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Abstract

Catalysts play an essential role in industry and for the general progress of mankind. With the
parallel energy and technological transformations, it is important to create tools that aid in the
development of better catalysts. To achieve this feat, it is firstly required to have a fully automated
approach for in silico structure generation. Thus, in this study the OBeLiX workflow has been
developed. The designed package includes a scaffold generation tool, a substituent placement tool,
GFNn-xTB optimization and conformer search tools completed by a fully automated descriptor
calculator. Even though descriptor databases can be found in literature, their reproducibility is
limited. Consequently, the ability to reconstruct proposed approaches for new chemical reactions
is hindered.

OBeLiX has been used to investigate a series of hydrogenation reactions catalyzed by rhodium
phosphine complexes. The approach begins with the creation of a structure database for 192 such
complexes. To simplify this process, it was opted to use a mechanistically relevant model catalyst
structure. In the first step of the catalytic cycle, π-complexation occurs between the substrate and
the metal center. Thus, a symmetric chelating norbornadiene molecule has been chosen to model
the asymmetric substrates.

The generated database of model catalysts has been featurized through OBeLiX. The use of model
structures underlined that the substrates have to be quantified as well. While for the complex
model catalysts a series of chemically descriptive features have been created, the substrates were
converted to two-dimensional fingerprints, and Sterimol parameters that describe the 3D size of the
substrate around the double bond that is to be hydrogenated. Therefore, featurization of the chem-
ical reaction has been achieved. Training machine learning algorithms on these features, yielded
high correlations including out-of-sample binary reactivity classification for substrates outside the
training set.
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Glossary

Bayesian optimization Approach that uses the Bayes Theorem [1] to direct the search in
order to find the minimum or maximum of an objective function.

Cheminformatics Use of computational and informational methods to understand
chemistry [2].

Decision tree Flowchart-like structure in which individual internal nodes repre-
sent a test on a feature

Descriptor Result of a logic or mathematical procedure which encodes multi-
variate information about a molecule [3].

Force field Computational technique utilized for estimating the forces acting
between atoms within a molecule, as well as the forces between
different molecules.

Hyperparameter Parameter whose value is used to control the learning process.

London dispersion The weakest intermolecular force characterized by the formation
of temporary dipoles between adjacent atoms.

Model catalyst Global molecule used to model the behaviour of a real catalytic
species for the purpose of simplifying data generation.

Molecular fingerprint Encoded vector representation of a molecule that stores informa-
tion about its structure [4].

Molecular graph Representation of the structural formula of a chemical compound
in terms of graph theory.

Molecular mechanics Computational method that computes the potential energy surface
for atom arrangement using potentials that are derived from clas-
sical physics [5].

One-hot enconding Process of converting categorical data variables so they can be pro-
vided to machine learning algorithms to improve predictions.

Overfitting Undesirable behaviour characterized by a model that is unstable to
generalize on new data. Overfitted models perform well on train-
ing data but not on testing data.

Principal component A linear combination of the variables in a dataset that captures the
maximum amount of variation in the data.
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a new coordinate system, thereby reducing its dimensionality. In
this new coordinate system, the majority of the variation in the
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dataset.

Reinforcement learning Machine learning training method based on rewarding desired be-
haviors and/or punishing undesired ones.
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purpose computer.

Supervised learning Use of labeled datasets to train algorithms to classify data or pre-
dict outcomes accurately.

Unsupervised learning Use of machine learning algorithms to analyze and cluster unla-
beled datasets.

Virtual orbitals Unoccupied molecular orbitals.



1
Introduction

Catalysis is an interdisciplinary technology of high socio-economic importance. More than 95% of
all chemical products use a catalyst in at least one step of their synthesis [6]. In basic terms, catal-
ysis represents the acceleration of a chemical reaction through the means of a specialized chemical
species that does not participate in the aggregate reaction and acts only as an intermediate. The in-
termediate processes to a reaction are known as mechanisms and are important in our understand-
ing of catalysts. Catalysis comes in three varieties: homogeneous, heterogeneous and biocatalysis.
The former has the catalyst and the reaction components in the same phase. By contrast, the latter
implies that the catalyst is in a different phase from the reaction media [7]. Lastly, biocatalysis refers
to the metabolic transformation of chemicals to produce new chemicals for industrial purposes [8].

Homogeneous catalysts aid a chemical reaction by reducing the energy barrier towards a transition
state (very reactive species) [9]. Many complexes of precious transition metals (Ru, Os, Rh, Ir,
Pd, and Pt) have demonstrated the ability to act as effective homogeneous catalysts for a variety
of industrial reactions [10, 11]. As a result, the interest of the catalysis community shifted towards
precious metals catalysts. Even though expensive, these catalysts provide slow rates of deactivation
(i.e. turnover numbers).

The substitution of expensive, high-throughput experimental (HTE) campaigns with in silico tech-
niques is a matter of active research, with a series of studies in the past modelling the reaction
conversion and/or the enantiomeric ratio [12, 13]. A progress timeline of computation in the field
of chemistry and homogeneous catalysis is shown in Fig 1.1. The initial theory for finding energy
minima (i.e. the Hartree-Fock methods) of a molecule required a gargantuan number of calcu-
lations, which was not feasible at the time, nor is it feasible in the modern era. The theory was
gradually optimized, yielding simplified methods, which is the base for the modern, chemically
accurate density functional theory (DFT), where the energy is a function of the electron density. By
the 1970s, the hardware and software revolution allowed the leap towards in silico use of DFT.

Optimizations with DFT are performed through supercomputers, the application of which dates
back to the 1980s. The expectation that the outcome of catalytic reactions could be predicted with
enough computational resources lead to a tremendous amount of research in this direction [14].
The first relevant computational study in homogeneous catalysis was the modelling of a full cat-
alytic cycle for an alkene hydrogenation with Wilkinson’s catalyst by Morokuma, Daniel and Koga
[15]. The authors reported more than 200 hours of supercomputing time, having to simplify the
structure by substituting phenyl rings with hydrogens, but the result was above expectations since
the authors were able to predict a possible reactive intermediate with emphasis on the sensitivity

1
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to the choice of ligand.
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First hybrid DFT functional
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2006
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Houk et al.
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including exchange-correlation
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Kohn and Sham

1957

IBM launches FORTRAN

which is base for many

 modern DFT packages  

2012

Enantioselectivity 

predictions using ML

Sigman et al.

Figure 1.1: History of computation in chemistry with emphasis on the studies in homogeneous
catalysis [2, 15–20].

Gradually, with the inception of cheminformatics, the desire to understand mechanisms converged
towards a more data-driven approach, which is based on a set of physico-chemical parameters,
commonly known as descriptors. Even though both statistical and quantum optimization methods
have been created in the past century, complete data-driven studies did not occur in literature until
the 2010s, with the study of enantioselectivity by Sigman et al (see Fig 1.1) [21]. Various approaches
towards computational modelling of catalyst activity, turnover frequency and enantioselectivity
are available in modern chemical literature. These state of the art approaches balance between the
chemical accuracy provided by DFT and fully topology based studies [13, 17, 21–25].

In this study, these approaches are integrated into a new framework that allows the featurization
of hydrogenation reactions for a number of substrates. Featurization of catalytic reactions through
relevant descriptors can carry important mechanistic information. The underlying gap towards
converting this concept into tangible predictions is the automation of data generation. Therefore,
the scope of the research was to lay the foundations for an automated workflow for structure gener-
ation and descriptor calculation, which paired with machine learning can lead to a priori predictions
of experimental results. This research focused on the catalytic hydrogenation of substrates contain-
ing C=C bonds, with rhodium phosphine complexes, with an example mechanism presented in Fig
1.2.

The catalyst featurization is done through descriptors of DFT optimized model molecules (the
bonding origin of the model substrate is highlighted in red in Fig 1.2) and the substrates are gen-
eralized through a topological fingerprint and general 3D steric parameters around the C=C bond.
The features, otherwise known as descriptors, are calculated through the OBeLiX computational
workflow, designed in this study. Thus, the descriptor database can be reproduced and more im-
portantly enhanced by other scientific groups. OBeLiX is a modular tool that allows structure gen-
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Figure 1.2: Reaction mechanism of a typical substrate used in this study. The first step indicates
how the substrate attaches to the solvated Rh-complex. The second step of the mechanism
involves the oxidation of the metal center from Rh(I) to Rh(III) through the oxidative addition of a
hydrogen molecule. The migratory insertion step is skipped in this figure. The red highlight
shows what bond is hydrogenated and the origin for the choice of a model substrate [26].

eration starting from string representations of molecules (i.e. SMILES [27]). If high-throughput
exploration of the chemical space is the objective, then the scaffold generation and substituent
placement tools can be used. After the generation of the structures, the descriptors are calculated
in an automatic manner, where the indices of the donors and metal center are identified without
user input, in contrast with other studies in literature where manual mapping is implemented [12,
28].

The modelling workflow designed in this research is summarized in Fig 1.3. Step 1 is achieved
with the aid of the aforementioned OBeLiX package. Intermediate steps are implemented between
the first two steps in form a descriptor analysis, where the ligands are mapped according to their
features, and where it is identified whether the structures require conformer-averaged properties
for experimental predictions. Conformer averaged properties have been successfully correlated
with experimental data by Paton et al [29], Dotson et al [12], Gensch et al [28] and others. A part of
these studies are discussed in section 2.6. The data analysis step is then followed by implementation
and testing of machine learning models (Step 2 and 3). Step 3 is required to prove the validity of
Step 2.
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Figure 1.3: Simplified structure of the taken approach. Step 1 includes structure and descriptor
generation for both substrates and model catalysts.

The main body of this report starts by introducing the theoretical background and methods neces-
sary to comprehend the complexity of reaction predictions and machine learning models, as well
as the tools for building and optimizing chemical structures. Then, the results of the research are
presented with emphasis on the studied chemistry, the computational approaches and the correla-
tion between the predicted and experimental conversion. Lastly, the conclusion, the outlook and
the perspective of this work are given.



2
Theoretical background

This chapter describes general structure optimization methods such as density functional theory
and semi-empirical methods, and discusses various conformer search algorithms with emphasis
on Conformer-Rotamer-Ensemble-Sampling-Tool (CREST). The chapter ends with a discussion of
machine learning algorithms followed by a literature review of common approaches involving ma-
chine learning and property/reaction predictions.

2.1 Density functional theory

Density functional theory (DFT) is a widely used computational method in the field of homoge-
neous catalysis. It is a method that can be used to predict the properties and behavior of catalytic
systems. In the field of homogeneous catalysis, DFT has been used to study a wide range of sys-
tems, including enzymes, transition metal complexes, and organometallic compounds [30]. It has
been used to study the mechanisms of catalytic reactions, to design new catalysts with improved
properties, and to understand the factors that influence the reactivity and selectivity of catalytic
systems [15, 24]. The base knowledge to understand DFT is presented step-by-step in the next
paragraphs.

The electron is circa 1800 times smaller than the proton. As a result, the protons (being part of the
nucleus) are not able to react as quickly to the changes in the surroundings. Thus, these two ele-
mentary particles can be separated into two distinct mathematical questions. This approximation
is known as the Born-Oppenheimer approximation. If N nuclei are considered, we can express the
ground state energy of the electrons as a function of the position of these nuclei E(R1, R2, ..., RN ).
The Schrodinger equation represents a linear PDE that governs the wave function of a quantum
system. In its time-independent, non-relativistic form, the Schrodinger equation takes the form
[31]:

Hψ = Eψ (2.1)

In Equation 2.1, H represents the Hamiltonian operator and ψ is the set of the eigenstates of
the Hamiltonian. Depending on the described system, the Hamiltonian operator can take differ-
ent shapes. However, the interest in computational chemistry lies mainly on multiple electrons-
multiple nuclei systems, where a more intricate description of the Schrodinger equation is neces-

4
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sary [5]:  h2

2m

N∑
i=1

∇2
i +

N∑
i=1

V (ri) +
N∑

i=1

∑
j<i

U(ri, rj)

ψ = Eψ (2.2)

In Equation 2.2, the terms on the left-hand side represent in order: the kinetic energy of each elec-
tron, the energy of interaction between individual electrons and the collection of atomic nuclei, and
the pairwise (in the formulation above) interaction between different electrons. The Schrodinger
equation can be solved analytically only for small molecular systems. For systems with more atoms,
approximations are needed. The electron wave function ψ is a function of the position of all elec-
trons, so ψ = ψ(r1, r2, ..., rN ). It is possible to approximate ψ as a product of individual electron
wave functions: ψ = ψ1(r)ψ2(r)...ψN (r). With the current computational power, it is impossible
to avoid this approximation, since the number of electrons in practical molecules gives impractical
systems of equations (i.e. a large number of dimensions in the wave function) [5].

