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way to compare different networks. In practice, this can be
rather difficult, except within specific classes of networks. In
this paper, we derive metrics for the class of orchard networks
and the class of strongly reticulation-visible networks, from
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1. Introduction

Phylogenetic trees are used to model the evolutionary history of species [20]. Recent
studies have focused on generalizing trees to account for more complex evolutionary
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Fig. 1. A binary stack-free network N and a semi-binary stack-free network N’ with the same u-
representations ({331,221,111,110, 110,011, 100, 100, 010, 010,001}). Note that the edges are directed
downward. For instance node v has p-vector 110 because from it there is a single directed path to leaf
a, a single directed path to leaf b and there are no directed paths to leaf c.

scenarios. Trees suffice to illustrate vertical descent evolution, however fail to accommo-
date for reticulate evolution, which arises from hybridization events and horizontal gene
transfers [1]. To represent such events, phylogenetic networks have proven to be more
fruitful [13,5].

How does one construct phylogenetic networks? Traditional phylogenetic inference
methods can be grouped into model-based methods (e.g. Bayesian inference [23,12], max-
imum likelihood [24,4]) or non-model-based methods (e.g. distance-based [3], maximum
parsimony [22], and combinatorial [14]). In all cases, one must evaluate the accuracy of
the output. For certain evolutionary histories, the true phylogeny is known. In validating
the inference method, this means one can compare output phylogenies to the benchmark
phylogeny. In doing so, one needs a notion of computing distances between the two
phylogenies. Existing metrics such as rearrangement moves suffer from computational
intractability [9,2,16]; others like the triplet distance [10] suffer from non-identifiability
(two distinct networks could be at a distance 0. See e.g., Figure 19 in [6]).

One way of avoiding these situations is to first find complete graph invariants, some-
times called encodings, for specific classes of phylogenetic networks. Statements of the
sort ‘two networks are isomorphic if and only if they have the same encodings’ are typ-
ically sought after in this area. Taking the symmetric difference of the invariants often
leads to a metric, by definition of complete graph invariants [18]. In this paper, we con-
sider invariants based on so-called p-vectors. For every vertex in the graph, these vectors
encode the number of paths from it to every leaf. The multiset of all u-vectors is called
the p-representation of the network. Cardona et al. introduced the p-representation and
showed that it can be used as a metric for binary tree-child networks [8].

In general, two networks can have the same p-representations; in this sense, we say
that the p-representations do not encode networks, see Fig. 1. However, y-representations
may encode subclasses of phylogenetic networks such as the class of tree-child networks
that Cardona et al. considered as mentioned.
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Fig. 2. An orchard network can be represented as a tree with additional horizontal arcs.

For most mathematical and algorithmic techniques, the full class of phylogenetic net-
works is too large. Therefore, several restricted classes of phylogenetic networks have
been defined and studied. A network is called tree-child if none of its nodes have only
reticulation children and a network is stack-free if no two reticulations are adjacent. A
network is reticulation-visible if for each reticulation there exists a leaf such that all
paths to this leaf visit the reticulation. These classes have mainly been defined for their
nice mathematical properties. However, an intuitive biological argument can be made for
tree-child networks as well. As long as a species does not go extinct it is highly unlikely
that all of its surviving offspring is the result of hybridization. Tree-child networks are
automatically stack-free, because if two reticulations are adjacent then one of them must
have the other one as their only child. Reticulation-visible networks are stack-free as
well. Moreover, any phylogenetic network can be made stack-free by iteratively identi-
fying any two adjacent reticulations. More recently the class of orchard networks was
introduced as a superclass of the class of tree-child networks with nice characteristics.
A natural justification for this class is that orchard networks can be interpreted as trees
with additional horizontal arcs which correspond to horizontal gene transfer [15]. For
example the left network in Fig. 1 is orchard and Fig. 2 shows how it can be represented
as a tree with additional horizontal arcs.

Building upon the work of Cardona et al., Erdos et al. sought to extend the application
of p-representations to a larger class of phylogenetic networks in [11], which they called
orchard networks. Their proof was based on identifying and reducing so-called cherries
and reticulated cherries, straight from the p-representations. However, some of their
findings were later refuted by Bai et al. [1] who showed that it is not possible to determine
reticulated cherries from the p-representation for general binary orchard networks. In
that paper, Bai et al. proposed a stack-freeness constraint within the class of orchard
networks to establish the encoding result. They then aimed to show encoding holds for
semi-binary stack-free orchard networks (because binary networks can be made stack-
free by identifying stacks of reticulations, which makes the network semi-binary). This
claim was shown, by counter-example, to only hold for networks which are binary [19].
In [7], Cardona et al. proposed an extended p-representation, which also takes into
consideration the number of paths to reticulations from each node. In the paper they
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showed that this extended p-representation is an encoding for binary orchard networks,
lifting the stack-free condition. This modification however does not show encoding for
semi-binary orchard networks as originally proposed in [1], as the proof is restricted to
networks which are binary.

As it stands, p-representations encode stack-free binary orchard networks, and the ex-
tended p-representations encode binary orchard networks. The aims of this paper are to
find a large subclass of semi-binary orchard networks that is encoded by p-representations
and to find variants of p-representations that form an encoding for all semi-binary or-
chard networks.

Our contributions are as follows, in Section 3 we first propose a modified u-
representation including the in-degrees of nodes, which is different from the extended
p-representation proposed by Cardona et al. in [7]. Theorem 1 states that this modified
p-representation encodes semi-binary stack-free orchard networks. With this theorem,
we can define a metric given by the cardinality of the symmetric difference of the mod-
ified p-representations. On the other hand, we show that encoding does not hold for
non-binary stack-free orchard networks even if the out-degrees are also added to the
modified p-representation (Theorem 2).

Furthermore, in Section 4 we present a fundamental equation which governs the rela-
tionship between the in-degrees of reticulations and the p-representation of a network.
We prove that such an equation exists (Proposition 1), and show how this gives rise to
a system of equations on the p-vector of the root and the u-vectors and in-degrees of
reticulations. We furthermore show, that for reticulation-visible networks with fixed retic-
ulation set, the system of equations generated by Proposition 1 has a unique solution
(Proposition 2). Then, we define a new class of networks called strongly reticulation-
visible networks, for which there is a tree-path (a path containing only tree-nodes, which
may consist of just a single tree-node) to a bridge from each child of a reticulation.
A bridge is an edge which disconnects the network if cut. We show that a bridge and
the lowest reticulation ancestor of that bridge in any network are uniquely determined
by the p-representation (Proposition 3 and Lemma 12). We then use this to show that
strongly reticulation-visible networks with the same pu-representations have the same
modified p-representation (Theorem 3). Finally, we conclude that strongly reticulation-
visible semi-binary stack-free orchard networks are encoded in the space of semi-binary
stack-free networks by the p-representation (Theorem 4). This means that the cardi-
nality of the symmetric difference of the u-representations gives a metric between these
networks. Hence, it is not necessary to include indegrees in the p-representation for this
class.

2. Preliminaries
By a rooted directed acyclic graph (rooted DAG) we mean a connected directed graph

that has no directed cycles. A rooted DAG whose leaves are bijectively labeled by the
elements of a finite set X, we call an X-DAG. We assume henceforth that there is some
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ordering on the elements of X, i.e., that X = {x1,...,z,}. This helps with defining
certain terms. The in-degree of a node v in an X-DAG, which we denote 6~ (v), is the
number of edges which end in v. The out-degree % (v) of a node v is the number of
edges starting in v. The degree of a node is the sum of its in-degree and out-degree.
Every vertex of an X-DAG can be classified by their in-degree or their out-degree. In
particular, an X-DAG contains

o a single root p with in-degree d~(p) = 0;
o tree-nodes v with in-degree §~ (v) < 1;
o reticulations r with in-degree 6~ (r) >

2;
o and leaves a with out-degree 6 (a) = 0.
Note that the root is a tree-node, and leaves can be either tree-nodes or reticulations.
Nodes which are not leaves are sometimes called internal nodes. A node with indegree-1
and outdegree-1 is called an elementary node. The set of all reticulations contained in a
given X-DAG N we will denote R(N) or simply R when the X-DAG is obvious from the
context. We call an edge a reticulation edge if it ends in a reticulation. The hybridization
number h(N') =37, cr(07(r;) —1) of an X-DAG N is the number of reticulation edges
minus the number of reticulations. We call an X-DAG a tree if it has no reticulations.

A phylogenetic network is an X-DAG without parallel arcs or elementary nodes, where
the root must be a leaf (in which case the network is one on a single leaf) or have
out-degree greater than or equal to 2, reticulations have out-degree 1 and leaves are
tree-nodes. A phylogenetic network in which all nodes except the root or the leaves have
degree 3 is called binary. A phylogenetic network in which all tree-nodes except the
root or the leaves have degree 3 but reticulations can have degree > 3 is called semi-
binary. Biologically, such evolutionary histories can occur if there are ambiguities in the
order of consecutive reticulate events. We say a phylogenetic network is non-binary when
there are no such added restrictions on the degrees of the nodes. Note that non-binary
does not mean that the network is ‘not binary’, but rather, that the network is ‘not
necessarily binary’. A phylogenetic network which does not contain any reticulations is
called a phylogenetic tree. See Fig. 3 for some examples. Henceforth, we may refer to
phylogenetic networks as networks for brevity.

All phylogenetic networks are X-DAGSs. From here on out we will identify the leaf
nodes with the elements of the set X and no longer make a distinction between the two.
Furthermore, we will assume edges are directed unless otherwise mentioned, and in all
figures edges will be directed downward, such that the root is at the top and the leaves
are at the bottom.

A path vg ~» v between two nodes vg, v € V is a sequence of edges vgvy, v1v2, ...,
vg—1vg such that v;v;41 € E for i € {0,1,...,k — 1}. Note, that this means that in this
paper all paths will be directed paths as all edges are directed.

We say a node vy is an ancestor of another node v if there is a path from vy to vs.
We also say that vy is a descendant of vi. In this case we may also say vy is above v
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Fig. 3. A binary phylogenetic tree, a binary phylogenetic network and a semi-binary phylogenetic network.

and that vs is below vy. If the path consists of a single edge, then we say v; is the parent
of v, usually denoted p,, and vy is the child of v;. We also consider the trivial path,
therefore each node is both an ancestor and a descendant of itself. The number of paths
from v; to vy we will denote P, ,,.

Given a directed edge e = vyvy we call vs the head of e and vy the tail of e. We say a
node is below e if it is a descendant of v and we say it is above e if it is an ancestor of
v1. We say two nodes are connected if there is an undirected path between them. We say
a set of nodes is connected if every pair of nodes in the set is connected. We say a graph
is connected if the set of its vertices is connected. Recall that an X-DAG is a connected
graph.

A tree-path is a path vy ~> vg, such that v; is a tree-node for each i € {0,1,...,k}. A
tree-node v which has out-degree §*(v) = 1 we shall call an elementary node. A path for
which all but the start and end nodes are elementary nodes, we shall call an elementary
path. The height of a node is the length of the longest path from the node to a leaf.

Two X-DAGs N = (V,E) and N/ = (V', E’) are said to be isomorphic, denoted by
N = N’ when there exists a bijective function f : V — V' such that f(a) = a for all
a € X and vjv, € E <= f(v1)f(v2) € E' for all v1,v2 € V.

