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Chapter 2

Quantitative precipitation estimation from
weather radars, personal weather stations and
commercial microwave links

Aart Overeem’, Remko Uijlenhoet’ and Hidde Leijnse’

2.1 Introduction

Precipitation information is employed for a myriad of purposes, such as climate
monitoring and understanding the drivers behind extreme events, weather mon-
itoring and nowcasting, natural hazard early warning (e.g. floods and landslides),
crop production modelling and rainfall index crop insurance, extreme value mod-
elling and (sewerage) design purposes, evaluation of extreme events and their
impact, and validation of weather prediction and climate model output (Chapters 1
and 3 of this book). Hence, localised, timely, regularly updated and accurate pre-
cipitation information is highly relevant.

The focus of this chapter is on quantitative precipitation estimation (QPE) by
ground-based sensors of liquid precipitation (rain) at the Earth’s surface, which is the
dominant precipitation type in the mid-latitudes and (sub)tropics. Traditionally, pre-
cipitation is observed in situ by rain gauges or retrieved via remote sensing by ground-
based weather radars or satellites. Government rain gauge networks (often nationally
operated by national meteorological and hydrological services (NMHSs)) can provide
accurate local rainfall estimates, but their densities are often too low to capture the
spatial rainfall variability. Their estimates are commonly combined with those from
weather radars, which do provide wide coverage but are prone to many sources of
error. Figure 2.1 provides worldwide maps with estimated coverage by radars and rain
gauges and two so-called opportunistic sensors. The estimated 1308 weather radars
provide coverage over large parts of the Americas, China, Europe, India, Japan, Oceania,
South Africa and South East Asia (Figure 2.1(a)). Coverage over Africa and large parts
of Asia is poor or even non-existent. The coverage by rain gauges from NMHSs and
other institutes, as obtained from the Global Telecommunication System (GTS), reveals
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Figure 2.1 Worldwide coverage of ground-based weather radars (a), GTS rain
gauges (b), GPCC rain gauges from the Full Data Monthly Product
(c), Netatmo personal weather stations (PWSs) (d) and cell phone
towers as proxy for commercial microwave links (CMLs) (e). Details
on the construction of the maps are provided in Box 2.1. Map data ©
2023 Google.

poor coverage compared to radar (Figure 2.1(b)). They constitute an important part of
the (near) real-time rain gauges from government institutes. The coverage of rain
gauges used in a non-real-time Global Precipitation Climatology Centre (GPCC)
product is much higher [1,2] (Figure 2.1(c)).
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Figure 2.2 European coverage of ground-based weather radars (a), GTS rain
gauges (b), GPCC rain gauges from the Full Data Monthly Product
(c), Netatmo personal weather stations (PWSs) (d), cell phone towers
as proxy for commercial microwave links (CMLs) (e) and rain gauges
from the European Climate Assessment and Dataset project [8,9]
(ECAD; https://www.ecad.eu). These provide daily timeseries.
Locations were obtained mid-June 2022 over the period 1 September
2019 through 31 August 2020 (f). Details on the construction of the
maps are provided in Box 2.1. Maps made with Natural Earth. Free
vector and raster map data © https://naturalearthdata.com.

Box 2.1: Construction of global coverage maps

The derivation of worldwide coverage maps is not straightforward. Here, the
underlying databases of locations and the chosen settings are discussed.
The physical footprint for radars is large and plotted in Figure 2.3. In con-
trast, the physical footprints for rain gauges and commercial microwave links
(CMLs) are much smaller, but due to spatial rainfall correlation, their effec-
tive coverage is larger. For rain gauges and CMLs, the plotted coverage on
a world map is much larger than the physical footprint or even effective
coverage to enhance visibility.
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Radars

Most radar locations were obtained in February 2023 from a World
Meteorological Organization (WMO) database (https://wrd.mgm.gov.tr/Home/
Wrd). Radars (RAdio Detection And Ranging) were assumed to have a 200-km
range, independent of the used radio frequency band. Note that the large majority
of radars operate at C- or S-band and will at least meet this range. Research
radars were not considered. Apart from the operational ones, also the partly
operational (6), planned (16) and pre-operational (4) ones were selected. In total
1037 radar locations were obtained in this manner. On top of this the following
radar locations have been added:

Belgium (one radar): location of radar operated by Flanders Environment
Agency obtained from a radar file from July 2021. Radar is currently
operational (June 2023).

China (197 radars): obtained from https://www.rainviewer.com/radars/
china.html in May 2023. A clear resemblance is found with the locations
presented in Minda and Nakamura [3], who report 217 radars.

India (nine radars): found by employing https://mausam.imd.gov.in/ in
June 2023 (sometimes coordinates are stated in maps), and only selecting
those that provide recent radar images for that location. For six out of nine
locations, the presence of a radar was confirmed by a Google Maps
satellite image (and for three out of these six locations confirmed by the
exact location as given in radar images). The other three locations were
found by consulting the contents of the downloaded web page, which
usually seems to provide approximate locations. Note that for two radar
locations, the coordinates from the WMO radar database were replaced by
coordinates obtained from a Google Maps satellite image, because one
radar was located in the Bay of Bengal and one radar had the same
coordinates as another radar.

Latvia (one radar): live radar image shown at https://videscentrs.lvgmc.
lv/karte/meteorologiska-radara-informacija in May 2023. Found in the
WMO database (status non-reporting). Exact location cannot be found
by using Google Maps.

Lithuania (two radars): live radar image shown at http://www.meteo.lt/
en/radar-information. Locations obtained from https://www.rainviewer.
com/radars/lithuania.html in May 2023 and confirmed by a visible radar
radome on a Google Maps satellite image.

Mongolia (one radar): live radar image shown at http://tsag-agaar.gov.
mn/ in May 2023. Exact location cannot be found by using Google Maps.
Location taken from https://www.rainviewer.com/radars/mongolia.html.
Morocco (seven radars): found in the WMO database as stand-by radars,
but operational according to https://www.marocmeteo.ma/fr/observation.
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Myanmar (two radars): found by employing https://www.moezala.gov.
mm/radar-image-1 in February 2023 and confirmed by a visible radar
radome on a Google Maps satellite image.

Nepal (one radar). Old radar image shown at https://www.dhm.gov.np/
mfd/radar in June 2023. Approximate radar location provided by
Talchabhadel et al. [4]. Exact location found by using Google Maps
satellite image. Radar is currently out of service and needs to be repaired
or replaced.

New Caledonia (three radars and one additional radar, but this one is
currently not available and has not been taken into account): live radar
image shown at https://www.meteo.nc/nouvelle-caledonie/observations/
images-radars in May 2023. Exact location cannot be found by using
Google Maps. Locations taken from https://www.rainviewer.com/radars/
new-caledonia.html. Locations could not be confirmed by Google Maps.
Nigeria (four radars): obtained from https://www.google.com/maps/d/
viewer?mid=1GIb9XpFV1dXq-ISwDel9hY1JOmu4QwNc&I1=9.139781
073721903\%2C7.63924831988442&z=7 in February 2023.

Porto Santo Island (one radar; Portuguese archipelago of Madeira):
approximate location obtained from https://www.ipma.pt/en/otempo/
obs.radar/index.jsp in May 2023, which shows live radar images. Exact
location found by using Google Maps satellite image, which reveals a
visible radar radome.

Réunion Island (one radar; France overseas department): approximate
location obtained from https://meteofrance.re/fr/images-radar in May
2023, which shows live radar images. Exact location found by using
Google Maps satellite image, which reveals a visible radar radome.
Republic of Fiji (three radars): approximate locations obtained by com-
bining https://www.met.gov.fj/index.php?page=radar (Fiji Meteorological
Service), which shows live radar images (May 2023), and Google Maps.
Saudi Arabia (11 radars): found by employing https://www.rainviewer.
com/radars/saudi-arabia.html in May 2023, and only selecting those that
agree with the rough locations shown on official radar reflectivity com-
posites on the website of the National Center for Meteorology (NCM) of
Saudi Arabia (https://ncm.gov.sa/Ar/Weather/RegionWeather/Pages/
KSA-IRIS.aspx; not accessible outside Saudi Arabia). For 10 out of
11 locations, the presence of a radar was confirmed by a Google Maps
satellite image. Note that for the only radar location which was already
obtained from the WMO radar database, the coordinates were replaced
by coordinates obtained from a Google Maps satellite image.

