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Phylogenetic networks are useful in representing the evolu
tionary history of taxa. In certain scenarios, one requires a 
way to compare different networks. In practice, this can be 
rather difficult, except within specific classes of networks. In 
this paper, we derive metrics for the class of orchard networks 
and the class of strongly reticulation-visible networks, from 
variants of so-called μ-representations, which are vector rep
resentations of networks. For both network classes, we impose 
degree constraints on the vertices, by considering semi-binary 
networks.
© 2025 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Phylogenetic trees are used to model the evolutionary history of species [20]. Recent 
studies have focused on generalizing trees to account for more complex evolutionary 
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Fig. 1. A binary stack-free network N and a semi-binary stack-free network N ′ with the same μ
representations ({331, 221, 111, 110, 110, 011, 100, 100, 010, 010, 001}). Note that the edges are directed 
downward. For instance node v has μ-vector 110 because from it there is a single directed path to leaf 
a, a single directed path to leaf b and there are no directed paths to leaf c.

scenarios. Trees suffice to illustrate vertical descent evolution, however fail to accommo
date for reticulate evolution, which arises from hybridization events and horizontal gene 
transfers [1]. To represent such events, phylogenetic networks have proven to be more 
fruitful [13,5].

How does one construct phylogenetic networks? Traditional phylogenetic inference 
methods can be grouped into model-based methods (e.g. Bayesian inference [23,12], max
imum likelihood [24,4]) or non-model-based methods (e.g. distance-based [3], maximum 
parsimony [22], and combinatorial [14]). In all cases, one must evaluate the accuracy of 
the output. For certain evolutionary histories, the true phylogeny is known. In validating 
the inference method, this means one can compare output phylogenies to the benchmark 
phylogeny. In doing so, one needs a notion of computing distances between the two 
phylogenies. Existing metrics such as rearrangement moves suffer from computational 
intractability [9,2,16]; others like the triplet distance [10] suffer from non-identifiability 
(two distinct networks could be at a distance 0. See e.g., Figure 19 in [6]).

One way of avoiding these situations is to first find complete graph invariants, some
times called encodings, for specific classes of phylogenetic networks. Statements of the 
sort ‘two networks are isomorphic if and only if they have the same encodings’ are typ
ically sought after in this area. Taking the symmetric difference of the invariants often 
leads to a metric, by definition of complete graph invariants [18]. In this paper, we con
sider invariants based on so-called μ-vectors. For every vertex in the graph, these vectors 
encode the number of paths from it to every leaf. The multiset of all μ-vectors is called 
the μ-representation of the network. Cardona et al. introduced the μ-representation and 
showed that it can be used as a metric for binary tree-child networks [8].

In general, two networks can have the same μ-representations; in this sense, we say 
that the μ-representations do not encode networks, see Fig. 1. However, μ-representations 
may encode subclasses of phylogenetic networks such as the class of tree-child networks 
that Cardona et al. considered as mentioned.



C. Reichling et al. / Advances in Applied Mathematics 172 (2026) 102953 3

Fig. 2. An orchard network can be represented as a tree with additional horizontal arcs. 

For most mathematical and algorithmic techniques, the full class of phylogenetic net
works is too large. Therefore, several restricted classes of phylogenetic networks have 
been defined and studied. A network is called tree-child if none of its nodes have only 
reticulation children and a network is stack-free if no two reticulations are adjacent. A 
network is reticulation-visible if for each reticulation there exists a leaf such that all 
paths to this leaf visit the reticulation. These classes have mainly been defined for their 
nice mathematical properties. However, an intuitive biological argument can be made for 
tree-child networks as well. As long as a species does not go extinct it is highly unlikely 
that all of its surviving offspring is the result of hybridization. Tree-child networks are 
automatically stack-free, because if two reticulations are adjacent then one of them must 
have the other one as their only child. Reticulation-visible networks are stack-free as 
well. Moreover, any phylogenetic network can be made stack-free by iteratively identi
fying any two adjacent reticulations. More recently the class of orchard networks was 
introduced as a superclass of the class of tree-child networks with nice characteristics. 
A natural justification for this class is that orchard networks can be interpreted as trees 
with additional horizontal arcs which correspond to horizontal gene transfer [15]. For 
example the left network in Fig. 1 is orchard and Fig. 2 shows how it can be represented 
as a tree with additional horizontal arcs.

Building upon the work of Cardona et al., Erdős et al. sought to extend the application 
of μ-representations to a larger class of phylogenetic networks in [11], which they called 
orchard networks. Their proof was based on identifying and reducing so-called cherries 
and reticulated cherries, straight from the μ-representations. However, some of their 
findings were later refuted by Bai et al. [1] who showed that it is not possible to determine 
reticulated cherries from the μ-representation for general binary orchard networks. In 
that paper, Bai et al. proposed a stack-freeness constraint within the class of orchard 
networks to establish the encoding result. They then aimed to show encoding holds for 
semi-binary stack-free orchard networks (because binary networks can be made stack
free by identifying stacks of reticulations, which makes the network semi-binary). This 
claim was shown, by counter-example, to only hold for networks which are binary [19]. 
In [7], Cardona et al. proposed an extended μ-representation, which also takes into 
consideration the number of paths to reticulations from each node. In the paper they 
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showed that this extended μ-representation is an encoding for binary orchard networks, 
lifting the stack-free condition. This modification however does not show encoding for 
semi-binary orchard networks as originally proposed in [1], as the proof is restricted to 
networks which are binary.

As it stands, μ-representations encode stack-free binary orchard networks, and the ex
tended μ-representations encode binary orchard networks. The aims of this paper are to 
find a large subclass of semi-binary orchard networks that is encoded by μ-representations 
and to find variants of μ-representations that form an encoding for all semi-binary or
chard networks.

Our contributions are as follows, in Section 3 we first propose a modified μ
representation including the in-degrees of nodes, which is different from the extended 
μ-representation proposed by Cardona et al. in [7]. Theorem 1 states that this modified 
μ-representation encodes semi-binary stack-free orchard networks. With this theorem, 
we can define a metric given by the cardinality of the symmetric difference of the mod
ified μ-representations. On the other hand, we show that encoding does not hold for 
non-binary stack-free orchard networks even if the out-degrees are also added to the 
modified μ-representation (Theorem 2).

Furthermore, in Section 4 we present a fundamental equation which governs the rela
tionship between the in-degrees of reticulations and the μ-representation of a network. 
We prove that such an equation exists (Proposition 1), and show how this gives rise to 
a system of equations on the μ-vector of the root and the μ-vectors and in-degrees of 
reticulations. We furthermore show, that for reticulation-visible networks with fixed retic
ulation set, the system of equations generated by Proposition 1 has a unique solution 
(Proposition 2). Then, we define a new class of networks called strongly reticulation
visible networks, for which there is a tree-path (a path containing only tree-nodes, which 
may consist of just a single tree-node) to a bridge from each child of a reticulation. 
A bridge is an edge which disconnects the network if cut. We show that a bridge and 
the lowest reticulation ancestor of that bridge in any network are uniquely determined 
by the μ-representation (Proposition 3 and Lemma 12). We then use this to show that 
strongly reticulation-visible networks with the same μ-representations have the same 
modified μ-representation (Theorem 3). Finally, we conclude that strongly reticulation
visible semi-binary stack-free orchard networks are encoded in the space of semi-binary 
stack-free networks by the μ-representation (Theorem 4). This means that the cardi
nality of the symmetric difference of the μ-representations gives a metric between these 
networks. Hence, it is not necessary to include indegrees in the μ-representation for this 
class.

2. Preliminaries

By a rooted directed acyclic graph (rooted DAG) we mean a connected directed graph 
that has no directed cycles. A rooted DAG whose leaves are bijectively labeled by the 
elements of a finite set X, we call an X-DAG. We assume henceforth that there is some 
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ordering on the elements of X, i.e., that X = {x1, . . . , xn}. This helps with defining 
certain terms. The in-degree of a node v in an X-DAG, which we denote δ−(v), is the 
number of edges which end in v. The out-degree δ+(v) of a node v is the number of 
edges starting in v. The degree of a node is the sum of its in-degree and out-degree. 
Every vertex of an X-DAG can be classified by their in-degree or their out-degree. In 
particular, an X-DAG contains

• a single root ρ with in-degree δ−(ρ) = 0;
• tree-nodes v with in-degree δ−(v) ≤ 1;
• reticulations r with in-degree δ−(r) ≥ 2;
• and leaves a with out-degree δ+(a) = 0.

Note that the root is a tree-node, and leaves can be either tree-nodes or reticulations. 
Nodes which are not leaves are sometimes called internal nodes. A node with indegree-1 
and outdegree-1 is called an elementary node. The set of all reticulations contained in a 
given X-DAG 𝒩 we will denote R(𝒩 ) or simply R when the X-DAG is obvious from the 
context. We call an edge a reticulation edge if it ends in a reticulation. The hybridization 
number h(𝒩 ) =

∑︁
ri∈R(δ−(ri)− 1) of an X-DAG 𝒩 is the number of reticulation edges 

minus the number of reticulations. We call an X-DAG a tree if it has no reticulations.
A phylogenetic network is an X-DAG without parallel arcs or elementary nodes, where 

the root must be a leaf (in which case the network is one on a single leaf) or have 
out-degree greater than or equal to 2, reticulations have out-degree 1 and leaves are 
tree-nodes. A phylogenetic network in which all nodes except the root or the leaves have 
degree 3 is called binary. A phylogenetic network in which all tree-nodes except the 
root or the leaves have degree 3 but reticulations can have degree ≥ 3 is called semi
binary. Biologically, such evolutionary histories can occur if there are ambiguities in the 
order of consecutive reticulate events. We say a phylogenetic network is non-binary when 
there are no such added restrictions on the degrees of the nodes. Note that non-binary 
does not mean that the network is ‘not binary’, but rather, that the network is ‘not 
necessarily binary’. A phylogenetic network which does not contain any reticulations is 
called a phylogenetic tree. See Fig. 3 for some examples. Henceforth, we may refer to 
phylogenetic networks as networks for brevity.

All phylogenetic networks are X-DAGs. From here on out we will identify the leaf 
nodes with the elements of the set X and no longer make a distinction between the two. 
Furthermore, we will assume edges are directed unless otherwise mentioned, and in all 
figures edges will be directed downward, such that the root is at the top and the leaves 
are at the bottom.

A path v0 ⇝ vk between two nodes v0, vk ∈ V is a sequence of edges v0v1, v1v2, ..., 
vk−1vk such that vivi+1 ∈ E for i ∈ {0, 1, . . . , k − 1}. Note, that this means that in this 
paper all paths will be directed paths as all edges are directed.

We say a node v1 is an ancestor of another node v2 if there is a path from v1 to v2. 
We also say that v2 is a descendant of v1. In this case we may also say v1 is above v2
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Fig. 3. A binary phylogenetic tree, a binary phylogenetic network and a semi-binary phylogenetic network. 

and that v2 is below v1. If the path consists of a single edge, then we say v1 is the parent 
of v2, usually denoted pv2 and v2 is the child of v1. We also consider the trivial path, 
therefore each node is both an ancestor and a descendant of itself. The number of paths 
from v1 to v2 we will denote Pv1v2 .

Given a directed edge e = v1v2 we call v2 the head of e and v1 the tail of e. We say a 
node is below e if it is a descendant of v2 and we say it is above e if it is an ancestor of 
v1. We say two nodes are connected if there is an undirected path between them. We say 
a set of nodes is connected if every pair of nodes in the set is connected. We say a graph 
is connected if the set of its vertices is connected. Recall that an X-DAG is a connected 
graph.

A tree-path is a path v0 ⇝ vk, such that vi is a tree-node for each i ∈ {0, 1, . . . , k}. A 
tree-node v which has out-degree δ+(v) = 1 we shall call an elementary node. A path for 
which all but the start and end nodes are elementary nodes, we shall call an elementary 
path. The height of a node is the length of the longest path from the node to a leaf.

Two X-DAGs 𝒩 = (V,E) and 𝒩 ′ = (V ′, E′) are said to be isomorphic, denoted by 
𝒩 ∼ = 𝒩 ′, when there exists a bijective function f : V → V ′ such that f(a) = a for all 
a ∈ X and v1v2 ∈ E ⇐⇒ f(v1)f(v2) ∈ E′ for all v1, v2 ∈ V .

2.1. Network classes

A phylogenetic network 𝒩 is said to be stack-free if no reticulation in 𝒩 is the child 
of another reticulation. A phylogenetic network such that for each reticulation there 
is a leaf for which all paths from the root to this leaf pass through the reticulation 
is called reticulation-visible. The network in Fig. 4 is binary and stack-free. However, 
it is not reticulation-visible, because there are no leaves such that all paths from the 
root pass through u. All networks in Fig. 3 are stack-free and reticulation-visible. In 
Section 4.2, we will introduce the class of strongly reticulation-visible networks as the 
class of phylogenetic networks, in which there is a tree-path to a bridge from the child 
of each reticulation.

