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Abstract

The particle filter (PF) algorithm is appropriate to solve the prob-
lem of speaker tracking in a reverberant and noisy environment using
distributed pairwise microphone networks. First, complete the track-
ing task based on PF algorithm in centralized manner, a processing
center is required to collect the signal from all microphones to carry
out the PF processing. The computation complexity and time con-
sumption of the particle filter algorithm are relatively high, mainly be-
cause of the large number of particles exploited in the filtering process
since the effectiveness and accuracy of the particle filter particularly
rely on the sample set size. However, almost all the existing particle
filtering algorithms exploit the fixed number of particles, especially
in the field of acoustic source tracking. To deal with this matter,
Kullback-Leibler distance (KLD) sampling method was utilized as
an adaptation technique to adjust the sample size instead of setting
fixed number. Two approaches based on particle filter algorithm for
tracking speaker in distributed way are proposed. Compared to the
centralized scheme, each microphone pair in the distributed network
executes the local PF individually and exchanges local weights or pos-
terior parameters among neighboring nodes to efficiently achieve the
global estimate of the sound source position. Finally, simulation ex-
periments demonstrate these two methods are feasible to track the
speaker in distributed microphone networks with a variable number
of particles.
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Abstract

The particle filter (PF) algorithm is appropriate to solve the problem of speaker track-
ing in a reverberant and noisy environment using distributed pairwise microphone net-
works. First, complete the tracking task based on PF algorithm in centralized manner,
a processing center is required to collect the signal from all microphones to carry out
the PF processing. The computation complexity and time consumption of the particle
filter algorithm are relatively high, mainly because of the large number of particles
exploited in the filtering process since the effectiveness and accuracy of the particle
filter particularly rely on the sample set size. However, almost all the existing parti-
cle filtering algorithms exploit the fixed number of particles, especially in the field of
acoustic source tracking. To deal with this matter, Kullback-Leibler distance (KLD)
sampling method was utilized as an adaptation technique to adjust the sample size
instead of setting fixed number. Two approaches based on particle filter algorithm for
tracking speaker in distributed way are proposed. Compared to the centralized scheme,
each microphone pair in the distributed network executes the local PF individually and
exchanges local weights or posterior parameters among neighboring nodes to efficiently
achieve the global estimate of the sound source position. Finally, simulation experi-
ments demonstrate these two methods are feasible to track the speaker in distributed
microphone networks with a variable number of particles.
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Introduction

A traditional microphone array consists of multiple microphones placed on fixed po-
sitions with regular geometry topology which limits their applications. Alternatively,
the microphone network has been developed recently, which is composed of multiple
microphone arrays randomly placed in space. Utilizing microphone arrays to collect
the audio signals in indoor environment can effectively suppress noise and reverberation
effects, and can also extract spatial information about the acoustic source.

Over the past years, acoustic source tracking with microphone arrays has become an
important part in many fields. For example, in audio/video conference system [1, 2, 3],
the location information can guide the camera to track the talker in the field of view
and provide steering information for the microphone arrays to enhance the desired
audio signal in the specific direction. In addition, in smart surveillance systems [/, 5],
due to the influence of illumination and deformation, the video tracking has unstable
performance. Considering the sound propagation is not affected by these factors, the
approaches of acoustic source tracking can be used to compensate for the deficiencies
to improve the accuracy of monitor system. Moreover, in the fields of robot audition
[0, 7] and hearing aids [8], the algorithms of acoustic source tracking are applied for
speech enhancement.

1.1 Acoustic Source Localization

Traditional approaches to localize the acoustic source in microphone arrays can be
divided into direct and indirect methods, respectively.

1.1.1 Direct Method

The direct method attempts to estimate the position directly by the received signal
at the current time with beamforming-based approach, mainly subdivided into two
categories: delay-and-sum beamforming and filtering-and-sum beamforming. The con-
ventional delay-and-sum beamforming considers all microphones to have an identical
frequency response with equal amplitude weights, whereas the filtering-and-sum beam-
forming exploits different gains to each receivers [9].

