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Why Timber?

Carbon Neutral

e Carbon sequestration

¢ 1m®ofwood = 1.1 tons of CO,
Occupant Health

e Natural materials make for
healthier spaces

New Engineered Products

Heartwood is sourced from
center of tree trunk

Planing or Quartering

Slicing

i

Ripping

Solid Sawn Lumber Cross-Laminated Timber ~ Glue-Laminated Timber

Timber Veneer Mass Plywood Panels Laminated Veneer Lumber

Timber Strands Laminated Strand Lumber  Parallel Strand Lumber




Why Timber?
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Carbon Neutral | L i
* Carbon sequestration <5% LA N |
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Occupant Health

e Natural materials make for
healthier spaces

New Engineered Products
e Elements are more reliable
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f ff f Bending Strength

k 0.5 k

f. = Characteristic Strength

f,s = Mean Strength




Why Timber?

Carbon Neutral

* Carbon sequestration

e 1Tm®of wood = 1.1 tons of CO,
Occupant Health

e Natural materials make for
healthier spaces

New Engineered Products
* Elements are more reliable
* New structure types possible

Mijastarnet - Brumunddal, Norway - Voll Arkitekter




Why Tall Timber?

Increased Density Urban Density versus Transportation Energy Use
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Why Tall Timber?

Increased Density Site energy use per household in 2009 by year of construction =
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Why Tall Timber?

Increased Density

* Higher density cities use less
transportation energy

* High density living has lower
emissions per floor area

¢ Need low carbon solutions for
such structures

Material carbon footprint comparison for like structures
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Why Tall Timber?

Renovations and other changes can drastically change weight
distribution and in turn the natural frequencies of the structure

Increased Density Lightweight Structure Wember vibrations

* Higher density cities use less
transportation energy

Lightness of structure leads to high frequencies

Insulated connections (for acoustics or fire) sometimes sacrifices the seismic
performance of the connection

* High density living has lower
emissions per floor area

Connection Design Design of ductile connections for seismic applications

Member and joint/connection behavior

¢ Need low carbon solutions for
such structures

Current Challenges
* Lightweight structure

Vibration periods and damping

Numerical Modellin g Selection of appropriate seismic modelling strategies

Assumptions in FEM models of tall timber buildings
and hybrid timber buildings

e Connection design

Lack of large-scale testing results for fire-modelling data

[ ] C O m p u tatl O n a l m O d e lll n g Fire Design Predictability of fire performance of large timber elements

Bio-based fire retardants and treatments

* Fire design




Why Seismic Analysis?

(of tall timber structures)

Material Challanges
* Anisotropic material

* behaves differently in each
direction




Why Seismic Analysis?

(of tall timber structures)

Material Challanges
* Anisotropic material

* behaves differently in each
direction

e Natural material
* subject to deterioration




Why Seismic Analysis?

(of tall timber structures)

Renovations and other changes can drastically change weight

7 distribution and in turn the natural frequencies of the structure WIND
Mate I‘Ial Challa ngeS Lightweight Structure <</ . Member vibrations
° Ar] | sotro p | C mate r| a l Lightness of structure leads to high frequencies ACOUSTICS

* behaves differently in each

, Insulated connections (for acoustics or fire) sometimes sacrifices the seismic| _
performance of the connection

direction
. y| Design of ductile connections for seismic applications
e Natural material

Member and joint/connection behavior

SEISMIC

* subject to deterioration
Tall Structure Challenges
* Relatively lightweight

Vibration periods and damping

Numerical Modellin: g Selection of appropriate seismic modelling strategies

Assumptions in FEM models of tall timber buildings
and hybrid timber buildings

* Properties can change through
the structure’s lifetime

Lack of large-scale testing results for fire-modelling data

Fire Design , Predictability of fire performance of large timber elements . > FIRE

Bio-based fire retardants and treatments
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Why Seismic Analysis Workflow?

(of tall timber structures)

Current Modelling Strategies
* Complex to implement

e More accurate models are
time-consuming for practice

e Disconnected from the main
design workflow

* Does not consider changing
parameters overtime




Research Goals



Problem Statement

Current
methods for are
from the main design process,
, and do not
consider over the

structure’s lifetime.




Objective

How will this problem be addressed by the research project?

Develop a
workflow for which
IS into the main design process,
IS and to implement,

and includes options.
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Questions

What is a tall timber

structure?
What are the trends in

Which parameters impacting seismic performance are  tall timber construction?

subject to change over time?

What are the existing
methods for seismic analysis of tall timber structures? \What are the limitations of current methods?

How can a lifetime analysis be incorporated into the workflow?
What is the impact of the lifetime analysis?

How does the workflow impact
the decision making process rfor the engineer?




