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Abstract
Web shops use recommender systems to help users find the products they find interesting
in the large amount of available products online. An often used approach to do so is col-
laborative filtering. This method relies on historical user-item interactions and uses them
to recommends products other users found interesting. Fashion is very reliant on quickly
changing trends and personal preferences and requires a more personal and up-to-date ap-
proach. The focus of this research is to generate recommendations based on what products
the user is currently searching for. It does this by detecting user behaviour based on the
search scope of users and products user look at in the current session. Then new products
are recommended by means of clustering new products to the most interesting products of
the current session. This system was then compared with item-based collaborative filter-
ing with an A/B test on the fashion platform Fashionchick.nl. It was found that traditional
collaborative filtering was slightly more effective, but because of the small differences it is
concluded that a behaviour driven recommender system are be promising and that more
work is needed.
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1
Introduction

In the field of recommender systems a lot of research has happened since the rise of the
web. Ever since Netflix organised a competition to improve their recommender system in
2006 the field has been booming with new developments [10]. The goal is to quickly get the
most relevant items to users to keep them attracted to the platform. This is no different
in E-commerce. Practically every webshop you can find issues some form of recommender
system to get the users in touch with products they might find interesting. With the ever
growing E-commerce market [13], it is a hot domain for researchers to explore.

There are multiple approaches that are often used in webshops to recommend products
to users. The most well known is of course the “others also viewed” section on a product
page, which employs item-based collaborative filtering. This serves the user other products
that are relevant to the one that is being viewed. Other, more personal, approaches also use
collaborative filtering, but these do not try to find other similar items, but rather other similar
users, and other relevant items based on those users, this is user-based collaborative filter-
ing. Collaborative filtering uses a User-Item Matrix, which consists of user-item interactions,
usually ratings, and thus contains interest profiles for users and for items [57].

Recommender systems are deployed in all kinds of domains and each recommender sys-
tem is used for different goal, which depends on the domain. An entertainment platform
such as Netflix has a subscription based business model, and thus their goal is to make sure
users like the service and in extension of that retain their subscription [34]. An E-commerce
platform such as Zalando has the goal to make users buy more products by helping them
find the products they are interested in [42]. These different goals lead to different choices
during the design of the recommender system.

1.1. Recommender systems for fashion
In the fashion domain recommender systems are also widely used. Fashion is, however, a
very different product than most other products. First of all, fashion is subject to trends.
The styles of clothing that are popular right now, might not be anymore in a few months,
or even weeks. While popularity is something to take into account in other domains as
well, in fashion it might behave differently because of the quickly changing trends. This is
something that needs to be kept in mind with recommending interesting products to users.
When something stops being a trend, it usually is because something else has replaced it.
With recommender systems you want to be as close to those trends as possible.

Related to trends are the seasonal trends; these change not only on what is currently
popular, but rather on the time of the year. A winter coat is not very useful during summer
and a swimsuit is not useful in winter. Furthermore, there is the personal preference of
users. Besides the fact that people do follow trends, they also have their own style that they
feel comfortable with. People normally even have multiple styles that they like. For example,
one person can be shopping for one style of clothing for work, as well as a more casual style for
their private time. In addition to multiple preferences a user can have, a personal preference
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2 1. Introduction

is also subject to change. It can be both influenced by the current trends as well as simply
change over time.

Therefore, building a recommender system in a fashion domain might require a more
personal and short-lived approach than traditional collaborative filtering. While collaborative
filtering generally is very successful in recommending relevant products to users, it still uses
preferences of other users. This mostly works for general fashion trends, but does not take
personal preferences of users, or even current shopping motivations, into account. Other,
more temporal, approaches could perform better for such a complex and quickly changing
product as fashion.

1.2. Research objectives
Making product recommendations in E-Commerce happens everywhere, based on different
data and with different methods. The fashion domain is no different in this. However, fash-
ion is personal and trends pass more quickly than for most other types of products. In this
research, the focus will be on a recommender system tailored to the user based on live infor-
mation of the user’s behaviour on the website. The theory is that users visit a webshop with
a certain buying intention, which translates to their behaviour, which in turn can be used
for recommendations. The main research question then becomes:

Main Research Question: How well does a behaviour driven recommender system perform as
an alternative to traditional item-based collaborative filtering in the fashion domain?

The answer to this question can be found by implementing a full working system that cap-
tures the behaviour and interests of each user, and uses this information to generate recom-
mendations while the user is browsing the website. For such a system to succeed, we first
want to find out how to detect user behaviour and if certain patterns in this behaviour can
be found. We will investigate this with the following research question:

RQ1: How can browsing behaviour best be categorised and what shopping patterns can be
discerned?

To answer this question, we will analyse user behaviour with a set of relevant features and
divide the users into groups based on those features. These patterns or shopping modes
will be used to generate matching recommendations and it is important to test how effective
these recommendations are. For this we propose the following research question:

RQ2: How effective is recommending products based on the user’s browsing behaviour?

This question covers the behaviour driven recommender system in general, but also the ap-
proaches to distinguish the browsing patterns. We want to see if the chosen methods work
for the matching user behaviour. For example, for one type of behaviour, the corresponding
recommendations might perform well, while for another it might not. This question will give
insight into that.

Finally, we want to assess the system as a whole. Making recommendations in real-time,
and based on information of a user’s live browsing session, poses limitations on the system
because of data sparsity and time constraints. Recommendations should be ready before the
user visits another relevant page, but should also stay up to date with the subsequent user
behaviour. To test the ability of the system to do so, we analyse it with the last research
question:

RQ3: How feasible is a session based approach with real-time generation of recommenda-
tions?
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1.3. Outline
In this thesis we will first talk about previous work that happend in relevant fields to this
research in chapter 2. We will cover session modeling, user behaviour and intent, recom-
mender systems, the fashion domain and then the evalutation of recommender systems. In
chapter 3, we will outline our methodology to analyse user behaviour and interests and the
implementation for a behaviour driven recommender system. After that in chapter 4, we
will talk about our use case Fashionchick, where we will implement and test the system. In
chapter 5, we will discuss the analysis on data from Fashionchick which will be used in the
online system. The full implementation of the online system will be discussed in chapter 6
and after that the experimental setup to test the system will be discussed in chapter 7. Lastly
the results and the conclusion will be covered in chapters 8 and 9.





2
Previous work

In this chapter, the main areas of interest for this research will be covered. First, we will cover
the modelling of user sessions, as this forms a basis for the data input of the recommender
system. Then, we will go into the capturing of behaviour and intent of users online. After
that, recommendation algorithms, techniques and intent specific recommender systems will
be detailed. Lastly, the evaluation of a recommender system will be discussed, in offline as
well as online testing.

2.1. Session modelling
In an early paper from 1995 a user session was defined as “..all of the page accesses that
occur during a single visit to a Web site” [27]. A typical website visit consists of a user opening
the website and visiting a few pages, after which the user has found what was needed and
closes it again. This collection of page visits would accumulate to a single session. In [27],
the first proposal was to gather the data about a session from raw server logs. Now, a general
approach to collect data about a session is to register click events to objects on the web pages,
and monitor the session of a user with the clickstream that is generated from these events
[18, 49, 50]. This method allows the developer to determine what information is gathered
about the session and when, which makes the process much easier. Click events can be
accompanied with data about what the page was, what information was on it and what item
was clicked on. This makes click events a very effective method for data gathering.

These clickstreams give an idea of what the user is doing on the website during a session.
But users often close the page, effectively ending the session and then reopen another page of
the website again. Different users can be identified by using their ip address for example, but
when users visit the website multiple times within a certain time frame these visits should be
identified as different sessions at some point. There are different approaches to accomplish
this [3, 24, 48], but a typical method is using a timeout set at around 30 minutes.

A model to capture user visits to a website is proposed in [31]. With this observation
module, as it is called, the complete visit is captured, with the sequence of pages that are
visited and which links the user followed. This module also contains information about what
products are added to the shopping cart, as well as past purchasing behaviour. In this way,
a broad representation of a user’s browsing session is constructed. This gives insight in their
behaviour and why certain choices are made. More about how this information is used to
predict the user’s intent will be discussed in section 2.2.

In [50], a system to model web browsing using clickstream data is proposed, and this is
then used to predict a user’s navigational path and if that user is likely to make a purchase.
First, a Markov Model denoting the type of page the user is looking at, is used to construct
the browsing path. The type of page and the order the user looks at those pages is an
important part of the session. Data about all the transition between the pages is used to
make a transition matrix and to calculate the probabilities of the transitions from each page
type to another page type. Then, a multinomial probit model was used to monitor covariates

5



6 2. Previous work

that might have an effect on the path the user follows.
Another approach using clickstream data to construct the browsing path of the user is

taken in [56]. First, a website topology is constructed which can be seen in figure 2.1.
It consists of a tree where the homepage is the root, then main categories are children of
the root, which are in turn parents of subcategories and lastly the items in the categories
are represented by leaf nodes. The browsing path is then constructed using the depth of
the node corresponding to the page in the website topology. An example browsing path is:
{𝐻𝑜𝑚𝑒𝑝𝑎𝑔𝑒, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦ኼ, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦ኼኻ, 𝑖𝑡𝑒𝑚ኼኻ, 𝑖𝑡𝑒𝑚ኼኼ}. The advantage of this approach is that it con-
tains a lot of extra information about what the user is actually viewing. The browsing path
is augmented with the depth the user is visiting the website.

Figure 2.1: E-commerce website topology [56]

In [47], sessions are also modelled with the browsing path. Here, the path is represented
as a sequence of items the user views with an encoder-decoder structure, first proposed for
statistical machine translation in [25]. The sequence is encoded with a bidirectional RNN,
forwards and backwards. The encoded sequence is represented by two vectors of the hidden
states that are generated, these vectors are of fixed length. From this sequence, predictions
about purchases are made. More on that in section 2.2.2.

2.2. Capturing user behaviour & intent
In this section, capturing behaviour and intent from a user’s browsing session is covered,
as a session contains a lot of useful information about what is being viewed, in what order
and what items might be interesting to the user. This could be a good basis for capturing
the behaviour and intent of a user. To learn a bit more about user intent, we first look at
intentions users might have behind search queries. In the optimisation of search engine
results the goal of a query proved to be very important.

2.2.1. Query intent
In search of why users want to visit a certain website, in [21], three main goal categories
for queries users enter in search engines are proposed: Navigational, Informational and
Transactional. In the navigational category a user wants to access a certain website, in
the informational category a user wants to find information about a certain topic and in the
transactional category a user wants to perform further actions on a website. In a webshop,
it could be possible to see similar categories of intent. For example, people could be trying
to find information about a product. Also, a person that wants to buy a product could be
linked to the transactional category.

A way to automatically capture a query goal is to analyse historic user click behaviour.
From this, the distribution of the clicks over the results to the same query can give insight
into what the corresponding goal might be [45].

Because the use cases for a search engine are so different from that of a shopping platform,
queries might not be as useful to capture shopping intent. When the user enters a query to
search in a shop, he or she is most likely to find a product or category in that shop. However,
some lessons can still be learned from it. An analysis about query classification happens in
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[19] where queries are represented by words from the relevant search results. This content
based approach is an interesting way to capture information about the results that were
interesting to a query, and can also be used to capture information about interesting items
that a user viewed in a webshop.

2.2.2. Behaviour & intent
The browsing path a user takes in a session is a useful method to gather information about
his or her behaviour and this behaviour can give insights into why the user is visiting a
website. If the user has the goal to purchase a certain product, this user is probably looking
at specific occurrences of this product, to compare products and decide which one to buy.
Such a session can be easily distinguished from a session in which a user is just looking
randomly at all kinds of products. In the latter case, the goal or intent is much less apparent.
By monitoring the browsing paths and behaviours of users, their intent can be extracted or
predicted [31, 47, 56]. In this section the capturing of behaviour and extracting user intent
from that behaviour will be covered.

The study of user behaviour has a strong basis in psychology. Just as the research done
in [30], which based its theory on the S-O-R model from [47]. Here it is said that the stimulus
S has an effect on the state of the organism O, which in turn determines the response R. This
can also be applied with shopping behaviour because a website shows certain products or
stimuli, which then influence what the user thinks about the website and that determines
their behaviour after that. So what is done in [31], is to model the user intent in real time
and how it changed over time. This was new, as previous papers such as [50] made the
assumption that the intention would not change during a session. A Hidden Markov Model
is proposed that has three parts: the starting probabilities of the intent states, the transition
probability matrix and the waiting times of the intent states [31]. These items are used to
predict what the next intent state is going to be, where the waiting times represent how long
a user stays within a certain intent state.

While the proposed Hidden Markov Model based on the browsing path in [50] is ultimately
used to predict whether or not a user is going to make a purchase, the browsing paths can
also be used to determine other forms of intent which are not necessarily related to pur-
chasing. A good example of that is performed in [49] where clickstream patterns are used to
determine what kind of shoppers are visiting the website. First, four shopping strategies are
identified, namely “directed buying, search/deliberation, hedonic browsing and knowledge
building”. Then, a set of metrics about the shopping session is set up. These metrics con-
sist of information such as the percentage of pages that are home, search, category, brand
or product pages. But also metrics that indicate the variety of category, brand or product
pages, measured by the number of pages that is unique. Then, these metrics are linked to
expected patterns of navigation by the four shopping strategies. These four strategies com-
bined with the expected patterns then represent a certain form of behaviour that a user is
likely to exhibit when following a certain strategy. The table that is created for this can be
seen in table 2.1. For example, a user who is directed at buying, is likely to view more product
pages than category listings, while a user who is just browsing for fun will likely visit more
category pages and the variety of categories that is visited will be also higher.