For instance, steered response power-phase transform (SRP-PHAT) [10] is one of
the direct methods, which searches for the source position in the whole space to max-
imize the output of a steered delay-and-sum beamformer, where the phase transform
algorithm utilized to sharpen the peak. The drawback of SRP-PHAT algorithm is the
large amount of calculation. Improving the real-time performance by changing the
search strategy was proposed in [11, 12].

A microphone array for speaker localization with six microphones operated as a



steered filter-and-sum beamformer was discussed in [13], however, the performance of
localization has declined when the speakers is very near or far to the microphone array.

1.1.2 Indirect Method

The indirect method is based on the time-delay estimate (TDE) approach, which usu-
ally has two steps. Firstly, estimating the time difference of arrival (TDOA) which is
the time difference between the sound source arriving at the different microphones in
each of the same microphone array, respectively. Secondly, solving a series of nonlinear
hyperbolic equations, with the known geometry structures and the position informa-
tion of microphone arrays, to obtain the estimation of position. This method has the
advantages of simple structure and low calculation complexity.

Two typical indirect approaches are the well-known generalized cross-correlation
(GCC) method [11] and adaptive eigenvalue decomposition (AED) method [15]. More
specifically, GCC method obtains the TDOA by calculating the correlation between
multiple synchronous audio signals in the same microphone array. By improving the
performance in a noisy and reverberant environment, GCC and phase transform (GCC-
PHAT) method was introduced in [14] which added appropriate weighting function with
cross power spectrum to sharpen the peak of cross-correlation. AED method estimates
the direct paths of the impulse responses in the spatial domain, which contains the
information of time delay between the acoustic source and the microphones signals in
each array, where the impulse responses are calculated as the eigenvector related to the
minimum eigenvalue of the covariance matrix of the receiver signals.

The acoustic source localization methods merely convert the signal frame at current
time into a certain form of localization function, and then searching for the peak point
corresponding to the position of sound source. In practical applications, the presence
of background noise and room reverberation often leads to multiple peaks in the local-
ization function, which causes the pseudo sources in the search area. In some cases,
the amplitude of the pseudo peaks could be even larger than the amplitude of the peak
related to the actual sound source, resulting in low accuracy and poor performance of
acoustic source localization.

1.2 Acoustic Source Tracking

In order to solve the problems mentioned above in localization method, the tracking
approach can be exploited to estimate the smooth trajectory of the acoustic source.

Unlike the approaches of the acoustic source localization, the speaker tracking meth-
ods not only utilize the audio signal received at the current time but also adopt the
observations obtained from the previous time. The Bayesian-based filtering algorithm
is recommended in acoustic source tracking by utilizing a series of past data and cur-
rent observations. Indeed, the tracking approach regards the spatial information of the
speaker as a state vector updated with time, which dynamically estimates the position
of the sound source since the pseudo sound sources cannot be constantly consistent
with the characteristics of the state vector.



In [16], the location of the sound source was estimated preliminarily by linear motion
model, then smoothing the estimation by Kalman filter with time-invariant measure-
ment matrix in observation function. However, the accuracy of this method performs
not well in the field of speaker tracking since it only regards the state space model as a
linearization model. Extended Kalman filter (EKF) utilizes the first-order Taylor series
expansion to linearize the non-linear observation function [17]. When EKF linearizes
the system, it needs to solve Jacobian matrix of the non-linear function which leads
to the complicated calculation, and the approximations result in large errors and even
divergence. Unscented Kalman filter (UKF) [18] approximates the probability distribu-
tion of the system state by a set of determined sample points, and then exploits these
sample points to obtain further statistical information of the system state through a
non-linear model. UKF can achieve second-order approximation of state distribution
by mean and covariance. In the problem of speaker tracking in reverberant and noisy
environment, the performance of these algorithms is seriously degraded due to the effect
of the spurious TDOA observations due to the reverberation and noise.