Project Scope



Project Scope

Form and Function

k&

I

Rectilinear 8+ stories Residential




Project Scope

Form and Function

A — —_
4
H
——%
Rectilinear 8+ stories Residential
Structural System

Central Core CLT Walls




Project Scope

Form and Function Building Standard
A — .
d_( e [/ r 1
= w ir. MAAN
4 :
Rectilinear 8+ stories Residential Europe Region EN 1995 EN 1998
Structural System

Central Core CLT Walls




Project Scope

Form and Function Building Standard
A — —
4
4
H
4
Rectilinear 8+ stories Residential Europe Region EN 1995 EN 1998
Structural System Analysis
/'N ;
B O
&_/@ T~

Central Core CLT Walls Static Linear Analysis Post Event Over Time




Cross Laminated Timber (CLT)

Planing or Quartering




Cross Laminated Timber (CLT)

Planing or Quartering Solid Sawn Lumber




Cross Laminated Timber (CLT)

N
//,/
& >
- ~Z

Y
P
a2

e o
[ N
/B\j ’ >
{

Planing or Quartering Solid Sawn Lumber Cross-Laminated Timber




Cross Laminated Timber (CLT)

Cross-Laminated Timber

Solid Sawn Lumber

ng or Quartering
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CLT Panels
e Single- or multi-panel o
o G 6°
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Hold downs
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Hold downs
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CLT Wall Construction

CLT Panels a

* Single- or multi-panel

* \Work together to resist
lateral loads

Hold downs

* Resist tension from overturning
Angle brackets

* Resist shear forces at base
Screws in joint

* Resist sliding forces between
panels




Deformation Behavior

Source: Upgraded Model, Rinaldi et al. 2021
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Sliding

Rocking
Source: Upgraded Model, Rinaldi et al. 2021




Modelling Strategies
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Modelling Strategies

Phenomenological

Interpretation of connection
results are not accurate
& J
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Requires full-scale testing of
exact wall configurations
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results for global response
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Phenomenological

Interpretation of connection
results are not accurate
J

( R
Requires full-scale testing of
exact wall configurations

N J

(" N
Model provides reliable
results for global response
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(Model has LESS components,\
requiring LESS computational

L power )

4 A
Requires experimental results
for calibration
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/Does NOT include a Iifetime\
analysis for variable mass and
L stiffness parameters )
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The engineer must create and
update the model manually

(S J
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each component
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( Wall configurations can be
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q isolated component data )

Global response is typically
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Modelling Strategies

en=C . C=agil

Truss and links for wall-to-floor joints Horizontal strips for wall-floor joints Horizontal strips for wall-floor joints
Truss for wall-to-wall joints Vertical strips for wall-wall joints Wall-wall joints in equivalent stiffness
Floor stiffness modelled with truss Floor stiffness modelled as 2D strip Floor stiffness modelled as 2D strip
Rigid CLT panels Rigid CLT panels Rigid CLT panels
Includes friction in angle brackets Neglects friction Neglects friction ;
X Neglects rocking ) ‘\\ Neglects rocking K ‘\\ Includes rocking in equivalent stiffness




Modelling Strategies

o Follesa et al. 2013 \\ o Christovasilis et al. 2020 K% ’ Rinaldi et al. 2021 N

L=y L] |

en=C . C=aglll

Truss and links for wall-to-floor joints
Truss for wall-to-wall joints
Floor stiffness modelled with truss
Rigid CLT panels
\ Includes friction in angle brackets !

Horizontal strips for wall-floor joints
Vertical strips for wall-wall joints
Floor stiffness modelled as 2D strip
Rigid CLT panels
Neglects friction

Horizontal strips for wall-floor joints
Wall-wall joints in equivalent stiffness
Floor stiffness modelled as 2D strip
Rigid CLT panels
Neglects friction

i

' Neglects rocking K \ Neglects rocking \\Includes rocking in equivalent stljffness,




Full Structure Analysis

What is required for full structure analysis?

Seismic Parameters
e Spectral acceleration

Spectral acceleration (g)

1.0

» Design spectrum
Average spectrum

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5
Period (sec)
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Seismic Parameters
e Spectral acceleration
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Full Structure Analysis

What is required for full structure analysis?

Seismic Parameters 00 m

 Spectral acceleration K It K, « "

Structural Parameters "

* Mass and stiffness distribution 3
k31 k32 k33 k3

k21 k22 k23 k2
| foXo) m,
k k k K,

Eigen model




Full Structure Analysis

What is required for full structure analysis?

Seismic Parameters

m
* Spectral acceleration w = /E = elgen vector
Structural Parameters
e Mass and stiffness distribution T =2nw
e Buildi ng period Relationship b/t eigen analysis and building period

Eigen model




Full Structure Analysis

What is required for full structure analysis?

Seismic Parameters m 00 m
* Spectral acceleration W = ’E = ergen vector |
Structural Parameters ! S
) o — @]
» Mass and stiffness distribution T =2rw m,
HRR H Relationship b/t eigen analysis and building period
e Building period 5 K, {
o ismi fficient
Seismic coefficie s » m,
k2
I :
5, o] O m,
: k f
I(s) 1
Ty Ty T T=1s Ty
Determining the seismic coefficient from the

design spectra and the building period Eigen model




Full Structure Analysis

What is required for full structure analysis?

Seismic Parameters
e Spectral acceleration

Structural Parameters

e Mass and stiffness distribution

* Building period

e Seismic coefficient

Force Distribution

e Base shear




Full Structure Analysis

What is required for full structure analysis?

Seismic Parameters Fx:zwju?;iv
e Spectral acceleration \
Structural Parameters \

* Mass and stiffness distribution \

* Building period \

e Seismic coefficient

Wi

Force Distribution

e Base shear

e Distribute to floors based on
story height and weight




Full Structure Analysis

What is required for full structure analysis?

Seismic Parameters £, = b
e Spectral acceleration \ '
Structural Parameters \ <
* Mass and stiffness distribution \ A7

* Building period

//

e Seismic coefficient

Z I wall;
Wi

Force Distribution =

e Base shear §$><

h; {
e Distribute to floors based on
story height and weight

e Distribute to walls based on %
effective stiffness
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Previous Seismic Event
e Stiffness reduction from:

Source: SOFIE project, Ceccottietal. 2013 Seven story test structure from the SOFIE project
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Lifetime Analysis

How can these events or time variables impact seismic performance?