Focus of Session Category Variety Product Variety Repeat Product Viewings
Directed buying Product pages Low Low High
Search/deliberation Category, product pages Low High Moderate
Hedonic browsing Category pages High High Low
Knowledge building Information pages Low Low Low

Table 2.1: Expected Pattern by Shopping Strategy [49]

As discussed in section 2.1, in [47], sessions were also modelled using the browsing path
and used in an encoder-decoder structure. With the forward and backwards encoded vectors
they predict whether or not one of the items a user visited is likely to be purchased or not.
In this article only two classes were identified, purchase and browsing, which were modelled
as a binary variable.
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2.3. Recommender systems
The internet explodes with content. Websites such as YouTube accumulate content so
quickly, that in 2013 alone, 100 hours of video were uploaded every minute. In 2014 it
already increased to 300 hours of video uploaded every minute [15]. Users cannot keep up
with the amount of content that is added so incredibly fast, and that is why recommender
systems have been popping up everywhere. In 2006 Netflix even issued a 1 million dollar
prize to improve their recommender system [10].

Nowadays recommender systems come in various forms and implementations, but for
the most part can be categorised in the following categories: content-based recommender
systems, collaborative recommender systems and hybrid forms of recommender systems [16,
18, 37]. Content-based recommender systems use item similarity to recommend a user new
items based on items that were liked before. Collaborative recommender systems use historic
user preferences to recommend new items to a user. Hybrid forms of recommender systems
use a mix of the first two methods.

2.3.1. Content-based recommendations
As mentioned in the introduction of this section, content-based recommendation uses simi-
larity of items to items previously liked by the user to recommend new ones. To enable this to
work, the following things are needed: some measure of characterisation of the item, followed
by a way to compare two items based on this characterisation.

The internet is full of articles and documents consisting of text. Comparing items based on
the text that is contained is a frequently used approach. Term Frequency-Inverse Document
Frequency [54], or TF-IDF, is a statistical method to determine the importance of a word for
a document in a result list of documents. TF-IDF for a word can be computed by the product
of the term frequency by the inverse documents frequency:

𝑇𝐹 ⋅ 𝐼𝐷𝐹 = 𝑓፭,፝ ⋅ log
|𝐷|

|{𝑑 ∈ 𝐷|𝑡 ∈ 𝑑}| (2.1)

Where 𝑓 is the frequency for term 𝑡 in document 𝑑 and D is the result set of documents. Based
on the importance of the words, two documents can be compared in similarity by putting the
TF-IDF for the n most relevant words in a vector and computing the distance between those
vectors.

To calculate the distance between two vectors multiple approaches are possible. Two
widely used methods are Euclidean distance and cosine similarity [44, 52]. For items 𝑎 and
𝑏 with dimensions 𝑛, Euclidean distance 𝑑፞ is defined as:

𝑑፞(𝑎, 𝑏) = √(𝑎ኻ − 𝑏ኻ)ኼ + (𝑎ኼ − 𝑏ኼ)ኼ +⋯+ (𝑎፧ − 𝑏፧)ኼ (2.2)

The cosine distance 𝑑፜ between items 𝑎 and 𝑏 with dimensions 𝑛 is defined as:

𝑑፜(𝑎, 𝑏) = 1 −
∑𝑎። ⋅ 𝑏።

√∑𝑎።√∑𝑏።
∀𝑖 ∈ {1, 𝑛} (2.3)

Both distance definitions are taken from [44], and are adapted for the items dimensions
to be 𝑛. Recommendations can be made to the user by comparing previous documents the
user liked with new documents based on TF-IDF and distance measures.

When an item is not a document represented by text, other features to identify the item
have to be extracted. This is most simple when these features can be extracted automatically
[16].

2.3.2. Collaborative recommendations
Collaborative recommender systems recommend items based on historical data about what
other users have liked. For this, generally a User-Item Matrix is used to store ratings users
give to items, an example can be seen in table 2.2. Different scales of ratings are possible.
Usually ratings happen on a Likert scale which normally ranges from 2 up to 10. Other scales
are also possible but usage of those can depend on the use case. Netflix currently uses a
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two point Likert scale to rate items [9]. Which is most likely due to it taking less time to
perform for a user than deciding what grade to give it on a scale of 1-10. Also methods which
require less interaction of the user exist, such as implicit unary ratings [41]. For a webshop
this could be inferred from viewing a product page or purchase of an item. However, because
these ratings are implicit, there is no explicit indication if and when the user dislikes an item.

User/Item 𝑖ኻ 𝑖ኼ 𝑖ኽ 𝑖ኾ
𝑢ኻ 1 1 1
𝑢ኼ 1 1 0
𝑢ኽ 1 0 1
𝑢ኾ 0 1 0

Table 2.2: Example User-Item Matrix with binary ratings.

Collaborative filtering algorithms are implemented in two ways, memory-based or model-
based [16, 20]. Where memory-based algorithms use the User-Item matrix directly and
model-based algorithms use it to train a model offline, which is used for the recommen-
dations.

Memory-based collaborative filtering
First, we will go over memory-based collaborative filtering [20, 29, 55]. As the User-Item
Matrix has two dimensions this can be interpreted in two ways. The first way to predict new
items is based on the user. From the user model with corresponding ratings for items, other
similar users are found by using cosine similarity, as discussed earlier in equation 2.3, or
correlation between rating vectors. The Pearson Correlation 𝑝𝑐 for user 𝑎 and 𝑏, where 𝑛 is
the number of ratings, can be calculated like this [16, 53]:

𝑝𝑐(𝑎, 𝑏) =
∑(𝑎። − �̄�)(𝑏። − �̄�)

√∑(𝑎። − �̄�)ኼ(𝑏። − �̄�)ኼ
∀𝑖 ∈ {1, 𝑛} (2.4)

Memory-based collaborative filtering can also happen through items instead of users. This
is a method often used when a user is looking at a certain item and there is a list of other
interesting items displayed. These are items that other users often find interesting as well.
So similar items based on ratings. These similar items are also found by means of correlation
or cosine similarity with rating vectors as input.

When the most similar users are found, the new items to recommend are found by select-
ing items these similar users liked. When the most similar items are used, other items liked
by users that liked the current item are recommended. Items that the current user already
rated are excluded.

Model-based collaborative filtering
Next is model-based collaborative filtering. In this method a model is trained offline which
is used to recommend items [16, 20]. A widely used approach is Matrix Factorization [20,
43]. The idea behind this method is that the User-Item Matrix can get really large, so a
matrix factorisation is used which results in lower dimensional matrices which are then
used to recommend interesting items. The matrix factorisation is based on the singular
value decomposition of [33] and looks like this:

𝑈𝐼 = 𝑈Σ𝐼ፓ (2.5)

Where 𝑈𝐼 is the User-Item Matrix, 𝑈 the User Matrix and I the Item Matrix with lower
dimensions and Σ is the Singular Value Matrix. 𝑈 contains vectors about how each user
typically rates items, 𝐼 contains vectors about how items are typically rated by users. Di-
mensions of vectors in 𝑈 and 𝐼 are the same [33], and each entry represents a latent factor
and how the user or the item scores on that factor. The Σ Matrix is a matrix with the same
size of 𝑈𝐼 and has only nonnegative real entries on its diagonal [33]. This diagonal represents
the singular values of 𝑈𝐼 and translates the weight of each latent factor from user to item.
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This matrix factorisation model can be trained offline and then a rating 𝑟, for an item 𝑖,
that a user 𝑢 might give can be estimated by the dot product of the factorisation for that user
and that item like this:

𝑟፮። = 𝑈፮Σ፮።𝐼ፓ። (2.6)

2.3.3. Behavioural and intent-based recommendation
Recommender systems traditionally use historical user information in which users handled
explicitly. For example, historical user information such as ratings from the User-Item Ma-
trix, purchases that were made previously or items that other users looked at for item-based
collaborative filtering. Behavioural recommendations do not necessarily focus on this, but
rather on the current behaviour that users exhibit during the session.

In [17], an implicit user feedback model to re-rank query results is made. This feedback
model consists of a set of user actions which represent post-search navigation history. These
user actions consist of features from clickthrough information, such as position of the item
that is clicked or frequency that the link is clicked. In addition to that user actions can also
be browsing features such as time on page, the number of clicks from the search page, or
average dwell time on the page for the current query. With this set of features that is collected
from the navigation history the result list is re-ranked in different ways. The features can be
used to directly re-rank the result list, also a neural net ranker is used to learn weights for
all the features.

Another intent-based recommender system is proposed in [37]. Based on a HiddenMarkov
Model built from clickstream data, it is inferred how likely a customer is to buy an item.
Based on how strong this likeliness is, a different approach is taken to recommend items.
This ranges from showing the top 10 products of the current category, to items currently in
the shopping basket or even personalised discount offers. Which of these methods is used
is determined based on business rules. Interesting about this is that there is not one single
method applied to all users. This seems like a very logical step as users with different goals
might benefit from different approaches. Another important lesson is that the likeliness that
a user is going to buy can change during a session, which is an important concept also seen
in [31].

In [40, 42], the relevance of certain types of items that could be relevant during the current
session of a user are researched. The research happened with a dataset of Zalando and a
test was run with small adaptations to the recommendations of the website. The importance
of short term user intents, items that the user has already seen, discounted items and the
effect of popularity trends in fashion are compared. For the short term intent, it was found
that the average shopping session had 9 visits to different item pages, which in turn belong
to on average 2.7 different categories. With around 330 categories, this seemed to indicate
that users mostly had a certain direction in their navigation and thus a certain shopping
intent. Moreover, it was found that after users looked at a product and then an item of the
same brand, price segment, category or color was shown, there was a significant increase in
the conversion rate [40, 42].

2.3.4. Result diversification
Earlier it was already seen in [49] that the shopping strategy of a user can be detected.
As each shopping strategy has a different focus, it might also need a different variety of
recommendations. Someone who is looking at a low variety of categories probably does not
want to see products from a wide range of categories he or she did not even look at. For that,
result diversification is a technique that might be useful in adjusting results according to the
shopping behaviour of the user.

In [36], three result diversification techniques were tried to make the results for queries
more relevant to the intent behind it. While the techniques are directed at query results,
one of them, Single Pass Clustering, seems interesting as clustering can happen on other
characteristics than just text. First introduced in [39], this clustering method works by
comparing documents against each current cluster. In [36], this happens by means of TF-
IDF. When a certain threshold is not met for any cluster, then the document is assigned to
a new cluster. Lastly, [36] outputs the highest ranked documents of each cluster to output
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for the results. This method is useful as it is able to quickly identify clusters in a set of
documents and give a diverse look into the result set.

2.4. The fashion domain
The domains in recommender systems are widespread from search engine results for Google,
E-commerce webshops such as Zalando or Amazon, but alsomedia platforms such as YouTube
or Netflix. Most approaches have been tested in multiple, if not all, areas. As the results of
a recommender system depend on the data that is used, it is good to keep in mind what un-
derlying characteristics the data possesses. Fashion is a domain that is different from other
E-commerce domains.

The temporal factor is very important in the fashion domain. In [18] it is mentioned that
products in the fashion domain are very short-lived and trends change quickly which results
in sparse transactional data for these products. It is thus not surprising that approaches for
recommender systems in fashion often rely on the features of the products [18, 38]. Then,
the sparse information that exists about what the user is looking for, can be used to gather
other products that the user might find interesting. This can be done in a content-based
way.

Something else to keep in mind with fashion is what is described in [30]. In this article
it is described that users not only have one single personal preference, but users can have
multiple personal preferences for different styles. This is something that was already men-
tioned in the introduction in section 1: different occasions, such as casual and work, require
different styles, in which users, again, have different preferences. Users can be shopping for
these different styles over the course of multiple sessions as well as during a single session.
This is important to detect, and respond to with recommendations.

2.5. Evaluation
The success of recommender systems relies on the quality of the results of the recommen-
dations. This is measured in how well the recommended items actually fit the user’s needs
and interests. In order to test what items are good and which are bad, there need to be
certain metrics to measure what the user thinks about them. With these metrics the rec-
ommenders systems can be compared as to how good the items fit the user’s needs and
interests.. This comparison can happen online and offline. Where an online system actu-
ally performs recommendations, serves them to the user and tests how the user responds to
the recommendations. An offline system only uses historical data of how users interacted
with items and recommends items to users within the space of interactions that already ex-
ist. Both approaches have their advantages and disadvantages. Offline testing is good to
quickly test multiple recommendation approaches as it happens offline, and thus does not
need a fully developed and running system. However, it happens on historical data and as
already mentioned, it can only recommend items from the set of items the user has already
interacted with. While in online testing any item can be recommended and an actual user
response to it can be recorded. It does however need a fully working system to do so. When
making changes to this system, it also directly changes what the user gets to see, so there
are limitations to what you can show to the user. For example you cannot simply show the
user two sets of recommendations and let them interact with both of them.

2.5.1. Offline testing
For offline testing, a data set in which a set of users have rated a set of items is needed. This
data is then often split into a training and a testing set to prevent overfitting. Then multiple
recommender systems are compared on the same data set for better comparison. Two often
used metrics for this are precision and recall from information retrieval [22, 28]. Precision
and Recall are defined as follows:

precision = True Positives
True Positives+ False Negatives

(2.7)
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recall = True Positives
True Positives+ False Positives

(2.8)

Precision represents the fraction of retrieved items that are relevant to the user and recall
represents the fraction of relevant items that is returned [22, 28].

For recommender systems, precision represents the fraction of recommended items that
are relevant to the user, and recall represents the fraction of relevant items that is recom-
mended to the user. These metrics cannot be used in an online test as not all information
for them is available.

2.5.2. Online testing
Recommender systems are also tested online to test how a system works in reality, with real
users. For this a fully implemented system is required, which can then be tested by means
of an A/B test. This method is normally used to test a new method against a control group.
Testing with this kind of test also takes longer than an offline test as the test has to be live
for a certain amount of time. First of all, there needs to be a certain amount of data points
for the measured difference to be significant, this depends on the number of users that are
in each test. Secondly, websites typically have different patterns of how many users access it
each day. These users can also behave differently each day. For example users can be more
eager to purchase items on a Friday afternoon because of the weekend. These are all things
to take into account when running an A/B test.