The sequential Monte Carlo-based particle filter (PF) algorithm can be utilized in
nonlinear and non-Gaussian systems [19], and PF can recursively estimate the posterior
probability density of the unknown target position conditioned on all past observations
and the received data at the present moment. The PF method was firstly introduced
into solving the speaker tracking problem in [3], and a general framework for tracking an
acoustic source in reverberant environment was proposed in [20]. With the development
in the field of machine learning, combining an acoustic map (AM) with a classification
map (CM) based on spectral signatures has been utilized for tracking an acoustic source
by PF algorithm in the noisy environment, especially in the environment that consists
of persistent and high energy interferences [21].

To track speaker based on PF algorithm in centralized manner, a processing center
is required to collect the signal from all nodes in the microphone networks to carry out
the PF for tracking. This centralized processing method has a large communication
burden and high requirements for data processing capacity in the central unit. In
addition, once the exception occurs in the processing center, the entire network will
not be able to complete the tracking task [22].

Compared to the centralized microphone arrays, each pair in the distributed micro-
phone network runs the local PF individually and exchanges some local data among
neighboring nodes to efficiently achieve the global estimate of the sound source position.

In [23], a consensus-based DPF is designed to track the speaker via the global
coherent field observations. However, the distributed calculation of the global particle
weights requires large data transmission and increases the communication burden as
large amount of particles. In [24], a distributed EKF-based PF (DEKPF) is proposed
to linearize the observation model. In the DEKPF, the Chong-Mori-Chang track-fusion
theorem is utilized to fuse the local statistics of local posterior distributions. However,
EKF calculation is required for each particle sampled. When the number of particles
is large, the calculation amount is abundant. Additionally, in [25] another DPF is
designed for the speaker tracking through approximating the posterior distribution by
a Gaussian distribution and the multiple-hypothesis model is used and improved to
combat the noise and reverberation. Moreover, [22] makes a literature survey about



the classification of different distributed particle filter algorithms.

As above mentioned, almost all the existing CPF and DPF algorithms exploit the
fixed number of samples, especially in the field of tracking the acoustic source. The
required size of particles is set according to prior experience in advance and cannot
be changed during the filtering process. Usually, in order to ensure the high filtering
accuracy of the system and meet the application requirements, we should set a relatively
large number of particles. Nevertheless, the computation complexity of the particle
filter algorithm is proportional to the number of particles.

When the size of the particle set can be adaptively changed during the filtering
process under certain conditions of performance, the number of particles participating
in the filtering can be effectively adjusted, thereby achieving the purpose of reducing
the computation complexity and time consumption. The literature [20] introduced an
approach of controlling the number of particles by setting two sets of particle filters in
parallel with different numbers of particles, and then calculating the difference of some
statistics results of the two sets. Another method introduced in [27] is to determine
the number of particles by the Kullback-Leibler distance (KL-distance), with certain
probability and error, between the sample-based estimated posterior probability density
and the true posterior density in the sampling process.

1.3 Research Statement and Thesis Outline

The goals of this thesis are addressed as: To track the speaker in a noisy and rever-
berant environment utilizing the particle filtering algorithms in centralized scheme and
distributed manner; To adaptively adjust the sample set size during the progress of
particle filtering in speaker tracking problem.

The rest of the thesis is organized as follows: Chapter 2 describes some background
theories; Chapter 3 introduces the method of particle filtering in centralized way and
the approach to dynamically adjust the sample size of particles in detail, and provides
the implementation of tracking speaker; Chapter 4 presents the adaptive distributed
particle filter with variable sample size and its implementation; finally, conclusion and
suggestion for future work can be found in Chapter 5.



Background

This chapter outlines the basis of speaker tracking based on microphone network.

