
A Semi-Analytical Model
for Prior Strain in

Ballistically Perforated
Steel Plates
Graduation Thesis

Katie Moyano

Student Name Student Number

Katie Moyano 5738237

Thesis Advisor: Dr. C.L. Walters, TU Delft
Company Representative: Ir. O. Coppejans, TNO
Defense Committee: Prof. Dr. M. Veljkovic, Dr. C.L. Walter, W. J. Wong, Ir. O. Coppejans
Faculty: ME Marine Technology



Abstract

High-strength marine grade steel is often used in naval applications where ballistic impact poses a
critical threat to structural integrity. Perforation by a projectile leaves behind a hole surrounded by
plastically deformed material, which alters the stress redistribution capacity of the impacted structural
component and reduces its residual strength. Understanding and predicting these effects is essential
for reliable damage assessment and safe structural design.

This work develops a semi-analytical stress field model for perforated EH36 steel plates that incor-
porates prestrain effects derived from Vickers hardness measurements around ballistic holes. The
model builds upon Stowell’s elastoplastic stress concentration framework, extended with a Swift-type
hardening law to capture strain hardening from prior plastic deformation.

The analytical solution results are compared with finite element analysis (FEA) and limited experimental
Digital Image Correlation (DIC) data. While the validation dataset is not sufficient for full generalization,
the comparisons indicate that incorporating prestrain reduces the stress concentration factor at the
edge of the hole compared to analyses without prior strain.
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1
Introduction

When a projectile such as a bullet, missile, or fragment strikes a steel plate, its kinetic energy is trans-
ferred into the plate primarily through mechanical work. This transfer manifests as plastic deformation,
perforation, and fracture, and may be exacerbated by subsequent blast loading. This thesis aims to
expand traditional plate models to incorporate the effects of ballistic impact material damage in the form
of altered material properties. Including these effects in the plate model will increase understanding of
the structure’s ability to withstand post-impact loading.

Such failures are particularly critical in marine and defense structures. It is especially relevant for naval
defense applications due to the larger risk of encountering ballistic impact. An example of a critical
structural member in ships is the bulkheads, providing transverse and longitudinal support necessary
for withstanding the dynamic loading conditions encountered at sea, in addition to the separation of vital
areas and equipment and flooding confinement. Maintaining the separation of critical compartments
prevents explosion damage from compromising the vessel’s structure and hydrodynamic stability. En-
suring the structural integrity of these elements is crucial for safeguarding human lives and reducing
economic loss in the event of an attack.

Due to the risks and consequences associated with the failure of ship bulkheads, quantifying the effects
of damage due to ballistic impact is of high interest. Part of the challenge in capturing these mecha-
nisms and their subsequent effect on the material’s structural response is their complex nature. While
finite element analysis methods (FEA) are commonly used to model ballistic damage, they are compu-
tationally expensive. Analytical models offer an efficient alternative, but traditional methods, such as
Kirsch’s solution for stress fields around a hole, do not consider plasticity effects. Stowell’s approach
modifies the elastic solution by incorporating a secant modulus correction for plasticity, but it does
not explicitly include pre-existing damage or plasticity. While Swift’s hardening law accounts for prior
strain, its direct integration into Stowell’s model for prestrain-induced stress redistribution has not been
explicitly established in existing work.

This thesis develops a prestrain enhanced stress field model for perforated high-strength steel plates.
By integrating experimental Vickers hardness measurements and a Swift-style hardening law, it refines
stress redistribution predictions.

1



2
Literature Review

This section outlines the theoretical concepts that underpin the modelling of steel plates with ballistic
perforation damage under subsequent loading and existing relevant research.

2.1. Damage
Ballistic impact leads to complex material degradation involving void nucleation, shear banding, and
microcracking. These phenomena are often captured through micromechanical or continuum damage
models (e.g., GTN, MMC, HC) that track evolving damage variables to predict failure. However, such
models are computationally intensive and require extensive calibration. In this work, damage is treated
implicitly via residual plastic strain and strain hardening around the perforation, estimated using hard-
ness measurements. This approach enables an efficient semi-analytical formulation that captures the
effect of prior damage without explicitly modeling void growth or fracture surfaces.

The interest in the topic of damage extends over many fields and physical scales. With respect to
material and structural behavior, the definition of the scale is necessary. Figure 2.1 illustrates the scale
categories for the general topic of material damage study. This thesis’ focus is the effect of damage on
the macro scale. ”Damage” here refers to the breaking of a once continuous plate via the mechanism
of plate perforation from high velocity impact. The perforated plate is assumed to fail at the moment
crack initiation is observed at the perforation.

2
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Figure 2.1: Overview of different material scales [2]

2.1.1. Ballistic Induced Damage
Plate Perforation
Perforation in this context refers to the full penetration of a stationary plate by a high velocity projectile,
where the projectile impacts the front face, goes through the plate and exits completely through the
plate. The failure mechanisms induced on the plate by the projectile’s impact can include spalling,
discing, and plugging due to the large shearing that occurs, [24]. The type and extent of this failure
depends on the projectile’s shape, velocity, angle of impact, and material properties, in addition to the
thickness and material properties of the plate being impacted. If the plate is thin (with an approximate
ratio of plate thickness to projectile diameter less than one), stretching and bending could also occur,
[24]. Often, a combination of failure mechanisms will occur in a plate perforation. Figure 2.2 is an
example of plate perforation by plugging.

Plugging occurs as a result of the plastic shear deformation due to the high velocity of the projectile’s
impact with the plate. A narrow ring of localized plastic shear and thermal softening is formed around
the perimeter of the projectile, [25]. This band of material around the hole has modified properties from
the original base material due to the re-crystallization that occurs. The exact form of re-crystallization
depends on the base steel’s microstructure. The behavior of a plate with a perforation due to plugging
shear failure is of interest in this thesis work.
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Figure 2.2: Example of plate perforation, [24]

The ring of localized plastic shear and thermal softening around the perforation at high strain rates
(greater than 102 s−1 [18]) is often associated with the formation of adiabatic shear bands (ASBs)
[24]. These bands are narrow zones where high amounts of plastic deformation occur due to localized
thermal effects. ASBs form when thermal energy, generated from the conversion of mechanical energy
(such as from a projectile impact), causes localized slip and further heating. Due to the large strain rate,
the heat generated cannot dissipate fast enough, exacerbating the deformation [22]. These bands
reduce the material’s ductility and can lead to the initiation and propagation of cracks. A material’s
likelihood to develop ASBs and the amount of ASBs formed is a factor of its heat capacity, amount of
defects, thermal conductivity, strength, microstructure, and geometry [12].

2.2. Strain Hardening
Ballistic perforation of steel plates introduces large, localized plastic strains at high strain rates (typi-
cally in the range of 1850-3600 s−1), followed by a blast-induced pressure load at lower strain rates
(on the order of 100 s−1). During the impact, the material surrounding the projectile path undergoes
rapid plastic deformation, resulting in a strain-hardened zone around the perforation. In this region,
the material exhibits increased yield strength and decreased ductility due to accumulated dislocation
density.

Although strain rate sensitivity strongly influencesmaterial behavior during the impact event, this project
focuses on the post-impact (quasi-static) response of the plate — particularly how the residual strain
and hardening affect the strain at the time of crack initiation at the edge of the perforation. For this
reason, dynamic constitutive models such as Johnson–Cook [10], Cowper–Symonds [5], or Zerilli–
Armstrong [32], which include explicit strain rate terms, are not employed here. Instead, the residual
plastic deformation from the high strain rate event is treated as a modified material state in the vicinity
of the hole, characterized by increased flow stress and altered hardening behavior.

Strain hardening is incorporated into the stress field model through empirical relationships such as
Hollomon’s or Swift’s laws, which relate flow stress to plastic strain under monotonic loading. These
models enable the definition of a non-linear stress–strain response that reflects the hardened state of
the material after perforation. In this work, Vickers hardness measurements near the hole are used
to infer the local yield strength and plastic strain, providing an experimental basis for defining the pre-
strained material zone. This approach aims to capture the effect of the strain-hardened shell around
the hole on the stress redistribution and the far-field failure strain during subsequent tensile loading.

2.3. Multiaxial Yielding
A yield criterion defines the onset of plastic deformation in multiaxial stress states and must be used
in conjunction with a hardening law to capture post-yield behavior. Since the material is assumed to
be isotropic and experiences monotonic loading, anisotropic or kinematic effects such as directional
hardening, cyclic response, or the Bauschinger effect are outside the scope of this work.

The von Mises yield criterion ([14]) predicts the onset of yielding in isotropic, ductile materials. Yielding
occurs when the second deviatoric stress invariant reaches a critical value, which is independent of
hydrostatic stress. It is relevant for ductile materials that exhibit elastic-perfectly-plastic behavior in
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addition to materials that have experienced strain hardening, [6], [24].

While this work does not explicitly implement a yielding criterion in the analytical formulation, the use of
Stowell’s stress redistribution model implicitly assumes von Mises yielding. Additionally, an upper limit
on the stress field calculations is defined to avoid non-physically realistic magnitudes. In the numerical
simulations, von Mises is used as the default yield criterion in Abaqus, with yielding defined based on
experimental tensile data.

2.4. Elasticity & Plasticity
The material model used in this thesis follows classical assumptions of isotropic, rate-independent
plasticity under quasi-static loading. Although the ballistic impact involves high strain rates, this work
focuses exclusively on the post-impact behavior, where deformation occurs slowly and strain rate sen-
sitivity can be neglected.

The foundational assumptions are:

• Plasticity is isotropic and follows monotonic loading.
• Thermal effects, creep, and time-dependent recovery are negligible.
• Material behavior is spatially uniform far from the perforation and modified near the hole by pre-
strain.

• Kinematic hardening and Bauschinger effects are not considered.

2.4.1. Plastic Deformation and Hardening
Hardening describes how a material’s resistance to plastic deformation evolves after yielding. In this
work, isotropic hardening is assumed, consistent with monotonic loading and the absence of cyclic or
directional effects.