The Philippines (20 radars): data source (February 2023): Climate and
Agrometeorological Data Section (CADS), Philippine Atmospheric,
Geophysical and Astronomical Services Administration (PAGASA).
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e Vietnam (six radars): found by employing https://www.rainviewer.com/
radars/vietnam.html in February 2023 and only selecting those con-
firmed by a visible radar radome on a Google Maps satellite image.

Some radars may not be operational or temporarily out of service due to
maintenance; other radar locations may still be missed. Likely, the radar
coverage is underestimated.

GTS gauges

Because of incomplete coverage, gauge locations were not obtained from the
official WMO OSCAR database (https://oscar.wmo.int/surface/#/search/
station). The locations of 11,076 rain gauges contributing to the GTS, as used
in the near real-time operational GPCC Monitoring Product [2], were
obtained from January 2023. These represent an important part of the auto-
matic rain gauges from government agencies providing (near) real-time data.
GPCC gauges

The locations of 32,036 rain gauges were obtained as used in the GPCC Full
Data Monthly Product from January 2012 (V.2022) [2]. The large majority of
stations are expected to be still operational in 2023, but due to latency of rain
gauge data becoming available, the locations from 2012 were taken. Most
stations typically provide daily accumulations once a day.

PWSs

The Netatmo rain gauge locations were downloaded in February 2023 using
the Netatmo API (https://dev.netatmo.com/apidocumentation/weather). World
wide, the number of automatic rain gauges at personal weather stations (PWSs)
from all brands is expected to be at least a few hundred thousand.

CMLs

The cell phone tower locations were obtained from the OpenCelliD Project
(https://opencellid.org/) after registration, which is licenced under a Creative
Commons Attribution-ShareAlike 4.0 International License (https://creative
commons.org/licenses/by-sa/4.0/). OpenCelliD estimates cell phone tower
locations by averaging locations of smartphones that receive radio signals
from a specific cell phone tower. The smartphone locations are retrieved
from a small number of apps. The following selections were performed,
resulting in ~34 million cell phone tower locations:

e Locations for which the approximate area within which the cell could be
is smaller than 10 km.

e Locations that have been estimated from at least two samples.
Locations that were last recorded after 1 January 2015.

So-called macro and small cell backhaul links between cell phone towers are
estimated at 9.7 million in 2021. They consist of copper cables (2%), satellite
links (2%), glass fibre-optic cables (31%) and CMLs (65%). The estimated
4.6 million CMLs (47%) operating in the 6-56 GHz range are the most useful
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for rainfall estimation. Their number is expected to increase to 6 million in
2027, although their relative share will decrease (35%), mainly due to an
increase in glass fibre-optic cables (42%) and partly due to higher frequency
CMLs [5]. The large CML backhaul share underpins that cell phone tower
locations can serve as a proxy for CML locations. Nevertheless, note that in
some regions, the actual coverage of the backhaul CML network will be
much lower due to the use of glass fibre-optic cables.

High rain gauge coverage by government agencies is found in Europe and parts
of North America and Oceania, and low(er) coverage in South America, Africa and
parts of Asia, consistent with [6,7]. The total number of rain gauges from opera-
tional meteorological networks is estimated to be at most 0.25 million (often daily
manual rain gauges), while the number of those giving useful near real-time
observations is estimated to be 8,000—12,000 [7]. The coverage by radars and rain
gauges is insufficient for large parts of the Earth’s land surface.

Satellites provide the widest coverage and are the only means of precipitation
information over vast areas of the Earth’s land surface and oceans. The added value
of satellite QPE will be limited for areas with good radar and rain gauge coverage.
Precipitation is retrieved indirectly via visible and infrared channels from geosta-
tionary satellites at typically ~3 km resolution every 15 min, or more directly via
radiometers on a constellation of low orbiting satellites. They provide higher
accuracy but, in contrast to geostationary satellites with their continuous coverage,
have longer revisit times of approximately a few hours for a constellation of
satellites (but 24 h or longer for an individual satellite) and lower spatial resolution.
Higher accuracy can be achieved by the space-borne precipitation radar aboard the
Global Precipitation Measurement (GPM) mission’s core satellite (Chapter 5 of
Volume 1; the CloudSat satellite cloud radar and CubeSat satellites being the only
other existing space-borne precipitation radars). It has a ~5 km spatial resolution,
but its revisit time is only ~1 day for a given location.

Hence, across large parts of the Earth’s continents, there is a need for sup-
plementary precipitation information. This can be obtained from opportunistic
sensors, often not even designed for precipitation retrieval. The two most mature
techniques for opportunistic sensing of precipitation are personal weather stations
(PWSs) and commercial microwave links (CMLs). The PWS or third-party rain
gauges are Internet of Things (IoT) devices, which are typically purchased and
operated by weather enthusiasts. Figure 2.1(d) shows that the coverage of one
brand of these crowdsourced rain gauges, from private company Netatmo, is
mainly limited to Europe, the United States of America, Japan, and parts of
Australia and Canada. There, the network densities are generally much higher than
those from government rain gauges. This is illustrated for Europe in Figure 2.2(b)—(d)
and (f), where also locations from the government rain gauges from the European
Climate Assessment and Dataset project (ECAD) [8,9] (https://www.ecad.cu) are
visualised. Because differences in network densities in world maps are difficult to
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discern due to the size of the plotted points, these zoomed in maps for Europe are
given for all sensors (Figure 2.2). An overview of (sub-daily) rain gauge datasets for
Europe is provided by Van der Schrier et al. [10]. PWSs are usually found in areas
with radar coverage and often lack a heating device, limiting their applicability to
liquid precipitation (rainfall) estimation.

CMLs are radio connections used globally in cellular telecommunication net-
works. The rain-induced signal attenuation between the transmitting antenna at one
base station (or cell phone tower) and the receiving antenna at another base station
can be computed and converted to averaged rainfall intensity over a path of typi-
cally a few hundred metres up to a few tens of kilometres. Figure 2.1(e) shows the
locations of cell phone towers, which are used here as a proxy for CML locations.
Worldwide ~5 million CMLs are used in telecommunication networks [11]. Their
largest potential for rainfall estimation lies in areas which are mostly not covered
by the other ground-based sensors, typically low- and middle-income countries
(LMICs) in (sub)tropical regions, but for which the required cellular communica-
tion infrastructure is already in place. This is especially the case for Africa and for
parts of Asia and South America (Figure 2.1(e)).

For QPE, not only knowledge of the sensors is important, but also knowledge
of the observed hydrometeors. This concerns both physical and statistical aspects
(coverage and correlation in time and space). Rainfall consists of a collection of
drops with various sizes, shapes and fall speeds and can be described by a so-
called drop size distribution (Chapter 6 of Volume 2), the shape of which is
determined by coalescence and break-up (and potentially evaporation) of drops
[12]. Precipitation types, their size distribution and fall velocities can be observed
with disdrometers, making them important sensors to derive parameter values for
precipitation retrieval relationships (Chapter 6 of Volume 2). Disdrometers are not
addressed in this chapter because of their much lower density compared to govern-
ment rain gauges. The ability to approximate the actual rainfall accumulation at the
Earth’s surface is determined by many factors and varies from sensor to sensor, each
having its own sampling volume or spatial support. Radars provide 3D volumetric
data, whereas CMLs provide path-averaged (line segment) data and PWSs provide
point observations. Typically, these sensor data are interpolated to 2D gridded rain-
fall fields. Figure 2.3 illustrates the sensors’ footprints, the typical conversions and
the interpolation. QPE is indirect for remote sensing devices, because it depends on
the conversion from remote observables aloft to rain rates at the ground. It is gov-
erned by the interplay of electromagnetic radiation and hydrometeors: received signal
power (radar reflectivity factor Z) or specific differential phase (Kqp; Chapter 5 of
Volume 2) for radars, and specific attenuation (k) for CMLs. For rain gauges, QPE is
direct by receiving the precipitation falling at the Earth’s surface. Still, environmental
conditions (notably wind effects), device set-up and sensor accuracy can lead to
deviations with respect to the actual rainfall.

Table 2.1 provides a summary of the characteristics of QPE with radars, rain
gauges, PWSs, CMLs and satellites. Other overviews are provided by Barthés and
Mallet [13] and Priebe [14]. The quality of radar QPE depends on the applied
processing, but adjustment with rain gauge data remains usually desirable.
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Figure 2.3 From drop size distributions (DSDs) to derived rainfall fields for
radars, CMLs and PWSs. Figure taken from [15].