To define the class of orchard networks, we require notions of cherries, reticulated 
cherries, and their reductions. A cherry is an ordered pair of leaves (b, a) which have the 
same parent. A reticulated cherry is an ordered pair of leaves (b, a) such that the parent 
pb of b is a reticulation and the parent of a is a tree-node pa which is also the parent of 
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Fig. 4. An example network 𝒩 , on leaves a, b and c, with μ-representation μ(𝒩 ) = {(100, 2), (010, 2), 
(001, 1), (110, 2), (011, 1), (111, 1), (221, 1), (331, 1)}. Edges are directed downward. Nodes u and v have 
vectors μ(u) = 110 with multiplicity 2 and μ(v) = 221 with multiplicity 1. Following Definition 1, we 
have μ̄(u) = (1, 110) and μ̄(v) = (1, 221).

pb. A pair (b, a) which is either a cherry or a reticulated cherry is also called a reducible 
pair. Suppressing an elementary node is the action of deleting the node and adding an 
edge between the parent and the child of the node. To reduce a cherry in a network 𝒩 , 
we delete the leaf b and suppress its parent pb if it has become elementary. To reduce 
a reticulated cherry in 𝒩 we delete the edge papb and suppress any nodes which have 
become elementary. In this way one always obtains another phylogenetic network as the 
result of reducing a reducible pair in a phylogenetic network.

A network is called orchard if there exists a sequence s1s2s3 . . . si . . . sn, of ordered 
pairs, such that si is a reducible pair in the network after reducing each pair in the 
sequence up to si−1 and the entire sequence reduces the network to a network on a single 
leaf. Note that in that case, each network generated by performing reductions s1 up to 
si, is orchard with sequence si+1, si+2, . . . , sn, see Corollary 4.2 in [11]. Furthermore, 
any maximal sequence of cherry reductions is complete, meaning any cherry reduction 
will result in an orchard network and any partial sequence can be made complete. The 
network in Fig. 4 is orchard with sequence (b, c)(a, c)(b, a)(a, c)(c, a). It contains the 
reticulated cherry (b, c). The networks in Fig. 4 are all orchard and contain the reducible 
pair (b, a). In the phylogenetic tree (b, a) is a cherry, while in the other networks (b, a)
is a reticulated cherry. See Fig. 5 for a visualization of the way the different classes of 
phylogenetic networks discussed in this paper are related. 

2.2. The μ-representation

Given an X-DAG 𝒩 = (V,E), the path-multiplicity vector or μ-vector of any node 
v ∈ V is defined as follows: let μ(v) ∈ ZX be a vector indexed by the leaves of 𝒩 , such 
that the coordinate indexed by leaf a, denoted μ(v)a, is equal to the number of paths 
from v to a. Note that μ(v) only contains non-negative integer coordinates and is never 
equal to the zero vector. Moreover, since any leaf constitutes a trivial path as well their 
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Fig. 5. A diagram showing the relations between several different classes of phylogenetic networks. 

μ-vector is the corresponding unit vector. With the exception of leaf nodes, the μ-vector 
of a node is always the sum of the μ-vectors of its children. For two vertices u, v ∈ V , we 
write μ(u) ≤ μ(v) if μ(u)a ≤ μ(v)a for all a ∈ X. We write μ(u) < μ(v) if μ(u) ≤ μ(v)
and μ(u)a < μ(v)a for at least one a ∈ X. Note that if u is descendant of v, it always 
holds that μ(u) ≤ μ(v). We say that a μ-vector μ(v) belongs to a node u if μ(u) = μ(v). 
In particular, μ(v) belongs to v. Later on, we shall see that a μ-vector can belong to 
multiple nodes. The μ-representation of 𝒩 , denoted μ(𝒩 ), is the multiset of all μ-vectors 
of nodes in V .

A multiset is similar to a set. The main difference between a multiset and a set, is that 
a multiset can contain multiple instances of the same element. The number of instances of 
an element in a given multiset is called the multiplicity of that element in that multiset. 
For example, if the μ-representation μ(𝒩 ) contains two instances of a vector μ(v), then 
we say μ(v) has multiplicity 2 in μ(𝒩 ). We may shorten this to #μ(v) = 2, whenever the 
multiset containing μ(v) is implied. Usually the implied multiset is μ(𝒩 ). Then, #μ(v)
denotes the multiplicity of μ(v) in μ(𝒩 ).

If a given μ-vector μ(v) is not contained in a multiset μ(𝒩 ), we may say μ(v) has 
multiplicity 0 in μ(𝒩 ). The operation of removing a μ-vector μ(v) from μ(𝒩 ) is equivalent 
to lowering the multiplicity of μ(v) in μ(𝒩 ) by 1. Clearly, the multiplicity of a μ-vector 
cannot be negative and a μ-vector which has multiplicity 0 in μ(𝒩 ) cannot be removed 
from μ(𝒩 ). The operation of adding a μ-vector μ(v) to a multiset μ(𝒩 ) is equivalent 
to increasing the multiplicity of μ(v) in μ(𝒩 ) by 1. We say that μ(𝒩 ) is generated by 
adding μ(v) for each node v ∈ V . Therefore, the multiplicity of a vector μ(v) in μ(𝒩 ) is 
equal to the number of nodes in 𝒩 with μ-vector equal to μ(v). We do not equate the 
nodes v ∈ V with their μ-vectors because multiple nodes may have the same μ-vector. 
A set of at least two tree-nodes which have the same μ-vector we shall call tree-clones. 
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A node which is part of a set of tree-clones, we shall call a tree-clone. Bai et al. showed 
in [1] Lemma 4.4, that orchard networks do not contain tree-clones.

For example, the node u in Fig. 4 has μ-vector 110, because there is exactly one path 
to leaf a, one path to leaf b, and there are no paths to leaf c starting in u. There are two 
instances of nodes with μ-vector 110, because the paths starting in the reticulation u are 
in bijection with the paths starting in its child, by adding or deleting the edge between 
them. Therefore, μ(u) has multiplicity 2 in μ(𝒩 ). The node v in Fig. 4 has μ-vector 221, 
because there are 2 paths to leaf a, one via node u and one via the other child of v, and 
2 paths to b and one path to c, starting in v. It should be clear from these examples 
why, with the exception of leaf nodes, the μ-vector of a node is always the sum of the 
μ-vectors of its children.

2.3. The symmetric difference of multisets

The symmetric difference between two sets S1, S2 is the set of elements from S1 and 
S2, which are not contained in both sets.

S1△S2 = (S1 ∪ S2) \ (S1 ∩ S2)

The cardinality of the symmetric difference, or the number of elements that are unique 
to either set, can be used as a measure for the difference between these two sets.

For multisets M1,M2, the symmetric difference M1△M2 contains elements in M1
or M2, with multiplicity equal to the absolute difference of the respective multiplicities 
within M1 or M2. The cardinality of a multiset is the sum of the multiplicities of all its 
elements. The cardinality of the symmetric difference is a metric on multisets. For it to 
be a metric on some subset of phylogenetic networks, we need a modified version of the 
identity axiom to hold. Let 𝒩1 and 𝒩2 be networks.

• |μ(𝒩1)△μ(𝒩2)| = 0 if, and only if 𝒩1 is isomorphic to 𝒩2.

Therefore, we will be focusing on determining the conditions such that the μ
representations are equal if, and only if the networks are isomorphic. It is important 
to note that there is always only one μ-representation belonging to a given network.

3. Encoding by modified 𝝁-representations

3.1. Preliminary lemmas

In this section we will show one of the main results. This result is in a way a continu
ation and modification of previous propositions by Bai et al. [1] and Erdős et al. [11]. We 
will make use of a modified μ-representation. Let a = (a1, . . . , ak) and b = (b1, . . . , bℓ)
be vectors. We write a ⊕ b = (a1, . . . , ak, b1, . . . , bℓ) to denote the concatenation of the 
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Fig. 6. A cherry, a simple reticulated cherry (b, a) and a complex reticulated cherry (b, a) on the leaves a
and b.

two vectors. If one of the arguments (either a or b) is an integer, it is understood and 
treated as a 1-dimensional vector.

Definition 1. Let 𝒩 = (V,E) be a network. Given a μ-vector μ(v) of a node v ∈ V , its 
modified μ-vector is

μ̄(v) = δ−(v) ⊕ μ(v).

For a network on leaf set X, μ̄(v) is the |X|+ 1-th dimensional vector with δ−(v) as the 
first coordinate and the coordinates of μ(v) as the latter |X| coordinates. The modified 
μ-representation μ̄(𝒩 ) of a network 𝒩 , is the multiset of modified μ-vectors μ̄(v) of 
nodes v in 𝒩 .

We also define two types of reticulated cherries.

Definition 2. Let 𝒩 be a network and let (b, a) be a reticulated cherry, where pb is the 
parent of b.

• If δ−(pb) = 2, then (b, a) is a simple reticulated cherry.
• If δ−(pb) ≥ 3, then (b, a) is a complex reticulated cherry.

See Fig. 6, for examples of a cherry, a simple reticulated cherry and a complex retic
ulated cherry.

For the rest of the section, let 𝒩 be a semi-binary stack-free network on X, and 
let a, b ∈ X be leaves of 𝒩 . We shall show encoding results regarding modified μ
representations. First, we prove some preliminary results.

Observation 1. Let a be a leaf in 𝒩 . Then, μ(a) has multiplicity 1 or 2 in μ(𝒩 ). If 
#μ(a) = 1, then its parent pa is a tree-node with μ(pa) ̸= μ(a). Furthermore, μ(pa) is 
minimal in the multiset {μ(v) : μ(v) > μ(a), v ∈ V }. Otherwise, if #μ(a) = 2, then pa
is a reticulation with μ(pa) = μ(a).

Now we will show that cherries and reticulated cherries are uniquely determined by 
μ(𝒩 ).
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Lemma 1. The pair (b, a) is a cherry in 𝒩 if, and only if, μ(v)a = μ(v)b for each μ(v) ∈
μ(𝒩 ) \ {μ(a), μ(b)}.

Proof. Let us assume first that the pair (b, a) is a cherry in 𝒩 with parent node p. Then, 
for each node v ∈ V \ {a, b} the number of paths from v to either a or b is equal to the 
number of paths Pvp from v to p, so μ(v)a = μ(v)b.

For the other direction, we will use a proof by contradiction. Assume μ(v)a = μ(v)b
for each μ(v) ∈ μ(𝒩 )\{μ(a), μ(b)}. Now assume the pair (b, a) is not a cherry in 𝒩 . This 
means a and b must have different parents pa ̸= pb. However, because μ(v)a = μ(v)b for 
each μ(v) ∈ μ(𝒩 ) \ {μ(a), μ(b)}, we have that μ(pa)b = μ(pa)a = 1, therefore there is a 
path from pa to b. This means pa must be an ancestor of pb. But also μ(pb)a = μ(pb)b = 1, 
therefore pb must also be an ancestor of pa. In acyclic graphs two nodes cannot be 
ancestors of each other unless they are the same node, therefore pa = pb, but this 
contradicts our assumption that (b, a) is not a cherry. □

Note that the condition on the μ-vectors implies that μ(a) and μ(b) have multiplicity 
1 in μ(𝒩 ), because if for instance μ(b) has multiplicity greater than 1 in μ(𝒩 ), then 
μ(𝒩 ) \ {μ(a), μ(b)} would still contain a vector μ(b), for which μ(b)a = 0 ̸= 1 = μ(b)b.

Lemma 2. The pair (b, a) is a reticulated cherry in 𝒩 with b the reticulation leaf if, and 
only if, #μ(a) = 1, #μ(b) = 2, μ(v)b ≥ μ(v)a for each μ(v) ∈ μ(𝒩 ) \ {μ(a), μ(b)} and 
μ(𝒩 ) contains a vector μ(pa) = μ(a) + μ(b).

Proof. First let us assume (b, a) is a reticulated cherry in 𝒩 with b the reticulation leaf. 
Then the parent of a is a tree node pa and, by Observation 1, μ(a) has multiplicity 1 
in the multiset. Also, the parent of b is a reticulation pb, therefore by Observation 1, 
μ(b) has multiplicity 2 in the multiset. Furthermore, pa is the parent of pb and thus an 
ancestor of b. Therefore, for each path v ⇝ pa with v ∈ V \ {a, b}, there is at least one 
path v ⇝ b via pa. Furthermore, the number of paths from v to a equals the number of 
paths from v to pa. This means that μ(v)b ≥ Pvpa

= μ(v)a for any node v ∈ V \ {a, b}. 
Finally, note that μ(pa) = μ(a) + μ(pb) = μ(a) + μ(b). This proves the first direction.