Isotropic hardening refers to a uniform expansion of the yield surface in all directions within the stress
space, representing a material’s increased ability to sustain higher stress without yielding as it un-
dergoes plastic deformation, [30]. Unlike kinematic hardening, isotropic hardening does not consider
directional changes but assumes that the material hardens equally in all stress directions.

Kinematic hardening describes how the yield surface of a material translates in the stress space as the
material undergoes cyclic loading. This model assumes that the center of the yield surface moves in
the stress space, but stays the same size as the original yield surface, [30]. Figure 2.3 demonstrates
the difference between isotropic and kinematic hardening. An isotropic hardening model will be used
in this project.

Figure 2.3: Isotropic vs kinematic hardening under plane stress [30]
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2.5. Relating Hardness to Stress and Strain
Vickers hardness is a common deformation resistance measurement for metals, using a square based
diamond indenter with high hardness. A force is applied to the indenter, creating an impression on
the surface of the softer material. The size of the impression is measured optically. The resultant
Vickers hardness measurement is calculated using the average of the diagonals and the applied force.
Pavlina and Van Tyne studied the correlation between diamond pyramid hardness (Vickers) and the
yield and tensile strength of more than 150 steels, finding a linear correlation for all studied steels,
[19]. Hirano et al. [7] developed a relationship between Vickers hardness and elastic-plastic material
constants. This was done with finite element analysis and validated against experimental results for
various metals including steels, copper, aluminum alloys, and titanium alloys. They found that Vickers
hardness increases with increasing yield stress and strain hardening coefficient, but decreases with
increasing strain hardening exponent. Based on their simulations, they proposed an explicit functional
equation relating Vickers hardness to the yield stress, strain hardening coefficient, and strain hardening
exponent

2.6. Existing Work
This section provides an overview of relevant models, approaches, and research used to understand
and predict material behavior related to hardening, deformation, and failure under high velocity impact,
and the subsequent material response.

2.7. Models
To capture the behavior of deformed steel damaged by high velocity impact, both empirical and ana-
lytical models are employed. The work in this thesis will use and modify relevant models to define a
constitutive relationship for the material behavior model of a finite plate with ballistic perforation. Figure
2.4 outlines the relationship between the types of models that will be discussed in this section.
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Figure 2.4: Overarching model relationships

2.7.1. Hardening
Hardening models describe how the yield surface of a material expands once plastic hardening begins.
The relationships described in this section are candidates for use in this thesis’ modeling efforts.

Hollomon
Hollomon’s power law [8] [16] is a commonly used equation for the relationship between strain and
stress when material hardening is present. The Hollomon equation has advantages due to its simplicity,
and is independent of strain rate.

σ = K · εn (2.1)

Swift
The Swift hardening law [28] extends Hollomon’s power law, often used in metal forming processes to
model strain hardening. It introduces a pre-strain term to account for initial plastic deformation:

σ = K (ε0 + ε)
n (2.2)

2.7.2. Stress Field - Circular Cutouts
Kirsch - Elastic Solution
Kirsch’s solution [11] [1] is a classical linear elastic analytical solution for the stress field around a circular
hole in an isotropic plate subjected to uniaxial tension. The solution is derived under the assumption that
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the plate is infinite and the hole is small relative to the dimensions of the plate. Governing equilibrium
equations:

∂σx
∂x

+
∂τxy
∂y

= 0,
∂σy
∂y

+
∂τxy
∂x

= 0 (2.3)

Using the Airy stress function, ϕ, stress components are expressed as:

σx =
∂2ϕ

∂y2
, σy =

∂2ϕ

∂x2
, τxy = − ∂2ϕ

∂x∂y
(2.4)

The stress function must satisfy the biharmonic equation in polar coordinates:

∇4ϕ =

(
∂4

∂r4
+

2

r2
∂3

∂r3
− 1

r2
∂2

∂r2
+

1

r3
∂

∂r
+

1

r4
∂4

∂θ4

)
ϕ = 0 (2.5)

Using separation of variables, the Airy stress function becomes:

ϕ = Ar2 +Br4 + Cr2 cos 2θ +Dr4 cos 2θ (2.6)

Where Ar2 and Br4 correspond to the uniform far-field stresses and Cr2cos2θ and Dr4cos2θ account
for the stress concentration effects from the hole. Application of boundary conditions at the hole (2.7)
and far-field (2.8) allow for the unknown constants to be solved for, resulting in Kirsch’s final stress
system (2.10, 2.9, 2.11).

Hole edge boundary condition:
σr(a, θ) = 0, τrθ(a, θ) = 0 (2.7)

Far-field boundary condition:
σr → σ∞, σθ → σ∞, τrθ → 0 (2.8)

Resulting stress system:

σr =
σ

2

[
1− a2

r2
+

(
1 + 3

a4

r4
− 4

a2

r2

)
cos 2θ

]
(2.9)

σθ =
σ

2

[
1 +

a2

r2
−
(
1 + 3

a4

r4

)
cos 2θ

]
(2.10)

τrθ = −σ
2

(
1− 3

a4

r4
+ 2

a2

r2

)
sin 2θ (2.11)

The resulting stress concentration factor (Kt) for this approach is approximately 3, indicating that the
stress at the edge of the hole is about three times the applied stress. This solution is fundamental in
understanding the baseline stress distribution around holes in materials and serves as a starting point
for more complex analyses.

Stowell - Elastic-Plastic Correction
Stowell’s approach [27] extends Kirsch’s solution to include the plastic stress reduction that occurs
due to the stress redistribution around the hole. The key contribution of Stowell’s work is its ability to
describe how stress redistributes when a material transitions from elastic to plastic behavior around
stress concentrations, such as notches or holes. He does this using the stress concentration rela-
tionship, 2.12, that relies on the ratio of the maximum, local secant modulus and the far field secant
modulus to account for the stress redistribution. Stowell satisfies the boundary conditions because the
ratio Es

(Es)∞
goes to 1 at infinity (resulting in the stress system going back to the original elastic solution),

and at the hole Es

(Es)∞
goes to 0.

1 + 2
(Es)a,π/2

(Es)∞
(2.12)
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The stresses become:

σr =
σ

2

[
1− a2

r2
+

Es

(Es)∞

(
1 + 3

a4

r4
− 4

a2

r2

)
cos 2θ

]
(2.13)

σθ =
σ

2

[
1 +

a2

r2
− Es

(Es)∞

(
1 + 3

a4

r4

)
cos 2θ

]
(2.14)

τrθ = −σ
2

Es

(Es)∞

(
1− 3

a4

r4
+ 2

a2

r2

)
sin 2θ (2.15)

The governing equations in Stowell’s method are derived based on the assumption of a plane stress
condition and small plastic zones around the notch. For the elastic region, the stress components are
given by Kirsch’s classical solution. As plastic deformation occurs, the stress distribution is modified to
reflect strain hardening effects. Stowell’s method is implicit and requires an iterative solution method.

Obers - Yield Ratio Model
In this work, the relationship developed by Obers between the secant modulus Es and Hollomon’s
power law is used, 2.17. Obers [17] developed a relationship between the yield to tensile strength ratio
and stress field in high-strength steel, specifically a plate with a circular cutout. This was done with an
analytical model using Stowell’s applied method and Neuber’s approximation, combined with Irwin’s
plastic zone size estimation and Stowell’s local strain equation. Hollomon’s law was used to describe
plasticity, and the results were numerically validated using FEA.

Using Hollomon’s law:

σtrue = Kεntrue (2.16)

The secant modulus Es is given by:

Es =
σtrue
εtrue

= Kεn−1
true (2.17)

2.7.3. Elastic to Plastic Transition Models
Neuber
Neuber’s rule [15] was originally developed for elastic-plastic stress concentrations, particularly in
shear-strained prismatic bodies, but it can be generalized to arbitrary nonlinear stress-strain relation-
ships. It is primarily used to analyze stress and strain concentrations at notches or geometric discontinu-
ities. The rule establishes the relationship between stress and strain concentration factors by assuming
that the product of local stress and strain remains consistent between elastic and elastic-plastic condi-
tions. This is interpreted as ensuring that the strain energy density in the elastoplastic state is equal
to that in a pseudo-elastic state. This method can be useful in incorporating stress-strain relationships
into the strain field.

KσKε = K2
σ,el (2.18)

σeqεeq = σelεel (2.19)

While this work does not directly apply Neuber’s pointwise energy balance rule, it shares conceptual
similarity by estimating elastoplastic stress redistribution using an adjusted elastic solution combined
with nonlinear hardening behavior. Like Neuber, this approach modifies classical elastic predictions to
account for local plastic deformation, but does so over a spatially varying field rather than at a single
point.
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2.8. Existing Research
2.8.1. Microstructural Level
Understanding the microstructural characteristics of the material under impact can provide important in-
sight into the mechanisms that lead to the mechanisms of strain hardening and void formation that lead
to visible failure modes. In the context of this thesis, which focuses on high-strength structural steels
(e.g., EH36), such insights help justify the presence and profile of a prestrained zone around a ballistic
perforation. Kouzoudis et al [13] conducted microstructural analysis of EH36 TM and N specimens
using techniques such as scanning electron microscopy, energy dispersive spectroscopy, and elec-
tron backscatter diffraction. These investigations were performed across the three principal planes of
the material—rolling direction, transverse direction, and normal direction [13]. Additionally, Kouzoudis’
master thesis [12] estimated the geometric limits of the plasticity and measures the hardness values in
both through thickness direction and radially on the specimen surface in multiple locations on the perfo-
rated samples. This work provides essential data for the current thesis’ prestrain modeling approach.

2.8.2. Continuum Level
At the macrostructural plate level, multiple solutions have been developed to model and solve for the
stress field behavior of a plate with various boundary, loading, and discontinuity configurations.