2.1. Network classes

A phylogenetic network A is said to be stack-free if no reticulation in A is the child
of another reticulation. A phylogenetic network such that for each reticulation there
is a leaf for which all paths from the root to this leaf pass through the reticulation
is called reticulation-visible. The network in Fig. 4 is binary and stack-free. However,
it is not reticulation-visible, because there are no leaves such that all paths from the
root pass through w. All networks in Fig. 3 are stack-free and reticulation-visible. In
Section 4.2, we will introduce the class of strongly reticulation-visible networks as the
class of phylogenetic networks, in which there is a tree-path to a bridge from the child
of each reticulation.

To define the class of orchard networks, we require notions of cherries, reticulated
cherries, and their reductions. A cherry is an ordered pair of leaves (b, a) which have the
same parent. A reticulated cherry is an ordered pair of leaves (b, a) such that the parent
pp of b is a reticulation and the parent of a is a tree-node p, which is also the parent of



C. Reichling et al. / Advances in Applied Mathematics 172 (2026) 102953 7

N

\

221

100

100
a b ¢

Fig. 4. An example network N, on leaves a,b and ¢, with p-representation p(N) = {(100,2), (010, 2),
(001,1), (110, 2), (011, 1),(111,1),(221,1),(331,1)}. Edges are directed downward. Nodes u and v have
vectors p(u) = 110 with multiplicity 2 and p(v) = 221 with multiplicity 1. Following Definition 1, we
have fi(uw) = (1,110) and a(v) = (1, 221).

py- A pair (b, a) which is either a cherry or a reticulated cherry is also called a reducible
pair. Suppressing an elementary node is the action of deleting the node and adding an
edge between the parent and the child of the node. To reduce a cherry in a network N,
we delete the leaf b and suppress its parent py if it has become elementary. To reduce
a reticulated cherry in A/ we delete the edge p,p, and suppress any nodes which have
become elementary. In this way one always obtains another phylogenetic network as the
result of reducing a reducible pair in a phylogenetic network.

A network is called orchard if there exists a sequence s189S3...8;...8,, of ordered
pairs, such that s; is a reducible pair in the network after reducing each pair in the
sequence up to s;_1 and the entire sequence reduces the network to a network on a single
leaf. Note that in that case, each network generated by performing reductions s; up to
i, is orchard with sequence s;y1, Sit2,...,8n, see Corollary 4.2 in [11]. Furthermore,
any maximal sequence of cherry reductions is complete, meaning any cherry reduction
will result in an orchard network and any partial sequence can be made complete. The
network in Fig. 4 is orchard with sequence (b,c)(a,c)(b,a)(a,c)(c,a). It contains the
reticulated cherry (b, ¢). The networks in Fig. 4 are all orchard and contain the reducible
pair (b,a). In the phylogenetic tree (b,a) is a cherry, while in the other networks (b, a)
is a reticulated cherry. See Fig. 5 for a visualization of the way the different classes of
phylogenetic networks discussed in this paper are related.

2.2. The u-representation

Given an X-DAG N = (V, E), the path-multiplicity vector or p-vector of any node
v € V is defined as follows: let u(v) € ZX be a vector indexed by the leaves of A, such
that the coordinate indexed by leaf a, denoted p(v),, is equal to the number of paths
from v to a. Note that p(v) only contains non-negative integer coordinates and is never
equal to the zero vector. Moreover, since any leaf constitutes a trivial path as well their



8 C. Reichling et al. / Advances in Applied Mathematics 172 (2026) 102953
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Stack-free

Fig. 5. A diagram showing the relations between several different classes of phylogenetic networks.

p-vector is the corresponding unit vector. With the exception of leaf nodes, the p-vector
of a node is always the sum of the u-vectors of its children. For two vertices u,v € V, we
write p(u) < p(v) if p(u)q < p(v), for all a € X. We write p(u) < p(v) if p(u) < p(v)
and p(u), < p(v), for at least one a € X. Note that if u is descendant of v, it always
holds that p(u) < p(v). We say that a p-vector u(v) belongs to a node w if p(u) = p(v).
In particular, pu(v) belongs to v. Later on, we shall see that a p-vector can belong to
multiple nodes. The p-representation of A/, denoted p(A), is the multiset of all y-vectors
of nodes in V.

A multiset is similar to a set. The main difference between a multiset and a set, is that
a multiset can contain multiple instances of the same element. The number of instances of
an element in a given multiset is called the multiplicity of that element in that multiset.
For example, if the p-representation pu(N) contains two instances of a vector p(v), then
we say (v) has multiplicity 2 in u(N'). We may shorten this to #u(v) = 2, whenever the
multiset containing p(v) is implied. Usually the implied multiset is p(N). Then, #u(v)
denotes the multiplicity of u(v) in pu(N).

If a given p-vector u(v) is not contained in a multiset u(N'), we may say u(v) has
multiplicity 0 in x(N). The operation of removing a p-vector u(v) from p(N) is equivalent
to lowering the multiplicity of u(v) in u(N') by 1. Clearly, the multiplicity of a u-vector
cannot be negative and a p-vector which has multiplicity 0 in u(N) cannot be removed
from p(N). The operation of adding a p-vector u(v) to a multiset u(N) is equivalent
to increasing the multiplicity of p(v) in w(N) by 1. We say that pu(N) is generated by
adding p(v) for each node v € V. Therefore, the multiplicity of a vector p(v) in u(N) is
equal to the number of nodes in N with p-vector equal to u(v). We do not equate the
nodes v € V with their p-vectors because multiple nodes may have the same p-vector.
A set of at least two tree-nodes which have the same p-vector we shall call tree-clones.
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A node which is part of a set of tree-clones, we shall call a tree-clone. Bai et al. showed
in [1] Lemma 4.4, that orchard networks do not contain tree-clones.

For example, the node u in Fig. 4 has p-vector 110, because there is exactly one path
to leaf a, one path to leaf b, and there are no paths to leaf ¢ starting in u. There are two
instances of nodes with p-vector 110, because the paths starting in the reticulation u are
in bijection with the paths starting in its child, by adding or deleting the edge between
them. Therefore, p(u) has multiplicity 2 in p(N'). The node v in Fig. 4 has p-vector 221,
because there are 2 paths to leaf a, one via node u and one via the other child of v, and
2 paths to b and one path to ¢, starting in v. It should be clear from these examples
why, with the exception of leaf nodes, the p-vector of a node is always the sum of the
pu-vectors of its children.

2.8. The symmetric difference of multisets

The symmetric difference between two sets S1, S5 is the set of elements from S; and
S, which are not contained in both sets.

S1ASy = (S1US2) \ (81N 8s)

The cardinality of the symmetric difference, or the number of elements that are unique
to either set, can be used as a measure for the difference between these two sets.

For multisets My, My, the symmetric difference My/AMs contains elements in M;
or Ms, with multiplicity equal to the absolute difference of the respective multiplicities
within M7 or Ms. The cardinality of a multiset is the sum of the multiplicities of all its
elements. The cardinality of the symmetric difference is a metric on multisets. For it to
be a metric on some subset of phylogenetic networks, we need a modified version of the
identity axiom to hold. Let A; and N3 be networks.

o (N AR(NZ)| = 0 if, and only if V] is isomorphic to Ns.

Therefore, we will be focusing on determining the conditions such that the u-
representations are equal if, and only if the networks are isomorphic. It is important
to note that there is always only one p-representation belonging to a given network.
3. Encoding by modified p-representations
3.1. Preliminary lemmas

In this section we will show one of the main results. This result is in a way a continu-
ation and modification of previous propositions by Bai et al. [1] and Erdds et al. [11]. We

will make use of a modified p-representation. Let a = (ay,...,ax) and b = (by,...,by)
be vectors. We write a @ b = (a1, ..., ak,b1,...,bs) to denote the concatenation of the
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a b a b

Fig. 6. A cherry, a simple reticulated cherry (b,a) and a complex reticulated cherry (b, a) on the leaves a
and b.

two vectors. If one of the arguments (either a or b) is an integer, it is understood and
treated as a 1-dimensional vector.

Definition 1. Let N = (V, E) be a network. Given a u-vector u(v) of a node v € V, its
modified p-vector is

fi(v) = 67 (v) © p(v).

For a network on leaf set X, ji(v) is the | X|+ 1-th dimensional vector with 6~ (v) as the
first coordinate and the coordinates of u(v) as the latter | X| coordinates. The modified
u-representation i(N') of a network N, is the multiset of modified p-vectors p(v) of
nodes v in V.

We also define two types of reticulated cherries.

Definition 2. Let A be a network and let (b,a) be a reticulated cherry, where pj is the
parent of b.

o If 6= (pp) = 2, then (b, a) is a simple reticulated cherry.
o If 6= (pyp) > 3, then (b, a) is a complex reticulated cherry.

See Fig. 6, for examples of a cherry, a simple reticulated cherry and a complex retic-
ulated cherry.

For the rest of the section, let A/ be a semi-binary stack-free network on X, and
let a,b € X be leaves of N'. We shall show encoding results regarding modified u-
representations. First, we prove some preliminary results.

Observation 1. Let a be a leaf in N'. Then, u(a) has multiplicity 1 or 2 in p(N). If
#u(a) = 1, then its parent p, is a tree-node with p(pa) # p(a). Furthermore, u(py) is
minimal in the multiset {u(v) : p(v) > p(a),v € V}. Otherwise, if #p(a) = 2, then p,
is a reticulation with p(p,) = p(a).

Now we will show that cherries and reticulated cherries are uniquely determined by

n(N).
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Lemma 1. The pair (b,a) is a cherry in N if, and only if, p(v)q = p(v)p for each p(v) €
nN)\A{p(a), p(0)}-

Proof. Let us assume first that the pair (b, a) is a cherry in A/ with parent node p. Then,
for each node v € V'\ {a, b} the number of paths from v to either a or b is equal to the
number of paths P,, from v to p, so u(v), = p(v)s.

For the other direction, we will use a proof by contradiction. Assume p(v), = p(v)p
for each p(v) € w(N)\{u(a), n(b)}. Now assume the pair (b, a) is not a cherry in A/. This
means ¢ and b must have different parents p, # py. However, because u(v), = p(v)p for
each u(v) € u(N)\ {p(a), u(b)}, we have that u(ps)p = p(pa)e = 1, therefore there is a
path from p, to b. This means p, must be an ancestor of p,. But also u(py)a = p(pp)s = 1,
therefore p, must also be an ancestor of p,. In acyclic graphs two nodes cannot be
ancestors of each other unless they are the same node, therefore p, = pp, but this
contradicts our assumption that (b, a) is not a cherry. O

Note that the condition on the p-vectors implies that u(a) and p(b) have multiplicity
1 in p(N), because if for instance p(b) has multiplicity greater than 1 in p(A), then
w(N)\ {p(a), u(b)} would still contain a vector u(b), for which u(b), =0 # 1 = u(b)s.

Lemma 2. The pair (b,a) is a reticulated cherry in N with b the reticulation leaf if, and

only if, #p(a) = 1, #u(b) = 2, p(v)y > p(v)a for each p(v) € p(N)\ {p(a), u(b)} and
w(N) contains a vector u(py) = u(a) + u(b).