For the second direction, we will use proof by contradiction. Let us assume, μ(a) has 
multiplicity 1 in the multiset, μ(b) has multiplicity 2 in the multiset, μ(v)b ≥ μ(v)a for 
each μ(v) ∈ μ(𝒩 ) \ {μ(a), μ(b)} and μ(𝒩 ) contains μ(pa) = μ(a) + μ(b). Now assume 
(b, a) is not a reticulated cherry. Note μ(pa) > μ(a) and the only μ-vectors μ(v) with 
μ(v) < μ(pa) are μ(a) and μ(b), thus μ(pa) is minimal in {μ(v) : μ(v) > μ(a), v ∈ V }. 
Then, by Observation 1, μ(pa) belongs to the parent of a. Furthermore, by Observation 1, 
we know b has a reticulation parent pb. Therefore the parent pa of a is not a parent of pb
the parent of b, because otherwise (b, a) would be a reticulated cherry. But there must be 
a path from pa to b because μ(pa)b ≥ μ(pa)a = 1. This means there must be other nodes 
on the path from pa to pb. Let c then be the child of pa, then μ(pa) = μ(a) + μ(c) =
μ(a) + μ(b). Subtracting μ(a) gives μ(c) = μ(b). This means c is either the leaf b, which 
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is not possible, or it is pb, which we assumed it was not, or it is some other reticulation 
which has a child with the same μ-vector equal to μ(b). Its child cannot be the leaf b, 
because by assumption c is not pb and its child cannot be pb because the network is stack
free. Therefore, its child must be a tree-node with the same μ-vector as the leaf b, which 
is not itself leaf b or pb. But, then #μ(b) = 3, which contradicts our assumption. □

Let us now define cherries and reticulated cherries as subsets of the original and 
modified μ-representation as follows naturally from Lemma 1 and Lemma 2.

Definition 3. 

• The pair (b, a) is a cherry in μ(𝒩 ) if μ(v)a = μ(v)b for each μ(v) ∈ μ(𝒩 )\{μ(a), μ(b)}.
• The pair (b, a) is a cherry in μ̄(𝒩 ) if μ̄(v)a = μ̄(v)b for each μ̄(v) ∈ μ̄(𝒩 )\{μ̄(a), μ̄(b)}.
• The pair (b, a) is a reticulated cherry in μ(𝒩 ) with b the reticulation leaf if #μ(a) = 1, 

#μ(b) = 2, μ(v)b ≥ μ(v)a for each μ(v) ∈ μ(𝒩 ) \ {μ(a), μ(b)} and μ(𝒩 ) contains a 
vector μ(pa) = μ(a) + μ(b).

• The pair (b, a) is a reticulated cherry in μ̄(𝒩 ) with b the reticulation leaf if the 
following hold:
– there does not exist μ̄(v) ∈ μ̄(𝒩 ) with μ̄(v)i = μ̄(a)i for i ∈ X,
– there exists a vector μ̄(pb) ∈ μ̄(𝒩 ) with μ̄(v)i = μ̄(b)i for i ∈ X,
– μ̄(v)b ≥ μ̄(v)a for each μ̄(v) ∈ μ̄(𝒩 ) \ {μ̄(a), μ̄(b)} and
– μ̄(𝒩 ) contains a vector μ̄(pa) s.t. μ̄(pa)i = μ̄(a)i + μ̄(b)i for i ∈ X.
It is simple if μ̄(𝒩 ) contains μ̄(pb) = [2] ⊕ μ(b) and otherwise it is complex.

Note that if (b, a) is a cherry or a reticulated cherry in 𝒩 , it is a cherry or reticulated 
cherry in μ(𝒩 ) and μ̄(𝒩 ). Furthermore, if (b, a) is a reticulated cherry, it is simple if, 
and only if, μ̄(𝒩 ) contains μ̄(pb) = [2]⊕μ(b), because then μ̄(pb)0 = 2, for pb the parent 
of b. Otherwise, it is complex. If (b, a) is a cherry or a reticulated cherry in 𝒩 we say 
that (b, a) is a reducible pair in 𝒩 , in μ(𝒩 ) and in μ̄(𝒩 ).

It is important to mention here that we restrict to the class of stack-free networks to 
be able to identify reticulated cherries in the μ-representation. Without the stack-free 
assumption, the conditions in Lemma 2 are not sufficient to determine whether (b, a) is a 
reticulated cherry in general. In Fig. 7, two non-isomorphic networks are displayed which 
have the same μ-representation. To see the non-isomorphism, the left network contains 
a reticulated cherry while the right network does not. Clearly, μ-representations do not 
suffice in identifying reticulated cherries if the stack-free condition is not imposed. In light 
of this, Cardona et al. proposed a different extended μ-representation by considering, 
for every vertex, the number of paths to reticulations, in addition to the μ-vectors. 
While this sufficed to prove that binary orchard networks are encoded by extended μ
representations, the encoding result does not easily translate to the semi-binary network 
case. The networks in Fig. 1 form a counterexample, they have the same extended μ
representation, while they are not isomorphic.
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Fig. 7. Two networks which are not stack-free. Although they have the same μ-representation, they are not 
isomorphic. In the first network (b, a) is a reticulated cherry while in the second network it is not. The 
first network is orchard, as it can be reduced by the sequence (b, a)(b, a)(b, a). The second network is not 
orchard.

3.2. Reconstructing orchard networks

Now let us define cherry and reticulated cherry reductions in μ̄(𝒩 ). We first define 
operations on vectors. Recall that to remove a vector from a multiset means to lower the 
multiplicity by 1 to a minimum of 0. If a vector has multiplicity 0 in a multiset we say 
the multiset does not contain the vector.

Let (b, a) be a cherry in 𝒩 . We define the cherry reduction of (b, a) in μ̄(𝒩 ) as the 
following operations:

1. Remove the unit vector μ̄(b) from μ̄(𝒩 ).
2. Remove the vector μ̄(pab) = [1] ⊕ (μ(a) + μ(b)) from μ̄(𝒩 ).
3. For each μ̄(v) in μ̄(𝒩 ), replace it with a vector (μ̄(v)i)i∈S where S is the set {0} ∪

X \ {b}.

Note, that because (b, a) is a cherry, the parent pab of a and b will have μ̄-vector [1] ⊕
(μ(a) + μ(b)) before reduction and should be suppressed when reducing (b, a). Note 
also that none of the in-degrees of any nodes have changed. Now let (b, a) be a simple 
reticulated cherry in μ̄(𝒩 ), we define the simple reticulated cherry reduction of (b, a) as 
the following operations:

1. Remove the vector μ̄(pa) = [1] ⊕ (μ(a) + μ(b)) from μ̄(𝒩 ).
2. Remove the vector μ̄(pb) = [2] ⊕ μ(b) from μ̄(𝒩 ).
3. For each μ̄(v) ∈ μ̄(𝒩 ) \ μ̄(a) replace it with the vector μ̄(v) − μ̄(v)a([0] ⊕ μ(b)).

Note that tree-nodes have in-degree 1 and so, by Lemma 2, μ̄(pa) is the μ̄-vector of 
the parent of a, which should be suppressed when reducing (b, a). Furthermore, because 
(b, a) is a simple reticulated cherry, the parent pb of b has in-degree 2 before reducing 
and should be suppressed as well. Furthermore, because the edge between pa and pb
there are no longer any paths to b via pa. Note that the in-degrees of any nodes that 
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are not suppressed have not changed. Finally, we define the complex reticulated cherry 
reduction as follows:

1. Remove the vector μ̄(pa) = [1] ⊕ (μ(a) + μ(b)) from μ̄(𝒩 ).
2. Let μ̄(pb) ∈ μ̄(𝒩 ) be the vector with μ̄(pb)0 > 1 and μ̄(pb) = μ̄(pb)0⊕μ(b) and lower 

μ̄(pb)0 by 1.
3. For each μ̄(v) ∈ μ̄(𝒩 ) \ μ̄(a) replace it with the vector μ̄(v) − μ̄(v)a([0] ⊕ μ(b)).

For this reduction we keep the μ̄-vector of the parent pb of b, because it is not suppressed 
when (b, a) is reduced in 𝒩 , because it has in-degree greater than 1 after reduction, 
but we do lower its in-degree by 1. Note that, by Observation 1, in stack-free networks 
there can only be one non-leaf node with μ-vector equal to μ(b) and therefore μ̄(pb) has 
multiplicity 1 in μ̄(𝒩 ). Finally note that the in-degrees of any other nodes, besides pb
have not changed.

Lemma 3. Let (b, a) be a reducible pair in μ̄(𝒩 ), the multiset generated by reducing (b, a)
in μ̄(𝒩 ) is the μ̄-representation of the network generated by reducing (b, a) in 𝒩 .

The proof of this lemma is given in the appendix. Using these three lemmas we show 
the following isomorphism result for any two networks 𝒩1 and 𝒩2.

Theorem 1. Let 𝒩1 be semi-binary stack-free orchard and let 𝒩2 be semi-binary stack
free. Then,

μ̄(𝒩1) = μ̄(𝒩2) if and only if 𝒩1 ∼ = 𝒩2

Note that this means that semi-binary stack-free orchard networks are encoded by 
their modified μ-representation in the class of semi-binary stack-free networks.

Proof. Suppose we are given a semi-binary stack-free orchard network 𝒩1, and a semi
binary stack-free network 𝒩2 with μ̄(𝒩1) = μ̄(𝒩2). Note that μ̄(𝒩1) = μ̄(𝒩2) implies 
that also μ(𝒩1) = μ(𝒩2). Then, because 𝒩1 is orchard it must contain a reducible pair 
of leaves (b, a). If the pair (b, a) is a cherry, then by Lemma 1 it must be a cherry in 
μ(𝒩1). Therefore, it is also a cherry in μ(𝒩2) and thus again by Lemma 1 it is a cherry 
in 𝒩2. In this case, if 𝒩 ′

1 is the network generated by reducing (b, a) in 𝒩1, and μ̄(𝒩 ′
1) is 

the μ-representation of this network, then by Lemma 3, μ̄′(𝒩1) = μ̄(𝒩 ′
1), where μ̄′(𝒩1)

is the multiset generated by reducing (b, a) in μ̄(𝒩1). Thus, because there is only a single 
way of reducing a cherry in the μ̄-representation, we have that μ̄′(𝒩1) = μ̄′(𝒩2) and by 
Lemma 3, μ̄′(𝒩2) is the μ̄-representation μ̄(𝒩 ′

2) of the network generated by reducing 
(b, a) in 𝒩2. To conclude, after reducing the cherry (b, a) in both 𝒩1 and 𝒩2, the two 
networks still have the same μ̄-representation.

Alternatively, if (b, a) is a reticulated cherry in 𝒩1 then by Lemma 2, it is a reticulated 
cherry in μ(𝒩1). Therefore, by the same argument as before, it is a reticulated cherry in 
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𝒩2. Furthermore, because μ̄(𝒩1) = μ̄(𝒩2), if (b, a) is simple in 𝒩1 then it is simple in 𝒩2
and otherwise it is complex in both networks. As for each type of reticulated cherry there 
is a single way of reducing it in the μ̄-representation, we again see that both networks 
must have the same modified μ̄-representation after reduction of (b, a).

Moreover, because 𝒩1 is orchard, the network will still be orchard after reducing the 
pair (b, a). Therefore, it will again contain a reducible pair which is also a reducible 
pair in 𝒩2. It follows, that any sequence S = s1, s2, . . . , sn of reducible pairs si, which 
reduces 𝒩1 (to a network on a single leaf), will also be a sequence of reducible pairs for 
𝒩2. Furthermore, because 𝒩1 and 𝒩2 start out with the same set of leaves and each 
cherry reduction removes the same leaf from both networks, S will also reduce 𝒩2 to a 
network on a single leaf, and it will be the same leaf. We will show that 𝒩1 and 𝒩2 are 
isomorphic by an inductive proof. Let 𝒩 (i)

1 and 𝒩 (i)
2 be the networks generated from 𝒩1

and 𝒩2 by performing reductions s1 up to si, and let 𝒩 (0)
1 = 𝒩1 and 𝒩 (0)

2 = 𝒩2. And 
let us assume that the networks 𝒩 (i)

1 and 𝒩 (i)
2 are isomorphic. This is true for the base 

case where i = n, such that 𝒩1 and 𝒩2 are both reduced to a network on a single leaf by 
the entire sequence s1, s2, . . . , sn. Now take the networks 𝒩 (i−1)

1 and 𝒩 (i−1)
2 generated 

by performing reductions s1, s2, . . . , si−1. By Corollary 1 of [17], there is exactly one way 
to generate 𝒩 (i−1)

1 and 𝒩 (i−1)
2 from 𝒩 (i)

1 and 𝒩 (i)
2 , respectively. From this it follows 

that, because 𝒩 (i)
1 and 𝒩 (i)

2 are isomorphic, we also have that 𝒩 (i−1)
1 and 𝒩 (i−1)

2 are 
isomorphic. Finally, because we have shown that the networks are isomorphic for i = n

and that they are isomorphic for i = j − 1 if they are isomorphic for i = j, we can 
conclude that they are isomorphic for i = 0. This means 𝒩1 and 𝒩2 are isomorphic. □
3.3. The μ̄-distance as a metric

By the definition as set out in Section 2 the symmetric difference between two mul
tisets is empty, if, and only if, they are the same multiset. Furthermore, because the 
μ-representation of a network is well-defined, if two networks are isomorphic then their 
μ-representations are equal. If however, two networks have equal μ-representation, this 
does not necessarily mean they are isomorphic, see the examples in Fig. 1 and Fig. 7. 
Theorem 1 shows that given two semi-binary stack-free networks with equal modified 
μ-representations, if one of them is orchard, then they are isomorphic. Let us define the 
μ̄-distance on networks 𝒩1 and 𝒩2 by taking the cardinality of the symmetric difference 
of modified μ-representations, i.e., dμ̄(𝒩1,𝒩2) = |μ̄(𝒩1)△μ̄(𝒩2)|. By Theorem 1, this is 
a metric on the class of semi-binary stack-free orchard networks.