Ballistic Perforation
Riegel [23] investigated penetration modeling using empirical, analytical, and numerical approaches.
The empirical data relied on the Effective Flow Stress model, which was applied in the analytical
Walker-Anderson penetration model. This flow stress value can also serve as an effective von Mises
yield strength in numerical hydrocode simulations to predict penetration depth for eroding projectiles.
Riegel’s study questions the applicability of the Johnson-Cook model in terminal ballistics problems,
advocating for a more integrated approach using empirical, analytical, and numerical methods.

Moreover, Mandal et al. (2022) employed high-performance computing (HPC) techniques, such as
GPU-accelerated FEA, to simulate dynamic failure in armor plates. These simulations offer more de-
tailed and efficient models of complex failure modes. While this thesis does not simulate the perforation
event itself, such studies inform boundary assumptions and validate strain localization patterns in post-
impact modeling.

Plate with Discontinuity
Obers [17] investigated the relationship between the yield to tensile strength ratio and stress field in high
strength steel, specifically a plate with a circular cutout. This was done using Stowell’s [27] andNeuber’s
[15] methods, with Irwin’s [9] stress field analogy. Hollomon’s law [8] was used to describe plasticity,
and the results were numerically validated with FEA. Although this work focused on cleanly machined
holes, the mathematical framework is relevant for adapting to ballistically-induced, prestrained holes,
as done in this thesis.

Additional research, such as that by Yu and Liu [31], has advanced the study of stress fields around dis-
continuities by implementing extended finite element methods (XFEM) and generalized finite element
method (GFEM). This combination enhances accuracy in stress analysis near discontinuities by em-
ploying generalized node shape functions around cracks while using conventional finite element shape
functions elsewhere. While not used in this thesis, these studies validate the need for non-classical
approaches when modeling highly localized plastic zones — such as those around projectile holes.

Another key area of relevance is the study of prestrain history effects on ductile fracture in high-strength
steels. Zhang et al. [33] investigated how different levels of prestrain influence the fracture behavior of
pipeline steels. Their work showed that the fracture strain is significantly reduced in regions subjected
to prior plastic deformation, and that the stress state at failure is also altered by the prestrain history. Us-
ing both experimental and finite element analyses, they established that materials with higher prestrain
exhibit earlier fracture initiation and reduced ductility, even under similar loading conditions. These
findings are particularly relevant for this thesis, as they highlight how residual plastic deformation from
ballistic impact can influence subsequent failure modes. While Zhang et al. focused on pipeline appli-
cations, the underlying principle — that strain history modifies the material’s local resistance to fracture
— directly supports the need to include prestrain fields in stress field models for perforated plates.
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2.8.3. Global Structural Level
Prior-Damage
Global-scale studies of damaged ships provide valuable context for structural integrity post-impact.
Prabowo [21] incorporated damage-induced plasticity into global FEA models of ship structures to eval-
uate collapse thresholds. Chen et al. [4] and Storheim et al. [26] also modeled large-scale collision
responses in marine structures, highlighting the structural impact of local plastic damage.

Additional work by Pije [20] proposed a failure model for a bulkhead subjected to fragment damage
from projectile impact using a plate model. Pije employed equivalent plastic strain to account for the
accumulation of plastic deformation, incorporating a semi-local failure model that linked the stress state
around the hole’s edge to the equivalent plastic strain at fracture initiation. This work considered three
levels of detail (global, semi-local, and local), modeling the undamaged material around the hole but
accounting for damage through a reduction in the admissible equivalent plastic strain at failure. Pre-
existing microcracks and surface imperfections were assumed to be included in the reduction. This
study noted that more investigation is required to fully understand the role of prior damage in fracture
initiation.

Although this thesis does not operate at the full-ship level, these studies reinforce the importance of
incorporating prior local damage into structural assessments — especially when localized events (like
ballistic impact) can affect far-field behavior.

2.9. Research Gap
Existing research that has explored material behavior under high-strain-rate loading and post-impact
structural responses of perforated plates include:

• Microstructural studies have investigated and documented changes in crystalline structure for
EH36 steel incurred by ballistic impact, [12].

• Analytical stress fieldmodels (Kirsch, Stowell, Neuber, Obers) predict stress concentrations around
discontinuities, in a plate of a uniform material.

• Hardening models (Hollomon, Swift) describe material strengthening post-deformation but have
not been extensively integrated into stress field analyses for prestrained perforated plates.

However, these models have key limitations:

• Kirsch’s elasticity solution does not account for plastic deformation.
• Stowell’s correction accounts for stress redistribution in the plastic zone but does not explicitly
incorporate prestrain effects.

• Obers’ study links the yield-to-tensile ratio to stress concentrations but assumes uniform material
properties and does not include the effects of prior plastic deformation.

• Numerical (FEA) models can capture detailed stress-strain behavior, including plasticity and dam-
age, but are computationally intensive and not ideal for rapid assessment or generalization.

The redistribution of stress and strain in a perforated plate with prestrain history remains inadequately
described. Ballistic perforation induces a plastic zone near the hole, altering the yield strength, ductility,
and subsequent stress concentration during loading. This zone often exhibits material hardening and
reduced deformability, which classical models fail to account for.

Despite the integration of Hollomon’s hardening model into Stowell’s stress concentration approach,
existing models still lack direct incorporation of prestrain effects from ballistic perforation. This is critical
because the initial impact often induces significant plastic deformation, resulting in spatially varying
material properties around the perforation. The current research aims to begin to bridge this gap by
developing a model that explicitly incorporates prestrain effects while leveraging the enhanced stress-
strain relationship enabled by Hollomon’s law. The model will be validated using both experimental
data and numerical simulations to ensure accuracy and robustness.
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2.10. Steel Data
This study uses experimental data from EH36 steel specimens to inform the development and validation
of the analytical and numerical models. The chemical composition of the EH36 steel used is shown
in Table 2.1. EH36 was selected due to its widespread use in marine structures and availability of
detailed microstructural and mechanical property evaluations for both the base steel and perforated
samples, providing additional insight into pre and post perforation conditions of the steel. Both the
non-perforated and perforated specimens underwent tensile and central hole (CHT) tests with digital
image correlation (DIC) analysis, in addition to XRD, Vickers hardness, electron backscatter diffraction
(EBSD), and fractography measurements [12].

Table 2.1: EH36 chemical composition, [12]

Chemical Composition Fe C Mn Si S P Cr N Ni Cu Al Ti Mo Nb V CE
Manufacturer [mass%] bal 0.14 1.5 0.5 0.001 0.01 0.04 0.004 0.06 0.3 0.07 0.003 0.03 0.01 0.001 0.40
XRF and Leco [mass%] 98.17 0.14 1.23 0.46 0.004 - 0.04 - - 0.3 0.07 - 0.02 0.01 - -
Abs error [%] 0.5 0.002 0.06 0.01 0.0004 0.003 0.01 - - 0.01 - - - 0.004 - -

To quantify strain hardening effects caused by the ballistic impact, Vickers hardness measurements
were taken radially outward from the hole edge at 0.5 mm intervals, Table 2.2. Vickers hardness is
calculated using the applied force and the contact area of the indentor. The indentation at the location
of maximum hardness near the perforation is shown in Figure 2.5. The aim of these measurements
was to evaluate hardness gradients and identify potential work-hardening effects resulting from the
ballistic perforation. The hardness data revealed a localized hardened zone, consistent with plastic
deformation gradients expected from high-velocity impact, Figure 2.6.

Figure 2.5: Vickers microhardness indentations at maximum hardness value, [12]

The Vickers hardness number (HV ) is given by the formula, [3]:

HV =
2F sin

(
2θ
2

)
d2

Where:

• HV = Vickers hardness (kgf/mm2)
• F = Applied load (kgf)
• θ = Angle between opposite faces of the diamond indenter (136°)
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• d = Average diagonal length of the indentation (mm)

By simplifying the formula with θ = 136◦, we obtain:

HV =
1.8544 · F

d2

Vickers hardness can be empirically related to the yield strength through a proportionality constant. The
general empirical relationship is given by:

σy ≈ HV

3
(2.20)

This relationship holds because the hardness value is a measure of the resistance of the material to
plastic deformation. The factor of 3 arises from the geometric relationship between the indenter and
the material’s flow stress. The hardness value can therefore be interpreted as an approximate indicator
of the material’s ability to withstand permanent deformation under load, [29].

Table 2.2: Hardness measurements at different X-distances from edge of perforation, [12]

X Location of Measurement (mm) Hardness (kgf/mm2)
0.48 290
1.00 261
1.50 248
2.00 248
2.50 229
3.00 210
3.50 215
4.00 226
4.50 215
5.00 217
5.49 220.
6.00 212
6.49 207
6.99 218
7.50 202
8.00 203
8.48 179
8.98 186
9.50 178
10.0 188
10.5 177
11.0 172
11.5 172
12.0 173
12.5 180
13.0 182
13.5 178
14.0 173
14.5 168
15.0 163
15.5 169
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Figure 2.6: Hv measurements at x locations on perforated plate surface, [12]

Tensile tests were performed on both non-perforated and perforated specimens to characterize the
material’s elastic and plastic response under uniaxial loading, Figures 2.7 and 2.8. Non-perforated
tests established baseline values for the elastic modulus, yield stress, and ultimate tensile strength.
Perforated specimens were used to investigate the influence of prior plastic deformation around the
hole on far-field strain response. During testing of the perforated specimens, digital image correlation
(DIC) was used to capture strain fields at the time of crack initiation at the edge of the hole, Figure .
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Figure 2.7: EH36 base steel tensile test, courtesy of TNO
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Figure 2.8: EH36 perforated plate tensile test, courtesy of TNO

Figure 2.9: Close up of perforation cross section post fracture, courtesy of TNO



3
Research Question

The central research question for this project is:

What is the influence of ballistic impact-induced prestrain on the stress concentration factor (SCF) in
EH36 steel plates?

