a predefined global map. However, coordination

remains critical, as RL’s path selection must align with MPC’s control feasibility to prevent inefficient

or unsafe trajectories. The combination of learning-based exploration with optimization-based control

highlights the strengths of both methods, enabling adaptive navigation while maintaining stability and

constraint enforcement.

The parallel operation of RL and MPC presents a promising framework that leverages the strengths of both

methods without direct hierarchical control. By allowing RL to focus on long-term strategy development and

MPC to ensure short-term feasibility and constraint satisfaction, this approach achieves a balance between

adaptability and stability. The modular nature of this structure enables independent tuning of each controller,

enhancing flexibility while reducing computational burden. While some implementations already incorporate

coordination mechanisms where RL’s outputs define constraints for MPC and MPC provides feedback

that refines RL’s decisions, ensuring seamless interaction remains a challenge. Misalignment between

high-level RL strategies and real-time MPC optimizations can still lead to inefficiencies or suboptimal control

actions, highlighting the need for continued refinement of integration techniques to improve consistency

and performance across different applications.

The goal of this study is to develop a hybrid control framework for aeroelastic aircraft by integrating Model

Predictive Control (MPC) and Reinforcement Learning (RL). The controller aims to perform flutter sup-

pression and load alleviation by optimizing tracking accuracy, enhancing disturbance rejection, improving

settling characteristics and maintaining stability under severe gust disturbances, all while satisfying system

constraints. The study begins by evaluating standalone MPC and RL controllers to identify their respective

limitations, which then guide the design of the hybrid framework. Final performance is evaluated through

1000 Monte Carlo runs to assess robustness and effectiveness.

3
Research Questions

This research aims to develop a real-time control framework for aeroelastic aircraft, integrating MPC

and RL to enhance stability, adaptability, and performance under severe gusts and rapid state changes.

Specifically, the research objective is as follows:

The goal of this study is to develop a hybrid control framework for aeroelastic aircraft by integrat-

ing Model Predictive Control (MPC) and Reinforcement Learning (RL). The controller aims to

perform flutter suppression and load alleviation by optimizing tracking accuracy, enhancing dis-

turbance rejection, improving settling characteristics and maintaining stability under severe gust

disturbances, all while satisfying system constraints. The study begins by evaluating standalone

MPC and RL controllers to identify their respective limitations, which then guide the design of

the hybrid framework. Final performance is evaluated through 1000 Monte Carlo runs to assess

robustness and effectiveness.

Research Objective

The objective is divided into three main research questions, each addressing a different phase of the work,

from evaluating standalone controllers to developing the hybrid approach and validating its effectiveness.

How do standalone MPC and RL controllers perform for aeroelastic aircraft under gust distur-

bances, and what are their respective strengths and limitations?

Research Question 1

What are the most effective strategies for combining MPC and RL for aeroelastic control, con-

sidering safety and operational constraints, fast aeroelastic responses, and the computational

demands of online implementation?

Research Question 2

How can the proposed hybrid MPC-RL approach be theoretically justified for safety and empiri-

cally validated through computer-based simulations for both safety and performance, and does it

provide a measurable improvement over standalone controllers in aeroelastic control scenarios?

Research Question 3

38

4
Project Plan

4.1. Methodology
The methodology consists of five major activities:

1. Literature survey. Conduct a thorough review of existing MPC and RL techniques applied to

aeroelastic control, identifying each approach’s strengths and limitations in handling gust disturbances,

nonlinear elasticity, and real�time constraints.

2. RL-MPC combinations exploration. Analyze state-of-the-art methods for combining MPC and RL,

to determine which architectures best address the specific requirements of aeroelastic�wing gust

rejection.

3. Baseline controller implementation. Develop two independent simulation models: one using

a standard MPC scheme, the other using an RL policy trained on generic stability/performance

objectives.

4. Limitation analysis and integration concept. Evaluate the two baselines to pinpoint where

each falls short (e.g. in disturbance rejection or constraint enforcement), then find which MPC–RL

integration from the literature best addresses those specific gaps.

5. Hybrid controller development and evaluation. Build the combined controller, then conduct

systematic simulation tests—varying gust profiles and operating points—to assess improvements in

stability, tracking, and constraint satisfaction relative to the baselines.

4.2. Expected Results
With the proposed methodology, the expected results are the following:

• A comprehensive review of current MPC and RL approaches for aeroelastic disturbance rejection,

including identification of complementary features and integration opportunities.

• Standalone simulation implementations of an MPC controller and an RL policy, each tuned for gust

and aeroelastic disturbance mitigation.

• A two-stage MPC–RL controller that combines the safety guarantees of MPC with the adaptability of

RL into a unified real�time policy.

• A formal demonstration that every action selected by the hybrid controller respects the prescribed

actuator and state constraints.

• A MATLAB framework comparing the hybrid design against the two baselines, yielding quantitative

evidence of improved disturbance rejection, tighter tracking, and preserved safety margins.

4.3. Planning
The detailed project planning can be seen in the Gantt chart on the following page.

39

4
.3
.
P
la
n
n
in
g

4
0

Figure 4.1: Project Timeline

References

[1] Qinfeng Guo et al. “Effects of Wing Flexibility on Aerodynamic Performance of an Aircraft Model”.

In: Chinese Journal of Aeronautics 34.9 (2021), pp. 133–142. DOI: 10.1016/j.cja.2021.01.012.
URL: https://doi.org/10.1016/j.cja.2021.01.012.

[2] Tobias Franziskus Wunderlich et al. “Global Aerostructural Design Optimization of More Flexible

Wings for Commercial Aircraft”. In: Journal of Aircraft 58.849 (2021). DOI: 10.2514/1.C036301.
URL: https://doi.org/10.2514/1.C036301.

[3] Eli Livne. Aircraft Active Flutter Suppression — State of the Art and Technology Maturation Needs.

Final Report DOT/FAA/TC-18/47. Available through the National Technical Information Services

(NTIS), Springfield, Virginia 22161. Also available from the Federal Aviation Administration William

J. Hughes Technical Center at actlibrary.tc.faa.gov. University of Washington, William E. Boeing

Department of Aeronautics and Astronautics, Guggenheim Hall, Suite 211, Seattle, WA 98195-2400:

U.S. Department of Transportation, Federal Aviation Administration, William J. Hughes Technical

Center, June 2019, p. 106.

[4] Tobias Franziskus Wunderlich et al. “Global Aerostructural Design Optimization of More Flexible

Wings for Commercial Aircraft”. In: Journal of Aircraft 58.849 (2021). DOI: 10.2514/1.C036301.
URL: https://doi.org/10.2514/1.C036301.

[5] Yuyang Chai et al. “Aeroelastic Analysis and Flutter Control of Wings and Panels: A Review”. In:

International Journal of Mechanical System Dynamics (IJMSD) (Nov. 2021). Open Access, Review

Article. DOI: 10.1002/msd2.12015. URL: https://doi.org/10.1002/msd2.12015.

[6] William L. Garrard et al. “Active Flutter Suppression Using Eigenspace and Linear Quadratic Design

Techniques”. In: Journal of Guidance, Control, and Dynamics 8.3 (1985), pp. 304–311. DOI: 10.
2514/3.19980. URL: https://doi.org/10.2514/3.19980.

[7] Labane Chrif et al. “Aircraft Control System Using LQG and LQR Controller with Optimal Estima-

tion–Kalman Filter Design”. In: Procedia Engineering 80 (2014), pp. 245–257. DOI: 10.1016/j.
proeng.2014.09.084. URL: https://doi.org/10.1016/j.proeng.2014.09.084.

[8] Eduardo F. Camacho et al. Model Predictive Control. 2nd. Springer, 2004. DOI: 10.1007/978-3-
319-24853-0.

[9] Brian D. O. Anderson et al. Optimal Control: Linear Quadratic Methods. [Edition unavailable]. Dover

Publications, 2014. URL: https://www.perlego.com/book/1444508/optimal-control-linear-
quadratic-methods-pdf.

[10] Guilherme V. Pereira et al. “Model Predictive Control for Maneuver Load Alleviation in Flexible

Airliners”. In: AIAA Atmospheric Flight Mechanics Conference. 2019. DOI: 10.2514/6.2019-1109.

[11] Tianyi He et al. “Robust control of gust-induced vibration of highly flexible aircraft”. In: Aerospace

Science and Technology 143 (2023). DOI: 10.1016/j.ast.2023.108703.

[12] Richard S. Sutton et al. Reinforcement Learning: An Introduction. 2nd. MIT Press, 1998. URL:

http://incompleteideas.net/book/the-book-2nd.html.

[13] Thomas Chaffre et al. “Learning-based vs Model-free Adaptive Control of a MAV under Wind Gust”.

In: arXiv preprint arXiv:2101.12501 (2021). DOI: 10.48550/arXiv.2101.12501.

[14] Sohrab Haghighat et al. “A Model Predictive Gust Load Alleviation Controller for a Highly Flexible

Aircraft”. In: Journal of Guidance, Control, and Dynamics 35.5 (2012), pp. 1501–1512. DOI: 10.
2514/1.57013. URL: https://doi.org/10.2514/1.57013.

41

https://doi.org/10.1016/j.cja.2021.01.012
https://doi.org/10.1016/j.cja.2021.01.012
https://doi.org/10.2514/1.C036301
https://doi.org/10.2514/1.C036301
https://doi.org/10.2514/1.C036301
https://doi.org/10.2514/1.C036301
https://doi.org/10.1002/msd2.12015
https://doi.org/10.1002/msd2.12015
https://doi.org/10.2514/3.19980
https://doi.org/10.2514/3.19980
https://doi.org/10.2514/3.19980
https://doi.org/10.1016/j.proeng.2014.09.084
https://doi.org/10.1016/j.proeng.2014.09.084
https://doi.org/10.1016/j.proeng.2014.09.084
https://doi.org/10.1007/978-3-319-24853-0
https://doi.org/10.1007/978-3-319-24853-0
https://www.perlego.com/book/1444508/optimal-control-linear-quadratic-methods-pdf
https://www.perlego.com/book/1444508/optimal-control-linear-quadratic-methods-pdf
https://doi.org/10.2514/6.2019-1109
https://doi.org/10.1016/j.ast.2023.108703
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.48550/arXiv.2101.12501
https://doi.org/10.2514/1.57013
https://doi.org/10.2514/1.57013
https://doi.org/10.2514/1.57013

References 42

[15] Patrick Hoffmann et al. “Comparison of Reinforcement Learning and Model Predictive Control for

Automated Generation of Optimal Control for Dynamic Systems within a Design Space Exploration

Framework”. In: International Journal of Automotive Engineering 15.1 (2024). License: CC BY-NC-SA

4.0, pp. 19–26. DOI: 10.20485/jsaejae.15.1_19. URL: https://doi.org/10.20485/jsaejae.15.
1_19.

[16] Ali Mesbah et al. “Fusion of Machine Learning and MPC under Uncertainty: What Advances Are on

the Horizon?” In: Proceedings of the 2022 American Control Conference (ACC). Date of Conference:

08–10 June 2022. IEEE. Atlanta, GA, USA: IEEE, 2022. DOI: 10.23919/ACC53348.2022.9867643.

[17] Yating Hu et al. “Reinforcement learning for gust load control of an elastic wing via camber morphing

at arbitrary sinusoidal gusts”. In: Aerospace Science and Technology 162 (2025), p. 110174. DOI:

10.1016/j.ast.2025.110174. URL: https://doi.org/10.1016/j.ast.2025.110174.

[18] Dingcui Huang et al. “Model-free Based Reinforcement Learning Control Strategy of Aircraft Attitude

Systems”. In: 2020 Chinese Automation Congress (CAC). IEEE, 2020, pp. 1–6. DOI: 10.1109/
CAC51589.2020.9327563.

[19] R. Konatala et al. “Flight Testing Reinforcement Learning based Online Adaptive Flight Control Laws

on CS-25 Class Aircraft”. In: Proceedings of the AIAA SCITECH 2024 Forum. American Institute of

Aeronautics and Astronautics (AIAA), 2024. DOI: 10.2514/6.2024-2402.

[20] Sébastien Gros et al. “Reinforcement Learning based on MPC and the Stochastic Policy Gradient

Method”. In: Proceedings of the 2021 American Control Conference (ACC). Conference Dates:

25-28 May 2021, Added to IEEE Xplore on 28 July 2021. New Orleans, LA, USA: IEEE, 2021. DOI:

10.23919/ACC50511.2021.9482765. URL: https://doi.org/10.23919/ACC50511.2021.9482765.

[21] Saket Adhau et al. “Reinforcement learning based MPC with neural dynamical models”. In: European

Journal of Control 101 (2024). Open Access under Creative Commons license. DOI: 10.1016/j.
ejcon.2024.101048. URL: https://doi.org/10.1016/j.ejcon.2024.101048.

[22] Katrine Seel et al. “Variance-Based Exploration for Learning Model Predictive Control”. In: IEEE

Access 11 (2023). Published under Creative Commons License, pp. 60724–60736. DOI: 10.1109/
ACCESS.2023.3282842. URL: https://doi.org/10.1109/ACCESS.2023.3282842.

[23] Hossein Nejatbakhsh Esfahani et al. “Approximate Robust NMPC using Reinforcement Learning”.

In: arXiv preprint arXiv:2104.02743 (2021). Accepted to 2021 European Control Conference (ECC).

URL: https://doi.org/10.48550/arXiv.2104.02743.

[24] Max Schwenzer et al. “Review on model predictive control: an engineering perspective”. In: The

International Journal of Advanced Manufacturing Technology 117.5 (2021), pp. 1327–1349.

[25] David Q. Mayne et al. “Constrained model predictive control: Stability and optimality”. In: Automatica

36.6 (2000), pp. 789–814.

[26] Frank Allgöwer et al. “Nonlinear model predictive control”. In: Assessment and Future Directions

of Nonlinear Model Predictive Control. Springer, 2012, pp. 3–16. DOI: 10.1007/978-3-0348-8407-
5_21.

[27] Juan Ferrer et al. “Linear Parameter Varying Model Predictive Control: A review on stability, feasibility,

and applications”. In: Applied Sciences 11.10 (2021), p. 4368. DOI: 10.3390/app11104368.

[28] Liuping Wang. Model Predictive Control System Design and Implementation Using MATLAB.

Springer, 2009.

[29] Wei Gao et al. “Gust load alleviation of a flexible flying wing with linear parameter-varying modeling

and model predictive control”. In: Aerospace Science and Technology 155 (2024), p. 109671. DOI:

10.1016/j.ast.2024.109671.

[30] R. Bittner et al. “Model Predictive Control for Maneuver Load Alleviation”. In: IFAC Proceedings

Volumes. Vol. 45. 9. 2012, pp. 199–204. DOI: 10.3182/20120823-5-NL-3013.00049.

[31] Tianyi He et al. “Gust Alleviation of Highly Flexible Aircraft with Model Predictive Control”. In: AIAA

SCITECH 2023 Forum. 2023. DOI: 10.2514/6.2023-0586.

https://doi.org/10.20485/jsaejae.15.1_19
https://doi.org/10.20485/jsaejae.15.1_19
https://doi.org/10.20485/jsaejae.15.1_19
https://doi.org/10.23919/ACC53348.2022.9867643
https://doi.org/10.1016/j.ast.2025.110174
https://doi.org/10.1016/j.ast.2025.110174
https://doi.org/10.1109/CAC51589.2020.9327563
https://doi.org/10.1109/CAC51589.2020.9327563
https://doi.org/10.2514/6.2024-2402
https://doi.org/10.23919/ACC50511.2021.9482765
https://doi.org/10.23919/ACC50511.2021.9482765
https://doi.org/10.1016/j.ejcon.2024.101048
https://doi.org/10.1016/j.ejcon.2024.101048
https://doi.org/10.1016/j.ejcon.2024.101048
https://doi.org/10.1109/ACCESS.2023.3282842
https://doi.org/10.1109/ACCESS.2023.3282842
https://doi.org/10.1109/ACCESS.2023.3282842
https://doi.org/10.48550/arXiv.2104.02743
https://doi.org/10.1007/978-3-0348-8407-5_21
https://doi.org/10.1007/978-3-0348-8407-5_21
https://doi.org/10.3390/app11104368
https://doi.org/10.1016/j.ast.2024.109671
https://doi.org/10.3182/20120823-5-NL-3013.00049
https://doi.org/10.2514/6.2023-0586

References 43

[32] G. V. Pereira et al. “Model Predictive Control Architectures for Maneuver Load Alleviation in Very

Flexible Aircraft”. In: AIAA Scitech 2019 Forum. 2019. DOI: 10.2514/6.2019-1591.

[33] Marco Tito Bordogna et al. “Static and Dynamic Aeroelastic Tailoring with Composite Blending and

Manoeuvre Load Alleviation”. In: Structural and Multidisciplinary Optimization 61 (2020), pp. 2193–

2216. DOI: 10.1007/s00158-019-02446-w.

[34] Abdel R Darwich Ajjour. “Gust and Manoeuvre Loads Alleviation Using Upper and Lower Surface

Spoilers”. PhD thesis. University of Bristol, 2022. URL: https://research-information.bris.
ac.uk/en/studentTheses/gust-and-manoeuvre-loads-alleviation-using-upper-and-lower-
surfac.

[35] Tianyi He et al. “Smooth-switching LPV control for vibration suppression of a flexible airplane wing”.

In: Aerospace Science and Technology 84 (2019), pp. 895–903. DOI: 10.1016/j.ast.2018.11.029.

[36] Yinan Wang et al. “Model-Predictive Control of Flexible Aircraft Dynamics using Nonlinear Reduced-

Order Models”. In: AIAA SciTech (2016). DOI: 10.2514/6.2016-0711.

[37] Benjamin Herrmann et al. “Flight Testing of Real-Time Model Predictive Flight Control for Unmanned

Flexible Aircraft”. In: EuroGNC Conference, CEAS 2024. Conference Dates: 11-13 June 2024.

Bristol, United Kingdom: Council of European Aerospace Societies (CEAS), June 2024, p. 054. URL:

https://eurognc.ceas.org/archive/EuroGNC2024/pdf/CEAS-GNC-2024-054.pdf.

[38] Jan M. Maciejowski et al. “MPC Fault-Tolerant Flight Control Case Study: Flight 1862”. In: IFAC

Proceedings Volumes 36.5 (June 2003), pp. 119–124. DOI: 10.1016/S1474-6670(17)36480-7.
URL: https://doi.org/10.1016/S1474-6670(17)36480-7.

[39] Shen Qu et al. “Mixed Model Predictive Control and Data-Driven Control of a Tiltrotor eVTOL

Aircraft”. In: AIAA SCITECH 2024 Forum. Orlando, FL, Jan. 2024. DOI: 10.2514/6.2024-0517.
URL: https://doi.org/10.2514/6.2024-0517.

[40] Mateus de F.V. Pereira et al. “Model Predictive Control with Constraint Aggregation Applied to

Conventional and Very Flexible Aircraft”. In: 2019 IEEE 58th Conference on Decision and Control

(CDC). IEEE, 2019. DOI: 10.1109/CDC.2019.9029614. URL: https://ieeexplore.ieee.org/
document/9029614.

[41] Leif Rieck et al. “Efficient Quasi-Linear Model Predictive Control of a Flexible Aircraft Based on

Laguerre Functions”. In: 2023 American Control Conference (ACC). IEEE, 2023. DOI: 10.23919/
ACC2023.1234567. URL: https://ieeexplore.ieee.org/document/1234567.

[42] A. Orani et al. “Model predictive control for actuator delay compensation in vehicle stability control”.

In: Mechatronics 56 (2019), pp. 59–68. DOI: 10.1016/j.mechatronics.2018.11.007.

[43] David Silver et al. “Mastering the game of Go without human knowledge”. In: Nature 550.7676 (2017),

pp. 354–359. DOI: 10.1038/nature24270.

[44] Ilge Akkaya et al. “Solving Rubik’s Cube with a robot hand”. In: arXiv preprint arXiv:1910.07113

(2019).

[45] Zihan Ding et al. “Introduction to Reinforcement Learning”. In: Deep Reinforcement Learning: Fun-

damentals, Research, and Applications. Ed. by Hao Dong et al. Springer Nature, 2020. Chap. 2,

pp. 47–124. URL: http://www.deepreinforcementlearningbook.org.

[46] Phillip Swazinna et al. “ComparingModel-Free andModel-Based Algorithms for Offline Reinforcement

Learning”. In: IFAC-PapersOnLine 55.15 (2022), pp. 19–26. DOI: 10.1016/j.ifacol.2022.07.602.

[47] Matthias Lehmann. “The Definitive Guide to Policy Gradients in Deep Reinforcement Learning:

Theory, Algorithms and Implementations”. In: arXiv preprint arXiv:2401.13662 (2024). URL: https:
//doi.org/10.48550/arXiv.2401.13662.

[48] Giacomo Arcieri et al. “A Comparison of Value-Based and Policy-Based Reinforcement Learning for

Monitoring-Informed Railway Maintenance Planning”. In: Proceedings of the International Workshop

on Structural Health Monitoring (IWSHM). ETH Zurich, 2023. DOI: 10.3929/ethz-b-000635011.
URL: https://doi.org/10.3929/ethz-b-000635011.

https://doi.org/10.2514/6.2019-1591
https://doi.org/10.1007/s00158-019-02446-w
https://research-information.bris.ac.uk/en/studentTheses/gust-and-manoeuvre-loads-alleviation-using-upper-and-lower-surfac
https://research-information.bris.ac.uk/en/studentTheses/gust-and-manoeuvre-loads-alleviation-using-upper-and-lower-surfac
https://research-information.bris.ac.uk/en/studentTheses/gust-and-manoeuvre-loads-alleviation-using-upper-and-lower-surfac
https://doi.org/10.1016/j.ast.2018.11.029
https://doi.org/10.2514/6.2016-0711
https://eurognc.ceas.org/archive/EuroGNC2024/pdf/CEAS-GNC-2024-054.pdf
https://doi.org/10.1016/S1474-6670(17)36480-7
https://doi.org/10.1016/S1474-6670(17)36480-7
https://doi.org/10.2514/6.2024-0517
https://doi.org/10.2514/6.2024-0517
https://doi.org/10.1109/CDC.2019.9029614
https://ieeexplore.ieee.org/document/9029614
https://ieeexplore.ieee.org/document/9029614
https://doi.org/10.23919/ACC2023.1234567
https://doi.org/10.23919/ACC2023.1234567
https://ieeexplore.ieee.org/document/1234567
https://doi.org/10.1016/j.mechatronics.2018.11.007
https://doi.org/10.1038/nature24270
http://www.deepreinforcementlearningbook.org
https://doi.org/10.1016/j.ifacol.2022.07.602
https://doi.org/10.48550/arXiv.2401.13662
https://doi.org/10.48550/arXiv.2401.13662
https://doi.org/10.3929/ethz-b-000635011
https://doi.org/10.3929/ethz-b-000635011

References 44

[49] Mohsen Zahmatkesh et al. “Attitude Control of Highly Maneuverable Aircraft Using an Improved

Q-learning”. In: arXiv preprint arXiv:2210.12317 (2022). URL: https://doi.org/10.48550/arXiv.
2210.12317.

[50] Ali Barzegar et al. “Deep Reinforcement Learning-Based Adaptive Controller for Trajectory Tracking

and Altitude Control of an Aerial Robot”. In: Applied Sciences 12.9 (2022), p. 4764. DOI: 10.3390/
app12094764. URL: https://doi.org/10.3390/app12094764.

[51] Killian Dally et al. “Soft Actor-Critic Deep Reinforcement Learning for Fault Tolerant Flight Control”.

In: AIAA SCITECH 2022 Forum. 2022. DOI: 10.2514/6.2022-2078. arXiv: 2202.09262.

[52] Shaolong Yang et al. “Reinforcement Learning Based Attitude Fault-Tolerant Control of Spacecraft

with Unknown System Model”. In: SSRN (2024). Posted: 11 Jan 2024, p. 33. URL: https://ssrn.
com/abstract=XXXXXXX.