3.4. Non-binary stack-free orchard networks

In this section we will discuss whether our encoding results for the modified μ
representation extend to non-binary orchard networks. We claim that Observation 1
regarding the parents of leaf nodes, the multiplicity of the μ-vectors of leaf nodes, 
and the μ-vector of the tree-node parent of a leaf node, holds for non-binary stack
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Fig. 8. The networks 𝒩1 and 𝒩2 are both non-binary stack-free orchard with the same μ̄-representation and 
equal out-degrees, however they are non-isomorphic. In 𝒩1, (b, a) is a reticulated cherry, while in 𝒩2 it is 
not. Similarly in 𝒩2, (d, a) is a reticulated cherry, while in 𝒩1 it is not. This situation arises because the 
parent pa of leaf a has out-degree 3. Notably pa is the only node with degree greater than 3.

free networks without any further modification. Similarly, we claim Lemma 1 holds for 
non-binary stack-free networks and therefore cherries are uniquely determined by the 
μ-representation for non-binary stack-free networks.

However, Lemma 2 does not have an obvious equivalent for non-binary networks. 
When considering whether the leaf pair (b, a) is a reticulated cherry, we can no longer 
require the existence of μ(pa) = μ(a) + μ(b), because the parent of a may have more 
children than just a and pb. By Observation 1 we can find the μ-vector of the parent 
of a, but if it is not equal to μ(a) + μ(b), then it is impossible to determine whether 
there are any other nodes on the path pa ⇝ pb. Fig. 8 displays two non-binary stack-free 
orchard networks with the same μ̄-representation, which are not isomorphic. Because 
the parent pa of a has three children and its μ-vector μ(pa) is equal to the sums of 
the μ-vectors of 2 different sets of 3 nodes (1111 = 1000 + 0100 + 0011 = 1000 +
0110 + 0001) of which all those that differ belong to reticulations, it is impossible to 
tell which set belongs to the children of pa and therefore whether (b, a) is a reticulated 
cherry or not. As a consequence of the counterexample given in Fig. 8 we obtain the 
following:

Theorem 2. Non-binary stack-free orchard networks are not encoded by their μ̄
representation.

Note that nodes with the same μ̄-vectors in 𝒩1 and 𝒩2 also have the same out-degrees. 
This means that the logical extension of the modified μ-representation which adds the 
out-degrees of nodes does not lead to an encoding result for the class of non-binary 
stack-free orchard networks.
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4. Encoding by 𝝁-representations

In [8], Cardona et al. showed that the μ-representation serves as an encoding for non
binary tree-child phylogenetic networks. We have shown that for more general networks, 
even if they are stack-free semi-binary, two non-isomorphic networks may have the same 
μ-representation. See Fig. 1 for an example. We have also shown that for two semi-binary 
stack-free networks 𝒩 ,𝒩 ′ with μ̄(𝒩 ) = μ̄(𝒩 ′) if either of them is orchard then they are 
isomorphic (Theorem 1). Therefore, if we can find a subclass where μ(𝒩 ) = μ(𝒩 ′) implies 
that the nodes in 𝒩 and 𝒩 ′ have the same in-degrees then we can show that equivalent 
μ-representations imply isomorphism as long as one of the networks is orchard. This 
would give us an encoding result for this subclass. In this section we set out to show the 
following main result.

Theorem (4). Let 𝒩1 and 𝒩2 be two semi-binary stack-free networks with μ(𝒩1) =
μ(𝒩2). Let 𝒩1 be strongly reticulation-visible and orchard. Then, 𝒩1 ∼ = 𝒩2.

We want to show that there exists a subclass of phylogenetic networks, which we 
call strongly reticulation-visible, that can be encoded by the μ-representation without 
modification. To do so, we first give a set of equations which relate the in-degrees of 
the nodes in a phylogenetic network to the μ-representation (Proposition 1). We then 
show that for reticulation-visible networks, the μ-representation uniquely determines the 
in-degrees of all nodes, as long as we know which of the μ-vectors belong to reticulations, 
and if we know, for each reticulation, the leaf for which it is stable (Proposition 2). A 
vertex v is stable, if there exists a leaf a such that all paths from the root to a visit v.

We then ask if this can also be done for orchard networks. Because orchard net
works do not contain tree-clones, it is easy to determine which μ-vectors belong to 
reticulations in these networks, namely those which have multiplicity greater than 1. 
However, determining the stability of reticulations from the μ-vectors is not obvious. 
In Section 4.2 we set out a way to do this. It turns out this can be done if one more 
condition is added: each reticulation must be the lowest reticulation above some bridge. 
At the end of Section 4.2.1, we show that if we know which μ-vector belongs to the 
head of a bridge (which we call a bridge-node), then we can determine which μ-vector 
belongs to the reticulation which is lowest above that bridge (Lemma 12). For these 
reticulations, it follows that we can identify the leaves with which they are stable. We 
finally give a characterization in Proposition 3 for the μ-vectors of bridge-nodes in semi
binary stack-free networks. By combining these results with Proposition 2, it follows 
that for strongly reticulation-visible networks, the in-degrees are uniquely determined 
by the μ-representation. Therefore, there is a bijection between the μ-representation and 
the modified μ-representation for these networks. It then follows from Theorem 1 what 
we set out to prove: strongly reticulation-visible orchard networks are encoded by their 
μ-representation (Theorem 4).
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4.1. Determining the in-degrees of reticulations

In this section we set out a relationship between the in-degrees of reticulations and 
the number of paths to the leaves below that reticulation. Naturally, higher in-degrees 
correspond to a larger number of paths crossing a reticulation. Therefore, it follows that 
the μ-vectors of ancestors of a reticulation may contain information pertaining to the 
in-degree of that reticulation.

4.1.1. An equation relating the in-degrees of reticulations and μ-vectors
Let 𝒩 = (V,E) be an arbitrary X-DAG. Recall that ρ denotes the root of the network.

Proposition 1. Let a be an element of X. Let R be the set of reticulations in V . Then,

μ(ρ)a =
∑︂

ri∈R

(δ−(ri) − 1)μ(ri)a + 1.

Note that μ(ri)a = 0 if and only if ri is not an ancestor of a, which means that the 
contributions to the sum of Proposition 1 come from reticulation ancestors of a.

Proof. We prove the theorem by induction on the hybridization number, k = h(𝒩 ). We 
start by considering the base case, k = 0.

Let us consider an X-DAG with k = 0, i.e., a tree. If the hybridization number is 
zero then the graph contains no reticulations and therefore R is empty. This also means 
there is a unique tree-path from the root to each leaf and thus μ(ρ)a = 1. This shows 
the equation holds for each leaf of this graph.

Now suppose the equation holds for each leaf of any X-DAG with hybridization num
ber lower than k. Let 𝒩 be an X-DAG with reticulation set R such that h(𝒩 ) = k. 
Without loss of generality let rj be a highest reticulation in 𝒩 , which means rj has 
no reticulation ancestors. We can decrease the in-degree of rj by deleting an incoming 
edge urj . If u is an elementary node we delete all edges on the maximal elementary 
path which visits u, as well as the nodes which become isolated by doing so. When we 
delete any of the incoming edges urj in this way the resulting network 𝒩 ′ is still an 
X-DAG. Furthermore, the in-degrees of any other reticulations in the network have not 
decreased, which means δ−𝒩 ′(ri) = δ−𝒩 (ri) for any i ̸= j. Moreover, the number of paths 
from any reticulation r to any leaf a has not changed and thus μ′

a(r) = μ(r)a. Finally, 
the hybridization number of 𝒩 ′ is equal to k − 1 and by the induction hypothesis we 
have,

μ′(ρ)a =
∑︂

ri∈R′
(δ−𝒩 ′(ri) − 1)μ(ri)a + 1.

Now there are two cases to consider:

1. δ−𝒩 (rj) = 2
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2. δ−𝒩 (rj) > 2.

In the first case, the in-degree of rj after deleting an incoming edge becomes 1, which 
means rj / ∈ R′. In this case δ−𝒩 (rj) − 2 = 0. Which gives us:

μ′(ρ)a =
∑︂

ri∈R′
(δ−𝒩 ′(ri) − 1)μ(ri)a + 1

=
∑︂

ri∈R\{rj}
(δ−𝒩 (ri) − 1)μ(ri)a + (δ−𝒩 (rj) − 2)μ(rj)a + 1

In the second case rj ∈ R′ and, because we did not decrease the in-degree of any other 
reticulations, R = R′. The only difference is, δ−𝒩 ′(rj) = δ−𝒩 (rj) − 1. Therefore, we have:

μ′(ρ)a =
∑︂

ri∈R′
(δ−𝒩 ′(ri) − 1)μ(ri)a + 1

=
∑︂

ri∈R

(δ−𝒩 ′(ri) − 1)μ(ri)a + 1

=
∑︂

ri∈R\{rj}
(δ−𝒩 (ri) − 1)μ(ri)a + (δ−𝒩 ′(rj) − 1)μ(rj)a + 1

=
∑︂

ri∈R\{rj}
(δ−𝒩 (ri) − 1)μ(ri)a + (δ−𝒩 (rj) − 2)μ(rj)a + 1.

Note that after simplification the equation is the same for both cases.
When we add the edge urj (or the maximal elementary path which visits u and ends 

in rj) back to the network, we generate 𝒩 from 𝒩 ′. In doing so we increase μ′
a(ρ) by 

μ(rj)a for any leaf a. Indeed, rj is chosen to be a highest reticulation in 𝒩 , and so there 
is a single path from the root to rj which uses the edge (u, rj). By definition, there are 
μ(rj)a paths from rj to any leaf a. This means that, for any leaf a

μ(ρ)a = μ′(ρ)a + μ(rj)a

=
∑︂

ri∈R\{rj}
(δ−(ri)𝒩 − 1)μ(ri)a + (δ−(rj)𝒩 − 2)μ(rj)a + 1 + μ(rj)a

=
∑︂

ri∈R\{rj}
(δ−(ri)𝒩 − 1)μ(ri)a + (δ−(rj)𝒩 − 1)μ(rj)a + 1

=
∑︂

ri∈R

(δ−(ri)𝒩 − 1)μ(ri)a + 1,

which shows that the equation in the theorem holds for any leaf of 𝒩 . Thus, we have 
shown that if the equation holds for any leaf of an X-DAG with hybridization number 
k − 1, then it holds for any leaf of an X-DAG with hybridization number k. We had 
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Fig. 9. A semi-binary stack-free orchard network for which the system of equations generated by applying 
Proposition 1 to each leaf does not have a unique solution. However, the solution (δ−(r1), δ−(r2), δ−(r3)) =
(3, 3, 2) is the unique one that belongs to this network.

already shown the equation holds for any leaf for the base case k = 0. Therefore, we can 
conclude the equation holds for any leaf of any X-DAG, which proves the theorem. □

Note that this theorem holds for non-binary X-DAGs, as we never assumed a limit 
on the in-degree of reticulations or the out-degree of tree-nodes. Proposition 1 provides 
us with a system of linear equations that govern the in-degrees of reticulations as a 
function of μ-vectors. We know this system of equations must have a solution as long as 
it belongs to a valid phylogenetic network. However, there are no guarantees yet that it 
has a unique solution. A network may contain more reticulations than there are linearly 
independent equations in the system. The network displayed in Fig. 9 is semi-binary 
stack-free orchard, yet the system of equations generated by applying Proposition 1 to 
each leaf does not have a unique solution. Note that leaf c has no reticulation ancestors 
and therefore the equation for leaf c (μ(ρ)c = 1) does not contribute. This means that 
there is one equation for leaf a and one for leaf b, but three variables, the in-degrees of 
reticulations r1, r2 and r3. Note that the lower bound for the in-degree of reticulations 
is 2, and therefore, there are only a finite number of solutions. In this case there are two 
solutions to the system of equations and Fig. 9 shows (δ−(r1), δ−(r2), δ−(r3)) = (3, 3, 2)
is the one belonging to this network.

4.1.2. In-degrees of stable reticulations
In the last section we presented a theorem which allows us to derive a system of 

equations which govern the in-degrees of reticulations as a function of the μ-vectors. 
This system of equations applies to every network with the same μ-representation and 
set of reticulations R. However, the system of equations does not always have a unique 
solution. In this section we will introduce specific conditions under which it does have a 
unique solution. We can extend the results of the previous section to the class of networks 
called reticulation-visible. Recall the definition of a reticulation-visible network:
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Definition 4. An X-DAG with reticulation set R is called reticulation-visible if each 
reticulation r ∈ R is stable, that is there exists a leaf a ∈ X such that all paths from the 
root to a visit r.