Moving from wave functions to electron density represented the entire theoretical ground for the
density functional theory. The entire theory rests on two fundamental theorems proved by Hohen-
berg and Kohn, and a derivation of a set of equations by Kohn and Sham [32]. The first theorem
states that the ground state energy of the Schrodinger equation is a unique functional of the electron
density and there exists a mapping between the ground-state wave function and the ground state
electron density. A functional, denoted by ”[ ]”, is similar to a function, but instead takes functions
and returns single numbers. Restating the theory of Hohenberg and Kohn [33], the ground state
energy functional E can now be defined as E = E[ρ(r)], where ρ(r) is the electron density function,
dependent on the electron positions. The second Hohenberg-Kohn theorem states that the electron
density that minimizes the energy of the functional is the true electron density that is correspond-
ing to the full solution of the Schrodinger equation. In the Kohn-Sham formalism the ground state
energy functional can be defined as:

EKS [ρ(r)] = ET [ρ(r)] + EV [ρ(r)] + EJ [ρ(r)] + EXC [ρ(r)] (2.3)

Here, EV is the electron interactions with nuclei and other electrons, ET is the kinetic energy func-
tional and EXC is the exchange-correlation functional. EJ represents the electron repulsion term
and is based on the Hartree-Fock assumption that electrons move in a potential created by other
electrons and nuclei, thus the ground for a mean-field approximation for the repulsion term.

2.1.1 Exchange-Correlation Functionals

To solve the Kohn-Sham equations, the exchange-correlation functional (EXC [ρ(r)]) present in
Equation 2.3 has to be specified. The problem is that the true form of the exchange-correlation
functional is not known, but its existence is intrinsic to the Hogenberg-Kohn theorems. However,
in the case in which the electron density is constant at all points in space, the XC-functional can
be derived exactly. This approximation looks like it has limited value, but it is the only way to-
wards using the Kohn-Sham equations. Fig 2.1 shows the Jacob’s ladder, with increasingly better
approximations of the exchange-correlation functional. Each step of the ladder is introducing a
new dependency which increases the accuracy of the calculation [34].

For the purpose of this study the hybrid PBE0 functional was used for geometry optimization. It
uses the Hartree-Fock (HF) exchange energy and PBE exchange energy in a ratio of 3:1 respectively,
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Figure 2.1: Jacob’s ladder of exchange-correlation functional approximations which shows the
increasing complexity of the different available functionals. PBE0 and B3LYP are by far the most
used functionals across literature [35–37].

with a PBE correlation functional.

2.1.2 Basis sets

Basis sets represent a set of functions descriptive of the electronic wave function, that allow for the
conversion of the HF differential equations into algebraic equations, which then can be solved with
matrix methods, efficiently done by (super)computers [38]. For the research reported in this thesis,
the double zeta basis set def2SVP is used. The def2SVP basis set consists of a split valence function
with a polarization function on all atoms. By ”split valence” it is meant that the valence electrons
get a more complete description. As described by the name full name of the basis set def2SVP, the
valence electrons are described by two basis sets instead of one for all the rest of the electrons in the
atom. The polarization functions are allowing the electrons to get away from each other in order
to minimize the electron-electron repulsion. The choice of the basis set and functional are done in
a trial-and-error fashion, solely based on empirical evidence. The typical approach in science is
to use a specific basis set for a specific type of chemistry, based on what literature reports and on
personal experience [34].

2.1.3 Potential energy surface

Potential energy surface (PES) is a central concept in computational chemistry. A PES is the relation-
ship between the energy and the structure of a molecule [39]. The energy minimization converges
to the closest local minimum on the potential energy surface. Searching for global minima is still a
matter of research. Current methods reduce to machine learning applications or using hundreds of
intermediate DFT optimizations, because minima hoping is computationally demanding [40, 41].



2.2. GFN optimization tools 7

Consequently, the starting structures supplied to DFT should be as accurate as possible. To un-
derstand the results generated by DFT calculations, one has to look at the vibrational frequencies
which at local minima always have positive real values. If there are imaginary frequencies, the
calculation should be restarted or changes should be made on the initial geometry.

2.1.4 Dispersion corrections

The Kohn-Sham description of the energy balance is incomplete due to the lack of the term account-
able for London dispersion forces. The total corrected energy (EDFT-D3) is given by:

EDF T −D3 = EKS−DF T − Edisp (2.4)

Here, EKS−DF T is the self-consistent Kohn-Sham energy as obtained from the chosen functional
(e.g. PBE0) and Edisp is the dispersion correction as a sum of two and three body energies [42].

2.2 GFN optimization tools

Accurate and fast calculations for a large molecular system are still a great challenge in theoret-
ical chemistry. While the Kohn-Sham theory can provide accurate representation for one indi-
vidual large system in gas-phase, it cannot do so for large sets of molecules. The GFN methods
described and developed by Bannwarth et al [43] are summarized in Fig 2.2. These methods are
semi-empirical and parametrized for all elements with an atomic number lower than 86. Even
though the recent progress of parallelized computer architectures has allowed for accurate DFT
calculations, there is still need for electronic structure methods that are both simple and accurate,
while also being efficient and applicable to large systems without requiring specialized hardware.
The central method in Fig 2.2 is GFN-FF, which is also the simplest method from the GFN fam-
ily. By adding different components to the energy functional of GFN-FF, GFNn-xTB (n = 0, 1, 2)
methods were created.

Figure 2.2: GFN family of methods. In the center, the force field method is described and how the
it is related to the GFNn-xTB methods. Z, fit - extra empirical parametrization of the elements.
vdW - van der Waals interactions. EEQ - electronegativity-equilibrium for the description of
pairwise interactions. Figure reproduced from [18].

The total energy expression of the GFN2-xTB method is given by [18]:

EGFN2-xTB = Erep + Edisp + EEHT + EIES+IXC + EAES + EAXC +GFermi (2.5)
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The dispersion term Edisp was improved from D3 (introduced in section 2.1.4) to D4. D4 is a less
empirical version of D3. The term Erep describes the classical repulsion energy which represents a
pairwise potential. TheEIES+IXC term represents the isotropic electrostatic and XC-energy. TheEAES

and EAXC describe the anisotropic interactions and XC energy respectively. The EEHT term is the
extended Huckel contribution and represents the crucial contribution to the description of covalent
bonds in these methods. The Fermi Gibbs energy terms describes the entropic contribution of the
electronic free energy at finite temperature. Currently, the main application of this functional is to
generate conformer ensembles in a relatively fast time, which cannot be achieved by DFT.

2.2.1 Conformer search

A conformer is a variation of a structure with the same chemical bonding, but different energy
generated by the position of the atoms, bond rotation and repulsion. Multiple studies in literature
reveal improvements in the correlation with experimental data (activity and enantioselectivity)
when using a set of averaged properties instead of a single structure in a local minima coming
from DFT [24, 29].

Many computational chemistry packages are available for searching conformers. According to
a benchmarking study on phase-transfer catalysts performed by Trujillo and Iribarren [44], the
methods of which are given in Fig 2.3, CREST ranked first in energy accuracy, structural accuracy,
tunability and space exploration among the investigated methods. One of the main reasons meth-
ods like Balloon[45], RDKit conformer search [46] and Sterimol[29] have a lower performance than
CREST lies in the underlying complexity of the applied optimization methods.

Figure 2.3: Workflows for difference computational packages for conformer search. CREST is the
method of choice for this study (outlined in orange). Figure reproduced from [44].

RDKit, Balloon and Sterimol are based on force field optimization of the generated conformer en-
sembles. Ebejer et al [47] identify these approaches as methods for small organic molecules. An al-
ternative benchmarking study from Hutchinson et al [48] revealed that for a general molecular
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system, the GFN methods rank well in energy computations, with a fair degree of correlation to
DFT functionals. The CREST computation starts with a xTB optimization of the structure. For the
creation of the CRE (conformer/rotamer ensemble), a composite algorithm made primarily of a
pseudo-genetic procedure and long meta-dynamic simulations is used. The larger the molecular
system, the larger the conformer ensemble, due to the increase in the number of rotatable bonds
[49]. In this work, the conformer ensemble search was performed on a subsample of the studied
phosphine ligands, the features of which are described in section 2.3 and section 2.4.

2.3 Phosphine ligands in homogeneous catalysis

A great variety of phosphine ligands are currently used in the field of homogeneous catalysis:
ranging from monodentate (simple or phosphoramidites) and bidentate ligands to more complex
ligands such as PNN or PNS pincers. One common feature of all these ligands is the presence of
at least one phosphorus bond to the metal center. In the soft/hard acid-base theory phosphorus
is known as a soft, strongly ligating atom for transition metals [50]. Even though most d-metals
are able to undergo the elementary steps of a catalytic cycle, a number of catalytic reactions have
been seen to be dominated by specific transition metals: e.g. Rh in the hydroformylation reaction
[51]. Thus, the choice of the transition metal is of utmost importance. Correctly selected phosphine
ligands are known to increase the reactivity of the metal center. This is achieved by two effects
illustrated in Fig 2.4:

Rh

PP

Bite angle

Electronic effects Steric effects

Figure 2.4: The main effects in phosphine ligands illustrated on a rhodium - biphosphine example.
The bite angle is often considered when deriving structure-property relationships. Figure adapted
from reference [50].

Normally, the selection is done by a combination of pre-existing knowledge with a high-throughput
experimental campaign. As Fig 2.4 illustrates, steric and electronic effects affect the stability and ac-
tivity of the catalysts. These effects can be quantified through descriptors for the further derivation
of meaningful relationships (see section 2.4).

2.4 Descriptors

Descriptors are the result of a logic or mathematical procedure which encode multivariate informa-
tion about a molecule [3]. They come in different variations, such as geometric, steric or electronic
descriptors. Generally, geometric descriptors refer to various angles or bond lengths hypothesised
to be the source of catalytic activity. On the other hand, steric descriptors are more complex, and
they can in some contexts overlap with the geometric descriptors, but normally they are described
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separately. The role of steric descriptors is to characterize a molecule’s steric hindrance. Example
of such descriptors include the buried volume or the SASA (solvent available surface area). The
last descriptor class includes the electronic descriptors. For the purpose of this thesis, electronic
descriptors will be mainly taken from DFT calculations. Occupancy of lone pairs in the donating
atoms or charge at the donor and the metal center represent examples of DFT descriptors.

2.4.1 Morfeus descriptors

Morfeus [52] is a computational Python package that was designed for general use, but has primary
applicability for TM complexes containing phosphine ligands. The package contains descriptors of
electronic and steric origins. A selection of the most used descriptors in homogeneous catalysis are
defined in Table 2.1. The rest of the descriptors are available in Appendix E.

Table 2.1: Definition of a selection of descriptors highly relevant for homogeneous catalysts. The
graphical representations are given below the definitions of the descriptors.

Descriptor Class Definition Ref.

Bite angle Steric The angle formed by the metal center with
two donor atoms in a chelating complex. [53]

Cone angle Steric

The solid angle formed with the metal at the
vertex and the outermost edge of the van
der Waals spheres of the ligand atoms at the
perimeter of the cone

[54]

Buried volume Steric
Percentage of volume that is occupied by
atoms in a molecule at a specified distance
from an atom of interest.

[55]

HOMO-LUMO gap Electronic
The difference in energy between the highest
occupied molecular orbital and lowest unoc-
cupied molecular orbital.