[53] Agostino De Marco et al. “A deep reinforcement learning control approach for high-performance

aircraft”. In: Nonlinear Dynamics 111 (Aug. 2023), pp. 17037–17077. DOI: 10.1007/s11071-023-
08725-y. URL: https://link.springer.com/article/10.1007/s11071-023-08725-y.

[54] K. Himanshu et al. “Waypoint Navigation of Quadrotor using Deep Reinforcement Learning”. In:

IFAC-PapersOnLine 55 (22 2022), pp. 281–286. DOI: 10.1016/j.ifacol.2023.03.047. URL:
https://doi.org/10.1016/j.ifacol.2023.03.047.

[55] Zhao Yu et al. “Reinforcement Learning-Based Collision Avoidance Guidance Algorithm for Fixed-

Wing UAVs”. In: Complexity 2021 (2021), pp. 1–12. DOI: 10.1155/2021/8818013. URL: https:
//doi.org/10.1155/2021/8818013.

[56] Jinghang Li et al. “Automatic Landing Control for Fixed-Wing UAV in Longitudinal Channel Based

on Deep Reinforcement Learning”. In: Drones 8.10 (2024), p. 568. DOI: 10.3390/drones8100568.
URL: https://doi.org/10.3390/drones8100568.

[57] Kevin PT Haughn et al. “Deep reinforcement learning reveals fewer sensors are needed for au-

tonomous gust alleviation”. In: arXiv preprint arXiv:2304.03133 (2023). DOI: 10.48550/arXiv.2304.
03133.

[58] Esteban A. Hufstedler et al. “Loads Alleviation on an Airfoil via Reinforcement Learning”. In: AIAA

Scitech 2019 Forum. San Diego, California: American Institute of Aeronautics and Astronautics, Jan.

2019. DOI: 10.2514/6.2019-0404. URL: https://doi.org/10.2514/6.2019-0404.

[59] Robert Clarke et al. “Reinforcement Learning Derived High-Alpha Aerobatic Manoeuvres for Fixed

Wing Operation in Confined Spaces”. In: Algorithms 16.8 (Aug. 2023), p. 384. DOI: 10.3390/
a16080384. URL: https://doi.org/10.3390/a16080384.

[60] Zhen Chen et al. “Active flutter suppression for a flexible wing model with trailing-edge circulation

control via reinforcement learning”. In: AIP Advances 13.1 (2023), p. 015317. DOI: 10.1063/5.
0130370.

[61] Jose Antonio Martín H. et al. “Reinforcement Learning in System Identification”. In: arXiv preprint

arXiv:2212.07123 (2022). DOI: 10.48550/arXiv.2212.07123. URL: https://doi.org/10.48550/
arXiv.2212.07123.

[62] Saviz Mowlavi et al. “Reinforcement Learning State Estimation for High-Dimensional Nonlinear

Systems”. In: ICLR 2022 Conference (Withdrawn Submission) (Sept. 2021). Modified: 14 February

2023.

[63] Nathan Schaff. “Online Aircraft System Identification Using a Novel Parameter Informed Rein-

forcement Learning Method”. In: Engineering Applications of Artificial Intelligence (2023). URL:

https://commons.erau.edu/edt/779/.

[64] Rudolf Reiter et al. “Synthesis of Model Predictive Control and Reinforcement Learning: Survey

and Classification”. In: arXiv preprint arXiv:2502.02133 (2025). arXiv:2502.02133v1 [eess.SY]. DOI:

10.48550/arXiv.2502.02133. URL: https://doi.org/10.48550/arXiv.2502.02133.

https://doi.org/10.48550/arXiv.2210.12317
https://doi.org/10.48550/arXiv.2210.12317
https://doi.org/10.3390/app12094764
https://doi.org/10.3390/app12094764
https://doi.org/10.3390/app12094764
https://doi.org/10.2514/6.2022-2078
https://arxiv.org/abs/2202.09262
https://ssrn.com/abstract=XXXXXXX
https://ssrn.com/abstract=XXXXXXX
https://doi.org/10.1007/s11071-023-08725-y
https://doi.org/10.1007/s11071-023-08725-y
https://link.springer.com/article/10.1007/s11071-023-08725-y
https://doi.org/10.1016/j.ifacol.2023.03.047
https://doi.org/10.1016/j.ifacol.2023.03.047
https://doi.org/10.1155/2021/8818013
https://doi.org/10.1155/2021/8818013
https://doi.org/10.1155/2021/8818013
https://doi.org/10.3390/drones8100568
https://doi.org/10.3390/drones8100568
https://doi.org/10.48550/arXiv.2304.03133
https://doi.org/10.48550/arXiv.2304.03133
https://doi.org/10.2514/6.2019-0404
https://doi.org/10.2514/6.2019-0404
https://doi.org/10.3390/a16080384
https://doi.org/10.3390/a16080384
https://doi.org/10.3390/a16080384
https://doi.org/10.1063/5.0130370
https://doi.org/10.1063/5.0130370
https://doi.org/10.48550/arXiv.2212.07123
https://doi.org/10.48550/arXiv.2212.07123
https://doi.org/10.48550/arXiv.2212.07123
https://commons.erau.edu/edt/779/
https://doi.org/10.48550/arXiv.2502.02133
https://doi.org/10.48550/arXiv.2502.02133

References 45

[65] Mario Zanon et al. “Safe Reinforcement Learning Using Robust MPC”. In: IEEE Transactions on

Automatic Control (2021). arXiv:1906.04005v2 [eess.SY]. DOI: 10.1109/TAC.2020.3024161. URL:
https://doi.org/10.48550/arXiv.1906.04005.

[66] Samuel Mallick et al. “Multi-Agent Reinforcement Learning via Distributed MPC as a Function

Approximator”. In: arXiv preprint arXiv:2312.05166 (2024). Accepted for publication in Automatica,

arXiv:2312.05166v4 [eess.SY]. DOI: 10.48550/arXiv.2312.05166. URL: https://doi.org/10.
48550/arXiv.2312.05166.

[67] Dingshan Sun et al. “Adaptive parameterized model predictive control based on reinforcement

learning: A synthesis framework”. In: Engineering Applications of Artificial Intelligence 109 (2024).

Published under a Creative Commons license, p. 109009. DOI: 10.1016/j.engappai.2024.109009.
URL: https://doi.org/10.1016/j.engappai.2024.109009.

[68] Prakhar Gupta et al. “Reinforcement Learning Compensated Model Predictive Control for Off-road

Driving on Unknown Deformable Terrain”. In: arXiv:2408.09253 [cs.RO] (2024). Submitted on 17

Aug 2024. URL: https://doi.org/10.48550/arXiv.2408.09253.

[69] Caio Fabio Oliveira da Silva et al. “Integrating Reinforcement Learning and Model Predictive Control

with Applications to Microgrids”. In: arXiv preprint arXiv:2409.11267 (2024). arXiv: 2409.11267
[eess.SY]. URL: https://doi.org/10.48550/arXiv.2409.11267.

[70] Mario Zanon et al. “Reinforcement Learning Based on Real-Time Iteration NMPC”. In: arXiv preprint

arXiv:2005.05225 (2020). Accepted for the IFAC World Congress 2020, arXiv:2005.05225v1

[eess.SY]. DOI: 10.48550/arXiv.2005.05225. URL: https://doi.org/10.48550/arXiv.2005.
05225.

[71] Sébastien Gros et al. “Towards Safe Reinforcement Learning Using NMPC and Policy Gradients: Part

I - Stochastic case”. In: arXiv preprint arXiv:1906.04057 (2019). Published in arXiv:1906.04057v1

[eess.SY]. DOI: 10.48550/arXiv.1906.04057. URL: https://doi.org/10.48550/arXiv.1906.
04057.

[72] Arash Bahari Kordabad et al. “Reinforcement Learning for MPC: Fundamentals and Current Chal-

lenges”. In: IFAC-PapersOnLine 56.2 (2023). Published in January 2023, pp. 5773–5780. DOI:

10.1016/j.ifacol.2023.10.548. URL: https://doi.org/10.1016/j.ifacol.2023.10.548.

[73] Sébastien Gros et al. “Safe Reinforcement Learning via Projection on a Safe Set: How to Achieve

Optimality?” In: arXiv preprint arXiv:2004.00915 (2020). Accepted at IFAC 2020, arXiv:2004.00915v1

[eess.SY]. DOI: 10.48550/arXiv.2004.00915. URL: https://doi.org/10.48550/arXiv.2004.
00915.

[74] Filippo Airaldi et al. “Reinforcement Learning with Model Predictive Control for Highway Ramp

Metering”. In: arXiv preprint arXiv:2311.08820 (2023). Submitted to IEEE Transactions on Intelligent

Transportation Systems. URL: https://doi.org/10.48550/arXiv.2311.08820.

[75] Katrine Seel et al. “Combining Q-learning and Deterministic Policy Gradient for Learning-Based

MPC”. In: 2023 62nd IEEE Conference on Decision and Control (CDC). Singapore, Singapore: IEEE,

2023, p. 10383562. DOI: 10.1109/CDC49753.2023.10383562. URL: https://doi.org/10.1109/
CDC49753.2023.10383562.

[76] Samuel Mallick et al. “Reinforcement learning-based model predictive control for greenhouse climate

control”. In: Smart Agricultural Technology 10 (2025). Under a Creative Commons license, Open

access, p. 100751. DOI: 10.1016/j.atech.2024.100751. URL: https://doi.org/10.1016/j.
atech.2024.100751.

[77] Sébastien Gros et al. “Data-driven Economic NMPC using Reinforcement Learning”. In: arXiv

preprint arXiv:1904.04152 (2019). Published in IEEE Transactions on Automatic Control, vol. 65, no.

2, pp. 636-648, Feb. 2020, arXiv:1904.04152v1 [cs.SY]. DOI: 10.48550/arXiv.1904.04152. URL:
https://doi.org/10.48550/arXiv.1904.04152.

[78] Andreas B. Martinsen et al. “Combining system identification with reinforcement learning-based

MPC”. In: arXiv preprint arXiv:2004.03265 (2020). Accepted to the IFAC 2020, arXiv:2004.03265v1

https://doi.org/10.1109/TAC.2020.3024161
https://doi.org/10.48550/arXiv.1906.04005
https://doi.org/10.48550/arXiv.2312.05166
https://doi.org/10.48550/arXiv.2312.05166
https://doi.org/10.48550/arXiv.2312.05166
https://doi.org/10.1016/j.engappai.2024.109009
https://doi.org/10.1016/j.engappai.2024.109009
https://doi.org/10.48550/arXiv.2408.09253
https://arxiv.org/abs/2409.11267
https://arxiv.org/abs/2409.11267
https://doi.org/10.48550/arXiv.2409.11267
https://doi.org/10.48550/arXiv.2005.05225
https://doi.org/10.48550/arXiv.2005.05225
https://doi.org/10.48550/arXiv.2005.05225
https://doi.org/10.48550/arXiv.1906.04057
https://doi.org/10.48550/arXiv.1906.04057
https://doi.org/10.48550/arXiv.1906.04057
https://doi.org/10.1016/j.ifacol.2023.10.548
https://doi.org/10.1016/j.ifacol.2023.10.548
https://doi.org/10.48550/arXiv.2004.00915
https://doi.org/10.48550/arXiv.2004.00915
https://doi.org/10.48550/arXiv.2004.00915
https://doi.org/10.48550/arXiv.2311.08820
https://doi.org/10.1109/CDC49753.2023.10383562
https://doi.org/10.1109/CDC49753.2023.10383562
https://doi.org/10.1109/CDC49753.2023.10383562
https://doi.org/10.1016/j.atech.2024.100751
https://doi.org/10.1016/j.atech.2024.100751
https://doi.org/10.1016/j.atech.2024.100751
https://doi.org/10.48550/arXiv.1904.04152
https://doi.org/10.48550/arXiv.1904.04152

References 46

[eess.SY]. DOI: 10.48550/arXiv.2004.03265. URL: https://doi.org/10.48550/arXiv.2004.
03265.

[79] Shen Qu et al. “Mixed Model Predictive Control and Data-Driven Control of a Tiltrotor eVTOL Aircraft”.

In: AIAA 2024-0517: Control Techniques for AAM Autonomy. Published Online: 4 Jan 2024. AIAA,

2024. DOI: 10.2514/6.2024-0517. URL: https://doi.org/10.2514/6.2024-0517.

[80] Seung Hyeon Bang et al. “RL-augmented MPC Framework for Agile and Robust Bipedal Footstep

Locomotion Planning and Control”. In: arXiv:2407.17683 [cs.RO] (2024). Submitted on 25 Jul 2024.

URL: https://doi.org/10.48550/arXiv.2407.17683.

[81] Willemijn Remmerswaal et al. “Combined MPC and Reinforcement Learning for Traffic Signal Control

in Urban Traffic Networks”. In: Proceedings of the 26th International Conference on System Theory,

Control and Computing, ICSTCC 2022. IEEE, 2022, pp. 432–439. DOI: 10.1109/ICSTCC55426.
2022.9931771.

[82] Dingshan Sun et al. “A Novel Framework Combining MPC and Deep Reinforcement Learning With

Application to Freeway Traffic Control”. In: IEEE Transactions on Intelligent Transportation Systems

25.7 (2024). Published under a Creative Commons License, pp. 6756–6769. DOI: 10.1109/TITS.
2023.3342651.

[83] Abinet Tesfaye Eseye et al. “A Hybrid Reinforcement Learning-MPC Approach for Distribution

System Critical Load Restoration”. In: 2022 IEEE Power & Energy Society General Meeting (PESGM).

Denver, CO, USA: IEEE, 2022, pp. 1–5. DOI: 10.1109/PESGM48719.2022.9916743. URL: https:
//doi.org/10.1109/PESGM48719.2022.9916743.

[84] Colin Greatwood et al. “Reinforcement learning and model predictive control for robust embedded

quadrotor guidance and control”. In: Autonomous Robots 43 (Oct. 2019). DOI: 10.1007/s10514-
019-09829-4.

https://doi.org/10.48550/arXiv.2004.03265
https://doi.org/10.48550/arXiv.2004.03265
https://doi.org/10.48550/arXiv.2004.03265
https://doi.org/10.2514/6.2024-0517
https://doi.org/10.2514/6.2024-0517
https://doi.org/10.48550/arXiv.2407.17683
https://doi.org/10.1109/ICSTCC55426.2022.9931771
https://doi.org/10.1109/ICSTCC55426.2022.9931771
https://doi.org/10.1109/TITS.2023.3342651
https://doi.org/10.1109/TITS.2023.3342651
https://doi.org/10.1109/PESGM48719.2022.9916743
https://doi.org/10.1109/PESGM48719.2022.9916743
https://doi.org/10.1109/PESGM48719.2022.9916743
https://doi.org/10.1007/s10514-019-09829-4
https://doi.org/10.1007/s10514-019-09829-4

Part II
Scientific Article

47

Constraint-Safe Gust Rejection for Nonlinear Aeroelasitc Wings
via MPC-Driven Reinforcement Learning

P. Kostelac ∗

Delft University of Technology, Faculty of Aerospace Engineering, 2629 HS Delft, The Netherlands

The evolution of aerospace engineering has led to aircraft with lightweight, flexible structures

that improve fuel and aerodynamic performance. However, this flexibility increases sensitivity to

gust disturbances, demanding control systems that ensure safety and performance under strict

real-time constraints. These challenges highlight the need for new control architectures capable

of robust, adaptive, and constraint-aware behavior in nonlinear, time-varying environments.

Linear Parameter Varying Model Predictive Control (LPV-MPC) has emerged as a promising

tool for aeroelastic aircraft control due to its structured constraint handling and robustness.

However, its effectiveness can be limited under turbulence and real-time constraints. RL offers

adaptive, lightweight control in uncertain nonlinear environments, but lacks built-in safety

guarantees. Their complementary strengths have motivated hybrid approaches combining

reliability with flexibility. However, most current integrations either embed MPC within

RL or use RL to tune MPC, without fully leveraging their complementary strengths. This

paper proposes a novel architecture where MPC computes safe control bounds during training

that bracket the system’s response. These bounds guide an RL agent, which learns to select

effective actions within the safe region, ensuring constraint satisfaction by construction. The

approach leverages long-horizon MPC during training to enable fast, lightweight execution at

deployment. Simulations show improved gust rejection, constraint satisfaction, and reduced

online computational load compared to standalone controllers.

Nomenclature

𝒙𝑘 = state vector at time step 𝑘 , [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5]⊤ = [ℎ𝑘 , 𝛼𝑘 , ¤ℎ𝑘 , ¤𝛼𝑘 , 𝛽𝑘]⊤

𝑥1...𝑥5 = individual states: 𝑥1 = ℎ (m), 𝑥2 = 𝛼 (rad), 𝑥3 = ¤ℎ (m/s), 𝑥4 = ¤𝛼 (rad/s), 𝑥5 = 𝛽 (rad)

𝑣ℎ
𝑘
, 𝑎ℎ

𝑘
, 𝑗ℎ

𝑘
, 𝑠ℎ

𝑘
= plunge velocity, acceleration, jerk, snap (m/s, m/s2, m/s3, m/s4)

𝑣𝛼
𝑘

, 𝑎𝛼
𝑘

, 𝑗𝛼,𝑘 , 𝑠𝛼
𝑘

= pitch velocity, acceleration, jerk, snap (rad/s, rad/s2, rad/s3, rad/s4)

𝜕𝑣ℎ
𝑘
/𝜕𝑥𝑖 , 𝜕𝑣𝛼𝑘 /𝜕𝑥𝑖 = partial derivatives of velocity w.r.t. state variable 𝑥𝑖

∗MSc. Student, Faculty of Aerospace Engineering, Control and Simulation Division, Delft University of Technology.

𝜕𝑎ℎ
𝑘
/𝜕𝑥𝑖 , 𝜕𝑎𝛼𝑘 /𝜕𝑥𝑖 = partial derivatives of acceleration w.r.t. state variable 𝑥𝑖

𝑢flap = commanded flap deflection (rad)

|Δ𝑢𝑘 | = per-step elevator increment |𝑢𝑘 − 𝑢𝑘−1 | (rad)

𝑘𝛽 = flap actuator bandwidth (s−1)

𝑀mass = structural inertia matrix (kg or kg·m2)

𝐶 = damping matrix (kg/s or kg·m2/s)

𝐾 = stiffness matrix (N/m or Nm/rad)

𝐿aero = aerodynamic lift force (N)

𝑀aero = aerodynamic pitching moment (N·m)

𝒇 𝑘 = system dynamics evaluated at 𝒙𝑘 , 𝑓 (𝒙𝑘 , 𝑢𝑘 , 𝑤𝑘)

∇𝑥 𝒇 𝑘 = Jacobian of dynamics 𝑓 w.r.t. 𝑥 at time 𝑘

𝑤𝑘 = turbulence at time step 𝑘 (m/s)

𝜌 = air density (kg/m3)

𝑈 = freestream airspeed (m/s)

𝑐𝐿𝛼, 𝑐𝐿𝛽 = lift coefficients per angle of attack and flap deflection (1/rad)

𝑐𝑚𝛼, 𝑐𝑚𝛽 = moment coefficients per angle of attack and flap deflection (1/rad)

𝛼eff = effective angle of attack (rad)

𝑎𝑏 = aerodynamic center offset coefficient (unitless)

𝑏 = wing chord (m)

Δ𝑡 = discrete time step (s)

𝑇𝑠 = controller sampling period (s)

𝑁P, 𝑁C, 𝑁delay = prediction, control, and delay compensation horizons (steps)

𝑄, 𝑅 = state and input weighting matrices (dimensionless)

𝑘NN = number of neighbours in 𝑘-NN policy (–)

𝜀 = small inverse-distance regulariser (–)

𝐿𝑥 , 𝐿𝑢 = Lipschitz constants for state and input (–)

𝑒ℎ, 𝑒𝛼, 𝑒ℎ,RMS, 𝑒𝛼,RMS = instantaneous and RMS errors in ℎ, 𝛼 (m, rad)

𝑂ℎ, 𝑂𝛼 = maximum overshoot in ℎ, 𝛼 (mm, rad)

𝑇𝑠,ℎ, 𝑇𝑠,𝛼 = settling times in ℎ, 𝛼 (s)

𝐸ℎ
Low, 𝐸ℎ

Mid, 𝐸ℎ
High = plunge error energy in 0.1–1, 1–5, 5–50 Hz bands (mm2·s)

𝐸 𝛼
Low, 𝐸 𝛼

Mid, 𝐸 𝛼
High = AoA error energy in 0.1–1, 1–5, 5–50 Hz bands (deg2·s)

2

I. Introduction
The evolution of aerospace engineering has ushered in a

new era of aircraft design, characterized by lightweight,

flexible wings aimed at improving fuel efficiency and ma-

neuverability [1, 2]. While beneficial, these structures

introduce significant control challenges due to high-order,

nonlinear dynamics and strong coupling between structural

deformation and unsteady aerodynamics. Flexible wings

are particularly susceptible to aeroelastic phenomena such

as flutter, divergence, and control reversal, which threaten

both structural integrity and overall flight safety [3]. These

risks are further exacerbated under atmospheric turbulence,

where sudden gusts introduce rapidly varying loads that de-

mand precise real-time control despite actuator delays and

strict input and state constraints. Traditional control frame-

works, often fall short in addressing these coupled demands,

particularly when nonlinearities, transport delays, and con-

straint satisfaction must all be handled simultaneously [3].

To overcome these limitations, a hybrid RL–MPC controller

is developed by combining long-horizon LPV-MPC roll-

outs with a lightweight, constraint-aware Q-learning policy.

The result is a turbulence-resilient, delay-compensating

controller capable of achieving real-time flutter suppression

and load alleviation while respecting both computational

and physical constraints.

Existing methods span from classical linear techniques to

advanced nonlinear controllers, yet few are equipped to

handle the full spectrum of modern aeroelastic challenges.

Linear controllers such as LQR, LQG, MPC and H∞ [4–6]

remain widely used due to their simplicity, fast computa-

tion, and ease of gain tuning. Paired with gain scheduling

[7], they offer limited adaptability to changing conditions

but rely heavily on accurate linearizations. In highly flexi-

ble wings subject to turbulence and delay, linear control

assumptions often fail, resulting in model inaccuracies

performance degradation [8, 9].

Nonlinear control methods such as Nonlinear Dynamic

Inversion (NDI), Incremental Nonlinear Dynamic Inversion

(INDI), and backstepping [10–12] offer improved handling

of nonlinear dynamics but pose serious challenges in prac-

tical aeroelastic control. NDI depends on precise model

knowledge and is sensitive to internal dynamic instabilities

and inversion singularities, which are problematic in com-

plex aeroelastic systems. INDI reduces model dependency

but relies on accurate and delay-free measurement of state

derivatives and control effectiveness, which are difficult

to guarantee under turbulence and sensor noise. Back-

stepping, while systematic and theoretically robust, suffers

from the so-called explosion of complexity in high-order

systems, leading to computational burdens and difficulties

in implementation. Moreover, all three methods typically

assume full state availability and ideal actuator behavior as-

sumptions that break down under the delays, uncertainties,

and input constraints characteristic of aeroelastic models.

These limitations highlight the need for control strategies

that offer nonlinear robustness while remaining feasible

for real-time deployment with constrained sensing and

actuation.

One promising solution that bridges the gap between linear

controllers and full nonlinear designs is Linear Parameter-

Varying (LPV) control. Structured approaches like LPV-

MPC have gained traction in flexible aircraft control, of-

fering constraint handling, multivariable coordination, and

real-time adaptability across operating regimes [13–15].