2.1 General Framework

In the problem of speaker tracking, the microphones at different positions are used to
pick up the voice signal and the processing unit is to extract the observation informa-
tion. The dynamic state is modeled to describe the motion state of the speaker over
time, which is utilized in filtering algorithms. The diagram of acoustic source tracking
can be shown in Figure 2.1.

The spatial information of the moving target (such as position and velocity) is a
random state vector changed over time. A system model is utilized to describe the
dynamic characteristics of the sound source and an observation model is exploited to
express the relationship between the sound source state and the observed data [19].

Set x;, € R™ as the n, dimensional state vector of the acoustic source at time
k, z, € RM is the M dimensional observation vector z, = (21,...,20mk)" at time k,
where M is the number of microphone pairs in microphone network. Then, the dynamic
characteristics of the system model and observation model can be described as

X = fe(Xp-1,u) (2.1)

Z = gk(sz, Vk)

The formula (2.1) is the system model, which is also called the dynamical motion
model in the tracking problem. It mainly describes the law of the state transition
over time, f; : R" x R™ — R" is the state transition function which usually is
Markov process, u; € R™ is the n, dimensional process noise which mainly represents
the uncertainty of motion. Equation (2.2) is an observation model that describes the
relationship between the observation z; and source state xj, gr : R™ x R™ — RM is
the observation function, v, € R™ is the observation noise.

/ Microphones / Extract the Dynamic model of
/received signal observations speaker

Speaker tracking
based on filtering
algorithm

Figure 2.1: Tracking diagram



2.2 Dynamic Motion Model

2.2.1 Dynamic Model

The position of a random moving acoustic source is in three-dimensional Cartesian
coordinate. Since the height of the speaker is often fixed, it is reasonable to consider
the dynamic motion model that the source has no velocity in the vertical direction.
The state vector of the target at any time k can be defined as xp = [zg, Yr, Tk, Ur, 25)°
where the talker’s position is (zx, yx, 2x)” and the corresponding velocity is (i, k)
are included. The motion model is to represent the time-varying location of a speaker
moving in a room environment. One simple motion model but has been shown to work
well for the movement of a speaker is Langevin model proposed in [28, 20]. Langevin
equation originally describes Brownian motion, the random movement of a particle in
fluid. It corresponds to the discrete process when the motion state is a Markov process.
In the Langevin model the source motion is assumed to be identical and independent
in each of the Cartesian coordinates. This motion is described as [24]

Y

X = fr(Xp—1,up) (2.3)
= AXk_l + Buk (24)

where u; ~ N(0,I5) is a zero-mean Gaussian process noise with covariance Iy, and
matrix A and B are defined as

12 alAT ® IQ 0 bAT X 12 0 0
0 0 1 0 0 1

where I, is the m-order identity matrix, ® stands for the Kronecker product, AT =
To/ fs is the time interval between two consecutive location estimates (T and f; denote
the frame length in samples and sampling frequency, respectively), and the parameters
a and b are given by

a=e PAT
Y (2:6)

where 8 and © are the rate constant and the steady-state root-mean-square(RMS)
velocity, respectively.

Then the position of acoustic source can be expressed as

X (2.7)

=

|
SO =
O = O
o O O
o o O
_ o O



2.2.2 Transition function

Since the dynamic model is a Markov process, the state transition distribution can be
expressed as

p(Xk|xp_1) ~ N(xp; Ax;_ 1, BE,, BT) (2.8)
where 3, =I5 and A and B are defined in (2.5).

2.3 Signal Model

This section provides the signal model which simulates the audio signals received at
microphones in the indoor environment.

2.3.1 Signal Model

Assume that a microphone network which consists of M pairwise microphone arrays in
a reverberant and noisy environment. Let m € {1,..., M} and p € {1,2} denote the
pth microphone in the microphone pair m. The signal received from a single acoustic
source can be modeled as

YU (t) = s(t) x by, (8) + nf,(t) (2.9)

where s(t) is the source signal, h? (t) is the room impulse response (RIR) from the
source to the specified microphone, n? (t) is the additive noise, and * represents the
convolution symbol.