Previous Seismic Event
e Stiffness reduction from:
e Fastener failures

e Fastener withdrawals

Nail failures at Nail W/thdraWal at
hold-downs angle brackets

Source: SOFIE project, Ceccottiet al. 2013 Seven story test structure from the SOFIE project




Lifetime Analysis

How can these events or time variables impact seismic performance?

Previous Seismic Event

e Stiffness reduction from:
e Fastener failures
* Fastener withdrawals

* \Wood crushing

Nail failures at Nail W/thdraWal at
hold-downs angle brackets

Source: SOFIE project, Ceccottietal. 2013 Seven story test structure from the SOFIE project Wood crushing under hold-downs
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Lifetime Analysis

How can these events or time variables impact seismic performance?

Previous Seismic Event
e Stiffness reduction from:

e Fastener failures

e Fastener withdrawals

* \Wood crushing

Future Renovation

Wi

e Mass distribution

<%____

V=sw

Change in occupancy ‘ Change in mass and forces




Lifetime Analysis

How can these events or time variables impact seismic performance?

Previous Seismic Event

e Stiffness reduction from:
e Fastener failures
* Fastener withdrawals

¢ Wood crushing
Future Renovation Replace old connections
* Mass distribution
* Stiffness change




Lifetime Analysis

How can these events or time variables impact seismic performance?

Previous Seismic Event

e Stiffness reduction from:
e Fastener failures
* Fastener withdrawals
* \Wood crushing ;

Future Renovation Replace old connections

* Mass distribution
* Stiffness change

Add, remove, or replace walls




Lifetime Analysis

How can these events or time variables impact seismic performance?

Previous Seismic Event
e Stiffness reduction from:

<

e Fastener failures
* Fastener withdrawals A7 >/7/\< Fwa”xz%&
 Wood crushing ; Fx=zpw;”i
Future Renovation Replace old connections
* Mass distribution /
* Stiffness change A /7}<

Add, remove, or replace walls Change in stiffness distribution




Lifetime Analysis

How can these events or time variables impact seismic performance?

Previous Seismic Event

e Stiffness reduction from:
e Fastener failures
* Fastener withdrawals
* \Wood crushing

Future Renovation

* Mass distribution

* Stiffness change

Biological Degradation




Lifetime Analysis

How can these events or time variables impact seismic performance?

Previous Seismic Event

e Stiffness reduction from:
e Fastener failures
* Fastener withdrawals
* \Wood crushing

Future Renovation Deterioration causes loss in mass and stiffness
* Mass distribution

* Stiffness change

Biological Degradation

e Stiffness and mass loss in CLT




Lifetime Analysis

How can these events or time variables impact seismic performance?

Previous Seismic Event

e Stiffness reduction from:
e Fastener failures
* Fastener withdrawals

* \Wood crushing
Futu re Renovation Deterioration causes l0ss in mass and stiffness Related to moisture exposure and time
* Mass distribution
* Stiffness change
Biological Degradation
* Stiffness and mass loss in CLT




Lifetime Analysis

How can these events or time variables impact seismic performance?

Previous Seismic Event

e Stiffness reduction from:
e Fastener failures
* Fastener withdrawals
* \Wood crushing

Future Renovation Deterioration causes loss in mass and stiffness Related to moisture exposure and time

2

e Mass distribution

D .fir N. spruce SPF

* Stiffness change

Biological Degradation

Dowel Bearing Strength (MPa)

e Stiffness and mass loss in CLT

* Embedment strength of ' Y e o Y e v T ’
Linear regression for dowel bearing strength over time of fungal exposure for three species of wood:
Douglas Fir, Norway Spruce, and Spruce Pine Fir (Source: Udele et al. 2024)

fasteners in connections
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When to use the tool?

New Design

Initial
concept
development

Structural
scheme

Gravity
design

U anaysis | E The Workflow :
E E E /\ E Detailing and
; Current ; Structural Structural —{  construction
! lateral design ' ' . H documents
: : : Model Analysis :
| | | Y |

Renovation

Proposed
design
changes




The Workflow

Architectural

Model
| The Workflow
H Structural Structural ! m
> o [ Resurs_|
gl Model Analysis H esuts
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Material

Database




Programs and Workflow

The Workflow |
Architectural
J Model
Rhino 3D Grasshopper
A
Structural Structural ‘E
> Model Analysis ” esuts

\

Material

Database

OpenSeesPy




Programs and Workflow

The Workflow

e e |

| |
| Architectural I
I Model I
| . |
Rhino 3D Grasshopper
S — |
A
Structural Structural ‘E
> Model Analysis ” esuts
\

Material
Database

OpenSeesPy




Model Generation

Create Geometry

Wall Geometry
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Create Geometry

Wall Geometry

e Splitateach floor




Model Generation

Create Geometry

Wall Geometry

e Splitateach floor

* |gnore walls with openings
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Model Generation A

Create Geometry

Wall Geometry
e Splitateach floor
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Floor Geometry




Model Generation

Create Geometry

Wall Geometry

e Splitateach floor

* |gnore walls with openings
Floor Geometry

* |gnore shafts and openings




Model Generation

Create Geometry

Wall Geometry

e Splitateach floor

* |gnore walls with openings
Floor Geometry

* |gnore shafts and openings
Modelled with Rectangle 3D

Plan view of example structure 3D model of example structure




Programs and Workflow

The Workflow

Architectural

Model
Rhino 3D Grasshopper
A
Structural Structural ‘E
> Model Analysis ” esuts
\

Material
Database

OpenSeesPy
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CLT properties
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CLT properties
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* Species ALl

e Board thicknesses
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CLT properties