Metrics covered in the previous section, section 2.5.1, are not useful here as the ratings
that are needed are not always available, as items can be recommended that the user did
not rate yet. Because of that, other metrics need to be determined carefully. These other
metrics could technically be anything. Netflix is a great example for recommender systems,
and in [34] it is detailed how metrics are chosen for the A/B testing. It is explained that
Netflix is a subscription based service and that thus the most important goal is to keep users
subscribed. This is called the retention of users. They also mention that the retention rate
is strongly correlated with the viewing time, so increasing the viewing time normally means
a higher retention rate.

Webshops such as Zalando also run these A/B tests, but with a different business model
than Netflix, they use different metrics. In the end they want to increase their sales, so
the metrics for this then is the conversion rate of users into buyers. They also look at other
metrics such as click-through rate, absolute number of sales and the generated revenue [32].
Depending on what the business thinks is important for them to improve, these metrics can
be adapted.



3
Methodology

In this chapter, the methodology to build a behaviour driven recommender system in the
fashion domain will be detailed. First, the general use-case of a fashion web shop recom-
mender system will be discussed, as well as the motivation why this approach is taken. After
that, the techniques that will be used to build this recommender system will be discussed.

3.1. Use case: Fashion web shop recommender system
Online webshops have the goal to make the user purchase as many products as possible.
An important step to do so is to make the whole shopping process as easy as possible for
the user. Easy site navigation with a proper product search engine are key in helping the
user find what they are looking for. With the growth of web shops everywhere came an
increased number of products, for which web shops applied recommender systems to give
users recommendations of products which might be interesting to them. One of the major
approaches in recommender systems on web shops is the ”others also viewed” section on a
product detail page. This section works with item-to-item collaborative filtering. So for each
item in the shop a list of recommendations is determined. An explanation of this method can
be found in 2.3.2. The input data is a table with an entry for what products each user has
viewed, called the User-Item Matrix. The list of products that gets recommended next to a
product is a list of products that other users most often also view when the current product
is viewed. Because of this the recommendations might cater to the user because of a general
interest pattern that is common across a majority of users. However, a domain as personal
and temporal as fashion might require a different approach that is focused on the user and
their intentions while they are shopping. So instead of the collaborative filtering approach
of recommendations in a fashion webshop, this research applies a different approach to
recommend products to the user, which is based on the shopping behaviour during a session
and the interests of the user during that session.

Web shops often track their users around the website with clicktrackers. The data gath-
ered by this is a basis for the recommender system, as it contains information about what
users look at, what they buy but also what products are of similar interest to users. This
clicktracker data typically looks like, or is at least similar to, this:

date page category price brand material color
13:00:50 category Clothing
13:01:45 product Clothing 49.99 Brand A Cotton Gray
13:02:00 category Shoes
13:02:39 product Shoes 79.99 Brand B Leather Brown
13:12:08 category Accessories

Table 3.1: Example of how clicktracker data typically is structured.

Contained in this data is a lot of useful information about shopping behaviour of the users.

13
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It contains how the user is looking for a product, what the scope of their search is and also
what types of products the user is looking at. As a web shop, this is information you want to
utilise. Especially considering the goal of a web shop, which is to make sure the user finds
what they are looking for. With an insight in these patterns there is a strong potential for a
more personal and suitable recommender system to be made.

3.2. User behaviour & interests
To make useful recommendations to the users based on the information contained in the
data as structured as in 3.1, there are 2 main things that we need: the behaviour of a user
and their interests during a single visit. The behaviour is used to determine the approach
of recommendations that will be taken and the interests for products as a starting point to
recommend new products. For this, we will analyse an offline collected set of data in which
users are identified with a user identifier, where sessions are represented by a set of events
within a single visit split by at most 30 minutes of inactivity.

3.2.1. Feature selection for user behaviour
For the analysis of the sessions and to see whether or not certain behaviour is even present
in users visiting a web shop, it is determined what to look for in the available data. Different
approaches to determining behaviour and intent are considered.

Because click and pageview events are timestamped to easily keep track of when they
happened, the consideration of constructing Markov Chains was made. Markov Chains are
found to be useful to predict specific intentions of the users on the website. As we have seen
in section 2.2.2 with the research from [50], it was seen that it was possible to predict how
likely a user is to make a purchase. This however does not match the goal of this research,
which is not to make a prediction about such a specific intent but rather to capture a more
general shopping behaviour.

To capture such shopping behaviour on the web shop, features from [49] were selected as
the goal of that paper was more in line with the research goals of this thesis. These features
are category variety (𝐶𝑉), product variety (𝑃𝑉) and repeat product viewings (𝑅𝑃𝑉). We define
a session 𝑆, a set of pageviews with categories 𝐶, and a set of products pageviews 𝑃, the
features to capture behaviour are then defined as follows:

𝐶𝑉 = {
0, if |𝐶| = 0
|፮፧።፪፮፞(ፂ)|

|ፂ| otherwise
(3.1)

𝑃𝑉 = {
0, if |𝑃| = 0
|፮፧።፪፮፞(ፏ)|

|ፏ| otherwise
(3.2)

𝑅𝑃𝑉 = 𝑚𝑎𝑥(|𝑝|) ∀𝑝 ∈ 𝑃 (3.3)

Important to note about the sets of pageviews 𝑃 and 𝐶 is that for each session holds:
𝑃 ⊆ 𝐶, because product pages also have a category. Another thing to note, about 𝐶𝑉, is
that webshops generally have multiple levels of categories, with main categories and sub
categories. There is only 1 feature for the category variety, so these levels have to be combined
into this 1 feature. This can happen for example by calculating the feature for each level and
then taking the average over these 3 levels.

These 3 features, 𝐶𝑉, 𝑃𝑉 and 𝑅𝑃𝑉, tell us something about how the user is browsing the
website. It shows how deep or shallow the user is looking at category pages and product
pages, and how directed a user is browsing. These features are not reliant on how they are
ordered which makes them easy to extract from the data. Ordering of the data will become
more important when streaming events online but this will be discussed further in chapter
6.

3.2.2. Detecting shopping modes
With these features 𝐶𝑉, 𝑃𝑉 and 𝑅𝑃𝑉, we want to see whether or not there are certain patterns
in the behaviour of the users. To see if there are any general patterns just as was seen
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before in [49] in section 2.2.2, there were 4 major shopping strategies, Directed buying,
Search/Deliberation, Hedonic browsing and Knowledge building, each with its own pattern
in the selected features. This analysis was done for a nutrition web shop which is a vastly
different domain than fashion, so the patterns might also differ, but seem general enough to
serve as a starting point.

This pattern analysis will happen by means of clustering the sessions together based on
the given behavioural features with the k-means clustering algorithm [35, 46]. This clus-
tering algorithm will choose 𝑘 random sessions as centre points, where the point values are
represented by the selected feature values 𝐶𝑉, 𝑃𝑉 and 𝑅𝑃𝑉 for that session. It will then clus-
ter the remaining sessions to the centre points by means of euclidean distance to the centre
points. A session is assigned to the cluster to which it has the smallest distance. When all
sessions are assigned, the centre points of each cluster are recalculated. This happens by
taking the average of the points in each cluster. Then the clustering starts over. The algo-
rithm will iteratively improve the centre points until the difference between the centre points
of 2 iterations is smaller than a preset threshold value. The output of the algorithm are the
centre points of each cluster. In the next chapter, chapter 5, we will go over how to choose
k. This will influence how many clusters there are. First we want to see how the patterns
match with the shopping strategies from [49]. The different shopping patterns will later be
used to determine how products will be recommended, which fill be further discussed in
section 3.3.3.

3.2.3. User interests & product relevance
To recommend products to a user based on the information that is available about them
during the current session, we not only want to capture a general behaviour of a user but
also the products a user looks at, and which of those are the most interesting. We then get
contemporary interests in products for each user.

While it is impossible to look into the mind of the users and see how interesting a product
is to them, we have to work with the information that we do have. Essentially, we want to
measure the user interaction or engagement with the product page. In the event data that is
available some information is embedded to possibly get an insight into this interaction. For
this we will look at the following set of features:

• The time spent on the product page: 𝑡𝑝𝑝

• The time spent in relevant boundaries on the product page.: 𝑟𝑡𝑝𝑝

• The amount of scroll activity on the product page: 𝑠𝑐𝑟

• The number of pageviews for that product: 𝑛𝑝𝑝

• A custom sequence score, based on the order the products are viewed in: 𝑠𝑒𝑞

• A custom sequence score, based on the order the products are viewed in, combined with
relevant time on the page: 𝑟𝑡𝑠𝑒𝑞

The 𝑛𝑝𝑝 and the 𝑠𝑐𝑟 features are simple. 𝑠𝑐𝑟 is a field in the events so can be easily
extracted and the 𝑛𝑝𝑝 is simply counted. The 𝑡𝑝𝑝 feature is calculated by taking the difference
between the timestamps of the pageview and the pageview that comes after it. 𝑟𝑡𝑝𝑝 is a scoring
feature which appoints a score as follows:

𝑟𝑡𝑝𝑝 = {1, if 𝑡𝑝𝑝 ≥ 5
0 otherwise

(3.4)

Where less than 5 seconds on the page is deemed to be too short and means that the
user is not interested, also called a bounce. The 𝑠𝑒𝑞 feature is a bit more complicated. Given
a category page containing a set of products 𝑃, if a user will click on 1 or more products,
the first will be likely be the most interesting and products after that will be deemed less
interesting. The sequence score 𝑠𝑒𝑞 for a product 𝑝። is calculated as follows:



16 3. Methodology

𝑠𝑒𝑞፩ᑚ =
1
𝑖 (3.5)

In this equation 𝑖 starts at 1 and is incremented each time the user clicks on a product.
When the user visits a new category page 𝑖 is reset to 1. The last feature, 𝑟𝑡𝑠𝑒𝑞 combines the
𝑠𝑒𝑞 and the 𝑟𝑡𝑝𝑝 features, and is the same as the sequence score but appoints a score of 0
when the time on the product page is below 5 seconds.

To find out which feature works best to determine user interest in products, the correlation
score between the features and the conversion rate for a product is calculated. The best
scoring feature will then be used in the online implementation. Important to note, is that all
features will be calculated per product and not per session and then per product.

3.3. Live behaviour based product recommendations
Making a recommender system driven based on behavioural browsing information of the
user at that moment, has certain implications to the design specifications of that system.
Collecting data about the user in real time, consecutively making recommendations which
that user will get to see on a next pageview, poses certain limitations. The most important
constraint is of course time. As described, the recommendations have to be finished and
ready to be sent back to the user as soon as possible. So that when a user visits another
page, the recommendations can be shown. Another constraint is the available data about a
single user session. With an average of 9 product pageviews for the dataset of Zalando in
[42], it shows how limited the data collected about a session can be. With that in mind, the
challenge stands to get as good as possible recommendations out as fast as possible.

3.3.1. Online behaviour detection
With the preparation for user behaviour out of the way with the offline analysis on the click
event data, the detection of behaviour in the live system can happen very quickly. The first
thing that needs to happen is the collection of the same features 𝐶𝑉, 𝑃𝑉 and 𝑅𝑃𝑉. As events
enter the system gradually, in groups, and the features are calculated over the complete set of
available events, the features will have to be recalculated every time a new event enters. This
also holds for the detection of the behaviour for a session which is thus subject to change
over time, just as was found in [31]. With the centre points for each cluster calculated as in
section 3.2.2, the behaviour cluster a session belongs to can be detected by calculating the
euclidean distance to each cluster. The cluster to which it has the smallest distance to is the
behaviour cluster it belongs to. The centre point of this cluster will be used as a basis for the
product ranking for that session. This will be discussed in the next section.

3.3.2. Online product relevance
After the offline feature selection process, described in section 3.2.3, we use the selected
feature to calculate interest scores for each product a user looks at. So when an event
enters the system that tells us that the user has looked at a product page, an interest score
for that product will be calculated according to the selected feature. For each product a
user looks at, this value will be stored once. Meaning if a user looks at a product twice,
the score will be updated and only the newest value will be stored as it is the most recent
information available. This results in a set of product identifiers with corresponding interest
values which will be sorted based on the interest value. The top 1-5 products will be used
as a basis for recommending other interesting products. How many products will be used
will be determined by the user’s behaviour which tells us how directed a user is at a certain
product or product type.

3.3.3. Product recommendations
As previously discussed in section 1.2, the main goal of this research is to make a rec-
ommender system based on the behaviour of users and to test how well this works, and
also compare the performance to traditional item-based collaborative filtering. Making rec-
ommendations based on the behaviour in a session is not something that has been widely
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researched before. Some methods were found, such as in [37], where different approaches
were chosen based on business rules. While these rules are based on the user intent of
how likely they are to make a purchase, there were no direct, automated links between their
behaviour and the resulting recommendations. These links were found in the research of
[40, 42], which had a focus on short and long term intent of users on Zalando and on how
certain types of recommendations performed in those intents. Also a strong link was found
between items users recently looked at and conversion rate when these users were shown
similar items based on brand, price segment, category or color. This seems like a good basis
to make recommendations for users on the time frame of 1 session. Then it can be monitored
what the viewed items are and which seem to be the most interesting and use those to select
other items.

The approach to the recommendations is to fit them to the level of direction the user shows
in their behaviour. When a user, for example, seems to be very directed at 1 type of product,
and thus has a lower level of 𝑃𝑉 but a higher level of 𝑅𝑃𝑉, we want to show only products
of that same type. Whereas a user that has less direction at a certain type but has a higher
level of 𝐶𝑉 we want to show a wider array of product types as well. To achieve this we will
use clustering with a varying amount of clusters to cater to each group of user behaviour.
First, we will discuss how product similarity will be calculated, which will then be used for
the clustering discussed in section 3.3.5.