If we let 𝒩 be a reticulation-visible X-DAG with reticulation set R then the following 
is true. For r ∈ R, with leaf a below r such that all paths from the root to a visit r, and 
v any ancestor of r,

μ(v)a = Pvrμ(r)a, (1)

where Pvr is the number of paths from v to r. This is true, as every path from v to 
a must be the concatenation of a path from v to r and a path from r to a. With this 
we gain the following lemma. This shows that in reticulation-visible networks, there is a 
unique equation for each reticulation.

Lemma 4. Let 𝒩 be an X-DAG with reticulation set R. Let rℓ be any reticulation in R
and let A be the set of ancestors of rℓ. Suppose there exists a leaf a ∈ X such that all 
paths from the root to a visit rℓ. Then,

μ(ρ)a
μ(rℓ)a

=
∑︂

r∈A

(δ−(r) − 1) μ(r)a
μ(rℓ)a

+ 1 (2)

Proof. Let us generate 𝒩 ′ from 𝒩 by first attaching a new leaf a′ to rℓ, by adding the 
edge (rℓ, a′), and then adjusting the μ-representation by adding a column for a′, such that 
μ′(v) = μ(v)⊕ μ(v)a′ . Note that this network is now an X ′-DAG, where X ′ = X ∪ {a′}. 
Then by Proposition 1 we have:

μ′
a′(ρ) =

∑︂

r∈R

(δ−(r) − 1)μ′
a′(r) + 1. (3)

Now note that rℓ is the lowest reticulation above a′ by construction and therefore the 
only reticulations that contribute to the sum in Equation (3) are the reticulations in A. 
Furthermore, the number of paths from any ancestor v of a′, which is not a′, to a′ are 
equal to the number of paths from v to rℓ, which is the same in 𝒩 and 𝒩 ′, which means 
by Equation (1),

μ′
a′(v) = Pvrℓ = μ(v)a

μ(rℓ)a
. (4)

Because ρ is an ancestor of a′, as are the elements of A, we can substitute Equation (4) 
in Equation (3) to get:

μ(ρ)a
μ(rℓ)a

=
∑︂

r∈A

(δ−(r) − 1) μ(r)a
μ(rℓ)a

+ 1. □



22 C. Reichling et al. / Advances in Applied Mathematics 172 (2026) 102953 

For the following lemmas, let 𝒩1 and 𝒩2 be two reticulation-visible X-DAG’s on the 
same leaf set X with μ(𝒩1) = μ(𝒩2). Let R1 and R2 denote the reticulation sets of 𝒩1
and 𝒩2, respectively. We say that 𝒩1 and 𝒩2 agree on the reticulation set if there exists 
a bijection f : R1 → R2 such that μ(r1) = μ(f(r1)) for all r1 ∈ R1. For simplicity, 
we refer to R1 (and by bijection, also R2) as R. We assume that 𝒩1 and 𝒩2 agree on 
the reticulation set. Finally, assume that for each reticulation r ∈ R, there exists a leaf 
a ∈ X such that r is stable with respect to a in both networks.

Lemma 5. Each reticulation r ∈ R has the same reticulation descendants and the same 
reticulation ancestors in 𝒩1 and 𝒩2.

Proof. Let r ∈ R be stable for leaf a in both networks. Then all paths from the root to 
a visit r in both networks. Therefore, all reticulations ri ∈ R, with μ(ri) ≥ μ(a) must be 
on a path from the root to a which also visits r in both networks. Therefore, each ri ∈ R, 
with μ(ri) ≥ μ(a) must be either a descendant or an ancestor of r. If μ(ri) ≥ μ(r) then 
ri must be an ancestor of r in both networks, and if μ(ri) ≤ μ(r) then ri must be a 
descendant of r in both networks. □
Lemma 6. Let H ⊆ R be the subset of R which contains only reticulations without other 
reticulation ancestors in either network. Then the reticulations in H have the same in
degrees in both networks.

Proof. For any reticulation r ∈ H the set A in Lemma 4 contains only r and therefore 
the in-degree of r is given directly by Equation (2), applied to the leaf for which the 
reticulation is stable in both networks. □

By a similar reasoning we obtain the following:

Lemma 7. Let rℓ in R and let the in-degrees of the other ancestors of rℓ be the same in 
𝒩1 and 𝒩2. Then the in-degree of rℓ is the same in 𝒩1 and 𝒩2.

Proof. Given a reticulation rℓ ∈ R, the set A in Equation (2) contains only rℓ and its 
other ancestors, which are the same in both networks. Now assume the in-degrees of the 
ancestors of rℓ are fixed, then the in-degree of rℓ is given by Equation (2), applied to the 
leaf for which the reticulation is stable in both networks. □

This leads to the following conclusion:

Proposition 2. Let 𝒩1 and 𝒩2 be two reticulation-visible X-DAG’s with μ(𝒩1) = μ(𝒩2). 
Let both networks have the same reticulation set R and the same leaf set X. Finally, 
assume that for each reticulation r ∈ R, there exists a leaf a ∈ X such that r is stable 
with respect to a in both networks. Then the in-degrees of the reticulations are the same 
in both networks.
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Proof. Let H be the set of highest reticulations in R, which is the same set for 𝒩1

and 𝒩2, by Lemma 5. By Lemma 6 the in-degrees of the reticulations in H are the 
same in both networks. Let S be the set of second highest reticulations in R, such that 
each reticulation r ∈ S only has ancestors in H. By applying Lemma 7 the in-degrees 
of the reticulations in S are also the same in both networks. Now, in the same way, 
the in-degrees of the third highest reticulations are equal and so on and so forth. This 
process must terminate as we only consider finite graphs. Thus, by repeated application 
of Lemma 7, we see that the in-degrees of all reticulations in R are the same in both 
networks. □
4.2. Determining stable nodes

In this subsection, we work with stack-free phylogenetic networks, denoted by 𝒩 =
(V,E). Proposition 2 shows that if two reticulation-visible networks have equal μ
representations, identical reticulation sets, and every reticulation is stable for at least one 
common leaf in both networks, then the in-degrees of the reticulations are guaranteed to 
be equal in both networks. These conditions ensure that the same system of equations 
that govern the in-degrees of reticulations holds for both networks and it has a unique 
solution.

To reiterate, we’re trying to find the sub-class of semi-binary stack-free networks for 
which equal μ-representations imply equal in-degrees. Now we have shown that this could 
be a sub-class of reticulation-visible networks, but we need to determine under which 
conditions the reticulation sets are equal and the reticulations are stable for common 
leaves. In the case of stack-free orchard networks the reticulations correspond to μ-vectors 
with multiplicity 2. However, the stability of reticulations with respect to specific leaves 
may still differ between the networks, even if they share the same μ-representation. 
Therefore, the next step will be to demonstrate the conditions under which the stability 
of a node with respect to a leaf is determined by the μ-representation.

4.2.1. Preliminary lemmas
Recall that a tree-clone is a tree-node for which there exists another tree-node with 

the same μ-vector.

Lemma 8. Tree-clones are not stable.

Proof. Let u, v be distinct tree-clones. Recall that for tree-nodes we have μ(v1) > μ(v2)
whenever v1 ̸= v2 and v1 is an ancestor of v2. Therefore, because μ(u) = μ(v), it is 
clear that u, v are neither ancestors nor descendants of each other. This means a path 
never visits both u and v. Furthermore, because the μ-vectors are equal, we know that 
for each leaf, such that u is on a path to that leaf, v is also on a path to that leaf. By 
our previous statement these paths must be distinct and neither contains both nodes. 
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Therefore, there are no leaves such that all paths to that leaf contain u, nor are there 
any leaves such that all paths to that leaf contain v. □
Lemma 9. A reticulation is stable with respect to a leaf if, and only if, its child is stable 
with respect to that leaf.

Proof. In stack-free phylogenetic networks, all paths from the root to a leaf which visit 
a reticulation must also visit its child and vice versa, as by definition there is a single 
edge leaving each reticulation and a single edge going into its child. □
Corollary 1. Nodes with the same μ-vector as tree-clones are not stable.

Either they are themselves tree-clones, or they are the reticulation parent of a tree
clone, which means by Lemma 9 that they are not stable.

Lemma 10. Let μ(𝒩 ) be the μ-representation of a stack-free network and let μ(v) ∈ μ(𝒩 )
be a μ-vector, such that there does not exist a pair of tree-clones whose μ-vectors are equal 
to μ(v). Then μ(v) has multiplicity at most 2 in μ(𝒩 ).

Proof. Assume there are no tree-clones with μ-vectors equal to μ(v), but assume μ(v) has 
multiplicity more than 2. Then there must be at least 2 distinct reticulations r1, r2 ∈ R

with the same μ-vector μ(r1) = μ(r2) = μ(v). As reticulations have the same μ-vectors as 
their children and in a stack-free network the children of reticulations are tree-nodes, this 
means there exist two tree-nodes with μ-vectors equal to μ(v). However, as we assumed 
there are no tree-clones with μ-vectors equal to μ(v), we have reached a contradiction. □
Corollary 2. Let 𝒩 be a stack-free network with μ-representation μ(𝒩 ). If μ(v) has a 
multiplicity greater than 2 in μ(𝒩 ) then all nodes v ∈ V with μ-vector equal to μ(v) are 
not stable.

Instead of showing directly when the μ-representation determines whether a μ-vector 
belongs to a stable node, we will first show some other results which we will use for our 
argument. A bridge or a cut-edge is an edge, for which it holds that if the edge would 
be deleted the number of connected components of the graph goes up. In the case of 
phylogenetic networks, which are connected graphs, deleting a bridge makes the graph 
no longer connected.

Let the head of a bridge be called a bridge-node. Then, since reticulation edges are 
never bridges, bridge-nodes are tree-nodes. All leaves are automatically bridge-nodes, as 
they become isolated whenever the edge directed into them is deleted. The root is not a 
bridge-node because it has zero in-degree.

Observation 2. Let vb be a tree-node other than the root. Then, vb is a bridge-node if, 
and only if, all paths from ancestors of vb to leaves below vb pass through vb.
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In other words, this observation implies that a bridge-node is stable for all leaves 
below it. This means that if vb is a bridge-node, then nodes which lie on a path to a leaf 
below vb are either ancestors or descendants of vb.

Observation 3. Let vb be a bridge-node. Then, for u ∈ V , u ̸= vb

• μ(u) ≥ μ(vb) ⇐⇒ μ(u) belongs to an ancestor of vb.
• μ(u) < μ(vb) ⇐⇒ μ(u) belongs to a descendant of vb.

Previously, these implications only held in one direction (right to left) for all tree
nodes.

Observation 4. If there is a tree-path from the child cr of a reticulation r to a bridge-node 
vb, then r is stable with respect to all leaves below vb.

Let us define the set Ab as the subset of the ancestors of a bridge-node vb, whose 
μ-vectors have multiplicity exactly 2 in μ(𝒩 ). While we have defined μ on networks 
and on individual nodes, we generalize this definition to a set of vertices. For any set 
S ⊆ V , let μ(𝒩 )S be the multiset of μ-vectors of the nodes in S. In other words, 
μ(𝒩 )S = {μ(v) ∈ μ(𝒩 ) : v ∈ S}. Then μ(𝒩 )Ab

is exactly the multiset {μ(v) : μ(v) ≥
μ(vb),#μ(v) = 2}. By Observation 3, each vector in μ(𝒩 )Ab

only belongs to ancestors 
of vb. Notice that μ(𝒩 )Ab

is purely defined in terms of μ-vectors if given a μ(vb) which 
belongs to a bridge-node, and it can be determined from the μ-representation, without 
any knowledge of the graph. Here, we show that it can be used to find μ-vectors which 
belong to stable reticulations. In Section 4.2.2, we show how to determine μ-vectors that 
belong to bridge-nodes.

Lemma 11. If μ(v) is minimal in μ(𝒩 )Ab
, then it belongs to a reticulation and to the 

child of that reticulation.

Proof. A μ-vector with multiplicity 2 either belongs to a pair of tree-clones or to a 
reticulation and its child. Now, if μ(v1) ∈ μ(𝒩 )Ab

belongs to a pair of tree-clones v1, v2

with μ(v1) = μ(v2), then there cannot be a tree-path from either of them to a bridge
node vb, because by Lemma 8, tree-clones are not stable. Therefore, v1 and v2 must have 
reticulation descendants r1, r2, who are ancestors of vb. Note that r1 could be equal to 
r2. If the multiplicity of either r1 or r2 is greater than 2, then their child must be a 
tree-clone, by the contrapositive of Lemma 10. By the same argument there must then 
be other reticulation descendants of v1 and v2 above vb. We only consider finite graphs, 
and therefore, w.l.o.g. we can assume μ(r1) and μ(r2) have multiplicity 2 in μ(𝒩 ). Then, 
r1, r2 ∈ Ab, with μ(r1) < μ(v1) and μ(r2) < μ(v2). Therefore, μ(v1) is not minimal in 
Ab. We can conclude that if μ(r) is minimal in Ab, then r is a reticulation. □
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Lemma 12. There is a tree-path from the child of a reticulation r to a bridge-node vb if, 
and only if, μ(r) is minimal in the set μ(𝒩 )Ab

.