[56]
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2.4.2 Descriptors from DFT calculations

Natural bond orbital descriptors

Natural bond orbitals (NBOs) are localized orbitals that describe the molecular bonding pattern
or electron pairs. NBOs describe residual resonance delocalization effects (departures from the
idealized Lewis-type representation). The general objective of NBO methods in this study is to
extract tangible chemical insights from DFT calculations, which are formulated in terms of well
understood bonding concepts such as atomic charge, hybridization, bond order or charge transfer
[57]. Electron density delocalization between occupied Lewis type NBOs and formally unoccupied
non-Lewis NBOs correspond to a stabling donor-acceptor interaction.
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Energetic descriptors

DFT calculations output several energetic parameters measured in Hartrees. Among them, the
absolute energy E is the parameter used in this study [57]. This output is used for the calculation
of binding and interaction energies which are described in section 3.1.3.

2.4.3 Subgraph search of transition metal complexes

The descriptors to be calculated with Morfeus require exact identification of the indices of the atoms
forming the bite angle coming from the generated atomic coordinates files. For the purpose of iden-
tifying these indices, a graph based search was implemented. The first step of the search was to find
the N connected atoms to the metal center which represent the starting points of the graph search.
The metal is then completely excluded from the graph, which depending on the chosen geometry
leaves N independent subgraphs, where the edges represent the bonds, and the nodes are atoms.
Using a breadth-first search algorithm (see Code Listing 2.1) all visited nodes are determined and
stored in a dictionary [58].

1 def bfs(visited, graph, node):
2 # visited -> list
3 # graph -> generated by the in-text mentioned procedure
4 # node - which node to start the search from -> ligand atoms connected to Rhodium
5 queue = [] # Next atom in list
6 visited.append(node) # append visited atoms
7 queue.append(node) # append neighbours of current atom in queue to queue
8 while queue:
9 s = queue.pop(0)

10 for neighbour in graph[s]:
11 if neighbour not in visited:
12 visited.append(neighbour)
13 queue.append(neighbour)
14 return visited

Code Listing 2.1: Breadth first search algorithm implementation

After determining all the visited nodes for each individual subgraph, the indices of the donors
and metal have to be found. This can be done in two ways: either check if the visited nodes are
identical (i.e. the two subgraphs are isomorphic) or if any of the atoms connected to the metal
center are mapping each other [59]. The former approach is more consistent due to its unique
output comparing to inconsistent results coming from the latter, where the method would fail if
two monodentate ligands were used. Fig 2.5 illustrates the procedure introduced in this section.

M

PP

tBu

tBu

Ph

Ph

M

PP

tBu

tBu

Ph

Ph

Molecular graph

M - metal center

Metal-Ligand
Model substrate

NBD

Subgraph 1
Subgraph 2

Square planar complex

Figure 2.5: Example of how the molecular graph functionality works. The full graph of the
complex is split into subgraphs (ligands) by removing the metal center and performing a breadth
first search on the independent subgraphs.

.
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The molecular graph functionality of the OBeLiX workflow will output the indices of the phosphine
ligand(s) and the metal (further this (sub)structure will be denoted by ML2) and the indices forming
the bite angle. The implementation of this approach for ligands of higher/lower hapticity is trivial.
For monodentate ligands the subgraphs of maximum size are counted and extracted from the full
graph, while for structures with more than two donor atoms the subgraph is identified based on
the donating atoms that belong to the largest subgraph corresponding to the phosphine ligand.

2.5 Machine learning models

Correlating experimental data with molecular features with a high rate of accuracy is more favor-
able economically than setting up a full high-throughput experimental campaign. There are plenty
of machine learning algorithms ranging from simple linear regression to complex regressors with
hundreds of estimators [60]. Three main categories can be identified: unsupervised learning, su-
pervised learning and reinforcement learning, each split into subcategories shown in Fig 2.6.

Reinforcement 

learning

Artificial Neural Network

Graph Neural Network

Convolutional Neural Network

Monte-Carlo methods

Q-network

��������

��������

Supervised 

learning

Classification

Random Forest

Extra Trees 

Logistic

Gradient Boosting

Regression

Random Forest

Extra Trees

Linear

Gradient Boosting

Extra Gradient Boosting

Unsupervised

learning

Dimensionality

reduction

Clustering

K-Means

DBSCAN

Hierarchical 

PCA

UMAP

TSNE

Figure 2.6: Classification of machine learning algorithms [61, 62]. In red are the algorithms applied
in this work.

In chemistry, unsupervised learning can be used to analyze large datasets of molecular structures
and identify patterns or similarities between them, which can help researchers discover new mate-
rials or predict the properties of existing ones. Supervised learning can be used to build predictive
models that relate molecular structure to properties, such as solubility or reactivity [63]. Reinforce-
ment learning can be used to design and optimize chemical processes, such as optimizing reaction
conditions to maximize yield or selectivity [23]. The choice of learning method depends on the
specific problem at hand and the type of data available, whether it is experimental measurements
or computer simulations. As Fig 2.6 suggests, in this study several machine learning models have
been used including hierarchical clustering, dimensionality reduction with principal component
analysis (PCA), and supervised learning approaches in form of classification and regression analy-
sis [64].
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In the context of reaction predictions, the tree based regression and classification models can be
used to predict the reactivity of a given chemical compound towards a specific reaction or set of
reactions. The model takes as input a set of features that describe the structural, electronic, and
physico-chemical properties of the molecule, such as its size, steric occupation, electronic properties
at the donors, dipole moment and other.

During training, the model uses a subset of the available features and data to construct a decision
tree, which splits the data into smaller subsets based on the input features. By using a large num-
ber of decision trees and randomly selecting a subset of the features and data for each tree, the
tree based regression models can capture the non-linear relationships and interactions between the
input features and the reactivity outcome, while avoiding overfitting and improving the general-
ization of the model. Once the model is trained, it can be used to predict the reactivity of new
compounds. The predicted reactivity value can be used to guide the design and optimization of
new chemical compounds with desired properties, potentially accelerating the discovery and de-
velopment of new drugs, materials, and chemicals [46, 65–67].

2.6 Computer-aided catalyst design

Computational tools for catalyst design and reaction optimization have revolutionized the field of
computational chemistry. These tools offer numerous advantages, including time and cost effec-
tiveness, reproducible workflows, and minimized errors resulting from human bias or experimen-
tal limitations [68]. Fig 2.7 summarizes some state of the art approaches in computational catalyst
design, the description of which is given below.

The success of data-driven methods hinges on the existence of vast databases. In a recent study,
Gensch et al released Kraken - a publicly available virtual library for designing and refining cat-
alytic processes that involve monodentate organophosphorus(III) ligands. This undertaking in-
volved large-scale data generation, mapping of chemical space, as well as predicting properties
and designing catalysts based on experimental data [70, 71]. In their approach, the authors first
generated a dataset of monodentate phosphorus ligands comprising 1558 unique compounds, se-
lected based on commercial availability and prevalence in literature. They then performed digital
simulations of two versions of each compound: the free ligand and the ligand bound to the metal.
Electronic, steric, thermodynamic, and molecular descriptors were used to represent the structures.
To account for conformational dependencies, a complete ensemble of ligand conformations was
calculated, as suggested in previous works [25, 72, 73]. These conformer are calculated through
the Conformer-Rotamer-Ensemble-Sampling Tool (CREST) [49] and DFT geometry optimization is
subsequently done on a representative set of the total conformers. Literature has shown that ligand
properties on DFT level show similar trends to experimental properties, e.g. atomization energy,
bond length, hydricity or activity. Therefore, DFT ligand properties can be used as target values for
finding trends in lower levels of theory, such as semi-empirical DFT methods [74–82].

An example of a study that starts from the semi-empirical xTB methods is from Laplaza et al
[24], which employed an automated workflow to investigate various reaction pathways in a Rh-
catalyzed asymmetric C-H functionalization and predict their enantioselectivity. This approach
utilizes the MolAssembler [83] library to create and sample transition states (TSs) at GFN2-xTB
level of theory, which are then DFT optimized. In contrast to conventional 3D molecule visual-
ization, MolAssembler models molecules as graphs, making it computationally more efficient to
construct molecular graphs from text-based SMILES input rather than relying on (semi-empirical)
DFT-based methods. Additionally, MolAssembler can model complexes that contain haptic bond-
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Advantage
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Target

Method

Quantifies activity

Suitable for big data

Molecular volcano plots

Catalyst activity

One target property

SMILES-based input for HT

Usable by bench chemists

MM-based screening

Enantioselectivity

System specific FF optimization

Easily interpretable

High-perfomance

System specific LR/MLR

Multi-objective optimization

Computationally expensive

Diversifed ligands

Large amount of data

Mapping the descriptor space

Property prediction

No correlation with experiments

No out of sample extrapolation

Non-biased approach

Computationally inexpensive

Graph-based HT screening

Enantioselectivity

Applicable on small systems

No generative power

Outperforms experts consistently

Bayesian optimization

Multi-objective optimization

Fully based on SMILES input

Computer-aided

catalyst design

Figure 2.7: Computational workflows for catalyst design [12, 13, 22, 24, 28, 69]. Top (left to right)
Dotson et al., Busch et al., Jover et al. ; Bottom (left to right): Ahneman et al., Gensch et al.,
Burrows et al. FF - force field, HT - high-throughput, LR/MLR - linear/multi-linear regression.

ing sites. These automated, graph-based workflows enable efficient screening of catalytic systems,
provided the mechanism and a reasonable estimate of the transition state geometries are known.

In addition to enantioselectivity predictions, a challenging task is to identify catalytic activity. To
determine the performance of a catalyst, Busch et al [84] utilized a commonly used technique in het-
erogeneous catalysis called the volcano plot. This plot is based on Sabatier’s principle [85], which
asserts that an ideal catalyst should have intermediate binding strength to a substrate. The energies
of reaction intermediates that bind to the catalyst are interdependent through scaling relations, i.e.
an empirical mathematical relationship exists between the energies of intermediates and transition
states of a reaction or class of reactions across various catalysts. This relationship enables the ex-
pression of all reaction intermediates and transition states energies in terms of the energy of one or
a few specific intermediates, generating linear free energy scaling relationships (LFSERs) based on
the descriptor intermediate [86]. By expressing the reaction rate as a function of the energy of the
intermediate, a characteristic volcano shape can be created.

Computationally intensive and intricate DFT methods can be replaced with cheminformatics, which
is a relatively novel field. Shields et al [23] introduced a new method for optimizing chemical
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reactions using Bayesian optimization, which was tested against expert chemists. The method
was implemented in an open-source software tool that integrates with existing workflows. To de-
velop the optimizer, data from two cross-coupling reactions were used with a Pd catalyst, and a
combinatorial set of reaction conditions was tested. Three types of structure representation were
used, including chemical-descriptor fingerprints, cheminformatics descriptors, and binary one-hot-
encoded representations (a way to represent categorical data). The quantum chemical properties
of reaction components were computed using DFT, and the Mordred package [87] was utilized to
generate the one-hot-encoded representations [13, 23]. Benchmarking data-driven methods can be
challenging, but this approach shows promise for optimizing chemical reactions.

As Fig 2.7 suggests, the methods described above come with several inherent disadvantages. These
disadvantages are related to three key factors: structure representation, domain of applicability and
computational cost. Thus, with the available tools, compromises have to be made. In this study,
several of the techniques introduced in the original works have been used. Semi-empirical methods
are implemented for understanding the effects of conformers on descriptors and general effects on
bonding and stability. The mapping of the simplified descriptor space has been used to find the
distribution of the experimental data and ligand classes across the feature space. A simplified
version of the volcano plot methodology has been applied on the experimental data provided by
the industrial partner. Finally, some of the machine learning algorithms used by Ahneman et al.
have been applied in the context of reaction prediction in this study.



3
Computational methods

This chapter describes the general computational methods. The first part describes OBeLiX (Open
BidentatE Ligand eXplorer), and more specifically the submodules of which it is composed. The
second part introduces a structured approach for the building of machine learning models for gen-
eral predictions of the experimental conversion for a set of substrates.

3.1 OBeLiX workflow

The OBeLiX Python package is a modular tool designed for the automated generation and fea-
turization of transition metal complexes. The code of OBeLiX will be available at github.com/
EPiCs-group. The core functions of the OBeLiX package (in order) are the following: scaffold
generation, automated placement of functional groups, conformer ensemble search and descriptor
calculation. DFT optimizations are part of the approach introduced in this thesis, but the DFT tools
are to be accessed only through supercomputer interfaces.