Raw Timber Properties

e Species
e Board thicknesses

* Raw timber properties \ —
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CLT properties

Raw Timber Properties
* Species

e Board thicknesses

e Raw timber properties
Panel Properties

* Elastic and shear modulus




Materials Database

CLT properties

Raw Timber Properties
* Species

Elastic Moduli calculated via
Blass et al. 2004

e Board thicknesses

e Raw timber properties
Panel Properties

e Elastic and shear modulus g L] € /7E90
* Calculated via research Eh [[i—reslll |

Shear Modulus calculated via
Bogenspergeretal. 2016




Materials Database

CLT properties

Raw Timber Properties
* Species

e Board thicknesses

e Raw timber properties

Panel Properties

* Elastic and shear modulus et L ] Gv /,Ego
* Calculated via research E,, [[i—reslll | 1

* Thickness of panel




Materials Database

CLT properties

Raw Timber Properties
* Species

e Board thicknesses
e Raw timber properties

Panel Properties

e Elastic and shear modulus =L WG /7E90
* Calculated via research E,, [f—eslll || 4

* Thickness of panel
* Number of layers
Yy E /

N\




Materials Database

CLT properties

Raw Timber Properties

. tt=3/5t
* Species

* Board thicknesses

* Raw timber properties

Panel Properties

 Elastic and shear modulus =1 W Vi /,Ego
* Calculated via research Eh Tl ||

* Thickness of panel

* Number of layers

* Layer thickness ratio | .
* Calculated via research \ t




Materials Database

Hold Down properties

Connection Properties

* Yielding load and deflection
e Stiffness in both directions
* Plate thickness

e Overstrength

Fastener Properties

* Length

e Diameter

e Amount

CLT panel

hold-down

CLT floor /

Source: Simpson Strong Tie




Materials Database

Angle Bracket properties

Connection Properties

* Yielding load and deflection
e Stiffness in both directions
* Plate thickness

e Overstrength

Fastener Properties

* Length

e Diameter

e Amount

Source: Simpson Strong Tie




Materials Database

Screw Joint properties
Joint Connection Properties T N
* Joint type (splice or lap)
 Load direction (verticalin Lateral
olane) LI parallel
: . lap joint
e QOrientation (Parallel) (lap joint)
* Yield strength
e Stiffness T
H Lateral
parallel
(spline joint)

Source: Gavric etal. 2015




Programs and Workflow

F ™ = = = = e o= e e = o=

The Workflow

| |
| |
Architectural
. Model | [
| |
Rhino 3D | Grasshopper |
| - |
Structural Structural m
> is [y >|_Results |
| g Model Analysis | esuts
\
| |
| |
Material | |
Database
| |
| OpenSeesPy |
o oo oo oo e e e e o e omm o




The Workflow

Seismic
Parameters
 Select Geometries v
Wall geometries ic Li
Architectural Model ——! g static Llnlear ................................ > Results
- Analysis :
7 :
____________________________________________ \ .
_____________________________ Define Object Typesi Create Objects
Extract Data Wall types Wall objects | | Structure
5 > —> R ot
H — : Floor types H Floor objects | : DEf”l't'on ;

Material Database —»- HD props """"""" A e e A : Y
H ! : : : Life Time Analysis
H AB props : .

i : Previous

: SC props : Seismic Event
VT : e ;.| Biological 1.
1 H H Degradation
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e ] .




The Workflow

Seismic
Parameters
l-Select Geometries-I v
1 Wall geometries 1 ic Li
Architectural Model g static Llnlear ................................ > Results

| — 1 Analysis :

A
| . | Y
_____________________________ Define Object Typesi Create Objects
E:;I?Ct Data N Wall types Wall objects Structure
[ ClTprops | 77> > —> it
H i Floor types H Floor objects | : Definition

AB props

Life Time Analysis

Previous
Seismic Event

[ FDprops ] | e e 1 ?
Material Database ——» HD props N 7 e — AT . | A

SC props H

FAdditionalloads : T ;.| Biological 1.
: : : Degradation

[“Snowloads ] { |

eSS ‘.




Selecting Geometries

|Walls

Organized by Layers

e Separate wall and floor layers

|Floors




Selecting Geometries

|Floor type 1

Organized by Layers |Walls |

e Separate wall and floor layers |VVall type 1 |

* Separate by types into |VVall type 2 |
sublayers

Rhino 3D |\Nall type 3 |

|\Nall type 4 |

|Floors |

|

|

|Floor type 2




Selecting Geometries

|Floor type 1

Organized by Layers |Walls |
e Separate wall and floor layers |VVall type 1 |
. ijslaar;‘gfsby types into |VVall type 2 |
Bring into Grasshopper RhineICH Wall type 3 |
|\Nall type 4 |

|Floors |

|

|

|Floor type 2

\/ Grasshopper




The Workflow

Seismic

Parameters
| Select Geometries v
Wall geometries icLi

Architectural Model —> 8 Static Linear | > Results
- Analysis :
)
--------------------------------------------------------- \ A
_—— - Define ObjectTypes§ Create Objects
I Extract Data . Wall types Wallobjects | | Structure
Brep Floor types H Floor objects | : Definition

| D props ]! z | x
Material Database ——> HDprops |7 | ‘oo 7 e — 7 S : SNSRI AS—
| | : : H Life Time Analysis
AB props : H :

Previous

| SC props | Seismic Event

e e = o

FAdditionalloads : T ;.| Biological 1.
: : : Degradation

' [Snowtoads ] | | |
-- e ‘.