Considering there exists walls in a rectangular room (enclosure), the microphone
will not only receive the sound signal through the direct path but also collecting the
gradually weakened signals from the multipath due to the reflections that occur after
encountering the walls during propagation. This phenomenon calls a reverberation
effect [29]. A simple illustration is depicted in Figure 2.2, the solid line represents the
direct way and dashed lines perform the multipath during sound propagation.

The RIR from the source to any microphone can be rewritten in terms of two
components, direct path and multipath, as [20]

1
hP (t) = ————0(t — 7P (t PTev (¢ 2.10
1.0 = it = Th(O) + ) (2.10)
where dP (t) = ||r(t) — r2, || is the Euclidean distance between the location r(¢) of the

acoustic source and the position r? of pth microphone in the microphone pair m at
time ¢, 77 (t) = dP,(t)/c is the time delay of direct path, ¢ is the speed of sound in air,
and g2’ (t) is the overall reverberant impulse response due to the multipath effect.

The RIR can be divided into three major parts as shown in Figure 2.3: direct sound
dominates in the aspect of first arriving sound at microphone; early reflections have
relatively strong and low-density reflections; late reverberation whose reflection density
increases rapidly and holds a long tail with an exponential decline.

In practice, although the speech is non-stationary, it is assumed that the speech

signal is quasi-stationary when processed by framing. Hence, in order to track the
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Figure 2.2: Room reverberation

Direct Sound

Early Reflections

-/

Energy

Reverberation

Figure 2.3: Room impulse response (RIR)

acoustic source, the signal received at each microphone is processed by frames. Let k
denote the time index of frames, Ny is the length of samples in each frame, and the
received signal in the pth microphone of the mth microphone pair at frame k is

Yor = W (ENg), ym (kNy +1), ...

yYm (BN + Ny —1)] (2.11)

8
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Figure 2.4: Image source pattern (the solid box is the original room)

2.3.2 RIR Based on Image Method

The direct path and multipath exist together to result in reverberation when receiving
the sound signals at each microphone. The image method for simulating the reverbera-
tion effects in a room was introduced in [30]. The room is assumed to be a rectangular
enclosure with an acoustic source. The basic idea of image method is when a wall exists,
the reflection effect of the sound source is treated as placing an image symmetrically
on the opposite side of the wall. Therefore, the reflection effect becomes the direct
sound emitting from the mirror source to the microphone. Accordingly, the sound sig-
nal reaches the microphone through multiple walls and can be calculated by repeating
the image process as illustrated in Fig.2.4, the blue star represents the actual sound
source while the grey stars performs the images.

Due to the absorption of air and walls, when the source signal propagates in the
air and reflects on the walls, the signal arriving at the microphone is an attenuated
and delayed version of the source signal [31]. Moreover, the received signal is a linear
superposition of the signal from direct path and all reflected paths. The RIR can be
represented by

1 (%)
) =3 S gl gl gl al Tt gl
g=0r=—00 (212)
o[t — (|Rg + Rell)/c]
A7||Rg + Ry||

where Ry represents eight possible transmission distance in terms of the triplet g =
(q,7,k) which means the mirror source is the image of the acoustic source in that
direction when the value is 1 in any corresponding dimension in g, and r = (n, [, m)
is the integer triplet as reflection order which represents the limit of image quantity.



Let v(t) = [z(t),y(t), z(t)]" and r2, = [zP,, 4P, 2P |7 are the location of speaker and

microphone respectively, the Ry and R, can be expressed as

Rg = ((t) — ab, + 2q20,, y(t) — yh, + 25yh,, 2(t) — 25, + 2k2P)" (2.13)
R, = 2(nL,,lL,,mL.)" (2.14)

where(L,, L,, L,) are the room size. Thus, when the reflection order is N, there exists
8 x (2N + 1)? different paths.