3.1.1 Scaffold generation from SMILES representations

The generation of phosphorus ligands starting from SMILES [27] representations is not trivial
and requires many manipulations. For this purpose a Python package built with the efforts of
Chernyshov and Pidko is used. MACE is a tool designed to generate two types of transition metal
chemical structures: octahedral and square planar complexes [88, 89]. The tool requires as input the
metal and the SMILES representation of the ligands with precise indication of the donor atom(s) in
the individual SMILES of the ligands. MACE can be also used to generate molecular scaffolds on
which substituents are placed. MACE comes with the additional functionality of generating iso-
mers for the complexes by changing the place of the ligands on the metal center (see the example
of an octahedral complex with two stereoisomers in Fig 3.1). If two isomers are within a specified
energy window from each other, they are removed from the output. MACE can regularly fail to
provide the correct stereochemistry, thus a large part of the structures were corrected/made with
the PerkinElmer software package Chem3D, where the stereochemistry of the chiral centers can
be altered. To note, when the phosphine ligand SMILES was not available (ferrocenyl containing
ligands), the scaffolds were manually constructed and functionalized with the approach described
in the next section. The automated methods described in this and next section refer to the Metal-
Ligand(s) structure without the substrate, which has been placed manually.

16
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3.1.2 Automated substituent placement

The functionalization of a scaffold can be performed with ChemSpaX, a tool designed by Kalika-
dien et al [90]. The approach is combined with MACE to give fully automated generation of struc-
tures. An illustration of the combined approach is given in Fig 3.1. The MACE module of the
structure generation requires only SMILES representations of the ligands, while for the substituent
placement with ChemSpaX, 3D structures for the substituents are necessary. ChemSpaX comes
with a database of substituents that was partly enhanced during the preparation of the catalyst
database in this study.

N

Chem

SpaX

P C

= Ir, Ru, Mn etc.

Ligands

M

S

3D structure generation
+

Ligand interchange
Local chemical space exploration

Substrate

Metal center

MaCE ChemSpaX

Chemist’s input

Figure 3.1: Local exploration of TM metals chemical space using MACE and ChemSpaX.

The ChemSpaX functionality was modified to use bromines as dummy atoms for substituent place-
ment, instead of the default hydrogen atoms. Therefore, the indices of the atoms to be function-
alized can be automatically identified. The core way in which the skeletons and substituents are
paired has also been changed. In OBeLiX, the user can supply any number of functionalization
instructions for any number of skeletons. In the base ChemSpaX package, all skeletons are func-
tionalized in the same way from a supplied list of functionalizations [90]. Other approaches for
substituent placement are available in literature, such as MolSimplify [91], whose main framework
revolves around a DFT-pretrained model that determines the skeleton structure, followed by a se-
lective force field optimization. MolSimplify generates structures based on a neural network that
could malfunction in certain scenarios (e.g. when there is high steric bulk or when the geometry of
the scaffold is incorrectly identified).

The structures generated by Chem3D, MACE and/or ChemSpaX have been optimized with quan-
tum mechanical methods. The electronic structure calculations methods referring to DFT and DFTB
are further described in section 3.1.3.

3.1.3 Applied quantum-mechanical methods

Structure optimization and conformational sampling in the computational package OBeLiX are per-
formed using the tools from Bannwarth et al described in section 2.2. Both are preferably performed
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at the GFN2-xTB level of theory, but the user of the package can choose any GFN level of theory,
as illustrated in Fig 2.2. For DFT, Gaussian 16 C.01 [92] is the software of choice in this study.
For structures functionalized with ChemSpaX, the OpenBabel [93] package was used to convert
between different chemical formats.

Extended density functional tight-binding calculations

The conformer search was performed at the GFN2-xTB level of theory, with no solvation. Every
metadynamics conformer search initiated with this tool is preceded by a simple GFN2-xTB op-
timization [49]. Depending on the size of the conformer ensemble, a number between 3 and 5
conformers were selected for further DFT optimization. These effects will be described in form of
a descriptor comparison between conformer averaged and single DFT optimized structure proper-
ties.

Density functional theory calculations

All geometries were optimized using the PBE0 functional with a def2-SVP basis set in the gas phase
coupled with natural bonding orbital analysis (NBO) [94]. This combination of functional and basis
set were proven to give reliable geometry optimizations of TM complexes, even when compared
to heavily parametrized functionals [81, 95]. For all norbornandiene complexes (introduced in Fig
3.2), the binding and interaction energies were calculated. The binding energy (∆Ebind) is defined
as the energy difference between the full complex and the sum of the DFT optimized Metal-Ligand
and norbornandiene (NBD) energies. The interaction energy (∆Eint) is calculated as the difference
between the energy of the complex and the sum of the single point DFT energies of the Metal-
Ligand and NBD derived from the optimized NBD-complex. The search of the NBD ligand was
performed through a subgraph search method which is described in section 2.4.3.

∆Ebind, NBD = EDFT, opt, complex − (EDFT, opt, ML2 + EDFT, opt, NBD) (3.1)

∆Eint, NBD = EDFT, opt, complex − (EDFT, SP, ML2 from complex + EDFT, opt, NBD from complex) (3.2)

The conformer ensemble generated by CREST (for ML2 structures) is arranged in energetic order,
where the relative energy of 0 kJ/mol represents the lowest energy conformer. This specific con-
former is always DFT optimized. The energy difference between this conformer and the single
structure DFT optimization (denoted by ∆E++) is calculated as below:

∆E++ = EDFT, opt, best conf. ML2 − EDFT, opt, ML2 (3.3)

The structures optimized with DFT have been used to generate a descriptor database. The same
descriptor methods have been applied to the DFT optimized selection of conformers. The details
of the descriptor calculator are presented in the next section.

3.1.4 Descriptor calculation

For reliable machine learning models, the training data has to contain both catalyst and substrate
descriptors due to the different affinities of catalysts towards certain substrates [26]. For the cat-
alysts, OBeLiX has a built-in descriptor calculator that computes steric and electronic properties
through Morfeus and from DFT outputs. To simplify the data generation step, one has to use de-
scriptors of a molecule that is binding similarly to the metal center, but is also representative for
a number of substrates. The simplest model molecule for a homogeneous catalyst is discussed in
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Appendix A.1, where just the ligand and the metal center are considered. Fig 3.2 shows the model
molecule used by Sigman et al. in comparison with the model molecule used in this study. The
main difference between these molecules is in the nature of the bonding between the chosen model
ligands. As the bond of interest is C=C, using a similar π complex to that in the mechanism of the re-
action is desirable. The steric properties of two chlorine atoms are also different, but the difference
is less due to the size of the chlorine atoms compared to the carbon atoms in the norbornadiene.
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Figure 3.2: Model molecules used for machine learning purposes compared to Sigman et al [12].

For these TM catalysts, properties were calculated for the metal center and the donor atoms (P,
N or S). All the descriptors that were further applied for machine learning are shown in Table
E.2 and the values of all the descriptors are in the database accompanying this thesis. The donor
properties and the quadrant/octant buried volume at the metal center depend on the definition
of the two selected donor atoms for each ligand(s). The choice was made based on how strong
the donor atoms are. Thus, the properties of the donor with maximum charge is assigned as max
in the descriptor database, and the properties of the donor with minimum charge as min. As the
workflow is designed to work at the GFNn-xTB level of theory, the charge is also calculated at this
level using Morfeus [52].

Buried volume [55] calculations at the metal center are made by selecting the xz-direction and
z-axis which determines the plane of the buried volume calculations. The illustration in Fig 3.3
depicts the taken approach. On the left an example of a steric map can be seen. It shows the steric

y-axis

perpendicular 

to P-Rh-N plane

����������

Figure 3.3: Calculation of the buried volume around the metal center at 3.5 Å accompanied by a
steric map for Ligand 186 (see ligand database in Table E.1). The steric map and the buried
volume calculations do not include NBD as per Fig 2.5.

occupancy of the ML2 structure after NBD has been removed. The left side of the steric map shows
less occupancy corresponding to the two hydrogen atoms on the nitrogen donor, while the left side
of the map corresponds to the steric occupation of the phenyl rings on the phosphorus donor.

For the substrates, it was opted to use 2D descriptors, and steric 3D descriptors provided by the
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Sterimol package through Morfeus. The Sterimol parameters are illustrated in Fig 3.4 [29, 52].
B1, B5 and L parameters sterically quantify the substrate in all its three dimensions, where L is
the length of the substrate along the bond of interest, and B1 and B5 are the shortest and longest
widths from the bond of interest which is the C=C bond for the studied reaction.

Figure 3.4: The general definiton of the Sterimol parameters around a bond of interest. This
illustration is taken from Miller et al [96].

Since the substrates are relatively simple, organic molecules, it can be assumed that this description
is enough to quantify the steric inter-substrate differences. To account for the structural differences,
2D descriptors contained in the Morgan fingerprint have been used [97]. The calculation is done
through the RDKit package [98]. Since there are common bits in the full Morgan fingerprint, these
are eliminated. The compression of the Morgan fingerprint is shown in Fig 3.5. Morgan fingerprints
are a reliable way to numerically describe the structural differences between different substrates.
The bits are then used as features in the machine learning model training.
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Figure 3.5: Compression of the Morgan fingerprint. The common bits are eliminated from the full
1024 digit long fingerprint [99].

The next section describes what machine learning algorithms and approaches have been applied
on the generated database of descriptors for the catalysts and substrates.

3.2 Machine learning pipeline

The machine learning pipeline applied on part of the data generated during this research project is
described in Fig 3.6. The stepwise approach starts with the preparation of the full dataset containing
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the experimental target value, the substrate Sterimol descriptors and 2D compressed fingerprints,
and descriptors of DFT optimized model catalyst structures. The second step involves the choice
of the model. The training data has been passed through the TPOT package [100, 101], which
outputs what machine learning models give the best performance on a randomly selected training
set. Four models have been selected: gradient boosting (GB), random forest (RF), extra trees (ET)
and extreme gradient boosting (XG). These models are further grid-search cross-validated with the
sklearn Python library, where a set of hyperparameters are extensively tested aiming the choice of
the best model. The last step involves the building of a predictive ML model, starting with the
training of the four aforementioned models. The models are then tested on an arbitrary test set,
and predicted results are stored. After predictions have been made, the model is assessed through
the methods described in section 3.2.2.
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Figure 3.6: Machine learning pipeline used for reaction predictions. Both classification and
regression models were tested in the ML model building phase.
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3.2.1 Hierarchical clustering

Hierarchical clustering is a type of clustering algorithm used in unsupervised machine learning
to group similar objects or data points together based on their characteristics or features. It is a
popular technique used in data analysis, data mining, and pattern recognition applications. In
hierarchical clustering, the data points are first assigned to individual clusters, and then these clus-
ters are merged into larger clusters in a hierarchical manner, forming a tree-like structure called
a dendrogram. The dendrogram represents the hierarchy of clusters, where the leaves of the tree
correspond to individual data points and the branches correspond to the clusters formed at each
level of the hierarchy [102]. Hierarchical clustering has been used to assert whether it is possible to
predict the range of reactivity for substrates outside of the training set, based on chemical similarity.

3.2.2 Evaluation of machine learning models

The regression machine learning models shown in Fig 3.6 have been assessed with the traditional
R2-score, which is the coefficient of determination of the regression model. The coefficient of deter-
mination is not necessarily a squared value, thus it can also be negative (i.e. the model is arbitrarily
worse than a straight line). In that case the model has no predictive power. On the other side,
the model cannot return an R2 of more than 1, in which case the predictive values map the test
set exactly. The root-mean-square error (RMSE) is calculated as in other similar investigations of
catalyst activity [103]. RMSE describes how far on average is the predicted value from the observed
experimental value.