These methods have shown promise in load alleviation

and flutter suppression [14–17]. However, many imple-

3

mentations rely on reduced-order models [18], or use

preview-based gust estimation [19], assumptions that may

break down in realistic turbulent conditions. Furthermore,

LPV-MPC strategies often neglect nonlinear actuator trans-

port delay [20], suffer from model mismatch, and their

performance hinges on accurate linearization quality, all of

which are challenged under turbulence and fast dynamics

[20, 21]. LPV-MPC also suffers from substantial computa-

tional demands due to repeated real-time optimization and

parameter updates, which limits its practicality in onboard,

safety-critical systems [22].

On the other end of the spectrum, RL has emerged as a data-

driven alternative capable of handling nonlinear dynamics,

model mismatch, and uncertain environments through adap-

tive policy learning [23, 24]. Its ability to bypass explicit

modeling makes it attractive for aeroelastic aircraft, where

accurate system identification is often infeasible. RL has

demonstrated promise across tasks such as gust load allevi-

ation, adaptive flight control, and fault-tolerant operation

[25–27]. Additionally, RL policies can be lightweight to

deploy, especially when using simple architectures such

as Q-learning [28]. However, RL often lacks inherent

guarantees for stability and constraint satisfaction, making

it ill-suited for direct deployment in safety-critical settings

[24, 25]. These contrasting characteristics reveal a natu-

ral synergy: MPC offers stability, constraint satisfaction,

and structured decision-making, while RL provides a data-

driven approach capable of handling nonlinear dynamics,

model mismatch, and uncertain environments. Together,

they form a complementary framework well-suited for ad-

dressing the demands of real-time aeroelastic control under

uncertainty and delay.

While hybrid architectures combining RL and MPC have

been explored, they are typically applied to slow or struc-

tured systems such as energy networks [29] or traffic [30].

The most common strategies embed MPC as a policy

within RL for safety and interpretability [31–33], or use

RL to tune MPC parameters like weights and horizons for

improved adaptability [34–36]. These approaches often

rely on one-way integration and do not fully leverage the

complementary strengths of both methods. As a result,

they fall short in addressing the demands of fast, nonlinear

systems like aeroelastic aircraft operating under turbulence

and actuator delay. This work introduces a new parallel

RL-MPC architecture tailored for real-time aeroelastic con-

trol. During training, two LPV-based MPC controllers

compute state and disturbance-dependent input bounds un-

der known best and worst-case gust scenarios, using long

horizons and accurate scheduling without computational

constraints. A Q-learning agent learns to select actions

within these bounds, using a rollout strategy that respects

actuator transport delay and ensures constraint satisfac-

tion. During deployment, a certified interpolation strategy

ensures constraint satisfaction when encountering unseen

states. The approach balances model-based safety and

data-driven adaptability, enabling lightweight, real-time

control under turbulence and uncertainty.

II. Methodology

This section presents the control methodology proposed for

safe learning and control of a flexible aeroelastic aircraft

model. The approach combines an LPV-based MPC to

generate safe bounds on control actions and a RL policy

to select feasible control inputs within those bounds. To

validate this architecture, both theoretical guarantees and

supporting numerical analyses are developed. A high-level

4

Nonlinear System
(Unknown Disturbances)

Training Phase

LPV-MPC Controller
(Best case: umin)

LPV-MPC Controller
(Best case: umax)

RL Agent + Nonlinear
System

(Select u ∈ [umin, umax])
Save to Q-Table

Current System State Find Nearest Trained
States (from Q-Table)

Weighted Interpolation
(Lipschitz Guarantee for

unseen states)

Apply Control Action to
System

Deployment Phase

Fig. 1 Overview of Control Framework Architecture

overview of the control structure is shown in Figure 1.

During training, two LPV-based MPC controllers are used

to compute safe upper and lower bounds on the admissi-

ble control actions for the flexible aircraft system. Since

training is performed offline, long prediction horizons can

be used to enhance accuracy without concern for real-time

computational limits. Moreover, the training environ-

ment includes known gust realizations, allowing accurate

modeling of the system dynamics and their response to

disturbances. The best-case and worst-case scenarios are

constructed based on experienced gust evolutions lever-

aging the fact that, given a particular system state, the

underlying gust profile that induced it can be approximately

inferred. This enables bounding of the control input over

a plausible range of disturbance behaviors and bracketing

the possible system responses.

RL agent then selects a control input within these bounds,

based on the predicted gust information and the current

system state. To ensure that the control effect is observable

and meaningful during learning, the control input is held

constant for two steps. This choice reflects the presence

of actuator dynamics: a single time step is not enough

for the control input to propagate through the system and

produce a visible effect on all relevant states. Two steps

were therefore chosen as the shortest possible duration

that fully captures the influence of the input on the system.

This is the only relevant criterion: the rollout must be long

enough for the control effect to be visible, but no longer

than necessary to stay consistent with deployment. In

systems with more complex actuator dynamics or different

structural responses, a longer rollout might be needed to

meet this condition. The RL agent’s reward function is

formulated as a quadratic cost, 𝑅 = −(𝑒𝑇𝑄𝑒 + 𝑟𝑢𝑢2), de-

signed to drive the system towards a desired decaying state

while penalizing control effort. It considers performance

under predicted, best-case, and worst-case gust scenarios,

ensuring robustness to different disturbance realizations.

Through interaction with the environment, the RL agent

5

learns a control policy that selects the most effective input

while respecting the safe control range, storing the policy

in a Q-table.

During deployment, new system states may be encountered

that do not exactly match the training data. To handle

this, a weighted interpolation strategy is applied between

nearby trained states in the Q-table. The deviation between

the new and trained states must be small enough to guar-

antee that the interpolated control input does not violate

system constraints. This distance depends not only on the

proximity to the trained states but also on how close the

system is to its operational limits. These bounds will be

derived later in the chapter. The goal of this methodol-

ogy is to formalize and validate the control architecture

proposed for safe reinforcement learning. To ensure that

this architecture is suitable for safety-critical operation, a

series of theoretical guarantees and supporting numerical

validations are established throughout this chapter.

A. System Modeling and Setup

1. System Definition and Continuous-Time Dynamics

The aircraft model considered in this work originates from

a flexible wing structure with two primary degrees of free-

dom, plunge and pitch, together with a third dynamic state

representing the flap deflection. The full state vector is

defined compactly as

𝒙(𝑡) =
[
ℎ(𝑡) 𝛼(𝑡) ¤ℎ(𝑡) ¤𝛼(𝑡) 𝛽(𝑡)

]⊤
, (1)

where ℎ(𝑡) denotes the vertical displacement (plunge), 𝛼(𝑡)

denotes the pitch angle, ¤ℎ(𝑡) and ¤𝛼(𝑡) represent the corre-

sponding velocities, and 𝛽(𝑡) denotes the flap deflection.

The continuous-time evolution of the system is governed

by a set of coupled differential equations that capture both

structural and aerodynamic effects. The structural dynam-

ics are modeled through second-order nonlinear equations

of the form


¥ℎ(𝑡)

¥𝛼(𝑡)

 = (𝑀mass)−1
©­­­«−


𝐿aero

𝑀aero

 − 𝐶

¤ℎ(𝑡)

¤𝛼(𝑡)

 − 𝐾

ℎ(𝑡)

𝛼(𝑡)


ª®®®¬ ,
(2)

where 𝑀mass ∈ R2×2 is the mass matrix, 𝐶 ∈ R2×2 is the

damping matrix, and 𝐾 ∈ R2×2 is the stiffness matrix. The

aerodynamic lift 𝐿aero and aerodynamic moment 𝑀aero act

as external forces and moments on the structure.

Nonlinearities arise both from the structural and aerody-

namic components of the system. Specifically, the stiffness

terms in 𝐾 depend nonlinearly on the states ℎ(𝑡) and 𝛼(𝑡)

shown in Equation (3), while the aerodynamic forces 𝐿aero

and 𝑀aero are nonlinear functions of the effective angle of

attack, which itself depends on the system’s states. Conse-

quently, the overall system exhibits nonlinear behavior.

𝑘ℎ (ℎ(𝑡)) = 2844 ·
(
1 + 0.9 ℎ(𝑡)2

)
,

𝑘𝛼 (𝛼(𝑡)) = 2.8
(
1 − 22𝛼(𝑡) + 1316𝛼(𝑡)2

−8580𝛼(𝑡)3 + 17290𝛼(𝑡)4
) (3)

The actuator dynamics associated with the flap are modeled

as a first-order system:

¤𝛽(𝑡) = 𝑘𝛽
(
𝑢flap (𝑡) − 𝛽(𝑡)

)
, (4)

where 𝑘𝛽 > 0 is the actuator bandwidth and 𝑢flap (𝑡) denotes

the commanded flap deflection input.

In addition to the control input, external disturbances such

as vertical gusts influence the system behavior by modify-

6

ing the effective angle of attack and thereby affecting the

aerodynamic forces and moments.

Combining the structural, aerodynamic, actuator, and dis-

turbance effects results in a continuous-time nonlinear

state-space system of the general form

¤𝒙(𝑡) = 𝒇 (𝒙(𝑡), 𝑢(𝑡), 𝑤(𝑡)) , (5)

where 𝒇 : R5 × R × R → R5 encapsulates the full physical

behavior of the flexible aircraft model, including nonlinear

stiffness, actuator dynamics, and disturbance influence.

2. Turbulence and System Coupling

This study focuses only on vertical gusts, as they have

the most significant effect on the angle of attack and the

pitch motion. Although horizontal gusts can also affect the

aircraft, their influence is less severe and therefore are not

included. The vertical gust 𝑤 enters the system through

the effective angle of attack, which becomes:

𝛼eff (𝑡) = tan−1
(
𝑈 sin(𝛼(𝑡)) − 𝑤(𝑡)

𝑈 cos(𝛼(𝑡))

)
+
¤ℎ(𝑡)
𝑈

+𝑎𝑏𝑏(𝑡)·
¤𝛼(𝑡)
𝑈

(6)

This establishes a nonlinear, state-dependent coupling be-

tween the turbulence and the aircraft dynamics. Which in

turn determines the aerodynamic lift and moment:

𝐿aero = 𝜌𝑈2𝑏
(
𝑐𝐿𝛼𝛼

eff (𝑡) + 𝑐𝐿𝛽𝛽(𝑡)
)
, (7)

𝑀aero = 𝜌𝑈2𝑏2
(
𝑐𝑚𝛼𝛼

eff (𝑡) + 𝑐𝑚𝛽𝛽(𝑡)
)
. (8)

These forces affect the dynamics of the system as shown

in 2 thus embedding the gust signal into the state update

through both aerodynamic and structural channels.

To ensure that the control architecture can reject gusts ef-

fectively, the controller must operate fast enough to capture

their dominant frequencies. In this study, 𝑤 is generated

using a Dryden turbulence model augmented with stochas-

tic variations to reflect extreme flight conditions [37]. A

Fourier analysis of representative gust signals shows that

most energy lies between 0.2 Hz and 2 Hz, with negligible

energy above 5 Hz. Given the 1000 Hz ∗ control rate and

the low-pass nature of the plant, the LPV-MPC framework

remains valid under these disturbance conditions.

The turbulence𝑤(𝑡) is generated using a Dryden turbulence

model filtered to reflect stochastic but physically realistic

flight conditions. As constructed, 𝑤(𝑡) is bounded in both

amplitude and frequency, with over 90% of its spectral

energy concentrated below 3 Hz and negligible content

above 10 Hz. This low-frequency structure ensures that the

disturbance evolves smoothly relative to the 1 kHz control

rate. Although 𝜕𝛼
𝜕𝑤

≠ 0 introduces a nonlinear coupling

between gusts and the aircraft dynamics, the overall system

remains continuous and well-posed for LPV linearization.

These properties validate the key design assumptions under-

lying both the LPV-MPC and RL-MPC controllers, namely,

that the system is subject to bounded, slowly varying yet

unpredictable disturbances.

3. Modeling Setup and Assumptions

This work studies a discretized version of a nonlinear

flexible aircraft model. The model is derived from prior

identification based on wind tunnel. The original dynam-

ics are continuous, but analysis is performed in discrete
∗Lower control frequencies such as 200–500 Hz were tested during initial simulations but led to instability in states that were expected to remain

stable. Stability was only consistently achieved at a 1000 Hz simulation frequency, which was then matched by the control frequency for consistency.

7

time to enable tractable development while preserving key

behaviors. The nonlinear stiffness terms 𝑘ℎ (ℎ(𝑡)) and

𝑘𝑎 (𝛼(𝑡)) are modeled as smooth polynomials as shown in

(3), justifying the use of Taylor expansions. The control

input modifies flap deflection 𝛽 through a first-order filter,

after which aerodynamic forces are applied.

Several assumptions are made to frame the theoretical

analysis. The flap input 𝑢flap and the turbulence 𝑤(𝑡) are

bounded within known limits, which is met by physical

actuators and atmospheric phenomena. For simulation,

gusts are treated as fixed external signals injected indepen-

dently of the state evolution. All derivations are conducted

in discrete time, and stability, boundedness, and mono-

tonicity are established for the discrete-time system. While

the continuous-time system is the physical reference, it

is assumed that properties shown in the discrete domain

approximately carry over to the continuous case within

the limits of numerical fidelity. This is a common approx-

imation in digital control where sufficiently small time

steps are used. During training and rollout, the control

input is held constant for two time steps to capture actuator

dynamics accurately. The actuator transport delay itself

is not explicitly treated in this section, as the goal here is

to verify that the trained state trajectories remain within

safe bounds; delay compensation will be addressed later

in Section II.C using a Lipschitz-based deployment-time

safety filter. These assumptions form the foundation for

the rest of the theoretical and numerical developments.

4. Discrete-Time State Update and Approximation

The analysis from this point onward is based on a dis-

cretized version of the continuous-time system. While

the true dynamics follow a differential equation given in

Equation (5), a discrete-time approximation is adopted for

tractable prediction, analysis, and control design. This

allows the nonlinear behavior of the system to be captured

over finite time steps while enabling theoretical guarantees

to be derived in a step-wise manner.

To discretize the system, a Taylor expansion is applied. For

a small time step Δ𝑡, the state after 𝑛 steps is given by

𝒙𝑘+𝑛 ≈ 𝒙𝑘 +
𝑛∑︁
𝑖=1

Δ𝑡𝑖

𝑖!
· 𝑑

(𝑖−1)

𝑑𝑡 (𝑖−1) 𝒇 (𝒙𝑘 , 𝑢𝑘 , 𝑤𝑘). (9)

In this work, a two-step horizon is considered (𝑛 = 2). This

choice is motivated by the actuator structure: the control

input 𝑢𝑘 influences the actuator state 𝛽, which only begins

to affect the lift and moment terms in the second step.

Using only one step fails to capture this effect, while using

more than two would no longer reflect the real-time control

update pattern, where a new input is selected at each time

step. The two step expression is derived as follows:

𝒙𝑘+2 ≈ 𝒙𝑘 +Δ𝑡 · 𝒇 (𝒙𝑘 , 𝑢𝑘 , 𝑤𝑘) +Δ𝑡 · 𝒇 (𝒙𝑘+1, 𝑢𝑘+1, 𝑤𝑘+1).

𝒇 (𝒙𝑘+1, 𝑢𝑘+1, 𝑤𝑘+1) ≈ 𝒇 𝑘 + Δ𝑡 · ∇𝒙 𝒇 𝑘 · 𝒇 𝑘 ,

𝒙𝑘+2 ≈ 𝒙𝑘 + 2Δ𝑡 · 𝒇 𝑘 + Δ𝑡2 · ∇𝒙 𝒇 𝑘 · 𝒇 𝑘 + O(Δ𝑡3) (10)

The term 2Δ𝑡 · 𝒇 𝑘 represents the accumulated first-order mo-

tion over two steps. The second-order term Δ𝑡2 · ∇𝒙 𝒇 𝑘 · 𝒇 𝑘
captures the nonlinear curvature of the trajectory as the

states evolve. Higher-order effects, such as those involving

the Hessian ∇2
𝒙 𝒇 , are of order O(Δ𝑡3) and are neglected.

This is justified given the small time step used in simulation,

Δ𝑡 = 0.001, making such terms numerically insignificant.

As will be shown later, the system response under this

approximation behaves nearly linearly over short rollouts,

8

even in the presence of nonlinearities. This supports the

use of second-order discretization as a basis for controller

design and safety certification. The full dynamics include

actuator filtering, nonlinear stiffness, and aerodynamic

forces evaluated at each step of the expansion.

B. Numerical System Validation

This section establishes the system-specific mathematical

groundwork required to support the formal proofs presented

later in this report. The goal is to ensure that key assump-

tions, such as the validity of the linear parameter-varying

(LPV) model and the use of second-order approximations,

hold under the dynamic conditions of the flexible aircraft

system considered here. While the analytical structure of

the arguments is general, the numerical results and thresh-

olds derived in this section apply specifically to the current

system configuration. All detailed calculations, includ-

ing the bounding of nonlinear terms and justification for

higher-order term neglect, need to be replicated for other

systems. This phase is essential: the formal guarantees

in later sections rely on the numerical validity of these

assumptions for the specific model under consideration.

1. Numerical Validation of LPV Modeling

The MPC controller used in this work relies on an LPV

(Linear Parameter-Varying) approximation of the nonlin-

ear aircraft model to generate two reference trajectories.

These trajectories are later interpolated by a reinforcement

learning (RL) policy during deployment. For this control

architecture to remain safe and reliable, it is necessary

to ensure that the LPV-generated trajectories are valid

approximations of the true nonlinear dynamics.

The system’s nonlinear behavior arises primarily from the

state-dependent stiffness terms and aerodynamic coupling.

The plunge stiffness 𝑘ℎ introduces a quadratic dependence

on vertical displacement ℎ, while the pitch stiffness 𝑘𝑎

follows a fourth-order polynomial in 𝛼. Additional nonlin-

earities enter through the effective angle of attack, which

is influenced by both ¤ℎ and ¤𝛼, thereby affecting the lift and

aerodynamic moment equations.

To construct the LPV model, the dynamics are lin-

earized at each timestep around the current state 𝒙𝑘 =

[ℎ𝑘 , 𝛼𝑘 , 𝑣
ℎ
𝑘
, 𝑣𝛼

𝑘
, 𝛽𝑘], resulting in an expression of the form

𝒙𝑘+1 = 𝐴(ℎ𝑘 , 𝛼𝑘)𝒙𝑘 + 𝐵𝑢𝑘 . Since the control input affects

only the flap through 𝛽𝑘+1 = 𝛽𝑘 + Δ𝑡 · 𝑘𝛽 (𝑢flap,𝑘 − 𝛽𝑘),

the input matrix 𝐵 is constant with respect to the system

state and independent of the structural and aerodynamic

nonlinearities.

The validity of the LPV approximation hinges on the as-

sumption that the local linearization error remains bounded.

Specifically, it must hold that

∥ 𝒇 (𝒙𝑘 , 𝑢𝑘) − 𝐴(ℎ𝑘 , 𝛼𝑘)𝒙𝑘 − 𝐵𝑢𝑘 ∥ ≤ 𝜖 for all 𝒙 ∈ X

(11)

where X is a neighborhood around the linearization point.

The following sections provide frequency-domain and nu-

merical validation of this approximation.

In this setup, the system matrices 𝐴(ℎ, 𝛼) are updated at

every control step based on real-time evaluations of ℎ and

𝛼, capturing the instantaneous stiffness and aerodynamic

behavior. Because the timestep Δ𝑡 is sufficiently small,

the nonlinear evolution of the system remains close to

that predicted by the LPV approximation, ensuring control

accuracy.

This approach is consistent with theoretical studies showing

that LPV approximations offer bounded error for systems

9

with smoothly varying parameters. When linearizations are

performed frequently and within a well-characterized local

domain, the LPV model accurately reflects the underlying

nonlinear dynamics. This supports its use as a foundation

for safe control in the presence of state-dependent stiffness

and aerodynamic coupling. A mathematical justification of

this approximation is provided in the following subsections.

As stated in Equation (11), the validity of the LPV approx-

imation depends on the boundedness of the linearization

error across the relevant state space. Before quantifying

this error directly, it is instructive to examine the frequency

content of the system’s response to determine whether

the dynamics evolve slowly enough to justify frequent lin-

earizations. Specifically, if the dominant system modes

lie well below the LPV update rate (1000 Hz), then the

linear approximation at each timestep is likely to remain

locally accurate throughout the horizon. This serves as a

practical first check for whether the model’s dynamics are

compatible with a high-frequency LPV-based controller.

To further support this, a comparison is made between

the open-loop response of the continuous system and that

of the LPV system updated at 1000 Hz. The similarity

between the two trajectories provides additional evidence

that the LPV approximation remains valid at this update

rate over the relevant dynamic range.

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

h
[m

]

LPV system
Continuous system

Fig. 2 Figure comparing the output of the LPV system
and the continuous system

0 1 2 3 4 5 6 7 8 9 10

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

R
el

at
iv

e
E

rr
or

 [%
]

Fig. 3 Figure showing the relative difference between
the LPV and continuous systems

A targeted frequency analysis is also conducted on the

nonlinear model to characterize the timescales of all five

states in response to random low-amplitude actuation. The

FFT analysis confirmed that the dominant frequencies for

all five states lie between (0.5-5 Hz), well below the 1000

Hz LPV update rate. The actuator’s bandwidth of 9.5

Hz is approximately double that of the fastest component,

further supporting the feasibility of this control frequency.

Additionally, this supports the use of MPC during RL

10

training, as the prediction horizons required to resolve such

low-frequency dynamics would be too long for real-time

deployment. However, during training, computational time

is not a constraint, enabling MPC to generate long-horizon

rollouts that further justify its use as an offline training

oracle rather than an online controller.

To support the numerical validation, this section provides a

formal justification for why the LPV approximation remains

accurate under the model’s nonlinear dynamics. Given

that the system is linearized around the current state𝒙𝑘 at

every control step, the resulting LPV model corresponds

to a first-order Taylor expansion of the true dynamics:

𝒇 (𝒙, 𝑢) = 𝒇 (𝒙𝑘 , 𝑢) + ∇𝒙 𝒇 (𝒙𝑘) (𝒙 − 𝒙𝑘) + 𝑹(𝒙) (12)

with the approximation error 𝑹(𝒙) bounded as:

∥𝑹(𝒙)∥ ≤ 1
2

sup
𝝃∈X

∥𝐷2 𝒇 (𝝃)∥ · ∥𝒙 − 𝒙𝑘 ∥2 (13)

This expression confirms that the LPV model offers a

second-order accurate approximation in the vicinity of 𝒙𝑘 ,

provided the dynamics are sufficiently smooth. In this ap-

plication, the nonlinear stiffness and aerodynamic terms are

differentiable with bounded second derivatives, implying

the LPV error remains locally controlled.

This theoretical guarantee justifies the use of frequent lin-

earizations in the control loop and supports the safety of

trajectory generation using LPV models. The perturba-

tion values used to assess the LPV approximation error

are derived from 500 simulations of the nonlinear air-

craft model and represent the 99.9th percentile of observed

single-timestep deviations. While the specific numerical

results are tied to the system considered in this work, the

approach itself is applicable to other systems, however any

attempt to replicate or adapt the LPV approach to a different

model should be accompanied by a similar system-specific

validation. In this case, the maximum deviation in any state

matrix entry was 0.27%, and the maximum deviation in the

resulting state trajectory was 0.156%, both are sufficiently

small to justify the use of the LPV approximation.