Image method is the most common method for simulating RIR due to the straight-
forward concept and efficient computation.

2.4 Time Difference of Arrival Observation

The speaker tracking based on filtering algorithm mainly consists of two steps: first, the
audio signal received by each microphone pair is utilized to extract some characteristics
including the spatial information of the sound source such as the time difference of
arrival (TDOA) which estimates the time difference of voice arriving to the microphones
at different positions; then, using TDOA candidates as the observation information
combined with the geometric structure of the microphone network to estimate the
position of the sound source by filtering algorithm.

At present, a variety of time delay estimation methods have been proposed, in-
cluding generalized cross-correlation (GCC) function [I11], least mean square (LMS)
method [32] and adaptive eigenvalue decomposition (AED) algorithm [15]. Due to the
effectiveness and simplicity, the GCC method is widely used to estimate time delay
by constructing a generalized cross-correlation function with speech signals received
by different microphones. Then the TDOA candidate is obtained by searching for the
maximum point of the cross-correlation function.

2.4.1 Observation Model

The observation model describes the relationship between the state of the acoustic
source and observation values. At time k, each node has a local observation z; of the
unknown source state x;. The observation model can be described as [11]

Z — gk(Xk, Vk) (215)

where g is the unknown observation function and vy is the observation noise.

2.4.2 Generalized Cross-correlation Function

The generalized cross-correlation (GCC) is used to estimate the time delay for providing
observation measurements. At time k, the GCC function at a microphone pair can be
expressed as [14]

Ry () = / Do (NYL(HYZ (f)e i dy (2.16)

10



where ®,,(f) is the Weighting term in the frequency domain, Y;}(f) and Y2(f) are
Fourier transforms of y!, 4+ and ym i * denotes the complex conjugation. The common
weighting terms ®,, (f) are smoothed coherence transform (SCOT) and phase transform
(PHAT) as [14]

1

SCoT

o= 217)
PHAT _ 1

o) = rpvE ) (218)

where the PHAT coefficient aims to sharpen the peak of the GCC function by whitening
the cross-power spectrum in the frequency domain, which is in order to obtain a more
accurate estimation and is widely used in practice.

The TDOA measurement at node m is 7, that is estimated by exploring the
potential TDOA candidates 7 that maximizes the GCC function, which relates to the
largest peak of R,, ;(7)

Tm = arg  max Ry i (7) (2.19)
TE[—Tmax, rimax]
where the maximum possibility of time delay between the microphones in the same
pair is 7% = ||r} —r2 || /c, ! and r! are the positions of the two microphones in mth
pair, respectively.

When indoor noise and reverberation are not serious, the time delay corresponding
to the maximum peak value of the GCC function is the TDOA related to the real
acoustic source. On the other hand, when the noise or reverberation is severe, the
GCC function tends to present multiple spurious peaks, and these pseudo peaks can
even cover the peak corresponding to the true sound source [28].In this situation, if
the TDOA estimation was only obtained from the maximum peak value of the GCC
function, it is prone to produce erroneous results, which leads to incorrect sound source
position information. In order to suppress the adverse effects of the pseudo peaks
generated by noise or reverberation, [28] and [20] proposed the approach to select
multiple delays as candidate TDOAs based on several large peaks of the GCC function.
Specifically, the values of peak amplitudes in the GCC function are arranged in order
from large to small, and then several delays with the large peak amplitudes are picked
out to constitute the observations of the node m, that is

k= T T e (2.20)
where 77 .k 1s the estimation of time delay corresponding to the gth largest peak of GCC
function Rni(7), g =1,2,. , N, is the index of the TDOA candidates.