Table 2.1 Overview of sensors for rainfall estimation at the Earth’s surface and
their typical temporal and spatial resolutions, coverage and cost
(related to installation and maintenance, not to quality control, rainfall
retrieval and product dissemination).

Sensor Temporal Sampling area Coverage Cost

resolution
Radars (X-band)* Seconds to A few tens of 2,000-30,000  Medium

1 min mx1° km?
Radars (C- and 5-15 min 0.4 kmx1°/1-2 30,000— High
S-band)* km 650,000 km?
Government rain 1 min to 24 h A few dm? Local Medium
gauges
PWS rain gauges 5 min A few dm? Local Low
CMLs® 10sto I5min  0.1-20 km Local-regional Low
Geostationary 5-15 min 1 — a few tens World Very high
satellites of km?
Constellation of A few hours A few Snapshot Very high
satellite radiometers® tens—hundreds

of km?

Space-borne radars® 24 h to days 5 km Snapshot Very high

“Their effective spatial resolution may be lower, coverage depends on the used wavelength (X-, C- or
S-band), and the coverage for which accurate QPE is obtained may be much lower. Costs per km? are not

that high.

Provide rainfall estimates over a narrow path. Costs are low because the infrastructure is already

in place.

“Only provide a snapshot during their overpass, typically from 60°S to 60°N.
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Government rain gauges provide accurate, but only local, estimates if well main-
tained. PWSs and CMLs can give reasonable rainfall estimates after careful quality
control (QC) or rainfall retrieval, respectively. Satellite QPE has usually poor
accuracy, but higher accuracy for space-borne radars.

In this chapter, the quality of QPE with radar data, PWS data and CML data is
evaluated for the Netherlands, a mid-latitude country with a temperate climate.
This will provide insight into the stand-alone performance of opportunistic sensors,
where the Netherlands acts as a test bed with relatively accurate reference data.
First, the employed datasets are described. Next, three consecutive sections discuss
QPE with radars, PWSs and CMLs. Apart from the evaluation in each section,
details are provided on each sensor (Boxes 2.2-2.4). For radars, an overview and
illustration of sources of error in QPE and of algorithms to improve QPE are pro-
vided. For PWSs, factors affecting the quality of rainfall estimates and QC algo-
rithms to remedy these are discussed. For CMLs, the principle of rainfall retrieval
and the encountered sources of error are described. Finally, a summary and outlook
are provided, focusing on (1) improving radar QPE by merging with CML or PWS
rainfall estimates and (2) showcasing the potential of CMLs for rainfall estimation
in LMICs.

2.2 Datasets and evaluation metrics

Figure 2.4 provides an overview of the locations of the employed radars and gov-
ernment rain gauges from the Royal Netherlands Meteorological Institute (KNMI),
PWS gauges from brand Netatmo and CML paths of mobile network operator
(MNO) T-Mobile NL. The number of PWS and CML locations, which can
potentially provide (near) real-time data, is much higher than the number of
KNMI rain gauges. The contrast is even larger when only considering KNMI rain
gauges at automatic weather stations (AWSs), which can provide near real-time
information. The daily accumulations from KNMI’s manual rain gauge network
(~1 gauge/100 km?) are used for evaluation of (merged) radar accumulations and
interpolated PWS and CML rainfall maps. Validated and complete AWS and
manual KNMI rain gauge records are used (also for the merged radar datasets),
which are not available in real-time. The PWS data span the period June—August
2020; the open CML data [16] span the period June—August 2012. These periods
are different because no coincident CML and PWS data could be obtained covering
the entire Netherlands over the same 3-month period simultaneously.

A gauge-adjusted radar precipitation dataset is used to evaluate daily PWS
point and CML path-averaged accumulations, interpolated PWS and CML rainfall
maps and merged radar datasets. It is also employed to derive a 25-year mean
annual precipitation climatology from 1998 to 2022. This climatological radar
dataset, with ~0.9 km? spatial resolution (~6 km? for the 25-year climatology),
combines a daily spatial adjustment using the manual rain gauge accumulations
with an hourly mean-field bias adjustment employing the AWS accumulations
[17,18]. It is denoted in this chapter as ‘radars + gauges’. Also a radar dataset
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Figure 2.4 Map of the Netherlands with locations of 3 KNMI radars, 32
automatic and 320 manual KNMI rain gauges. The number and
location of gauge locations are from 30 June 2020 and can slightly
vary within and between the three periods in this study. The number of
Netatmo personal weather stations (June—August 2020, after applying
quality control and accumulation to 1-h rainfall as described in
Section 2.4.1) is more than 100 times larger than the number of KNMI
automatic rain gauges. For commercial microwave links, data from
over 1,500 paths are available (June—August 2012; part of the former
network of one of the three MNOs in the Netherlands). Paths are
shown for which at least one 15-min rainfall estimate was obtained.
Note that data from two radars were used, and that the radar in the
middle was replaced by the southernmost radar in January 2017. Map
data ©OpenStreetMap contributors 2023. Distributed under the Open
Data Commons Open Database License (ODbL) v1.0.

without this gauge adjustment is evaluated (‘radars’) or merged with either AWS,
PWS or CML accumulations. Finally, four different (un)adjusted radar datasets are
evaluated for the period August 2017 to July 2018 (see Section 2.3.7). Table 2.2
provides an overview of the employed rainfall datasets that are evaluated or used as
reference.

Several metrics are used to evaluate the performance of the various daily
precipitation datasets in scatter density plots. Residuals are computed as the
precipitation accumulation from the evaluated dataset minus the reference pre-
cipitation accumulation. The relative bias is computed as the average of the
residuals divided by the average of the reference, expressed as a percentage. The
standard deviation of the residuals is divided by the average precipitation accu-
mulation from the reference to obtain the value for the coefficient of variation
(CV). Finally, the squared Pearson correlation coefficient (p?), or coefficient of
determination (i.e. the fraction of the variance in the reference that is explained
by a linear regression model), is computed between the evaluated dataset and the
reference.
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Table 2.2 Overview of the different rainfall datasets that are evaluated or used as
reference datasets.

Dataset title in figures Description

Radars Daily gridded radar dataset

Interpolated manual gauges Daily gridded manual rain gauge dataset (reference)
Manual gauges Daily point accumulations (reference)

Radars + gauges Daily gridded climatological dataset (reference)

PWSs Daily interpolated maps at the radar grid

PWSs, interpolated values  Daily interpolated values at manual rain gauge locations
PWSs, point values Daily in situ values®

CMLs Daily interpolated maps at the radar grid

CMLs, interpolated values  Daily interpolated values at manual rain gauge locations
CMLs, path-averaged values Daily path-averaged values®

Radars + AWSs Daily gridded dataset from merged 1-h radar and AWS data
Radars + PWSs Daily gridded dataset from merged 1-h radar and PWS data
Radars + CMLs Daily gridded dataset from merged 1-h radar and CML data

*Are compared to grid cell values from ‘radar + gauges’ dataset.
®Are compared to path-averaged values from ‘radars + gauges’ dataset.

2.3 QPE with ground-based weather radars

2.3.1 Signal processing

The chain for QPE with ground-based weather radars starts with signal processing at
the radar site. Generally, Doppler filtering is applied to remove the part of the power
caused by stationary non-meteorological echoes (Chapter 2 of Volume 1).
Horizontally polarised echo powers are converted to radar reflectivity factors by
means of the radar equation [25]. In case of dual-polarisation (dual-pol) or polari-
metric radars (Chapter 2 of Volume 1), this is also done for vertically polarised echo
powers. In addition, dual-pol radars provide phase measurements. Monitoring and
calibration in the signal processor are important to detect and correct for hardware-
related errors, such as antenna pointing offsets, which can seriously affect the quality
of QPE (Chapter 2 of Volume 2, [26]).

Box 2.2: Introduction to weather radars

Pulsed ground-based weather radars are employed by NMHSs to obtain QPE
with large coverage at a spatial resolution of a few km every 5-15 min
(Chapters 1 and 2 of Volume 1). This is achieved by a long processing chain,
typically spanning from signal processing, application of correction algo-
rithms to 3D radar data, conversion to 2D precipitation fields and adjustment
with rain gauge accumulations. These steps are needed not only to convert
received signal amplitudes and phases to QPE (Chapter 5 of Volume 2) but
also to correct sources of error in radar QPE, many of them indicated in
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Figure 2.5. Extensive overviews of sources of error in radar QPE and algo-
rithms to address these are provided by Joss and Waldvogel [19], Fabry [20],
Rauber and Nesbitt [21] and Ryzhkov and Zrnic [22]. Other studies provide a
systematic evaluation of the effect of different correction or retrieval algo-
rithms on radar QPE, e.g., [23,24].