Model Generation

Import Material Data to Grasshopper

e Connect file path to materials
database

7{6

Grasshopper




Model Generation :

Import Material Data to Grasshopper

e Connect file path to

materials database ~ |CLT catalogue O-® CLTtype O ==========-=

* Selectidentifying
properties to select

CLT, HD, AB, or SC [ HDtype p_.( CLT-CLT or 0".( Number of O-

CLT-concrete fasteners

T AB e p_.( CLT-CLT or 0--01 Number of O- ®(AB props ]

CLT-concrete fasteners

| SCtype [O-® Jointtype |0".|Loaddirection|0'




Model Generation :

Import Material Data to Grasshopper

e Connect file path to
materials database  [CLT catalogue(O-® CLTtype [O-===========

* Selectidentifying
properties to select

CLT, HD, AB, or SC [ HDtype p_.( CLT-CLT or 0".( Number of O-

e Mechanical and mass CLT-concrete fasteners

properties

T AB e p_.( CLT-CLT or 0--01 Number of O- ®(AB props ]

CLT-concrete fasteners

| SCtype [O-® Jointtype |0".|Loaddirection|0'




The Workflow

Seismic
Parameters

| Select Geometries v

Wall tri ic Li

Architectural Model ——3 - geometries Static quear > Results
- Analysis :

L
--------------------------------------------------------- \ A
_____________________________ Define Object Types§ Create Objects
ExtractData Wall types Wall objects | | Structure
i T . > initi
1 — : Floor types H Floor objects | : Definition

: : Life Time Analysis
H AB props :

SC props H

Previous
Seismic Event

[ FDprops ] | e e 1 ?
Material Database ——» HD props N 7 e — AT . | A

Fo— == oo [ Biological | |
Additional Loads Degradation | |

I “snowtoads |1 | :
II e [ Renovation |

e o o ow




Model Generation

Additional Variable Floor Loads

e Eurocodes require inclusion of
reduced variable loads due to
snow or occupancy types

b L)

Snow load Variable load




Model Generation

Additional Variable Floor Loads

e Eurocodes require inclusion of
reduced variable loads due to
snow or occupancy types

e Standard loads and reduction
factors per Eurocodes

provided, user can also input [ Ll & |

Snow load Variable load




The Workflow

Seismic
Parameters
 Select Geometries v
Wall geometries ic Li
Architectural Model ——! g static Llnlear ................................ > Results
- Analysis :
7 :
"""""""""""""" Y
K= = = Sy
_____________________________ Define Object Types Create Objects
i ExtractData | 1 Wall types I Wall objects | ! Structure
: CLT props 5——>| I—> :—P R
H : Floor types Floor objects | : DEf”l't'on ;
Material Database —» HD props b= = e 7 S : SNSRI AS—
: ! : : H Life Time Analysis
H AB props : H i : '
i : Previous
: SC props : Seismic Event
VT : e ;.| Biological 1.
1 H H Degradation
| a |
OO OO O OOO OO O OO OO TP TOO OO U OO O PO O OOO TP OO RO . .




Model Generation

Wall and Floor Types

| CLTprops |O~=====~=
HD props |O- ------

|
| AB props |O- ------
|
|

SC props |O- ------

other |O=======

Wall Type 1




Model Generation

Wall and Floor Types

CLT props

HD props

AB props

SC props

other

CLT props

HD props

AB props

SC props

other

Wall Type 1

Wall Type 2




Model Generation

Wall and Floor Types

CLT props

HD props

AB props

SC props

other

CLT props

HD props

AB props

SC props

other

Wall Type 1

h g
-,

+ Wall Types

Wall Type 2

C

—-—— .y e D oam

h ¢
~




Model Generation

Wall and Floor Types

|Span direction|O= = = = = = =

| CLTprops [O=======
| other o-=-=-=-=--- Floor Type 1

|variable loads |O= = = = = = =




Model Generation

Wall and Floor Types

|Span direction|O= = = = = = =
| CLTprops [O=======

| other o-=-=-=-=---

|variable loads |O= = = = = = =

|Span direction|O= = = = = = =
| CLTprops [O=======

| other o-=-=-====

|variable loads |O= = = = = = =

Floor Type 1

Floor Type 2




Model Generation

Wall and Floor Types

|Span direction|O= = = = = = =
| CLTprops [O=======

| other o-=-=-=-=---

|variable loads |O= = = = = = =

|Span direction|O= = = = = = =

| CLTprops [O=======
| other

|variable loads |O= = = = = = =

Floor Type 1

(

J

Floor Type 2

¢

{ Floor Types

- my o TN oEm am ome

h4




The Workflow

Architectural Model ——>

Select Geometries
Wall geometries

loor geometries|

Extract Data

_____________________________ e d

Define Object Types; Create Objects

Wall types 1 Wall objects 1

CLT props

Material Database ——»+ HD props
AB props

: SC props

i Additional Loads |

: [ SnowLoads | | |

........................... I-_T_-I

T P P P P PP PP PP ISP PSPPI e Renovation

Seismic
Parameters

\ 4

Static Linear
Analysis

————————% Results

A

Structure
Definition

Floor types 1 Floor objects I
A

A

Life Time Analysis

Previous
Seismic Event

Biological H

Degradation




Model Generation

| Wall and Floor Objects




Model Generation

| Wall and Floor Objects

| Wall geometries |O= === == =
| Walltypes O~=====~=

Wall objects




Model Generation

Wall and Floor Objects

| Wall geometries |O- ------

| Walltypes |O~=====~=
| L/H ratio limit JO= = = = = = =

Wall objects




Model Generation

Wall and Floor Objects

Wall 1.1 Descretization

| Wall geometries

3000

Wall types
| L/H ratio limit

| Mesh dimension

324|325 | 326 | 327 | 328 | 320 | 330 | 331 [ 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 [ 301 | 302