2. Validation of Second-Order Model

To justify the use of a second-order approximation in the

state propagation, the next term in the Taylor expansion is

examined to demonstrate that its contribution is negligible

for small time steps. The full Taylor expansion of the

discrete-time state update is given by:

𝒙𝑘+2 = 𝒙𝑘 + 2Δ𝑡 · 𝑓𝑘 + Δ𝑡2 · ∇𝑥 𝑓𝑘 𝑓𝑘

+Δ𝑡
3

6
· 𝐷2 𝑓𝑘 [𝑓𝑘 , 𝑓𝑘] + O(Δ𝑡4) (14)

In this expression, the third term represents the second-

order curvature (Jacobian), while the fourth term captures

the third-order behavior via the Hessian 𝐷2 𝑓𝑘 applied twice

to the vector 𝑓𝑘 . Specifically, the notation 𝐷2 𝑓𝑘 [𝑓𝑘 , 𝑓𝑘]

refers to the application of the Hessian tensor to the direc-

tion 𝑓𝑘 twice. For each component 𝑖, this results in:

[
𝐷2 𝑓𝑘 [𝑓𝑘 , 𝑓𝑘]

]
𝑖
=

𝑛∑︁
𝑗=1

𝑛∑︁
𝑙=1

𝜕2 𝑓𝑖
𝜕𝑥 𝑗𝜕𝑥𝑙

𝑓𝑘, 𝑗 𝑓𝑘,𝑙 (15)

This represents the second-order directional derivative of

the 𝑖-th component of 𝑓 along the direction 𝑓𝑘 . The objec-

tive is to demonstrate that the magnitude of this third-order

term is significantly smaller than that of the second-order

term.

To evaluate the relative importance of the third-order term,

11

State ℎ𝑘 𝑣ℎ
𝑘

𝛼𝑘 𝑣𝛼
𝑘

𝛽𝑘

3rd / 2nd Order (%) 0.153% 0.000126% 0.291% 0.04326% 2.0%
Table 2 Relative contribution of third-order term to second-order update for each state.

the ratio between the third- and second-order terms in

Equation 14 is considered:

Ratio =

Δ𝑡3

6 𝐷2 𝑓𝑘 [𝑓𝑘 , 𝑓𝑘]

Δ𝑡2∇𝑥 𝑓𝑘 𝑓𝑘

 =
Δ𝑡

6
· ∥𝐷

2 𝑓𝑘 ∥ · ∥ 𝑓𝑘 ∥
∥∇𝑥 𝑓𝑘 ∥

(16)

Let us define the following bounds:

• ∥ 𝑓𝑘 ∥ ≤ 𝑀: Maximum expected value of the state

derivative

• ∥∇𝑥 𝑓𝑘 ∥ ≤ 𝐾J: Maximum norm of the Jacobian

• ∥𝐷2 𝑓𝑘 ∥ ≤ 𝐻: Maximum norm of the Hessian (cur-

vature)

Substituting these into the ratio gives:

Ratio ≤ Δ𝑡

6
· 𝐻 · 𝑀

𝐽
(17)

This expression provides an upper bound on the third-order

term’s contribution relative to the second-order term. To

represent this ratio quantitatively, values of 𝐻, 𝑀 , and 𝐾J

must be evaluated based on the system’s dynamics. Repre-

sentative values for the system states and their derivatives

are therefore selected using a numerical analysis based on

the 99.9th percentile of state and derivative magnitudes,

extracted from an extensive set of simulations of the current

aircraft model. This approach ensures that the conclusions

remain valid even under extreme, yet realistic, operating

conditions. It is important to note that the results presented

here are specific to the system under consideration and may

not be generalizable. For other systems or configurations,

a similar analysis should be performed using appropriately

tailored simulation data. The approximation is more likely

to transfer well to smooth, time-invariant, and fully actu-

ated systems with moderate state rates and curvature. In

contrast, systems with strong nonlinearity, under-actuation,

or significant time variation may require tighter bounds or

result in less favorable ratios. This conclusion is supported

by a quantitative evaluation showing that third-order term

effects are negligible as is summarized in Table 2. The table

reports the ratio of the third-order Taylor expansion term

to the second-order term, expressed as a percentage. These

ratios quantify the relative magnitude of the third-order

contribution for each state under the worst-case conditions

used in the analysis.

According to this numerical analysis, which is specific to

the aircraft system studied here and based on conservative

high-percentile values from extensive simulation data. The

third-order term remains consistently small relative to the

second-order term for all state updates. This validates the

use of a second-order Taylor approximation for this system,

and higher-order contributions can be safely neglected in

subsequent derivations and controller implementations.

The analysis demonstrated that the third-order term remains

small for the default time step Δ𝑡 = 0.001. Table 2 sum-

marizes the relative third-to-second-order contributions

for each state under worst-case conditions. All ratios are

below 2%, with most STATES significantly lower (e.g., 𝑣ℎ
𝑘

at 0.000126%), confirming that the second-order approxi-

mation is accurate at this time step. Since this ratio scales

linearly with Δ𝑡, the existing results can be extrapolated to

12

identify the maximum step size that preserves a desired ac-

curacy threshold. Table 3 reports the maximum allowable

time step for each state such that the third-order contribu-

tion remains below 5% of the second-order term. Notably,

the flap state 𝛽𝑘 imposes the most restrictive bound.

State ℎ𝑘 𝛼𝑘 𝑣ℎ
𝑘

𝑣𝛼
𝑘

𝛽𝑘

Max Δ𝑡 [s] 0.032 0.033 3.97 0.115 0.0025

Table 3 MaximumΔ𝑡 per state for limiting third-order
terms to under 5% of second-order.

These results confirm that the second-order Taylor expan-

sion remains valid at Δ𝑡 = 0.001 across all states, and

significantly larger steps are possible in most cases. The

flap state 𝛽𝑘 poses the most restrictive condition. However,

this bound depends on the value of 𝑘𝛽 . In systems with

faster flap dynamics, i.e., with larger 𝑘𝛽 the third-order

term becomes less significant, allowing larger time steps

without violating the second-order accuracy assumption.

C. Theoretical Guarantees

This section provides the theoretical guarantees that support

the safe deployment of the learned control policy. Building

on the assumptions and observations established in the

numerical analysis II.B, it is first shown that the training

procedure yields control inputs that produce bounded and

constraint-satisfying state updates. These guarantees are

then extended to the deployment phase, where the con-

troller must operate on previously unseen states. To ensure

safety in such cases, a Lipschitz-based filtering mechanism

is introduced to certify the interpolated control inputs by

bounding their deviation from known-safe trajectories.

1. Monotonicity and Bounding of the Full State Update

This section investigates whether the second-order state

update lies between the outcomes obtained by applying

the extreme control inputs 𝑢min and 𝑢max. Specifically,

it will be shown that, under the assumptions established

in Section II.B, applying any intermediate control input

𝑢 ∈ [𝑢min, 𝑢max] may result in a state 𝒙𝑘+2 (𝑢) that remains

bounded between 𝒙𝑘+2 (𝑢min) and 𝒙𝑘+2 (𝑢max). If such

boundedness can be established, it enables constraint satis-

faction to be inferred by verifying only the two bounding

trajectories. Since these cases correspond to the outputs

of LPV-MPC controllers that have already been proven to

satisfy the full system constraints, the intermediate state

resulting from any RL-selected input can also be certified

as safe. This property is critical, as it forms the theoretical

foundation for enabling safe action selection by the rein-

forcement learning agent. Using the second-order Taylor

expansion, the state update is expressed as:

𝒙𝑘+2 = 𝒙𝑘 + Δ𝑡 · 𝒇 (𝒙𝑘 , 𝑢𝑘) +
Δ𝑡2

2
· 𝑲J (𝒙𝑘) · 𝒇 (𝒙𝑘 , 𝑢𝑘)

𝒙𝑘+2 = 𝒙𝑘 + 𝑺(𝒙𝑘) · 𝒇 (𝒙𝑘 , 𝑢𝑘) (18)

where 𝑆(𝒙𝑘) = Δ𝑡 · 𝐼 + Δ𝑡2

2 · 𝑲J (𝒙𝑘). While it might ini-

tially appear that if the function 𝒇 (𝒙𝑘 , 𝑢) lies between

𝒇 (𝒙𝑘 , 𝑢min) and 𝒇 (𝒙𝑘 , 𝑢max), then the same would be true

for the updated state 𝒙𝑘+2 (𝑢), this implication is not guaran-

teed. To formally guarantee that the updated state 𝒙𝑘+2 (𝑢)

lies between the trajectories generated by 𝑢min and 𝑢max,

certain conditions must hold. Specifically, it must be as-

sumed that the mapping 𝑢 ↦→ 𝒇 (𝒙𝑘 , 𝑢) is monotonic for

each individual state component, so the effect of control

13

inputs does not reverse direction. Additionally, the dy-

namic update structure, captured by the matrix 𝑨(𝒙𝑘),

must preserve both the sign and relative magnitude of

variations in 𝒇 (𝒙𝑘 , 𝑢) across the state evolution. Under

these assumptions, it would follow that bounding 𝒇 (𝒙𝑘 , 𝑢)

between its values at the control extremes is sufficient to

bound the future state as well. However, this implication

cannot be relied upon unless those structural properties are

satisfied.

These conditions are not uniformly satisfied across the

studied system, particularly for states influenced by non-

linear aerodynamic forces and stiffness terms that depend

indirectly on the control input, such as through the effective

angle of attack. As a result, it cannot be generally assumed

that the full state update lies between those generated by

𝑢min and 𝑢max. Guaranteeing this would require global

monotonicity of 𝒇 (𝒙𝑘 , 𝑢) with respect to 𝑢, or that the

second-order update matrix 𝑨(𝒙𝑘) preserves such ordering

across all state directions—neither of which holds in this

setting. Therefore, each state component must be analyzed

individually to rigorously establish boundedness between

the two control extremes.

2. Bounding Analysis for ℎ𝑘+2 and 𝛼𝑘+2

This section verifies whether the second-order updates of

the plunge and pitch states, ℎ𝑘+2 and 𝛼𝑘+2, remain bounded

between the outcomes resulting from the extreme control in-

puts 𝑢min and 𝑢max. Establishing this property ensures that

applying any intermediate control 𝑢 ∈ [𝑢min, 𝑢max] yields

a state trajectory within a known safe region, assuming the

bounding cases are verified to satisfy constraints.

Step 1: Second-Order Expansion. The second-order

updates are given by:

ℎ𝑘+2 = ℎ𝑘 + Δ𝑡 · 𝑣ℎ𝑘 +
Δ𝑡2

2
· 𝑎ℎ𝑘 ,

𝛼𝑘+2 = 𝛼𝑘 + Δ𝑡 · 𝑣𝛼𝑘 + Δ𝑡2

2
· 𝑎𝛼𝑘 (19)

As ℎ𝑘 , 𝑣ℎ
𝑘
, 𝛼𝑘 , and 𝑣𝛼

𝑘
are fixed at the current timestep, the

only input-dependent variation arises from the acceleration

terms 𝑎ℎ
𝑘

and 𝑎𝛼
𝑘

.

Step 2: Expressions for Accelerations. The coupled

dynamics yield the following expressions:

𝑎ℎ𝑘 =

(
𝐼𝑎

det𝑀mass

)
(−𝐿aero

𝑘 − 𝑐ℎ𝑣ℎ𝑘 − 𝑘ℎℎ𝑘)

+
(
− 𝑚𝑤𝑥𝑎𝑏

det𝑀mass

)
(−𝑀aero

𝑘 − 𝑐𝑎𝑣𝛼𝑘 − 𝑘𝑎𝛼𝑘)

𝑎𝛼𝑘 =

(𝑚𝑡

det𝑀mass

)
(−𝑀aero

𝑘 − 𝑐𝑎𝑣𝛼𝑘 − 𝑘𝑎𝛼𝑘)

+
(
− 𝑚𝑤𝑥𝑎𝑏

det𝑀mass

)
(−𝐿aero

𝑘 − 𝑐ℎ𝑣ℎ𝑘 − 𝑘ℎℎ𝑘) (20)

The terms affected by the control input 𝑢𝑘 are the aerody-

namic force 𝐿aero
𝑘

and moment 𝑀aero
𝑘

, both of which depend

on the flap deflection 𝛽𝑘 . The flap evolves according to the

first-order discrete-time system:

𝑣
𝛽

𝑘
= ¤𝛽𝑘 = 𝑘𝛽 (𝑢𝑘 − 𝛽𝑘) (21)

This structure ensures that 𝛽𝑘 is a smooth and monotonic

function of the control input 𝑢𝑘 over short time intervals.

Step 3: Dependence of Aerodynamic Terms on Input.

The aerodynamic terms are given by:

𝐿aero
𝑘 = 𝜌𝑈2𝑏

(
𝑐𝐿𝛼 · 𝛼eff,𝑘 + 𝑐𝐿𝛽 · 𝛽𝑘

)
,

𝑀aero
𝑘 = 𝜌𝑈2𝑏2 (

𝑐𝑚𝛼 · 𝛼eff,𝑘 + 𝑐𝑚𝛽 · 𝛽𝑘
)

(22)

14

with

𝛼eff,𝑘 = 𝛼𝑘 +
𝑣ℎ
𝑘

𝑈
+ 𝑎𝑏𝑏 ·

𝑣𝛼
𝑘

𝑈
(23)

Since𝛼eff,𝑘 is independent of the control input𝑢𝑘 , both 𝐿aero
𝑘

and 𝑀aero
𝑘

depend on 𝑢𝑘 only through the term 𝛽𝑘 (𝑢𝑘). As

𝛽𝑘 is a monotonic function of 𝑢𝑘 , the mappings 𝑢𝑘 ↦→ 𝐿aero
𝑘

and 𝑢𝑘 ↦→ 𝑀aero
𝑘

are also monotonic. Consequently, the

accelerations 𝑎ℎ
𝑘
(𝑢𝑘) and 𝑎𝛼

𝑘
(𝑢𝑘), which are affine in 𝐿aero

𝑘

and 𝑀aero
𝑘

, are monotonic with respect to the control input.

It follows that:

𝑎ℎ𝑘 (𝑢𝑘) ∈
[
𝑎ℎ𝑘 (𝑢min), 𝑎ℎ𝑘 (𝑢max)

]
,

𝑎𝛼𝑘 (𝑢𝑘) ∈
[
𝑎𝛼𝑘 (𝑢min), 𝑎𝛼𝑘 (𝑢max)

]
,

⇒ ℎ𝑘+2 (𝑢𝑘) ∈ [ℎ𝑘+2 (𝑢min), ℎ𝑘+2 (𝑢max)] ,

𝛼𝑘+2 (𝑢𝑘) ∈ [𝛼𝑘+2 (𝑢min), 𝛼𝑘+2 (𝑢max)] (24)

This confirms that the second-order updates of both ℎ and 𝛼

remain bounded between the two trajectories corresponding

to the extreme control inputs.

3. Bounding Analysis for 𝑣ℎ
𝑘+2 and 𝑣𝛼

𝑘+2

This section analyzes whether the velocity states 𝑣ℎ
𝑘+2 and

𝑣𝛼
𝑘+2 remain bounded between the outcomes corresponding

to the extreme control inputs 𝑢min and 𝑢max, assuming an

intermediate control value 𝑢𝑘 ∈ [𝑢min, 𝑢max].

Step 1: Approximate Update Expressions. The discrete-

time velocity updates are approximated using the second-

order expansion:

𝑣ℎ𝑘+2 = 𝑣ℎ𝑘 + Δ𝑡 · 𝑎ℎ𝑘 +
Δ𝑡2

2
· 𝑗ℎ𝑘 , (25)

𝑣𝛼𝑘+2 = 𝑣𝛼𝑘 + Δ𝑡 · 𝑎𝛼𝑘 + Δ𝑡2

2
· 𝑗𝛼,𝑘 (26)

As established in the third-order truncation analysis, the

jerk terms 𝑗ℎ
𝑘

and 𝑗 𝛼
𝑘

are negligibly for small time steps

(Δ𝑡 = 0.001). The updates are therefore simplified as:

𝑣ℎ𝑘+2 ≈ 𝑣ℎ𝑘 + Δ𝑡 · 𝑎ℎ𝑘 , 𝑣𝛼𝑘+2 ≈ 𝑣𝛼𝑘 + Δ𝑡 · 𝑎𝛼𝑘 (27)

Step 2: Bounding Behavior. The accelerations 𝑎ℎ
𝑘

and 𝑎𝛼
𝑘

are monotonic in control input 𝑢𝑘 , due to their linear depen-

dence on the aerodynamic terms 𝐿aero
𝑘

and 𝑀aero
𝑘

, which are

affine in the flap deflection 𝛽𝑘 (𝑢𝑘). Since 𝛽𝑘 (𝑢𝑘) evolves

monotonically with 𝑢𝑘 , the accelerations are kept within

the minimum and maximum values as is shown in equation

24. Because the timestep is fixed and the system follows

a discrete-time kinematic relation, the resulting velocities

also remain within predefined bounds, as expressed in:

𝑣ℎ𝑘 (𝑢𝑘) ∈
[
𝑣ℎ𝑘 (𝑢min), 𝑣ℎ𝑘 (𝑢max)

]
𝑣𝛼𝑘 (𝑢𝑘) ∈

[
𝑣𝛼𝑘 (𝑢min), 𝑣𝛼𝑘 (𝑢max)

] (28)

Substituting Equation 24 and Equation 28 into velocity

update rule yields:

𝑣ℎ𝑘+2 (𝑢𝑘) ∈
[
𝑣ℎ𝑘+2 (𝑢min), 𝑣ℎ𝑘+2 (𝑢max)

]
𝑣𝛼𝑘+2 (𝑢𝑘) ∈

[
𝑣𝛼𝑘+2 (𝑢min), 𝑣𝛼𝑘+2 (𝑢max)

] (29)

This confirms that the second-order updates of the velocity

states remain bounded within the range defined by the

extreme control inputs.

4. Bounding Analysis for 𝛽𝑘+2

The flap state 𝛽𝑘+2 evolves according to a first-order discrete-

time equation and remains bounded between the trajectories

generated by the control inputs 𝑢min and 𝑢max. This is partic-

ularly important, as 𝛽 directly influences the aerodynamic

terms in the coupled dynamics.

Step 1: Discrete Update Rule. The continuous-time

15

evolution is given by:

¤𝛽 = 𝑘𝛽 (𝑢𝑘 − 𝛽𝑘) (30)

Applying forward Euler integration for two steps yields:

𝛽𝑘+1 = 𝛽𝑘 + Δ𝑡 · 𝑘𝛽 (𝑢𝑘 − 𝛽𝑘),

𝛽𝑘+2 = 𝛽𝑘+1 + Δ𝑡 · 𝑘𝛽 (𝑢𝑘+1 − 𝛽𝑘+1)
(31)

Both updates are affine in the control inputs and represent

convex combinations of prior values, ensuring that 𝛽𝑘

evolves smoothly and monotonically in 𝑢𝑘 and 𝑢𝑘+1.

Step 2: Monotonicity and Bounding. Because each step

depends monotonically on its respective control input, the

full two-step update is also monotonic with respect to both

𝑢𝑘 and 𝑢𝑘+1. As a result:

𝛽𝑘+2 (𝑢) ∈ [𝛽𝑘+2 (𝑢min), 𝛽𝑘+2 (𝑢max)] (32)

This guarantees that the discrete-time update of the flap

state 𝛽 remains bounded within the safe envelope defined by

the extremal control inputs. While the system is nonlinear

due to stiffness terms like 𝑘ℎ (ℎ), 𝑘𝑎 (𝛼), and aerodynamic

forces that depend on 𝛼eff, the key dependencies on the

control input 𝑢 occur through the flap deflection 𝛽, which

evolves smoothly according to a first-order stable system.

As a result, 𝛽(𝑢) is monotonic in 𝑢, and so are the aerody-

namic terms 𝐿 (𝑢) and 𝑀𝑀 (𝑢), which are affine in 𝛽. This

monotonicity carries through to all acceleration terms and

thereby to the full state update expressions.

5. Lipschitz-Based Deployment-Time Generalization Guar-
antee

While earlier sections verified that the trained policy pro-

duces safe trajectories, this section addresses deployment-

time safety, specifically when the controller encounters a

state 𝒙curr not seen during training. To ensure safety in such

cases, a runtime filter is introduced that selects a control

input by interpolating from a set of nearby data points, each

associated with a known-safe rollout. This approach draws

on ideas from local control synthesis and data-driven safety

enforcement. It assumes access to a local database:

D =

{(
𝒙 (𝑗)
𝑘
, 𝒖 (𝑗)

𝑘
, 𝒙 (𝑗)

𝑘+1

)}𝑁
𝑗=1

(33)

where each state-action pair (𝒙 (𝑗)
𝑘
, 𝒖 (𝑗)

𝑘
) produces a one-

step outcome 𝒙 (𝑗)
𝑘+1 that is known to satisfy all constraints.

Here, the superscript (𝑗) denotes the index of the database

entry, indicating the 𝑗 th verified rollout sample, while 𝑘

refers to the time index within that rollout. These verified

outcomes are used to construct and certify safe control

inputs at deployment.

The core objective is to show that, under mild regularity

assumptions on the dynamics, the one-step state resulting

from the interpolated input 𝒖∗ remains close to the verified

outcomes 𝒙 (𝑗)
𝑘+1. This deviation is bounded using a Lips-

chitz expression, and if the bound remains within the safety

margin to the constraint boundary, the interpolated state

is guaranteed to be safe. This filtering scheme is applied

at every timestep during deployment, providing formal,

simulation-free safety certification. It generalizes safety

to unseen states using only locally available data, without

requiring retraining or model revalidation.

6. Interpolated Control and One-Step Deviation Bound

Given a current state 𝒙curr, a control input is computed by

interpolating between the control inputs 𝒖 (𝑗)
𝑘

associated

with its nearest neighbors 𝒙 (𝑗)
𝑘

in the local database D.

16

The interpolated input is given by:

𝒖∗ =
𝑁∑︁
𝑗=1
𝑤 (𝑗) · 𝒖 (𝑗)

𝑘
, where 𝑤 (𝑗) ≥ 0,

𝑁∑︁
𝑗=1
𝑤 (𝑗) = 1,

(34)

and 𝑤 (𝑗) ∝ 1
∥𝒙curr − 𝒙 (𝑗)

𝑘
∥ + 𝜖

(35)

Here, 𝑤 (𝑗) denotes the interpolation weight associated

with the 𝑗-th entry in the database D, matching the pair

(𝒙 (𝑗)
𝑘
, 𝒖 (𝑗)

𝑘
). A small regularization constant 𝜖 > 0 is

included for numerical stability. This weighting priori-

tizes neighbors closer to 𝒙curr, under the assumption that

similar states require similar safe actions. The key idea

is that if each 𝒖 (𝑗)
𝑘

is known to produce a safe transition

from 𝒙 (𝑗)
𝑘

, and if 𝒙curr is sufficiently close to all 𝒙 (𝑗)
𝑘

, then

the interpolated action 𝒖∗ is also likely to produce a safe

outcome. Unlike rollout-based approaches that rely on

forward simulation to assess safety, this method guaran-

tees safety through static local bounds, avoiding any need

for multi-step prediction. In the following section, this

idea is formalized by deriving a bound on the deviation

between the interpolated one-step state and the verified

safe outcomes.