2.3.2  Clutter removal

Next, the radar reflectivity factor data from individual scans, together called the 3D or
volumetric radar data, can be corrected for sources of error, which are related to
environmental conditions and limitations in the scanning and sampling strategy. Some
of the most important ones are discussed here. First, remaining non-meteorological
echoes, called clutter, can be removed (Chapter 11 of Volume 1). Clutter can be caused
by obstacles near a radar site or interference (Chapter 6 of Volume 3; [27]). Clutter can
also be a result of reflections by airborne non-meteorological targets, such as aircraft
and birds. A common cause of clutter is anomalous propagation: refraction of the beam
towards the Earth’s surface in case of specific temperature and/or moisture gradients in
the atmosphere. Especially non-stationary targets, such as waves, ships and wind
farms, are difficult to remove by Doppler filtering. Clutter can be a serious problem for
QPE, since it can lead to large overestimation of precipitation.

Often, additional methods are needed to further reduce non-meteorological
echoes. Many studies employ fuzzy logic algorithms involving single-polarisation
and/or dual-polarisation decision variables [28—32]. Dual-pol radars are especially
effective in detecting clutter. In contrast to hydrometeors, non-meteorological
scatterers often have an irregular surface, which can be detected by comparing the
amplitude and phase between horizontally and vertically polarised backscattered
signals provided by dual-pol radars. This can be followed by statistical
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Figure 2.5 Overview of sources of error affecting QPE with ground-based
weather radars. Reproduced with permission from Markus Peura
(Finnish Meteorological Institute).
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postprocessing, e.g., by creating clutter maps based on unrealistically large or fre-
quent accumulations [33] or by detecting large spatial gradients in radar reflectivity
factors and by removing isolated echoes [34]. Also auxiliary data are used to remove
clutter, e.g., satellite cloud type [35], or precipitation probability products [36], or a
combination of satellite and numerical weather prediction model data [37,38].

2.3.3 Attenuation correction

Precipitation can be severely underestimated due to rain-induced attenuation along
the radar beam and wet radome attenuation for X- or C-band radars [39-44],
especially in case of heavy, convective precipitation. This is illustrated in
Figure 2.6 for two C-band radars. The squall line at 16:45 UTC (Universal Time
Coordinated) moves in north-easterly direction over the Netherlands but almost
completely disappears at 17:00 UTC, because the radar beams are aligned with the
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Figure 2.6 Example of severe (radome) attenuation. Maps covering the
Netherlands and surroundings with the horizontally polarised radar
reflectivity factor from the 800-m pseudo-CAPPI from the inland
radar in De Bilt (DB, a—c) and the coastal radar in Den Helder (DH,
d—f) and for 17 July 2004 16:45 (a,d), 17:00 (b, e) and 17:15 (c, f)
UTC. Radar locations are denoted by black circles. Map data
©OpenStreetMap contributors 2023. Distributed under the Open Data
Commons Open Database License (ODbL) v1.0.
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squall line. For one radar, it reappears at 17:15 UTC (Figure 2.6(a)—(c)), because
the radar now looks sideways to the squall line, i.e., the total path of two-way
propagation through severe rain is much reduced. Given the fairly high radar
reflectivity factor values above the radars, wet radome attenuation likely con-
tributes to reducing the received radar reflectivity factor values. Algorithms can be
applied to estimate the two-way path-integrated attenuation along the radar beam
and correct for this. Hitschfeld-Bordan type algorithms convert Z or R to specific
attenuation & using a power—law. Next, for each azimuth, & is integrated over the
range of the beam. Hence, the attenuation is computed for each range bin and added
to the radar reflectivity factor to correct for rain-induced attenuation in an iterative
procedure [39,43,45]. To avoid numerical instabilities that can occur when applying
Hitschfeld-Bordan type algorithms, constraints can be applied for a maximum
allowed correction [43]. Alternatively, a similar algorithm can be applied, but in the
reverse direction, using the estimated path-integrated attenuation to a fixed target as
an additional constraint [45,46]. For dual-pol radars, the specific differential phase
(Kgp) can be used as an independent variable to compute the path-integrated
attenuation [47]. In that case, k is computed from Ky, using, e.g., a linear
relationship. This can improve QPE with respect to a Hitschfeld—Bordan type algo-
rithm [44]. Wet radome attenuation correction has received little attention in the
scientific literature, e.g., [48-50].

2.3.4 Vertical profile of reflectivity correction

Shallow precipitation and orographically enhanced precipitation at longer ranges
from the radar can be (partly) missed due to the increased height of the radar
sampling volume (‘overshooting”). Moreover, stratiform precipitation starts as
(dry) snowflakes and ice crystals resulting in low reflectivities higher up, via a
layer with higher reflectivities due to melting snow (‘the bright band’, on radar
reflectivity or precipitation images often visible as circles with increased values
around the radar site), to moderate reflectivities due to rain below the melting layer.
The vertical profile of reflectivity can be estimated close to the radar site using data
from multiple elevation scans and can subsequently be used to correct for the low
reflectivity at long ranges from the radar [51].

2.3.5 Conversion to rainfall intensity

At the core of radar QPE is the conversion of the horizontally polarised radar
reflectivity factor Z to rainfall intensity R (Chapter 6 of Volume 2; [12]). The most
widely used relation is given by Z = 200R!*%, which was obtained from raindrop size
distribution observations at the ground [52], and is often used in temperate climates.
The values of the coefficients may vary considerably between rainfall types, imply-
ing that a fixed Z—R relationship introduces (large) uncertainties [53]. Hence,
sometimes different coefficients are employed depending on the value of Z. Dual-pol
radars provide opportunities to improve QPE (Chapter 5 of Volume 2). For instance,
in case of moderate or stronger rainfall, the dual-pol variable specific differential
phase (Kg,) can be employed for rainfall estimation. Advantages are that it is immune
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for hardware calibration errors, (radome) attenuation and partial beam blockage, and
that the K4, —R relationship introduces less uncertainty because it is not as non-linear
as the Z—R relationship. It can only be applied in rain, however, requiring a hydro-
meteor classification algorithm or temperature information from weather models to
determine whether Ky, can be used for QPE or not.

Applying the Z—R relationship assumes that precipitation is liquid. Although
rainfall is the dominant precipitation type at the Earth’s surface for most areas cov-
ered by radars, aloft the radar often measures the backscatter by solid precipitation or
mixtures of precipitation. Applying a Z—R relation for liquid precipitation then
results in an underestimation of surface rainfall (except for hail). Here, hydrometeor
classification algorithms [54-56] can help to select appropriate relationships to
convert either Z, Z and the differential reflectivity Zy (Chapter 5 of Volume 2), or
Kgp, to rainfall intensity or to even estimate the surface snowfall intensity.

2.3.6 Radar-gauge adjustment

Typically, data from different radars are combined in 2D reflectivity or precipita-
tion fields to obtain better estimates. A common practice is to complete the radar
processing chain by adjusting 2D radar precipitation fields using near real-time or
historical rain gauge accumulations [59-65]. This entails the computation of an
adjustment factor for each radar grid cell (pixel) and applying this factor to the
unadjusted radar data. This can be a constant factor over the entire radar domain, a
so-called mean-field bias adjustment, or a spatial adjustment factor which can vary
from grid cell to grid cell. Adjustment is called merging in case an adjustment
factor field is computed using rain gauge and radar data from the same, typically
60 min or 24 h, interval and subsequently applied to the radar data from that
interval. When no recent rain gauge data are available, an adjustment factor field
can be computed based on historical radar and gauge data and applied to radar data
from the present time interval [64,66]. Typically, for each rain gauge location, the
ratio of gauge and radar accumulations is computed. For a given radar grid cell, the
ratios from surrounding gauge locations are interpolated to obtain an adjustment
factor value, where the ratios from the nearest gauge locations get the highest
weight. Alternatively, first the radar and gauge values at rain gauge locations are
interpolated separately through distance-weighting. The ratio of these values for a
given radar grid cell gives an adjustment factor value. An overview of several
common gauge adjustment methods is provided by Goudenhoofdt and Delobbe
[67]. A practical limitation for merging rain gauge data in real-time radar products
is the latency of rain gauge measurements [66]. Gauge-adjusted radar precipitation
products are, e.g., highly relevant for radar hydrology (Chapter 1 of Volume 3).
An example of a merged radar-gauge dataset is the 25-year climatology of
annual precipitation for the Netherlands presented in Figure 2.7, which is based on the
methodology by Overeem et al. [17]. Such climatological radar precipitation datasets
[68] also exist for, e.g., Germany [69], Europe [35] and the United States of America
[70]. For the unadjusted radar dataset, algorithms to improve QPE are mainly limited
to Doppler clutter filtering and some statistical clutter removal algorithms. The
highest accumulations are caused by clutter resulting from anomalous propagation
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Figure 2.7 Maps of mean annual precipitation for the Netherlands for the period
1998-2022, based on interpolated rain gauge data [57] (a),
unadjusted radar data (b) and gauge-adjusted radar data [58] (c).
Availability is 91.0% for the radar datasets, which is taken into
account when computing the mean annual precipitation (map data
©OpenStreetMap contributors 2023. Distributed under the Open Data
Commons Open Database License (ODbL) v1.0).