2.4.3 Multi-Hypothesis Likelihood Function

Consider the likelihood function p(z, x|xx) of the microphone pair m, it describes the
probability of occurrence of observation z,,; under given state x;). In the problem
of speaker tracking, the multi-hypothesis likelihood function is widely utilized with
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multiple TDOA candidates [28]. In fact, at most one candidate is related to the real
sound source in equation (2.20), while the remaining candidates are derived from indoor
noise or reverberation. In order to distinguish between these two cases, the label
{cgm’k};vjl is introduced to indicate the association of each TDOA candidate z,,; and
its corresponding source, and establish the following hypothetical events [25]:

Ho={ch,=F;9=12,...,Ny} (2.21)
Hg:{cfnk Tucfnk; F;gvg/:1727"'7Ng7g#g/} (222)

where the hypothesis Hy means that no candidate is associated with the real sound
source, and the hypothesis H, denotes that candidate g corresponding to the true
target. ¢, ;. = T indicates the 7.7 , is related to the real sound source, whereas c;, , = F'
represents the 7, k is derived from the pseudo sound source.

All the hypotheses in (2.21) and (2.22) are mutually exclusive and exhaustive. Thus,
the likelihood function p(z,,k|Xx) can be expressed as

ka’Xk ZQgp ka’le ) (2-23)

Ng
where ¢, = p(H,) is the prior probability of hypothesis #,, and ) g, = 1, the large
g=0
value of ¢y represents the position of true source is often not among the candidates due
to the high level of noise and reverberation in the room.
Generally, the likelihoods of TDOA candidates related to the true or spurious

source are subject to the Gaussian distribution and uniform distribution over the range

[—7max rmax] " regpectively [28]
P ke, g = T) = N5, i Tone (1) 0%) (2.24)
. 1
PP e G = F) = 3 (2.25)
where 7, x(x1) = (||ltx — 1;,]| — |ltx — r2,]|)/c is the theoretic TDOA at microphone pair

m, o? is the observation noise variance.

It can be assumed that, under the condition of given state x; and hypothesis H,,
each candidate TDOA in the observation z,, ; is independent. The likelihood functions
under multiple hypotheses are stated as

Ng
P(Zm %k, Ho) = | [ (7S, ks 2o = F) (2.26)
g=1
Ng
p(zm,k|xk7Hg) = p(%rgn,klxkv Cfn,k =T) x H p(%gq,k|xk7 Ci’l,,k’ =I) (2.27)
9'=1.979
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Figure 2.5: Example of a communication graph

Then substituting equations (2.24) and (2.25) into (2.26) and (2.27), the equations
(2.26) and (2.27) can be rewritten as

P(Zm k| xx, Ho) = ( ! (2.28)

2an;1ax) Ny

1
p<zm,k‘xk‘> Hg) = (

27-max>Ng—1N(7A—gz,k; Tm,k (Xk)7 02) (229)

Finally, substituting equations (2.28) and (2.29) into (2.23), the multiple-hypothesis
likelihood function can be expressed as

Ny
p (Zm,k |Xk‘) = (QTTrrrLlaX)l_Ng ( L + Z qu (%gl,k’; Tm,k (Xk> 702)> (230)
=1

max
2Tm -

2.5 Communication Graph

In distributed schematic, the topology of the microphone network is modeled as an
undirected graph G = (V,€), with the vertex set V = {1,2,..., M} and edge set
E C{V x V}. Each vertex m € V denotes a unique node, and each edge (m,m’) € £
represents that pair m and m’ can communicate with each other to exchange data.
The neighborhood of node m is defined as the subset of vertex vector N,,, = {m’' € V |
(m,m') € £}. The degree of node m in network is d,,, means the number of edges that
are incident to the vertex. In the example shown in Figure 2.5, the circles represent
the vertices and the connecting lines perform the edges.
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Adaptive Particle Filtering
with Variable Sample Set Size

In this chapter, the fundamentals of Bayesian filtering and particle filtering are pre-
sented. Subsequently, the method using Kullback-Leibler distance (KL-distance) is
introduced to adaptively adjust the number of particles during the sampling process
in particle filtering. Finally, simulations of speaker tracking based on particle filtering
and adapted sample set size through KL-distance approach are implemented.