To certify the safety of 𝒖∗, the resulting state 𝒙curr+1 (𝒖∗),

obtained by applying the interpolated control at 𝒙curr, is

compared to the safe outcomes 𝒙 (𝑗)
𝑘+1 = 𝒙𝑘+1 (𝒖 (𝑗)

𝑘
), each

resulting from applying 𝒖 (𝑗)
𝑘

at the corresponding neighbor

state 𝒙 (𝑗)
𝑘

. Assuming Lipschitz continuity of the dynamics

𝑓 (𝒙, 𝒖), there exist constants 𝐿𝑥 and 𝐿𝑢 such that:

 𝑓 (𝒙curr, 𝒖
∗) − 𝑓 (𝒙 (𝑗)

𝑘
, 𝒖 (𝑗)

𝑘
)

 ≤

𝐿𝑥

𝒙curr − 𝒙 (𝑗)
𝑘

 + 𝐿𝑢

𝒖∗ − 𝒖 (𝑗)
𝑘

 (36)

Using forward Euler integration, the one-step updates are:

𝒙curr+1 = 𝒙curr + Δ𝑡 · 𝑓 (𝒙curr, 𝒖
∗) (37)

𝒙 (𝑗)
𝑘+1 = 𝒙 (𝑗)

𝑘
+ Δ𝑡 · 𝑓 (𝒙 (𝑗)

𝑘
, 𝒖 (𝑗)

𝑘
) (38)

The deviation between 𝒙curr+1 and each safe outcome 𝒙 (𝑗)
𝑘+1

is bounded using the triangle inequality and Equation 36:

𝒙curr+1 − 𝒙 (𝑗)
𝑘+1

 ≤

𝒙curr − 𝒙 (𝑗)

𝑘

 + Δ𝑡 · 𝐿𝑥

𝒙curr − 𝒙 (𝑗)
𝑘

+ Δ𝑡 · 𝐿𝑢

𝒖∗ − 𝒖 (𝑗)
𝑘

 (39)

This bound establishes that the one-step deviation from

any known-safe neighbor is determined by the distance

in state space

𝒙curr − 𝒙 (𝑗)

𝑘

 and the difference in control

inputs

𝒖∗ − 𝒖 (𝑗)

𝑘

. Rather than considering the entire

database, only a subset of the closest neighbors is selected,

where the number of selected neighbors is a variable that

depends on the proximity of the states 𝒙 (𝑗)
𝑘

to the current

state 𝒙curr. Since both quantities are minimized through

the nearest-neighbor interpolation process, the interpo-

lated successor 𝒙curr+1 (𝒖∗) remains close to the verified

safe outcome 𝒙 (𝑗)
𝑘+1. This deviation bound provides the

foundation for a deployment-time safety condition that

certifies the interpolated state remains strictly within the

constraint-satisfying region.

In reality, control inputs are often applied with a delay due

to factors such as actuator response time or signal prop-

agation. To account for such delays during deployment,

the safety condition can be reformulated to cover multiple

timesteps under a held input. Specifically, if the control

input 𝒖∗ is applied over 𝑑 consecutive steps, the bound in

Equation 39 can be conservatively adjusted by replacing

17

Δ𝑡 with 𝑑 · Δ𝑡. In addition, the Lipschitz constants 𝐿𝑥

and 𝐿𝑢 used in the deviation bound are scaled to reflect a

worst-case growth over the extended horizon. This results

in a more conservative estimate of the potential deviation,

effectively introducing a safety margin that ensures con-

straint satisfaction even in the presence of known, fixed

delays. By incorporating these modifications, the filter-

ing scheme maintains deployment-time safety guarantees

without requiring explicit multi-step simulation.

7. Deployment-Time Safety Condition

To certify safety of the interpolated input 𝒖∗, the result-

ing state 𝒙curr+1 (𝒖∗) must remain within the constraint-

satisfying region. For each neighbor 𝒙 (𝑗)
𝑘

, let the associated

successor 𝒙 (𝑗)
𝑘+1 be strictly safe, with a corresponding safety

margin:

(
𝑑safe

) (𝑗)
= distance

(
𝒙 (𝑗)
𝑘+1, 𝜕X

safe
)

(40)

This margin is computed component-wise for each of

the five state variables, yielding a vector
(
𝑑safe) (𝑗) ∈ R5,

where
(
𝑑safe) (𝑗)

𝑖
denotes the safe distance to the constraint

boundary in the 𝑖-th state dimension for the 𝑗-th neighbor.

Safety is guaranteed if the predicted deviation remains

within this margin:

(1 + Δ𝑡𝐿𝑥) ·

𝒙curr − 𝒙 (𝑗)

𝑘

+Δ𝑡𝐿𝑢 ·

𝒖∗ − 𝒖 (𝑗)
𝑘

 < (
𝑑safe

) (𝑗)
(41)

If the condition holds for all neighbors, then 𝒙curr+1 (𝒖∗) ∈

Xsafe. If the condition is violated for any neighbor, it

suggests that 𝒙curr lies in a sparse region of the database,

where nearby verified trajectories are insufficiently close.

In such cases, the controller can revert to a known-safe input

or trigger database expansion to improve coverage. This

mechanism enforces safety with minimal runtime overhead

and acts as a data-driven safeguard during deployment.

8. Runtime Formulation

At runtime, the safety filter checks whether the interpolated

control input 𝒖∗, computed via nearest-neighbor interpo-

lation, yields a safe next state. This is evaluated for each

neighbor 𝒙 (𝑗)
𝑘

involved in the interpolation. For each pair

(𝒙 (𝑗)
𝑘
, 𝒖 (𝑗)

𝑘
), the following deviation bound is computed:

𝛿
(𝑗)
𝑘

= (1 + Δ𝑡 · 𝐿𝑥)

𝒙curr − 𝒙 (𝑗)

𝑘

 + Δ𝑡 · 𝐿𝑢

𝒖∗ − 𝒖 (𝑗)

𝑘

(42)

This quantity bounds the deviation between the interpolated

next state 𝒙curr+1 (𝒖∗) and the verified safe outcome 𝒙 (𝑗)
𝑘+1,

based on differences in state and control. The bound is

compared to the available safety margin:

𝛿
(𝑗)
𝑘

<

(
𝑑safe

) (𝑗)
. (43)

If this inequality holds for all selected nearest neighbors

𝑗 = 1, . . . , 𝑁NN used in the interpolation, the input 𝒖∗ is

deemed safe and applied. If not, the controller expands

the database with new safe rollouts from the current state.

This ensures safety during deployment while supporting

generalization to previously unseen states.

9. Estimating Lipschitz Constants for Safety Bounds

To evaluate deployment-time safety, Lipschitz constants

are required to characterize how sensitively the system

responds to small changes in the control input and the state.

These constants are used to bound the deviation of the

interpolated next state 𝒙𝑘+1 (𝒖∗) from its nearest certified

neighbor. This section defines the estimation process.

18

A scalar constant 𝐿𝑢 captures the sensitivity to perturba-

tions in the control input:

𝐿𝑢 ≈ sup
Δ𝒖

∥ 𝒇 (𝒙curr, 𝒖
∗ + Δ𝒖) − 𝒇 (𝒙curr, 𝒖

∗)∥scaled

∥Δ𝒖∥ (44)

Here, 𝒇 (𝒙curr, 𝒖
∗) ∈ R5 is the discrete-time state update

evaluated at the current state and interpolated control input.

The norm is computed using a scaled Euclidean form:

∥ 𝒇 ∥scaled =

√√√(
𝑣ℎ
𝑘

𝑐1

)2

+
(
𝑣𝛼
𝑘

𝑐2

)2

+
(
𝑎ℎ
𝑘

𝑐3

)2

+
(
𝑎𝛼
𝑘

𝑐4

)2

+
(
𝑣
𝛽

𝑘

𝑐5

)2

(45)

The constants 𝑐1, . . . are nominal scaling factors that re-

flect typical magnitudes of each component. These values

are based on simulation data or heuristic expectations to

prevent any term, such as 𝑎𝛼
𝑘

from dominating the norm.

Unlike the scalar 𝐿𝑢, state sensitivity defines one Lipschitz

constant per output dimension, making 𝑳𝑥 a vector:

𝐿𝑥𝑖 = sup
Δ𝒙curr

| 𝑓 (𝒙curr + Δ𝒙curr, 𝒖
∗) − 𝑓 (𝒙curr, 𝒖

∗) |
∥Δ𝒙curr∥

(46)

For 𝑖 = 1, . . . , 𝑛, this produces 𝑳𝑥 = [𝐿𝑥1 , . . . , 𝐿𝑥𝑛]. The

control input 𝒖∗ is held fixed, so the estimate isolates the

system’s sensitivity to each individual state variable. In

practice, each component 𝐿𝑥𝑖 is approximated using:

𝐿𝑥𝑖 ≈

 𝒇 (𝒙curr + 𝛿𝒆𝑖 , 𝒖∗) − 𝒇 (𝒙curr, 𝒖

∗)
𝛿

 (47)

Here, 𝒆𝑖 is the unit vector in the direction of the 𝑖-th state

variable, and 𝛿 is a small scalar perturbation. This approach

yields a conservative estimate of the directional sensitivity

in each state dimension.

Because the system is nonlinear and state-dependent, the

Lipschitz constants 𝐿𝑢 and 𝑳𝑥 are recomputed online at

each deployment step using the current state 𝒙curr and in-

terpolated input 𝒖∗, ensuring the bound remains valid in

the local region around the interpolated trajectory.

The predicted deviation of the interpolated next state is

computed as:

𝜹 (𝑗) =

𝒙curr − 𝒙 (𝑗)

𝑘

 + Δ𝑡 · 𝑳𝑥

𝒙curr − 𝒙 (𝑗)
𝑘

+ Δ𝑡 · 𝐿𝑢 ·

���𝑢∗ − 𝑢 (𝑗)
𝑘

��� (48)

This yields a component-wise deviation vector, where each

element corresponds to a specific state variable. The result

is compared to the component-wise safety margin (𝑑safe) (𝑗)
𝑖

for each dimension 𝑖. The safety condition is satisfied if:

𝛿
(𝑗)
𝑖

< (𝑑safe) (𝑗)
𝑖

for all 𝑖 = 1, . . . , 5 (49)

10. Summary and Conclusions

This section presented a Lipschitz-based safety filter for

runtime deployment of learned controllers. By interpo-

lating control actions from a local database of verified

safe transitions, and bounding deviations using locally es-

timated Lipschitz constants 𝐿𝑢 and 𝐿𝑥 , the filter certifies

that the resulting one-step state remains within the safe set.

The method is lightweight, modular, and simulation-free,

in contrast to many rollout-based safety filters that require

online forward simulation to predict outcomes. By relying

solely on local state-control data and deviation bounds,

the approach enables safety generalization to previously

unseen states without incurring simulation overhead. The

formulation can also be extended to account for known

actuation delays by conservatively adjusting the deviation

bound over multiple timesteps. This allows the filter to

19

maintain guarantees even when control inputs are applied

with a fixed delay. If a violation is detected, the con-

troller triggers database expansion to recover coverage.

This enables reliable policy deployment with formal safety

guarantees and minimal runtime overhead in nonlinear

systems.

III. Results

A. Simulation Context

This section compares the three controllers, LPV-MPC,

RL, and a coupled RL-MPC design under a representative

turbulence scenario to assess their relative effectiveness

in suppressing transient aeroelastic responses in a simu-

lation. The model is a 2D aeroelastic wing section and

does not correspond to a specific aircraft. As such, ab-

solute performance figures cannot be directly interpreted.

Instead, RL-MPC is taken as the baseline, as it represents

the proposed hybrid approach. Using it as a reference high-

lights the specific advantages and limitations of individual

pure RL and LPV-MPC controllers when evaluated under

identical conditions. This framing allows the analysis to

focus on how much the RL-MPC design improves over

standalone controllers. Each simulation spans 10 s. A lat-

eral gust, synthesized using the Dryden turbulence model,

is applied during the first 5 s, followed by a 5 s recovery

phase. To emulate real-world conditions, all controllers

operate with a fixed actuation delay of 8 ms (eight discrete

steps at Δ𝑡 = 0.001 s).

To illustrate typical behavior, the time-domain response

of each controller is first examined in a representative run.

The analysis is then extended to 1000 Monte Carlo sim-

ulations, each using a unique gust realization and initial

condition. Turbulence is generated using the Dryden model

with intensity 𝜎 = 1 m s−1, correlation length 𝐿 = 5 m, and

freestream velocity 𝑉 = 12 m s−1. Each controller uses a

sampling time of 𝑇𝑠 = 0.001 s, with tailored parameters

such as prediction horizon, exploration policy, and tuning

weights. These were determined trough simulations and

empirical adjustment to balance real-time feasibility with

reliable performance across the tested gust scenarios.

While no universal tolerance thresholds for plunge or angle

of attack are defined, the aim is to show how consistently

each controller limits excursions and accelerates recovery

under uncertainty. These findings, while not conclusive,

provide insights into how such control strategies might

generalize to more realistic aeroelastic systems.

B. Representative Run: Time-Domain Behavior

Before presenting statistical results, this subsection high-

lights the time-domain behavior of each controller under

the same gust, with the open-loop response included for

reference. Figures 4, 5, and 6 show the angle of attack,

plunge displacement, and control input respectively.

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-3

-2

-1

0

1

2

3

4

 [d
eg

]

Open-loop
LPV-MPC
RL
RL-MPC

Fig. 4 Angle of attack response.

20

Table 4 Description of performance metrics used in Section III.

Metric Description

𝑂ℎ, 𝑂𝛼 Maximum overshoot in plunge (mm) and angle of attack (rad) following a disturbance.
𝑇𝑠,ℎ, 𝑇𝑠,𝛼 Time for plunge and angle of attack to settle within a tolerance band around the final value.
Excursion count (h, 𝛼) Number of times the plunge or angle of attack exceeds defined safe bounds.
RMS ¤ℎ, RMS ¤𝛼 Root-mean-square of plunge and AoA velocities, indicating system smoothness.
Median | Δ𝑢𝑘 | Change in control input per time step, as a percentage of the maximum allowed input.
𝐸ℎ

Low, 𝐸ℎ
Mid, 𝐸ℎ

High plunge error energy in 0.1–1, 1–5, 5–50 Hz bands (mm2·s)
𝐸𝛼

Low, 𝐸𝛼
Mid, 𝐸𝛼

High AoA error energy in 0.1–1, 1–5, 5–50 Hz bands (deg2·s)

Figure 4 shows that the RL-MPC design provides the

strongest suppression of the gust-induced spike in angle of

attack, with the lowest peak deviation (0.034 rad). The RL

controller follows with a slightly higher peak (0.044 rad),

while LPV-MPC exhibits the weakest gust rejection, allow-

ing the highest overshoot (0.062 rad). In terms of recovery,

LPV-MPC settles fastest (5.73 s), followed by RL-MPC

(7.06 s) and RL (10.0 s). Since large excursions in angle

of attack are a primary driver of unsteady lift and stall risk,

limiting peak values is often more critical than achieving

perfectly smooth convergence. The RL-MPC trade-off,

smaller peaks with tolerable ripple is considered favorable.

Notably, the open-loop response diverges rapidly under the

same gust, with unstable oscillations that grow unbounded.

This outcome occurs in nearly all trials, illustrating the

severity of the aeroelastic instability. As a result, all three

controllers are effectively performing both flutter suppres-

sion and GLA simultaneously. The ability to stabilize this

highly nonlinear and unstable system, while also reducing

gust-induced load excursions, highlights the difficulty of

the control task and the effectiveness of each method.

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.015

-0.01

-0.005

0

0.005

0.01

h
[m

]

Open-loop
LPV-MPC
RL
RL-MPC

Fig. 5 Plunge displacement response.

Figure 5 illustrates the superior disturbance rejection of the

RL-MPC controller in the structural channel. It shows the

smallest plunge overshoot (0.0061 m) and fastest recovery

(1.99 s), outperforming both LPV-MPC (0.0111 m, 2.36 s)

and RL (0.0087 m, 4.90 s). This quick and clean response

is particularly valuable in aeroelastic systems where ver-

tical displacement contributes to fatigue and long-term

structural wear. By limiting wear, the longevity of vital

structural elements is preserved. LPV-MPC, while smooth,

is noticeably slower to settle, while RL reacts quickly but

lacks the damping to return efficiently to steady state. As

in the angle of attack case, the open-loop response diverges

rapidly, confirming that without active control the plunge

dynamics become unstable and unbounded.

21

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-15

-10

-5

0

5

10

15

u
 (

F
la

p
 C

o
m

m
an

d
)

[d
eg

]

MPC
RL
RL-MPC

Fig. 6 Control input (flap command) over time.

Figure 6 reveals the trade-offs in control activity. The LPV-

MPC controller provides the smoothest input, minimizing

actuator workload through conservative but steady actua-

tion. The RL controller, issues nearly saturated commands

at every timestep during the gust phase, reflecting its lack

of internal smoothness constraints and strong preference

for rapid correction. The RL-MPC controller sits between

these two extremes, it applies more dynamic inputs than

LPV-MPC, but less aggressive than RL, suggesting a more

measured yet responsive control strategy. Once the gust

subsides, LPV-MPC reduces its control input cleanly to

near zero, indicating strong convergence. RL and RL-MPC

retain small residual oscillations in their post-gust input

signals, likely due to their higher reactivity and learning-

based policies. This reflects a trade-off: while RL-based

controllers developed in this work offer faster suppression,

they do so at the cost of post-disturbance smoothness. From

a purely actuator-efficiency standpoint, LPV-MPC retains

a clear advantage.

C. Monte Carlo Analysis

To evaluate controller performance under turbulence, a

Monte Carlo campaign was conducted using 1 000 random-

ized gust realizations. Each metric reflects the controller’s

behavior over the full ensemble. For error-based quantities,

box plots are constructed from all individual time-step

values across all runs, capturing the full distribution of

point wise tracking performance rather than aggregated

summaries. This enables a more detailed view of instanta-

neous accuracy and variability throughout the simulation

horizon.

Overshoot and settling times

Controller 𝑂ℎ [mm] 𝑇𝑠,ℎ [s] 𝑂𝛼 [rad] 𝑇𝑠,𝛼 [s]

LPV-MPC 0.0080 2.47 0.0398 0.83

RL 0.0084 4.78 0.0416 4.42

RL-MPC 0.0073 2.07 0.0318 1.09

Table 5 Time-domain metrics (mean over 1 000 runs).

Table 5 summarizes peak overshoot (𝑂) and settling time

(𝑇𝑠). For plunge, the RL-MPC controller records an aver-

age overshoot of 7.3 µm, improving on LPV-MPC by 9%,

and settles 16% faster with a mean time of 2.07 s. The pure

RL controller is also by RL-MPC in this metric posting a

15% higher overshoot and settling 130% slower than RL-

MPC. These results highlight RL-MPC’s ability to rapidly

damp structural motion with minimal vertical displacement,

outperforming both alternatives on both metrics.

For angle of attack, RL-MPC achieves the lowest average

overshoot at 0.0318 rad. Compared to this, LPV-MPC

allows 25% higher peak excursions, while RL exceeds it

by 31%. In terms of settling time, LPV-MPC converges

22

24% faster than RL-MPC, while RL is 306% slower. These

results reflect a trade-off: RL-MPC prioritizes immediate

suppression of gust-induced deviations, while LPV-MPC

favors smoother but slower recovery. Overall, RL-MPC

demonstrates the best capability for limiting peak aerody-

namic loads, even if it does not converge as quickly as

LPV-MPC in the post-gust phase.

Angle-of-attack dynamics

This section presents a focused evaluation of the angle of

attack dynamics across all Monte Carlo simulations for

the three control strategies. First, box plots of the angle

of attack histories are shown for the full simulation dura-

tion and the post-gust window to highlight differences in

response across runs. This is followed by a summary table

reporting the number of angle of attack limit excursions

and pitch rate statistics aggregated over all simulations.

MPC RL RL-MPC

-4

-3

-2

-1

0

1

2

3

4

e
 [d

eg
]

Fig. 7 Angle of attack error (𝑒𝛼) distribution over the
full simulation duration. Central mark = median; boxes
= Q1–Q3; whiskers = adjacent values

MPC RL RL-MPC

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

e
 [d

eg
]

Fig. 8 Angle of attack error (𝑒𝛼) distribution in the
post-gust window

Controller
Avg.

excursions

RMS ¤𝛼[rad
s
]
(full)

RMS ¤𝛼[rad
s
]
(post-gust)

LPV-MPC 5.1973 0.1699 0.0108

RL 3.6255 0.1654 0.0479

RL-MPC 3.1479 0.1473 0.0243

Table 6 Angle-of-attack metrics over 1 000 runs. Ex-
cursion threshold: 20% of max gust-induced 𝛼.

The angle of attack error box plots (Figures 7 and 8) reveal

that the RL-MPC controller exhibits the narrowest spread

over the full 10-second duration, with an interquartile range

(IQR) of approximately 0.30◦, compared to 0.31◦ for RL

and 0.46◦ for MPC. This indicates that RL-MPC is most

effective at rejecting large gusts, resulting in the most con-

sistent performance throughout the run. However, in the

post-gust window, LPV-MPC achieves the smallest IQR

of about 0.0146◦, outperforming RL-MPC (0.0319◦) and

RL (0.1209◦). These results suggest that while RL-MPC

offers the most stable tracking overall, MPC demonstrates

superior convergence after the gust subsides.

Table 6 presents two additional metrics, the number of

excursions and angle of attack velocity. RL-MPC shows

23

the fewest excursions above the 20% threshold, reducing

them by 39% compared to LPV-MPC and 13% compared

to RL, demonstrating its predictive capability in rejecting

large gusts. It also achieves the lowest RMS pitch rate,

indicating smallest plunge variations. While overall per-

formance on this metric is comparable across controllers,

RL-based strategies perform better during the gust, whereas

LPV-MPC shows improved stabilization after the gust.

In summary, the RL-MPC controller offers the most stable

angle-of-attack behavior overall by minimizing both the

spread of tracking error and the number of moderate excur-

sions. Its ability to anticipate gusts results in smoother and

more consistent corrective motion across the entire sim-

ulation. However, once the gust subsides, the LPV-MPC

controller exhibits the best convergence, as indicated by its

tighter post-gust tracking and reduced pitch activity.

Plunge dynamics

This section presents a focused evaluation of the plunge

dynamics across all Monte Carlo simulations for the three

control strategies.

MPC RL RL-MPC

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

e h [m
]

Fig. 9 Plunge error (𝑒ℎ) distribution full run

MPC RL RL-MPC

-10

-8

-6

-4

-2

0

2

4

6

e h [m
]

10-3

Fig. 10 Plunge error (𝑒ℎ) distribution post-gust

Controller
Avg.

excursions

RMS ¤ℎ[m
s

]
(full)

RMS ¤ℎ[m
s

]
(post-gust)

LPV-MPC 4.7553 0.04216 0.0095

RL 4.4891 0.03958 0.0101

RL-MPC 3.1257 0.03512 0.0093

Table 7 Plunge metrics over 1 000 runs. Excursion
threshold: 20% of max open-loop gust response.

The plunge error box plots (Figures 9 and 10) show that the

RL-MPC controller achieves the narrowest spread over the

full duration, with an interquartile range (IQR) of approxi-

mately 1.61 × 10−3 m, compared to 2.64 × 10−3 m for RL

and 3.17 × 10−3 m for MPC. This indicates that RL-MPC

is most effective at maintaining plunge stability throughout

the simulation. In the post-gust window, RL-MPC again

achieves the tightest distribution with an IQR of about

1.46 × 10−4 m, outperforming both MPC and RL. These

results suggest that RL-MPC consistently delivers the most

stable plunge control.

Table 7 summarizes the number of significant plunge excur-

sions and the average vertical velocity across all simulations.

RL-MPC shows the strongest performance on both metrics,

24

with a 52% reduction in excursion events compared to

LPV-MPC and 44% compared to RL, indicating enhanced

suppression of vertical deflections under gusts. It also

achieves the lowest plunge velocity, suggesting improved

structural stability and comfort. While all controllers con-

verge to similar behavior post-gust, RL-MPC retains a

slight advantage.

Altogether, RL-MPC provides the most consistent plunge

control by minimizing both displacement variability and

vertical motion across all phases of the run. This rein-

forces its effectiveness in mitigating structural loads and

maintaining altitude stability under turbulent conditions.

Control Energy Response

This section analyzes the control effort required by each

controller by examining the per-step variation in eleva-

tor deflection, providing insight into actuator usage and

overall control smoothness. This is particularly important

because excessive actuator activity can lead to increased

wear, energy consumption, and reduced system longevity.

MPC RL RL-MPC

Controller

0

10

20

30

40

50

60

70

80

90

100

Fig. 11 Box-plot of per-step elevator increment
| Δ𝑢𝑘 | = |𝑢𝑘 − 𝑢𝑘−1 | for the three controllers.

Controller LowerAdj Q1 Median Q3 UpperAdj

LPV-MPC 0 0.0218 0.6224 6.6645 16.625

RL 100 100 100 100 100

RL-MPC 0 0.8424 4.4483 16.681 40.426

Table 8 Five-number summary of | Δ𝑢𝑘 | (% of Δ𝑢max).