RMSE =

√ ∑N
i=1 ||yobs(i) − ypred(i)||2

N
(3.4)

For the classification models, a more detailed evaluation is necessary. The most common technique
is to use a confusion matrix [104], which describes the general affinity of a binary classifier to make
prediction for a certain category. Other measures can be extracted from the confusion matrix, which
are given in Fig 3.7. These measures quantify the reliability of the model on an out-of-sample test
set. That translates as the ability of the model to predict both of the chosen binary categories when
training the model.
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Figure 3.7: The definition of the confusion matrix and the metrics that can be extracted from it to
evaluate a binary classification model.



4
Results & Discussion

The first part of the results describe the chemistry of hydrogenation reactions and summarizes the
data generation step priorly introduced. The second part delves into the distribution of ligands
across the feature space and identification of trends across this space. The third part is answering
whether conformer averaged properties are needed for this study. The results are then concluded
with the training and testing of machine learning models, built with the data from the descriptor
database. These models are to answer the question whether it is possible or not to make predictions
on out-of-sample inputs.

4.1 Substrate hydrogenation

This research focuses on hydrogenation reactions (see the mechanism in Fig 1.2), where the goal
is to apply a novel approach for prediction of the conversion for this reaction. All used catalysts
are chiral and have at least one donating phosphorus atom. Fig 4.1 shows 4 representative ligands
from the 4 major ligand classes that have been studied.
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Figure 4.1: Representative ligand for each ligand class. The ligands with only one donor atom are
taken twice when building the complexes. The top row contains bidentate ligand classes, while
the bottom row contains monodentate ligand classes.
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A total of 192 ligands have been investigated and geometries have been generated as part of this
study. Besides the four groups in Fig 4.1, two pincers were also included in the dataset (one PNN
and one PNS). The choice of the ligands was made by the industrial partner for a high-throughput
experimental campaign based on some of the effects described in section 2.3 and commercial avail-
ability. The ligand names, formulas and CAS numbers are available in Table E.1. All the xyz
geometries and DFT log files will be made available at github.com/EPiCs-group, as well as all
CREST log and xyz files, along with the accompaying DFT optimizations of the conformer dataset.

4.1.1 Experimental data analysis

For this study the hydrogenation reaction of seven different substrates has been studied, labeled
SM1-SM5 and SM7, SM8 (SM - starting material). The general structure of such a substrate can
be seen in Fig 3.5. The experimental data have been provided by the industrial partner. For the
machine learning models, the conversion after 16 hours (for all substrates) is the target property.

Table 4.1: Experimental reaction dataset provided by the industrial partner used for training and
validation of ML models. For SM7 and SM8 only half of the data is available. The chemical
structures of the publicly available substrates can be seen in Fig E.1

.

Substrate Solvent Temperature Pressure Samples

SM1 Methanol 298 K 5 bar 192

SM2 Methanol 298 K 5 bar 192

SM3 Methanol 298 K 5 bar 192

SM4 Methanol 323 K 5 bar 192

SM5 Methanol 323 K 20 bar 192

SM7 Methanol 323 K 20 bar 96

SM8 Methanol 323 K 20 bar 96

Total 1152

The distribution of the experimental data is a very important factor for training tree-based mod-
els. The more balanced the datasets, the better the algorithm comprehends the complex, non-linear
relationships between the features and the experimental target. Fig 4.2 shows the conversion dis-
tribution across all substrates and all ligands in a detailed heat map, where the substrates can be
found on the x-axis and the ligands on the y-axis. It can be seen that the conversion distribution
is fairly uneven with very high performances for SM1 and SM2; average performances for SM3,
SM4, SM7, and SM8, and overall poor catalyst performance for SM5. For SM5 in particular, only a
small number of catalysts had a conversion rate higher than 0.5. It can be a priori predicted that the
tree-based regressors will place all catalysts in the lower range of activity for SM5 since the model
was trained on a few active catalysts for this specific reaction. Thus, the model cannot precisely
learn what features determine the performance of SM5.

github.com/EPiCs-group
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Figure 4.2: Heatmap of the experimental conversions for all substrates across all studied ligands
and substrates. Horizontal axis - Substrates; Vertical axis - Ligands.

4.2 Ligand mapping

Ligand mapping is a concept that relates to the distribution of the model catalysts across the fea-
ture space. In literature [12, 28, 105], the most commonly used technique is the principal component
analysis (PCA), where the first two or three components that maximize the amount of variance are
considered, eliminating data collinearity. The general aim is to identify trends or cluster similar
ligands across the feature space. For the purpose of this study, the general goal of a PCA map was
enhanced in order to identify correlations with the experimental data. Fey et al [105] performed
a similar analysis to identify trends in ligand binding energy. The decomposed maps of the three
principal components are given in Fig 4.3, where the color represents the conversion for SM1. Sim-
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ilar trends can be observed for SM2 and SM3, indicating their chemical similarity.

Figure 4.3: Deconstructed feature space for the first three principal components. The labels of the
three plots indicate the ratio of explained variance for the principal components (PC). The
colorbar represents the conversion of SM1.

It can be seen that the first component has the greatest percentage of explained variance ratio of
0.46, while PC2 and PC3 have lower weights of circa 0.13 and 0.08. The lowest conversions cluster
around low values of PC1 and high values of PC2 (the map on the left in Fig 4.3). The same type
of analysis has been performed again, but instead of coloring the feature space based on catalyst
performance, the color now indicates the respective ligand class. This analysis is shown in Fig 4.4.

Figure 4.4: Deconstructed feature space for the first three principal components. The labels of the
three plots indicate the ratio of explained variance for the principal components (PC). The color
mapping represent the ligand class.

It can be concluded that the PN ligands give the lowest performance for the studied reactions. The
PNS chelating ligand also gives low performance and one reason might be the strong binding to
the metal center of nitrogen which is shown in Fig 4.6. Overall, the ligand class distribution seems
to follow a clustering trend, where the main principal component is formed from the NBO charge
of the Rh metal center. Nitrogen is an element with a higher electron affinity than phosphorus,
thus the charge is more unevenly distributed in PN ligands than in the PP and P ligands. To further
confirm this, the donor NBO charges, the donor bond distances and the donor buried volumes
should be investigated. The maximum and minimum values for each measure were used as the
axes in Fig 4.5.

Fig 4.5 confirms the statement about the PN ligands being electronically and sterically different
from the ligands with two donor phosphorus atoms. The most obvious difference can be observed
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Figure 4.5: Maps of donor properties for the ligand dataset colored by their respective chemical
class.

across the NBO charge of the donor and the bond distance, where the PN ligands form a separate
cluster. The NBO charge of the N donor is highly negative comparing to the phosporus donor in the
same ligands. The phosphoramidites have the highest positive charge of all the ligands, because
of the three highly electronegative atoms connected to the phosphorus (O, O, N). The PP ligands
in the range of +1.5 charge for both donors have the motif of a phosphorus-containing ring being
present. The next section presents a energy analysis associated with the analysis of the descriptors
introduced in this section.

4.2.1 Energy analysis

The energy analysis has been performed to understand the degree of the binding and interaction
energy of norbornadiene (NBD) and how the activity of the catalyst coming from experimental
data is distributed across this energy space. According to previous studies (can be seen in Fig 2.7),
it has been asserted that homogeneous catalysts follow the Sabatier principle in a similar way that
heterogeneous catalysts do.

Figure 4.6: Conversion distribution of SM1, SM2 and SM3 in the binding-interaction energy space.

This means, that the active catalysts should have low interaction energies and intermediate binding
energy. Performing this analysis for SM1 to SM3, it was observed that the inactive catalysts tend
to appear in the same region for all three substrates, which suggests binding similarity of NBD
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with the studied substrates. This region corresponds to a high interaction energy and low/high
binding energies. Below ∆Eint, NBD of -420 kJ/mol, the catalysts seem to have a barrier towards
binding to the substrate. Even though low-performing biphosphine catalysts are underrepresented
for these three substrates, the low and high binding energies seem to be a point of inflection in
catalyst performance. The magnitudes of the obtained binding energies were cross-validated with
literature results [105, 106].

4.3 Conformer effects on descriptors

The conformer analysis has been performed to understand whether there is significant effect on the
descriptors. As it can be seen from a part of the full correlation matrix in Fig 4.7, the descriptors
for single structures correlate to a high extent with the conformer averaged descriptors and the
R2 spans the 0.7-0.8 range for the same descriptor correlations. Additionally, it can be seen that
both the conformer averaged and single properties of buried volume at 4 Å correlate to a very
high degree of 0.9 to the cone angle. This relationship is to be expected, since more space occupied
around the metal center, means also an increase in the cone angle. The full correlation matrix is
given in Appendix B. From Fig B.2 it can be discerned that only the dipole moment coming from
DFT calculations is not correlating with its conformer averaged counterpart. These results suggest
that the conformer ensemble is likely not required in this particular study. However, as mentioned
in section 2.6, there have been reports of improved correlation with the experimental data when
using conformer averaged properties.

Figure 4.7: Correlation matrix of the most relevant descriptors. Vertically the single structure
properties are shown: bite angle, cone angle, rhodium NBO charge and buried volume at 4 Å.
Horizontally, the same properties are shown, but conformer averaged. These descriptors have the
abbreviation Avg in front.

The energy change from DFT optimized single structure to the DFT optimized lowest energy con-
former has been calculated. Fig 4.9 shows these energy differences. In the majority of cases the
DFT optimized conformer structure and DFT optimized single structure converge to the same lo-
cal energy minima. However, in several cases significant distances can be noticed, where the MD
simulation with CREST changed the bonding of the metal-ligand structure.

The majority of ligands shown in Fig 4.9 show a common pattern and more specifically a penta-
P-C-O ring attached to a phenyl ring (ligands 1, 3, 4, 5, 6). The DFT optimization on the best DFT
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conformer converted the initially monodentate ligands into polydentate ligands. From Fig A it can
be seen that these types of complexes, where a square planar configuration is formed from two
bidentate ligands, are highly unlikely due to the excessive steric hindrance. The dihedral angle
between the four donors (P, N, P, N) deviates by 23.5◦ from a planar configuration for ligand 1,
which explains the largest energy difference across the dataset. The differences in coordination can
be seen in Fig 4.8:

Figure 4.8: 3D geometries for Ligand 1 from Fig 4.9; On the right: DFT optimized structure; On the
left: DFT optimized best conformer.

Similarly, for ligand 5 the deviation from the SP configuration is 27.3◦. For ligands 3 and 7 a SP
configuration was formed with one of the oxygens. Oxygen coordination to transition metals is
relatively weak. Thus, the energy is lower than the ionic form of the ML2 structure. Ligand 4
opened up to a 180◦ angle between the donor phosphorus. Even though in terms of CREST en-
ergy this structure is the most stable, the more accurate PBE0 functional determined the opposite.
Ligand 2, which is a PNS pincer creates a stabilizing configuration when DFT optimized, where
an agostic interaction is formed with the hydrogen from one of the methyl groups on the tBu rad-
icals, whereas the CREST-DFT optimized structure does not have this stabilizing bond. For ligand
6, one of the two P-monodentate ligands formed a tridentate configuration with the nitrogen and
one of the oxygens connected to the sulphur. Ligand 8 forms stabilizing bonds through an agostic
interaction and formation of a π-complexation with one of the phenyls. Even though the metal
forms the correct coordination, the dihedral angles formed by the donor atoms is 11.2◦ and 35.2◦

respectively for each of the carbons in the C=C bond. These eight molecules clearly underline the
issues with the CREST algorithm, where a minimal valence basis set with a polarization function
on elements with the atomic number Z > 9 is used [18, 49]. This can partially explain the tendency
of under-coordinated complexes to form π-bonds with adjacent electron clouds, even though they
are energetically not favorable from a DFT standpoint. An interesting case of how GFN2-xTB pre-
optimization affected the following DFT optimization is given in Appendix D.

The energy landscape for the studied ligands is quite bleak considering that extra computational
resources have been used to perform these calculations. Overall, only 8 structures have proven to
improve after the metadynamics simulations. This can be correlated with the type of structure that
has been used, which is unstable due to the undercoordinated metal center. However, this type of
optimization and analysis can lead to the discovery of transition states, which is very desirable in
homogeneous catalysis.
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Figure 4.9: Energy difference between DFT optimized lowest energy conformer coming from
CREST and DFT optimized single structure. The structures with a difference of more than 50
kJ/mol (≈ 12 kcal/mol) are shown.