3.3.4. Product similarity
The next step to recommend relevant products to the user, is to find other products theymight
find interesting. Selecting these products will happen based on similarity between products
interesting to the user. As found in [40, 42], the similarity features brand, price, category
and colour are effective to select and rank products for recommendations. An attribute which
was not mentioned is the material of a product but will also be used as a similarity feature
because for fashion products the material can be very important. Especially with regard to
user intent it can be important to use, as a user might be especially looking for a leather
jacket instead of a synthetic jacket.

For a product 𝑝።, we define a set of features. As mentioned earlier in section 3.2.1, web-
shops generally have multiple levels of categories, for product similarity we only use the
lowest known category level. In addition to that we will define the features brand, price, color
and material as follows:

• The lowest known category level the product has: 𝑐።.

• Brand of the product: 𝑏።.

• Price of the product: 𝑝𝑟።.

• Color of the product: 𝑐𝑜𝑙።.

• Material of the product: 𝑚።.

The product similarity will be calculated as a sum of distance scores for each feature
where a lower distance is higher similarity. For the brand, colour and material it is simple,
and can be seen in equation 3.6, where 𝑓። and 𝑓፣ are the values for a feature for products 𝑖
and 𝑗.

𝑑𝑖𝑠𝑡(𝑓። , 𝑓፣) = {
0, if 𝑓። == 𝑓፣
1 otherwise

(3.6)

The price can happen in multiple ways, by means of price range, as happened in [40, 42],
or as a continuous measure. If used continuous, the distance between prices for 2 products
will be calculated by the absolute difference, and can be seen in equation 3.7.

𝑑𝑖𝑠𝑡(𝑝። , 𝑝፣) = 𝑎𝑏𝑠(𝑝። − 𝑝፣) (3.7)
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If the price is used with price ranges, each range gets assigned an integer and then dis-
tance is calculated the same as for the absolute difference. Which one of the two will be used
is determined by analysing the distribution of product prices and ranges of products viewed
in user sessions and will be detailed further in section 5.4.

The category distance is a bit more complicated as there are multiple levels of categories.
We will work with 3 levels: main, sub and sub-sub categories. The approach is to think of the
category levels as trees, where each main category is connected to the root, sub categories
are children of the main categories and sub-sub categories are the leaves. For 2 products
the distance between the categories is calculated as follows:

𝑑𝑖𝑠𝑡(𝑐። , 𝑐፣) = 𝑑𝑖𝑠𝑡(𝑐። , 𝑙𝑐𝑎) + 𝑑𝑖𝑠𝑡(𝑐፣ , 𝑙𝑐𝑎) (3.8)

In this equation 𝑙𝑐𝑎 is the lowest common ancestor the categories have, so the distance is
equal to the sum of the distances of the categories to that ancestor. In figure 3.1, 2 sample
trees can be found for 2 main categories clothing and shoes. Distances between Chino and
Legging is 2, with distances of 1 to the 𝑙𝑐𝑎 Pants. Chino and Pants is 1, Pants is the 𝑙𝑐𝑎 again
here. Clothing and Shoes is 2 and Coats and Boots is 4, both with the root as the 𝑙𝑐𝑎.

Figure 3.1: A sample category tree with 2 main categories Clothing and Shoes.

The distance between products 𝑝ኻ and 𝑝ኼ then becomes:

𝑑𝑖𝑠𝑡(𝑝። , 𝑝፣) = 𝑑𝑖𝑠𝑡(𝑐። , 𝑐፣) + 𝑑𝑖𝑠𝑡(𝑏። , 𝑏፣)+
𝑑𝑖𝑠𝑡(𝑝። , 𝑝፣) + 𝑑𝑖𝑠𝑡(𝑐𝑜𝑙። , 𝑐𝑜𝑙፣) + 𝑑𝑖𝑠𝑡(𝑚። , 𝑚፣) (3.9)

3.3.5. Clustering products for the recommendations
For different shopping patterns it was thought to be useful to have different approaches in
recommendations. For example a user that is only looking at 1 type of product might benefit
from other products of that type, while a user that has a more orienting style and is thus
looking for multiple types of products might not benefit from recommendations of 1 type
of product. We wanted to diversify the results for the latter user by means of clustering,
while still showing useful products to the former user. This is achieved by determining the
amount of centre products used for the clustering which conveniently matches with the user’s
interests given by their behaviour determined in section 3.3.1.

With the top 1-5 products from section 3.3.2 as centre products and a selection of other
available products to use for the recommendations, clustering of the products happens with
the similarity measure from section 3.3.4. They are then ordered by the distance, where again
lower distance is better similarity. It can happen that 2 products have the same distance to
the centre product and then a tie-break needs to happen. This can happen in 2 ways, either
by price distance if used in a continuous manner or by popularity of the products if price is
used as segments. Again, this will be determined later in section 5.4. The products that will
be recommended to the user are selected by going over the 1-5 clusters and each time the
highest product of the cluster will be selected until there are 5 products to recommend.



4
Behavioural recommender system at

Fashionchick
In this chapter we will outline the platform where this research will take place. We talk about
the use case of Fashionchick, how it differs from traditional webshops and what that means
for their business model. After that, we will discuss the shop of the website itself and the
recommender system that is used in the shop.

4.1. Use case: Fashionchick
Fashionchick.nl, owned by Sanoma Media Netherlands B.V., is a fashion platform targeted at
women in the range of 20-50 years [1]. The website lists fashion and beauty products in the
shop and offers fashion, styling and beauty advice by posting blogs, articles and advertorials
according to the latest trends. Their goal is to inspire women to find the right items within the
large number of fashion and beauty products that are available online today. Fashionchick
has its own editors who write the pieces on the website and select products that go with
it. These products are selected from the products listed in the shop on the website itself,
giving the user a full experience within Fashionchick.nl. The products that are offered in the
shop are not its own and no products are sold by Fashionchick. It is thus not a traditional
webshop, but it lists products from other webshops and brands. It does this in a way the
customer can quickly compare products from multiple sources. When a user would like to
buy a product he or she can do so by clicking through to the corresponding webshop.

4.1.1. Business model
As Fashionchick does not sell products on the website the business model is different from
a traditional e-commerce platform which does sell products. The source of income comes
from the ad space and advertorials that are sold, but also from the traffic that is sent to
the external webshops. Fashionchick closes a deal with a brand or a webshop, which then
provides a feed of products to list on the website. When a user clicks on 1 of the products
and is sent to the external webshop, the webshop pays the cost per click (CPC) of 32 cents
to Fashionchick [2]. The compensation is agreed upon with over a hundred webshops. With
feeds webshops provide, information that is displayed is kept up to date and matches the
information on the original webshop.

This business model Fashionchick has, based on CPC, is a major difference with tradi-
tional webshops. For traditional webshops the conversion rate is measured by the number of
purchases over the number of sessions, while for Fashionchick conversion rate is measured
by the ratio of number of clickouts over the number of sessions. On Fashionchick.nl the
customer journey is also different from a normal webshop. For a normal webshop this is a
user browsing their products until a purchase is made and generally that is the end. For
fashionchick it is different because a conversion, a click to an external webshop, is not the
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end of a journey. Users might return after they found out that the product followed was not
what they were looking for after all and the journey continues.

4.1.2. Website
The website of fashionchick has 2 major parts, the inspiration section, which lists all the ar-
ticles and advertorials, and the shop, which contains the products of the external webshops.
Only the shop will be covered, as that is the relevant part for this research.

The shop is divided into fashion categories such as clothing, shoes or bags as well as
accessories and beauty products. These categories all have a product listing page, which
lists all the products for that category. An example for this can be seen in figure 4.1. On the
left of this page, there is a selection box to narrow down the products with sub categories, as
well as filter options beneath the sub categories, which are not visible in the screen capture.
When a user hovers over a product tile, a button to go to the webshop of that product becomes
visible. The user can either click that button or click on the rest of the tile to go to the product
detail page within Fashionchick.nl.

Figure 4.1: A category page for clothing.

On the product detail page, which can be seen in figure 4.2, extra information about the
product can be seen, such as the current available sizes, attributes or shipping information.
On a product detail page, there is a button to go to the webshop for that product. Because
of the business model, Fashionchick always strives to increase the number of clicks that is
sent to the webshops by making the website easy to navigate, so that people can find what
they need easily.

The section called “Anderen bekeken ook”, or “Others also viewed”, on the product de-
tail page is another way to try and help find interesting products. This section contains
product recommendations based on the standard item-to-item collaborative filtering. On the
desktop version, this box shows 3 products, whereas the mobile version shows a scrollable
box which shows 5 products. As collaborative filtering is a method that relies on historical
data about what products users look at together, these combinations might change overtime
just as fashion trends change and thus products are combined with new, different products.
Because this is updated regularly this means that there is data sparsity, which results in
incomplete recommendations for the products. Not all products get recommendations, or
products might get less than 3 or 5 products recommended.

Not showing products is something that is unwanted, as it prevents users to easily find
other interesting products. To make sure there are always enough products to show on
the product detail page, Fashionchick collects extra products to show when there are not
enough products collected from the recommender system. It does this by looking at the
most popular products from the lowest available sub category of the product that is being
viewed. The recommendations box is then filled to 3 or 5 products with these most popular
products. This ensures that there are always products shown, and these products are at
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Figure 4.2: A product detail page.

least somewhat relevant to the user.





5
Offline data analysis

In this section we will talk about the offline data analysis that is necessary before the im-
plementation for the live system can be done. We will analyse a dataset with click events to
get a sense of user behaviour on Fashionchick.nl. We will also analyse what users view and
which products they find more interesting. Lastly, we will analyse which price type to use
for the product similarity measure from section 3.3.4.

5.1. Dataset
For the offline data analysis, we will get raw data which needs to be structured better.
Sanoma has a storage of their own type of events called “SACEvents” with pageviews and
other interactions with their sites. From this storage, a dataset of the first 2 weeks of Septem-
ber is collected. The choice for 2 weeks of data is made because of the A/B test that will be
run in the end, which will also run for 2 weeks, and because of that gets 2 data points for each
day. This is to eliminate chance in the results. This will be discussed more in section 7.1.4.
The collected data is sorted on the timestamp. First it has to be split on the cookie identifier
for each user and then it will be split again into separate browsing sessions. Splitting the ses-
sions happens with a timeout set on 30 minutes, this is an often used approach [3, 23, 48].
The result then is a dataset of user sessions with a duration of at most 30 minutes.

The best possible ordering of the data is by timestamp, as it is the only way of telling what
event happened before another. But consecutive pageviews might not be directly linked to
each other. When we looked at the Google Analytics page of Fashionchick it became clear
there is a significant part of the users that enter the website via google. So a plausible
situation is that a user is searching on google, clicking on a link to Fashionchick, goes back
to search results and then clicking on another link to Fashionchick. The result of this in the
data is a sequence of pageviews like this: 𝑆 = {𝑝ኻ, 𝑝ኼ, 𝑝ኽ, 𝑝ኾ, 𝑝኿}. Where 𝑆 is a session and 𝑝፧
is a pageview. Now it might seem like these pages are linked in this order, but it is possible
this navigational path is not possible via normal navigation on Fashionchick.nl. When a user
visits sets of pages via google the data is actually more like this: 𝑆 = {{𝑝ኻ, 𝑝ኼ}, {𝑝ኽ, 𝑝ኾ, 𝑝኿}}. Where
the user entered on 𝑝ኻ via google, clicked to another page, left Fashionchick and entered on
𝑝ኽ via google again. Also, users can have multiple tabs open which makes the ordering even
more complex and it is not possible to track how many tabs are open and when they are
closed. Because of this the ordering and linking of pageviews will not be pursued any further
and the assumption is made that the order is the same as the order obtained through sorting
by timestamp. Because of the feature selection, as discussed in section 3.2.1, this will not
be a problem.

The available fields that are important in the click event data for the analysis can be seen
in table 5.1. There are more besides these, such as the information about A/B test groups
and product information, but those will be discussed later when they are used.

There are a lot of events in the data that we do not need and will not use. Because of that we
remove those before the analysis. We filter out all the events that have the value 𝑟𝑒𝑐_𝑠ℎ𝑜𝑤𝑛
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Field Explanation
cookie Unique identifier for a user on a single

machine
event Type of event. Options: pageview,

clickout, rec_shown, rec_clicked
page_type Type of the page. Options: front-

page, category, product, outpage, ar-
ticle, Question detail.

category Full category string identifier with three
levels, main, sub and sub sub cate-
gories. Different levels of categories
are separated by commas.

scroll The amount of horizontal and vertical
scroll on a page.

Table 5.1: Explanation of important fields that are used.

or 𝑟𝑒𝑐_𝑐𝑙𝑖𝑐𝑘𝑒𝑑 from the 𝑒𝑣𝑒𝑛𝑡 field as we do not do anything with the interaction with the
recommendations yet. For the 𝑝𝑎𝑔𝑒_𝑡𝑦𝑝𝑒 column we remove the events where the value
equals 𝑓𝑟𝑜𝑛𝑡𝑝𝑎𝑔𝑒, 𝑜𝑢𝑡𝑝𝑎𝑔𝑒, 𝑎𝑟𝑡𝑖𝑐𝑙𝑒 or 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛፝𝑒𝑡𝑎𝑖𝑙” because the focus for the behaviour is
on the pages that are in the shop.