and occur in an area part of the Port of Rotterdam, where many metal cranes and
containers are located. The huge underestimation (Figure 2.7(b)) with respect to the
interpolated rain gauge dataset (Figure 2.7(a)) is effectively removed by merging with
data from KNMI’s rain gauge networks (Figure 2.7(c)). This provides a much more
detailed perspective on local precipitation, confirming the added value of gauge-
adjusted radar accumulations for climate monitoring. For some azimuths pointing
away from radar locations, clearly lower accumulations are found. These can be
related to obstacles, in this case mostly buildings or orography, near radar sites that
partly block the beam of the lowest elevation scan. Algorithms are available to
recognise and correct for beam-blockage affected areas using digital elevation mod-
els, by employing specific differential phase or by employing specific attenuation
[71-73], and can be applied when 3D radar data are available.

2.3.7 Evaluation

Now a more quantitative assessment of the quality that can be expected from
(gauge-adjusted) radar precipitation products is provided in Figure 2.8. Daily radar
rainfall accumulations are evaluated against KNMI’s manual rain gauge network
over a period of almost 1 year. Four different datasets are evaluated as follows:

e A dataset obtained with similar methods as the unadjusted radar dataset from
Figure 2.7 (‘no radar corrections’). Note that data from the two radars are
averaged in logarithmic space, to limit the effect of clutter [74].

e A dataset which has undergone clutter removal with a fuzzy logic algorithm
[74], attenuation correction via Kg, [44], vertical profile of reflectivity cor-
rection [51], quality-based conversion of 3D to 2D data per radar, clutter
removal by a statistical filter [34], quality-based compositing of data from the
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two radars, and advection correction to account for fast moving precipitation
(‘radar corrections’). Data from the two radars are averaged in linear space,
which can be done because of the effective clutter removal. This reduces
underestimation compared to averaging in logarithmic space [74].

e For both datasets also a spatial gauge adjustment is performed using 1-h
accumulations of KNMI’s automatic rain gauge network. Given limitations in
latency and update frequency of automatic rain gauge data, such an adjustment
is not always possible in real-time.

A number of conclusions can be drawn from Figure 2.8. First, the average
underestimation is severe without gauge adjustment, even when radar corrections are
applied. This underlines that more radar corrections are needed and that gauge adjust-
ment is still desirable for operational applications. Second, the gauge adjustment using
only ~1 gauge/1,000 km? is more effective in improving QPE than radar corrections
alone. Third, radar corrections further improve the gauge-adjusted radar accumulations.
To conclude, the effect of radar corrections is relatively limited but noticeable.
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(c) Radars (no radar correctlons) + AWSs

E 1001 RWE =627mm E 1001 RE e = =627 mm
£ Rel. bias = ~18.7 % £ Rel. bias = ~13.7 %
e V=043 e Cr=038
2 p’=0.82 £ 80 p?=0.86

3 n=36006 B n=36006

“ Rgauge > 1 mm z Rgayge > 1 mm
+ Slope regr. line = 0.83 + Slope regr. line = 0.86
t 60 Y60+

s s

B K

£ 40 £ 401 ;
k=3 it R=3 /8
15} 52 5] 0o
153 > o +

£ 201 . 2 20 y

= 2

= =

A o

100{

Rgau = 6 27 mm

Daily precip manual gauges (mm)

i Aug20]7*]u120]§_
20 40 60 80 100
Daily precip manual gauges (mm)

(d) Radars (radar correctlons) + AWSs

100

ng g = 6 27 mm

Daily precip manual gauges (mm)

i ‘ Aug2‘OI7*.|lul2OI§_
20 40 60 80 100
Daily precip manual gauges (mm)

. Rel. bias = —56.5 % . Rel. bias =—36.7 % Counts

= Cr =064 = Cy =054 3150

E 801 g E 801 e

©n gauge > 1 mm ©n Rgauge > 1 mm

] Slope regr. line = 0.44 & Slope regr. line = 0.63 823

g 60 g 60

8= Ry 215

g 40 g 401

a 4 S 56

= % e o

= 20 S5 T 207 e

A a i 15
Aug 2017 — Jul 2018 | Aug 2017 —Jul 2018 | 4

20 40 60 80 100 20 40 60 80 100

Figure 2.8 Evaluation of four radar datasets with ~0.9 km’ grid cells against
daily manual rain gauge point accumulations over ~1 year. For
unadjusted (a, b) and adjusted (c, d) radar data. For this comparison,
the radar grid cell at each gauge location is employed.
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Note that Figure 2.8 only provides a general evaluation. The outcome could be
different when considering hourly accumulations, other evaluation metrics or spe-
cific events. For instance, annual precipitation maps (not shown) reveal that the
radar corrections lead to more realistic, substantially higher accumulations at long
range from the radars, where no KNMI rain gauges are present. Figure 2.8 gives an
impression of the quality of (gauge-adjusted) radar QPE one may encounter. The
actual performance may be lower or higher for other radar networks, depending on,
e.g., environmental conditions, hardware (calibration), applied (additional) radar
corrections and density of employed rain gauge networks. Finally, representative-
ness errors explain part of the variability between radar and gauge accumulations
[75]. Radars measure aloft and sampling volumes are huge compared to the typical
2-4 dm” sampling area of rain gauges, which measure at the Earth’s surface.
Because of representativeness errors, the minimum accumulation period for com-
paring or merging rainfall estimates from radar and rain gauges is usually assumed
to be 60 min. This reduces the impact of rainfall variability.

2.4 QPE with personal weather stations

2.4.1 Quality control

It is expected that rain gauge data from PWSs are more prone to errors due to
placement at sites with more interference from the surroundings, fewer and less-
specialised maintenance to the sensor and lower quality devices compared to AWSs.
QC methods have been developed to recognise typical errors in this data source and
are commonly applied to PWS rain gauge data. These algorithms are sometimes
available as open-source algorithms [82,84,86—88]. Often, inter- and/or intra-station
checks are performed, and sometimes auxiliary data from, e.g., government rain
gauges [82] or radar data [89] are used. Inter-station filters make use of the fact that
rainfall is correlated in space [90]. Applying QC can substantially decrease the
number of observations. Here, previously developed QC [84,91] is applied to
6 months of Netatmo PWS data from the Netherlands (the data from March to May
2020 are used as spin-up time). After obtaining precipitation accumulations at regular
5-min intervals, a list of all nearest PWSs (up to a maximum of 20) within a 10-km
radius is compiled for each PWS, which feeds into the inter-station QC.

Box 2.3: Introduction to PWSs

PWSs are typically purchased by weather enthusiasts or citizen scientists and are
often located in densely populated areas. PWSs provide observations in urban
arcas where AWSs are relatively scarce due to the difficulty to meet WMO
requirements. Common PWSs are produced by companies such as Alecto, Davis
and Netatmo. The Netatmo PWS consists of an indoor and outdoor module, with
the possibility to extend with an additional outdoor module for rain and an out-
door module for wind [76]. The rain module is of the tipping bucket type and the
observations are sent to the Netatmo platform every ~5 min and are visualised on
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the Netatmo Weathermap (https://weathermap.netatmo.com/). Several other
platforms exist to which data from a variety of PWSs are uploaded, such as the
Weather Observations Website (free access; https://wow.metoffice.gov.uk/;
https://wow.knmi.nl/) [77-79], the Weather Underground website (https://www.
wunderground.com/wundermap) [78] and the Community Collaborative Rain,
Hail and Snow Network (https://www.cocorahs.org/) [80]. The quality of
PWS sensors, the set-up in relation to the often urban environment, meta-
data, connectivity, data transfer, power supply, calibration and maintenance
are of vital importance for rainfall estimation [§1-83]. Typical sources of
error in (PWS) rain gauge estimation are discussed by De Vos ef al. [81,84]
and Osrodka ef al. [85] and references therein.