4.4 Reaction predictions

The reaction prediction was performed using machine learning algorithms and the multitude of
descriptors that were calculated. The method entailed using chemically informed descriptors for
the model catalyst structures, and 2D and 3D descriptors for the substrate.

4.4.1 Feature selection

The features selection for the training of the available machine learning models was based on the
capability of the features to convey the same type of information across ligand classes. Thus, the
donor related properties have been modified as follows. A maximum, minimum function was
applied on pairs of donor descriptors, as shown in Table 4.2 and maximum, minimun and standard
deviation has been applied on the quadrant and octant buried volumes.
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Table 4.2: Modified descriptors for machine learning purposes. Maximum, minimum and
standard deviation measures have been applied to a set of descriptors, that could convey different
chemical information (relevant for PP and P ligands, where the difference in descriptors between
the two phosphorus donors is minimal compared to the same difference in PN ligands).

Descriptors Applied functions

Quadrant buried volumes maximum, minimum, standard deviation

Octant buried volumes maximum, minimum, standard deviation

Donors buried volumes maximum, minimum

Donors NBO charges maximum, minimum

Lone pair occupancies maximum, minimum

4.4.2 Hierarchical clustering

The hierarchical clustering was performed to show what ligands have similar chemical properties.
The clustering was performed on Sterimol and the compressed Morgan fingerprint descriptors.
The dendogram in Fig 4.10 shows that SM1 and SM3 have similar structural motifs, as well as SM7
and SM8. Thus, a model where the similar substrates (according to this approach) are removed
from training set has also been investigated. SM2 is similar to SM1 and SM3, but above a specific
threshold, meaning that it is advisable to keep two out of these three substrates for predictions.

-SM1

-SM7

����������

�������

 !���!"#�

Figure 4.10: Hierarchical classification of the experimental data. The reduced dataset does not
contain SM1 and SM7.

4.4.3 Full dataset regression models

The size of the test data is important when training the model. As recommended in literature [107],
a 70-30 or 80-20 split should be normally applied to any type of data, independent of its origin, to
avoid overfitting the data to a specific, smaller test set. Thus, a 75-25 training-test split has been
chosen for the data at hand.

The regression models include the data presented in Table 4.1. The models, suggested at different
runs of the TPOT-Regressor, had their hyperparameters optimized with a grid-cross search valida-
tion. The accuracy of all the used machine learning models is shown in Table 4.3 and Fig 4.11. The
best performing model is the Extreme Gradient Boosting model with an R2 of 0.83, while the worst
performing model is the Gradient Boosting model. The performance of the model varies substrate
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by substrate, with the SM5 having a very poor performance ranging between 0.01 and 0.03. As
previously mentioned this was expected due to how skewed the data for the SM5 substrates is to-
wards low catalyst activity. However, if training the same model in the absence of SM5 data (even
with the auto-ML tools) gives a much worse performance ranging between 0.6 and 0.7. This means
that despite SM5 performance being so low, it has a role in describing the features that contribute
to the lower performance of a general substrate. The performance of all the models per substrate is
given in Table 4.3.

Table 4.3: Model performance across substrates. Table is split in three parts: model, performance
per substrate, overall performance.

Model SM1 SM2 SM3 SM4 SM5 SM7 SM8 Train Test RMSE

Random Forest 0.81 0.67 0.69 0.69 0.03 0.66 0.64 0.93 0.82 0.180

XG Boost 0.79 0.69 0.72 0.74 0.03 0.69 0.85 0.93 0.83 0.177

Extra Trees 0.76 0.72 0.72 0.69 0.01 0.71 0.79 0.93 0.81 0.19

Gradient Boosting 0.58 0.63 0.67 0.74 0.03 0.56 0.71 0.83 0.78 0.21

The visualization of the information in Table 4.3 is given in Fig 4.11, where four machine learning
models are shown. The distribution of the test data is skewed towards low and high performance.
All four model show similar performance for an individual reaction. The root-mean-squared error
for the four models is ranging between 0.177 and 0.21. This deviation can be partially explained
by the degree of the experimental error which is around 30%, according to an experimental repro-
ducibility study performed by the industrial partner and partially by the internal error of tree-based
models like the ones shown in Table 4.3 [107].

Figure 4.11: Model performance for the same test set for the four applied models. Random Forest:
R2 = 0.82; XG Boost: R2 = 0.83; Extra Trees: R2 = 0.81; Gradient Boosting: R2 = 0.78.

Sensitivity study of the number of estimators on the model performance

Hyperparameters are vital when training a machine-learning model, because they directly dictate
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the behaviour and performance of the chosen model, especially for tree-based regressor like Ran-
dom Forest and Gradient Boosting regressors. In the following analysis, the effect of the number
of estimators for each model has been assessed. This analysis is relevant in the context of compu-
tational time. The higher the number of estimators, the higher the computation time, since there
is additional trees that need to be evaluated. TPOT suggested a number of 100 estimators for all
the studied models, but this parameter can be optimized. This analysis is necessary for medium to
large size datasets, because the general time complexity of tree based classifiers is of order O(d * n
* log(n)), where d is the number of features and n is the number of samples [107].

Figure 4.12: Sensitivity analysis of the number of estimators on the model performance for RF and
GB models.

Fig 4.12 shows the reason why Random Forest is the model of choice if results were to be extrap-
olated on a new dataset. The steep rise in performance when moving from 10 to 20 estimators
characterizes the overfitting nature of gradient boosting models, whereas random forest is not sus-
ceptible to overfitting describing the random nature of the RF algorithm.

4.4.4 General classification models

For the general binary classification of reactive and non-reactive ligands a transformation approach
has been used, where the previously discussed regressors have been converted to classifiers, to
assess if the general range of catalytic activity is maintained. This approach starts by converting
the continuous predicted values from the regressors into discrete binary values. The choice of the
threshold is assessed by the data distribution in the test set and set at a 0.7 conversion rate. The
results of the classification model yielded a 0.92, 0.92 and 0.95 accuracy, recall and precision scores.

4.4.5 Hierarchical clustering classification models

The random forest model has been chosen as the best model in this study. Thus, the regression
on the hierarchical clustering approach presented in section 4.4.2 was performed using this model
and then transformed into a classifier. Making binary predictions for SM1 and SM7 as per Fig 4.10
yielded high value of 0.8 accuracy for SM1, since the chosen threshold was set at 0.75 conversion.
For SM7 an accuracy score of 0.75 was obtained. The recall and precision scores for SM1 were 0.99
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and 0.85 respectively. For SM7, these scores are 0.96 and 0.76 respectively. The differences between
recall and precision can be explained by the difference in the distribution of active and inactive
catalysts, as it can be seen in Fig 4.6.

4.4.6 Feature importance

The models presented in Fig 4.11 show similar feature importances. The best chosen model, the
random forest regression in Fig 4.13, evaluated L (the length of the substrate from the Morfeus
version of Sterimol) as the feature with the greatest impact on performance. This being a substrate
feature, it could be related to the reason why SM5 has such low performance, since this catalyst has
the highest overall size, hinting towards steric hindrance as the main impediment towards good
performance.

Figure 4.13: Feature importances of the Random Forest Regressor from Fig 4.11. Plot is shown in
two parts. The compressed Morgan fingerprint is noted with 0-105.

Other important identified features are the buried volume around rhodium, the dispersion energy
coming from DFT and the maximum donor buried volume. The latter was explained in section 4.2
where the general inactivity of PN ligands was identified. The dispersion energy and the buried
volume are important with regards to the steric/electronic suitability of the substrate towards the
Metal-Ligand structure. From Fig 4.13 it can be observed that several elements of the compressed
Morgan fingerprint have relative significant weight towards the experimental predictions, clearly
indicating that the substructures present in the starting materials are an important factor for the
suitability with the catalytic species in the first step of the mechanism shown in Fig 1.2.



5
Conclusion & Outlook

5.1 Conclusion

In this research project, an automated computational workflow (OBeLiX) for generation of 3D struc-
tures for transition metal complexes and descriptor calculation has been introduced. In OBeLiX, the
structure generation starts from the simplest string representation for ligands, assembling TM com-
plexes. In this work, the OBeLiX workflow has been applied to investigate a hydrogenation reaction
from a data science perspective. Experimental data for 192 ligands have been offered by the indus-
trial partner. To reduce the number of needed computations, a model molecule has been proposed,
where the binding substrates are substituted by a model substrate, norbornandiene. Using OBeLiX,
an additional database of descriptors has been generated for these model catalysts. The dataset was
then enhanced with 3D steric and 2D topological descriptors for all the substrates. In this way, a
large dataset of 1152 featurized reactions has been created.

Before applying any machine learning algorithm on the gathered descriptors, an analysis of the
data has been performed. Among the 192 ligands, the PN ligands stood out as chemically different
from the ligands with two donor phosphorus atoms. This is largely due to different steric and
electronic properties of nitrogen comparing to phosphorus. The experimental data provided by the
industrial partner showed that PN ligands are overall the worst performing. The reason for this
might be that PN ligands have high interaction energies with the substrate, as demonstrated in this
study.

Moreover, it was discovered that there is a high correlation between conformer averaged and single
structure descriptors. The conformer ensemble found with CREST, has shown an increase in the lo-
cal energy minima for some metal-ligand(s) structures. This proved that CREST and semi-empirical
methods have a relatively high probability to distort molecules. Thus, conformer averaged prop-
erties of a 192 ligand dataset would be highly error prone. However, the semi-empirical level of
theory could be used in high-throughput computational campaigns, where the rate of error is less
significant than in the small scale study performed in this work.

The final step was to train a machine learning model with predictive capabilities. Two approaches
have been tested. In the first approach, all the substrates have been considered in both training and
testing sets. A regression coefficient as high as 0.83 has been obtained on the test set, and between
0.93 and 0.96 on the training set. The regression model was converted into a classification model to
assess whether the general range of reactivity is correctly predicted for a featurized reaction. The

35
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classification model yielded an accuracy score of 0.92.

In the second approach, the test set was composed of substrates that were not present in the training
dataset, following an hierarchical clustering, which determined the substrates that are chemically
similar. As a result, a classifier model has been trained to make predictions on substrates outside
of the test set. This method yielded accuracy scores in the 0.75-0.8 range. The approach is thus
promising, because less experimental data is necessary to make these predictions, even though the
overall accuracy is slightly lower than using the full dataset.

Performing a feature importance analysis on the full dataset, it was concluded that both catalyst
and substrate descriptors have high importance for making in silico predictions. This study has
proven the power of using chemical and topological descriptors in combination for reaction pre-
dictions and confirmed the potential of reaction featurization. As a final remark, the application of
the OBeLiX workflow has shown the importance of automation and data science in the world of
automated catalyst design.

5.2 Outlook

The perspective of automated catalyst design is bright, the humanity being just at the inception of
this field. There is no clear and direct path towards achieving autonomous catalyst discovery, as
there are numerous decisions to be made regarding design and implementation. While progress
in machine learning is advancing rapidly, it can take some time for the latest developments to be
adopted by other fields [108]. The most important developments to be made are in the adoption of
deep reinforcement learning approaches, which were earlier introduced in Fig 2.6. Several devel-
opments and enhacements of the research presented in this thesis can be made, and are introduced
in the next paragraphs.

5.2.1 New descriptors

The advancement of machine learning can be used to the advantage of in silico discovery in homo-
geneous catalysis. The modelling approach introduced in this study can be enhanced by increasing
the number of descriptors in the realm of deep-learning. For instance, a number of graph-based de-
scriptors have been made available, that can also be applied in the context of the predictions made
during this thesis [109]. These topology-based descriptors can be very powerful in describing cer-
tain molecular interactions pertaining to certain values of target properties such as conversion or
enantioselectivity. The reason why molecular design is so cumbersome for chiral catalysts is the
conformational complexity of these structures. Descriptors can be used to describe this aspect. For
instance, the number of rotatable bonds, bond distances at active sites and other important param-
eters such as local buried volumes. Conformer averaged descriptors also have their place in the
study of activity and selectivity. The full descriptor matrix can only be compiled when all struc-
tures can be equally generated by the computer, rather than the chemist. Some of these difficulties
and possible solutions are presented in the next section.