5.2. Detecting shopping behaviour
For the analysis of shopping behaviour we looked at the literature and found a great exam-
ple in [49]. Based on that research we defined our own features to distinguish behaviour
by in section 3.2.1, and with that information we can also define some expectations about
what our expectations are relating to the first research question, RQ1: How can browsing
behaviour best be categorised and what shopping patterns can be discerned? The aim of this
research question is to find out how to group the behaviour of users into useful clusters,
which can be used as a basis to recommend relevant products to those users. We expect to
see similar clusters as in [49], where four notable clusters are found which are as follows:
directed buying, search/deliberation, knowledge building and hedonic browsing. Patterns
in those clusters are defined by the three major features, which can be seen in table 2.1.
As our features are directly based on those features, we can compare our clusters to those
shopping strategies and see if and how the feature patterns match. We will now move on to
the clustering.

With the data split in separate sessions we start the analysis by extracting the features
𝐶𝑉, 𝑃𝑉 and 𝑅𝑃𝑉 from section 3.2.1 for each session. Table 5.1 already showed it: in the
data from Fashionchick there are 3 levels of categories separated by commas. These are split
for the analysis, and the feature 𝐶𝑉 is calculated for each level. These levels are treated as
a tree structure, just as in section 3.3.4, where the main category is the parent of the sub
categories and the sub-sub categories are children of a sub category. We then get features:
𝐶𝑉_𝑚𝑎𝑖𝑛, 𝐶𝑉_𝑠𝑢𝑏 and 𝐶𝑉_𝑠𝑢𝑏_𝑠𝑢𝑏.

For the behaviour analysis, we do not want the category variety to become too strong,
as there now are 3 features for that. To determine how to use these features, we looked at
how the distribution of visits over the categories is for each level by calculating the entropy.
Looking at the entropy of each category level gives us an idea whether or not we can focus
on one of the features or if we lose information if we do that. For a user who looks at 5
different products, the sub-sub category can change while the sub and main categories stay
the same. In reverse that is not possible, because when the main category changes the sub
and sub-sub categories always change with it. Users can also visit the category listing page
for a main category which results in empty entries for the sub and sub-sub categories. In
table 5.2, we see the found entropy values and see, as expected, that the entropy for the
sub-sub category is highest, main is the lowest and sub is in the middle. Because some
users visit more product pages than others and there is quite a difference in entropy we do
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not want to use only 1 of these features, but we want to combine the variety features for the
3 levels by taking the average of the features 𝐶𝑉_𝑚𝑎𝑖𝑛, 𝐶𝑉_𝑠𝑢𝑏 and 𝐶𝑉_𝑠𝑢𝑏_𝑠𝑢𝑏.

Category level Entropy
Main 2.12
Sub 3.54
Sub-sub 4.42

Table 5.2: Entropy for the categories

Before we start the clustering of the sessions into groups based on behaviour, we want
to see if there were major outliers by means of the variety features. Because the clustering
uses the euclidean distance measure and 𝐶𝑉 and 𝑃𝑉 features are values between 0 and 1, the
𝑅𝑃𝑉 feature needs to be normalised in order to not affect the results too much. Its outliers
however negatively affect this because there might be some really large values leading to the
majority of the sessions to fall into only a small portion of the normalised values. In the
histogram in figure 5.1, we see the tail stretching to 30 with only a small frequency and there
turned out to be 1 session with an 𝑅𝑃𝑉 value of 350, which need to be filtered out. Judging
from the histogram, a cap for 𝑅𝑃𝑉 is set at 15. Sessions with an 𝑅𝑃𝑉 value higher than 15
are removed.

Figure 5.1: Repeat product viewings

We then start the k-means clustering. First, we have to set input values. The number of
iterations is set at 100, as this was thought to be enough and the duration of the algorithm
did not matter too much. The tolerance value, which makes sure the algorithm stops when
there is not much change in the centre points, was set at 0.0001, as smaller values did not
really result in a difference in clusters. Lastly, we do not really know yet what 𝑘, the number
of clusters, should be so first we started with 𝑘 = 3, then with 4 and with 5 to see how that
would split the sessions into clusters. The results of this can be found in figures 5.2, 5.3 and
5.4.

These scatterplots show all of the sessions of the dataset on the 3 axes. The legends
show the colours/shapes of the groups corresponding with the centre points and sizes of the
groups. The scatterplots do not actually show the sessions split up into easily distinguishable
separate clusters. As a matter of fact, when we look at plane like group of sessions on the
low end of the product variety axis, the split runs with a straight line through these sessions.
Because there are no distinguishable separate clusters this seems strange at first, but the
split does make sense. In clusters used for behaviour classification we want to use as much
of the variation in the features for classification, if then a group of sessions has the same
value for one feature but varying values for the remaining two it is desirable to split on those



26 5. Offline data analysis

Figure 5.2: Clustering with k = 3.

features with great variation. In these scatterplots the sessions that have a value of zero for
𝑃𝑉 are spread out wide over the remaining two axes 𝑅𝑃𝑉 and 𝐶𝑉. A split through such a
plane is what we want to see. One important thing to note is the plane of sessions for which
the product variety is zero, or almost zero. This plane is the most disjunct of the rest because
of the way the feature attributes the value zero when there are no product page views in a
session, or a session just has a large value for 𝑅𝑃𝑉 and a low value for 𝑃𝑉. A gap then exists
between these sessions and the other sessions, but still groups with a low product variety of
both zero and non-zero values are made, which is good because this means the gap is not
too big.

Figure 5.3: Clustering with k = 4.

Comparing the clusters between the k values 3, 4 and 5, it seems that 3 clusters is too
little for a good separation. The reason that 3 is too little, is the large purple/square group
in figure 5.2, which covers the whole axes of the RVP feature. Especially when the 𝑃𝑉 is
high we want to distinguish users based on 𝑅𝑃𝑉 because users that view a lot of different
products can be separated by how many repeat viewings happen on a single product. This
is an important indication of how directed a user is towards a single product or not. Then,
moving on to 4 clusters in figure 5.3, we see that a split emerged in the plane with high 𝑃𝑉
which is what we want to see. However, looking at the centre points, we have 2 very similar
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groups, purple/square and orange/cross, which are almost only divided by the feature 𝐶𝑉. In
the scatterplot with 5 clusters in figure 5.4, these groups are further divided with a separate
group which has low values for each of the 3 features. It seems only logical to have these
sessions split off from the rest, as this is a group of sessions in which users only visited in
a very shallow manner, which is a difficult group to recommend items for. Additionally, 5
clusters seems like a good split as the remaining 4 groups have a at most 1 of the 3 features
being similar, where the other 2 features differentiate from each other. We did look for higher
values of 𝑘, but that did not seem to result in more logical clusters of sessions with the centre
points only becoming more similar. For that reason these plots are not included.

Figure 5.4: Clustering with k = 5.

We compare the centre points of the 5 clusters with the shopping strategies from [49] in
table 2.1, where centre point values from 0 to 0.33 is low, 0.33 to 0.66 is moderate and 0.66 to
1 is high. We do see some similarities in behavioural patterns but not fully matching groups.
In figure 5.4, with 5 clusters, we see a match of the yellow/star and blue/circle centre points
with the search/deliberation and knowledge building patterns from table 2.1. The centre
points of the other groups do not match a pattern of the shopping strategies in that same
table. While there are around 4 groups, group number 1 is a group of shallow browsers, the
feature values of some groups do match the behavioural patterns of the literature and some
do not. It was not expected that they would perfectly match, as the measurements happened
on different websites and in different domains. It is, however, interesting to see at least a
somewhat similar gradation in how directed users are browsing the website. As a result of
this, we cannot match the shopping strategies found in [49] in a 1-to-1 relation to the found
clusters, and thus we will not use the same labels as in [49]. Despite that, we can identify
users as browsing shallow, or looking at a high or low variety of products and categories.
The 5 cluster centre points will be used in the online system to classify users into 1 of the
groups. After this we will refer to the clusters with numbers in the order of appearance in
figure 5.4.

5.3. User interests & product relevance
Next up is the method for finding products that are interesting for the user. As discussed in
section 3.3.2, the features used to see whether a product is relevant to the user are: time,
relevant time, scroll, number of pageviews for a product, the product sequence feature and
the sequence combined with relevant time. These will all be scored with Pearson correlation
against the conversion rate for products. As for Fashionchick, conversion rate is a bit different
and is determined with the number of clickouts, and thus features will be correlated against
the number of clickouts per product.

In table 5.3, the correlation scores can be found. We will now go over each score and talk
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Feature Correlation
𝑛𝑝𝑝 0.9468
𝑡𝑝𝑝 0.1245
𝑟𝑡𝑝𝑝 0.4969
𝑠𝑐𝑟 0.9168
𝑠𝑒𝑞 0.7868
𝑟𝑡𝑠𝑒𝑞 0.7869

Table 5.3: Pearson correlation with the number of clickouts.

about what it actually means and if it is usable. First off we have the number of pageviews for
a product. A correlation score of 0.94 is found, while it is really high, it does however seem
artificial because clickouts can happen from category listings and product detail pages. So
it is only natural that more views on the product detail page means more clickouts for that
product. Next is the time on a product page. This is far lower than expected and thus not
usable, not even with relevant time which is higher but not high enough. Then the amount
of scroll on a page is also really high but also seems to be too directly linked to the number
of pageviews. Then, lastly, we get to the product sequence features. These features are a
bit more elaborate and that actually turned out pretty well. A correlation coefficient of 0.78
is a fairly strong positive correlation between both the features 𝑠𝑒𝑞, 𝑟𝑡𝑠𝑒𝑞 with the number
of clickouts. Even though it is lower than some other features, this feature is less directly
linked to the number of pageviews. In addition to that it can also differentiate between
products better because of products coming earlier in the sequence getting a higher score.
The difference between using and not using relevant time is minimal, but as there was a
large difference between only using time and relevant time the feature product sequence
with relevant time will be used to determine product relevance.

5.4. Product similarity
In section 3.3.4, it was discussed how the product similarity is determined, but the price
feature is not definitive yet. There are 2 options to use the price, absolute difference and
absolute difference between price segments. Both options have their advantages and disad-
vantages. To see which one we are going to use we want to see how each option matches
to what users are looking at in a session. For that, we are going to look at the distributions
of how much users look at products of a certain price and price ranges. Then, we are going
to see what the median absolute distance is to the median for each session for both options
[51]. This will show how close users stick to a certain price and what option fits better to
select similar products.

The price ranges that will be used are the ones found on fashionchick.nl and each range
is assigned an integer value and can be seen in table 5.4.

Range Price values p
0 𝑝 < 10
1 10 ≤ 𝑝 < 30
2 30 ≤ 𝑝 < 50
3 50 ≤ 𝑝 < 70
4 70 ≤ 𝑝 < 100
5 100 ≤ 𝑝 < 200
6 200 < 𝑝

Table 5.4: Price ranges on fashionchick.nl.

Histograms with the distributions of the 2 options are made and these can be seen in
figure 5.5. Only prices up to 200 euros are used for these histograms, that is why in the
right histogram there is no 6th range.

In the histogram with the actual prices we see, as expected, an asymptotic distribution



5.4. Product similarity 29

Figure 5.5: Price distributions of continuous values (left) and ranges (right).

where the majority of the products viewed are cheap and there are less products with higher
prices. With the price ranges we see a much more evenly distributed histogram. That is most
likely how the ranges were chosen to begin with. To see if this distribution of products over
price ranges is more desirable, we calculate the median absolute deviation [51], we do this
to the mean of prices and price ranges within each session and make histograms from the
results. These histograms can be seen in figure 5.6.

Figure 5.6: Distribution of median absolute distances to the median for continuous values (left) and ranges (right).

In the left figure we see for the absolute price distances that there is a large variety in
median distances to the median, whereas for the price ranges this is equal to zero. This
means that users do shop within the price ranges provided on the website and practically
do not deviate. The conclusion can be drawn that this is a good measure to differentiate
products which the user is or is not looking for. Therefore, we will use price ranges instead
of the actual price as one of the distance features. Actual prices will also not be used as
tie-breakers, instead, the popularity of a product will be used for this. Popularity is an entry
in the data about a product in the ElasticSearch engine Fashionchick uses, more on that in
chapter 6





6
Implementation live streaming &

recommender system
After explaining the general approach for the behaviour driven recommender system in sec-
tion 3.3, the main parts for the actual recommendations are clear. In this chapter the im-
plementation of the live streaming and recommender system will be discussed. We will cover
important decisions concerning the infrastructure and how to get the recommendations back
to the website. First we will give a schematic overview of the full system with a short expla-
nation, to get a better understanding of what components there are. After that we will go
over each component in more detail and discuss the choices that were made.

Figure 6.1: Schematic overview of the behaviour driven recommender system.

In 6.1 we see the schema of the implemented system. The great rectangle is the im-
plemented application in Scala which starts a Spark stream [12]. All the components that
are outside of this rectangle are external resources that the application communicates with.
First, the connection from which the spark streaming gets its data is the Apacha Kafka queue,
which was already present at Sanoma [7]. Then, each time a batch of data is collected, for
each session that has new information the behaviour is detected and the clustering is started.
For the clustering, products that are available on the Fashionchick website are used. These
products are collected with a python script from Fashionchick’s Elasticsearch engine [6] and
stored in a local Postgres database. After the clustering, the top product for each cluster is
selected and these products are stored in Amazon DynamoDB [5]. From here, the website

31



32 6. Implementation live streaming & recommender system

can access these recommendations by making a call to an AWS Lambda function [8].

6.1. Spark streaming
For a system to make recommendations based on behavioural aspect within a user session
and based on the products that a user views in that same session, a live streaming of events
is necessary. Sanoma already had this running with an Apache Kafka platform. This queue
contains SACEvents for all of Sanoma’s websites, with information about the users, the web-
site and a custom field which the website can fill in according to its needs. This queue can
be live streamed by a Spark streaming application which we implemented in Scala. This
application gets a batch of all the new data that entered the queue, since it registered to the
queue, and this happens at a preset time interval. This interval can be set as big or as small
as needed, but most important is that the collected batch is processed within the interval
time. Spark streaming is a distributed data platform, but for this research only a single AWS
instance was used, as that was enough to handle the computations in time. The interval time
at which spark streaming collects the new batch of data that entered the queue is ideally set
as low as possible to get data as often as possible. For development however, this interval
was initially set at 30 seconds.