Sub questions that will need to be answered in order to support the central research question are:

• Doesmodeling the prior damage by estimating the prestrain induced by the initial projectile impact
compare well with experimental data and numerical methods?

• Can available hardness measurements be used to determine reliable prestrain estimates and
material properties in the zone of plastic deformation around the perforation?

17



4
Approach and Scope

This chapter outlines the methodological framework for the thesis, detailing the scope of the research,
the development process for the model, and the validation process.

4.1. Scope
The localized damage and prestrain from ballistic perforation is incorporated into the Stowell stress
system using a Hollomon-Swift style hardening law. Stowell’s stress system incorporates a correction
factor into Kirsch’s solution to account for the plastic field. In order to model prior plastic strain’s affect
on the stress field of the plate, a function for the prestrain is determined using hardness data from the
perforated specimen. The model accounts for the non-zero initial strain in the steel plate, specifically
around the perforation, as a result of the plastic deformation induced by the impact. This prestrain
serves as the starting condition for estimating the stress-strain curves of the material in the vicinity of
the perforation. The stress field around the perforation is modeled considering these non-zero strain
values at various radial distances from the damage site. A geometrical zone of plastic behavior is
delineated using available data. The stress field in the vicinity of the perforation is then be related to
the far-field stress field of the plate.

4.2. Material Model and Prestrain Incorporation
The localized plastic deformation caused by projectile impact introduces a nonzero initial strain field. To
incorporate this, a version of Hollomon’s isotropic hardening law with a strain shift (prestrain) is used.
The prestrain is estimated using hardness measurements of the damaged steel specimens. This will
serve as the starting condition for the stress-strain analysis of the perforated plate. Vickers Hardness
data is used to quantify the prestrain at varying radial distance from the hole. The material hardening
model will employ isotropic hardening.

4.3. Stress Field Modeling
This approach adapts the analytical stress field models to account for the spatially varying strain history
around the perforation. This includes implementing:

• Empirical hardness-strain relationships to establish an initial strain profile
• Modifications to Stowell’s model to reflect the redistribution of stress due to pre-existing plastic
deformation

• Analytical prediction comparisons with experimental data to ensure consistency

4.4. Assumptions
The following assumptions are adopted for modeling:

18
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• The material is isotropic and follows isotropic hardening; plane-stress plate response with negli-
gible through-thickness variation.

• Strain rate effects from the ballistic impact are neglected; post-impact loading is treated as quasi-
static.

• Kinematic hardening and Bauschinger effects are not considered.
• Far from the perforation, the material properties are spatially uniform.
• Temperature effects, creep, and time-dependent recovery are ignored.

4.5. Validation Strategy
Validation and model verification will be performed through a combination of numerical and experimen-
tal approaches:

• Finite Element Analysis (FEA): A numerical model will be developed using Abaqus CAE, incorpo-
rating spatially varying material properties around the perforation.

• Experimental Data Comparison: Digital Image Correlation (DIC) measurements from uniaxial
tensile tests on perforated specimens, provided by TNO, will be used to benchmark the numerical
and analytical results.

The experimental data provided by TNO was utilized to calibrate and validate the analytical and numer-
ical work. The DIC of the perforated specimens undergoing uniaxial tensile tests were compared to the
strains calculated from the analytical and FEA model.



5
Semi-Analytical Approach

This chapter presents the development of a modified analytical stress field model that incorporates
prestrain effects resulting from ballistic perforation. The model builds upon Stowell’s classical plastic
correction approach, modified to include a prestrain field derived from empirical Vickers hardness data
around the perforation. The geometrical layout and loading direction of this model is shown in Figure
5.1, where the color gradient represents the zone with existing damaged material or the zone of prior
plastic strain.

Figure 5.1: Loading convention

5.1. Prior Plastic Strain Field
The local strain is decomposed into two components: the residual plastic strain from the ballistic impact
(prestrain), and the strain due to subsequent applied far-field loading. The local strain in the system is
estimated as a summation of the prior plastic strain and subsequent plastic strain. The plastic strain is
estimated using Hollomon’s:

εpl =
(σpl
K

) 1
n (5.1)

The prior plastic strain field is given by an exponentially decreasing function found from curve fitting the
prestrain distribution from the Vickers Hardness measurements:

20
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εpr = εpr,max · e−kpr( r
a−1) (5.2)

where:

• εpr,max is the maximum prestrain near the hole found from the Vickers Hardness measurements,
• r is the distance from the center of the hole,
• kpr is the fitting parameter,
• a is the hole radius.

Leading to the total local strain summation:

εl = εpl + εpr (5.3)

5.1.1. Strain from Vickers Hardness
The maximum prestrain value is the strain at the corresponding stress value calculated from the rela-
tionship with Vickers Hardness and defined by the stress-strain function of the tensile test specimens.
For example, the maximum Vickers Hardness measurement taken on the EH36 sample is approxi-
mately 290 kg/mm2, or 2844 MPa, resulting in a corresponding yield stress of 770 MPa if Equation 5.5
is used. The average Vickers hardness of the base material and the documented yield strength of the
base material were used to find a more accurate relationship between Hv and yield strength (both in
MPa).

Hv,avg,EH36

σy,EH36
=

1618.7

438
= 3.7 (5.4)

Equation 5.4 becomes:
σy ≈ Hv

3.7
(5.5)

The value of strain corresponding to the maximum Vickers hardness at the edge of the perforation is
calculated from the Hollomon relationship using the average of the material fit parameters from testing,
Table 5.1. This yields an approximate maximum strain value of 0.4 at the edge of the perforation.

Table 5.1: Hollomon fit data, TNO

K (MPa) n
43053-1A-EH36-Trans-NoFailure 919.6 0.2
43053-1B-EH36-Trans-NoFailure 889.8 0.2
43053-2A-EH36-Long-NoFailure 937.5 0.2
43053-2B-EH36-Long-NoFailure 940.8 0.2
Averages: 921.9 0.2

The resulting prestrain distribution using Equation 5.2 and the maximum prestrain value results in the
distribution in Figure 5.2. The curve fitting parameter, kpr, is found using a Nelder-Mead simplex opti-
mization method. The resultant fitted curve is compared to the Hollomon strain curve, which represents
the strain calculated using Hollomon’s with the stresses found from the Vickers measurements along
the x direction from the edge of the perforation.
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Figure 5.2: Prestrain distribution from hardness data

5.2. Implicit Solution Method
Figure 5.3 outlines the method for solving the system of equations for the final local stress values.

Figure 5.3: Solution process

Input For each point (r, θ), remote stress σ∞, hole radius a, Young’s modulus E, Hollomon parame-
ters (K,n), prestrain εp0(r) ≥ 0 , and far-field secant modulus Es,∞.
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Unknown The incremental equivalent plastic strain εp ≥ 0 such that the local stress state is self-
consistent with the material law.

Local secant modulus. Define the local flow stress from Hollomon (true stress)

σflow(κ) = K κn, κ := εp0 + εp, (5.6)

εtot(κ) =
σflow(κ)

E︸ ︷︷ ︸
elastic true strain

+ κ︸︷︷︸
plastic (equiv.)

, (5.7)

Es(κ) =
σflow(κ)

εtot(κ)
. (5.8)

Stowell stress field (plane stress) Let c2 = cos(2θ), s2 = sin(2θ), ρ = (a/r)2, and ϕ(κ) := Es(κ)/Es,∞.
The Stowell stresses at (r, θ) are

σθ(r, θ;κ) =
1
2 σ∞

[
1 + ρ − ϕ(κ)

(
1 + 3ρ2

)
c2
]
, (5.9)

σr(r, θ;κ) =
1
2 σ∞

[
1− ρ + ϕ(κ)

(
1− 4ρ+ 3ρ2

)
c2
]
, (5.10)

τrθ(r, θ;κ) = − 1
2 σ∞ ϕ(κ)

(
1 + 2ρ− 3ρ2

)
s2. (5.11)

Von Mises equivalent stress (plane stress)

σvm(r, θ;κ) =
√
σ2
r − σrσθ + σ2

θ + 3 τ 2
rθ . (5.12)

Consistency enforcement Solve for εp ≥ 0 (equivalently for κ = εp0 + εp) such that

f(εp) := σvm
(
r, θ; κ

)
− σflow(κ) = 0. (5.13)

Secant update Given two iterates ε(k−1)
p , ε

(k)
p with residuals f (k−1) = f(ε

(k−1)
p ), f (k) = f(ε

(k)
p ), update

via

ε(k+1)
p = max

{
0, ε(k)p − f (k)

ε
(k)
p − ε

(k−1)
p

f (k) − f (k−1)

}
, (5.14)

until a stopping criterion holds, e.g.

|f (k+1)| < tolF or
∣∣ε(k+1)

p − ε(k)p

∣∣ < tolerance. (5.15)

Output At convergence, set ε⋆p(r, θ) = εp and report the local fields

E⋆
s (r, θ) = Es

(
εp0 + ε⋆p

)
, (5.16)

σ⋆(r, θ) =
(
σr, σθ, τrθ

)
evaluated at κ = εp0 + ε⋆p, (5.17)

σ⋆
vm(r, θ) = σvm

(
r, θ; εp0 + ε⋆p

)
. (5.18)

The stress field and equivalent von Mises stress are then recomputed with the converged εp.



6
Numerical Approach

6.1. Models
To investigate the effects of material and geometric variations on stress and strain distributions, the
following model versions were developed:

• Baseline Model: A perforated plate with uniform material properties, serving as a reference case
for subsequent modifications.

• Variable Material Properties Model: A perforated plate incorporating a spatially varying material
definition, representing strain hardening effects induced by ballistic perforation. This variation
was included to account for prestrain effects and material property changes in the vicinity of the
hole.

Simulations were carried out using Abaqus/CAE, version 2024, developed by Dassault Systèmes Simu-
lia Corp.