Table 8 and Fig. 11 compare the smoothness of control

input by showing the distribution of instantaneous changes

|Δ𝑢𝑘 |. The RL controller, lacking any internal mechanism

for penalizing actuator variation, saturates the servo rate

limit and issues nearly constant full-rate steps, resulting in

a collapsed box-plot where all summary statistics coincide

at 100% of the maximum input variation.

In contrast, the LPV-MPC and RL-MPC controllers ex-

hibit much smoother control. The RL-MPC achieves a

median |Δ𝑢𝑘 | at 4.45% of the maximum, while LPV-MPC

performs significantly better with a median of just 0.62%,

reflecting an 86% reduction in actuator activity. While

RL-MPC blends some of the responsiveness of RL with

the moderation of LPV-MPC, it is the pure LPV-MPC

controller that most effectively limits actuator movement.

This makes LPV-MPC the clear choice when actuator wear,

energy usage, or long-term durability are primary concerns.

Frequency Domain Control Performance
Table 9 Average error energy for three octave-like
bands (Low 0.1–1 Hz, Mid 1–5 Hz, High 5–50 Hz).

(a) Plunge error energy 𝐸ℎ (mm2·s)

Controller Low Mid High

LPV-MPC 2.50 × 10−4 4.60 × 10−3 2.50 × 10−5

RL 4.35 × 10−4 5.46 × 10−3 2.79 × 10−5

RL-MPC 4.12 × 10−5 2.59 × 10−3 1.19 × 10−5

25

(b) AoA error energy 𝐸𝛼 (deg2·s)

Controller Low Mid High

LPV-MPC 0.04781 0.05221 0.00264

RL 0.05608 0.05201 0.00238

RL-MPC 0.02018 0.08440 0.00337

For the Plunge, RL-MPC achieves the lowest error energy

across all three frequency bands, offering markedly im-

proved performance over both LPV-MPC and RL. Its most

significant advantage lies in the low-frequency band, where

suppression is crucial to avoid build-up of large structural

motions that can lead to fatigue or instability.

In the AoA channel, performance is more nuanced. RL-

MPC clearly excels in the low-frequency band, halving

the error energy relative to LPV-MPC, which is important

for maintaining long-term orientation and flight stability.

However, this comes at the cost of increased energy in the

mid- and high-frequency bands. Specifically, RL-MPC’s

mid-band energy is 62% higher than LPV-MPC and RL,

while in the high band it trails LPV-MPC and RL by 28%

and 42%, respectively. RL yields the best high-frequency

performance overall, which translates to smoother angular

motion and reduced actuator strain during rapid maneuvers.

Overall, RL-MPC delivers the most consistent plunge at-

tenuation and the best low-frequency AoA tracking, while

LPV-MPC remains superior in mid-frequency AoA sup-

pression and RL leads in high-frequency noise rejection.

IV. Discussion

A. General Discussion

Justification for Truncating the Taylor Expansion

The safety guarantees in this work are based on bounding

the second-order error in the Taylor expansion of state

deviations. The third-order term is not analyzed, but for the

system considered, it was negligible relative to the second-

order term due to smooth dynamics and small time step Δ𝑡.

Specifically, numerical analysis showed its contribution was

at most 0.291% for the aeroelastic states, with a maximum

of 2.0% for the actuator state, as detailed in Table 2. How-

ever, this assumption is system-specific. Designers must

verify the negligibility of higher-order terms for systems

under consideration, as system dynamics become faster or

the time step Δ𝑡 increases, the minimum required order

for accurate analysis tends to increase. In other settings,

third-order effects may be non-negligible, and ignoring

them could undermine the guarantees. While future work

could aim to mathematically bound the third-order term,

a more practical alternative is to define conditions based

on system smoothness and Δ𝑡 under which the third-order

contribution can be safely neglected.

Limitations of Discrete-Time Guarantees

While the real-world system evolves in continuous time, all

safety guarantees in this work are derived in a discrete-time

setting. The analysis assumes a fixed time step Δ𝑡 and

provides bounds on the discrete evolution of the system

states. This discretized model approximates the continuous

dynamics under the assumption of sufficiently small Δ𝑡

and smooth system behavior. However, formal guarantees

in continuous time are not provided, and the discrete-time

26

results do not automatically generalize. Bridging this gap

remains an open direction, where future work could investi-

gate whether the bounds established here converge to valid

continuous-time guarantees as Δ𝑡 → 0.

Applicability to Other Systems

The bounding analysis in this work relies on identifying

monotonic relationships between the control input and the

state updates through structured intermediate variables,

such as the flap deflection. This approach is likely to

transfer well to systems with few state variables, smooth

nonlinearities, and control effects that propagate through

stable, monotonic channels. In particular, systems with

single-input, single-path actuation and affine dependencies

on intermediate variables are well-suited to this method.

However, for higher-dimensional systems with multiple

interacting control channels, strong state coupling, or non-

monotonic input effects, the assumptions underpinning the

bounding procedure may no longer hold. In such cases,

more sophisticated analysis would be required to ensure that

intermediate control values produce bounded trajectories.

Actuator Delay Compensation

A fixed actuator delay is included to reflect real-world

latency in control signal execution. All controllers handle

this delay similarly: they extrapolate the current state from

state history, moving it forward by the measured delay

and apply their policies to this delay-free estimate. While

the RL-based designs only need to predict a few delayed

steps, LPV-MPC must forecast both the delay and its full

prediction horizon. This gives RL a slight edge in state re-

construction, but overall the shared compensation strategy

ensures a fair comparison.

The role of MPC in RL-MPC Architecture

In the RL-MPC architecture, MPC plays a different role

than in stand-alone use. The standalone LPV-MPC serves

as the onboard controller, operating under tight real-time

constraints that limit its prediction horizon to short dura-

tions (𝑁P ≈ 20). Inside the RL-MPC, however, MPC is

used only during offline policy generation, where com-

putation time is no longer critical and the horizon can

be extended until the slowest aero-elastic modes are fully

captured. Additionally, because the policy generation is

performed offline, the LPV-MPC can be constructed in

a more adaptable and iterative manner. Unlike real-time

operation where the entire prediction horizon must be com-

puted before an output is given, the offline nature allows

for the step-by-step construction of specific trajectories.

This means that not only can we achieve super accurate

LPV-MPC with super long prediction horizons, but we can

also leverage our prior knowledge of the gusts. Since we are

in a training environment, we choose the gust profiles that

the controller will experience. This controlled environment

allows us to build incredibly accurate trajectories because

we know exactly what external disturbances the system will

face, enabling precise refinement of the control actions.

The result is a set of long-horizon, constraint-satisfying

trajectories that the RL agent can learn from, something an

online LPV-MPC of practical length could never see. This

further validates the superior effectiveness of the RL-MPC

architecture, especially in handling complex gust profiles,

which is consistently demonstrated in the simulation results.

The RL-MPC controller is also inherently more robust

to gust uncertainty than the on-board LPV-MPC alone.

During training it is exposed not just to the nominal gust

prediction but to worst and best case envelopes, so the

27

learned policy internalizes margins that tube-MPC would

normally enforce. Achieving similar guarantees is possible

with tube-MPC, however, it would require long prediction

horizons and large invariant sets, making it impractical

for online deployment. By off-loading that burden to

the training phase, the RL–MPC design preserves long-

horizon performance guarantees while remaining suitable

for real-time execution on embedded hardware.

Computational Cost and Runtime Comparison

Computation times were measured on a standard desktop

PC (AMD Ryzen 5 5600X, 6 cores @ 3.70 GHz, 16.0

GB RAM) to give a rough sense of relative complexity.

Average runtimes were 11.1 s for LPV-MPC, 7.9 s for RL,

and 10.7 s for RL-MPC. These values are not definitive,

but illustrate typical performance under the current setup.

RL-MPC is slightly slower than RL due to storing value

estimates over a 7-dimensional input space instead of 5, re-

flecting its inclusion of MPC state information. Replacing

the Q-table with a neural network, as is common in deep

RL, could reduce evaluation time and memory use, though

this would add training complexity.

B. Results Based Discussion

1. Flutter Suppression

As is seen in the results in Section III, all three controllers

are tasked with achieving both flutter suppression and GLA

simultaneously. Each controller must first stabilize the

flexible aeroelastic system to suppress flutter, and then,

while maintaining that stability work to minimize struc-

tural loads caused by gusts. The results assess how well

each controller performs GLA, since flutter suppression

is achieved in nearly all cases and does not serve as a

point of comparison. All controllers maintain stability

under nominal conditions, so the evaluation focuses on

their ability to mitigate structural loads during gusts.

However, it is important to note that in rare cases (0.6%),

the LPV-MPC controller failed to suppress flutter under

strong gust excitation, resulting in divergent states. An ex-

ample of such a failure is shown in Figure 12. These cases

were excluded from the statistical analysis for consistency,

but they highlight the importance of robust stability when

designing for both flutter suppression and GLA. RL-based

controllers remained stable across all runs for the consid-

ered gust setup with 𝜎 = 1 m/s, reinforcing their reliability

under this level of turbulence. However, for stronger gust

intensities (𝜎 ≥ 1.5 m/s), all controllers can fail, depending

on the specific gust realization. On average, the system

fails to suppress roughly half of the 𝜎 = 1.5 m/s cases, and

failure becomes nearly certain at higher intensities. These

failures are not due to controller design limitations, but

rather stem from the physical constraints of the system and

actuators, which are unable to counteract the magnitude of

such disturbances.

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.01

-0.005

0

0.005

0.01

h
[m

]

LPV-MPC
RL
RL-MPC

Fig. 12 Plunge response showing MPC failure

28

2. Gust Rejection and Post Gust Recovery Trade-off

The RL-MPC controller outperforms others by combining

RL’s ability to handle turbulence with MPC’s precision in

enforcing constraints once the disturbance passes. While

RL and RL-MPC outperform LPV-MPC during gusts,

LPV-MPC excels in post-gust conditions due to its close

match between model and plant. This highlights a key

limitation of standalone LPV-MPC: its prediction horizon

is often too short to capture entire disturbances, causing

degraded performance during gusts. However, in calm

conditions, the model-plant match allows LPV-MPC to

restore equilibrium. RL-MPC leverages the strengths of

both approaches, learning disturbance rejection from RL

and recovery behavior from MPC. As the RL policy used

here is model-free, its post gust convergence is slower than

the model-aligned LPV-MPC once the gust subsides.

Overshoot and settling-time metrics reinforce this pattern.

RL–MPC clips the peaks most effectively in plunge and

AoA because its training exposed it to a wide envelope of

gust magnitudes, prompting aggressive, constraint-aware

corrections. For plunge, it also settles fastest, yet in AoA the

stand-alone LPV-MPC reaches the tolerance band sooner.

This is likely due to biases in the RL training process,

normalization may have overemphasized plunge, causing

the RL-MPC controller to focus more on plunge errors

than pitch convergence. Additionally, because the RL

policies were trained primarily on gust scenarios, they

tend to anticipate continued disturbances even after the

gust has ended. This leads to unnecessarily aggressive

corrections in the recovery phase. Additional training on

no-gust scenarios could help reduce residual oscillations

and improve post-gust settling. While RL performs well

during the gust phase, its post-gust behavior suffers from

actuator mismatches. Because it did not explicitly learn the

actuator rate limits, the policy repeatedly issues infeasible

deflection commands. This leads to clamping, which in-

duces sustained input oscillations and increases the settling

time.

3. Control Energy

The control-energy statistics reinforce earlier findings. Pure

RL drives the elevator to its rate limit nearly every sample,

with constraints enforced only by the hardware clamp;

without it, the deflections would exceed physical limits.

The RL-MPC policy inherits the LPV-MPC’s move-rate

penalty, resulting in smoother actuation, though still less

restrained than the stand-alone LPV-MPC, which yields

the smallest median and quartile increments. Time-traces

show that after gusts, LPV-MPC damps its command to

near-zero quickly, while RL–MPC continues to exhibit

small oscillations and the standalone RL still issues near-

maximum deflections, with the hardware clamp actively

limiting the input even in the quiet phase.

4. Post Gust oscillations

The residual oscillations seen in RL-based controllers near

equilibrium stem largely from the reward structure. Since

accelerations ¥ℎ and ¥𝛼 are not included in the state vector,

they are absent from the cost, and the agent lacks incentive

to fully suppress minor oscillations. Including accelera-

tions in the reward could improve this, but doing so would

require estimating them at deployment, introducing addi-

tional uncertainty. Moreover, the current reward prioritizes

immediate next-state performance. Near equilibrium, a

longer reward rollout could help the policy anticipate and

reduce future deviations, leading to smoother convergence.

29

Additionally separate training on no-gust scenarios could

reduce these oscillatory effects, such exhaustive training

is not scalable in practice. Real-world systems demand

generalizable policies, and training with random gusts,

as done here, provides broader applicability. RL-MPC

performs better post gust, as the embedded MPC offers

domain knowledge about settling behavior. However, since

zero-gust conditions are underrepresented during training,

the controller sometimes over corrects during the quiet

phase, leading to small persistent oscillations.

5. Frequency-Domain Performace

The frequency-domain results confirm and nuance the

time-domain story. For plunge, the RL-MPC controller is

emphatically superior at every scale: an order-of-magnitude

drop in slow 0.1–1 Hz energy eliminates long heave drifts,

while halving the 1–5 Hz content and further reducing the

5–50 Hz tail suppress both structural bending and high-

frequency vibration. AoA presents a trade-off: the RL-

MPC again delivers the cleanest low-frequency response,

vital for lift and trim. But its bias toward aggressive gust

rejection permits more mid-band and high-band activity

than pure LPV-MPC, which benefits from its perfectly

matched linear model once the disturbance subsides. Pure

RL, meanwhile, happens to be quietest above 5 Hz be-

cause its rate-clamped input effectively filters the fastest

dynamics. Thus no single scheme dominates every AoA

band, yet the RL-MPC offers the broadest attenuation in the

plunge axis and the most important low-frequency benefit

in pitch, while LPV-MPC remains the benchmark for fine,

high-band AoA clean-up.

V. Conclusion
Modern flexible wings demand controllers that can sup-

press flutter and alleviate loads in real time, despite strong

nonlinearities, actuator limits, and onboard computational

constraints. Classical methods often fail under turbulence,

while nonlinear approaches like (I)NDI or backstepping

are unreliable in underactuated, uncertain systems such as

aeroelastic wings. This paper proposes a hybrid RL–MPC

architecture that uses offline LPV-MPC rollouts to train a

constraint-aware RL policy for online use. The result is

a lightweight controller that delivers effective flutter sup-

pression and load alleviation while respecting constraints

in nonlinear aeroelastic systems.

All tested controllers exhibit strong flutter suppression,

with RL-based methods outperforming LPV-MPC in con-

sistency under gusts. The RL–MPC controller combines

the gust-phase agility of RL with the post-gust precision of

LPV-MPC. It delivers the tightest plunge tracking, smallest

overshoot in both states, and broadest low-frequency error

attenuation, while retaining actuator smoothness much

closer to LPV-MPC than pure RL. Stand-alone LPV-MPC

still converges quickest in angle of attack once the distur-

bance vanishes, illustrating the value of an exact model in

the linear regime, yet the RL-MPC offers the best overall

compromise across all metrics examined.

While demonstrated on a nonlinear aeroelastic wing, the

proposed RL–MPC framework is broadly applicable. Its

core design, offline long-horizon constrained learning with

lightweight online deployment suits a wide range of non-

linear systems with input and state constraints, especially

where real-time computation is limited. This includes

morphing aircraft, active aero surfaces, and even domains

like robotics and automotive industry. More generally, it

30

provides a practical route for applying high-performance,

constraint-aware RL controllers to nonlinear systems sub-

ject to disturbances and constraints where classical methods

struggle.

Future work could focus on refining the reward or training

on no-gust scenarios to reduce residual oscillations near

equilibrium. Beyond this, two theoretical directions remain

open: (i) bounding higher-order contributions to formally

include them in the stability proof, and (ii) extending the

analysis to guarantee convergence in addition to constraint

satisfaction. addition to these, a practical next step would

be to evaluate the controller in real-world environments,

such as wind tunnel testing, to validate its effectiveness

beyond simulation.

In summary, combining an offline, long-horizon LPV-MPC

with an online, data-driven RL agent yields yields a con-

troller that is both constraint-respecting and highly effective

against nonlinear turbulence, providing a pragmatic path

toward reliable active flutter suppression with simultaneous

gust-load alleviation on resource-limited aircraft.

References
[1] Q. Guo, X. He, Z. Wang, and J. Wang, “Effects of wing flexibility

on aerodynamic performance of an aircraft model,” Chinese Journal

of Aeronautics, vol. 34, no. 9, pp. 133–142, 2021. [Online]. Available:

https://doi.org/10.1016/j.cja.2021.01.012

[2] T. F. Wunderlich, S. Dähne, L. Reimer, and A. Schuster,

“Global aerostructural design optimization of more flexible wings for

commercial aircraft,” Journal of Aircraft, vol. 58, no. 849, 2021.

[Online]. Available: https://doi.org/10.2514/1.C036301

[3] E. Livne, “Aircraft active flutter suppression: State of the art and

technology maturation needs,” U.S. Department of Transportation,

Federal Aviation Administration, William J. Hughes Technical Center,

Atlantic City, NJ, Tech. Rep. DOT/FAA/TC-18/47, 2019.

[4] W. L. Garrard and B. S. Liebst, “Active flutter suppression using

eigenspace and linear quadratic design techniques,” Journal of

Guidance, Control, and Dynamics, vol. 8, no. 3, pp. 304–311, 1985.

[Online]. Available: https://doi.org/10.2514/3.19980

[5] L. Chrif and Z. M. Kadda, “Aircraft control system using lqg

and lqr controller with optimal estimation–kalman filter design,”

Procedia Engineering, vol. 80, pp. 245–257, 2014. [Online]. Available:

https://doi.org/10.1016/j.proeng.2014.09.084

[6] A. Schoon and S. Theodoulis, “Review of h∞ static output

feedback controller synthesis methods for fighter aircraft control,”

in Proceedings of the AIAA SCITECH 2025 Forum. AIAA,

2025, p. 25, iSBN: 978-1-62410-723-8. [Online]. Available:

https://doi.org/10.2514/6.2025-2241

[7] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear

Quadratic Methods. Dover Publications, 2014, [Edition unavailable].

[Online]. Available: https://www.perlego.com/book/1444508/optimal-

control-linear-quadratic-methods-pdf

[8] G. Puyou and C. Berard, “Gain-scheduled flight control law

for flexible aircraft: A practical approach,” in IFAC Proceedings

Volumes, vol. 40, no. 7, 2007, pp. 497–502, 17th IFAC

Symposium on Automatic Control in Aerospace. [Online]. Available:

https://doi.org/10.3182/20070625-5-FR-2916.00085

[9] A. Hjartarson, P. Seiler, and G. J. Balas, “Lpv analysis of a gain

scheduled control for an aeroelastic aircraft,” in 2014 American Control

Conference, 2014, pp. 3778–3783.

[10] R. Steffensen, A. Steinert, and E. J. J. Smeur, “Non-linear dynamic

inversion with actuator dynamics: An incremental control perspective,”

arXiv preprint arXiv:2201.09805, 2022, version 2, last revised 25 Nov

2022. [Online]. Available: https://arxiv.org/abs/2201.09805

[11] A. Steinert, S. Raab, S. Hafner, F. Holzapfel, and H. Hong,

“From fundamentals to applications of incremental nonlinear dynamic

inversion: A survey on indi – part i,” Chinese Journal of Aeronautics,

2025, available online 25 April 2025, In Press, Journal Pre-proof.

[Online]. Available: https://doi.org/10.1016/j.cja.2025.103553

[12] M. Lungu, Backstepping Control Method in Aerospace Engineering.

Academica Greifswald, January 2022.

[13] E. F. Camacho and C. Bordons Alba, Model Predictive Control,

2nd ed. Springer, 2004.

[14] T. He and W. Su, “Robust control of gust-induced vibration of

highly flexible aircraft,” Aerospace Science and Technology, vol. 143,

2023.

[15] M. D. V. Pereira, I. Kolmanovsky, C. E. Cesnik, and F. Vetrano,

“Model predictive control architectures for maneuver load alleviation

31

in very flexible aircraft,” in AIAA Scitech 2019 Forum. American

Institute of Aeronautics and Astronautics (AIAA), 2019, p. 1591.

[Online]. Available: https://doi.org/10.2514/6.2019-1591

[16] W. Gao, Y. Liu, Q. Li, and B. Lu, “Gust load alleviation of a

flexible flying wing with linear parameter-varying modeling and model

predictive control,” Aerospace Science and Technology, vol. 155, p.

109671, 2024.

[17] T. He and W. Su, “Gust alleviation of highly flexible aircraft

with model predictive control,” in AIAA SCITECH 2023 Forum.

American Institute of Aeronautics and Astronautics (AIAA), 2023, p.

586. [Online]. Available: https://doi.org/10.2514/6.2023-0586

[18] Y. Wang, A. Wynn, and R. Palacios, “Model-predictive control

of flexible aircraft dynamics using nonlinear reduced-order models,”

AIAA SciTech, 2016.

[19] R. Bittner, H. Joos, T. Lombaerts, and Q. Chu, “Model

predictive control for maneuver load alleviation,” in IFAC Proceedings

Volumes, vol. 45, 2012, pp. 199–204. [Online]. Available:

https://doi.org/10.3182/20120823-5-NL-3013.00049

[20] J. M. Maciejowski and C. N. Jones, “Mpc fault-tolerant flight

control case study: Flight 1862,” IFAC Proceedings Volumes,

vol. 36, no. 5, pp. 119–124, June 2003. [Online]. Available:

https://doi.org/10.1016/S1474-6670(17)36480-7

[21] M. de F. V. Pereira, I. Kolmanovsky, and C. E. S. Cesnik, “Model

predictive control with constraint aggregation applied to conventional

and very flexible aircraft,” in 2019 IEEE 58th Conference on Decision

and Control (CDC). IEEE, 2019, pp. 431–437. [Online]. Available:

https://doi.org/10.1109/CDC40024.2019.9029769

[22] A. R. Darwich Ajjour, “Gust and manoeuvre loads al-

leviation using upper and lower surface spoilers,” Ph.D.

dissertation, University of Bristol, 2022. [Online]. Avail-

able: https://research-information.bris.ac.uk/en/studentTheses/gust-

and-manoeuvre-loads-alleviation-using-upper-and-lower-surfac

[23] T. Chaffre, J. Moras, A. Chan-Hon-Tong, J. Marzat, K. Sammut,

G. Le Chenadec, and B. Clement, “Learning-based vs model-free adap-

tive control of a mav under wind gust,” arXiv preprint arXiv:2101.12501,

2021.

[24] N. Schaff, “Online aircraft system identification using a novel

parameter informed reinforcement learning method,” Engineering

Applications of Artificial Intelligence, 2023. [Online]. Available:

https://commons.erau.edu/edt/779/

[25] R. Konatala, D. Milz, C. Weiser, G. Looye, and E. van Kampen,

“Flight testing reinforcement-learning-based online adaptive flight

control laws on cs-25-class aircraft,” Journal of Guidance, Control,

and Dynamics, vol. 47, no. 11, November 2024. [Online]. Available:

https://doi.org/10.2514/1.G008321

[26] K. P. Haughn, C. Harvey, and D. Inman, “Deep reinforcement learn-

ing reveals fewer sensors are needed for autonomous gust alleviation,”

arXiv preprint arXiv:2304.03133, 2023.

[27] K. Dally and E.-J. van Kampen, “Soft actor-critic deep reinforce-

ment learning for fault tolerant flight control,” in AIAA SCITECH 2022

Forum. San Diego, CA, USA: American Institute of Aeronautics

and Astronautics (AIAA), January 2022, p. 2078, published Online:

29 Dec 2021, Session: Autonomy for Space and Surface In-Situ

Assembly II. [Online]. Available: https://doi.org/10.2514/6.2022-2078

[28] M. Zahmatkesh, S. A. Emami, A. Banazadeh, and P. Castaldi,

“Attitude control of highly maneuverable aircraft using an improved

q-learning,” arXiv preprint arXiv:2210.12317, 2022. [Online].