6.2. Feature extraction & user interest logging
With the streaming of the data in place we needed to filter the data stream to get only
SACEvents for Fashionchick and extract the features as described in 3.2.1. Users are identi-
fied by a cookie stored on the user’s machine, and sessions for these users are sets of events
split by at most 30 minutes of inactivity, as discussed in section 3.2. For each session these
features are extracted and stored in memory, as they are needed directly and every time new
data for that session is contained in the new batch. To prevent the memory from getting full,
we remove a session from memory and write its information to the disk when that session is
timed out because it had no activity in the last 30 minutes.

Besides the feature extraction we also store information about the user’s interests within
the session. The SACEvents have information about which product pages the user visited.
How relevant each product is, is determined by the product sequence with the relevant view-
ing time, as determined in section 5.3. Each product a user viewed then has a relevance score
and the top 𝑛 products with the highest score are selected to be centre points in the recom-
mendation clustering, where 𝑛, the number of clusters, is set by the detected behaviour. With
1 of the centre points from figure 5.4 as the detected behaviour, 𝑛 is equal to:

𝑛 = max(⌊𝑃𝑉 ∗ 5⌉, 1)

Where 𝑃𝑉 is a feature from the detected behaviour and 5 is used because there are 5 products
displayed on the product detail page. On the computer the website shows only 3 products,
but 5 products are showed within a scrollable box onmobile. Themaximum from the rounded
value and 1 is taken because from the rounded value a zero can occur and we always need
at least 1 product. It can happen that a user does not look at any product detail page and
thus there are no products to use as centre points for clustering. In this case we take the
most popular products of the top 𝑛 categories a user looked at.

6.3. Behaviour detection
Each time a batch contains information about a session the new information is added to that
session in memory and the features 𝐶𝑉_𝑚𝑎𝑖𝑛, 𝐶𝑉_𝑠𝑢𝑏, 𝐶𝑉_𝑠𝑢𝑏_𝑠𝑢𝑏, 𝑃𝑉 and 𝑅𝑃𝑉 are updated.
Because of the updated features the behaviour has to be detected again. This means that
the detected behaviour is definitely subject to change as more information gradually comes
available. Detecting the behaviour happens as described in section 3.3.1, and the cluster
centre points from the clusters in figure 5.4 are used to do this. The 5 features 𝐶𝑉_𝑚𝑎𝑖𝑛,
𝐶𝑉_𝑠𝑢𝑏, 𝐶𝑉_𝑠𝑢𝑏_𝑠𝑢𝑏, 𝑃𝑉 and 𝑅𝑃𝑉 are extracted rom the session information and the category
features are combined into 𝐶𝑉 by taking the average again. The centre point to which the
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session has the lowest euclidean distance is stored within the session data for use during
the recommendations process.

6.4. Recommendations clustering
Looking at the schema in figure 6.1, we still have to cover the lower part with the cluster-
ing. The clustering has 3 inputs: the detected behaviour, the centre point products and the
products to be clustered. The detected behaviour influences how many relevant products are
used as centre points and thus how many clusters there are. The top 5 visited categories are
used to determine what products are selected from the local database for the clustering.

First, the local database is filled by taking a limited set of products from Elasticsearch.
This search engine is also used by Fashionchick to list products on the website, but contains
too many products to use in clustering. To limit the amount of products we first collect the 50
most popular products for each available sub-sub category, which are about 600 categories,
and store these in the local Postgres database, which then contains approximately 30.000
products. Every 5 minutes, the script is run to collect new products and keep the database
up to date, as products can sell out and become unavailable.

Which products are selected from the local Postgres database to use in the clustering de-
pends on the focus of the session, which can either be on products or on categories. Clusters
with a high 𝑅𝑃𝑉 value were determined to have more focus on products and clusters with a
low 𝑅𝑃𝑉 value to have a higher focus on categories. The clusters and their focus can be seen
in table 6.1. Note that the clustering is only started if the session has more than 1 page view
and does not have the “shallow” focus for the detected behaviour. This decision was made
because for these sessions there was not enough information to recommend items effectively.

Cluster PV RPV CV Focus Details
1 0.013 0.133 0.169 Shallow No particular direction.
2 0.986 0.098 0.421 Categories Wide focus on multiple

categories with multiple
products.

3 0.004 0.521 0.176 Products Very narrow focus on a
single or some products,
but multiple views for at
least 1 product.

4 0.025 0.122 0.596 Categories Wide focus and mainly
viewing categories with-
out clicking through.

5 0.967 0.506 0.142 Products Narrow focus, multiple dif-
ferent products with re-
peat viewings.

Table 6.1: The 5 clusters and their focus.

For sessions with a focus on products, categories are selected by taking the categories
from the lowest available category level from the 𝑛 most relevant products. For sessions with
a focus on categories, categories are selected by taking the 5 most viewed categories from a
session. With the selected categories, queries are done to the local database to select the 50
most popular products for each category if it is a sub-sub or a sub level category and 100 if it
is a main category. Depending on the session data, and how many products and categories
are actually viewed, these can be less than 5 or 𝑛. The amount of selected products can thus
vary from 50 to 500.

Then the selected products are clustered to the centre point products as described in sec-
tion 3.3.5. When the clustering is done, for each cluster we take the product with the lowest
distance to the centre point product and do this until we have 5 products to recommend to
the user. Because there is no information about which product page the user will view next,
and we do not want to recommend a product on its own product page, we also make a list of
5 backup products in the same way as the first 5 products. The backup list also contains 5



34 6. Implementation live streaming & recommender system

products as we want the product to be from the same product cluster as the product that is
going to be replaced.

These 2 lists of products are stored in an AWSDynamoDB storage with the cookie identifier
as a key. When a user then visits a product page the website can get the recommendations
by calling the lambda function to access DynamoDB. The lambda function is called with the
product id of the current product page, and with this the lambda function will check if that
product is in the list of recommendations. When that happens, that product will be replaced
with the corresponding product from the backup list.



7
Experimental setup

In this chapter, the experimental setup used to test the implemented system from chapter
6 will be discussed. With this test setup we will also try to find answers to the research
questions. First, we will discuss the A/B testing platform used to divide users over separate
variations, what type of recommendations will be served to each variation and what the
duration of the test will be. We will also talk about how the test results will be logged and
lastly we will cover the hypotheses of this research.

7.1. A/B testing
Sanoma has an online performance team which tests new features and visual adaptations
on the websites before they go live and they make use of the VWO A/B testing platform [14].
With this platform we were able to tag users that visit a certain web page within the website.
By giving them different tags, they are divided into groups and each group is served a different
variation of the website. Users are tagged to be able to serve them the same variation when
they visit the website later. For each variation, a percentage of the total user flow over that
page can be set to manage how many users are tagged for each variation. This test is then
run for a set amount of time to see wether or not there is a difference in interaction with the
website between these groups. Interaction usually is the conversion rate, as that is what an
e-commerce website would like to increase. VWO acts by running code on the web page to be
tested and when that runs 2 things happen. First, the user is tagged, and then, based on the
tag a user gets, the web page is altered. This all happens so quickly the user does not even
know it happened. At Sanoma it was also setup to broadcast the tag into the SACEvents, so
applications using the SACEvents know what variation a user is in.

7.1.1. Testing variations
On the product detail page of Fashionchick.nl there is the box with the recommendations
through item-to-item collaborative filtering. We will test the behaviour driven recommenda-
tions in this location instead of the original recommendations Fashionchick currently uses.
The main thing that needs to be tested in this A/B test is how well the behaviour driven
recommender system performs compared to the item-to-item collaborative filtering. The first
variation, will be the item-to-item collaborative filtering and will act as the Control group.
The second variation, variation A, will be the behaviour driven recommender system. With
the VWO platform a test is run on the product detail page and when a user visits that page he
or she is tagged and an environment variable will be set so that the website knows which rec-
ommendations to collect. If the user is in variation A the website will make a call to the AWS
Lambda function to get the behaviour driven recommendations generated by our system.

Besides the comparison between Control and variation A, we also want to test how well the
selected recommendations method works for each detected behaviour group. We want to see
if a wider variety in recommendations indeed matches the user behaviour to look at a wide
variety of categories and vice versa. In order to test this we made a third variation, variation
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B, in which the behaviour driven recommender system works the same as the one in variation
A, except for the behaviour detection. In variation B we first detect the behaviour, and then
randomly select one of the other behavioural clusters so that the recommendations method
does not match the behaviour as originally detected. Recommendations are then generated
based on the randomised behaviour cluster. If the user then opens a product detail page the
recommendations are served to the user and the interaction is captured.

Implementation of variation B was a bit different because of how the VWO platform works.
As VWO only tags users when they open a page that a test runs on, that is the first moment
we can know in the backend of the streaming application what variation a user is in. In a test
that requires randomisation of the assignment of the behaviour cluster and then generate
recommendations based on that, knowing what variation a user is in the moment that user
opens a product detail page is too late. For this the decision was made to run the test for
variation B separate from the Control and A, and on the whole Fashionchick shop. A user
then is tagged as soon as he or she opens any page of the shop and this makes sure there
is more time before a user potentially opens a product detail page. Because this test was
separate, extra care was needed for user tagging as the platform needed to be configured to
only tag users in a way that they are mutually exclusive with the Control and variation A,
and also that it has approximately the same amount of users. Each group was assigned to
have a third of the users.

7.1.2. Hypotheses RQ2 and RQ3
Now that we know what variations we are going to test, we will define a set of hypotheses
alongside the second and third defined research questions from section 1.2. We start with
the second research question, RQ2: How effective is recommending products based on the
user’s browsing behaviour? For this question the hypotheses then become:

RQ2-H1: Behaviour driven recommendations are more effective than traditional item-to-item
collaborative filtering.
RQ2-H2: Recommending a narrowed selection of products is more effective for behaviour with
a more directed focus.
RQ2-H3: Recommending a wider array of products is more effective for behaviour with a wider
focus.

This research question covers the recommendations of the system and more specifically
the performance of selected recommendation methods to the corresponding behaviours. The
first hypothesis should help determine how well the behaviour driven recommender system
performs compared to the traditional approach. The approach in this research is experimen-
tal and it is useful to see how it compares to a well established recommender system. As
we theorise that users visit the website with a certain intention, we expect behaviour driven
recommendations to perform better than the traditional approach. Performance is measured
by means of a set of metrics which indicate how the user interacts with the recommenda-
tions. More clicks on the recommended products means that these products make the user
want to see more of it. We will talk more about the metrics that will be used in the next
section, section 7.1.3. Hypotheses 2 and 3 focus the combination of the chosen methods
with the detected behaviour and if these combinations are indeed appropriate. Other similar
approaches to these kind of recommendations have proven to work [40, 42], and thus it is
expected that the chosen methods work best with the corresponding behaviours.

Then, research question three, RQ3: How feasible is a session based approach with real-
time generation of recommendations?

RQ3-H1: The short time span of a browsing session is long enough to generate relevant rec-
ommendations to users individually.

To test if a behaviour driven recommender system is feasible, a full working system was
implemented. The last research question focusses on the temporal nature of the system.
Making recommendations based on behaviour that happens live means working in a short
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time span and for all of the active users, which is a challenge. There was not much literature
that did something similar as this research aims to do, so from a literature perspective it is
hard to say wether it is feasible. However, with the chosen methods, which are very fast in
computation time, we expect it to be feasible to exploit this short time span. This is reflected
with the hypothesis for research question 3.

7.1.3. Testing metrics
To compare the three variations, we need metrics to measure how well each variation per-
forms. As mentioned in the previous section, the conversion rate is usually the main feature
on which the system is evaluated. In the end this is also true for this research, however,
to be able to more deeply evaluate the performance of the system we define an extra set of
metrics. As can be seen in table 5.1 in section 5.1, the event field has 2 values related to the
recommendations, 𝑟𝑒𝑐_𝑠ℎ𝑜𝑤𝑛 and 𝑟𝑒𝑐_𝑐𝑙𝑖𝑐𝑘𝑒𝑑. To understand these events we have to talk
about how the recommender system on Fashionchick works. When a product detail page is
loaded, it is checked if there are recommendations available for the current product. If they
are available, they are loaded, if not, the most popular products within the lowest available
category for the current product are loaded. Only when the recommender system actually
had recommendations available the event 𝑟𝑒𝑐_𝑠ℎ𝑜𝑤𝑛 is fired, and 𝑟𝑒𝑐_𝑐𝑙𝑖𝑐𝑘𝑒𝑑 when the user
clicks on those recommendations.

Metric Details
Total clickouts The number of clickout events per session.
Product detail page
clickouts

The number of clickout events from a product detail page
per session.

Recommendation
clickouts

The number of clickout events from a product detail page
per session, where the clickout product id does not match
that the product id of the pageview event before it.

Recommendations
shown

The number of 𝑟𝑒𝑐_𝑠ℎ𝑜𝑤𝑛 events per session.

Recommendations
clickthrough

The number of 𝑟𝑒𝑐_𝑐𝑙𝑖𝑐𝑘𝑒𝑑 events per session.

Recommendations
clickthrough ratio

The ratio of ፫፞፜_፜፥።፜፤፞፝፫፞፜_፬፡፨፰፧ events per session.

Clickouts after
clickthrough

The number of clickout events from a product detail page
per session, after a 𝑟𝑒𝑐_𝑐𝑙𝑖𝑐𝑘𝑒𝑑 event occurred before it
on a matching product id.

Table 7.1: Test metrics with a short explanation.