5.2.2 Generation of unusual complexes

A problem encountered during the preparation of the catalyst database, is the generation of π-
complexes. In this research, the ferrocene containing scaffolds were made using expert intuition
rather than automation. However, during the later stages of the project it was discovered that there
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are possible work-arounds. One such solution is presented in Appendix C, where a combination
of semi-empirical methods are used, to generate a ferrocene based Metal-Ligand structure. The
structure can then be further refined with DFT based methods. Once the generation of all stuctures
is achieved, one can start wondering about other aspects of fully automated explorations, such as
providing automated mechanistic insights.

5.2.3 Reaction newtork explorers

The power of artificial intelligence can be also be applied in the context of mechanistic exploration,
which can explain phenomena that a black-box machine learning model could never be able to ex-
plain [108]. Several tools have been made available earlier by Blau et al [110], Hashemi et al[111]
and Maeda et al [112], as well as a set of commercial packages. As a conceptual example, the
ReNeGate graph based approach will be used to demonstrate further applications of the OBeLiX
package. The full approach is summarized in Fig 5.1. ReNeGate can generate new features for
the studied ligands. For instance, a general catalyst deactivation coefficient could be applied as
a filtering parameter to the overall experimental predictions. In other words, ReNeGate can in-
directly describe the reactivity of a given transition state through reaction network exploration.
Since ReNeGate uses the conformers coming from the CREST MD simulations, the integration with
OBeLiX is straighforward.
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Figure 5.1: General approach with possible packages to be used for each stage of this approach.
The red highlighting in B indicates that Chem3D is not a high-throughput tool. CREST-ReNeGate
connection indicates the tangency between OBeLiX and ReNeGate [44, 49, 91, 111–114].
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A
Simplest model molecule

Rhodium (I) complexes have square planar configuration. Considering this geometry in a solution
in the presence of bidentate phosphorus ligands, there are two possible molecular arrangements.
They are shown in Figure A.1.

Solvent

Solvent

P

P

Model molecule

Rh

Less likely due to 

steric hindrance

P

P

P

P

Rh

Figure A.1: Selection of model molecule based on the most likely square planar configuration

The model molecule can be interpreted in two ways: as a conceptual molecule and as a proper
molecular intermediate. In the former case, the Rhodium metal center would have a charge of
0 and multiplicity of 2, since both bonds with the phosphorus would come from the lone pairs
present on the phosphorus atoms, while in the latter the charge and multiplicity would be +1 and
1 respectively, similarly to a real square planar complex.
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B
Conformer correlations

The plots of the conformer correlations presented in Fig 4.7 are given in Fig B.1:

Figure B.1: Pairplots for the correlations shown in Fig 4.7

The full correlation matrix is given in Fig B.2:
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Figure B.2: Full correlation matrix between conformer averaged properties and single structure
properties



C
Protocol for 3D coordinates
generation of sandwich TM

complexes

Generation of complexes with high π-electron interaction from string representation is a compli-
cated matter and an active research topic. However, several generation sequences can be tried to
reach the final goal. Figure C.1 displays different representations of ferrocenes [115]. Represen-
tation (1) is not interpretable as a SMILES. (2) is a flat 2D representation of a ferrocene which is
chemically inaccurate. (3) and (4) do not convey the correct chemical information, but are the only
alternatives worth investigating. The number of bonds on (3) and (4) convey the correct chemical
message, but are still incorrect since in SMILES representation a covalent bond represents a full
bond while a more accurate explanation is the presence of partial, delocalized bonds.

Figure C.1: Possible ferrocene representations according to Guzik et al. [115]
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Figure C.2: Protocol schema for 3D coordinate generation for ferrocenyl metal complexes



D
GFN2-xTB preoptimized

structure

The second pathway is to apply the semi-empirical GFN2-xTB optimization, which then followed
by DFT.

Figure D.1: The difference between the handmade-xTB-DFT and handmade-DFT optimizations.

Since xTB optimization underperformed for 494227-36-0, two optimization strategies were com-
pared. The handmade complex was optimized in two ways: xTB → DFT and direct DFT opti-
mization. The obtained result is of high interest, since the two obtained complexes have different
ligating atoms, but at the same time, the RMSD of 1.61 is relatively low (see Fig. D.1). The xTB
optimized structure generated a pincer-like structure, adding a nitrogen coordination to the under-
coordinated Rhodium, while the directly DFT optimized structure has a C-H agostic interaction and
a π- interaction with one of the adjacent phenyl rings, completing the square planar configuration.
This results in a 40 kJ/mol energy difference, with the pincer being the more stable configuration.

The initial xTB geometry was incorrect due to the proximity of the two metals present in the
molecule. The xTB single point calculation showed the structure was ca. 300 kJ/mol more sta-
ble then the DFT-xTB optimized structures. However, DFT corrected the mistake, resulting in a
more stable geometry.
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E
Database contents

E.1 Structures of publicly available substrates

Figure E.1: Structures of publicly available substrates. SM4 and SM5 are confidential and will not
be made available to the public.
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E.2 Ligands database

Table E.1: Ligand database information

Nr. Commercial name CAS Formula

L1 SL-J001-1 155806-35-2 C36H44FeP2

L2 SL-J002-1 155830-69-6 C32H40FeP2

L3 SL-J003-1 167416-28-6 C36H56FeP2

L4 SL-J004-1 158923-09-2 C36H44FeP2

L5 SL-J005-1 184095-69-0 C40H40FeP2

L6 SL-J006-1 292638-88-1 C40H40F12FeP2

L7 SL-J007-1 360048-63-1 C42H56FeO2P2

L8 SL-J008-1 166172-63-0 C44H36F12FeP2

L9 SL-J009-1 158923-11-6 C32H52FeP2

L10 SL-J011-1 246231-79-8 C34H38F6FeP2

L11 SL-J013-1 187733-50-2 C38H52FeO2P2

L12 SL-J212-1 849924-41-0 C28H36FeO2P2

L13 SL-J404-1 851308-40-2 C48H44FeP2

L14 SL-J418-1 849924-45-4 C46H52FeO2P2

L15 SL-J452-1 849924-73-8 C34H32FeO2P2

L16 SL-J502-1 223120-71-6 C32H40FeP2

L17 (R)-BINAM-P 74974-14-4 C44H34N2P2

L18 SL-J505-1 849924-76-1 C34H44FeP2

L19 SL-T002-2 914089-00-2 C43H63FeNP2

L20 SL-M001-1 174467-31-3 C52H50FeN2P2

L21 SL-M003-1 494227-36-0 C60H42F24FeN2P2

L22 SL-M004-1 494227-37-1 C64H74FeN2O4P2

L23 SL-M009-1 793718-16-8 C60H66FeN2P2

L24 SL-T001-2 850444-36-9 C43H39FeNP2

L25 SL-W001-1 387868-06-6 C46H32F12FeP2

L26 SL-W002-1 388079-58-1 C42H36FeP2

L27 SL-W003-2 849925-19-5 C42H48FeP2
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L28 SL-W005-2 849925-20-8 C52H44F12FeO2P2

L29 SL-W008-2 849925-22-0 C46H44F12FeP2

L30 SL-W009-1 894771-28-9 C50H52FeP2

L31 SL-F356-1 952586-19-5 C42H53Fe2NP2

L32 (R)-BINAP 76189-55-4 C44H32P2

L33 (R)-BTFM-GarPhos 1365531-84-5 C48H28F24O4P2

L34 (R)-Tol-BINAP 99646-28-3 C48H40P2

L35 (R)-Xyl-BINAP 137219-86-4 C52H48P2

L36 (R)-H8-BINAP 139139-86-9 C44H40P2

L37 (S)-SegPhos 210169-54-3 C38H28O4P2

L38 (S)-Xyl-SegPhos 210169-57-6 C46H44O4P2

L39 (S)-DTBM-SegPhos 210169-40-7 C74H100O8P2

L40 (R)-Cl-MeO-BIPHEP 185913-97-7 C38H30Cl2O2P2

L41 SL-A109-1 352655-61-9 C74H104O6P2

L42 SL-A120-1 394248-45-4 C46H48O2P2

L43 SL-A107-1 352655-40-4 C70H100N4O2P2

L44 SL-A108-2 145214-59-1 C30H24O6P2

L45 SL-A102-2 133545-25-2 C42H40O2P2

L46 SL-A121-1 192138-05-9 C70H96O2P2

L47 SL-A104-1 256390-47-3 C50H56O14P2

L48 (R)-GarPhos 1365531-75-4 C40H36O4P2

L49 (R)-Xyl-GarPhos 1365531-89-0 C48H52O4P2

L50 (R)-DTBM-GarPhos 1365531-98-1 C76H108O8P2

L51 (S)-iPr-BIPHEP 150971-43-0 C26H40O2P2

L52 (R)-C3-TunePhos 301847-89-2 C39H32O2P2

L53 (S,S)-iPr-BPE 528854-34-4 C22H44P2

L54 (R,R,R)-SPIRAP NA C43H38O2P2

L55 (R,R,S,S)-DuanPhos 528814-26-8 C24H32P2

L56 (R,R)-DiPamp 55739-58-7 C28H28O2P2

L57 (R)-iPr-PHOX 164858-78-0 C24H24NOP

L58 SL-F131-1 899811-43-9 C50H54Fe3N2P2
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L59 (R)-Xyl-SDP 917377-75-4 C49H50P2

L60 (S)-DM-MonoPhos 185449-86-9 C24H22NO2P

L61 (R)-Ph-Monophos 936010-61-6 C34H26NO2P

L62 (S)-NEt2-MonoPhos 252288-04-3 C24H22NO2P

L63 (R,R,R)-Xyl-SKP 1429939-35-4 C52H54O2P2

L64 (R,R)-Ph-BPE 528565-79-9 C34H36P2

L65 (S,S)-ChiraPhos 64896-28-2 C28H28P2

L66 (R,R)-Et-BPE 136705-62-9 C18H36P2

L67 (R)-QuinoxP 866081-62-1 C18H28N2P2

L68 (R,R)-Et-DuPhos 136705-64-1 C22H36P2

L69 (R,R)-Me-DuPhos 147253-67-6 C18H28P2

L70 (S)-PhanePhos 192463-40-4 C40H34P2

L71 (S)-Me-iPr-PHOX 1152313-76-2 C26H28NOP

L72 SL-N003-2 163169-29-7 C28H28FeNOP

L73 (S)-NeoPHOX 1199225-38-1 C22H28NOP

L74 (R,R)-Me-BoPhoz 406680-94-2 C37H35FeNP2

L75 (R)-Xyl-PhanePhos 325168-89-6 C48H50P2

L76 (S,S)-f-Binaphane 544461-38-3 C54H40FeP2

L77 (R,R)-BDPP 96183-46-9 C29H30P2

L78 (R,R)-NorPhos 71042-55-2 C31H28P2

L79 (R,S)-BPPFA 74311-56-1 C38H37FeNP2

L80 (R,R)-DIOP 32305-98-9 C31H32O2P2

L81 (S)-Tol-tBu-PHOX 218460-00-5 C27H30NOP

L82 (S,S)-DPE-Phos 2119686-55-2 C38H32O3P2

L83 (S)-NMDPP 43077-29-8 C22H29P

L84 (S,S)-BABIBOP 2207601-04-3 C22H28O2P2

L85 (S,S,S,S)-Me-BABIBOP 2207601-10-1 C24H32O2P2

L86 (S,S,S,S)-iPr-BABIBOP 2207601-12-3 C28H40O2P2

L87 (R,R,R,R)-Me-BIBOP 1884680-48-1 C38H44O6P2

L88 (R,R)-PPM 77450-05-6 C29H29NP2

L89 SL-A101-2 133545-16-1 C38H32O2P2



E.2. Ligands database 58

L90 (S)-MeO-F12-BIPHEP 116008-37-6 C38H20F12O2P2

L91 (R)-MeO-F16-BIPHEP NA C42H24F16O2P2

L92 (R)-MeO-py-F12-BIPHEP NA C38H24F12N4O2P2

L93 (R)-MeO-F20-BIPHEP NA C42H20F20O2P2

L94 (R)-MeO-BFPy-BIPHEP NA C42H20F24N4O2P2

L95 (S,S)-XylSKEWPhos 551950-92-6 C37H46P2

L96 (S,S)-DIPSKEWPhos NA C53H78P2

L97 SL-W022-1 849925-29-7 C44H48FeP2

L98 catASium D(R) 99135-95-2 C35H33NP2

L99 (2R)-1-[(1S)-1-Aminoethyl]-2-
(diphenylphosphino)ferrocene

607389-84-4 C24H24FeNP

L100 SL-W012-1 565184-30-7 C38H44FeP2

L101 SL-W030-1 1854067-62-1 C34H52FeP2

L102 (S,S)-Et-FerroTANE 290347-66-9 C24H36FeP2

L103 SL-W029-1 1854067-50-7 C38H56FeP2

L104 (S)-NMe2-MonoPhos 157488-65-8 C22H18NO2P

L105 SL-F103-1 55700-44-2 C26H28FeNP

L106 (R)-Xyl-P-Phos 442905-33-1 C46H50N2O4P2

L107 (S)-2-(Diphenylphosphinomethyl)pyrrolidine 60261-46-3 C17H20NP

L108 (R)-ProPhos 67884-32-6 C27H26P2

L109 (3R)-3-(1,1-Dimethylethyl)-2,3-dihydro-4-(2-
methoxyphenyl)-1,3-benzoxaphosphole