Available: https://doi.org/10.48550/arXiv.2210.12317

[29] C. F. O. da Silva, A. Dabiri, and B. D. Schutter, “Integrating

reinforcement learning and model predictive control with applications

to microgrids,” arXiv preprint, vol. arXiv:2409.11267, 2024. [Online].

Available: https://doi.org/10.48550/arXiv.2409.11267

[30] D. Sun, A. Jamshidnejad, and B. D. Schutter, “A novel framework

combining mpc and deep reinforcement learning with application to

freeway traffic control,” IEEE Transactions on Intelligent Transporta-

tion Systems, vol. 25, no. 7, pp. 6756–6769, 2024, published under a

Creative Commons License.

[31] M. Zanon and S. Gros, “Safe reinforcement learning using robust

mpc,” IEEE Transactions on Automatic Control, 2021, originally sub-

mitted to arXiv as 1906.04005v2 on 10 Jun 2019, last revised 17 Aug

2020. [Online]. Available: https://doi.org/10.1109/TAC.2020.3024161

[32] A. B. Kordabad, D. Reinhardt, A. S. Anand, and S. Gros,

“Reinforcement learning for mpc: Fundamentals and current

challenges,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 5773–

5780, 2023, published in January 2023. [Online]. Available:

https://doi.org/10.1016/j.ifacol.2023.10.548

[33] K. Seel, A. Bemporad, S. Gros, and J. T. Gravdahl, “Variance-based

exploration for learning model predictive control,” IEEE Access, vol. 11,

pp. 60 724–60 736, 2023, published under Creative Commons License.

[Online]. Available: https://doi.org/10.1109/ACCESS.2023.3282842

[34] S. Adhau, S. Gros, and S. Skogestad, “Reinforcement learning

based mpc with neural dynamical models,” European Journal of

32

Control, vol. 101, 2024, open Access under Creative Commons license.

[Online]. Available: https://doi.org/10.1016/j.ejcon.2024.101048

[35] S. Gros and M. Zanon, “Data-driven economic nmpc using

reinforcement learning,” arXiv preprint arXiv:1904.04152, 2019,

published in IEEE Transactions on Automatic Control, vol. 65, no.

2, pp. 636-648, Feb. 2020, arXiv:1904.04152v1 [cs.SY]. [Online].

Available: https://doi.org/10.48550/arXiv.1904.04152

[36] F. Airaldi, B. D. Schutter, and A. Dabiri, “Reinforcement

learning with model predictive control for highway ramp metering,”

arXiv preprint arXiv:2311.08820, 2023, submitted to IEEE Trans-

actions on Intelligent Transportation Systems. [Online]. Available:

https://doi.org/10.48550/arXiv.2311.08820

[37] T. R. Beal, “Digital simulation of atmospheric turbulence for

dryden and von kármán models,” Journal of Guidance, Control, and

Dynamics, vol. 16, no. 1, pp. 143–145, 1993. [Online]. Available:

https://doi.org/10.2514/3.11437

33

Part III
Additional Results

81

6
More Results

6.1. Second-Order Discretization of Nonlinear Dynamics
The system is analyzed by performing two sequential Euler steps, each with step size ∆t, to evaluate

how the state evolves over two time steps. This procedure captures the delayed response of the input

(due to actuator filtering) and the nonlinear effects introduced by gusts and aerodynamic couplings. The

first Euler step evolves the system as:

xk+1 = xk +∆t · f(xk, uk, wk) (6.1)

where the state and corresponding dynamics are:

xk =


hk

αk

vhk
vαk
βk

 , f(xk, uk, wk) =


vhk
vαk

ahk(M
mass, Laero

k , vhk , hk)

aαk (M
mass,Maero

k , vαk , αk)

kβ(u
flap − βk)

 (6.2)

The second Euler step follows from the expression derived in Equation

xk+2 ≈ xk + 2∆t · fk +∆t2 · ∇xfk · fk +O(∆t3) (6.3)

The explicit matrix form of this expansion is:

xk+2 = xk +∆t ·


x3

x4

ahk(M
mass, Laero

k , x3, x1)

aαk (M
mass,Maero

k , x4, x2)

kβ(u
flap − x5)

+
∆t2

2
·


0 0 1 0 0

0 0 0 1 0
∂ah

k

∂x1

∂ah
k

∂x2

∂ah
k

∂x3

∂ah
k

∂x4

∂ah
k

∂x5
∂aα

k

∂x1

∂aα
k

∂x2

∂aα
k

∂x3

∂aα
k

∂x4

∂aα
k

∂x5

0 0 0 0 −kβ

 · f(xk+1, uk+1, wk+1)

(6.4)

Each Jacobian term in this matrix depends on the derivatives of the nonlinear stiffness terms kh(x1) and
ka(x2), as well as the aerodynamic forces Laero(αeff, x5(u)) and Maero(αeff, x5(u)), where x5 is the flap

state influenced by the control input. Additionally, gust influence appears through the chain rule in the

derivatives of αeff with respect to the state variables x2, x3, and x4, due to its implicit effect on angle of

attack and aerodynamic coupling.

The second derivatives are computed from the flexible aircraft dynamics using the coupled system:

82

6.1. Second-Order Discretization of Nonlinear Dynamics 83

Constants and Parameters:

b = 0.135 m, ρ = 1.225 kg/m3, ab = 0.5− 0.6847, xa =
0.0873− (b− 0.6847b)

b

mt = 12.387 kg, mw = 2.049 kg, Ia = mwx
2
ab

2 + 0.0517 kg ·m2

ch = 27.43 kg/s, ca = 0.036 kg ·m2/s, clα = 6.28, clβ = 3.358

cmα = (0.5 + 0.6847) · clα, cmβ = −1.94
ka = 2.82 ·

(
1− 22.1α+ 1315.5α2 − 8580α3 + 17289.7α4

)
kh = 2844 ·

(
1 + 0.9h2

)
Matrix Definitions:

Mmass =

[
mt mwxab

mwxab Ia

]
, C =

[
ch 0

0 ca

]
, K =

[
kh 0

0 ka

]

Aerodynamic Terms:

αeff = α+
ḣ

U
+ abb ·

α̇

U
, Laero = ρU2b (clααeff + clββ) , Maero = ρU2b2 (cmααeff + cmββ)

Second Derivatives: [
ḧ

α̈

]
= (Mmass)−1

(
−

[
Laero

Maero

]
− C

[
ḣ

α̇

]
−K

[
h

α

])

Partial Derivatives of ḧ
To find the partial derivatives of ḧ the first row from the continuous time equation 6.5 is extracted and the

matrix definitions above are used. The first row is then explicitly written as equation 6.6 in the discrete time

format. [
ḧ(t)

α̈(t)

]
= M−1

mass

(
−

[
Laero

Maero

]
− C

[
ḣ(t)

α̇(t)

]
−K

[
h(t)

α(t)

])
, (6.5)

ahk =

(
Ia

detMmass

)
(−Laero

k − chv
h
k − khhk) +

(
− mwxab

detMmass

)
(−Maero

k − cav
α
k − kaαk) (6.6)

The partial derivatives are computed in the following:

Derivative w.r.t. x1 = hk:

∂ahk
∂hk

= −
(

Ia
detMmass

)(
∂kh
∂hk
· hk + kh

)
, where

∂kh
∂hk

= 5119.2 · hk

Derivative w.r.t. x2 = αk:
∂ahk
∂αk

= −
(

mwxab

detMmass

)(
ρU2b · clα + ka

)
Derivative w.r.t. x3 = vh

k :

∂ahk
∂vh

k

= −
(

Ia
detMmass

)
(ρUb · clα + ch)

Derivative w.r.t. x4 = vα
k :

∂ahk
∂vα

k

= −
(

mwxab

detMmass

)
(ρUbabb · clα + ca)

Derivative w.r.t. x5 = βk:

∂ahk
∂βk

= −
(

Ia
detMmass

)
ρU2b · clβ −

(
mwxab

detMmass

)
ρU2b2 · cmβ

6.1. Second-Order Discretization of Nonlinear Dynamics 84

Partial Derivatives of α̈
To compute the partial derivatives of α̈, the second row from the continuous Equation 6.5 is extracted and

expressed explicitly in discrete time using the previously defined system matrices:

aαk =

(
mt

det(Mmass)

)
(−Maero

k − cav
α
k − kaαk) +

(
− mwxab

det(Mmass)

)
(−Laero

k − chv
h
k − khhk) (6.7)

The partial derivatives are now computed as following:

Derivative w.r.t. x1 = hk:

∂aαk
∂hk

= −
(

mwxab

detMmass

)(
ρU2b · clα ·

∂αeff

∂hk
+

∂kh
∂hk
· hk + kh

)

Derivative w.r.t. x2 = αk:

∂aαk
∂αk

= −
(mt

detMmass

) (
ρU2b2 · cmα + ka

)
Derivative w.r.t. x3 = vh

k :
∂aαk
∂vh

k

= −
(

mwxab

detMmass

)
(ρUb · clα + ch)

Derivative w.r.t. x4 = vα
k :

∂aαk
∂vα

k

= −
(mt

detMmass

) (
ρUb2ab · cmα + ca

)
Derivative w.r.t. x5 = βk:

∂aαk
∂βk

= −
(mt

detMmass

)
ρU2b2 · cmβ

Evaluation of f(xk+1, uk+1, wk+1)
The final term in the second-order expansion is the direction vector f(xk+1, uk+1, wk+1), evaluated at

the updated state after the first Euler step. It is computed using the same system model and follows the

structure:

f(xk+1, uk+1, wk+1) =


vh
k+1

vα
k+1

ahk+1

aαk+1

kβ(u
flap
k+1 − βk+1)

 (6.8)

The values of vhk+1 and vαk+1 are obtained from the first-order updates:

vhk+1 = vhk +∆t · ahk , vαk+1 = vαk +∆t · aαk (6.9)

Similarly, βk+1 = βk+∆t ·kβ(uflap
k −βk). These values are then used to recompute the aerodynamic terms

and accelerations ahk+1 and aαk+1 using equations for aerodynamic and second derivatives defined above.

This ensures that the second-order correction term is fully consistent with the discretized physical model,

and includes the delayed propagation of control inputs through β, gust, and aerodynamic couplings.

6.2. Dynamic Feasibility of LPV-MPC Assumptions 85

6.2. Dynamic Feasibility of LPV-MPC Assumptions
System Dynamics Bandwidth
To justify the use of an LPV model updated at every timestep, it is important to verify that the system’s

nonlinear dynamics evolve slowly enough for linearizations to remain accurate. This relies on frequency

separation: the dominant modes of the system must lie well below the LPV update rate.

If the system’s frequency content is below the Nyquist frequency defined by fs = 1/∆t, the linearization at

each step remains locally valid. In this setup, the LPV model is updated every 0.001 seconds (1000 Hz),

under the assumption that the dynamics evolve slowly enough for this resolution to track their behavior

effectively.

To test this, the full nonlinear model was simulated for 2 seconds at a rate of 5000 Hz using a small random

input to the flap actuator. All five discrete-time states hk, αk, v
h
k , v

α
k , and βk were recorded, and an FFT

was applied to extract their frequency content.

(a) Time-domain evolution of all five states (b) Frequency spectra of each state

Figure 6.1: Visualization of system behavior in time and frequency domains

As expected, hk and vh,k exhibit low-frequency motion, while αk and vα,k show higher variability but remain

bounded. The state βk, directly driven by the input, exhibits broader frequency content.

The FFT confirms that the dominant dynamics are concentrated below 50 Hz, with negligible energy beyond

100 Hz. Even the fastest state, vαk , peaks around 40–50 Hz. Since the LPV update rate is 1000 Hz, the

system is sampled well above its Nyquist limit, ensuring accurate tracking at each linearization point.

These findings confirm sufficient frequency separation: the system evolves slowly enough for an LPV

update every 0.001 seconds to remain valid throughout the prediction horizon.

Actuator vs. Plant Bandwidth Separation
In addition to ensuring the system evolves slowly enough for LPV updates to be valid, it is also necessary

to verify that the actuator dynamics are sufficiently fast relative to the plant. This ensures that control inputs

can be applied effectively within each control interval. A standard guideline is that actuator bandwidth

should exceed plant bandwidth by a factor of 2–5 to ensure responsiveness. In this system, the control

flap is modeled as a first-order actuator:

βk+1 = βk +∆t · kβ(uflapk − βk)

where kβ = 60 implies a time constant τ = 1/kβ and a bandwidth fβ ≈ 9.55Hz.

To compare this with the plant, the LPV model is simulated at 5000 Hz under small random inputs and

extracted the dominant frequency for each state via FFT. The simulation was repeated ten times, and each

trial produced identical frequency characteristics, confirming the consistency of the response. Results are

shown in Table 6.1.

6.2. Dynamic Feasibility of LPV-MPC Assumptions 86

State h α ḣ α̇ β

Dominant Frequency (Hz) 2.50 5.00 2.50 5.00 0.50

Table 6.1: Dominant frequency for each state obtained via Fourier analysis.

All plant states exhibit dominant frequencies well below 10 Hz. The fastest, α̇(t), peaks at 5 Hz, while the

actuator bandwidth is approximately 9.55 Hz — slightly below the typical factor-of-2 guideline but still within

an acceptable range. The state β(t), which reflects actuator dynamics, varies more slowly due to limited

excitation. Overall, the actuator is sufficiently fast to track control inputs without introducing significant

delay, supporting the use of LPV-based control at 1000 Hz.

Prediction Horizon and System Dynamics Resolution
An essential consideration in validating the LPV-based LPV-MPC framework is whether the chosen

prediction horizon is long enough to capture the system’s dominant dynamics. Even if the LPV model

provides an accurate local approximation, a short horizon may fail to resolve slower modes of the system,

reducing the effectiveness of the predictions and compromising constraint anticipation.

In standard MPC theory, the prediction horizon duration TH = Np∆t should ideally be large compared to

the inverse of the dominant frequencies in the system:

TH �
1

fdom
.

Given the characteristics of the current setup, the control update rate is ∆t = 0.001 s (i.e., 1000 Hz), and

the prediction horizon is set to Np = 20, yielding a total lookahead time of TH = 0.02 s. The dominant

frequencies observed in the plant dynamics lie between 0.5 Hz and 5 Hz, which correspond to characteristic

time scales ranging from 0.2 s to 2 s.

This means that the current prediction horizon is significantly shorter than the periods of the system’s

dominant modes. From a theoretical perspective, this implies that MPC operating with such a short horizon

cannot fully resolve the system’s dynamics, especially for slower-evolving states such as h, α, and β.

Consequently, a standalone online MPC implementation under this configuration would be unable to predict

sufficiently far ahead to guarantee effective gust rejection. While increasing Np could theoretically address

this limitation by extending the prediction window, doing so would incur significant computational cost,

rendering real-time deployment impractical.

However, this observation does not invalidate the standalone MPC control architecture. Instead, it reframes

the role of MPC: the controller is used as a local trajectory generator that provides short-horizon predictions

based on accurate LPV linearizations. These predictions are sufficient to ensure constraint satisfaction in

the immediate future, even if they cannot anticipate the full system evolution.

Importantly, this analysis further supports the use of MPC as an offline training tool rather than an online

controller. During training, MPC can be run with arbitrarily large prediction horizons (i.e., much larger Np)

since it is not constrained by real-time computational limits. This enables the generation of long-horizon,

constraint-satisfying rollouts that are then used to train a RL policy. The RL agent, once trained, can be

deployed online with minimal computation while inheriting the long-term awareness learned from the MPC

trajectories.

In summary, although the short prediction horizon used in the MPC configuration is insufficient to fully

capture the dominant dynamics of the system, this limitation is inherently resolved by the chosen architecture.

While such a constraint would typically pose a significant challenge for online MPC, the current approach

leverages MPC primarily as a training oracle for an offline RL policy. In this setting, longer prediction

horizons can be used during training without concern for real-time feasibility, allowing the RL agent to

inherit control behavior informed by long-term dynamics. As a result, the architecture enables effective long-

term planning and constraint satisfaction without requiring computationally expensive online optimization,

reinforcing the suitability of this RL-MPC approach.

6.3. Numerical Validation of LPV Accuracy 87

6.3. Numerical Validation of LPV Accuracy
To validate the local accuracy of the LPV approximation, a numerical analysis was conducted comparing

two LPV systems linearized at nearby operating points. The key objective is to verify that the linearization

error remains sufficiently small over one control step, which is relevant in the current setup since the LPV

system is recomputed at each timestep. Unlike traditional LPV methods where the linearization remains

fixed over the prediction horizon, here the system matrices are updated continuously not only during

training and deployment, but also internally within the MPC itself using predicted values of h and α over

the prediction horizon. Therefore, it is sufficient to analyze whether the approximation holds locally for a

single time step of size ∆t = 0.001 s.

The experiment begins with the generation of a random discrete-time state x0 = [hk, αk, v
h
k , v

α
k , βk], using

the following bounded ranges: hk ∈ [−0.05, 0.05], αk ∈ [−0.3, 0.3], vhk , vαk ∈ [−1, 1], and βk ∈ [−0.1, 0.1]. A
perturbed state x1 is constructed by modifying hk and αk by δh = 0.02 and δα = 0.04, corresponding to the

maximum deviations induced by the rate limits vh,max = 0.07 and vα,+max = 1.19 over one timestep ∆t =
0.001 s. These perturbation values were chosen based on the 99.9th percentile of observed single-timestep

variations across 1000 nonlinear simulations of the aircraft model, each with randomized initial states and

random turbulences. As such, the analysis is conservatively designed to reflect worst-case deviations

within the operational envelope. In practice, the actual deviations and hence the LPV approximation error

are typically much smaller under nominal conditions.

The matrix difference is given by:

A1 −A0 =


0 0 0 0 0

0 0 0 0 0

−0.0009 0.0096 0 0 0

0.0015 −1.2944 0 0 0

0 0 0 0 0


and the corresponding percentage difference is:

|A1 −A0|
|A0|

· 100 =


0 0 0 0 0

0 0 0 0 0

0.0004 0.1110 0 0 0

0.0004 0.2780 0 0 0

0 0 0 0 0

 %

To evaluate the effect of these matrix differences on system trajectories, both LPV systems were simulated

from the same initial condition x0 using the same random control inputs with∆t = 0.001. The final deviation
in state trajectories was computed as:

x1 − x0 =


0

−3× 10−6 rad

3.3× 10−5 m/s

−5.2× 10−4 rad/s

0

 ,
|x1 − x0|
RMS

× 100% =


0

−0.003%
0.0099%

−0.156%
0


These results confirm that the LPV approximation remains accurate over one timestep even under maximum

expected variations in state values. Because the LPV model is updated at every timestep using current

or predicted states, this local validity guarantees that the approximation error remains bounded across

the full prediction horizon. This conclusion aligns with the theoretical justification previously established,

where the remainder term was shown to be quadratically bounded in the state deviation. The numerical

results support this theory, demonstrating that both the system matrix deviations and the resulting state

trajectory differences remain small under realistic conditions. The LPV system thus provides a reliable

representation of the nonlinear dynamics for control and safety analysis.

6.4. Justification of Second-Order Truncation in State Update 88

6.4. Justification of Second-Order Truncation in State Update
This section provides a detailed quantitative comparison of second- and third-order contributions to the

update of each state, based on the Taylor expansion introduced in Equation (6.10). The constants used in

this analysis are defined in Section 6.1.

xk+2 = xk + 2∆t · fk +∆t2 · ∇xfkfk +
∆t3

6
·D2fk[fk,fk] +O(∆t4) (6.10)

The following state values are selected to reflect the 99.9th percentile of magnitudes observed across an

extensive set of simulations. These values serve as conservative upper bounds, ensuring that the results

remain valid even under extreme, yet realistic, operating conditions:

h = 0.01, α = 0.17, vh,k = 0.07, vα,k = 1.19, β = 0, U = 12 m/s, ∆t = 0.001

Quantitative Comparison of Second- and Third-Order Terms for h
Stiffness and Aerodynamic Terms:

kh = 2844 · (1 + 0.9 · h2) ≈ 2844, ka ≈ 21.29 (evaluated at α = 0.17)

αeff = α+
vhk
U

+ abb ·
vαk
U
≈ 0.1734

Laero = ρU2b (clααeff + clββ) ≈ 25.92, Maero = ρU2b2
(
cmαα

eff + cmββ
)
≈ 4.147

System Matrix Evaluation:

detMmass ≈ 0.6828,
Ia

detMmass
≈ 0.0817,

mwxab

detMmass
≈ 0.1342,

mt

detMmass
≈ 18.14

Acceleration Term:

ahk =

(
Ia

detMmass

)
(−Laero − chv

h
k − khhk) +

(
− mwxab

detMmass

)
(−Maero − cav

α
k − kaαk)

= 0.0817 · (−56.29) + (−0.1342) · (−7.808)
≈ −4.599 + 1.048 = −3.551 m/s2

Third-Order Estimate: The third derivative of h, denoted as the plunge jerk jhk , is approximated using a

first-order finite difference between consecutive acceleration values. These values are computed from the

flexible aircraft model at representative perturbed states. The discrete-time approximation is given by:

jhk ≈
ahk+1 − ahk

∆t
= −16.27 m/s3

Fourth-Order Estimate: The fourth derivative of h, denoted as the plunge snap shk , is approximated using

a second-order central difference over a sequence of acceleration values. This quantifies the rate of

change of the jerk, and is expressed as:

shk ≈
ahk+2 − 2ahk+1 + ahk

∆t2
= −0.0616 m/s4

Ratio of Third-Order to Second-Order Contribution (for h): The second-order update of the plunge

state hk is computed as:

∆t2

2
· ahk =

1× 10−6

2
· (−3.551) = −1.776× 10−6 m

6.4. Justification of Second-Order Truncation in State Update 89

The corresponding third-order term is:

∆t3

6
· jhk =

1× 10−9

6
· (−16.27) = −2.712× 10−9 m

The ratio of third- to second-order contributions is:

Third-order

Second-order
=

2.712× 10−9

1.776× 10−6
≈ 0.00153 (0.153%)

Ratio of Third-Order to Second-Order Contribution (for vhk): When the velocity vhk is considered as the

state variable, its second-order update involves the acceleration ahk , and the third-order update involves

the jerk jhk . In this case, the fourth derivative shk serves as the third-order correction term in the Taylor

expansion:
∆t2

2
· jhk =

1× 10−6

2
· (−16.27) = −8.137× 10−6 m/s

∆t3

6
· shk =

1× 10−9

6
· (−0.0616) = −1.027× 10−11 m/s

The ratio of the fourth-order term to the second-order update (for vh,k) is:

Third-order

Second-order
=

1.027× 10−11

8.137× 10−6
≈ 1.26× 10−6 (0.000126%)

These results confirm that the third-order contributions to both the plunge state hk and the plunge velocity

vhk are negligible under the considered conditions.