The metrics that will be collected and analysed can be seen in table 7.1. An important
thing to note about the metrics is the difference between clickout and clickthrough: clickout
events are actual SACevents that denote when a user clicks on a button to see the product
on an external webshop, a clickthrough is a click on a product within the Fashionchick web-
site. The clickout metrics are to see the difference between overall effect of the systems and
more specific recommender related interactions, as clickouts can happen from category page
product tiles and product detail pages, but also directly from the recommendation product
tiles. The 𝑟𝑒𝑐_𝑠ℎ𝑜𝑤𝑛 and 𝑟𝑒𝑐_𝑐𝑙𝑖𝑐𝑘𝑒𝑑 events related metrics are useful to analyse interaction
with the recommendations within the website itself. A user clicking on the recommendations
to view the product detail page within Fashionchick is also a positive interaction.

7.1.4. Test duration
For an A/B test it is important that there is enough data, which makes it possible to eliminate
chance. We want to be as certain as possible that any differences between variations actually
are because of the different types of recommendations. To achieve this the duration of the
test is important. With the amount of visitors Fashionchick has in a week the test would
have to run a little over a week in order to collect enough data, as calculated via [4]. Input
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values are omitted to protect business information of Fashionchick. The duration is rounded
up to 2 weeks in order to get at least 2 data points for each day. This is important as websites
typically have different visitor patterns on different days.
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Results

In this section the results of the A/B test will be discussed. The test has run for 2 weeks,
and in these 2 weeks the 2 variants have run beside the Control group while collecting the
features described in section 7.1.3. In this section the features will be analysed by variant,
then they will be split by type of behaviour to see how each type performed. Finally, they will
be split by device because of the influence screen size has on how the website looks, which
might impact the results.

8.1. Null hypothesis testing
To test wether or not the differences between the groups are significant, we apply the z-test
for null hypothesis significance testing, as we are able to estimate the standard deviation for
the groups. We calculate the 𝑧 value for the z-test as follows [26]:

𝑧 = ̂𝜇ኼ − ̂𝜇ኻ
√ ̂᎟ᎴᎴ

፧Ꮄ
+ ̂᎟ᎳᎴ

፧Ꮃ

(8.1)

In this equation �̂� is the mean of the results for a group, �̂� is the standard deviation of the
results for a group and 𝑛 is the size of the group. With the z-test value, the significance p-
value is retrieved with the survival function of the python package scipy.stats.norm [11]. For
this test first a null hypothesis has to be set up, which is: “There is no significant difference
in the number of clicks or clickouts between the 2 variations.” The null hypothesis is rejected
when the p-value is smaller than 𝛼 which generally is set to one of 3 levels, 0.1, 0.05, 0.01.
The difference in these levels represents a different amount of certainty that the found result
is significant or not. In this thesis we will show the exact p-values in combination with a star
(∗) for each significance level. Significance values are not calculated for the 𝑟𝑒𝑐_𝑠ℎ𝑜𝑤𝑛 and
𝑟𝑒𝑐_𝑐𝑙𝑖𝑐𝑘𝑒𝑑 metrics as it is not relevant to compare these on their own, because the different
groups have different systems for generating recommendations influencing how often these
events occur. Instead the fraction of 𝑟𝑒𝑐_𝑐𝑙𝑖𝑐𝑘𝑒𝑑 over 𝑟𝑒𝑐_𝑠ℎ𝑜𝑤𝑛 is compared as this gives a
better insight into what the ratio of the generated recommendations being clicked on is. We
still show the average values per session for these metrics as it might be interesting to see
how many recommendations are shown.

When the null hypothesis is rejected the difference between the groups is regarded as
significant. However, with large sample sizes small differences are more quickly considered
significant [58]. Because we run our test for 2 weeks, our sample sizes quickly become quite
large, and for that we also look at the effect size of the differences. The effect size gives us
insight into the practical significance [58]. Effect size, 𝑒𝑠, is calculated as follows [26]:

𝑒𝑠 = ̂𝜇ኼ − ̂𝜇ኻ
�̂�፩

(8.2)
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Where again, �̂� is the mean for a group and here �̂�፩ is the pooled standard deviation
for the two groups. In our results we make a comparison between the Control group and
variation A and a comparison between variation A and B. In equations 8.1 and 8.2 group
2 is the experimental group. In the 2 comparisons the experimental groups are A and B
respectively. Seeing a positive effect size means that the experimental group outperforms the
non-experimental group and vice versa for the negative effect.

8.2. Main results
For a total of approximately 60, 000 sessions that were in the A/B test that ran in the last
2 weeks of January, the metrics are collected and calculated per session. The mean over
all sessions within each variation can be seen in table 8.1. To give some explanation about
the values that are in the table and why some values are higher than 1 we turn to the con-
version rate Fashionchick uses. For a normal webshop the conversion rate is related to a
purchase and is usually between 0 and 1, because when a user makes a purchase that ses-
sion ends. With the number of clickouts this value can exceed 1. This can happen because
a user browses Fashionchick, clicks on a product to a webshop, does not like the item after
all, returns to Fashionchick and then clicks out on another product, such a session has 2
clickouts.

Control & Variation A Comparison Variation A & B Comparison
Metric Control Var A p-value Effect Size Var A Var B p-value Effect Size
Total clickouts 1.312 1.295 0.033∗∗ −0.007 1.295 1.178 0.000∗∗∗ −0.053
Product detail page clickouts 1.148 1.129 0.094∗ −0.009 1.129 1.031 0.000∗∗∗ −0.05
Recommendation clickouts 0.026 0.024 0.248 𝑁𝐴 0.024 0.019 0.002∗∗∗ −0.019
Recommendations shown 1.310 1.234 𝑁𝐴 𝑁𝐴 1.234 1.151 𝑁𝐴 𝑁𝐴
Recommendations clickthrough 0.089 0.063 𝑁𝐴 𝑁𝐴 0.063 0.048 𝑁𝐴 𝑁𝐴
Recommendations clickthrough ratio 0.042 0.039 0.000∗∗∗ −0.068 0.039 0.030 0.000∗∗∗ −0.045
Clickouts after clickthrough 0.171 0.162 0.002∗∗∗ −0.019 0.162 0.134 0.000∗∗∗ −0.066

Table 8.1: Main results of the A/B test. Two comparisons are made, between Control and variation A, and between variation A
and B. Note that the two variation A columns contain the same values. P-values are shown with a star rating for the three levels

of ᎎ. Effect size is only calculated when there is at least one star.

In the overall results in table 8.1 we get a general idea of performance of the 3 variations.
Looking at the metrics calculated for the Control group we see that some metrics are quite
low. For example, for clickouts directly from the recommendations, this means that it only
happens for approximately 2% of the sessions. Looking at the comparison between Control
and variation A, variation A seems to be quite close to the Control group. Even though it
seems the null hypothesis can be rejected, for most metrics the effect sizes are low. When
we look at the comparison between variations A and B the differences seem to be somewhat
bigger. This is something reflected slightly by the effect sizes while they are still quite low.
In clickouts from the product detail page this difference is the most apparent. Overall the
differences in effect of the behaviour driven recommender system with the traditional collab-
orative filtering approach seem quite slim. To better analyse the results we will split the data
by device the user uses and different detected behaviour types.

8.3. Results split by device
For the result data split by device there are three types of devices that can be detected:
mobile, tablet and computer. This split is relevant as the different device types have greatly
varying screen sizes which influence how the website is displayed. On a product detail page
on mobile for example the recommendations are not even visible when opening the page and
can only be seen after scrolling. The results for tablet will not be shown here, as the null
hypothesis for comparisons between variations on tablet are seldom rejected. The biggest
differences were found for the sessions that happened on the computer which can be seen
in table 8.2.

If we look at the comparison between Control and variation A for sessions on the computer,
we see that variation A performs worse than the Control group. It scores lower on all metrics
and according to the p-values the differences are significant. The effect sizes however, are still
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Control & Variation A Comparison Variation A & B Comparison
Metric Control Var A p-value Effect Size Var A Var B p-value Effect Size
Total clickouts 1.430 1.298 0.000∗∗∗ −0.06 1.298 1.160 0.000∗∗∗ −0.077
Product detail page clickouts 1.328 1.182 0.000∗∗∗ −0.073 1.182 1.087 0.000∗∗∗ −0.058
Recommendation clickouts 0.084 0.053 0.001∗∗∗ −0.051 0.053 0.045 0.103 𝑁𝐴
Recommendations shown 1.469 1.405 𝑁𝐴 𝑁𝐴 1.405 1.262 𝑁𝐴 𝑁𝐴
Recommendations clickthrough 0.146 0.069 𝑁𝐴 𝑁𝐴 0.069 0.043 𝑁𝐴 𝑁𝐴
Recommendations clickthrough ratio 0.060 0.045 0.000∗∗∗ −0.159 0.045 0.029 0.000∗∗∗ −0.093
Clickouts after clickthrough 0.195 0.122 0.000∗∗∗ −0.148 0.122 0.125 0.338 𝑁𝐴

Table 8.2: Results for sessions on computer.

low, the clickthrough ratio for the recommendations and the clickouts after this clickthrough
are the only ones to exceed 0.1, but those features had really low values to begin with. This
means that there might not be much to gain for those features. The low effect sizes are most
easily explained by the high standard deviations that were found for result samples.

Looking at the comparison between variation A and B it seems that overall variation B
scores less than variation A. This is most evident for the product detail page clickouts and
the recommendations clickthrough ratio. For the differences between other metrics related
to recommendation (thus not looking at the total number of clickouts) the null hypothesis
cannot be rejected and because of that, there seem to be no significant differences.

8.4. Results split by behaviour
Lastly, we split up the results by type of behaviour. For this, we will only look at the com-
parison between variation A and B and leave the Control group out. These comparisons are
useful to determine how well the chosen approaches perform for the corresponding behaviour
groups. The general idea is that a user who is looking at a wide variety of products or cate-
gories also benefits from a wider offer of products in the recommendations, and a user who
is directed at a certain type of product benefits from an offer of other similar products. This
is thus tested by mixing up the chosen approach with the randomised behaviour in variation
B. The splits by behaviour happen on actually detected behaviour instead of randomised be-
haviour types of variation B, because variation A does not have these randomised behaviour
types. Division over the different behaviour clusters can be seen in table 8.3:

Detected behaviour cluster Percentage of users in cluster
2 ≈ 40%
3 ≈ 0.5%
4 ≈ 2%
5 ≈ 46%

Table 8.3: Division over the behaviour clusters. The clusters 2, 3, 4 and 5 are the same clusters as in 5.4. Cluster 1 is not
shown as no recommendations are generated for that cluster.

What immediately becomes clear is that the amount of sessions per cluster is quite dif-
ferent from the clustering from figure 5.4. Clusters 3 and 4 have a significantly smaller
proportion of the sessions. This is likely explained by a time gap between the clustering
based on offline data and the A/B test. In hindsight the difference between behaviour is
much larger than expected. Why this time gap has such a big influence on how sessions are
classified can possibly be explained by the short nature of a session. With sessions having a
length of only approximately 5-15 pages, classification can shift fairly quickly. In the future
clusters used for a system like this should be generated as close to the live test as possible to
eliminate these effects. In addition to that another approach to managing session data could
be taken. More on these ideas in section 9.2. Because of the small number of sessions we
will not discuss the results of sessions classified in behaviour clusters 3 and 4 and we will
still look at clusters 2 and 5.

The results in table 8.4 show a significantly lower amount of clickouts per session than
other splits. This is explained by the length of the sessions in this split, which averaged
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Variation A & B Comparison
Metric Var A Var B P-Value Effect Size
Total clickouts ኺ.ዂኺኼ ኺ.዁ኾኺ ኺ.ኺኺኺ∗∗∗ ዅኺ.ኺኽዂ
Product detail page clickouts ኺ.ዀዀኼ ኺ.ዀኼኻ ኺ.ኺኻኾ∗∗ ዅኺ.ኺኼ዁
Recommendation clickouts ኺ.ኺኻኽ ኺ.ኺኺዂ ኺ.ኺኺኻ∗∗∗ ዅኺ.ኺኽዃ
Recommendations shown ኺ.ዃ኿ኺ ኺ.ዂኾዂ ፍፀ ፍፀ
Recommendations clickthrough ኺ.ኺ኿ኽ ኺ.ኺኽዂ ፍፀ ፍፀ
Recommendations clickthrough ratio ኺ.ኺኽዂ ኺ.ኺኼዂ ኺ.ኺኺኺ∗∗∗ ዅኺ.ኺ኿ዃ
Clickouts after clickthrough ኺ.ኺ኿዁ ኺ.ኺኾዀ ኺ.ኺኺኺ∗∗∗ ዅኺ.ኺኾዂ

Table 8.4: Results for sessions classified in cluster 2.

around 5 pageviews. This average was around 10 pageviews for the sessions classified in
cluster 5, and we also see this in the amount of clickouts per session for those sessions,
which is twice as high. So while the average per session is lower for sessions in this cluster
the difference between variation A and B is visible and deemed to be significant. However,
the effect sizes for the differences between these groups seem to imply the differences are
minor.

If we then look at the results for sessions classified in cluster 5 in table 8.5, we continue
to see marginal differences between variation A and B. Where variation A performs slightly
better than variation B, we see the biggest differences in the product detail page clickouts
and clickouts from the detail page after a clickthrough on the recommendations, and even
here the effect sizes are low.