Proof. For the first direction, assume there is a tree-path from the child of a reticulation 
r to a bridge vb. Then, by Observation 4, r is stable. Therefore, by Corollary 2, μ(r) has 
multiplicity 2 in μ(𝒩 ). Furthermore, r is an ancestor of vb, therefore r ∈ Ab. Also note, 
that r is the lowest reticulation above vb. Then, by Lemma 11, all ancestors of vb, with 
μ-vectors which have multiplicity 2, are ancestors of r. Thus, we have μ(v) ≥ μ(r), for 
μ(v) ∈ μ(𝒩 )Ab

. Therefore, μ(r) is minimal in Ab. This proves the first direction.
The other direction we will prove by contradiction. Assume μ(r) is minimal in μ(𝒩 )Ab

. 
By Lemma 11, μ(r) belongs to a reticulation r and its child cr. Furthermore, because 
μ(cr) = μ(r) ∈ μ(𝒩 )Ab

, both r and cr are ancestors of vb. Therefore, there is a path from 
cr to vb. If the path from cr to vb is not a tree-path, then r is not the lowest reticulation 
above vb. Let rℓ be the lowest reticulation above vb, then rℓ is a descendant of r. By 
Observation 4, rℓ is stable. Therefore, by Corollary 2, #μ(rl) ≤ 2. The child of rℓ has 
the same μ-vector, therefore #μ(rl) = 2. This means that μ(rℓ) ∈ μ(𝒩 )Ab

and because 
rℓ is a descendant of r, also μ(r) > μ(rℓ). This contradicts our assumption that μ(r) is 
minimal in μ(𝒩 )Ab

. Therefore, r is the lowest reticulation above vb, and the path from 
cr to vb is a tree-path. □

Lemma 12 shows that given a vector μ(vb) which belongs to a bridge-node, we can 
determine the μ-vector belonging to the lowest reticulation above that bridge by finding 
the minimal μ-vector μ(v) ≥ μ(vb) with multiplicity 2.

4.2.2. Strongly reticulation-visible networks
The lemmas in the previous section show that if we know that a given μ-vector 

belongs to a bridge-node, then we can find the μ-vector of the lowest reticulation above 
this bridge-node and the reticulation will be stable for all leaves below the bridge-node 
(which are the leaves for which the μ-vector of the bridge-node has non-zero coordinates). 
We therefore propose to consider the class of networks such that for each reticulation 
there is a tree-path from its child to a bridge. We will call this the class of strongly 
reticulation-visible networks.

Note that all strongly reticulation-visible networks are reticulation-visible. But there 
are reticulation-visible networks which are not strongly reticulation-visible. See Fig. 10
for an example. Therefore the class of strongly reticulation-visible networks is a proper 
subclass of the class of reticulation-visible networks, which is itself a proper subclass 
of stack-free networks. If we can show that for strongly reticulation-visible networks 
it is possible to determine whether a μ-vector belongs to a bridge-node from just the 
μ-representation (Proposition 3), we will have shown that the stability of reticulations 
can be determined. Knowing the stability of reticulations will show that the reticulation 
in-degrees can be determined (Proposition 2), finally leading to our main isomorphism 
result (Theorem 4).
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Fig. 10. A phylogenetic network which is reticulation-visible but not strongly reticulation-visible. Reticulation 
r is stable with respect to leaf b, but there is no tree-path from the child of r to a bridge. The only bridges 
are the edges ending in a and b.

We quickly summarize the collection of results obtained so far. By Observation 2, 
bridge-nodes are stable. Therefore, if vb is a bridge-node, then by Corollary 2, #μ(vb) ≤ 2. 
Furthermore, by Lemma 8, μ(vb) does not belong to a pair of tree-clones. Finally, all 
leaves are bridge-nodes, therefore all unit vectors in μ(𝒩 ) belong to bridge-nodes, so we 
only still have to consider μ-vectors which are not unit vectors. Note that we also do not 
need to consider the unique maximal μ-vector in μ(𝒩 ).

Observation 5. The μ-vector μ(ρ) belonging to the root of a network 𝒩 is the unique 
maximal μ-vector in μ(𝒩 ).

Now let 𝒩 = (V,E) be a semi-binary stack-free network. Proposition 3 gives a set 
of conditions on the μ-representation μ(𝒩 ) which determine whether a given μ-vector 
belongs to a bridge-node.

Proposition 3. Let μ(vb) be a non-unit vector that is not μ(ρ). Then, it belongs to a 
bridge-node if, and only if,

1. there is exactly one pair μ(k), μ(ℓ) ∈ μ(𝒩 ) such that μ(vb) = μ(k) + μ(ℓ), and
2. one of the following holds

(a) at least one of μ(k) and μ(ℓ) has multiplicity 1 in μ(𝒩 ); or
(b) μ(k) = μ(ℓ) and #μ(k) = 2, and

3. μ(𝒩 ) does not contain vectors μ(x), μ(y), μ(z), such that μ(z) ≰ μ(vb), μ(z) = μ(x)+
μ(y) and μ(x) < μ(vb).

Proof. For a more formal proof see the appendix. Here we would like to give a proof by 
illustration. First we will show that the three conditions hold for any bridge node vb.

Observe Fig. 11 for an example of condition 1. Note that none of the red ‘outside’ 
nodes have μ-vectors which could ever contribute to a pair whose μ-vectors sum up to 



28 C. Reichling et al. / Advances in Applied Mathematics 172 (2026) 102953 

Fig. 11. A semi-binary stack-free network with bridge-node vb. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

Fig. 12. Two networks in which vb has two reticulation children. The dashed lines indicate that they connect 
somewhere above.

μ(vb) because their μ-vectors are simply too large and/or contain non-zero coordinates 
that correspond to leaves that are not below vb. Note also that none of the μ-vectors of 
the blue ‘inside’ nodes (which are not children of vb) could ever contribute to a sum of 
only two μ-vectors which sum up to μ(vb) because they are simply too small. Only the 
green child nodes of vb have μ-vectors which together sum up to μ(vb). There is always 
just a single pair of μ-vectors which sum up to μ(vb) if vb is a bridge-node and they 
belong to the children of vb.

For the second condition consider what it means if either (a) or (b) would not hold. 
Then the children of vb have distinct μ-vectors which both have multiplicity 2 or higher 
or they have equal μ-vectors and the multiplicity is 3 or higher. There are three such 
possible cases: either both children are reticulations (Fig. 12), or one of the children is 
a reticulation and the other is a tree-clone (Fig. 13), or both are tree-clones (Fig. 14). 
In the final case, they either have distinct μ-vectors, or they have equal μ-vectors and 
there is a third node with the same μ-vector.
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Fig. 13. Three networks in which vb has a reticulation and a tree-clone child. 

Fig. 14. Two networks in which vb has two tree-clone children. 

Fig. 12 shows that even if one of the reticulation children of vb is a descendant of the 
other, there is a reticulation edge going into one of the reticulations (the red dashed line) 
which is not coming from vb and therefore vb is not a bridge-node.

Fig. 13 illustrates the case when vb has a reticulation and a tree-clone as children. 
Note that even if either child is a descendant of the other child, then there is still a path 
(via the red dashed line) to some of the descendants of vb which does not pass through 
vb. Therefore, vb cannot be a bridge-node.

Now assume vb has two children which are tree-clones which either have the same 
μ-vector with multiplicity 3 or higher, or have distinct μ-vectors. Fig. 14 illustrates that 
in either of these cases there must be a path (via the red dashed line) to descendants of 
vb which do not pass through vb, which implies vb is not a bridge-node.

For the third condition we refer back to Fig. 11. Let us assume that vb is a bridge
node but μ(𝒩 ) does contain vectors μ(x), μ(y), μ(z), such that μ(z) ≰ μ(vb), μ(z) =
μ(x)+μ(y) and μ(x) < μ(vb). Note that μ(z) has to belong to a red ‘outside’ node and if 
it belongs to a reticulation then it also belongs to its tree-node child. Now imagine that 
the μ-vector of such an outside tree-node is the sum of the μ-vector of a blue ‘inside’ 
node and another μ-vector. Even if there are multiple pairs (of possible children) whose 
μ-vectors sum up to the μ-vector of z this would imply z has a child which is not an 
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Fig. 15. Four networks in which z and vb are tree-clones with μ(z) = μ(vb). 

ancestor of vb. Yet, there are paths from this child to the leaves below vb. This would 
mean there is a path to a leaf below vb, which passes through z and its child, which does 
not pass through vb. This contradicts our assumption that vb is a bridge-node. Therefore 
if vb is a bridge-node, then condition 3 must hold.

To prove the other direction, we will show that if vb is not a bridge-node then one of 
the above conditions does not hold. If vb is not a bridge-node, then there is a path from 
the root to a descendant of vb which does not pass through vb. Now because μ(ρ) ̸< μ(vb)
and for any descendant d of vb, with d ̸= vb, we have μ(d) < μ(vb). This implies that 
there is a node z on that path with μ(z) ̸< μ(vb) which is the parent of a node x with 
μ(x) < μ(vb) (because vb is not a bridge-node this does not necessarily mean that x
is itself a descendant of vb but that does not matter). There are two cases to consider: 
either μ(z) = μ(vb) or μ(z) ≰ μ(vb).

If μ(z) = μ(vb), then μ(vb) is a tree-clone. Fig. 15 shows four networks where vb and 
z share all, some, or none of their children. It can be seen that in the top network and 
the leftmost network where they share one or more of their children. Condition 2 of 
the proposition does not hold because the multiplicities of the μ-vectors of the children 
are too high. In the third and fourth cases, they do not share any of their children. 
In the middle network, the children share the same pair of μ-vectors and therefore the 
multiplicities are too high, again breaking condition 2. And in the rightmost network, 
there are two distinct pairs of μ-vectors which sum up to the value of μ(vb) and μ(z), 
which means that the first condition does not hold.

Finally if μ(z) ≰ μ(vb) then condition 3 does not hold because μ(z) = μ(x) +μ(y) for 
some node x with μ(x) < μ(vb). Fig. 16 shows two such networks. The second network 
shows that x does not have to be a descendant of vb in this case. We have now shown 
that if vb is not a bridge node then one of the conditions in Proposition 3 does not hold. 
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Fig. 16. Two networks where there exists a node z with μ(z) ≰ μ(vb) with a child x such that μ(x) < μ(vb).

We can conclude that the conditions in Proposition 3 are both necessary and sufficient 
for μ(vb) to belong to a bridge-node. □

Proposition 3 shows that for two semi-binary stack-free networks 𝒩1 and 𝒩2, if 
μ(𝒩1) = μ(𝒩2), then μ(vb) ∈ μ(𝒩1) belongs to a bridge-node in 𝒩1 if, and only if 
it belongs to a bridge-node in 𝒩2. In other words, the same μ-vectors will belong to 
bridge-nodes in both networks. While μ(ρ) also satisfies the conditions of Proposition 3, 
a μ-vector belonging to a bridge-node in 𝒩1 will never belong to the root in 𝒩2, since we 
can identify μ(ρ) as we noted in Observation 5. Lemma 12 shows that if μ(vb) belongs to 
a bridge-node in both networks, then the same μ-vector belongs to the lowest reticulation 
above that bridge-node in both networks. Then, by Observation 4, these reticulations 
will be stable with respect to the same leaves. This leads us to the following theorem.

Theorem 3. Let 𝒩1 and 𝒩2 be two strongly reticulation-visible semi-binary networks, 
where μ(𝒩1) = μ(𝒩2). Then, μ̄(𝒩1) = μ̄(𝒩2).

Proof. As 𝒩1 and 𝒩2 are strongly reticulation-visible, there is a tree-path to a bridge
node from the child of each reticulation. As mentioned above, the same μ-vectors belong 
to bridge-nodes in both networks, and the same μ-vectors belong to the lowest reticula
tion above those bridge-nodes. Therefore, the same μ-vectors in both μ-representations 
will belong to reticulations which are stable for the same set of leaves. To make this more 
clear, note the following. By Lemma 8, μ-vectors which belong to stable nodes cannot 
belong to tree-clones. Furthermore, by Corollary 2, μ-vectors with multiplicity greater 
than 2 do not belong to stable nodes. Moreover, as 𝒩1 and 𝒩2 are strongly reticulation
visible, all the reticulations in both networks are stable. Therefore, the μ-vectors with 
multiplicity greater than 2 in μ(𝒩1) and μ(𝒩2) do not belong to reticulations in either 
network. By combining Proposition 3 and Lemma 12, we can obtain the set of μ-vectors 
with multiplicity 2 that is in bijection with the set of reticulations in both networks. In 
conclusion, the same μ-vectors belong to reticulations in 𝒩1 and 𝒩2, and they are stable 
for a common set of leaves. Thus, by Proposition 2, μ̄(𝒩1) = μ̄(𝒩2). □
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Table 1
A table detailing the main results. SB stands for semi-binary, SF stands for stack
free and SRV stands for strongly reticulation-visible. Note that strongly reticulation
visible networks are stack-free. The first row reads: ``Given two networks 𝒩1 and 
𝒩2 with the same modified μ-representation, if 𝒩1 is semi-binary stack-free orchard 
and 𝒩2 is semi-binary stack-free, then they are isomorphic''.