Proof. First let us assume (b, a) is a reticulated cherry in A with b the reticulation leaf.
Then the parent of a is a tree node p, and, by Observation 1, p(a) has multiplicity 1
in the multiset. Also, the parent of b is a reticulation py, therefore by Observation 1,
1(b) has multiplicity 2 in the multiset. Furthermore, p, is the parent of p, and thus an
ancestor of b. Therefore, for each path v ~ p, with v € V'\ {a, b}, there is at least one
path v ~~ b via p,. Furthermore, the number of paths from v to a equals the number of
paths from v to p,. This means that p(v)y > P,p, = p(v), for any node v € V'\ {a, b}.
Finally, note that u(p,) = p(a) + p(ps) = p(a) + p(b). This proves the first direction.
For the second direction, we will use proof by contradiction. Let us assume, u(a) has
multiplicity 1 in the multiset, (b) has multiplicity 2 in the multiset, pu(v)y > p(v), for
each p(v) € p(N)\ {u(a), u(b)} and p(N) contains u(p,) = p(a) + wu(b). Now assume
(b,a) is not a reticulated cherry. Note u(p,) > p(a) and the only p-vectors u(v) with
w(v) < w(pe) are p(a) and p(d), thus p(pe) is minimal in {u(v) : p(v) > pla),v € V}.
Then, by Observation 1, u(p,) belongs to the parent of a. Furthermore, by Observation 1,
we know b has a reticulation parent p,. Therefore the parent p, of a is not a parent of p
the parent of b, because otherwise (b, a) would be a reticulated cherry. But there must be
a path from p, to b because p(pa)p > 14(pa)a = 1. This means there must be other nodes
on the path from p, to py. Let ¢ then be the child of p,, then u(p,) = p(a) + p(c) =
wu(a) + wu(b). Subtracting p(a) gives p(c) = w(b). This means c is either the leaf b, which
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is not possible, or it is pp, which we assumed it was not, or it is some other reticulation
which has a child with the same p-vector equal to p(b). Its child cannot be the leaf b,
because by assumption c is not p; and its child cannot be p, because the network is stack-
free. Therefore, its child must be a tree-node with the same p-vector as the leaf b, which
is not itself leaf b or p;. But, then #u(b) = 3, which contradicts our assumption. O

Let us now define cherries and reticulated cherries as subsets of the original and
modified p-representation as follows naturally from Lemma 1 and Lemma 2.

Definition 3.

e The pair (b, a) is a cherry in u(N) if u(v), = pu(v)p for each p(v) € p(N)\{p(a), 1)}
b,a) is a cherry in u(N) if i(v), = f(v)p for each p(v) € pN)\{a(a), z(b)}.
o The pair (b, a) is a reticulated cherry in p(N') with b the reticulation leaf if #u(a) = 1,

)i
#4(b) = 2, u(v)y > plv), for each p(v) € p(N) \ {ja(a), u(b)} and p(N) contains a

vector fu(pa) = p(a) + p(b).
e The pair (b,a) is a reticulated cherry in (N) with b the reticulation leaf if the

S~ o~

e The pair

following hold:
) with fi(v); = p(a); for i € X,
— there exists a vector ji(pp) (N) with a(v); = p(b); for i € X,
- o> o or el 1) € (A i) ) and
— (N contains a vector fi(pg) s.t. i(pa): = p(a); + @(b); for i € X.
(p ) [2] ® u(b) and otherwise it is complex.

— there does not exist j(v) € p(N
€

It is simple if @(N') contains fi(p

Note that if (b, a) is a cherry or a reticulated cherry in N, it is a cherry or reticulated
cherry in pu(N) and @(N). Furthermore, if (b,a) is a reticulated cherry, it is simple if,
and only if, @(N) contains ii(py) = [2] @ u(b), because then fi(py)o = 2, for p, the parent
of b. Otherwise, it is complex. If (b,a) is a cherry or a reticulated cherry in A/ we say
that (b,a) is a reducible pair in NV, in p(N) and in g(N).

It is important to mention here that we restrict to the class of stack-free networks to
be able to identify reticulated cherries in the p-representation. Without the stack-free
assumption, the conditions in Lemma 2 are not sufficient to determine whether (b, a) is a
reticulated cherry in general. In Fig. 7, two non-isomorphic networks are displayed which
have the same p-representation. To see the non-isomorphism, the left network contains
a reticulated cherry while the right network does not. Clearly, p-representations do not
suffice in identifying reticulated cherries if the stack-free condition is not imposed. In light
of this, Cardona et al. proposed a different extended p-representation by considering,
for every vertex, the number of paths to reticulations, in addition to the pu-vectors.
While this sufficed to prove that binary orchard networks are encoded by extended p-
representations, the encoding result does not easily translate to the semi-binary network
case. The networks in Fig. 1 form a counterexample, they have the same extended pu-
representation, while they are not isomorphic.
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Fig. 7. Two networks which are not stack-free. Although they have the same p-representation, they are not
isomorphic. In the first network (b, a) is a reticulated cherry while in the second network it is not. The
first network is orchard, as it can be reduced by the sequence (b, a)(b, a)(b,a). The second network is not
orchard.

3.2. Reconstructing orchard networks

Now let us define cherry and reticulated cherry reductions in f(A). We first define
operations on vectors. Recall that to remove a vector from a multiset means to lower the
multiplicity by 1 to a minimum of 0. If a vector has multiplicity 0 in a multiset we say
the multiset does not contain the vector.

Let (b,a) be a cherry in N. We define the cherry reduction of (b,a) in (N) as the
following operations:

1. Remove the unit vector (b) from a(N).
2. Remove the vector f(pep) = [1] @ (1(a) + (b)) from a(N).
3. For each ji(v) in i(N), replace it with a vector (ji(v););cs where S is the set {0} U

X\ {b}.

Note, that because (b,a) is a cherry, the parent pgp of a and b will have j-vector [1] @
((a) + p(b)) before reduction and should be suppressed when reducing (b,a). Note
also that none of the in-degrees of any nodes have changed. Now let (b,a) be a simple
reticulated cherry in fi(N), we define the simple reticulated cherry reduction of (b,a) as
the following operations:

[1] & (u(a) + (b)) from a(N).
— [2) @ u(b) from ().
(a) replace it with the vector ji(v) — fi(v)q([0] & w(b)).

1. Remove the vector fi(p,) =
2. Remove the vector fi(pp)
3. For each u(v) € p(N) \

Note that tree-nodes have in-degree 1 and so, by Lemma 2, ji(p,) is the g-vector of
the parent of a, which should be suppressed when reducing (b, a). Furthermore, because
(b,a) is a simple reticulated cherry, the parent p;, of b has in-degree 2 before reducing
and should be suppressed as well. Furthermore, because the edge between p, and p
there are no longer any paths to b via p,. Note that the in-degrees of any nodes that
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are not suppressed have not changed. Finally, we define the complex reticulated cherry
reduction as follows:

1. Remove the vector ji(p,) = [1] @ (p(a) + (b)) from a(N).
2. Let a(py) € p(N') be the vector with fi(py)o > 1 and a(ps) = (ps)o @ p(b) and lower

fi(po)o by 1.
3. For each u(v) € p(N) \ fi(a) replace it with the vector f(v) — i(v)q([0] ® w(b)).

For this reduction we keep the ji-vector of the parent p; of b, because it is not suppressed
when (b,a) is reduced in N, because it has in-degree greater than 1 after reduction,
but we do lower its in-degree by 1. Note that, by Observation 1, in stack-free networks
there can only be one non-leaf node with u-vector equal to p(b) and therefore i(py) has
multiplicity 1 in g(A). Finally note that the in-degrees of any other nodes, besides py
have not changed.

Lemma 3. Let (b, a) be a reducible pair in (N, the multiset generated by reducing (b, a)
in (N is the fi-representation of the network generated by reducing (b,a) in N

The proof of this lemma is given in the appendix. Using these three lemmas we show
the following isomorphism result for any two networks A7 and N>.

Theorem 1. Let N7 be semi-binary stack-free orchard and let Ny be semi-binary stack-
free. Then,

[(N1) = @(N2) if and only if N1 = Ny

Note that this means that semi-binary stack-free orchard networks are encoded by
their modified p-representation in the class of semi-binary stack-free networks.

Proof. Suppose we are given a semi-binary stack-free orchard network A7, and a semi-
binary stack-free network Ny with u(N7) = 1(N2). Note that (N7) = f(N2) implies
that also p(N7) = p(N2). Then, because N is orchard it must contain a reducible pair
of leaves (b,a). If the pair (b,a) is a cherry, then by Lemma 1 it must be a cherry in
#(N7). Therefore, it is also a cherry in u(N2) and thus again by Lemma 1 it is a cherry
in AV5. In this case, if N is the network generated by reducing (b, a) in N7, and p(N7) is
the p-representation of this network, then by Lemma 3, i/(N7) = (N]), where i/ (N7)
is the multiset generated by reducing (b, a) in (N7). Thus, because there is only a single
way of reducing a cherry in the fi-representation, we have that g’'(N7) = g/ (N2) and by
Lemma 3, i/(N3) is the fi-representation i1(N3) of the network generated by reducing
(b,a) in Na. To conclude, after reducing the cherry (b,a) in both A; and N, the two
networks still have the same p-representation.

Alternatively, if (b, a) is a reticulated cherry in NV then by Lemma 2, it is a reticulated
cherry in p(N7). Therefore, by the same argument as before, it is a reticulated cherry in
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Ns. Furthermore, because ji(N7) = u(N2), if (b, a) is simple in A then it is simple in N3
and otherwise it is complex in both networks. As for each type of reticulated cherry there
is a single way of reducing it in the p-representation, we again see that both networks
must have the same modified fi-representation after reduction of (b, a).

Moreover, because N is orchard, the network will still be orchard after reducing the
pair (b,a). Therefore, it will again contain a reducible pair which is also a reducible
pair in N>. It follows, that any sequence S = s1, s,...,s, of reducible pairs s;, which
reduces N (to a network on a single leaf), will also be a sequence of reducible pairs for
N>. Furthermore, because A7 and N, start out with the same set of leaves and each
cherry reduction removes the same leaf from both networks, S will also reduce N3 to a
network on a single leaf, and it will be the same leaf. We will show that N7 and N5 are
isomorphic by an inductive proof. Let N/ fi) and J\/Z(i) be the networks generated from N;
and N by performing reductions s; up to s;, and let ./\/1(0) =N and /\/2(0) = MN5. And
let us assume that the networks Nl(i) and J\/'Q(i) are isomorphic. This is true for the base
case where i = n, such that N7 and A5 are both reduced to a network on a single leaf by
the entire sequence s1, s, ..., s,. Now take the networks Nl(i_l) and Ng(i_l) generated
by performing reductions si, sa, ..., s;—1. By Corollary 1 of [17], there is exactly one way
to generate N and V{7V from AP and ALY, respectively. From this it follows
that, because V" and N" are isomorphic, we also have that A" and A" are
isomorphic. Finally, because we have shown that the networks are isomorphic for i = n
and that they are isomorphic for ¢ = j — 1 if they are isomorphic for ¢ = j, we can
conclude that they are isomorphic for 4 = 0. This means N7 and N3 are isomorphic. O

3.3. The ji-distance as a metric

By the definition as set out in Section 2 the symmetric difference between two mul-
tisets is empty, if, and only if, they are the same multiset. Furthermore, because the
p-representation of a network is well-defined, if two networks are isomorphic then their
p-representations are equal. If however, two networks have equal p-representation, this
does not necessarily mean they are isomorphic, see the examples in Fig. 1 and Fig. 7.
Theorem 1 shows that given two semi-binary stack-free networks with equal modified
p-representations, if one of them is orchard, then they are isomorphic. Let us define the
i-distance on networks N7 and A3 by taking the cardinality of the symmetric difference
of modified p-representations, i.e., dy(N1,N2) = |L(N1)AL(N2)|. By Theorem 1, this is
a metric on the class of semi-binary stack-free orchard networks.