Wall objects Tl e T

2500

286 5| 289|200 201|292 198|299 300| 301 [ 302 [ 303|304

267|268 269 270|271 [272| 273|274 | 275 | 276 9| 280|281| 282 283 284 | 285

-—— e Ew o= o 248|249 250| 251 254 8 60| 261|262| 263 264265 | 266
2000

eeee

229]230]231 6 38| 239| 240|241 | 242 | 23| 24| 245 246 | 247

210|211 212 213|214 215 | 216|217 | 218| 229 220] 221 4 3

191192 | 193 [ 194 | 195 ] 196 | 197 [ 198 | 199 | 200] 201|202 | 203 | 204 | 205 | 206] 207 208 | 209
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96 | 97 | 98 | 99 |100]101]102 103|104 105] 106|107 [ 108| 109 120] 121|112 123 124
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Model Generation

Wall and Floor Objects

| Wall geometries |O-
| Wall types |O-
| L/H ratio limit |O~
| Mesh dimension |O-

| Floor geometries |O-
| Floor types |O-

Wall objects

j Floor objects




Model Generation

Wall and Floor Objects

| Wall geometries |O-
| Wall types |O-
| L/H ratio limit |O~
| Mesh dimension |O-

| Floor geometries |O-
| Floor types |O-

Wall objects

O-~

5-_———~’—-_f

j Floor objects

o_/

'.{ Structure Definition




The Workflow

Seismic
Parameters
 Select Geometries v
Wall geometries tatic Li >
Architectural Model ——! £ statie inear ———— > Results
- Analysis :
A
_______________________________________________________ \ .
_____________________________ Define Object Typesi Create Objects |
Extract Data Wall types Wall objects | Structure.
{ L ClTprops | 77> ; - ! Definition
1 : Floor types H Floor objects | ! L = T - d :

Material Database —>- HD props """"""" A S A : Y
H ! : : : Life Time Analysis
H AB props : -

: : Previous

: SC props : Seismic Event

" Additional Loads | [ ; Biological |
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Model Generation

Full Structure Definition

Wall Stiffnesses

F—>




Model Generation

Full Structure Definition

Wall Stiffnesses

¢ Walls modelled with (

. sf NSNS NN Floor’s properties:
Rinaldi et al. 2021 strategy | EEEEEEN ll £ P

c.

| CLT’s properties:
o ch.zuw ’ Eef,zn,h, qu

Connections’ properties:
“ " E

strip G;lrip

Source: Rinaldi et al. 2021
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Model Generation

Full Structure Definition

L] w

Comparative Analysis
P T TP T ] dw Bl 1T

2.95
2.95

N m R
0.05045 045 1.05 0.45 0.450.05
- % #- 7 # 7

0.05045 0.45 1.05 045 0.450.05
Va4 7 o 7 - a i
1475 1475

2.95 )

2.95 ) )

Multi-panel wall configurations

#

Single-panel wall configurations




Model Generation

Full Structure Definition

Table - Comparative analysis results for implementation of Rinaldi modelling strategy

Comparative Analysis

Number of ooy Georty Stiffness
panels (MPa) (MPa) (N/mm)
e Com pare between Value Rinaldi %Diff. Value Rinaldi %Diff. Value Rinaldi % Diff.
wall 1.1 32400 37192 -12.88 3.14 313 +0.32 3487 3490 -0.09
H Wwall 1.2 1 254.00 253.61 +0.15 6.27 6.25 +0.32 6324 5490 +15.19
| m p Le m e nted m Od e L a n d th at Wwall 1.3 129.00 128.70 +0.23 6.27 6.25 +0.32 6288 4620 +36.1
H H wall 1.1 3.67 3.66 +0.27 4068 4360 -6.7
Of R | n a ld I et a l' 20 2 1 Wall 111.1 311 3.10 +0.32 3501 3770 -7.14
Wall 111.2 2 - 311 3.10 +0.32 3501 3770 -7.14
Wall 111.3 311 3.10 +0.32 3501 3770 -7.14
Wall 1.4 212 211 +0.47 2454 2670 -8.09
* mesh size of 100 mm

Comparative analysis results

2.95

Lo o

==

005045 045 105 045 045005

295

Single-panel wall configurations

LS S S S S
0
3
&
Lo o ==
005045 05, 105 045 045005
1.475 1475

295

Mu[ti—péne[ wall configurations




Model Generation

Full Structure Definition

CO m p a rat ive An a lys i S Table - Comparative analysis results for implementation of Rinaldi modelling strategy i CT T T T 7T T 1w