Given class 𝒩1 class 𝒩2 Result Theorem 
μ̄(𝒩1) = μ̄(𝒩2) SB SF orchard SB SF 𝒩1 ∼ = 𝒩2 Theorem  1
μ(𝒩1) = μ(𝒩2) SB SRV SB SRV μ̄(𝒩1) = μ̄(𝒩2) Theorem  3
μ(𝒩1) = μ(𝒩2) SB SRV orchard SB SF 𝒩1 ∼ = 𝒩2 Theorem  4

4.3. Encoding strongly reticulation-visible orchard semi-binary networks

We now combine Theorem 1, Proposition 2, Proposition 3, and Lemma 12 to prove 
the following main result.

Theorem 4. Let 𝒩1 and 𝒩2 be two semi-binary stack-free networks with μ(𝒩1) = μ(𝒩2). 
Let 𝒩1 be strongly reticulation-visible and orchard. Then, 𝒩1 ∼ = 𝒩2.

Proof. Because 𝒩1 is orchard, it contains no tree-clones. Therefore, each μ-vector in 
μ(𝒩1) has multiplicity at most 2. And the subset of μ(𝒩1) of μ-vectors with multiplicity 
2 is exactly the set of μ-vectors which belong to reticulations in 𝒩1. Furthermore, because 
𝒩1 is strongly reticulation-visible, these μ-vectors belong to reticulations which are lowest 
above some bridge in 𝒩1. By Proposition 3, the same μ-vectors belong to bridge-nodes in 
𝒩1 and 𝒩2. And by Lemma 12, every lowest reticulation - bridge-node pair is preserved 
in 𝒩2. As both μ-representations do not contain vectors with multiplicity greater than 
2, there are no other μ-vectors belonging to reticulations in 𝒩2. Note that each μ-vector 
with multiplicity 2 belongs to exactly one reticulation in 𝒩1. Therefore, 𝒩1 and 𝒩2 have 
the same reticulation set R and each reticulation is stable for a common set of leaves 
in both networks. This means that, by Proposition 2, μ̄(𝒩1) = μ̄(𝒩2). Therefore, by 
Theorem 1, 𝒩1 ∼ = 𝒩2. □

Recall that in Section 3.3, we defined a metric for the class of semi-binary stack
free orchard networks using modified μ-representations. Here, we define an analogous 
result using Theorem 4. Let us define the μ-distance on networks 𝒩1 and 𝒩2 by tak
ing the cardinality of the symmetric difference of μ-representations, i.e., dμ(𝒩1,𝒩2) =
|μ(𝒩1)△μ(𝒩2)|. By Theorem 4, this is a metric on the class of semi-binary strongly 
reticulation-visible orchard networks.

5. Conclusion and discussion

In this section we will outline and discuss the main results, some of which are displayed 
in Table 1.

We have shown that semi-binary stack-free orchard networks are encoded in the space 
of semi-binary stack-free networks by a modified μ-representation (Theorem 1). This 
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modified μ-representation, contains the same path multiplicity vectors as the standard 
μ-representation as originally proposed by Cardona et al. in [8], but additionally includes 
the in-degrees of nodes. With this result we have shown that the cardinality of the 
symmetric difference of the μ̄-representations is a metric for the class of semi-binary 
stack-free orchard networks. We have also shown that this encoding result does not 
extend to non-binary stack-free orchard networks (Theorem 2) even if the outdegrees 
are also included in the modified μ-representation.

We proposed the class of strongly reticulation-visible networks, as the class of net
works where for each reticulation there is a tree-path from its child to a bridge. For 
this class we proved that for any two networks with the same μ-representation, the μ
vectors belong to nodes with equal in-degrees. Therefore, they have the same modified 
μ-representation (Theorem 3). Finally, we concluded that strongly reticulation-visible 
semi-binary stack-free orchard networks are encoded in the class of semi-binary stack
free networks by their μ-representation (Theorem 4). This means that the cardinality of 
the symmetric difference of the μ-representation is a metric for the class of semi-binary 
strongly reticulation-visible orchard networks.

We now give potential future research directions. All of the following points are elabo
rated on in [21]. In [7] Cardona et al. propose an extended μ-representation for encoding 
binary orchard networks. We wonder if this can be extended to encode semi-binary or
chard networks. In another direction, we build on the results of Section 4.2. We showed 
that the bridge-nodes and stability of reticulations in semi-binary strongly reticulation
visible networks can be identified from their μ-representations. Can we do the same for 
the non-binary variant? Finally, the original problem of encoding semi-binary stack-free 
orchard networks using μ-representations remains open but perhaps our results here can 
illuminate the next steps towards a proof.

Appendix A. Proof of Lemma 3

Proof. Let 𝒩 ′ = (V ′, E′) be the network generated from 𝒩 by reducing (b, a) and 
let μ̄′(𝒩 ) be the multiset generated from μ̄(𝒩 ) by reducing (b, a). We will show that 
μ̄(𝒩 ′) = μ̄′(𝒩 ).

First let us assume that (b, a) is a cherry in 𝒩 . Let pab be the parent of a and b in 𝒩 . In 
this case we have to show that μ̄(𝒩 ′) contains exactly the μ̄-vectors (μ̄(v)i)i∈({0}∪X\{b})
for each μ̄(v) ∈ μ̄(𝒩 ) \ {μ̄(b), μ̄(pab)}, where μ̄(pab) = [1]⊕ (μ(a)+μ(b)). First note that 
reducing (b, a) in 𝒩 does not change the number of paths to any leaf but b for any node 
which is in both 𝒩 and 𝒩 ′. Moreover, because 𝒩 ′ is a network on leaf set X\{b}, for each 
node v which is in both networks, μ̄(𝒩 ′) contains (μ̄(v)i)i∈{0}∪X\{b}. Furthermore, only 
the nodes b and pab are removed, when reducing (b, a) in 𝒩 . Therefore V ′ = V \ {b, pab}
and pab is a tree-node with children a and b in 𝒩 , which means μ̄(pab) = [1]⊕(μ(a)+μ(b))
in μ̄(𝒩 ). This shows the claim and therefore μ̄′(𝒩 ) = μ̄(𝒩 ′).

Now let us assume that (b, a) is a simple reticulated cherry in 𝒩 , where b has a 
reticulation parent pb and pa is the parent of a. To show that μ̄′(𝒩 ) = μ̄(𝒩 ′), we have to 
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show that μ̄(𝒩 ′) contains the vector μ̄(a) and for each μ̄(v) in μ̄(𝒩 )\{μ̄(pa), μ̄(pb), μ̄(a)}, 
μ̄(𝒩 ′) contains a vector μ̄′(v) such that μ̄′(v)i = μ̄(v)i for i ∈ X \ {b} and μ̄′(v)b =
μ̄(v)b − μ̄(v)a. Note that in reducing (b, a) in 𝒩 the nodes pa and pb are suppressed 
therefore V ′ = V \ {pa, pb}. Furthermore, for each node in V ′ the number of paths to 
any leaf other than b in 𝒩 ′ is equal to the number of paths to that leaf in 𝒩 . However, 
the paths to leaf b which include pa in 𝒩 are not present in 𝒩 ′ because of the removal 
of the edge papb. For any node other than a the number of paths to leaf b which pass 
through pa in 𝒩 is equal to the number of paths to leaf a, but there are no paths from 
a to b in either network. Therefore, μ̄(a) is an element of μ̄(𝒩 ′) and for each other node 
v which is in both networks μ̄(𝒩 ′) contains the vector μ̄′(v) such that μ̄′(v)i = μ̄(v)i for 
i ∈ X \ {b} and μ̄′(v)b = μ̄(v)b − μ̄(v)a. Thus proving the claim.

Finally, let us assume that (b, a) is a complex reticulated cherry in 𝒩 . The only 
difference as compared to the case where (b, a) was a simple reticulated cherry is the fact 
that when reducing (b, a) in 𝒩 the parent pb of b is not suppressed but its in-degree is 
lowered by 1. Therefore, μ̄(pb) is not removed from μ̄(𝒩 ) but μ̄(pb)0 is lowered by 1. All 
other arguments still hold, thus also in this case μ̄(𝒩 ′) = μ̄′(𝒩 ). □
Appendix B. Formal proof of Proposition 3

We use the following lemmas (Lemma 13 to Lemma 18) to show how to determine 
whether a non-unit μ-vector belongs to a bridge-node (Proposition 3).

Lemma 13. If vb is a bridge-node and c1 and c2 are its children, then either the μ-vectors 
of c1 and c2 are distinct and at most one has multiplicity greater than 1 in μ(𝒩 ) or they 
are equal with multiplicity exactly 2.

Proof. We will show the lemma holds by proving the contrapositive: if the μ-vectors of 
the two children of a tree node are distinct with multiplicity greater than 1 or are equal 
with multiplicity greater than 2, then their parent is not a bridge-node. This statement 
can be broken down into five unique cases (there are six in total, but two of the subcases, 
namely the first and the fourth bullet points, can be dealt with simultaneously). If 
the μ-vectors of two nodes c1, c2, who are children of the same node, are distinct with 
multiplicity greater than 1, then one of the following holds:

• c1 and c2 are reticulations,
• c1 and c2 are tree-clones with different μ-vectors,
• c1 is a reticulation and c2 is a tree-clone with a different μ-vector.

If their μ-vectors are equal with multiplicity greater than 2, one of these must hold:

• c1 and c2 are reticulations,
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• c1 and c2 are tree-clones with the same μ-vector and there exists a third tree-clone 
c3 with the same μ-vector as c1 and c2,

• c1 is a tree-clone and c2 is a reticulation with the same μ-vector.

Given a tree-node vb, let us first assume vb has two children c1 and c2 which are retic
ulations. Because c1 and c2 are reticulations they must have at least one other parent 
besides vb. Neither c1 is the parent of c2 nor is c2 the parent of c1 because the network is 
stack-free. Note that, not both c1 and c2 can have a parent which is a descendant of the 
other one, because in that case there would be a cycle, from c1 to the parent of c2 to c2 to 
the parent of c1 to c1. Furthermore, all descendants of vb except vb itself are descendants 
of c1 or c2. Therefore, either c1 or c2 has a parent which is not a descendant of vb. But 
then there would be a path from the root to a leaf below vb via this parent, which does 
not pass through vb. Thus, by Observation 2, this means vb is not a bridge-node.

For the second case let us assume vb has two children c1 and c2 which are tree-clones, 
with different μ-vectors. In this case there exists a tree-clone c′1 with μ(c′1) = μ(c1) which 
has a parent which is not vb. And there must be a tree-clone c′2 with μ(c′2) = μ(c2), 
which has a parent which is not vb. It cannot be the case that the parent of c′1 is 
a descendant of c2 and the parent of c′2 is a descendant of c1. Because in that case, 
μ(c1) = μ(c′1) ≤ μ(c2) and μ(c2) = μ(c′2) ≤ μ(c1). Which means μ(c1) = μ(c2) which 
contradicts our assumption. Nor can the parent of c′1 be a descendant of c1, because then 
μ(c′1) < μ(c1), which contradicts our assumption. The same holds for c′2 and c2. This 
means that either, c′1 or c′2 must have a parent which is not a descendant of vb. W.l.o.g. 
we can assume c′1 has a parent which is not a descendant of vb. Note that, μ(c′1) < μ(vb)
so there must be paths from c′1 to leaves below vb. This means that there is a path from 
the root to a leaf below vb via c′1 which does not visit vb. Thus, vb is not a bridge-node.

Third, let us assume vb has one child c1 which is a reticulation and a child c2 which 
is a tree-clone, such that #μ(c1) ≥ 2, #μ(c2) ≥ 2 and μ(c1) ̸= μ(c2). If c1 is not a 
descendant of c2 then c1 has another parent which is not a descendant of vb. This means 
there must be a path from the root to a leaf below vb via this parent, which does not 
pass through vb. In this case vb is not a bridge-node. Alternatively, let us assume c1 is a 
descendant of c2. Then there must exist tree-clone v with μ(c2) = μ(v) and μ(v) > μ(c1), 
with a parent which is not a descendant of vb. Because μ(vb) > μ(c2) = μ(v) there must 
be a path from v to a leaf below vb and therefore, there must be a path from the root to a 
leaf below vb via v, which does not pass through vb. This means vb is not a bridge-node.