Variation A & B Comparison
Metric Var A Var B P-Value Effect Size
Total clickouts ኻ.ዀኺዃ ኻ.ኾዃዀ ኺ.ኺኺኺ∗∗∗ ዅኺ.ኺ኿
Product detail page clickouts ኻ.ኾኻዂ ኻ.ኽኻዀ ኺ.ኺኺኺ∗∗∗ ዅኺ.ኺ኿ኾ
Recommendation clickouts ኺ.ኺኽዀ ኺ.ኺኽኺ ኺ.ኺኾ኿∗∗ ዅኺ.ኺኻ኿
Recommendations shown ኻ.ኾኾኻ ኻ.ኾኻ዁ ፍፀ ፍፀ
Recommendations clickthrough ኺ.ኺዀ኿ ኺ.ኺ኿ኾ ፍፀ ፍፀ
Recommendations clickthrough ratio ኺ.ኺኽዃ ኺ.ኺኽኺ ኺ.ኺኺኼ∗∗∗ ዅኺ.ኺኽ኿
Clickouts after clickthrough ኺ.ኼኺኾ ኺ.ኻ዁ዃ ኺ.ኺኺኺ∗∗∗ ዅኺ.ኺ኿ኼ

Table 8.5: Results for sessions classified in cluster 5.
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Conclusion & future work

In this chapter we will return to the research questions and answer them. With that, we
conclude this thesis. First we will answer the three research questions and after that we will
answer the main research question of this thesis. Then we will discuss areas of interest we
think have potential for future work.

9.1. Conclusions
In this thesis we have implemented and tested a fully working behaviour driven recommender
system in the fashion domain at Fashionchick.nl. The first step was to research user be-
haviour on the website. We have mapped the behaviour of users into useful information for
this recommender system. We did this by clustering user sessions with the k-means clus-
tering algorithm on the variety of product pages, category pages and the number of repeat
product viewings. We already discussed the clustering in section 5.2, but we will now answer
the first research question based on the clustering. The first research question, RQ1, is:

RQ1: How can browsing behaviour best be categorised and what shopping patterns can be
discerned?

Categorising browsing behaviour by means of clustering on the three selected features
gave pretty interesting results. Though there were no apparent clusters in the scatterplot of
figure 5.4, the splits in the grouped sessions and the centre points of the clusters did show
quite varying patterns. When we compared the found patterns to the patterns found in the
literature we did not find fully 1-to-1 matches and thus decided not to use the same labels
as were used in [49]. There were however similar patterns and the best matches were with
search/deliberation and knowledge building. With the 5 found clusters we can conclude
that browsing behaviour can be categorised with the k-means clustering in a very varied
manner. While the patterns did not fully match our expectations based on the literature,
they do represent varying levels of direction of the user to products and categories. With that
we found an answer to our first research question.

Then, moving on to the second research question, RQ2, with corresponding hypotheses:

RQ2: How effective is recommending products based on the user’s browsing behaviour?

RQ2-H1: Behaviour driven recommendations are more effective than traditional item-to-item
collaborative filtering.
RQ2-H2: Recommending a narrowed selection of products is more effective for behaviour with
a more directed focus.
RQ2-H3: Recommending a wider array of products is more effective for behaviour with a wider
focus.
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This research question was addressed in the A/B test in section 7.1. In this A/B test
we looked at the performance of our implemented behaviour driven recommender system
compared to a traditional collaborative filtering approach. The differences between the Con-
trol group and variation A were overall quite slim, but were consistent. Because variation A
scored lower on most features, and these differences were found to be significant, we have to
conclude that our system performs slightly worse than the collaborative filtering. With this
information we have to reject our hypothesis RQ2-H1. The A/B test also tested how well the
chosen recommendation approach fit the behaviour patterns, it did that with the addition of
variation B. Though the results did not cover all behaviour clusters, the two clusters, 2 and
5, are quite different in the level of direction. Where cluster 5 is more directed and cluster 2
has a wider focus. In both groups the differences between variation A and B again were quite
slim, considering the effect sizes, but variation A did consistently outperform variation B. The
differences between the two variations were significant according to the p-values. This sug-
gests that the chosen recommendation methods do fit the behaviour patterns and that both
hypotheses RQ2-H2 and RQ2-H3 should not be rejected. This proves that while this system
may not be ready for production yet, it does have potential. With that we have answered our
second research question.

Then we address our third research question, RQ3, with corresponding hypothesis:

RQ3: How feasible is a session based approach with real-time generation of recommenda-
tions?

RQ3-H1: The short time span of a browsing session is long enough to generate relevant rec-
ommendations to users individually.

The A/B test ran for two weeks and in that time handled around 60,000 sessions. For
each session the system collected the data, detected the behaviour and generated recom-
mendations. All this happened multiple times per session and considering the results, the
recommendations were at least relevant to some extent. While the system is able to handle
the amount of sessions on Fashionchick.nl and is able to generate recommendations in time
for a large enough part of the sessions to lead to the found results, we still reject the hypoth-
esis RQ3-H1. There are ways to improve the relevance of the recommendations and we think
this is necessary for a system as this one to be used in production. We will go into more
detail in the next section, section 9.2, but we think a lot of the improvement can be achieved
by collecting data about earlier sessions of a user.

Lastly, we turn to our main research question, and we will answer it based on our answers
to the other research questions:

Main Research Question: How well does a behaviour driven recommender system perform as
an alternative to traditional item-based collaborative filtering in the fashion domain?

The main part of this research question, the comparison between our system and the
traditional item-based collaborative filtering, is already addressed with hypothesis RQ2-H1,
which we had to reject. The results pointed out that our system did not perform as well as
the item-based collaborative filtering, but the differences were quite small. This means that
the system does have potential and at the same time needs more work.

Detecting browsing behaviour and using that in combination with session data as input
for a recommender system is a method which, in our opinion, should be pursued further.
The found clusters were very diverse and gave different angles to use for recommendations.
However, we think the approach with information about just a single session does not provide
enough information to consistently generate relevant recommendations.

To conclude, we can say that the implemented behaviour driven recommender system
is not ready yet to be deployed as an alternative to item-based collaborative filtering in the
fashion domain. It performed almost as good as the collaborative filtering, the differences
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were quite small. If we look at the additional test of the A/B test we can say that the system
does have a positive effect and that it is a good starting point to be improved upon.

9.2. Future work
We successfully implemented a fully working behaviour driven recommender system. We
think this direction is promising and in this section, we talk about some area’s in which we
think the system could be improved.

The first area where we would like to improve the system is the timeframe the recom-
mender system works in. This thesis proved that a session based approach can work. How-
ever, it is quite limiting in a couple of ways. First of all, the time available to generate rec-
ommendations is quite short, therefore it is possible that some generated recommendations
were not finished in time before the user opened a page which could display them. Secondly,
the information that is available to the system can be very limited. Our approach only uses
information about the current session, which can decrease the relevance of the results. For
example, because of the sparsity of the available data the detected behaviour, as well as
interesting products, can change every pageview, possibly leading to unreliable recommen-
dations. The way we would extend the timeframe and with that improve the system, is by
using multiple user sessions stored in a Markov Model. With this, the system would be able
to use previous information about user behaviour and product interests to recommend items
in the early part of the current session, decreasing the sparsity of the available data to the
system. In addition to that, the previous behaviour of users in the Markov Model can be
used to predict future behaviour of users. With that prediction the system does not have to
wait until there is enough information about the current session before generating the first
recommendations and can even generate the first recommendation just after the previous
session has ended.

Another area in which we would improve the system is in the method for recommenda-
tions. In this research, our approach was to use only information of the current user, as
we wanted base the recommendations on the behaviour of the user only. Because of that
we chose not to use collaborative filtering, as that uses information of other users as well,
which might not be applicable to the current intentions of the user. Now that we have built
and tested this prototype and have shown that it works to some extent, we think there are
ways to combine it with collaborative filtering. With the classification of users into behaviour
groups, collaborative filtering could be applied within these groups. This would make sure
the general range of the search matches between users. In addition to that, collaborative
filtering could also be combined with the first improvement. Because it might be a good ap-
proach to recommend items relevant for the predicted behaviour, when a user did not look
at any items yet. These recommendations can then be based on similar users within that
same behaviour group.

Our current approach to recommending products based on user behaviour was to divide
the users into behaviour groups. This allowed us to define a limited number of general ap-
proaches of recommending products based on each type of behaviour. This also allowed a
more simple comparison of the effect of the system between behaviour types. However, this
generalisation makes the recommendations fit less to a specific user. Users might benefit
more from an even more personal approach, by leaving out the detection of the behaviour.
Instead of using the centre points of the detected cluster as input information for the cluster-
ing, the collected features for a user session can be used directly. This would also ask for a
more robust recommender system which can generate recommendations in all edge cases of
user behaviour, but would make for more fitting recommendations for each user individually.

The features used for product similarity were used in a rather simple way. For most fea-
tures we chose to simply match them and give them a score for a full match or not. However,
these could also be used differently to get more accurate similar products. The first feature we
could have done different is the price. The price can be used absolute and in price ranges. We
chose to use it with price ranges because people look at products roughly within the same
price range. Distance between 2 prices can also be measured absolute, which would give
more varying distances between products. Another feature we could approach differently is



46 9. Conclusion & future work

the colour. Now colour is also scored as a direct match or not, but that does not fit the feature
very well. Colours distances between black and blue would be the same as blue and orange.
Instead we could take RGB values for colours and calculate euclidean distances between
those values. This would make for much more accurate similarities between products based
on colour.



A
Other A/B test results

In this chapter we will list the tables with results of data splits that were not included in
chapter 8. In these results there are either no significant differences to show and evaluate
or there were too little data points left in a split.

A.1. Results split by device
Control & Variation A Comparison Variation A & B Comparison

Metric Control Var A p-value Effect Size Var A Var B p-value Effect Size
Total clickouts 1.309 1.313 0.353 𝑁𝐴 1.313 1.204 0.000∗∗∗ −0.047
Product detail page clickouts 1.133 1.136 0.435 𝑁𝐴 1.136 1.037 0.000∗∗∗ −0.048
Recommendation clickouts 0.016 0.021 0.002∗∗∗ 0.022 0.021 0.014 0.001∗∗∗ −0.023
Recommendations shown 1.301 1.221 𝑁𝐴 𝑁𝐴 1.221 1.153 𝑁𝐴 𝑁𝐴
Recommendations clickthrough 0.078 0.061 𝑁𝐴 𝑁𝐴 0.061 0.047 𝑁𝐴 𝑁𝐴
Recommendations clickthrough ratio 0.038 0.037 0.000∗∗∗ −0.048 0.037 0.029 0.000∗∗∗ −0.042
Clickouts after clickthrough 0.172 0.173 0.388 𝑁𝐴 0.173 0.140 0.000∗∗∗ −0.076

Table A.1: Results for sessions on mobile.

Control & Variation A Comparison Variation A & B Comparison
Metric Control Var A p-value Effect Size Var A Var B p-value Effect Size
Total clickouts 1.025 1.009 0.264 𝑁𝐴 1.009 0.913 0.000∗∗∗ −0.063
Product detail page clickouts 0.862 0.877 0.356 𝑁𝐴 0.877 0.827 0.085∗ −0.039
Recommendation clickouts 0.002 0.002 0.472 𝑁𝐴 0.002 0.008 0.005∗∗∗ 0.065
Recommendations shown 1.004 0.964 𝑁𝐴 𝑁𝐴 0.964 0.850 𝑁𝐴 𝑁𝐴
Recommendations clickthrough 0.094 0.074 𝑁𝐴 𝑁𝐴 0.074 0.075 𝑁𝐴 𝑁𝐴
Recommendations clickthrough ratio 0.057 0.050 0.113 𝑁𝐴 0.050 0.049 0.473 𝑁𝐴
Clickouts after clickthrough 0.086 0.097 0.152 𝑁𝐴 0.097 0.088 0.212 𝑁𝐴

Table A.2: Results for sessions on tablet.
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A.2. Results split by behaviour type
Variation A & B Comparison

Metric Var A Var B P-Value Effect Size
Total clickouts ኿.ኽኺዃ ኼ.ዃዀኻ ኺ.ኺኺኺ∗∗∗ ዅኺ.ኼ዁ዃ
Product detail page clickouts ኾ.዁ኾኼ ኼ.዁኿ኺ ኺ.ኺኺኺ∗∗∗ ዅኺ.ኼዂ
Recommendation clickouts ኺ.ኺኻኺ ኺ.ኺኽዃ ኺ.ኺኻ኿∗∗ ኺ.ኻ኿ዃ
Recommendations shown ኽ.ኽኽኺ ኼ.ዀዂኾ ፍፀ ፍፀ
Recommendations clickthrough ኺ.ኽዂኻ ኺ.ኼ኿ኺ ፍፀ ፍፀ
Recommendations clickthrough ratio ኺ.ኺኾኾ ኺ.ኺኾዀ ኺ.ኻ኿ኼ ፍፀ
Clickouts after clickthrough ኻ.ኻ዁኿ ኺ.዁዁ዀ ኺ.ኺኺኺ∗∗∗ ዅኺ.ኽ኿ኽ

Table A.3: Results for sessions classified in cluster 3.

Variation A & B Comparison
Metric Var A Var B P-Value Effect Size
Total clickouts ኻ.ዃኻኻ ኻ.዁ኽኺ ኺ.ኺዀኽ∗ ዅኺ.ኺኾዂ
Product detail page clickouts ኻ.ዀዃኻ ኻ.኿ኽዃ ኺ.ኻ኿ዂ ፍፀ
Recommendation clickouts ኺ.ኺኺኽ ኺ.ኺኺዂ ኺ.ኺኾኼ∗∗ ኺ.ኺ዁዁
Recommendations shown ኻ.ኾዂኻ ኻ.ኽዂ኿ ፍፀ ፍፀ
Recommendations clickthrough ኺ.ኻኼ዁ ኺ.ኺ዁኿ ፍፀ ፍፀ
Recommendations clickthrough ratio ኺ.ኺ኿ዃ ኺ.ኺኼዂ ኺ.ኺኼ዁∗∗ ዅኺ.ኻኻ኿
Clickouts after clickthrough ኺ.ኽኺዀ ኺ.ኽኺኼ ኺ.ኾኼ዁ ፍፀ

Table A.4: Results for sessions classified in cluster 4.
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