Number of Equrip Goerip Stiffness
panels (MPa) (MPa) (N/mm)
° C om p are b etween Value Rinaldi %Difl. Value Rinaldi _%Diff. _Value Rinaldi % Diff.
Wall 1.1 32400 37192 -12.88 3.14 313  +0.32 3487 3490  -0.09 o
i Wall 1.2 1 254.00 25361 +0.15 627 625  +0.32 6324 5490  +15.19 2
Im p Le me nted m Od e L an d th at Wall 1.3 129.00 12870 +0.23 627 625  +032 6288 4620  +36.1
H H Wall 1.1 3.67 366  +027 4068 4360  -6.7
Of R Ina ld I et a l 20 2 1 Wall l11.1 311 310 4032 3501 3770  -7.14
. . Wall I11.2 2 - 311 310 4032 3501 3770  -7.14 l Lo o = |
o MeSh d Imension needS to be Wall 13 311 310 +032 3501 3770  -7.14 0s504s 085 105 ods 045005
. Wall I11.4 212 211 4047 2454 2670  -8.09
calibrated to match the values — “mensicorioonn , 285 /
Comparative analysis results Single-panel wall configurations
Table — Comparative analysis of stiffnesses with varied mesh dimensions {1
N N Stiffness
© - (N/mm)
Mesh 50 % 100 % 125 % 125 % 150 %
dim.
Wall 1.1 3490 2888  -17.25 3487 009 3159 948 2825 1905 2367 3218 el
Wwall 1.2 1 5490 5316 317 6324 41519 5780 4528 516 499 4428 1934 o
wall1.3 4620 5285  +1439 6288 4361 5/51 42448 s519) 41238 4410 455
Wall i1.1 4360 3376 2257 4068 67 3688 1541 3299 2433 2767 3654
Wall li1.1 3770 2898 2313 3501 714 3169 <1594 g3 2401 2369 -37.16 1 1
=il=] = =
wall I11.2 2 3770 2898 2313 3501 74 3169 1594 g3 401 2369 -37.16
005045 045, 105 045 045005
Wwall 1.3 3770 2898 -23.13 3501 714 3169 <1594 831 2491 2369 -37.16 S e
1475 1475
Wall lil.4 2670 2021 -2431 2454 809 2215 1704 1973 2601 1645  -38.39 2905

Mesh dimension calibration Multi-panel wall configurations




Model Generation

Full Structure Definition

Comparative Analysis

e Compare between
implemented model and that
of Rinaldi et al. 2021

¢ Mesh dimension needs to be
calibrated to match the values

e Currently underestimating
by 8% or less* with a mesh
dimension of 100 mm

Table - Comparative analysis results for implementation of Rinaldi modelling strategy

Number of Eqerip Gierip Stiffness
panels (MPa) (MPa) (N/mm)
Value  Rinaldi %Diff.  Value Rinaldi % Diff. Value Rinaldi % Diff.

Wall 1.1 32400 37192 -12.88 3.14 313 +032 3487 3490  -0.09

Wall 1.2 1 254.00 25361 +0.15  6.27 625  +032 6324 5490 +15.19

Wall 1.3 129.00 12870 +0.23 627 625  +032 6288 4620  +36.1

Wall 1.1 3.67 3.66  +0.27 4068 4360 6.7

Wall l11.1 3.11 310 032 3501 3770  -7.14

Walllll.2 2 - 3.11 3.10 +0.32 3501 3770 -7.14

Wall 111.3 311 3.10 +0.32 3501 3770 -7.14

Wall lil.4 2.12 2.11 +0.47 2454 2670 -8.09

* mesh size of 100 mm

Comparative analysis results
Table — Comparative analysis of stiffnesses with varied mesh dimensions
Stiffness
No. R /mm)

m;‘_" 50 % |0 % | m2s % 125 % 10 %
Wall 1.1 3490 2888  -17.25 | 3487 -0.09| 3159 -9.48 2825 -1905 2367  -32.18
Wwall 1.2 1 5490 5316 317 | 6324 +15. 5780 4528 5216 499 4428 1934
Wall 13 4620 5285 +1439 | 6288 +361f 5751 42448 519p 41238 4410 455
Wall 1.1 4360 3376 2257 | 4068 6.7 3688 1541 3299 2433 2767 3654
Wall li1.1 3770 2898 2313 | 3501 -7a4] 3169 1594 g3 2401 2369 -37.16
wall I11.2 2 3770 2898 2313 | 3501 -7a4] 3169 1594 g3 2491 2369 -37.16
Wwall 1.3 3770 2898 -23.13 | 3501 7.14] 3169 <1594 5831 2491 2369 -37.16
Wall lil.4 2670 2021 -2431 | 2454 -so9] 2215 1708 1973 2601 1645  -38.39

Mesh dimension calibration

2.95

Lo o

==

005045 045

105

295

, 045 045005

Single-panel wall configurations

295

1o

==

005045 045

1.475

105

295

, 045 045005

1.475

Mu[ti—péne[ wall configurations




Model Generation

Full Structure Definition

CO m p a rat ive An a lys i S Table - Comparative analysis results for implementation of Rinaldi modelling strategy i CT T T T 7T T 1w