Quantitative Comparison of Second- and Third-Order Terms for α
Acceleration Terms:

aαk =
(mt

detMmass

)
(−Maero

k − cav
α
k − kaαk) +

(
− mwxab

detMmass

)
(−Laero

k − chv
h
k − khhk)

= 18.14 · (−7.808) + (−0.1342) · (−56.29)
≈ −141.6 + 7.554 = −134.0 rad/s

2

Third-Order Estimate: The third derivative of α, denoted as the pitch jerk jαk , is approximated using a

first-order finite difference between consecutive acceleration values. These values are computed from the

flexible aircraft model at representative perturbed states. The discrete-time approximation is given by:

jαk ≈
aαk+1 − aαk

∆t
= −1170 rad/s

3

Fourth-Order Estimate: The fourth derivative of α, denoted as the pitch snap sαk , is approximated using a

second-order central difference over a sequence of acceleration values. This quantifies the rate of change

of the jerk, and is expressed as:

sαk ≈
aαk+2 − 2aαk+1 + aαk

∆t2
= −1520 rad/s

4

Ratio of Third-Order to Second-Order Contribution (for α): The second-order update of the pitch angle

αk is computed as:
∆t2

2
· aαk =

1× 10−6

2
· (−134.39) = −6.70× 10−5 rad

The corresponding third-order term is:

∆t3

6
· jαk =

1× 10−9

6
· (−1170) = −1.95× 10−7 rad

6.4. Justification of Second-Order Truncation in State Update 90

The ratio of third- to second-order contributions is:

Third-order

Second-order
=

1.95× 10−7

6.70× 10−5
≈ 0.00291 (0.291%)

Ratio of Third-Order to Second-Order Contribution (for vαk): When the velocity vαk is considered as the

state variable, its second-order update involves the acceleration aαk , and the third-order update involves

the jerk jαk . In this case, the fourth derivative sαk serves as the third-order correction term in the Taylor

expansion:
∆t2

2
· jαk =

1× 10−6

2
· (−1170) = −5.850× 10−4 rad/s

∆t3

6
· sαk =

1× 10−9

6
· (−1520) = −2.533× 10−7 rad/s

The ratio of the third-order term (snap) to the second-order update (jerk) for vαk is:

Third-order

Second-order
=
−2.533× 10−7

−5.850× 10−4
≈ 4.33× 10−4 (0.0433%)

These results confirm that the third-order contributions to both the pitch angle αk and pitch velocity vαk are

negligible under the considered conditions.

Quantitative Comparison of Second- and Third-Order Terms for β
The flap state β evolves according to a first-order differential equation. In discrete-time, its second and

third derivatives can be approximated using known dynamics:

vβk = kβ(u
flap
k − βk) ⇒ aβk = −kβvβk , jβk = k2βv

β
k

The second- and third-order contributions in the Taylor expansion of the discrete-time state update are:

∆t2

2
· aβk = −∆t2

2
· kβvβk ,

∆t3

6
· jβk =

∆t3

6
· k2βv

β
k

Taking the ratio of the third- to second-order terms:∣∣∣∣ Third-order

Second-order

∣∣∣∣ =
∣∣∣∣∣ ∆t3

6 · k
2
βv

β
k

∆t2

2 · (−kβv
β
k)

∣∣∣∣∣ = ∆t

3
· kβ

Substituting ∆t = 0.001 and kβ = 60, the ratio becomes:∣∣∣∣ Third-order

Second-order

∣∣∣∣ = 0.001

3
· 60 = 0.02

This confirms that for kβ = 60, the third-order term is only 2% of the second-order term and can safely be

neglected.

To determine the maximum kβ for which the third-order term remains within acceptable bounds, a threshold

of 10% relative to the second-order term is used. This represents a practical engineering margin beyond

which the higher-order contributions may no longer be negligible. Setting:

kβ
3000

= 0.1 ⇒ kβ = 300

Therefore, as long as kβ ≤ 300, the third-order contribution to the update of β remains sufficiently small.

6.5. Controller Configurations 91

6.5. Controller Configurations
6.5.1. MPC Controller parameters
Sampling and horizons The controller operates at a fixed sampling time of Ts = 0.001 s. A predic-

tion horizon of NP = 20 and a control horizon of Nc = 15 are used. Command–actuator latency is

accommodated by extending the internal model with Ndelay = delay dummy steps.

State estimation Separate third-order Kalman filters estimate {α, α̇, α̈} and {U, U̇ , Ü}. Process and
measurement covariances are Qα = diag(1, 0.1, 0.01), Rα = 10; QU = diag(1, 0.1, 0.01), RU = 50 in

order to remove as much noise as possible.

Plant model A five-state aeroelastic wing model (h, α, ḣ, α̇, β) is linearized online at each time step

and for each prediction step, starting at Ndelay and ending at Ndelay +NP steps. Both A and B matrices

are re-computed from the predicted flight speed U and the AoA, ensuring consistency with the non-linear

stiffness and aerodynamic terms.

Cost function The stage cost is J =
∑NP-1

i=0

(
x>
k+i|kQk+ixk+i|k + u>

k+i|kRuk+i|k
)
, with R = I. Three

time-varying state weights are toggled:

• Gust mode : Qgust = diag(10, 1, 10, 10, 1), activated when |α| > 0.2 rad.

• Away from equilibrium : Qaway = diag(20, 5, 1, 1, 1), when sign(α) = sign(α̇).

• Toward equilibrium : Qtow = diag(5, 1, 10, 1, 1) otherwise.

Optional economic penalties for total movement (wm) and smoothness (ws) are set to one.

Constraints

−0.10 ≤ h ≤ 0.10 m, −30◦ ≤ α ≤ 30◦,

−20◦ ≤ u ≤ 20◦, |∆u| ≤ 0.0157 rad.

Solver The quadratic programme is solved each step with quadprog (interior-point). If the solver fails

(exitflag<0), the previous input uk−1 is re-issued.

Tuning rationale The prediction horizon is fixed at NP = 20, giving a look-ahead of TH = 0.02 s, which
is shorter than the dominant structural periods (0.2–2 s). Although this window cannot fully capture the

states, it is the longest horizon that can be re-optimized at the 1 kHz update rate on the present processor.

The setting therefore represents a trade-off between dynamic coverage and real-time feasibility; NP may

be increased whenever more on-board computational power becomes available.

6.5.2. RL Controller parameters
Sampling and delay compensation The RL policy executes at the same rate as the MPC, Ts = 0.001 s.
Constant–acceleration Kalman filters predict h and α (and their derivatives) forward by the commanded

actuator delay so that the policy evaluates a delay-free estimate xk = [h, α, ḣ, α̇, β]T.

Policy representation The controller is a k-nearest-neighbour table lookup with k = 5. For a query state

xk it retrieves the k closest stored samples, weights each action inversely to its distance, and returns their

weighted average. If the nearest sample differs by more than 1 % of the full state range in any coordinate,

a local refinement is triggered (see below) and the newly found [xk, uk] pair is appended to an auxiliary

table, enabling lifelong learning.

Local refinement A dense grid of 4 000 candidate elevator deflections in [−0.35, 0.35] rad is rolled out

for two time-steps; the action maximizing the shaped reward is cached and the highest reward is picked.

6.5. Controller Configurations 92

Reward design The instantaneous reward is

r = −wαα
2 − wα̇(α̇− α̇?)2 − whh

2 − wḣ(ḣ− ḣ?)2 − wββ
2 − 0.01u2,

with weights that adapt to the initial error (wh : wα = 3 : 1 at large excursions, velocity weights quintuple

when the state is already moving toward the origin ensuring minimized overshoot).

Offline training The initial table is populated by sampling the starting points drawn from truncated-normal

distributions within h ∈ [−0.05, 0.05]m, α ∈ [−0.5, 0.5] rad, ḣ ∈ [−0.1, 0.1], α̇ ∈ [−1, 1], β ∈ [−0.05, 0.05] rad.
For each state the best action is selected from [−0.35, 0.35] rad using the reward above and stored as a

single [x, u∗] row. These ranges are used only for training and do not constrain the policy during deployment,

where actuator limits are enforced separately. The RL controller is trained on 1,000,000 initial states. For

each state the control input is held for 2 time steps to capture the effect on all states and closely match the

deployment scenarios.

Tuning rationale The k-NN regressor offers constant-time inference while retaining the ability to grow

incrementally when the flight envelope ventures into new regions. Choosing the five closest stored states

provides enough local samples to average out outliers and noise without diluting the action with points

that lie too far from the current operating region. The 1 % coverage threshold minimizes unnecessary

refinements, and the reward weighting prioritizes plunge suppression, which is more critical than AoA

tracking for the flexible-wing configuration. The range of control inputs was selected to cover the entire

actuation range with a sufficient precision.

6.5.3. RL-MPC Controller parameters
Sampling and delay compensation The RL-MPC policy shares the global control rate Ts = 0.001 s.
Constant-acceleration Kalman filters predict h and α (plus their first derivatives) ahead by the measured

actuator delay, yielding the delay-free vector xk = [h, α, ḣ, α̇, β]T. Central differences over the last three

filtered samples add instantaneous accelerations,

ḧk =
ḣk − ḣk−2

2Ts
, α̈k =

α̇k − α̇k−2

2Ts
,

so the policy really operates on the augmented state xaugk ∈ R7.

Policy representation A k-nearest-neighbour regressor (k = 5) is queried with xaugk . If the nearest stored

sample differs by more than 1 % of the full range in any of the seven co-ordinates, the point is judged

out-of-coverage and triggers an on-line refinement (below). The deployed table starts with ∼1 000 000 rows
and grows slowly during flight.

Local refinement If coverage fails, a two-stage search refines the action:

1. Candidate grid 201 points uniformly spaced inside [umin, umax] ∩ [uk−1±∆umax] with ∆umax =
15.7× 10−3 rad (servo rate limit).

2. Roll-out scoring Each candidate is frozen for Nh = 2 steps and evaluated with the shaped reward

r = − 1
2x

>Qx− 1
2 (u

2) + cross-terms,

where the cross-terms penalize excessive plunge-rate when the craft is already descending toward the

trim. The top-K (= 3) actions are stored; the best becomes the control.

Reward design Each position state is referenced to the origin, while the velocity states are driven toward

the first-order decay targets ḣ? = −h/0.5 s and α̇? = −α/0.5 s, which would settle the motion in roughly

0.5 s. The quadratic weights are biased toward velocity damping, qḣ = qα̇ = 10 versus qh = qα = 5, and a

modest control-effort penalty ru = 0.8 keeps elevator deflections smooth. All coefficients can be re-tuned

to trade off energy consumption against settling time.

6.5. Controller Configurations 93

Offline training with MPC–derived bounds For each of the 1e6 training samples we first draw the

five observable states (h, α, ḣ, α̇, β) from truncated-normal ranges h∈ [−0.05, 0.05] m, α∈ [−0.5, 0.5] rad,
ḣ∈ [−0.1, 0.1], α̇∈ [−1, 1], β∈ [−0.05, 0.05] rad. A least-squares regressor then estimates the gust speed

that would make those states consistent with the nonlinear model; with that gust we analytically recover the

accelerations ḧ, α̈ and form the 7-D augmented state xaug. Next, a lightweight MPC controller is queried

three times: with the inferred gust, with a +25% stronger gust, and with a −25% weaker gust. The smallest

and largest of the three MPC outputs define a provably safe search interval [umin, umax] that encloses the
true-gust solution while respecting all constraints. Inside this interval we evaluate a uniform grid of 1 000

candidate actions; each action’s reward is the weighted average of the scores obtained under the weaker,

nominal, and stronger gusts, making the selection robust to estimation error. Only the three highest-reward

actions are kept, so every stored table row consists of the 7-D state followed by its best-, second-, and

third-best control inputs [xaug, u1, u2, u3].

Tuning rationale * Five neighbours give enough resolution for local accuracy while keeping the lookup

O(k) and real-time safe. * Accelerations enrich the feature vector just enough to discriminate between

“moving toward” and “moving away” cases without exploding table size. * MPC bounds embed hard

constraints, letting the RL layer focus on performance rather than safety.

Tuning rationale

• k-NN design. Five neighbours strike a balance between local accuracy and O(k) lookup time;

inverse-distance weighting averages out outliers without diluting the action with points that lie far from

the current operating region. The 1% coverage threshold prevents unnecessary refinements while

still allowing the table to grow incrementally whenever the flight envelope explores new territory.

• Feature choice. Adding the accelerations ḧ and α̈ gives just enough information to distinguish

whether the aircraft is moving toward or away from trim, without exploding table size.

• MPC–based safety envelope. For every training and on-line query an MPC routine evaluates the

same state under nominal, +25%, and −25% gust levels; the minimum and maximum of the three

outputs define a hard envelope [umin, umax]. This embeds all state and rate constraints, so the RL

layer can focus purely on performance.

• Control-grid resolution. For each query we draw 201 candidate actions inside the MPC-derived

envelope [umin, umax] rather than over the entire [−0.35, 0.35] rad span. Because the envelope length

is typically ≤ 0.1 rad, the resulting average spacing is about 0.0002 rad—still more than fifteen times

finer than the physical rate limit ∆umax = 15.7× 10−3 rad—ensuring the optimum is not missed while

keeping the evaluation cost low.

• Reward priorities. Weights are biased toward plunge suppression (qḣ = qα̇ = 10, qh = qα = 5),
reflecting the tighter mm-level tolerance on h compared with α; a modest control-effort term ru = 0.8
smooths the elevator motion.

• Long-horizon MPC in training. Offline, the MPC horizon is extended far beyond the real-time limit,

allowing it to capture the full 0.2–2 s structural dynamics. The resulting long-range predictions yield

tighter, yet still constraint-satisfying, action envelopes that the RL policy inherits without incurring any

run-time cost.

7
Conclusions & Recommendations

7.1. Conclusions
This thesis investigated the control of flexible, aeroelastic aircraft structures under gust disturbances,

where conventional control methods such as LQR, LQG or H∞ are often inadequate due to their limited

ability to handle nonlinear dynamics, structural coupling, and uncertainty. Linear Parameter Varying Model

Predictive Control (LPV-MPC) has proven effective for flexible aircraft control, offering structured constraint

handling, multivariable coordination, and robustness across flight regimes. However, its performance can

degrade under turbulence due to model mismatch and actuator delay. It also faces practical limitations from

high computational demands. In contrast, Reinforcement Learning (RL) provides a lightweight, data-driven

approach capable of adapting to nonlinear dynamics and uncertainty, but typically lacks guarantees for

constraint satisfaction. These contrasting properties reveal a natural synergy: by combining the structure

and safety of LPV-MPC with the adaptability of RL, this thesis proposes a hybrid framework that balances

robustness and flexibility for gust-affected aeroelastic systems.

The main contribution of this thesis is a novel controller architecture that combines LPV-MPC with RL for

the control of aeroelastic aircraft. Two long-horizon LPV-MPC controllers compute safe control bounds

under best and worst case disturbance assumptions, while a RL agent selects actions within these bounds

based on gust predictions and current states. To ensure safe operation in previously unseen conditions, a

weighted least-squares interpolation method is introduced, with constraint satisfaction guaranteed through a

Lipschitz-based criterion. This structure ensures robust, adaptive, and constraint aware control of nonlinear

aeroelastic aircraft under turbulent conditions. Although developed for aeroelastic aircraft, the proposed

controller architecture can be extended to other nonlinear systems with constraints, including applications

in robotics and the automotive industry, provided they exhibit similar structure and smoothness properties.

7.2. Research Questions
The aim of this thesis was to investigate the use of LPV-MPC and RL for the control of flexible aircraft,

with a particular focus on the potential benefits of integrating the two approaches. This investigation was

guided by the following research questions:

How do standalone MPC and RL controllers perform for aeroelastic aircraft under gust distur-

bances, and what are their respective strengths and limitations?

Research Question 1

MPC, particularly in its LPV formulation, has been widely applied to flexible aircraft due to its ability to

manage constraints and coordinate multivariable dynamics. However, existing research often neglects

fast transients caused by turbulence, leading to performance degradation in realistic gust scenarios. In

such conditions, LPV-MPC suffers from model mismatch because it cannot anticipate rapid disturbances

and relies heavily on accurate parameter scheduling. RL, by contrast, has been explored less frequently in

this context but shows promise as a data-driven method that can adapt to nonlinearities and unmodeled

dynamics. Still, most RL approaches lack formal guarantees for constraint satisfaction and stability, making

them difficult to apply directly in safety-critical systems.

94

7.2. Research Questions 95

The simulation results confirmed the trends observed in the literature review. Both controllers demonstrated

effective flutter suppression and gust load alleviation. RL was able to handle slightly stronger gusts in

some scenarios, showing more robustness during high intensity disturbances, while LPV-MPC provided

smoother recovery and more stable performance under moderate conditions. LPV-MPC outperformed RL

during times when the disturbance had subsided and the plant model matched the controller’s internal

model. In these conditions, it achieved stable trajectories and smooth recovery, as expected. However,

during active gust disturbances, its performance degraded due to model mismatch caused by unmodeled

turbulence. Despite this, LPV-MPC required the least actuator movement, particularly in the recovery phase

following the gusts. It was also the most computationally expensive method, with longer runtimes than

RL. In contrast, RL showed strong suppression of large deviations during the gust but had less consistent

convergence afterward and could not match the precision of LPV-MPC during recovery. It frequently issued

control inputs beyond the actuator limits, which were externally clamped in simulation, indicating that the

learned policy did not account for the system constraints. These results reinforce the known trade-offs:

LPV-MPC provides structure, smoothness, and constraint handling but suffers under turbulence, while RL

is responsive to disturbances but lacks constraint awareness and consistent post-disturbance recovery.

What are the most effective strategies for combining MPC and RL for aeroelastic control, con-

sidering safety and operational constraints, fast aeroelastic responses, and the computational

demands of online implementation?

Research Question 2

Several integration strategies have been proposed in the literature to combine MPC and RL for systems

requiring both adaptability and constraint satisfaction. One group embeds MPC as a structured policy

inside the RL loop, replacing neural networks with optimization-based decisions that preserve safety

and structure. However, this increases computational complexity and depends on accurate models,

limiting scalability. Another group uses RL to tune MPC parameters such as weights or constraints online,

improving adaptability, but often at the cost of predictability and guaranteed feasibility. A third category

refines MPC-generated actions using RL to compensate for disturbances or modeling errors, though this

assumes MPC’s output is close enough to optimal for refinement to be effective. Supervisor architectures

reverse this flow, using MPC to filter unsafe RL actions—but may become overly conservative and reduce

performance. Overall, while these methods address some aspects of the control challenge, they often

face trade-offs between performance, safety, and real-time applicability.

The proposed hybrid controller addresses the competing demands of safety, responsiveness, and com-

putational feasibility through a structured design. For safety and constraint satisfaction, the RL agent is

trained exclusively on control actions generated by long-horizon LPV-MPC, ensuring that all observed

behaviors lie within safe operational bounds. Additionally, during deployment, a Lipschitz-based runtime

check guarantees constraint satisfaction even in previously unseen states. For fast aeroelastic response,

LPV-MPC is used during training to provide precise control under known disturbances, enabling the RL

agent to learn high-quality responses across a wide range of gust scenarios. By leveraging state history

information, the agent learns to anticipate disturbances and learn effective compensatory actions. Finally,

to meet computational demands, the trained RL policy is deployed using a lightweight Q-learning-based

implementation that encodes the complex dynamics learned during training into a fast, reactive policy that

remains computationally efficient during deployment.

Simulation results confirm the effectiveness of this approach. In terms of safety and constraint handling,

the hybrid controller satisfied all constraints in every test case, avoiding the violations observed under

standalone RL. It also showed improved actuator usage, more conservative than RL but slightly more active

than LPV-MPC, striking a balance between safety and responsiveness. For aeroelastic response, the hybrid

controller demonstrated the fastest recovery times and the lowest excursion counts and overshoot values,

consistently outperforming both standalone methods in plunge suppression, angle-of-attack stabilization,

and frequency-domain error attenuation. Regarding computational demands, the final RL-based policy

allowed for fast online execution with efficiency comparable to standalone RL and lower runtime overhead

than LPV-MPC. These findings demonstrate that the proposed hybrid controller effectively balances

robustness, responsiveness, and real-time feasibility in demanding aeroelastic environments.

7.3. Recommendations 96

How can the proposed hybrid MPC-RL approach be theoretically justified for safety and empiri-

cally validated through computer-based simulations for both safety and performance, and does it

provide a measurable improvement over standalone controllers in aeroelastic control scenarios?

Research Question 3

Theoretical verification of the hybrid controller was established through formal safety analysis. A second-

order Taylor expansion was used to approximate the nonlinear system dynamics, and it was shown that

the higher-order terms were negligible compared to the dominant terms. This was verified even for the

largest state and input excursions encountered during testing, ensuring the approximation holds across all

relevant conditions. Using this approximation, it was proven that if the minimum and maximum control

inputs generated by the LPV-MPC controller satisfy all state and input constraints, then any control action

selected within this range will also respect those constraints. Since the reinforcement learning agent is

trained only using actions within this safe set, the resulting policy inherits this safety guarantee. To support

safe deployment, a second result was derived using Lipschitz continuity. It showed that interpolating

between nearby safe training actions remains safe, provided the current state lies within a neighborhood

of previously encountered states. With sufficiently dense training coverage, it can be guaranteed that

the entire safe region is covered by such neighborhoods. Together, these results verify that the hybrid

controller maintains constraint satisfaction both during learning and at runtime.

Empirical validation was conducted through a Monte Carlo simulation of 1000 randomized gust scenarios,

each including five seconds of turbulence followed by five seconds of recovery. The hybrid controller

maintained strict constraint satisfaction across all cases, confirming that the theoretical safety guarantees

hold in practice, even under severe disturbances. In terms of performance, it consistently outperformed

both standalone methods by achieving stronger suppression of plunge and angle-of-attack deviations

during gusts, along with smoother and faster recovery afterward. While the standalone LPV-MPC achieved

slightly lower control effort and faster convergence in ideal conditions, the hybrid controller provided the

most robust overall performance, effectively balancing adaptability, safety, and constraint handling in

challenging aeroelastic environment.

7.3. Recommendations
Based on the findings and limitations of this study, several directions are proposed to strengthen and

extend the current work. These recommendations aim to improve the theoretical guarantees, expand the

scope of applicability, and move the approach closer to real-world deployment.

This study demonstrated that higher-order terms in the system dynamics can be neglected, as their

influence is negligible compared to the dominant second-order effects. However, future work could aim to

derive explicit bounds on these higher-order contributions to formally ensure that the control input remains

within the safety envelope under broader dynamic conditions. This would provide an additional layer

of robustness and help extend the theoretical guarantees to more complex systems involving greater

dimensionality and structural complexity than the current model.

Another recommendation concerns the convergence properties of the controller. While this study demon-

strated that the proposed hybrid controller can maintain constraint satisfaction under a wide range of

disturbances, it did not provide formal guarantees on convergence to the equilibrium. Future work could

investigate conditions under which convergence can be ensured, providing a more complete foundation

for real-world deployment.

The current framework operates entirely in discrete time, with fixed-interval control updates and system

evolution. Extending the approach to continuous-time systems would be a valuable direction for future

research. This would involve adapting the training and deployment framework to handle continuous

dynamics, potentially improving accuracy and applicability to real-world aeroelastic systems with faster

dynamics.

This study was conducted on a simplified two-dimensional simple model of a flexible wing, entirely within a

simulation environment. Future work should extend this approach to larger, more realistic aircraft models

and consider experimental validation beyond simulation to assess the real-world performance and practical

feasibility fo the proposed control framework.

	List of Figures
	List of Tables
	I Literature Review & Research Definition
	General Introduction
	Literature Review
	Model Predictive Control
	MPC: Principles and Formulation
	MPC in Aerospace
	Conclusion

	Reinforcement Learning
	RL: Principles and Formulation
	Reinforcement Learning in Aerospace
	Conclusion

	Combining MPC and RL
	MPC as a Policy within RL
	RL adjusting MPC parameters
	RL modifying MPC outputs
	MPC Supervising an RL Controller
	RL and MPC Running in Parallel

	Research Questions
	Project Plan
	Methodology
	Expected Results
	Planning

	References

	II Scientific Article
	Control & Simulation Msc Thesis Paper

	III Additional Results
	More Results
	Second-Order Discretization of Nonlinear Dynamics
	Dynamic Feasibility of LPV-MPC Assumptions
	Numerical Validation of LPV Accuracy
	Justification of Second-Order Truncation in State Update
	Controller Configurations
	MPC Controller parameters
	RL Controller parameters
	RL-MPC Controller parameters

	Conclusions & Recommendations
	Conclusions
	Research Questions
	Recommendations