6.1.1. Geometry
To maximize computational efficiency while maintaining accuracy, the perforated plate was modeled
three-dimensionally, but only one-quarter of the plate was included in the simulations. This approach
leverages the geometric symmetry of the problem, reducing computational costs while still capturing
the relevant stress and strain distributions. To compare to the analytical solution, thee simulation with
prestrain was performed with plate boundaries far from the location of the hole to simulate an infinite
plate. Three-dimensional, solid continuum elements (C3D8R) were used.

6.1.2. Boundary Conditions
The applied boundary conditions enforced symmetry along the relevant planes, constraining displace-
ment at the vertical and horizontal symmetry planes while allowing deformation in the positive X direc-
tion at the edge of applied load, Figure 6.1. The loading was applied as a uniform tension at the remote
boundary, simulating a far-field tensile stress condition. The simulations were carried out using the
standard implicit solver.
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Figure 6.1: Plate boundary conditions

6.2. Material Calibration
To achieve accurate material representation in the finite element simulations, material properties were
calibrated against experimental data. The base material was defined using an isotropic linear elastic
material model, with properties specified by Young’s modulus and Poisson’s ratio from tensile testing
of non-perforated EH36 specimens.

For simulations incorporating the effects of prior plastic deformation near the ballistic perforation, an
elasto-plastic material definition was applied. The stress strain curves of the plastic material zones
were determined from the radially varying prestrain field around the hole. The Vickers hardness mea-
surement data were fitted to obtain a smooth equivalent prestrain profile, then a Swift law was used to
build a local true stress versus effective plastic strain curve for the FEA material definitions. This was
done for each radial point from the perforation that Vickers hardness measurements were collected.
These radially-dependent curves were assigned as discrete field-dependent plasticity material defini-
tions in the FEA. The discrete field links node locations to the corresponding stress–strain curves based
on their radial distance from the perforation. The nodes outside the zone of prior plastically hardened
material are assigned the base material (not prestrained) properties. In this way, the simulation starts
from the pre-damaged state (via the shifted curves) and evolves additional plasticity consistently during
loading.

Because the discrete field definitions are assigned at the nodes, the material behavior at the elements
in Abaqus is interpolated from the stress–strain curves associated with the element’s corner nodes.
Abaqus evaluates the material properties at each integration point by interpolating the field variable(s)
from the nodal values using the element’s shape functions. This means that if different nodes of a
single element are linked to different stress–strain curves, the resulting behavior within that element
will reflect a weighted average of those curves across the integration points. While this introduces a
level of approximation, it still allows the model to capture smooth transitions in mechanical behavior
across the strain-hardened zone and reasonably represents the material heterogeneity surrounding
the hole. For elements located at the boundary of two or more material zones, this averaging enables
a gradual transition rather than an abrupt material jump, which helps mitigate numerical instabilities
while still preserving the physical gradients.
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6.3. Mesh Convergence
A mesh convergence study was conducted to ensure that the finite element results were independent
of mesh density and adequately captured the stress gradients around the perforation. The mesh was
progressively refined in regions of high stress concentration, at the location of maximum stress near the
edge of the hole, where accurate resolution of the strain-hardened material behavior is more critical.

Convergence was assessed by monitoring the maximum von Mises stress at the location of maximum
stress. Since the mesh was not uniformly refined for the entire plate, the mesh size directly at and
surrounding the perforation was used. Multiple mesh configurations were tested, and the maximum
von Mises stress at the edge of the perforation was recorded for each to identify when further refine-
ment resulted in negligible change. To further improve efficiency, variable mesh sizing was applied,
using finer elements near the perforation and coarser elements in regions of low stress gradients. This
allowed for improved computational performance without sacrificing accuracy in the critical area.

The results demonstrated convergence in the maximum von Mises stress values beyond a minimum
mesh seed size at the hole of 1 mm, indicating that the solution was mesh-independent.

Figure 6.2: Mesh convergence



7
Results

The following sections discuss the results of the analytical and numerical method results, the validation
efforts and parametric study performed.

7.1. Semi-Analytical
Figure 7.1 shows the resultant stress concentration contours for one quadrant of the plate. The model
assumed an infinite plate geometry (no edge effects) but the results are plotted to a limited r/a.

Figure 7.1: von Mises SCF analytical model with prestrain - applied stress 481 MPa
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7.2. Numerical
The results of the numerical simulations for the plate with base material properties and varying material
properties presented in this section. Figure 7.2 and 7.3 show the SCF of the von Mises stress for the
model without prestrain incorporation and with prestrain incorporation respectively.

Figure 7.2: von Mises SCF for plate with elastic material definition - applied stress 481 MPa
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Figure 7.3: Von Mises SCF for plate with elastic-plastic material definition - applied stress 481 MPa

7.3. Validation
Due to the limited experimental data available near the vicinity of the hole during the tensile tests of
the perforated specimens, the analytical model is compared to the FEA in addition to the few DIC data
points available. The comparisons are performed at the location of maximum stress on the plate under
uniaxial tension - location marked by the white line in Figure 7.4. The DIC taken at the load time of crack
initiation at the edge of the hole during a tensile test of the perforated specimens is shown in Figure
7.4. Figure 7.5 shows the distribution of hoop stress concentration factors for the analytical solution
method with and without prestrain.
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Figure 7.4: EH-RD1 DIC at uniaxial load of crack initiation (applied stress of 481 MPa)
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Figure 7.5: Hoop stress SCF at θ = 90 degrees for far field applied stress 481 MPa

Figure 7.6: Comparison of the first principal strain at θ = 90 degrees for far field applied stress 481 MPa



8
Discussion and Recommendations

8.1. Discussion
In a plate of elastic material under uniaxial tension with a discontinuity, the plastic zone at the discontinu-
ity begins forming when the local stress at the edge reaches the yield stress. The relationship between
the local stress at the edge of the discontinuity to the stress at a far field location in the plate (the SCF)
informs us on the point in loading time at which yielding begins at the discontinuity. For purely elastic
materials, the SCF at the hole edge is theoretically equal to 3, as predicted by Kirsch’s solution for a
circular hole in an infinite plate.

With Stowell’s method, Kirsch’s solution is scaled by the secant modulus factor that ties the material
properties to the stress field, introducing effects of plasticity. The analytical method with no prestrain
included results in a reduced SCF of 1.4, including prestrain in the method results in a further reduction
of the SCF by approximately 15.7% (Figure 7.5). This is expected because the numerator of the scaling
secant modulus ratio increases with the prestrain incorporated.

Comparison with the DIC data points shows an offset between the the principal Green–Lagrange strain,
however strong conclusions cannot be drawn from the lack of data. At an r/a of approximately 8.6 we
can see the analytical method with prestrain results in a strain of 0.036 which is near the DIC value
of 0.04. The offset between the strain curves from the analytical and FEA methods suggest that the
material definitions used for the hardened material zones may not be substantial enough.

8.2. Relevance
The relevance of this thesis lies in its contribution to the understanding and prediction of structural
behavior in pre-damaged high-strength steel components, specifically those subjected to ballistic per-
foration. In real-world applications (such as naval vessels) structural elements are at risk of exposure
to high-energy impacts that leave behind localized damage zones. Assessing the residual strength and
risk of further failure of these components is critical for making informed decisions about repair, con-
tinued use, or decommissioning. Advancing methods to estimate the relationship between the stress
concentration at the damage and the far field stress of a plate-like structural component (such as a
vessel bulkhead) enables increased efficiency in engineering evaluations.

Traditional analytical models for circular cutouts in a plate often assume undamaged, homogeneous
material behavior, while numerical models capable of capturing post-damage effects can be computa-
tionally intensive and require detailed calibration. This thesis begins to address this gap by introducing
a semi-analytical model that incorporates prestrain effects and strain hardening behavior based on
measurable physical properties (Vickers hardness). In the context of future technologies and structural
resilience, this work contributes to a broader effort to design with damage tolerance in mind and to
develop frameworks that account for material history.
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8.3. Limitations
While this thesis introduces a novel and efficient framework for modeling the stress and strain behavior
of prestrained, ballistically-perforated steel plates, several limitations should be acknowledged that
constrain the application of the current approach.

Assumption of Isotropic Material Behavior
The analytical model assumes that the material is isotropic and that strain hardening occurs uniformly
in all directions. In reality, some steels may exhibit anisotropic behavior due to microstructural char-
acteristics, manufacturing processes, or localized deformation patterns. This simplification may lead
to under or overestimation of stresses and strains in specific directions, especially in the presence of
directional hardening.

Idealized Prestrain Distribution
The prestrain field around the perforation is represented using an exponentially decaying function, cali-
brated from hardness measurements. While this captures the general trend of strain hardening around
the hole, it assumes radial symmetry and smooth transitions, which may not fully reflect the complex
and irregular deformation patterns caused by high-velocity impacts (e.g., petaling, mounding, or local-
ized shear bands).

Simplified Geometry and Loading Conditions
The model assumes an infinite plate under uniaxial in-plane loading, which neglects finite boundary ef-
fects, erratic thickness variation, and out-of-plane or transverse stresses. These assumptions allow for
analytical tractability but limit the accuracy when applied to real structures, especially when perforation
occurs near edges, supports, or under multiaxial loading conditions.

Explicit Damage or Fracture Modeling
While the model accounts for prestrain and hardening effects, it does not incorporate damage evolution,
void nucleation, or fracturemechanics directly. The approach assumes thematerial remains continuous
and deformable beyond yield, which may not be valid in regions close to fracture initiation or crack
propagation. This limits the ability to predict fracture location or crack growth with high accuracy.

Numerical Averaging in Finite Element Implementation
The use of discrete field definitions in Abaqus introduces interpolation-based averaging of material
behavior across elements. Since material properties are defined at nodes, the behavior at integration
points within elements is an interpolation of multiple stress–strain curves, which may smooth out sharp
material transitions and introduce approximation in regions with steep gradients in prestrain.

Limited Experimental Validation
The prestrain distribution and material calibration are based on hardness and tensile test data from
a single steel type and a limited set of impact and loading conditions. Broader experimental valida-
tion across different materials, geometries, and loading scenarios is necessary to confirm the general
applicability of the model.