Number of Eqriy Gorrip Stiffness
panels (MPa) (MPa) (N/mm)
e Com pare between Value Rinaldi %Difi. Value Rinaldi %Dift. Value Rinaldi % Dff
Wall 1.1 32400 37192 -12.88 314 313  +032 3487 3490  -0.09 "
i Wall 1.2 1 25400 253.61 +015 627 625  +0.32 6324 5490 +15.19 &
Im p le me nted m Od e l an d th at Wall 1.3 12900 12870 +0.23 627 625 032 6288 4620  +36.1
H H wall I1.1 367 366 4027 4068 4360 6.7
Of Rl na ld leta l 20 2 1 Wall 11.1 311 310 4032 3501 3770  -7.14
. 5 Wall l1l.2 2 - 311 310 4032 3501 3770  -7.14 oo = |
o MeSh d Imension needS to be Wall l1l.3 311 310 4032 3501 3770  -7.14 0s504s 085 105 ods 045005
. Wall 114 212 211 4047 2454 2670  -8.09
calibrated to match the values  “mensicorzoomm » _ . 28
Comparative analysis results Single-panel wall configurations
e Currently underestimating
Table — Comparative analysis of stiffnesses with varied mesh dimensions. S T T A
* i stiff
by 8% or less* with a mesh W R suiness
Mesh
H H - 50 % 100 % | 125 % 125 % 150 %
dimension of 100 mm i,
Wall 1.1 3490 2888 -17.25 3487 -0.09) I 2825 -19.05 2367 -32.18 g
* H Wall 1.2 1 5490 5316 -3.17 | 6324 +15.1 8004528 516 499 4428 -19.34 R
¢ Walls with 4 rather than 2 | Wall 1.3 4620 s2es 41439 | 6288 436a] 5751 42048 5190 41238 as10 a5
an gle brackets are outliers wall 1.1 4360 3376 2257 | 4068 67| 3688 <1541 3399 2433 2767  -36.54
A ) . ’ Wall li1.1 3770 2898 2313 | 3501 -7a4] 3169 1594 g3 2401 2369 -37.16 1. LU ]
ove reStImatIng StlffneSS by Up to Wall 1112 2 3770 2898 2313 | 3so1  7.1a| 3169 1594 a3 91 2369 3716 e i oo
Wwall 1.3 3770 2898 -23.13 | 3501 7.14] 3169 <1594 5831 2491 2369 -37.16 S - e
36% 215 1708 1475 1475
Wall llL4 2670 2021 2431 | 2454 -8.09 g 1973 2601 1645 3839 258

Mesh dimension calibration Multi-panel wall configurations




Model Generation

Full Structure Definition

Wall Stiffnesses

¢ Walls modelled with
Rinaldi et al. 2021 strategy

* Pushover analysis

F=—>
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Model Generation

Full Structure Definition

Wall Stiffnesses

* Walls modelled with oo K., K.,
Rinaldi et al. 2021 strategy

* Pushover analysis

|

Structure Parameters k Kk k




Model Generation

Full Structure Definition

Wall Stiffnesses

* Walls modelled with
Rinaldi et al. 2021 strategy

* Pushover analysis
Structure Parameters
* Eigen analysis

Eigen model




Model Generation

Full Structure Definition

Wall Stiffnesses o0 m,
« Walls modelled with o |
Rinaldi et al. 2021 strategy n
* Pushover analysis 06 m,
Structure Parameters k, w = \/ﬁ — eigen vector
e Eigen analysis OO . k
e Natural building period "-._: 2 T = 21w
k2 Relationship b/t eigen analysis and building period
QOm,
k. ;

Eigen model




The Workflow
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- Analysis :
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____________________________________________ Yoo
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Seismic Parameters
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Seismic Parameters
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Seismic Parameters
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Seismic Parameters
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Seismic Parameters

8 8
7 :;v!n: 7 | ﬁ
6 = 6 | ¥ L:x=ﬂ =
S_alpha |O-= ==~~~ _: et I
— "é 4 (P "E & b . ®(SM,87.5,2.3_|
S Beta O====== 73 e M \
: 2 N~ : =
|_Behavior factor |O= == Seismic Parameters L ek 1 ==
0 0 50 100 150 200 ° 0 50 100 150 200
Sg(mm) Sg(mm)

Behavior factor g = 3.0
Source: Hummel and Seim, 2019




Seismic Parameters

| S_alpha JO- ==~~~
[ S Beta O------

| Behavior factor |O- -
|Site amplification |O- -

Seismic Parameters

Table 5.4 — Site amplification factors F, and F; for the standard site categories of Table 5.1

Fa Fs
Site
category Hooo ?nd Vsl Default value Hono a.md Vs Default value
available available
A 1,0 1,0 1,0 1,0
B 1,3 (1 - 0,1 S4rp/9) 1,6 (1—0,2Srp/9)
Ve gy ~040 T Ve gy —0707p
c sH 1,6 (1-0,25, ) Dot 23(1-035, )
(800) ( «rp/g. (800) ( RrP/9
D 1,8(1-0,3Sqre/9 32 (1~ Sgre/9)
Ho o H "
| (L (30 | 22105 5ume/) (Lemy ™7 |32 (1= Spe/)
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F 090 (Z) 7| 17 (1-03Sere/9) | 125(22) 7| 40 (- Spre/)
800 800
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Table 5.5 — Topography amplification factors for simple topographic irregularities

Topography description Fr Simplified sketch*

Flat ground surface, slopes and isolated ridges with 10

average slope angle i < 15° or height < 30 m
()= = o= o o o
S_alpha 100m

A
T
S Beta () [ ——— Slopes with average slope angle i > 15° 1,2 - -
= B Ai

| Behavior factor |O= == Seismic Parameters i

Ridges with width at the top much smaller than at

| S t l f t the base and average slope angle 15° < i < 30° 12 L i B
ite amplification JO= = =
T T
i i |‘ * - Ridges with width at the top much smaller than at
| Slte topographlc the base and average slope angle i > 30° 14 B Ai B

Topographic amplification factors per EN 1998
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