3.4. Non-binary stack-free orchard networks

In this section we will discuss whether our encoding results for the modified u-
representation extend to non-binary orchard networks. We claim that Observation 1
regarding the parents of leaf nodes, the multiplicity of the u-vectors of leaf nodes,
and the p-vector of the tree-node parent of a leaf node, holds for non-binary stack-
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N, 1222

0111

1000

Fig. 8. The networks N7 and N2 are both non-binary stack-free orchard with the same ji-representation and
equal out-degrees, however they are non-isomorphic. In N7, (b, a) is a reticulated cherry, while in N3 it is
not. Similarly in N3, (d,a) is a reticulated cherry, while in N7 it is not. This situation arises because the
parent p, of leaf a has out-degree 3. Notably p, is the only node with degree greater than 3.

free networks without any further modification. Similarly, we claim Lemma 1 holds for
non-binary stack-free networks and therefore cherries are uniquely determined by the
p-representation for non-binary stack-free networks.

However, Lemma 2 does not have an obvious equivalent for non-binary networks.
When considering whether the leaf pair (b,a) is a reticulated cherry, we can no longer
require the existence of pu(p,) = p(a) + p(b), because the parent of a may have more
children than just a and p,. By Observation 1 we can find the p-vector of the parent
of a, but if it is not equal to p(a) + w(b), then it is impossible to determine whether
there are any other nodes on the path p, ~~ p,. Fig. 8 displays two non-binary stack-free
orchard networks with the same p-representation, which are not isomorphic. Because
the parent p, of a has three children and its p-vector p(p,) is equal to the sums of
the p-vectors of 2 different sets of 3 nodes (1111 = 1000 + 0100 + 0011 = 1000 +
0110 + 0001) of which all those that differ belong to reticulations, it is impossible to
tell which set belongs to the children of p, and therefore whether (b,a) is a reticulated
cherry or not. As a consequence of the counterexample given in Fig. 8 we obtain the
following:

Theorem 2. Non-binary stack-free orchard networks are not encoded by their ji-
representation.

Note that nodes with the same ji-vectors in N7 and N> also have the same out-degrees.
This means that the logical extension of the modified p-representation which adds the
out-degrees of nodes does not lead to an encoding result for the class of non-binary
stack-free orchard networks.
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4. Encoding by p-representations

In [8], Cardona et al. showed that the u-representation serves as an encoding for non-
binary tree-child phylogenetic networks. We have shown that for more general networks,
even if they are stack-free semi-binary, two non-isomorphic networks may have the same
p-representation. See Fig. 1 for an example. We have also shown that for two semi-binary
stack-free networks N, N’ with u(N) = u(N”) if either of them is orchard then they are
isomorphic (Theorem 1). Therefore, if we can find a subclass where p(N) = p(N') implies
that the nodes in A and A/ have the same in-degrees then we can show that equivalent
p-representations imply isomorphism as long as one of the networks is orchard. This
would give us an encoding result for this subclass. In this section we set out to show the
following main result.

Theorem (/). Let N7 and Ny be two semi-binary stack-free networks with pu(Ni) =
w(N2). Let Ny be strongly reticulation-visible and orchard. Then, N1 = N.

We want to show that there exists a subclass of phylogenetic networks, which we
call strongly reticulation-visible, that can be encoded by the u-representation without
modification. To do so, we first give a set of equations which relate the in-degrees of
the nodes in a phylogenetic network to the u-representation (Proposition 1). We then
show that for reticulation-visible networks, the u-representation uniquely determines the
in-degrees of all nodes, as long as we know which of the y-vectors belong to reticulations,
and if we know, for each reticulation, the leaf for which it is stable (Proposition 2). A
vertex v is stable, if there exists a leaf a such that all paths from the root to a visit v.

We then ask if this can also be done for orchard networks. Because orchard net-
works do not contain tree-clones, it is easy to determine which p-vectors belong to
reticulations in these networks, namely those which have multiplicity greater than 1.
However, determining the stability of reticulations from the p-vectors is not obvious.
In Section 4.2 we set out a way to do this. It turns out this can be done if one more
condition is added: each reticulation must be the lowest reticulation above some bridge.
At the end of Section 4.2.1, we show that if we know which p-vector belongs to the
head of a bridge (which we call a bridge-node), then we can determine which p-vector
belongs to the reticulation which is lowest above that bridge (Lemma 12). For these
reticulations, it follows that we can identify the leaves with which they are stable. We
finally give a characterization in Proposition 3 for the p-vectors of bridge-nodes in semi-
binary stack-free networks. By combining these results with Proposition 2, it follows
that for strongly reticulation-visible networks, the in-degrees are uniquely determined
by the p-representation. Therefore, there is a bijection between the p-representation and
the modified p-representation for these networks. It then follows from Theorem 1 what
we set out to prove: strongly reticulation-visible orchard networks are encoded by their
p-representation (Theorem 4).



18 C. Reichling et al. / Advances in Applied Mathematics 172 (2026) 102953

4.1. Determining the in-degrees of reticulations

In this section we set out a relationship between the in-degrees of reticulations and
the number of paths to the leaves below that reticulation. Naturally, higher in-degrees
correspond to a larger number of paths crossing a reticulation. Therefore, it follows that
the p-vectors of ancestors of a reticulation may contain information pertaining to the
in-degree of that reticulation.

4.1.1. An equation relating the in-degrees of reticulations and p-vectors
Let N = (V, E) be an arbitrary X-DAG. Recall that p denotes the root of the network.

Proposition 1. Let a be an element of X. Let R be the set of reticulations in V. Then,

ulpa =Y (67 (ri) = Dplri)a + 1.

rER

Note that p(r;), = 0 if and only if r; is not an ancestor of a, which means that the
contributions to the sum of Proposition 1 come from reticulation ancestors of a.

Proof. We prove the theorem by induction on the hybridization number, k = h(N). We
start by considering the base case, kK = 0.

Let us consider an X-DAG with k£ = 0, i.e., a tree. If the hybridization number is
zero then the graph contains no reticulations and therefore R is empty. This also means
there is a unique tree-path from the root to each leaf and thus p(p), = 1. This shows
the equation holds for each leaf of this graph.

Now suppose the equation holds for each leaf of any X-DAG with hybridization num-
ber lower than k. Let N' be an X-DAG with reticulation set R such that h(N) = k.
Without loss of generality let r; be a highest reticulation in N, which means r; has
no reticulation ancestors. We can decrease the in-degree of r; by deleting an incoming
edge ur;. If u is an elementary node we delete all edges on the maximal elementary
path which visits u, as well as the nodes which become isolated by doing so. When we
delete any of the incoming edges wr; in this way the resulting network A’ is still an
X-DAG. Furthermore, the in-degrees of any other reticulations in the network have not
decreased, which means 6, (r;) = 6,-(r;) for any i # j. Moreover, the number of paths
from any reticulation r to any leaf a has not changed and thus p, (r) = p(r),. Finally,
the hybridization number of A7 is equal to kK — 1 and by the induction hypothesis we
have,

W(pa= D (On(rs) = Dplri)a + 1.

r,€ER’

Now there are two cases to consider:

1. (SX/(’/‘J) =2
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2. (5'{/(7"J) > 2.

In the first case, the in-degree of r; after deleting an incoming edge becomes 1, which
means 7; ¢ R'. In this case 6,/(r;) — 2 = 0. Which gives us:

W(pla =Y (Op(rs) = Dp(ri)a +1

ri€R’

= Y On(r) = Dulria+ Gy (r;) = 2)p(rs)a + 1
ri€R\{r;}

In the second case r; € R’ and, because we did not decrease the in-degree of any other
reticulations, R = R’. The only difference is, ¢, (r;) = 05/(r;) — 1. Therefore, we have:

W(pla= Y (Onn(ri) = Dp(ri)a + 1

ri€R’

=Y Oy (ri) = Dp(ria + 1

r,€R

= D (On(r) = Dplri)a + (x () = Dpalry)a + 1
ri€R\{r;}

= Y () = Dulria + Ox(ry) = 2)p(rs)a + 1.
r;€R\{r;}

Note that after simplification the equation is the same for both cases.

When we add the edge ur; (or the maximal elementary path which visits  and ends
in r;) back to the network, we generate N from N’. In doing so we increase p/,(p) by
p(r;j)q for any leaf a. Indeed, r; is chosen to be a highest reticulation in NV, and so there
is a single path from the root to r; which uses the edge (u,r;). By definition, there are
1(r;)q paths from r; to any leaf a. This means that, for any leaf a

1(p)a = 1 (p)a + 1(rj)a

> (6w — Dpl(ri)a + (67 (r)w = 2)p(ry)a + 1+ u(r)a

ri€R\{r;}

= ) (0 (riw = Dp(ri)a + (0 (rj)y — Dplrj)a + 1
ri€R\{r;}

= > (67 (ri)w — Dp(ri)a + 1,
rER

which shows that the equation in the theorem holds for any leaf of A. Thus, we have
shown that if the equation holds for any leaf of an X-DAG with hybridization number
k — 1, then it holds for any leaf of an X-DAG with hybridization number k. We had
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>4 Equation for leaf a:

Ha(p) =5 =(67(n) — 1)Ilu=(1f1) +(67(r2) — 1)/»’(7:({"2) +1
6= 6_(r1) + 6_(rz)

n
110

Equation for leaf b:
mp(p) =4=(87(r) — 1)Ilb=(1f1) +(67(r3) = 1)I/bif13) +1

5=0(r)+07(r3)

110

100 5~ (r) > 2,07 (r) 2,67 (r3) > 2

(67(r),07(r2). 67 (r3)) = (2,4,3) V (3.3,2)

Fig. 9. A semi-binary stack-free orchard network for which the system of equations generated by applying
Proposition 1 to each leaf does not have a unique solution. However, the solution (6~ (r1),8 (r2),6 (r3)) =
(3,3, 2) is the unique one that belongs to this network.

already shown the equation holds for any leaf for the base case k = 0. Therefore, we can
conclude the equation holds for any leaf of any X-DAG, which proves the theorem. 0O

Note that this theorem holds for non-binary X-DAGs, as we never assumed a limit
on the in-degree of reticulations or the out-degree of tree-nodes. Proposition 1 provides
us with a system of linear equations that govern the in-degrees of reticulations as a
function of p-vectors. We know this system of equations must have a solution as long as
it belongs to a valid phylogenetic network. However, there are no guarantees yet that it
has a unique solution. A network may contain more reticulations than there are linearly
independent equations in the system. The network displayed in Fig. 9 is semi-binary
stack-free orchard, yet the system of equations generated by applying Proposition 1 to
each leaf does not have a unique solution. Note that leaf ¢ has no reticulation ancestors
and therefore the equation for leaf ¢ (u(p). = 1) does not contribute. This means that
there is one equation for leaf a and one for leaf b, but three variables, the in-degrees of
reticulations 71,79 and r3. Note that the lower bound for the in-degree of reticulations
is 2, and therefore, there are only a finite number of solutions. In this case there are two
solutions to the system of equations and Fig. 9 shows (67 (r1),0 (r2),d (r3)) = (3,3,2)
is the one belonging to this network.