8.4. Recommendations
To further expand this research, additional steel types should be studied using this framework. Expan-
sion to include more extreme local damage types would also broaden the applicability of this work. To
further extend the applicability and robustness of this framework, the following recommendations are
proposed:

Further Experimentation on Strain Hardened EH36
Limited experimental data is available to validate the analytical model for the zone of hardened material
around the perforation. To close this gap, it is recommended a focused experimental program be
performed that is designed to (i) measure the spatial distribution of prior plastic strain εp0(r, θ), (ii) extract
local flow parameters K(r, θ) and n(r, θ) for the Hollomon/Swift laws, (iii) quantify residual stress fields
σr(r, θ) and σθ(r, θ), and (iv) document damage features (voids, shear bands, porosity) that correlate
with crack initiation. The methods below are chosen to be complementary in spatial resolution, and
depth sensitivity.
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Multi-scale field mapping:

• Micro-Vickers hardness mapping (HV0.1–HV1). Perform a dense grid (100–250m pitch) from
the hole edge to ∼ 8–12D along at least four azimuths. Convert HV to a local proxy for flow
strength to obtain a first-pass εp0(r, θ)map. Use polished cross-sections (≤ 1m finish) and report
confidence intervals accounting for indentation size effects.

• 3D profilometry of the lip. Confocal or white-light interferometry of the perforation lip records
mounding geometry, which is a surrogate for plastic work and helps set accurate boundary ge-
ometry for FEM validation.

• Residual stress (XRD, sin2ψ). Map σr, σθ along radial paths at 0.25–0.5mm steps. Repeat after
controlled electrolytic layer removal to estimate near-surface gradients.

• EBSD on radial cross-sections. Kernel average misorientation (KAM) provides a geometrically
necessary dislocation (GND) density proxy and thus a qualitative εp0 indicator. Examine multiple
azimuths (0◦, 90◦, 180◦, 270◦) to capture anisotropy.

Local constitutive response:

• Instrumented/spherical indentation (CSM). Use multiple indenter radii (20–100m) and inverse
analysis to extract localE, yield, andK,n at selected r/a values; include unload–reload segments
to sense kinematic hardening (Bauschinger) effects.

• Miniature tensile & shear-punch tests. Wire-EDM sub-size dogbones or ∅ 3–6mm shear-punch
coupons lifted from annular bands (e.g., r/a = 1.1, 1.3, 1.5, . . . ) provide true stress–strain curves
and ductility versus distance from the hole, anchoring the hardness/indentation conversions.

High-resolution reloading fields:

• In-situ SEM micro-DIC. Using a micro-tensile stage, perform gentle reloading (to ∼ 10–20% of
global yield) with 0.1–2m spatial resolution to capture near-edge strain gradients that macro-DIC
misses. These fields directly validate the Stowell-based stress/strain predictions in the annulus
of interest.

• Through-thickness residual stress. Neutron diffraction or layer-removal XRD provides depth-
resolved σr, σθ for 3D validation.

Damage characterization:

• Micro-CT of the lip region. Quantify void/crack populations and porosity around the rim; correlate
with EBSD and hardness bands and with predicted hot-spots.

• Site-specific TEM (FIB lift-outs). Examine dislocation substructures, shear band thickness, and
precipitate/crack interactions to support the chosen hardening law and help explain anisotropy in
crack initiation.

Apply Framework to Additional Materials
The current study focuses on EH36 steel, which is representative of high-strength structural steels used
in maritime applications. Future work should apply the developed analytical-numerical framework to
other steel types (e.g., S690, S960, or dual-phase steels) and potentially to aluminum or titanium alloys.
This would test the broader applicaiton potential of themodel and identify material-dependent behaviors
related to strain hardening, ductility loss, and prestrain gradient formation.

Investigate More Severe Damage Geometries
While this work models damage based on a near-cylindrical ballistic perforation, real-world impacts
may produce more severe local deformation, such as mounding, petaling, or shear plugging. Future
research should incorporate these more complex geometries to evaluate how non-axisymmetric or
irregular deformation shapes affect the local stress and strain fields, particularly under further loading.
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Incorporate Out-of-Plane and Multiaxial Loading
The current analysis is limited to in-plane uniaxial tension following the perforation event. Future inves-
tigations should include out-of-plane loading conditions, such as bending or pressure-induced bulging,
which are common in structural and naval contexts. Multiaxial stress states would require adaptations
of the stress field model and may necessitate use of alternative or more advanced yield criteria (e.g.,
Hill, Barlat).

Extend to Anisotropic and Directionally Hardened Materials
This thesis assumes isotropicmaterial behavior and isotropic hardening. Many steels—especially those
rolled or cold-worked—exhibit anisotropic mechanical properties and directional strain hardening. Fu-
ture work should incorporate anisotropic yield criteria and hardening models (e.g., Hill’s criterion or
distortional hardening approaches) to more accurately model directional behavior in real materials.

Include Finite Plate Boundary Effects
The analytical model assumes an infinite or semi-infinite plate, which simplifies the derivation but may
not reflect actual structural configurations. Incorporating finite boundary conditions—either analytically
or via parametric FEM studies—would help assess how boundary proximity affects stress redistribution
and failure progression. This would be particularly important for smaller panels or components with
nearby supports, cutouts, or geometric constraints.



9
Conclusion

This thesis developed an analytical and numerical framework to model the stress field in high-strength
steel plates containing a ballistically-induced perforation, with a focus on the influence of prestrain near
the perforation on the SCF. Existingmodels, including Stowell’s plasticity-corrected stress concentration
approach and strain hardening laws such as Hollomon and Swift, were evaluated and extended to
attempt to account for the residual plastic deformation introduced during ballistic impact.

A modified version of Stowell’s analytical solution was proposed, incorporating a spatially varying pre-
strain field derived from Vickers hardness measurements. The stress field under uniaxial, far field
tension was defined using a Stowell formulation modified with a Swift style hardening law that included
the prestrain field. The results shows a gap still exists between the proposed semi-analytical model
and the physics occurring under new loading at the location of prior damage in a plate. The resul-
tant SCF of the analytical method with prestrain is lower than the SCF derived from Stowell’s original
method without prestrain, however additional validation is required to confirm this holds for more than
one material.

This work demonstrates that incorporating hardness-estimated prestrain effects into Stowell’s analytical
stress field model lowers the SCF at the location of existing damage. Further research into additional
methods of quantifying prestrain and expansion of this framework to include additional material types,
damage geometries, and loading conditions will enable broader validation of the model’s applicability
and support its use in structural integrity assessments for impact-damaged steel components.
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A
Code

1 %% =============================
2 % File: stowell_eps_sol.m
3 % Returns ep field, smoothed prestrain profile used
4 %% =============================
5

6 function [eps_sol, eps_pre, iters] = stowell_eps_sol(r_vec, theta_vec, yield_csv, E, K, n,
sigma_inf, a, Es_inf)

7 % STOWELL_EPS_SOL
8 % Solve for the incremental equivalent plastic strain ep(r�,) using ’Stowells field and

shifted Hollomon law
9 %
10 % Inputs:
11 % r_vec [N×1] radii (mm)
12 % theta_vec [1×M] angles (rad)
13 % yield_csv CSV with column 'Eps_pre' giving prestrain vs r
14 % E ’ Youngs modulus (MPa)
15 % K, n Hollomon parameters (MPa, -)
16 % sigma_inf remote (far-field) (MPa)
17 % a hole radius (mm)
18 % Es_inf far-field secant modulus
19 %
20 % Output:
21 % eps_sol [N×M] incremental equivalent plastic strain ep(r�,) � 0
22 % eps_pre [N×1] smoothed, baseline-corrected prestrain profile used
23 % iters [N×M] iteration counts (diagnostic)
24

25

26 % Prestrain profile (scalar eq. plastic prestrain vs r)
27 T = readtable(yield_csv);
28 if ~ismember('Eps_pre', T.Properties.VariableNames)
29 error('CSV␣must␣contain␣column␣named␣Eps_pre.');
30 end
31 eps_pre_fun = fit_prestrain_function(r_vec, T.Eps_pre(:), a);
32 eps_pre = eps_pre_fun(r_vec);
33

34 N = numel(r_vec); M = numel(theta_vec);
35 eps_sol = zeros(N, M);
36 iters = zeros(N, M);
37

38 % solver settings
39 damp = 0.7; % damping factor for secant step (0<damp<=1)
40 tolX = 1e-10; % strain increment tolerance
41 tolF = 1e-6; % residual tolerance in MPa
42 maxIt = 60; % max iterations
43

44 % Neighbor continuation improves smoothness & speed
45 use_continuation = true;
46

47 % loop over grid points

39
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48 for i = 1:N
49 r = r_vec(i);
50 ep0 = eps_pre(i);
51

52 for j = 1:M
53 th = theta_vec(j);
54

55

56 % Residual: f(ep) = sigma_eq(ep) - K*(ep0+ep)^n
57 resid = @(ep) vmises_stowell(ep, ep0, r, th, E, K, n, sigma_inf, a, Es_inf) ...
58 - K*(ep0 + (ep)).^n;
59

60 % Seed near the far-field plastic increment at this radius
61 ep_seed = ((sigma_inf/K)^(1/n) - ep0);
62 if use_continuation
63 if j > 1, ep_seed = 0.5*ep_seed + 0.5*eps_sol(i,j-1); end
64 if i > 1, ep_seed = 0.5*ep_seed + 0.5*eps_sol(i-1,j); end
65 ep_seed = (ep_seed);
66 end
67

68 % Two nearby secant guesses
69 ep0g = ep_seed;
70 ep1g = max(ep_seed + max(1e-6, 0.2*ep_seed), 1e-8);
71