1338454-28-6 C18H21O2P

L110 (2S,3R)-2-[Bis(1,1-dimethylethyl)phosphino]-
3-(1,1-dimethylethyl)-2,3-dihydro-4-
methoxy-1,3-benzoxaphosphole

1215081-28-9 C20H34O2P2

L111 (R,R)-BenzP* 919778-41-9 C16H28P2

L112 SL-J216-1 849924-43-2 C40H44FeP2

L113 (S,S)-1-Naphthyl-DiPamp 256469-70-2 C34H28P2

L114 (S,R)-PPFA 55650-58-3 C26H28FeNP

L115 SL-F173-1 166172-70-9 C30H24F12FeNP

L116 (R)-Xyl-SDP Oxide 1462321-89-6 C49H50OP2

L117 (R)-SITCP 856407-37-9 C25H23P
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L118 (R,R,R)-Tol-SKP 1429939-32-1 C48H46O2P2

L119 (R,R)-BCPM 114751-47-2 C34H49NO2P2

L120 (R)-DiFluorPhos 503538-69-0 C38H24F4O4P2

L121 (R,R)-Me-BPE 129648-07-3 C14H28P2

L122 (R)-SynPhos 445467-61-8 C40H32O4P2

L123 (R)-SIPhos 443965-14-8 C19H20NO2P

L124 (3R,8R)-Tetrahydro-N,N,2,2-tetramethyl-
4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-
e][1,3,2]dioxaphosphepin-6-amine

213843-90-4 C33H34NO4P

L125 (R)-SDP 917377-74-3 C41H34P2

L126 (R,R,R,R)-Ph-BIBOP 2301856-53-9 C34H36O2P2

L127 (R,S)-Ph-Bn-SIPHOX 2074610-05-0 C39H34NOP

L128 (R,R)-iPr-BPF 849950-54-5 C30H48FeP2

L129 (R)-Tol-SDP 528521-87-1 C45H42P2

L130 (R)-DMM-GarPhos 1365531-93-6 C52H60O8P2

L131 8-[(3R)-3-(1,1-Dimethylethyl)-2,3-dihydro-
1,3-benzoxaphosphol-4-yl]benzo[1,2-b:5,4-
b’]difuran

1835717-07-1 C21H23O3P

L132 (S)-PipPhos 284472-79-3 C25H22NO2P

L133 (R)-An-PhanePhos 364732-86-5 C44H42O4P2

L134 (S)-BINAPINE 528854-26-4 C52H48P2

L135 (S)-H8-MonoPhos 389130-06-7 C22H26NO2P

L136 (R,R)-Me-Ferrocelane 540475-45-4 C22H32FeP2

L137 (R,R)-Et-Ferrocelane 147762-89-8 C26H40FeP2

L138 (S,S,S,S)-MeO-BIBOP 1202033-19-9 C24H32O4P2

L139 (R)-CTH-BINAM 208248-67-3 C44H42N2P2

L140 (2R)-1-[(R)-Aminophenylmethyl]-2-
(diphenylphosphino)ferrocene

498580-48-6 C29H26FeNP

L141 (1R,2S)-TaniaPhos-OH 851308-43-5 C41H34FeOP2

L142 2-[2-[(2R,5R)-2,5-Dimethyl-1-
phospholanyl]phenyl]-1,3-dioxolane

1044256-04-3 C15H21O2P

L143 (R,R)-BPPM 72598-03-9 C34H37NO2P2

L144 (S)-MorfPhos 185449-81-4 C24H20NO3P
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L145 (R,R,R)-Ph-SKP 1360823-43-3 C44H38O2P2

L146 (S,R)-N-PINAP 1173836-08-2 C38H30N3P

L147 (R)-CTH-P-Phos 221012-82-4 C38H34N2O4P2

L148 (R)-SIPHOS-PE 500997-69-3 C33H32NO2P

L149 (R)-Tol-GarPhos 1365531-81-2 C44H44O4P2

L150 (R)-DTB-SpiroSAP-Ph 1809609-38-8 C53H66NPS

L151 SL-N004-1 1226898-27-6 C29H30FeNOP

L152 SL-N011-2 950201-43-1 C36H32FeNOP

L153 (S,S,S,S)-BIBOP 1202033-17-7 C22H28O2P2

L154 SL-N009-2 706814-27-9 C32H24F12FeNOP

L155 SL-J408-1 950982-69-1 C44H48FeP2

L156 (2R,2R)-2,2-bis(diphenylphosphino)-1,1-
biferrocene

136274-57-2 C44H36Fe2P2

L157 (R)-Cy-GarPhos 2829282-18-8 C40H60O4P2

L158 (R)-DTB-SpiroPAP-6-Me 1298133-26-2 C52H65N2P

L159 Exo-4-Methoxyphenyl Kwon [2.2.1] Bicyclic
Phosphine

1975180-37-0 C19H22NO3PS

L160 Endo-4-Methoxyphenyl Kwon [2.2.1] Bicyclic
Phosphine

1883493-01-3 C19H22NO3PS

L161 (R,R)-(Diphenylphosphino)-
phenylbenzeneethanamine

1091606-68-6 C26H24NP

L162 (1R,2R)-2-(Diphenylphosphino)-2,3-dihydro-
1H-inden-1-amine

1091606-70-0 C21H20NP

L163 (S,S)-tBuPh-SKEWPhos 911415-22-0 C45H62P2

L164 (R,R)-(S,S)-PhTRAP 137096-37-8 C48H44Fe2P2

L165 (R)-BINAPhane 253311-88-5 C50H36P2

L166 (1R)-8-(Diphenylphosphino)-1,2,3,4-
tetrahydro-1-naphthalenamine

960128-64-7 C22H22NP

L167 (R,R)-iPr-DuPhos 136705-65-2 C26H44P2

L168 (3R)-4-[2,6-Bis(1-methylethoxy)phenyl]-
3-(1,1-dimethylethyl)-2,3-dihydro-1,3-
benzoxaphosphole

1338454-38-8 C23H31O3P

L169 SL-M002-1 494227-35-9 C52H74FeN2P2

L170 (S)-DTBM-BINAP 541502-07-2 C80H104O4P2
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L171 (S,S,S,S)-Et-BABIBOP 2415751-83-4 C26H36O2P2

L172 (R,R,R,R)-WingPhos 1884680-45-8 C50H44O2P2

L173 2-[(2S,3S)-3-(1,1-Dimethylethyl)-2,3-
dihydro-4-methoxy-1,3-benzoxaphosphol-2-
yl]pyridine

2565792-52-9 C17H20NO2P

L174 SL-J681-1 1221745-90-9 C28H32FeOP2

L175 (S,Sp)-p-Tol-TaniaPhos NA C47H47FeNP2

L176 (R,Rp)-2-Furyl-TaniaPhos NA C35H31FeNO4P2

L177 (R)-DM-MorfPhos 864529-90-8 C27H26NO2P

L178 (R)-C2-TunePhos 301847-88-1 C38H30O2P2

L179 (R)-QUINAP 149341-34-4 C31H22NP

L180 SL-J015-1 649559-65-9 C36H36FeO2P2

L181 SL-J403-1 166172-60-7 C40H28F12FeP2

L182 SL-J425-1 849924-49-8 C44H48FeO2P2

L183 (R,R)-CyPP 70774-28-6 C32H34P2

L184 (R,R)-MeO-BoQPhos 1542796-16-6 C18H22NO3P

L185 2-[(2R,3R)-4-(2,6-Dimethoxyphenyl)-
3-(1,1-dimethylethyl)-2,3-dihydro-1,3-
benzoxaphosphol-2-yl]-6-methoxypyridine

2565792-77-8 C25H28NO4P

L186 2-[(2R,3R)-4-(9-Anthracenyl)-3-(1,1-
dimethylethyl)-2,3-dihydro-1,3-
benzoxaphosphol-2-yl]pyridine

1542796-14-4 C30H26NOP

L187 (S)-SunPhos 765312-54-7 C42H36O4P2

L188 (1R)-1-[Bis[3,5-bis(1,1-dimethylethyl)-4-
methoxyphenyl]phosphino]-2-[(1R)-1-
(dicyclohexylphosphino)ethyl]ferrocene

1453803-83-2 C54H80FeO2P2

L189 (1R,4R)-1,4-dimethyl-1,4-
butanediylbis(diphenylphosphine)

142494-67-5 C30H32P2

L190 (2R,3R)-4-(9-Anthracenyl)-3-(1,1-
dimethylethyl)-2,3-dihydro-2-(1-
methylethyl)-1,3-benzoxaphosphole

1891002-60-0 C28H29OP

L191 (S,S)-XantPhos 2119686-35-8 C41H36O3P2

L192 (3R)-3-(1,1-Dimethylethyl)-4-(2,6-
diphenoxyphenyl)-2,3-dihydro-1,3-
benzoxaphosphole

1441830-74-5 C29H27O3P
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E.3 Descriptor definitions

Table E.2: Descriptor definitions. The package column indicates both the parsing and the
calculator packages (e.g. Gaussian as NBO charge calculator; cclib as the parsing package).

Descriptor Definition Package

Bite angle See definition in Table 2.1 Morfeus

Cone angle See definition in Table 2.1 Morfeus

Buried volume See definition in Table 2.1 Morfeus

Quadrant BV (4 quadrants) North-West, North-East, South-West,
South-East quadrant buried volumes.

Morfeus

Octant BV (8 octants) See definitions in Morfeus’ documen-
tation [52].

Morfeus

nbo charge Rh dft NBO charge at the metal center. Gaussian 16, cclib

min NBO donor Minimum NBO charge at the donors. Gaussian 16, cclib

max NBO donor Maximum NBO charge at the donors. Gaussian 16, cclib

min bv donor Minimum buried volume at the
donors.

Morfeus

max bv donor Maximum NBO charge at the donors. Morfeus

Lone pair occupancy Electron occupancy of the lone pair be-
tween the metal center and the donors

Gaussian 16, OBeLiX

L See definition in Fig 3.4 Morfeus, Sterimol

B1 See definition in Fig 3.4 Morfeus, Sterimol

B5 See definition in Fig 3.4 Morfeus, Sterimol

std quad Standard deviation of quadrant buried
volumes.

Morfeus

std oct Standard deviation of octant buried
volumes.

Morfeus

homo energy dft See definition in Table 2.1 Gaussian 16, cclib

lumo energy dft See definition in Table 2.1 Gaussian 16, cclib

HOMO LUMO gap See definition in Table 2.1 Morfeus/Gaussian 16

Fingerprint (0-N) Fingerprints of the substrates are given
as the difference in fingerprint bits
among the investigated substrates.

RDKit
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E.4 Data availability

The data will be available with the publication of the OBeLiX workflow and the full results of this
study.
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