4.1.2. In-degrees of stable reticulations

In the last section we presented a theorem which allows us to derive a system of
equations which govern the in-degrees of reticulations as a function of the p-vectors.
This system of equations applies to every network with the same p-representation and
set of reticulations R. However, the system of equations does not always have a unique
solution. In this section we will introduce specific conditions under which it does have a
unique solution. We can extend the results of the previous section to the class of networks
called reticulation-visible. Recall the definition of a reticulation-visible network:
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Definition 4. An X-DAG with reticulation set R is called reticulation-visible if each
reticulation r € R is stable, that is there exists a leaf a € X such that all paths from the
root to a visit r.

If we let \V be a reticulation-visible X-DAG with reticulation set R then the following
is true. For r € R, with leaf a below r such that all paths from the root to a visit r, and
v any ancestor of r,

p(v)a = Pori(r)a, (1)

where P,, is the number of paths from v to r. This is true, as every path from v to
a must be the concatenation of a path from v to r and a path from r to a. With this
we gain the following lemma. This shows that in reticulation-visible networks, there is a
unique equation for each reticulation.

Lemma 4. Let N be an X-DAG with reticulation set R. Let ry be any reticulation in R
and let A be the set of ancestors of ry. Suppose there exists a leaf a € X such that all
paths from the root to a visit rp. Then,

#P)a _ S5 - 1) ara 4 @)

M<T€)a reA

Proof. Let us generate N’ from A by first attaching a new leaf a’ to ry, by adding the
edge (r¢,a’), and then adjusting the u-representation by adding a column for o/, such that
w(v) = p(v) @ p(v)y . Note that this network is now an X’-DAG, where X' = X U{a’}.
Then by Proposition 1 we have:

Mo (p) = D (67 (r) = Dy (r) + 1. (3)

reR

Now note that r, is the lowest reticulation above a’ by construction and therefore the
only reticulations that contribute to the sum in Equation (3) are the reticulations in A.
Furthermore, the number of paths from any ancestor v of a’, which is not a’, to a’ are
equal to the number of paths from v to r,, which is the same in A/ and A’, which means
by Equation (1),

1 (v) = Py, = H(®)a (4)

Because p is an ancestor of @/, as are the elements of A, we can substitute Equation (4)
in Equation (3) to get:




22 C. Reichling et al. / Advances in Applied Mathematics 172 (2026) 102953

For the following lemmas, let A7 and N3 be two reticulation-visible X-DAG’s on the
same leaf set X with p(N7) = u(N2). Let Ry and Rs denote the reticulation sets of A
and Ny, respectively. We say that A and Ns agree on the reticulation set if there exists
a bijection f : Ry — Ry such that p(r1) = u(f(r1)) for all 1 € R;. For simplicity,
we refer to Ry (and by bijection, also Rg) as R. We assume that N; and N> agree on
the reticulation set. Finally, assume that for each reticulation r» € R, there exists a leaf
a € X such that r is stable with respect to a in both networks.

Lemma 5. Fach reticulation v € R has the same reticulation descendants and the same
reticulation ancestors in N1 and Ns.

Proof. Let r € R be stable for leaf a in both networks. Then all paths from the root to
a visit r in both networks. Therefore, all reticulations r; € R, with u(r;) > p(a) must be
on a path from the root to a which also visits r in both networks. Therefore, each r; € R,
with p(r;) > p(a) must be either a descendant or an ancestor of r. If u(r;) > wp(r) then
r; must be an ancestor of r in both networks, and if u(r;) < u(r) then r; must be a
descendant of r in both networks. O

Lemma 6. Let H C R be the subset of R which contains only reticulations without other
reticulation ancestors in either network. Then the reticulations in H have the same in-
degrees in both networks.

Proof. For any reticulation » € H the set A in Lemma 4 contains only r and therefore
the in-degree of r is given directly by Equation (2), applied to the leaf for which the
reticulation is stable in both networks. O

By a similar reasoning we obtain the following:

Lemma 7. Let ry in R and let the in-degrees of the other ancestors of ry be the same in
Ni and Ns. Then the in-degree of vy is the same in N1 and N>.

Proof. Given a reticulation ry € R, the set A in Equation (2) contains only r, and its
other ancestors, which are the same in both networks. Now assume the in-degrees of the
ancestors of ry are fixed, then the in-degree of r, is given by Equation (2), applied to the
leaf for which the reticulation is stable in both networks. O

This leads to the following conclusion:

Proposition 2. Let N7 and N> be two reticulation-visible X-DAG’s with p(N1) = u(No).
Let both networks have the same reticulation set R and the same leaf set X. Finally,
assume that for each reticulation r € R, there exists a leaf a € X such that r is stable
with respect to a in both networks. Then the in-degrees of the reticulations are the same
in both networks.
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Proof. Let H be the set of highest reticulations in R, which is the same set for A}
and A3, by Lemma 5. By Lemma 6 the in-degrees of the reticulations in H are the
same in both networks. Let S be the set of second highest reticulations in R, such that
each reticulation » € S only has ancestors in H. By applying Lemma 7 the in-degrees
of the reticulations in S are also the same in both networks. Now, in the same way,
the in-degrees of the third highest reticulations are equal and so on and so forth. This
process must terminate as we only consider finite graphs. Thus, by repeated application
of Lemma 7, we see that the in-degrees of all reticulations in R are the same in both
networks. O

4.2. Determining stable nodes

In this subsection, we work with stack-free phylogenetic networks, denoted by N =
(V, E). Proposition 2 shows that if two reticulation-visible networks have equal u-
representations, identical reticulation sets, and every reticulation is stable for at least one
common leaf in both networks, then the in-degrees of the reticulations are guaranteed to
be equal in both networks. These conditions ensure that the same system of equations
that govern the in-degrees of reticulations holds for both networks and it has a unique
solution.

To reiterate, we're trying to find the sub-class of semi-binary stack-free networks for
which equal p-representations imply equal in-degrees. Now we have shown that this could
be a sub-class of reticulation-visible networks, but we need to determine under which
conditions the reticulation sets are equal and the reticulations are stable for common
leaves. In the case of stack-free orchard networks the reticulations correspond to u-vectors
with multiplicity 2. However, the stability of reticulations with respect to specific leaves
may still differ between the networks, even if they share the same p-representation.
Therefore, the next step will be to demonstrate the conditions under which the stability
of a node with respect to a leaf is determined by the p-representation.

4.2.1. Preliminary lemmas
Recall that a tree-clone is a tree-node for which there exists another tree-node with
the same p-vector.

Lemma 8. Tree-clones are not stable.

Proof. Let u,v be distinct tree-clones. Recall that for tree-nodes we have u(vi) > p(ve)
whenever v1 # vy and vy is an ancestor of ve. Therefore, because p(u) = p(v), it is
clear that w,v are neither ancestors nor descendants of each other. This means a path
never visits both v and v. Furthermore, because the u-vectors are equal, we know that
for each leaf, such that u is on a path to that leaf, v is also on a path to that leaf. By
our previous statement these paths must be distinct and neither contains both nodes.
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Therefore, there are no leaves such that all paths to that leaf contain u, nor are there
any leaves such that all paths to that leaf contain v. O

Lemma 9. A reticulation is stable with respect to a leaf if, and only if, its child is stable
with respect to that leaf.

Proof. In stack-free phylogenetic networks, all paths from the root to a leaf which visit
a reticulation must also visit its child and vice versa, as by definition there is a single
edge leaving each reticulation and a single edge going into its child. O

Corollary 1. Nodes with the same p-vector as tree-clones are not stable.

FEither they are themselves tree-clones, or they are the reticulation parent of a tree-
clone, which means by Lemma 9 that they are not stable.

Lemma 10. Let u(N') be the u-representation of a stack-free network and let u(v) € pw(N)
be a p-vector, such that there does not exist a pair of tree-clones whose p-vectors are equal
to p(v). Then u(v) has multiplicity at most 2 in p(N).

Proof. Assume there are no tree-clones with p-vectors equal to pu(v), but assume u(v) has
multiplicity more than 2. Then there must be at least 2 distinct reticulations 1,79 € R
with the same p-vector p(r1) = p(re) = p(v). As reticulations have the same p-vectors as
their children and in a stack-free network the children of reticulations are tree-nodes, this
means there exist two tree-nodes with u-vectors equal to p(v). However, as we assumed
there are no tree-clones with p-vectors equal to p(v), we have reached a contradiction. O

Corollary 2. Let N be a stack-free network with p-representation pw(N). If p(v) has a
multiplicity greater than 2 in u(N) then all nodes v € V' with u-vector equal to pu(v) are
not stable.

Instead of showing directly when the u-representation determines whether a p-vector
belongs to a stable node, we will first show some other results which we will use for our
argument. A bridge or a cut-edge is an edge, for which it holds that if the edge would
be deleted the number of connected components of the graph goes up. In the case of
phylogenetic networks, which are connected graphs, deleting a bridge makes the graph
no longer connected.

Let the head of a bridge be called a bridge-node. Then, since reticulation edges are
never bridges, bridge-nodes are tree-nodes. All leaves are automatically bridge-nodes, as
they become isolated whenever the edge directed into them is deleted. The root is not a
bridge-node because it has zero in-degree.

Observation 2. Let v, be a tree-node other than the root. Then, vy is a bridge-node if,
and only if, all paths from ancestors of vy to leaves below vy pass through vy.
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In other words, this observation implies that a bridge-node is stable for all leaves
below it. This means that if vy is a bridge-node, then nodes which lie on a path to a leaf
below vy, are either ancestors or descendants of vy.

Observation 3. Let vy, be a bridge-node. Then, for u € V, u # vy

o p(u) > p(vy) <= p(u) belongs to an ancestor of vy.
o u(u) < p(vp) <= p(u) belongs to a descendant of vp.

Previously, these implications only held in one direction (right to left) for all tree-
nodes.

Observation 4. If there is a tree-path from the child ¢, of a reticulation r to a bridge-node
vy, then r is stable with respect to all leaves below vy.

Let us define the set A, as the subset of the ancestors of a bridge-node vy, whose
p-vectors have multiplicity exactly 2 in p(N). While we have defined p on networks
and on individual nodes, we generalize this definition to a set of vertices. For any set
S C V, let u(N)s be the multiset of p-vectors of the nodes in S. In other words,
pN)s = {u(v) € uw(N) : v € S}. Then p(N)a4, is exactly the multiset {u(v) : p(v) >
w(vp), #p(v) = 2}. By Observation 3, each vector in p(N)4, only belongs to ancestors
of vp. Notice that u(N')a, is purely defined in terms of p-vectors if given a p(vy) which
belongs to a bridge-node, and it can be determined from the p-representation, without
any knowledge of the graph. Here, we show that it can be used to find p-vectors which
belong to stable reticulations. In Section 4.2.2, we show how to determine p-vectors that
belong to bridge-nodes.

Lemma 11. If p(v) is minimal in p(N)a,, then it belongs to a reticulation and to the
child of that reticulation.

Proof. A p-vector with multiplicity 2 either belongs to a pair of tree-clones or to a
reticulation and its child. Now, if u(v1) € p(N).4, belongs to a pair of tree-clones vy, ve
with p(v1) = p(ve), then there cannot be a tree-path from either of them to a bridge-
node vy, because by Lemma 8, tree-clones are not stable. Therefore, v; and v, must have
reticulation descendants 71,75, who are ancestors of v,. Note that r; could be equal to
ro. If the multiplicity of either r{ or 7y is greater than 2, then their child must be a
tree-clone, by the contrapositive of Lemma 10. By the same argument there must then
be other reticulation descendants of v; and vy above v,. We only consider finite graphs,
and therefore, w.l.o.g. we can assume p(r1) and p(re) have multiplicity 2 in p(N). Then,
r1,r2 € Ay, with p(r1) < p(vi) and p(re) < p(vs). Therefore, p(v1) is not minimal in
Ap. We can conclude that if p(r) is minimal in A,, then r is a reticulation. 0O



26 C. Reichling et al. / Advances in Applied Mathematics 172 (2026) 102953

Lemma 12. There is a tree-path from the child of a reticulation r to a bridge-node vy if,
and only if, u(r) is minimal in the set u(N) 4, .