72 f0 = resid(max(ep0g,0));
73 f1 = resid(max(ep1g,0));
74

75 % Projected, damped secant iterations
76 ep = ep1g; dmp = damp; it = 0;
77 for it = 1:maxIt
78 denom = (f1 - f0);
79 if abs(denom) < 1e-20
80 step = 0.1*max(1e-6, ep1g);
81 else
82 step = - f1 * (ep1g - ep0g) / denom;
83 end
84

85 ep2 = max(ep1g + dmp*step, 0);
86 f2 = resid(ep2);
87

88 % Convergence tests
89 if abs(f2) < tolF || abs(ep2 - ep1g) < tolX
90 ep = ep2; break;
91 end
92

93 % Update secant history
94 ep0g = ep1g; f0 = f1;
95 ep1g = ep2; f1 = f2;
96

97 % Damping back-off if progress slow
98 if it > 8 && sign(f1) == sign(f0)
99 dmp = 0.5*dmp;
100 end
101 end
102

103 if it == maxIt
104 ep = ep2; % best effort at exit
105 end
106

107 eps_sol(i,j) = ep; % already � 0 by projection
108 iters(i,j) = it;
109 end
110 end
111 end
112

113

114 % Helper: von Mises stress under Stowell with Es_loc/Es_inf.
115 % Plane-stress VM formula
116 function s_vm = vmises_stowell(ep, ep0, r, th, E, K, n, sigma_inf, a, Es_inf)
117 ep_eff = max(ep, 0); % enforce ep � 0 in evaluation
118 ep_tot = ep0 + ep_eff; % total equiv. plastic at point
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119 sigma_loc = K * (ep_tot)^n; % Hollomon stress at current state
120 eps_tot_loc = sigma_loc/E + ep_tot; % total true strain
121 Es_loc = sigma_loc / eps_tot_loc; % local secant modulus
122

123 c2 = cos(2*th); rr2 = (a/r)^2; rr4 = rr2^2; fac = (Es_loc/Es_inf);
124

125 sig_th = 0.5*sigma_inf*( 1 + rr2 - fac*(1+3*rr4)*c2 );
126 sig_r = 0.5*sigma_inf*( 1 - rr2 + fac*(1-4*rr2+3*rr4)*c2 );
127 tau_rt = -0.5*sigma_inf*fac*(1+2*rr2-3*rr4)*sin(2*th);
128

129 % Plane-stress von Mises (includes shear)
130 s_vm = sqrt( sig_r.^2 - sig_r.*sig_th + sig_th.^2 + 3*tau_rt.^2 );
131 end

1 %% =============================
2 % File: recompute_stresses.m using Stowell + shifted Hollomon
3

4 clear; clc; close all;
5

6 %% 1) Define geometry, material, and loading
7 % Radial positions (match yield_results.csv Radius_mm)
8 r_vec = [10.484, 10.999, 11.499, 11.999, 12.499, 12.999, 13.499, ...
9 13.999, 14.499, 14.999, 15.485, 15.999, 16.486, 16.985, ...
10 17.499, 17.999, 18.477, 18.981, 19.499, 19.999, 20.499, ...
11 20.999, 21.482, 21.999, 22.499, 22.999, 23.496, 23.999, ...
12 24.499, 24.999, 25.499, 26.500, 27.500, 28.500, 30.000, ...
13 31.000, 32.000, 33.000, 34.000, 35.000, 36.000, 37.000, ...
14 38.000, 39.000, 40.000, 41.000, 45.000, 50.000, 55.000, ...
15 60.000, 65.000, 70.000, 143.46]; % [mm]
16

17 % No duplicate endpoint at �2
18 theta_vec = linspace(0,2*pi,361);
19 theta_vec(end) = [];
20

21 yield_csv = 'yield_results_r4.csv';
22

23 K = 921.94; % Hollomon K [MPa]
24 n = 0.189982; % hardening exponent
25 E = 202366.9202; % Young's modulus [MPa]
26 sigma_inf = 481; % far-field axial Cauchy stress [MPa]
27 a = 10; % hole radius [mm]
28 nu = 0.30; % Poisson's ratio
29

30 %% 2) Solve for the ‐equivalentplastic strain field
31 ep0_inf = 0; % usually zero far from the hole
32 ep_inf = max((sigma_inf/K)^(1/n) - ep0_inf, 0);
33 eps_tot_inf = sigma_inf/E + ep_inf;
34 E_s_inf = sigma_inf / eps_tot_inf;
35 % Solve ep(r�,); also returns smoothed prestrain profile used internally
36 [eps_sol, eps_pre_vec, iters] = stowell_eps_sol(r_vec, theta_vec, yield_csv, E, K, n,

sigma_inf, a, E_s_inf);
37

38 %% 3) Allocate arrays
39 N = numel(r_vec);
40 M = numel(theta_vec);
41 sigma_theta = zeros(N,M);
42 sigma_r = zeros(N,M);
43 tau_rtheta = zeros(N,M);
44 von_mises = zeros(N,M);
45 e1_lagrangian = zeros(N,M);
46 e2_lagrangian = zeros(N,M);
47

48 %% 4) Recompute Stowell stress field using eps_sol
49 for i = 1:N
50 % Guard near-hole radius to avoid roundoff in (a/r)^2
51 r = max(r_vec(i), a*(1+1e-8));
52

53 for j = 1:M
54 th = theta_vec(j);
55

56 %local secant modulus (shifted Hollomon, based on TOTAL plastic)
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57 eps_p_tot_loc = eps_sol(i,j) + eps_pre_vec(i); % total plastic at (r�,)
58 sigma_loc = K * (eps_p_tot_loc)^n; % true stress from Hollomon
59 eps_tot_loc = sigma_loc/E + eps_p_tot_loc; % total true strain
60 E_s_loc = sigma_loc / eps_tot_loc;
61

62 % Stowell field
63 c2 = cos(2*th);
64 rr2 = (a/r)^2; rr4 = rr2^2;
65 fac = (E_s_loc/E_s_inf);
66

67 sigma_theta(i,j) = 0.5*sigma_inf * ( 1 + rr2 - fac*(1+3*rr4)*c2 );
68 sigma_r(i,j) = 0.5*sigma_inf * ( 1 - rr2 + fac*(1-4*rr2+3*rr4)*c2 );
69 tau_rtheta(i,j) = -0.5*sigma_inf * fac * (1 + 2*rr2 - 3*rr4) * sin(2*th);
70

71 % Von Mises (plane stress)
72 von_mises(i,j) = sqrt( sigma_r(i,j)^2 - sigma_r(i,j)*sigma_theta(i,j) ...
73 + sigma_theta(i,j)^2 + 3*tau_rtheta(i,j)^2 );
74

75 % Principal stresses from current state
76 sigma_avg = 0.5*(sigma_r(i,j) + sigma_theta(i,j));
77 Rmohr = sqrt( ((sigma_r(i,j) - sigma_theta(i,j))/2)^2 + tau_rtheta(i,j)^2 );
78 s1 = sigma_avg + Rmohr; % max principal stress
79 s2 = sigma_avg - Rmohr; % min principal stress
80

81 % Deviatoric principal stresses and J2 equivalent
82 sig_m = (s1 + s2) / 3; % plane stress => s3 = 0, mean based on 3 comps
83 t1 = s1 - sig_m;
84 t2 = s2 - sig_m;
85 t3 = - (t1 + t2);
86 sigma_eq = sqrt(1.5*(t1^2 + t2^2 + t3^2));
87 sigma_eq = max(sigma_eq, 1e-9*max(1, sigma_inf)); % floor
88

89 % TOTAL equivalent plastic strain at this point
90 ep_bar_tot = eps_pre_vec(i) + max(eps_sol(i,j), 0);
91

92 % Plastic principal TRUE strains (associated flow, proportional to deviatoric)
93 epsp1_true = (3/2)*(t1/sigma_eq) * ep_bar_tot;
94 epsp2_true = (3/2)*(t2/sigma_eq) * ep_bar_tot;
95 % epsp3_true = (3/2)*(t3/sigma_eq) * ep_bar_tot;
96

97 % Elastic TRUE principal strains (Hooke, plane stress)
98 epse1_true = (s1 - nu*s2)/E;
99 epse2_true = (s2 - nu*s1)/E;
100

101 % TOTAL TRUE principal strains
102 eps1_true_tot = epse1_true + epsp1_true;
103 eps2_true_tot = epse2_true + epsp2_true;
104

105 % Convert principal TRUE →– GreenLagrange
106 e1_lagrangian(i,j) = 0.5*(exp(2*eps1_true_tot) - 1);
107 e2_lagrangian(i,j) = 0.5*(exp(2*eps2_true_tot) - 1);
108

109 end
110 end
111

112 %% 5) Plots
113 r_norm = (r_vec)/ a; % center-based radii, normalized
114 [~, j90] = min(abs(theta_vec - pi/2));
115

116 figure; plot(r_norm, von_mises(:,j90), 'o-','LineWidth',1.5);
117 xlabel('r␣/␣a'); ylabel('\sigma_{vm}␣(MPa)');
118 title('Von␣Mises␣stress␣at␣\theta␣=␣\pi/2␣vs.␣r/a'); grid on;
119

120 % Experimental ‐firstprincipal strain data (example placeholders)
121 r_data_mm = [39.25, 49.99, 68.59, 98.28, 133.46]; % mm (distance from hole edge)
122 e1_data_eng = [0.07, 0.06, 0.05, 0.04, 0.03]; % engineering strain
123

124 % Convert to GL and normalize radii (edge-based → center-based by +a)
125 e1_data_GL = e1_data_eng + 0.5*e1_data_eng.^2;
126 r_data_norm = (r_data_mm + a) ./ a;
127
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128 figure; hold on;
129 plot(r_norm, e1_lagrangian(:,j90), 's-','LineWidth',1.5, 'DisplayName','Analytical␣E_1');
130 % plot(r_norm, e2_lagrangian(:,j90), '^-','LineWidth ',1.5, 'DisplayName','Analytical E_2');
131 plot(r_data_norm, e1_data_GL,'s','LineWidth',1.5,'DisplayName','Experimental␣E_1␣(GL)');
132 hold off;
133 xlabel('r␣/␣a');
134 ylabel('Principal␣–GreenLagrange␣strain');
135 title('Principal␣–GreenLagrange␣strains␣at␣\theta␣=␣\pi/2␣vs.␣r/a');
136 grid on;
137 ylow = min(min(e2_lagrangian(:,j90)) - 0.01, 0);
138 ylim([0 0.1]);
139