Fourth, let us assume that vb has two children c1 and c2, which are tree-clones with 
μ(c1) = μ(c2) and there exists another tree-clone c3 with μ(c3) = μ(c1) = μ(c2). Note 
that the parent of c3 cannot be a descendant of c1 or c2, because c1 and c2 are tree-nodes 
and this would mean either μ(c3) < μ(c1) or μ(c3) < μ(c2), which we have assumed is 
not the case. Nor can the parent of c3 be vb, because vb already has 2 children. Therefore, 
c3 must have a parent which is not a descendant of vb and, by the same argument as 
before, this implies vb is not a bridge-node.
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Finally, let us assume vb has two children, c1 which is a tree-node and c2 which is a 
reticulation, with μ(c2) = μ(c1). Then, c2 must have at least one other parent, which is 
not vb. This parent cannot be a descendant of c1, because c1 is a tree-node and therefore 
this would imply that μ(c2) < μ(c1), which contradicts our assumption. Therefore, we 
can assume c2 has a parent which is not a descendant of vb. Which again implies that vb
is not a bridge-node. □
Lemma 14. If μ(vb) belongs to a bridge-node which is not a leaf then μ(𝒩 ) contains 
exactly one pair of vectors μ(x), μ(y) such that μ(vb) = μ(x) + μ(y).

Proof. We will show the lemma is true with a proof by contradiction, by showing that 
there cannot be a second pair. Assume μ(vb) is a bridge-node which is not a leaf and μ(𝒩 )
contains at least two pairs μ(x), μ(y) and μ(k), μ(ℓ) such that μ(vb) = μ(x) + μ(y) =
μ(k) + μ(ℓ). W.l.o.g. we can assume μ(x) and μ(y) belong to the children x, y of vb. 
By Lemma 13, we know that μ(k) ̸= μ(x), because otherwise μ(ℓ) = μ(y), in which 
case both #μ(x) ≥ 2 and #μ(y) ≥ 2, and if μ(x) = μ(y) then #μ(x) ≥ 4. The same 
goes for μ(k) ̸= μ(y), μ(ℓ) ̸= μ(x) and μ(ℓ) ̸= μ(y). Note also that none of x, y, k, ℓ
are ancestors of vb because their μ-vectors are each lower than μ(vb). Now note that, 
by Observation 3, μ(vb) > μ(k) and μ(vb) > μ(ℓ) implies they are descendants of vb. 
However, as we mentioned x, y are the children of vb. This means k, ℓ must be descendants 
of x, y, which are not equal to x, y, because their μ-vectors differ. From this it follows 
that μ(x) + μ(y) > μ(k) + μ(ℓ). This contradicts our assumption that the sums were 
equal. □
Lemma 15. If μ(vt) ∈ μ(𝒩 ) belongs to a tree-clone, then one of the following is true:

• μ(𝒩 ) contains exactly one pair μ(x), μ(y) such that μ(vt) = μ(x) + μ(y) and ei
ther μ(x) ̸= μ(y), in which case #μ(x) ≥ 2 and #μ(y) ≥ 2, or μ(x) = μ(y), in which 
case #μ(x) ≥ 4.

• μ(𝒩 ) contains at least one more pair μ(k), μ(ℓ) which is distinct from μ(x), μ(y), 
such that μ(vt) = μ(k) + μ(ℓ).

Proof. If μ(vt) ∈ μ(𝒩 ) belongs to a tree-clone, then there are at least two tree-nodes 
v1 and v2 with μ-vector equal to μ(v1). By Observation 1, unit-vectors do not belong 
to tree-clones, therefore v1 and v2 are not leaves. This means v1 and v2 each have two 
children. Let c1 and c2 be the children of v1, and let c3 and c4 be the children of v2. Note 
that c1 must be distinct from c2, and c3 must be distinct from c4, because phylogenetic 
networks do not contain parallel edges. We then have: μ(c1) + μ(c2) = μ(v1) = μ(v2) =
μ(c3) + μ(c4). The statement can be broken down into three unique cases.

If the children of v1 are the same as the children of v2 then c1 and c2 both have two 
parents and are therefore reticulations. In that case, #μ(c1) ≥ 2 and #μ(c2) ≥ 2, and 
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if μ(c1) = μ(c2), then #μ(c1) ≥ 4, because c1 cannot have the same child as c2 because 
the network is stack-free.

If v1 and v2 share only one child, say c2 = c3, then c1 and c4 are distinct nodes. In 
this case, c2 is a reticulation, and #μ(c2) ≥ 2. Then, either μ(c1) = μ(c4) ̸= μ(c2), so 
that #μ(c1) ≥ 2 as well. Or μ(c1) = μ(c4) = μ(c2), which implies #μ(c1) ≥ 4, because 
neither c1 nor c4 can be the child of c2, because the network is stack-free.

Finally, if all nodes c1, c2, c3 and c4 are distinct from each other. Then either, the 
sets {μ(c1), μ(c2)} and {μ(c3), μ(c4)} are not the same set, in which case μ(𝒩 ) contains 
two distinct pairs, whose sum is μ(v1). Or they are the same set, in which case we can 
say w.l.o.g. that μ(c1) = μ(c3), which implies μ(c2) = μ(c4). Which means that both 
#μ(c1) ≥ 2 and #μ(c2) ≥ 2, and if μ(c1) = μ(c2) then #μ(c1) ≥ 4. □
Lemma 16. Let μ(vb) ∈ μ(𝒩 ) belong to a bridge-node vb. Let Ib be the set of leaves below 
vb, so that μ(vb)i = 0 for i / ∈ Ib. For any μ(x) ∈ μ(𝒩 ) with μ(x) ̸< μ(vb), it holds that 
μ(x) = Pxvbμ(vb) + μ′(x), where Pxvb is a non-negative integer, equal to the number of 
paths from x to vb, and μ′(x) is a μ-vector such that μ′

i(x) = 0 for i ∈ Ib.

Proof. Let μ(vb) ∈ μ(𝒩 ) belong to a bridge-node. For any μ(x) ∈ μ(𝒩 ) with μ(x) ̸<
μ(vb), by Observation 3, μ(x) does not belong to a descendant of the bridge-node with 
μ-vector μ(vb). Therefore, all paths from x to leaves below vb must visit vb. Thus, if a is 
a leaf below vb, then any path from x to a is the composition of a path from x to vb and 
a path from vb to a. It follows that for each such leaf a, μ(x)a = Pxvbμ(vb)a. From this 
it follows that μ(x) = Pxvbμ(vb) + μ′(x), where μ′(x) contains only the paths to leaves 
not below vb, and therefore μ′(x) is a μ-vector such that μ′

i(x) = 0 for i ∈ Ib. □
Lemma 17. Let μ(vb) ∈ μ(𝒩 ) belong to a bridge-node vb. Then, for any μ(x), μ(y) ∈
μ(𝒩 ) such that μ(x) < μ(vb), μ(𝒩 ) does not contain μ(k), μ(ℓ) with μ(k) ̸< μ(vb) and 
μ(ℓ) ̸< μ(vb), such that μ(k) + μ(ℓ) = μ(x) + μ(y).

Proof. We will show this with a proof by contradiction. Let us assume that μ(vb) ∈ μ(𝒩 )
belong to a bridge-node vb and μ(𝒩 ) contains some μ(x), μ(y) such that μ(x) < μ(vb). 
Now let us assume, μ(𝒩 ) contains μ(k), μ(ℓ) with μ(k) ̸< μ(vb) and μ(ℓ) ̸< μ(vb), such 
that μ(k) + μ(ℓ) = μ(x) + μ(y). First note, that if μ(y) ≤ μ(vb), then μ(y) belongs to a 
descendant of vb and therefore μ(k) + μ(ℓ) = μ(x) + μ(y) ≤ μ(vb). But this contradicts 
our assumption that μ(k) ̸< μ(vb). Therefore, we can assume that μ(y) ≰ μ(vb). Then, 
by Lemma 16:

μ(k) = Pkvbμ(vb) + μ′(k)

μ(ℓ) = Pℓvbμ(vb) + μ′(ℓ)

and

μ(y) = Pyvbμ(vb) + μ′(y).
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Furthermore, from μ(x) + μ(y) = μ(k) + μ(ℓ) it follows:

μ(x) = μ(k) + μ(ℓ) − μ(y)

= Pkvbμ(vb) + μ′(k) + Pℓvbμ(vb) + μ′(ℓ) − [Pyvbμ(vb) + μ′(y)]

= (Pkvb + Pℓvb − Pyvb)μ(vb) + μ′(k) + μ′(ℓ) − μ′(y).

Then, from μ(x) < μ(vb) it follows that Pkvb +Pℓvb−Pyvb = 0, and μ′(k)+μ′(ℓ)−μ′(y) =
0. But then μ(x) is the zero vector, which is not possible because the zero vector is not a 
μ-vector and therefore not contained in μ(𝒩 ). Thus we have reached a contradiction. □
Lemma 18. Given a μ-vector μ(vb) ∈ μ(𝒩 ). If μ(𝒩 ) contains μ(z) ≰ μ(vb), μ(x) < μ(vb)
and μ(y), such that μ(z) = μ(x) + μ(y). Then, μ(vb) does not belong to a bridge-node.

Proof. We will argue by contradiction. Assume μ(𝒩 ) contains μ(vb), μ(z), μ(x) and μ(y)
as described in the lemma and let μ(vb) belong to a bridge-node vb. If μ(z) belongs to a 
reticulation r, then the child of r must be a tree-node with the same μ-vector, so w.l.o.g. 
we can assume μ(z) belongs to a tree-node z. Because μ(z) = μ(x) + μ(y), we know z is 
not a leaf, because μ(z) is not a unit vector. If μ(x), μ(y) is the only pair in μ(𝒩 ) which 
sum up to μ(z) then z must be the parent of x. If there are more pairs in μ(𝒩 ) then 
by Lemma 17, each of those pairs must contain at least one μ-vector lower than μ(vb). 
This means that in any case z will have a child with μ-vector lower than μ(vb). However, 
μ(z) ≰ μ(vb) implies that z is not a descendant of vb. Then there must be a path from 
the root to a leaf below vb via z which does not visit vb. By Observation 2, this means 
that vb is not a bridge-node. Which contradicts our assumption. □
Proposition (3). Let μ(vb) be a non-unit vector that is not μ(ρ). Then, it belongs to a 
bridge-node if, and only if,

1. there is exactly one pair μ(k), μ(ℓ) ∈ μ(𝒩 ) such that μ(vb) = μ(k) + μ(ℓ), and
2. one of the following holds

(a) at least one of μ(k) and μ(ℓ) has multiplicity 1 in μ(𝒩 ); or
(b) μ(k) = μ(ℓ) and #μ(k) = 2, and

3. μ(𝒩 ) does not contain vectors μ(x), μ(y), μ(z), such that μ(z) ≰ μ(vb), μ(z) = μ(x)+
μ(y) and μ(x) < μ(vb).

Proof. Assume the non-unit vector μ(vb) belongs to a bridge-node. Then μ(vb) belongs to 
a tree-node which is not a leaf and, by Lemma 14, there exists exactly one pair μ(k), μ(ℓ)
with μ(vb) = μ(k)+μ(ℓ). Furthermore, by Lemma 13, the combined multiplicity of μ(k)
and μ(ℓ) in μ(𝒩 ) is lower than or equal to 3. Finally, by Lemma 18, there does not 
exist μ(z) ≰ μ(vb) such that μ(z) = μ(x) + μ(y) for μ(x) < μ(vb). This proves the first 
direction of the biconditional.
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For the other direction, we will show the inverse holds. Let us assume the non-unit 
vector μ(vb) does not belong to a bridge-node. Then, for each node vb with μ-vector 
μ(vb) there must be a path from the root to a descendant of vb, which does not visit 
vb. Note that for any reticulation r with μ-vector equal to μ(vb), there must be a tree
node with the same μ-vector and r itself is not a bridge-node. So w.l.o.g. it is enough 
to show that this holds for tree-nodes with μ-vector μ(vb). Note that, for the μ-vector 
of the root μ(ρ) ≰ μ(vb). Therefore, there must be a node z on the path from the root 
to a descendant of vb which does not visit vb, with μ(z) ̸< μ(vb), and z is the parent 
of a node x, with μ(x) < μ(vb). Note that z cannot be a reticulation, because then 
μ(vb) ̸> μ(z) = μ(x) < μ(vb).

Now there are two cases we should consider, either μ(z) = μ(vb) or μ(z) ≰ μ(vb). 
If μ(z) = μ(vb), then μ(vb) belongs to a tree-clone. In that case, there is at least one 
pair μ(k), μ(ℓ) ∈ μ(𝒩 ) which belong to the children of a node vb, such that μ(vb) =
μ(k) + μ(ℓ). Then, by Lemma 15, either there is more than one such pair, or #μ(k) ≥ 2
and #μ(ℓ) ≥ 2, and if μ(k) = μ(ℓ) then #μ(k) ≥ 4. This violates condition 1 or 2.

If μ(z) ≰ μ(vb), then μ(vb) does not necessarily belong to a tree-clone. Note z is 
also not a leaf, as a leaf has no children. Therefore z is a tree-node with two children, 
one of which is x. This means there exists a node y, the other child of z, such that 
μ(z) = μ(x) + μ(y). This violates condition 3. Now, we have shown one of the three 
conditions must be false. This proves the inverse statement. □
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