Proof. For the first direction, assume there is a tree-path from the child of a reticulation
r to a bridge vp. Then, by Observation 4, r is stable. Therefore, by Corollary 2, p(r) has
multiplicity 2 in u(N'). Furthermore, 7 is an ancestor of vy, therefore r € Ap. Also note,
that r is the lowest reticulation above v,. Then, by Lemma 11, all ancestors of vy, with
p-vectors which have multiplicity 2, are ancestors of r. Thus, we have u(v) > u(r), for
p(v) € u(N)4,. Therefore, p(r) is minimal in A,. This proves the first direction.

The other direction we will prove by contradiction. Assume £(r) is minimal in (N) 4, .
By Lemma 11, pu(r) belongs to a reticulation r and its child ¢,. Furthermore, because
w(er) = p(r) € u(N)a,, both r and ¢, are ancestors of v,. Therefore, there is a path from
¢, to vp. If the path from ¢, to vy is not a tree-path, then r is not the lowest reticulation
above vp. Let r; be the lowest reticulation above v, then 1, is a descendant of r. By
Observation 4, ry is stable. Therefore, by Corollary 2, #u(r;) < 2. The child of r; has
the same p-vector, therefore #p(r;) = 2. This means that u(ry) € p(N)a4, and because
r¢ is a descendant of r, also u(r) > u(re). This contradicts our assumption that u(r) is
minimal in u(N)4,. Therefore, r is the lowest reticulation above v,, and the path from
cr to vp is a tree-path. O

Lemma 12 shows that given a vector pu(vy) which belongs to a bridge-node, we can
determine the p-vector belonging to the lowest reticulation above that bridge by finding
the minimal p-vector p(v) > p(vp) with multiplicity 2.

4.2.2. Strongly reticulation-visible networks

The lemmas in the previous section show that if we know that a given pu-vector
belongs to a bridge-node, then we can find the p-vector of the lowest reticulation above
this bridge-node and the reticulation will be stable for all leaves below the bridge-node
(which are the leaves for which the p-vector of the bridge-node has non-zero coordinates).
We therefore propose to consider the class of networks such that for each reticulation
there is a tree-path from its child to a bridge. We will call this the class of strongly
reticulation-visible networks.

Note that all strongly reticulation-visible networks are reticulation-visible. But there
are reticulation-visible networks which are not strongly reticulation-visible. See Fig. 10
for an example. Therefore the class of strongly reticulation-visible networks is a proper
subclass of the class of reticulation-visible networks, which is itself a proper subclass
of stack-free networks. If we can show that for strongly reticulation-visible networks
it is possible to determine whether a p-vector belongs to a bridge-node from just the
p-representation (Proposition 3), we will have shown that the stability of reticulations
can be determined. Knowing the stability of reticulations will show that the reticulation
in-degrees can be determined (Proposition 2), finally leading to our main isomorphism
result (Theorem 4).
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a b

Fig. 10. A phylogenetic network which is reticulation-visible but not strongly reticulation-visible. Reticulation
r is stable with respect to leaf b, but there is no tree-path from the child of r to a bridge. The only bridges
are the edges ending in a and b.

We quickly summarize the collection of results obtained so far. By Observation 2,
bridge-nodes are stable. Therefore, if v;, is a bridge-node, then by Corollary 2, #u(v,) < 2.
Furthermore, by Lemma 8, u(v,) does not belong to a pair of tree-clones. Finally, all
leaves are bridge-nodes, therefore all unit vectors in pu(N') belong to bridge-nodes, so we
only still have to consider u-vectors which are not unit vectors. Note that we also do not
need to consider the unique maximal p-vector in p(N).

Observation 5. The p-vector u(p) belonging to the root of a network N is the unique
mazimal p-vector in p(N).

Now let N' = (V, E) be a semi-binary stack-free network. Proposition 3 gives a set
of conditions on the p-representation p(N') which determine whether a given p-vector
belongs to a bridge-node.

Proposition 3. Let p(vy) be a non-unit vector that is not u(p). Then, it belongs to a
bridge-node if, and only if,

1. there is exactly one pair p(k), p(€) € p(N) such that p(vy) = (k) + p(f), and

2. one of the following holds
(a) at least one of u(k) and p(€) has multiplicity 1 in p(N); or
(b) p(k) = u(f) and #u(k) =2, and

3. w(N) does not contain vectors pu(z), p(y), p(2), such that p(z) £ p(vy), p(z) = p(z)+
1(y) and p(x) < p(vp).

Proof. For a more formal proof see the appendix. Here we would like to give a proof by

illustration. First we will show that the three conditions hold for any bridge node vy.
Observe Fig. 11 for an example of condition 1. Note that none of the red ‘outside’

nodes have u-vectors which could ever contribute to a pair whose u-vectors sum up to
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Fig. 11. A semi-binary stack-free network with bridge-node v,. (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)

Vb

Vp \

Fig. 12. Two networks in which v, has two reticulation children. The dashed lines indicate that they connect
somewhere above.

w(vp) because their p-vectors are simply too large and/or contain non-zero coordinates
that correspond to leaves that are not below v,. Note also that none of the p-vectors of
the blue ‘inside’ nodes (which are not children of v) could ever contribute to a sum of
only two p-vectors which sum up to u(vp) because they are simply too small. Only the
green child nodes of v, have p-vectors which together sum up to u(vy). There is always
just a single pair of p-vectors which sum up to p(vs) if vy, is a bridge-node and they
belong to the children of vy.

For the second condition consider what it means if either (a) or (b) would not hold.
Then the children of v, have distinct p-vectors which both have multiplicity 2 or higher
or they have equal p-vectors and the multiplicity is 3 or higher. There are three such
possible cases: either both children are reticulations (Fig. 12), or one of the children is
a reticulation and the other is a tree-clone (Fig. 13), or both are tree-clones (Fig. 14).
In the final case, they either have distinct p-vectors, or they have equal p-vectors and
there is a third node with the same p-vector.
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Fig. 13. Three networks in which v, has a reticulation and a tree-clone child.

Vb

Fig. 14. Two networks in which v, has two tree-clone children.

Fig. 12 shows that even if one of the reticulation children of v, is a descendant of the
other, there is a reticulation edge going into one of the reticulations (the red dashed line)
which is not coming from v, and therefore v, is not a bridge-node.

Fig. 13 illustrates the case when v, has a reticulation and a tree-clone as children.
Note that even if either child is a descendant of the other child, then there is still a path
(via the red dashed line) to some of the descendants of v, which does not pass through
vp. Therefore, v, cannot be a bridge-node.

Now assume v, has two children which are tree-clones which either have the same
p-vector with multiplicity 3 or higher, or have distinct p-vectors. Fig. 14 illustrates that
in either of these cases there must be a path (via the red dashed line) to descendants of
vp which do not pass through vy, which implies v, is not a bridge-node.

For the third condition we refer back to Fig. 11. Let us assume that v, is a bridge-
node but u(N') does contain vectors pu(z), u(y), u(2), such that u(z) £ u(vy), p(z) =
w(x)+p(y) and p(z) < p(vp). Note that p(z) has to belong to a red ‘outside’ node and if
it belongs to a reticulation then it also belongs to its tree-node child. Now imagine that
the p-vector of such an outside tree-node is the sum of the p-vector of a blue ‘inside’
node and another p-vector. Even if there are multiple pairs (of possible children) whose
p-vectors sum up to the p-vector of z this would imply z has a child which is not an
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Fig. 15. Four networks in which z and v}, are tree-clones with pu(z) = p(vp).

ancestor of vy. Yet, there are paths from this child to the leaves below v,. This would
mean there is a path to a leaf below v, which passes through z and its child, which does
not pass through vp. This contradicts our assumption that vy, is a bridge-node. Therefore
if vy is a bridge-node, then condition 3 must hold.

To prove the other direction, we will show that if v is not a bridge-node then one of
the above conditions does not hold. If v, is not a bridge-node, then there is a path from
the root to a descendant of v, which does not pass through wvy,. Now because p(p) £ u(vp)
and for any descendant d of vp, with d # vy, we have p(d) < p(vp). This implies that
there is a node z on that path with u(z) £ u(vp) which is the parent of a node x with
pu(z) < p(vy) (because vy is not a bridge-node this does not necessarily mean that z
is itself a descendant of v, but that does not matter). There are two cases to consider:
either yu(z) = p(vp) or p(z) £ p(ve).

If u(z) = p(vp), then p(vy) is a tree-clone. Fig. 15 shows four networks where v, and
z share all, some, or none of their children. It can be seen that in the top network and
the leftmost network where they share one or more of their children. Condition 2 of
the proposition does not hold because the multiplicities of the p-vectors of the children
are too high. In the third and fourth cases, they do not share any of their children.
In the middle network, the children share the same pair of p-vectors and therefore the
multiplicities are too high, again breaking condition 2. And in the rightmost network,
there are two distinct pairs of p-vectors which sum up to the value of p(vy) and u(z),
which means that the first condition does not hold.

Finally if y1(2) £ pu(vp) then condition 3 does not hold because u(z) = p(x) + u(y) for
some node z with u(x) < p(vp). Fig. 16 shows two such networks. The second network
shows that x does not have to be a descendant of v, in this case. We have now shown
that if v, is not a bridge node then one of the conditions in Proposition 3 does not hold.
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Fig. 16. Two networks where there exists a node z with u(z) £ p(vs) with a child @ such that p(z) < pu(vs).

We can conclude that the conditions in Proposition 3 are both necessary and sufficient
for pu(vp) to belong to a bridge-node. O

Proposition 3 shows that for two semi-binary stack-free networks A7 and N, if
w(N1) = p(N2), then u(vy) € u(N7) belongs to a bridge-node in N if, and only if
it belongs to a bridge-node in As. In other words, the same p-vectors will belong to
bridge-nodes in both networks. While u(p) also satisfies the conditions of Proposition 3,
a p-vector belonging to a bridge-node in N; will never belong to the root in N>, since we
can identify u(p) as we noted in Observation 5. Lemma 12 shows that if p(vp) belongs to
a bridge-node in both networks, then the same u-vector belongs to the lowest reticulation
above that bridge-node in both networks. Then, by Observation 4, these reticulations
will be stable with respect to the same leaves. This leads us to the following theorem.

Theorem 3. Let N1 and Ny be two strongly reticulation-visible semi-binary networks,

where p(N7) = u(Na). Then, p(N7) = @(N2).