The algorithm distinguishes [84]

e faulty zero errors caused by malfunctioning of the gauge (e.g. a failing tipping
bucket mechanism);

e high influx errors, which are suspiciously large accumulations that may be caused
by, e.g., garden sprinklers and tilting of the gauge while handling the device or
signal processing errors (e.g. values are added upon previous observations);

e station outlier errors where observed rainfall dynamics do not correspond with
those at nearby PWSs;

e bias due to systematic underestimation or overestimation that may be caused
by wind or a deviating tipping bucket volume, either physically or due to faulty
calibration.

The faulty zeroes, high influx, and station outlier filters and dynamically updated
bias correction factors are computed and applied to the 5-min data. Given the spin-up
time needed for the station outlier filter and bias correction, only QPE from the most
recent 3 months is evaluated. Note that the bias correction starts with a default bias
correction factor (1.09), which has been obtained from a one-of comparison to gauge-
adjusted radar data from September 2019 [92]. Apart from this default bias correction
factor, the default parameters have been obtained from De Vos ef al. [84], who employ
an older Netatmo rain gauge dataset from the Amsterdam metropolitan area, the
Netherlands. For each PWS, the QC’ed 5-min accumulations are aggregated to hourly
and daily point accumulations in case the availability is at least 83.3%. The hourly point
accumulations are interpolated at the ~0.9 km? radar grid using ordinary kriging with a
spherical variogram model [93] employing the RAINLINK software package and its
default parameter values [94]. Climatological variogram parameters are used, which
vary as a function of day of year, and which are based on a 30-year rain gauge dataset
[90]. The 1-h PWS rainfall maps are aggregated to 24-h and 3-monthly rainfall maps.

2.4.2 Evaluation

Interpolated PWS 3-monthly rainfall maps are compared to gauge-adjusted radar
precipitation maps (Figure 2.9(a) and (b)). The spatial patterns and values of
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3-monthly PWS summer precipitation match well with the gauge-adjusted radar
dataset. As expected, more detailed patterns are visible in the radar precipitation
map, and local extremes are missed by the PWS network, which may be partly
caused by the limited PWS coverage. No clear outliers are visible for the PWSs.
Interpolated daily PWS rainfall maps and daily PWS point rainfall estimates are
validated against KNMI rain gauge point accumulations and gauge-adjusted radar
accumulations, respectively (Figure 2.9(c) and (d)). The scatter density plots show
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Figure 2.9  Comparison of 3-monthly interpolated PWS precipitation accumulation
map (a) against gauge-adjusted radar accumulation map [95] (b) at
~0.9 km’ for the period 31 May 2020 08:00 UTC to 31 Aug 2020 08:00
UTC. Evaluation of interpolated daily PWS rainfall accumulations
against manual rain gauge point accumulations over the same period
(c), and evaluation of PWS point accumulations against gauge-adjusted
radar accumulations with ~0.9 km® grid cells [96] over the same period
(d). For the PWS point accumulation comparison, the radar grid cell at
each PWS location is employed. Map data ©OpenStreetMap
contributors 2023. Distributed under the Open Data Commons Open
Database License (ODbL) v1.0.
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that the relative bias is within 10%, the dispersion is relatively low (CV<1), and the
value for p? is moderate (interpolated maps) to large (point values). Clearly better
results are obtained for the comparison of PWS point values with gauge-adjusted
radar data than for interpolated PWS maps against manual rain gauge data. The
interpolation of PWS values introduces mapping errors. These are absent for the
PWS point values, although the comparison with radar data introduces repre-
sentativeness errors. This suggests that, for the given PWS network density, map-
ping errors are more important than errors due to radar-PWS representativeness
differences.

2.5 QPE with commercial microwave links

2.5.1 Sources of error and processing chain

MNOs typically store signal level data in their network management systems
every 15 min. The workflow for CML rainfall retrieval starts with coupling of
metadata (link locations, path length, microwave frequency and optionally
polarisation) and data (received and optionally transmitted signal levels), if not
done already by the MNO. Preprocessing may be needed, e.g., to detect errors in
metadata or to only select CMLs with certain microwave frequencies. An
important source of error from the perspective of QPE is that signal levels can
also decrease during dry periods, e.g., due to reflection or refraction of the
beam, changed antenna patterns, dew formation on the antennas, or dust
[101,104—107]. Hence, a commonly applied next step is a wet—dry classification
that results in zero retrieved rainfall intensities for dry periods. This is an
important step to improve CML QPE, also because it contributes to determining
an accurate reference signal level, representative for dry periods [18,107,108].
Such a wet—dry classification typically uses intra- [109] or inter-station checks.
Sometimes auxiliary radar [18] or satellite [110] data are employed. In this sec-
tion, an inter-station check is performed by employing the mutual decrease in
received signal levels from neighbouring sub-links [18,93]. The basic principle
behind such inter-station methods is that rainfall is correlated in space. Another
source of error is attenuation due to wet antennas, which may result in over-
estimation of the rain-induced attenuation along the path. Wet antenna attenua-
tion correction is commonly applied [18,111-115]. Finally, the CML rainfall
estimates are often interpolated to obtain rainfall maps, which introduces map-
ping errors [116]. More information on sources of error in CML rainfall retrieval
and algorithms to account for these are provided by Overeem et al. [93,107] and
Graf et al. [117].

Box 2.4: Introduction to CMLs

CMLs are close to the ground radio connections used globally as backhaul in
cellular telecommunication networks. Along such links, radio signals
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propagate from a transmitting antenna at one base station (telephone tower)
to a receiving antenna at another base station.

CML illustration by identim/Shutterstock

CMLs operate at frequencies where raindrops substantially attenuate
radio waves due to scattering and absorption [97-99]. The International
Telecommunication Union’s traditional frequencies in the range from 6 to
42 GHz are the most widely used worldwide and will remain very important in
the coming years [5]. A CML often has two sub-links for communication in
both directions. For each sub-link, the path-averaged rainfall intensity can be
retrieved from the signal’s attenuation between transmitter and receiver. For
constant transmitted signal levels, this rain-induced signal attenuation is com-
puted by subtracting the received signal level from a reference received signal
level, being representative for dry periods. In case transmitted signal levels
vary, the attenuation is computed by subtracting received signal levels from
transmitted signal levels and subtracting these from a reference level (base
level; also computed by subtracting received from transmitted signal levels).
The core of CML rainfall retrieval is based on a power—law between path-
averaged rainfall intensity and specific attenuation (dB km™') [98,99]. The
coefficients of this power—law are derived from observed drop size distributions
and simulations of electromagnetic scattering by raindrops [100] and primarily
depend on carrier frequency and polarisation of the signals. Overviews on the
history and physics of CML rainfall retrieval are provided by Messer and
Sendik [101], Uijlenhoet ef al. [102] and Chwala and Kunstmann [103].
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Since approximately 2005, the potential of CML rainfall monitoring has been
shown in many publications, e.g., for the Czech Republic [118], Germany [105,117],
Israel [119,120] and the Netherlands [107,112,121,122]. Common sampling strate-
gies provide minimum and maximum, average, or instantaneous received (and
transmitted) signal level data. These introduce uncertainties, e.g., by estimating
15-min averaged rainfall intensities from minimum and maximum rainfall intensities.
Alternatively, an open-source CML data acquisition system could be set up, which
allows for real-time sampling every minute or better [123,124].
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Figure 2.10  Comparison of 3-monthly interpolated CML precipitation
accumulation map (a) against gauge-adjusted radar accumulation
map [95] (b) at ~0.9 km” for the period 31 May 2012 08:00 UTC to
31 August 2012 08:00 UTC. Evaluation of interpolated daily CML
rainfall accumulations against manual rain gauge accumulations
over the same period (c) and evaluation of CML path-averaged
accumulations against the corresponding path-averaged gauge-
adjusted radar accumulations [96] over the same period (d) (map
data ©OpenStreetMap contributors 2023. Distributed under the
Open Data Commons Open Database License (ODbL) v1.0).
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Here, a Dutch dataset of minimum and maximum received signal levels over
15-min intervals is used. Carrier frequencies range from 13 to 40 GHz. The majority
of CMLs are shorter than 5 km. The RAINLINK software package (Version 1.3) for
CML rainfall retrieval and mapping is applied to obtain 15-min path-averaged and
interpolated CML rainfall estimates for the ~0.9 km? radar grid covering the land
surface of the Netherlands [93,125]. RAINLINK’s default parameter settings [93] are
employed and the same interpolation method as for the PWSs. The 15-min CML
rainfall maps are aggregated to 24-h and 3-monthly rainfall maps. For each CML, the
15-min rainfall intensities are aggregated to hourly and daily path-averaged accu-
mulations in case the availability is at least 83.3%.