140 % Contour of E1 (normalized coordinates)
141 [Theta, R] = meshgrid(theta_vec, r_vec);
142 X = (R./a) .* cos(Theta); Y = (R./a) .* sin(Theta);
143 figure;
144 contourf(X, Y, e1_lagrangian, 20, 'LineStyle','none');
145 axis equal tight; box on; grid on;
146 xlabel('x␣/␣a'); ylabel('y␣/␣a');
147 title('Contour␣of␣First␣Lagrangian␣Strain␣E_1');
148 cb = colorbar; cb.Label.String = 'E_1';
149 clim([0 0.08]);
150 hold on; th = linspace(0, 2*pi, 361);
151 plot(cos(th), sin(th), 'k-', 'LineWidth', 1.0); hold off;
152 set(gcf,'Color','w');
153

154 % Hoop stress at � = �/2
155 hoop_raw = sigma_theta(:, j90);
156 hoop_scf = sigma_theta(:, j90) / sigma_inf;
157 r_over_a = r_vec(:) / a;
158

159 figure;
160 plot(r_over_a, hoop_raw, 'o-','LineWidth',1.5, 'DisplayName','\sigma_{\theta\theta}␣(MPa)');

hold on;
161 plot(r_over_a, hoop_scf, 's-','LineWidth',1.5, 'DisplayName','\sigma_{\theta\theta}/\sigma_{\

infty}');
162 hold off; grid on;
163 xlabel('r␣/␣a');
164 ylabel('Value');
165 title('Hoop␣stress␣at␣\theta␣=␣\pi/2␣vs.␣r/a');
166 legend('Location','best');
167

168 % Optional: export numeric data
169 out_hoop = [r_over_a, hoop_raw, hoop_scf];
170 fname_hoop = 'hoop_theta90.csv';
171 writematrix(out_hoop, fname_hoop);
172

173 %% Quadrant contour: von Mises with Abaqus-like palette (0 ���� /2)
174 th_mask = (theta_vec >= 0) & (theta_vec <= pi/2 + 1e-12);
175

176 [ThetaQ, RQ] = meshgrid(theta_vec(th_mask), r_vec);
177 Xq = (RQ./a).*cos(ThetaQ);
178 Yq = (RQ./a).*sin(ThetaQ);
179 Zq = von_mises(:, th_mask);
180

181 normalize_scf = false;
182 if normalize_scf
183 Zplot = Zq / sigma_inf;
184 zlabel = '\sigma_{vm}␣/␣\sigma_\infty';
185 else
186 Zplot = Zq;
187 zlabel = '\sigma_{vm}␣[MPa]';
188 end
189

190 nLevels = 13;
191 zmin = min(Zplot(:)); zmax = max(Zplot(:));
192 levels = linspace(zmin, zmax, nLevels);
193

194 figure;
195 [~,h] = contourf(Xq, Yq, Zplot, levels);
196 set(h,'LineColor','none');
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197 axis equal tight; box on; grid on;
198 xlabel('x␣/␣a'); ylabel('y␣/␣a');
199 title('\sigma_{vm}:␣Quadrant␣0␣\leq␣\theta␣\leq␣\pi/2');
200 clim([levels(1) levels(end)]);
201

202 colormap(jet(nLevels-1));
203 cb = colorbar;
204 cb.Label.String = zlabel;
205 cb.Ticks = levels;
206 cb.TickLabels = compose('%+.3e', levels);
207

208 hold on; thq = linspace(0, pi/2, 181);
209 plot(cos(thq), sin(thq), 'k-', 'LineWidth', 1.0); hold off;
210 set(gcf,'Color','w');
211

212 cmap12 = [ ...
213 0.00 0.00 0.56
214 0.00 0.00 1.00
215 0.00 0.50 1.00
216 0.00 1.00 1.00
217 0.00 1.00 0.50
218 0.00 1.00 0.00
219 0.50 1.00 0.00
220 1.00 1.00 0.00
221 1.00 0.80 0.00
222 1.00 0.60 0.00
223 1.00 0.20 0.00
224 1.00 0.00 0.00];
225 colormap(cmap12);
226

227 %% — Quadrant contour: SCF = �_vm / �∞_ (0 ���� /2) —
228 th_mask = (theta_vec >= 0) & (theta_vec <= pi/2 + 1e-12);
229

230 [ThetaQ, RQ] = meshgrid(theta_vec(th_mask), r_vec);
231 Xq = (RQ./a).*cos(ThetaQ);
232 Yq = (RQ./a).*sin(ThetaQ);
233 Zscf = von_mises(:, th_mask) / sigma_inf;
234

235 nLevels = 13;
236 use_fixed_range = true;
237 if use_fixed_range
238 zmin = 0.185;
239 zmax = 1.581;
240 else
241 zmin = min(Zscf(:));
242 zmax = max(Zscf(:));
243 end
244 levels = linspace(zmin, zmax, nLevels);
245

246 figure;
247 [~,h] = contourf(Xq, Yq, Zscf, levels); % no LineColor arg
248 set(h,'LineColor','none'); % hide band edges
249 % set(gcf,'Renderer','painters'); % <- optional: avoids tiny seams in exports
250 axis equal tight; box on; grid on;
251 xlabel('x␣/␣a'); ylabel('y␣/␣a');
252 title('SCF,␣Mises␣(Quadrant␣0␣\leq␣\theta␣\leq␣\pi/2)');
253 clim([levels(1) levels(end)]);
254

255 colormap(jet(nLevels-1));
256 cb = colorbar;
257 cb.Label.String = '\sigma_{vm}␣/␣\sigma_{\infty}';
258 cb.Ticks = levels;
259 cb.TickLabels = compose('%+.3e', levels);
260

261 hold on;
262 thq = linspace(0, pi/2, 181);
263 plot(cos(thq), sin(thq), 'k-', 'LineWidth', 1.0);
264 hold off;
265

266 set(gcf,'Color','w');
267 %% --- Export SCF along theta = 90 deg �(/2) ---
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268 target_theta = pi/2;
269 [~, i90] = min(abs(theta_vec - target_theta));
270 theta90_deg = rad2deg(theta_vec(i90));
271

272 % Warn if theta_vec doesn't hit 90° exactly (uses nearest angle)
273 if abs(theta_vec(i90) - target_theta) > deg2rad(0.1)
274 warning('No␣exact␣�=90°␣in␣theta_vec.␣Using␣�␣=␣%.6f␣rad␣(%.3f°).', ...
275 theta_vec(i90), theta90_deg);
276 end
277

278 % SCF = sigma_vm / sigma_inf along that ray (vector over r)
279 scf_theta90 = von_mises(:, i90) / sigma_inf;
280 r_over_a = r_vec(:) / a;
281

282 % Two columns: r/a, SCF
283 out = [r_over_a, scf_theta90];
284

285 % Write a simple .scf text file
286 fname_scf = 'theta90.scf';
287 fid = fopen(fname_scf,'w');
288 assert(fid>0, 'Could␣not␣open␣%s␣for␣writing.', fname_scf);
289 fprintf(fid, '%%␣SCF␣along␣theta␣=␣90␣deg\n');
290 fprintf(fid, '%%␣columns:␣r_over_a,␣SCF␣=␣sigma_vm/sigma_inf\n');
291 fprintf(fid, '%%␣theta_used_deg␣=␣%.6f\n', theta90_deg);
292 fprintf(fid, '%%␣n␣=␣%d\n', numel(r_over_a));
293 fprintf(fid, '%␣.10e,␣%␣.10e\n', out.'); % r/a, SCF
294 fclose(fid);
295

296 writematrix(out, 'theta90.csv');
297

298 %% Quadrant contour: Hoop SCF (0 ���� /2)
299 th_mask = (theta_vec >= 0) & (theta_vec <= pi/2 + 1e-12);
300

301 [ThetaQ, RQ] = meshgrid(theta_vec(th_mask), r_vec);
302 Xq = (RQ./a).*cos(ThetaQ);
303 Yq = (RQ./a).*sin(ThetaQ);
304

305 Zhoop = sigma_theta(:, th_mask) / sigma_inf;
306

307 % Choose contour levels (fixed or data-driven)
308 nLevels = 13;
309 use_fixed_range_hoop = false;
310 if use_fixed_range_hoop
311 zmin = 0.0;
312 zmax = 3.0;
313 else
314 zmin = min(Zhoop(:));
315 zmax = max(Zhoop(:));
316 end
317 levels = linspace(zmin, zmax, nLevels);
318

319 figure;
320 [~,h] = contourf(Xq, Yq, Zhoop, levels);
321 set(h,'LineColor','none');
322 axis equal tight; box on; grid on;
323 xlabel('x␣/␣a'); ylabel('y␣/␣a');
324 title('Hoop␣SCF:␣\sigma_{\theta\theta}␣/␣\sigma_{\infty}␣(0␣\leq␣\theta␣\leq␣\pi/2)');
325 clim([levels(1) levels(end)]);
326

327 colormap(jet(nLevels-1));
328 cb = colorbar;
329 cb.Label.String = '\sigma_{\theta\theta}␣/␣\sigma_{\infty}';
330 cb.Ticks = levels;
331 cb.TickLabels = compose('%+.3e', levels);
332

333 % Draw the hole edge
334 hold on; thq = linspace(0, pi/2, 181);
335 plot(cos(thq), sin(thq), 'k-', 'LineWidth', 1.0);
336 hold off;
337

338 set(gcf,'Color','w');
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