Proof. As A7 and N> are strongly reticulation-visible, there is a tree-path to a bridge-
node from the child of each reticulation. As mentioned above, the same p-vectors belong
to bridge-nodes in both networks, and the same u-vectors belong to the lowest reticula-
tion above those bridge-nodes. Therefore, the same p-vectors in both p-representations
will belong to reticulations which are stable for the same set of leaves. To make this more
clear, note the following. By Lemma 8, u-vectors which belong to stable nodes cannot
belong to tree-clones. Furthermore, by Corollary 2, p-vectors with multiplicity greater
than 2 do not belong to stable nodes. Moreover, as N7 and A5 are strongly reticulation-
visible, all the reticulations in both networks are stable. Therefore, the p-vectors with
multiplicity greater than 2 in u(N;) and p(N32) do not belong to reticulations in either
network. By combining Proposition 3 and Lemma 12, we can obtain the set of u-vectors
with multiplicity 2 that is in bijection with the set of reticulations in both networks. In
conclusion, the same p-vectors belong to reticulations in A and Az, and they are stable
for a common set of leaves. Thus, by Proposition 2, p(N7) = p(N3). O
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Table 1

A table detailing the main results. SB stands for semi-binary, SF stands for stack-
free and SRV stands for strongly reticulation-visible. Note that strongly reticulation-
visible networks are stack-free. The first row reads: “Given two networks N; and
N2 with the same modified u-representation, if A is semi-binary stack-free orchard
and N> is semi-binary stack-free, then they are isomorphic”.

Given class N class No  Result Theorem

a(N1) = @(N2)  SB SF orchard SB SF N1 =2 No Theorem 1
n(N1) = u(N2)  SB SRV SB SRV i(N1) = @(N2)  Theorem 3
w(N1) = p(N2)  SB SRV orchard SB SF N1 = No Theorem 4

4.8. Encoding strongly reticulation-visible orchard semi-binary networks

We now combine Theorem 1, Proposition 2, Proposition 3, and Lemma 12 to prove
the following main result.

Theorem 4. Let N7 and N be two semi-binary stack-free networks with p(N71) = u(No).
Let N7 be strongly reticulation-visible and orchard. Then, N1 = N5.

Proof. Because N is orchard, it contains no tree-clones. Therefore, each p-vector in
1(N7) has multiplicity at most 2. And the subset of p(N7) of u-vectors with multiplicity
2 is exactly the set of p-vectors which belong to reticulations in N;. Furthermore, because
M1 is strongly reticulation-visible, these y-vectors belong to reticulations which are lowest
above some bridge in A;. By Proposition 3, the same p-vectors belong to bridge-nodes in
N7 and N;. And by Lemma 12, every lowest reticulation - bridge-node pair is preserved
in M>. As both p-representations do not contain vectors with multiplicity greater than
2, there are no other u-vectors belonging to reticulations in N5. Note that each p-vector
with multiplicity 2 belongs to exactly one reticulation in N;. Therefore, N7 and N> have
the same reticulation set R and each reticulation is stable for a common set of leaves
in both networks. This means that, by Proposition 2, i(N7) = j(N2). Therefore, by
Theorem 1, N7 =N, O

Recall that in Section 3.3, we defined a metric for the class of semi-binary stack-
free orchard networks using modified p-representations. Here, we define an analogous
result using Theorem 4. Let us define the p-distance on networks N7 and Ny by tak-
ing the cardinality of the symmetric difference of p-representations, i.e., d, (N1, N2) =
|(N1D)Ap(N2)|. By Theorem 4, this is a metric on the class of semi-binary strongly
reticulation-visible orchard networks.

5. Conclusion and discussion

In this section we will outline and discuss the main results, some of which are displayed
in Table 1.

We have shown that semi-binary stack-free orchard networks are encoded in the space
of semi-binary stack-free networks by a modified p-representation (Theorem 1). This
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modified p-representation, contains the same path multiplicity vectors as the standard
p-representation as originally proposed by Cardona et al. in [8], but additionally includes
the in-degrees of nodes. With this result we have shown that the cardinality of the
symmetric difference of the ji-representations is a metric for the class of semi-binary
stack-free orchard networks. We have also shown that this encoding result does not
extend to non-binary stack-free orchard networks (Theorem 2) even if the outdegrees
are also included in the modified p-representation.

We proposed the class of strongly reticulation-visible networks, as the class of net-
works where for each reticulation there is a tree-path from its child to a bridge. For
this class we proved that for any two networks with the same p-representation, the u-
vectors belong to nodes with equal in-degrees. Therefore, they have the same modified
p-representation (Theorem 3). Finally, we concluded that strongly reticulation-visible
semi-binary stack-free orchard networks are encoded in the class of semi-binary stack-
free networks by their p-representation (Theorem 4). This means that the cardinality of
the symmetric difference of the p-representation is a metric for the class of semi-binary
strongly reticulation-visible orchard networks.

We now give potential future research directions. All of the following points are elabo-
rated on in [21]. In [7] Cardona et al. propose an extended p-representation for encoding
binary orchard networks. We wonder if this can be extended to encode semi-binary or-
chard networks. In another direction, we build on the results of Section 4.2. We showed
that the bridge-nodes and stability of reticulations in semi-binary strongly reticulation-
visible networks can be identified from their y-representations. Can we do the same for
the non-binary variant? Finally, the original problem of encoding semi-binary stack-free
orchard networks using u-representations remains open but perhaps our results here can
illuminate the next steps towards a proof.

Appendix A. Proof of Lemma 3

Proof. Let N/ = (V',E’) be the network generated from A by reducing (b,a) and
let //(N) be the multiset generated from i(N) by reducing (b, a). We will show that
AN') = i/ (N).

First let us assume that (b, a) is a cherry in /. Let pgp be the parent of @ and b in N In
this case we have to show that (N”) contains exactly the fi-vectors (1(v):)ie(forux\{5})
for each fi(v) € AN) \ {72(b), flpas)}, where i(pas) = [1] ® (u(a) + p(5)). First note that
reducing (b,a) in N does not change the number of paths to any leaf but b for any node
which is in both /" and /. Moreover, because N is a network on leaf set X\ {b}, for each
node v which is in both networks, fi(N”) contains (fi(v););e{oyux\{p}- Furthermore, only
the nodes b and py;p are removed, when reducing (b, a) in A. Therefore V' = V' \ {b, pus}
and pgp is a tree-node with children a and b in A, which means i(pay) = [1]® (1(a)+u(b))
in i(N). This shows the claim and therefore i/ (N) = a(N).

Now let us assume that (b,a) is a simple reticulated cherry in A, where b has a
reticulation parent p, and p, is the parent of a. To show that z'(N) = a(N’), we have to
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show that fi(N") contains the vector ji(a) and for each fi(v) in @(N)\{(pa), #(ps), i(a)},
#(N”) contains a vector i/(v) such that p'(v); = ja(v); for ¢ € X \ {b} and i@'(v), =
a(v)p — fi(v)e. Note that in reducing (b,a) in N the nodes p, and p, are suppressed
therefore V! = V' \ {p4, pp}. Furthermore, for each node in V' the number of paths to
any leaf other than b in N’ is equal to the number of paths to that leaf in A/. However,
the paths to leaf b which include p, in A are not present in N because of the removal
of the edge p,pp. For any node other than a the number of paths to leaf b which pass
through p, in A is equal to the number of paths to leaf a, but there are no paths from
a to b in either network. Therefore, fi(a) is an element of fi(N') and for each other node
v which is in both networks fi(N”) contains the vector i’ (v) such that g’ (v); = ji(v); for
i€ X\ {b} and ' (v)p = 1(v)p — fi(v)q. Thus proving the claim.

Finally, let us assume that (b,a) is a complex reticulated cherry in A. The only
difference as compared to the case where (b, a) was a simple reticulated cherry is the fact
that when reducing (b,a) in N the parent p, of b is not suppressed but its in-degree is
lowered by 1. Therefore, ji(pp) is not removed from f(N') but f(py)o is lowered by 1. All
other arguments still hold, thus also in this case p(N') = @/(N). O

Appendix B. Formal proof of Proposition 3

We use the following lemmas (Lemma 13 to Lemma 18) to show how to determine
whether a non-unit p-vector belongs to a bridge-node (Proposition 3).

Lemma 13. If v, is a bridge-node and c¢1 and co are its children, then either the p-vectors
of ¢c1 and co are distinct and at most one has multiplicity greater than 1 in p(N) or they
are equal with multiplicity exactly 2.

Proof. We will show the lemma holds by proving the contrapositive: if the p-vectors of
the two children of a tree node are distinct with multiplicity greater than 1 or are equal
with multiplicity greater than 2, then their parent is not a bridge-node. This statement
can be broken down into five unique cases (there are six in total, but two of the subcases,
namely the first and the fourth bullet points, can be dealt with simultaneously). If
the p-vectors of two nodes ci, co, who are children of the same node, are distinct with
multiplicity greater than 1, then one of the following holds:

e 1 and ¢y are reticulations,
e ¢1 and cy are tree-clones with different p-vectors,
e ¢ is a reticulation and ¢, is a tree-clone with a different p-vector.

If their p-vectors are equal with multiplicity greater than 2, one of these must hold:

e ¢ and ¢y are reticulations,
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e c; and ¢y are tree-clones with the same p-vector and there exists a third tree-clone
c3 with the same p-vector as ¢; and co,
e c; is a tree-clone and c; is a reticulation with the same p-vector.

Given a tree-node vy, let us first assume v, has two children ¢; and ¢y which are retic-
ulations. Because ¢; and ¢y are reticulations they must have at least one other parent
besides v,. Neither ¢; is the parent of co nor is ¢o the parent of ¢; because the network is
stack-free. Note that, not both ¢; and c¢o can have a parent which is a descendant of the
other one, because in that case there would be a cycle, from ¢; to the parent of ¢ to cs to
the parent of ¢; to ¢;. Furthermore, all descendants of v, except vy itself are descendants
of ¢ or co. Therefore, either ¢; or co has a parent which is not a descendant of v,. But
then there would be a path from the root to a leaf below v, via this parent, which does
not pass through v,. Thus, by Observation 2, this means v is not a bridge-node.

For the second case let us assume v, has two children ¢; and ¢y which are tree-clones,
with different u-vectors. In this case there exists a tree-clone ¢} with u(c}) = u(cy) which
has a parent which is not vp. And there must be a tree-clone ¢ with pu(ch) = p(c),
which has a parent which is not vp. It cannot be the case that the parent of ¢} is
a descendant of ¢y and the parent of ¢} is a descendant of ¢;. Because in that case,
wuler) = p(c)) < plez) and p(ez) = p(ch) < p(er). Which means p(er) = u(ez) which
contradicts our assumption. Nor can the parent of ¢} be a descendant of ¢1, because then
u(ch) < p(er), which contradicts our assumption. The same holds for ¢, and co. This
means that either, ¢} or ¢ must have a parent which is not a descendant of v,. W.l.o.g.
we can assume ¢; has a parent which is not a descendant of vy,. Note that, u(c)) < u(vs)
so there must be paths from ¢} to leaves below v,. This means that there is a path from
the root to a leaf below vy, via ¢} which does not visit v,. Thus, v is not a bridge-node.

Third, let us assume v, has one child ¢; which is a reticulation and a child ¢y which
is a tree-clone, such that #pu(c1) > 2, #u(c2) > 2 and p(er) # p(ce). If ¢ is not a
descendant of ¢y then ¢y has another parent which is not a descendant of v,. This means
there must be a path from the root to a leaf below v, via this parent, which does not
pass through v,. In this case v is not a bridge-node. Alternatively, let us assume c¢; is a
descendant of ¢y. Then there must exist tree-clone v with p(cs) = p(v) and p(v) > p(er),
with a parent which is not a descendant of vy. Because p(vp) > p(c2) = p(v) there must
be a path from v to a leaf below v, and therefore, there must be a path from the root to a
leaf below vy, via v, which does not pass through v,. This means v, is not a bridge-node.