2.5.2  Evaluation

Interpolated CML 3-monthly rainfall maps are compared to gauge-adjusted radar
precipitation maps (Figure 2.10(a) and (b)). The spatial patterns and values of 3-
monthly CML summer precipitation are in reasonable agreement with the gauge-
adjusted radar dataset but also show underestimation in the east, and many local
outliers. Interpolated daily CML rainfall maps and daily CML path-averaged
rainfall estimates are validated against KNMI rain gauge point accumulations and
path-averaged gauge-adjusted radar accumulations, respectively (Figure 2.10(c)
and (d)). The scatter density plots show that the relative bias is within 10%, the
dispersion is relatively low (CV<1), and the values for p* are quite large. Despite
shortcomings in CML rainfall estimations, their overall performance is quite good,
certainly when one realises that CMLs have not been designed for rainfall esti-
mation and that part of the deviations in CML rainfall estimates are related to
mapping or representativeness errors.

2.6 Summary and outlook

An overview was provided of the required and possible processing steps for rainfall
estimation with ground-based weather radars, PWSs and CMLs. Sources of error
and algorithms to remedy these were presented. The quality of (gauge-adjusted)
radar, PWS and CML datasets was evaluated for the Netherlands. Despite several
processing steps being applied to radar data, adjustment with rain gauge data
remains important to improve radar QPE. Opportunistic sensors were shown to
provide useful complementary precipitation information, but sensor quality, quality
of set-up (PWSs) and network densities (CMLs, PWSs) could decrease over time.
Hence, government rain gauge networks, including those from water authorities,
remain important, also for purposes requiring consistent observations at the highest
accuracy, such as climate trend analyses. Also public rain gauges, e.g., from uni-
versities, may add value. Note that government and public rain gauges may not
always follow WMO guidelines and may need additional QC, similar to PWSs.
Other opportunistic sensors, such as satellite microwave links (SMLs) between
Earth and space [13,126], can potentially provide additional precipitation infor-
mation. Signals between satellites and satellite receiver terminals at the ground,
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often used for digital video broadcasting, are attenuated by rain. Similarly to
CMLs, these signals can be converted to path-averaged rainfall rates, but over a
slant path through the atmosphere from the Earth’s surface towards the satellite
instead of near the Earth’s surface and parallel to it.

The CML rainfall maps outperform the PWS rainfall maps when compared to
rain gauges, possibly because of the larger physical footprint of CMLs resulting in
more rainfall events being captured. It is the other way around for the point or path-
averaged values when compared to gauge-adjusted radar accumulations, which
suggests that the PWS sensor is more accurate than the CML sensor. A dis-
advantage of the CML with respect to the PWS rainfall maps is the many outliers
found in the 3-monthly accumulations. An exact comparison is not possible due to
the different periods for the CML and PWS data.

2.6.1 Merging opportunistic sensing and radar data

Due to the often large spatial variability in sources of error in radar QPE (e.g. due to
attenuation), especially errors generally becoming larger at longer distance from a
radar due to larger sampling volumes higher above the Earth’s surface, it is prob-
ably more effective to improve radar QPE by merging with less accurate opportu-
nistic sensors from a high-density network than by merging with data from highly
accurate AWSs from a much sparser network. This is confirmed below.

Merging of PWS rain gauge with radar precipitation data has been suggested
by [127] and is one of its most important use cases. Merging is feasible when
coverage of radar and PWS (Figure 2.1(a) and (d)) is both dense, which happens to
be the case in high-income countries. In the, to the best of our knowledge, first
study investigating radar-PWS merging, a full year of pan-European 1-h radar
accumulations is merged with PWS rain gauge accumulations from Netatmo
employing a spatial adjustment method [89]. Evaluation against government rain
gauges from ECAD [8,9] confirms that the quality of radar QPE is much improved
compared to the unadjusted radar dataset but has lower quality than the climato-
logical radar dataset EUropean RADar CLIMatology (EURADCLIM) [89]. In the
EURADCLIM dataset, radar accumulations from OPERA (Operational Program on
the Exchange of Weather Radar Information) are merged with rain gauge accu-
mulations from ECAD [35]. The averaging of PWS-gauge values by merging also
seems to act as a form of QC. The large number of locations of the PWS dataset is
expressed by the median number of employed radar-gauge pairs in the merging. It
is ~6 times larger for the PWS gauges compared to the ECAD gauges. The
underestimations found for lower temperatures point to solid precipitation being
missed by Netatmo PWSs due to the absence of a heating device [89].

Here, the 3-monthly QC’ed PWS dataset from the Netherlands is merged with
KNMI radar precipitation accumulations. The QC and merging algorithms from
Overeem et al. [89] are applied: the faulty zeroes and high influx filters, the station
outlier filter and dynamically updated bias correction from [84] fed with a default
bias correction factor of 1.09 [92] (not applied in [89]), QC with unadjusted radar
data (after which [89] apply a default bias correction factor of 1.06), and a spatial
adjustment on 1-h accumulations based on Barnes’ objective analysis [128]. For
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each radar grid cell, such a spatial adjustment factor is computed from the ratio of
the distance-weighted interpolation of unadjusted radar accumulations and the
interpolation of the corresponding gauge precipitation accumulations from all
selected radar-gauge pairs. The 1-h merged radar-PWS dataset is aggregated to
daily accumulations and compared to KNMI’s manual rain gauge accumulations in
Figure 2.11(c). The large underestimation in the unadjusted radar dataset
(Figure 2.11(a)), which involves no radar corrections (Section 2.3.7), is largely
removed. The merged radar-PWS accumulations in Figure 2.11(c) are much closer
to the 1:1 line, also for extremes. On average, accumulations from 118 PWS
locations are employed in the merging (much lower than the total number of PWSs,
mainly because radar-gauge pairs are only employed in the merging process when
their unadjusted radar and PWS 1-h values are both larger than 0.25 mm). The
radar-PWS dataset outperforms the radar-AWS dataset (Figure 2.11(b)), which uses
rain gauge data from 32 locations. It is apparent that the underestimation is still
quite large for the radar-AWS dataset compared to the unadjusted radar dataset.
Spatial patterns are captured by the radar-PWS dataset (Figure 2.12(c)).
Although values are much more realistic than for the unadjusted radar dataset
(Figure 2.12(a)), the comparison with the climatological gauge-adjusted radar
dataset also reveals strong underestimation (Figure 2.12(d)). For the radar-AWS
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Figure 2.11 Evaluation of (merged) daily radar precipitation accumulations with
~0.9 km’ grid cells against manual rain gauge point accumulations.
For unadjusted radar data (a, d), radar data adjusted with rain
gauges from AWSs (b, e) and for radar data adjusted with
opportunistic sensing data (c, f). Note that the 3-monthly periods for
PWSs and CMLs are from a different year. For these comparisons,
the radar grid cell at each gauge location is employed.
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Figure 2.12  Evaluation of (merged) 3-monthly radar precipitation maps with
~0.9 fn’® grid cells. For unadjusted radar data (a, e), radar data
adjusted with rain gauges from AWSs (b, f), and radar data adjusted
with opportunistic sensing data (c, g). The fourth column presents the
climatological radar dataset [95], where automatic and manual
KNMI rain gauges are merged (d, h). Note that the 3-monthly periods
for PWSs and CMLs are from a different year. Map data
©OpenStreetMap contributors 2023. Distributed under the Open
Data Commons Open Database License (ODbL) v1.0.

dataset locally some suspiciously high accumulations are found in the north-east
(Figure 2.12(b)), pointing to instabilities in the merging algorithm (due to the
sparse AWS network) or local showers only captured by the AWSs. Such an outlier
may be caused by severe underestimation by radars at gauge locations, resulting in
too large adjustment factors in other grid cells for which the underestimation is less
severe. In particular, strong spatial rainfall gradients and fast-moving showers
around rain gauge locations can result in a mismatch between radar and gauge
values due to representativeness errors. Outliers are not found for the radar-PWS
dataset, which confirms the quality of the underlying PWS data and the perfor-
mance of the applied QC.