Fourth, let us assume that v, has two children ¢; and ¢, which are tree-clones with
wu(c1) = p(ez) and there exists another tree-clone cg with p(cs) = p(er) = p(ea). Note
that the parent of c3 cannot be a descendant of ¢; or ¢, because ¢ and ¢ are tree-nodes
and this would mean either pu(cs) < p(cr) or p(es) < p(ez), which we have assumed is
not the case. Nor can the parent of c3 be vy, because vy, already has 2 children. Therefore,
c3 must have a parent which is not a descendant of v, and, by the same argument as
before, this implies v, is not a bridge-node.
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Finally, let us assume v, has two children, ¢; which is a tree-node and ¢, which is a
reticulation, with u(ca) = u(er). Then, ca must have at least one other parent, which is
not vp. This parent cannot be a descendant of ¢, because ¢; is a tree-node and therefore
this would imply that p(ecz) < p(er), which contradicts our assumption. Therefore, we
can assume ¢z has a parent which is not a descendant of v,. Which again implies that v
is not a bridge-node. O

Lemma 14. If u(vy) belongs to a bridge-node which is not a leaf then pu(N) contains
exactly one pair of vectors p(x), u(y) such that u(vy) = u(x) + p(y).

Proof. We will show the lemma is true with a proof by contradiction, by showing that
there cannot be a second pair. Assume p(vp) is a bridge-node which is not a leaf and p(N)
contains at least two pairs u(z), u(y) and p(k), u(€) such that p(vy) = p(z) + ply) =
u(k) + p(f). W.lo.g. we can assume p(z) and p(y) belong to the children x,y of wy.
By Lemma 13, we know that u(k) # u(x), because otherwise u(¢) = p(y), in which
case both #pu(z) > 2 and #u(y) > 2, and if p(x) = p(y) then #u(x) > 4. The same
goes for p(k) # p(y), p€) # p(z) and p(f) # p(y). Note also that none of z,y, k, £
are ancestors of v, because their p-vectors are each lower than p(v,). Now note that,
by Observation 3, p(vs) > p(k) and u(vy) > p(€) implies they are descendants of wy.
However, as we mentioned x, y are the children of v,. This means k, £ must be descendants
of x,y, which are not equal to z,y, because their p-vectors differ. From this it follows
that p(z) + u(y) > p(k) + w(f). This contradicts our assumption that the sums were
equal. O

Lemma 15. If ju(vy) € p(N) belongs to a tree-clone, then one of the following is true:

o u(N) contains exactly one pair p(x), u(y) such that p(ve) = p(x) + p(y) and ei-
ther p(x) # p(y), in which case #u(x) > 2 and #u(y) > 2, or p(x) = p(y), in which
case #u(x) > 4.

o u(N) contains at least one more pair u(k), w(€) which is distinct from u(z), p(y),
such that p(vy) = p(k) + p(l).

Proof. If u(v;) € p(N) belongs to a tree-clone, then there are at least two tree-nodes
v; and ve with p-vector equal to p(vq). By Observation 1, unit-vectors do not belong
to tree-clones, therefore v and vy are not leaves. This means v, and vy each have two
children. Let ¢; and ¢ be the children of vy, and let ¢z and ¢4 be the children of v5. Note
that ¢; must be distinct from ¢z, and ¢ must be distinct from ¢4, because phylogenetic
networks do not contain parallel edges. We then have: p(cy) + p(e2) = p(vy) = p(ve) =
p(es) + p(eq). The statement can be broken down into three unique cases.

If the children of v; are the same as the children of v9 then ¢; and ¢o both have two
parents and are therefore reticulations. In that case, #u(c1) > 2 and #p(c2) > 2, and
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if u(er) = u(es), then #u(cy) > 4, because ¢; cannot have the same child as ¢ because
the network is stack-free.

If v1 and vy share only one child, say co = c3, then ¢; and ¢4 are distinct nodes. In
this case, ¢y is a reticulation, and #pu(ca) > 2. Then, either u(cy) = p(es) # p(e2), so
that #u(c1) > 2 as well. Or p(er) = p(es) = p(c2), which implies #p(cq) > 4, because
neither ¢; nor ¢4 can be the child of ¢s, because the network is stack-free.

Finally, if all nodes ¢, co,c3 and ¢4 are distinct from each other. Then either, the
sets {u(cr), p(ce)} and {p(cs), u(cs)} are not the same set, in which case p(N) contains
two distinct pairs, whose sum is p(v1). Or they are the same set, in which case we can
say w.l.o.g. that u(c1) = p(es), which implies u(ce) = p(cs). Which means that both
#u(c1) > 2 and #u(ce) > 2, and if p(cr) = p(e) then #u(c) > 4. O

Lemma 16. Let u(vy) € p(N) belong to a bridge-node vy,. Let I, be the set of leaves below
vy, S0 that p(vy); = 0 for i & I. For any u(x) € u(N) with p(x) £ p(v), it holds that
w(x) = Ppy,p(vp) + 1/ (x), where Py, is a non-negative integer, equal to the number of
paths from z to vy, and p'(x) is a p-vector such that p(x) =0 for i € I,.

Proof. Let u(vy) € u(N) belong to a bridge-node. For any p(z) € u(N) with u(z) £
w(vp), by Observation 3, p(x) does not belong to a descendant of the bridge-node with
p-vector p(vp). Therefore, all paths from x to leaves below v, must visit vp. Thus, if a is
a leaf below vy, then any path from x to a is the composition of a path from x to v, and
a path from v, to a. It follows that for each such leaf a, u(x)qy = Pyy, t(vp)q. From this
it follows that p(z) = Py, p(vs) + 1/ (z), where p/(z) contains only the paths to leaves
not below vy, and therefore p'(x) is a p-vector such that p}(z) =0fori € l,. O

Lemma 17. Let pu(vy) € u(N) belong to a bridge-node vy. Then, for any u(zx), u(y) €
w(N) such that p(z) < p(ve), w(N) does not contain u(k), w(€) with p(k) < w(vy) and
1(€) £ p(ve), such that p(k) + pu(€) = p(z) + p(y)-

Proof. We will show this with a proof by contradiction. Let us assume that u(vy) € p(N)
belong to a bridge-node v, and p(N) contains some p(z), u(y) such that u(x) < p(vp).
Now let us assume, u(N) contains u(k), u(€) with p(k) £ p(vy) and u(€) £ p(vy), such
that u(k) + p(€) = p(x) + p(y). First note, that if u(y) < p(vy), then u(y) belongs to a
descendant of v, and therefore p(k) + u(€) = pu(x) + p(y) < p(vp). But this contradicts
our assumption that pu(k) £ p(vy). Therefore, we can assume that p(y) £ p(vs). Then,
by Lemma 16:

(k) = Pry, pu(vp) 4 ' (k)
11(£) = Puo, pu(vp) + ' (€)

and

1(y) = Pyo,pi(vp) + 1 (y)-
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Furthermore, from p(z) 4+ p(y) = p(k) + p(f) it follows:

w(z) = p(k) + p(l) — py)
= Py pt(v5) 4 1 (k) 4 Pou, pu(vp) + ' (€) = [Pyo, po(vp) + 1t/ (y)]
= (kab + Plvb - Pyvb),ul(vb) + ﬂl(k) + MI(E) - ,U,/(y)

Then, from p(z) < p(vy) it follows that Py, + Py, — Pyy, = 0, and g/ (k)+p'(€) — ' (y) =
0. But then p(z) is the zero vector, which is not possible because the zero vector is not a
p-vector and therefore not contained in p(N'). Thus we have reached a contradiction. O

Lemma 18. Given a p-vector p(vy) € pu(N). If w(N) contains pu(z) £ pu(vy), p(x) < p(vy)
and p(y), such that u(z) = p(x) + pu(y). Then, p(vy) does not belong to a bridge-node.

Proof. We will argue by contradiction. Assume p(N') contains p(vy), 1(2), p(z) and p(y)
as described in the lemma and let p(vy,) belong to a bridge-node wvy,. If 11(z) belongs to a
reticulation r, then the child of » must be a tree-node with the same p-vector, so w.l.o.g.
we can assume /(z) belongs to a tree-node z. Because p(z) = p(z) + u(y), we know z is
not a leaf, because u(z) is not a unit vector. If pu(x), u(y) is the only pair in p(N') which
sum up to p(z) then z must be the parent of z. If there are more pairs in p(N') then
by Lemma 17, each of those pairs must contain at least one u-vector lower than p(vp).
This means that in any case z will have a child with u-vector lower than p(v,). However,
w(z) £ p(vp) implies that z is not a descendant of v,. Then there must be a path from
the root to a leaf below v, via z which does not visit v,. By Observation 2, this means
that vy is not a bridge-node. Which contradicts our assumption. 0O

Proposition (3). Let p(vy) be a non-unit vector that is not u(p). Then, it belongs to a
bridge-node if, and only if,

1. there is ezactly one pair p(k), u(€) € p(N) such that p(vy) = p(k) + p(l), and

2. one of the following holds
(a) at least one of u(k) and p(f) has multiplicity 1 in p(N); or
(b) (k) = p(l) and #p(k) = 2, and

3. w(N) does not contain vectors p(x), p(y), p(z), such that p(z) £ p(vp), pu(z) = plx)+
u(y) and p(x) < p(vp).

Proof. Assume the non-unit vector p(vp) belongs to a bridge-node. Then p(v,) belongs to
a tree-node which is not a leaf and, by Lemma 14, there exists exactly one pair p(k), u(£)
with p(vs) = p(k) + p(€). Furthermore, by Lemma 13, the combined multiplicity of p(k)
and p(f) in p(N) is lower than or equal to 3. Finally, by Lemma 18, there does not
exist p(z) £ p(vy) such that p(z) = p(x) + p(y) for p(x) < p(vy). This proves the first
direction of the biconditional.
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For the other direction, we will show the inverse holds. Let us assume the non-unit
vector u(vp) does not belong to a bridge-node. Then, for each node v, with p-vector
1(vp) there must be a path from the root to a descendant of vy, which does not visit
vp. Note that for any reticulation r with p-vector equal to p(vp), there must be a tree-
node with the same p-vector and r itself is not a bridge-node. So w.l.o.g. it is enough
to show that this holds for tree-nodes with p-vector p(vp). Note that, for the u-vector
of the root u(p) £ p(vy). Therefore, there must be a node z on the path from the root
to a descendant of v, which does not visit vy, with p(z) £ u(vp), and z is the parent
of a node z, with u(z) < p(vy). Note that z cannot be a reticulation, because then

(o) # p(z) = p(x) < p(vs).

Now there are two cases we should consider, either u(z) = p(vy) or p(z) £ p(vp).
If u(z) = p(vp), then p(vy) belongs to a tree-clone. In that case, there is at least one
pair u(k), u(f) € p(N) which belong to the children of a node v,, such that p(vy) =

(k) + u(€). Then, by Lemma 15, either there is more than one such pair, or #u(k) > 2
and #u( ) > 2, and if p(k) = p(f€) then #u(k) > 4. This violates condition 1 or 2.

If () £ p(vp), then p(vy) does not necessarily belong to a tree-clone. Note z is
also not a leaf, as a leaf has no children. Therefore z is a tree-node with two children,
one of which is x. This means there exists a node y, the other child of z, such that
w(z) = p(z) + p(y). This violates condition 3. Now, we have shown one of the three
conditions must be false. This proves the inverse statement. 0O
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