Some successful initial work on radar-CML merging has been performed
[129,130]. Others investigate rainfall mapping based on CML and gauge data
[131,132]. The combined worldwide radar-CML coverage shows that radar-CML
merging could be feasible in many middle- and high-income countries (Figure
2.1(a) and (e)). Now, the 3-monthly CML dataset from the Netherlands is merged
with KNMI radar precipitation accumulations. The 15-min path-averaged rainfall
intensities are aggregated to 1-h CML rainfall accumulations in case of full
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availability. The corresponding path-averaged unadjusted radar accumulations are
extracted. As for the PWS data, QC with unadjusted radar data is performed. From
the path-averages of radar-CML pairs, to which the coordinates of the middle of the
link path are assigned, a spatial adjustment factor field is computed following the
same methodology as for the PWS accumulations. The 1-h merged radar-CML
dataset is aggregated to daily accumulations and compared to KNMI’s manual rain
gauge accumulations in Figure 2.11(f). The large underestimation found for the
unadjusted radar dataset (Figure 2.11(d)) turns into a small overestimation by the
radar-CML merging, with clearly better values for CV and p®. On average, accu-
mulations from 72 CML locations are employed in the merging (much lower than
the total number of CMLs, mainly because radar-CML pairs are only employed in
the merging when their unadjusted radar and CML 1-h values are both larger than
0.25 mm). The radar-CML dataset outperforms the radar-AWS dataset (Figure
2.11(e)), especially in terms of the relative bias (note that 0.25 mm thresholding on
radar-gauge pairs has not been applied for all radar-AWS datasets in this chapter).
The spatial comparison in Figure 2.12(g) and (h) with respect to the climatological
gauge-adjusted radar dataset reveals overestimations for several areas. Spatial
patterns are well captured except for the eastern part of the Netherlands. The out-
liers that are present in the CML-only map (Figure 2.10(a)) are not found in the
radar-CML dataset, except for an area with suspiciously high accumulations in the
west. The merging seems to act as an additional QC. This area, albeit much smaller,
is also present in the radar-AWS dataset. To conclude, radar-CML merging helps to
remove systematic underestimations and provides better rainfall estimates than
radar-AWS merging for the employed AWS and CML network densities.

Although a fair comparison between the performance of the radar-PWS and
radar-CML dataset is not possible given the different periods and the differing net-
work densities, the radar-CML merging seems more promising for improving radar
QPE. This is unexpected due to the fact that PWSs provide a more direct observation
in contrast to the indirect remote sensing by CMLs, and because the number of pairs
in the merging is on average higher for PWSs (118) than for CMLs (72). One
explanation is that the majority of CMLs in this study are at most a few kilometres
long, which reduces representativeness errors with respect to radar estimates compared
to PWSs and to longer CMLs. This also implies that CMLs capture a much wider area
compared to PWS point observations, which can help to capture more events, although
their intensities may be lower than from local (PWS) point observations.

In this chapter, only summer precipitation, dominated by rain, was discussed.
One limitation of these opportunistic sensing data is that detection of solid pre-
cipitation is often limited (PWSs) or not possible (CMLs), and that melting pre-
cipitation leads to overestimation for CMLs [107,133]. Apart from this limitation,
the high network densities of PWSs and CMLs compared to AWSs, the potential
(near) real-time availability of PWS and CML data, and the performance of merged
radar-PWS and radar-CML datasets, suggest that (real-time) radar precipitation
products could benefit from these opportunistic sensing data. Also note that latency
and update frequency of automatic rain gauge data could hamper real-time radar-
AWS merging. Instead, a spatial adjustment factor from the previous hour could be
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used for the present hour, which will result in (slightly) worse rainfall estimates for
the ‘Radar + AWSs’ dataset. Note that the added value of the PWS and CML datasets
has been tested on a radar dataset which has been subjected to only a few correction
algorithms (i.e. no attenuation correction and no vertical profile of reflectivity cor-
rection). The impact of employing opportunistic sensing data for improving radar
QPE is expected to be less for more thoroughly processed radar datasets. Also note
that in reality AWS rain gauge data are often available with some delay (1-60 min),
which prevents real-time merging of AWS and radar data from the same and most
recent time interval. The latency of CML data, provided that a real-time data
acquisition system is used [123], and PWS rain gauge data may be shorter.
Development of operational radar products incorporating PWS or CML rainfall
data, optionally including AWS data, is already being studied by some NMHSs in
Europe [130]. Since radar QPE feeds into nowcasting and seamless forecasting sys-
tems [134], merged radar opportunistic sensing datasets can contribute to improved
monitoring of severe weather and warnings for potential (flash) floods and landslides.

2.6.2 CMLs as ‘weather radars’ for the tropics

Several studies address CML rainfall estimation in (sub)tropical climates, namely
for Burkina Faso [106], Kenia [135], Brazil [136], Pakistan [137] and Nigeria, Sri
Lanka and Papua New Guinea [14,138]. Overeem et al. [139] show the great
potential of CMLs for tropical rainfall monitoring based on a 3.5-month dataset of
on average 1140 link paths from Sri Lanka when compared to government rain
gauge data. Due to the absence of ground-based weather radars, a high-resolution
and relatively accurate spatial verification of CML rainfall maps can only be per-
formed employing the space-borne precipitation radar from the GPM mission.
Figure 2.13 presents an example of a good match between a 15-min CML rainfall
map and the snapshot from GPM’s combined radar-radiometer precipitation pro-
duct (Chapter 9 of Volume 2). GPM’s core satellite only has roughly one overpass
per day for a given location, whereas the CML-based rainfall maps could be
available every 15 min. CML rainfall maps were shown to outperform geosta-
tionary and GPM Integrated Multi-satellitE Retrievals for GPM (IMERG) pre-
cipitation products for the Netherlands [140] and have generally higher spatial
detail. This perspective from space also brings to mind that CMLs could be used for
ground validation of satellite precipitation products in areas that lack sufficient
surface rainfall observations. Eventually, this could lead to improved satellite
precipitation retrieval algorithms or better calibration.

Ultimately, for areas without ground-based weather radars in LMICs, often in
(sub)tropical regions, CMLs could be used as ‘weather radars’ and used for real-time
rainfall monitoring and nowcasting up to a few hours in advance. For LMICs,
installing and maintaining radars is often simply too expensive. CML nowcasting has
been positively evaluated for the Netherlands, where relatively good reference data
are available [141]. Eventually, the CML rainfall maps could be merged with satellite
precipitation products, taking advantage of their much wider coverage. CML-based
(nowcasting) rainfall products may feed into (urban) hydrological models, which has
been evaluated for temperate climates [142—144]. This calls for upscaling CML
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Figure 2.13 A 15-min CML rainfall map (left) versus a satellite rainfall map from
the GPM combined precipitation product (right; based on the GPM
Combined Radar-Radiometer Precipitation Algorithm, version
VOG6A) over Sri Lanka. Only combined CML-satellite coverage is
plotted. Rainfall intensities smaller than 0.3 mm h™"' are white.
Figure taken from [139].

rainfall estimation in the Global South, for which Priebe [14] gives perspectives on
use cases, business models and developing CML rainfall services and gives a
showcase of a prototype of such a service. For new networks and countries, an
evaluation covering at least six months of data with (a few) thousands of CMLs is
recommended in order to develop a robust minimum viable product. Preferably, local
climate and network characteristics are taken into account through rainfall retrieval
parameter optimisation. One particular challenge for (sub)tropical regions is the lack
of reference data needed to validate and optimise the CML rainfall retrieval. Ideally,
local drop size distribution observations or those from a similar climate would be
employed to compute representative coefficients for the power—law relationship
between rainfall intensity and specific attenuation.
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Abbreviations

AWS automatic weather station

CML commercial microwave link

CvV coefficient of variation

ECAD European Climate Assessment and Dataset

EURADCLIM EUropean RADar CLIMatology

GPCC Global Precipitation Climatology Centre

GPM Global Precipitation Measurement

GTS Global Telecommunication System

KNMI Royal Netherlands Meteorological Institute

IMERG Integrated Multi-satellitE Retrievals for GPM

IoT Internet of Things

LMIC low- and middle-income country

MNO mobile network operator

NMHS national meteorological and hydrological services

OPERA Operational Program on the Exchange of Weather Radar
Information

PWS personal weather station

QC quality control

QPE quantitative precipitation estimation

Radar RAdio Detection And Ranging

UTC Universal Time Coordinated

WMO World Meteorological Organization
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