3.1 Bayesian Filter

Bayesian filtering is a classic method to solve tracking problems, and it is also the
theoretical basis of this thesis. Bayesian filtering recursively estimates the posterior
probability density of the source state with the observation information, and then
obtains the optimal estimation of the characteristics of the sound source.

3.1.1 Bayesian Theorem

As introduced in the previous chapter, the state space model of the speaker tracking
system could be expressed as

X = fr(Xp-1,up) (3.1)
Zi = gr(Xk, Vi)

From the perspective of Bayesian statistics, the system model can alternatively be
described by the transition probability density function p(xx|xx_1), and the observation
model can also be expressed by the measurement probability density function p(zx|xy).
It is depicted in Figure 3.1 that the transition function is Markov process and the
observation is merely related to the current source state.

Figure 3.1: State space model
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The main content of Bayesian theorem is that assuming z; is a vector of independent
and identical distributed measurements holds a conditional probability density p(xy|zx)
relative to the state vector x;, then the posterior probability density of the unknown
parameters X is given by

pl) = [ Pl (3.3)
o lgy — PLZEXE)P(Xk)
p(xk|zx) T @) (3.4)

where p(x;) is the prior and p(xg) is assumed to be known, p(zg|xy) is the likelihood
function given the state vector xx, p(zx) = [ p(zx|xy)p(Xx)dxy, is the normalized con-
stant.

The Bayesian theorem in equation (3.4) shows the posterior is proportion to the
product of the likelihood and the prior.

3.1.2 Bayesian Recursive Filtering

Bayesian filtering is to recursively estimate the posterior probability density p(xx|z1.x) of
the target state x; using a prior knowledge and all available observations, where z;.;, =
(z1,...,2;) € RM*F denotes the cumulative measurement matrix of the system from
the beginning up to the moment k. The posterior probability density p(xx|z1.x) contains
all the available information for the state x;, which can obtain an optimal estimate of
the position under certain criteria. Assuming the initial prior probability density p(xo)
is known and the posterior probability density at time k& — 1 is p(xx_1|21.x_1), then the
posterior probability density p(xx|zix) at time k can be obtained from the following
recursions:

P(Xk|Z10-1) = /p(xk’Xkl)p(Xk1’Z1;k1)dxk1 (3.5)
_ p(zk|Xk)p(Xk|Z1:k:—1)
p(Xp|Z14) = (zlzi) (3.6)

where p(zy|z1.4-1) = [ p(2k|Xk)p(Xk|Z1.5—1)dXy, is the normalized constant.

The equations (3.5) and (3.6) are the prediction step and update step, respectively.
The prediction step is to apply the system model function to achieve the prior proba-
bility density, and the update step is to exploit the latest measurement to correct the
posterior probability density.

The detailed derivation process is as follows:

(1) Prediction step: obtain p(xg|z1.x—1) from p(xx_1|Z1.5-1)

P(Xk|Z14-1) = /p(Xk,Xk—1|Z1:k—1)ka_1 (3.7)

= /p(Xk\Xk1,Z1:k1)P(Xk1\Z1:k1)ka1 (3.8)
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Since the state x; is independent with all the past observations zy.,_; when given
the x;_1, then

P(Xg|Z1:4-1) = /p(Xk|Xk—1)p(Xk—1|Z1;k—1)ka—1 (3.9)

(2) Update step: obtain p(xg|z1.x) from p(x|z1.6-1)
First, recall the formulation in conditional probability

PUAB.C) = e 3.10)
_ P(A,B,C) P(C)
T PO PBO) 4y
_ P(ABIO)
N 12

After obtaining the observation measurements zy, utilizing the Bayesian theorem to
update the posterior probability density p(xg|z1.,) from the prior probability density

P(Xk|Z1:6-1) 18

p(Xk|z1k) = p(Xk|Zk, Z1:6-1) (3.13)
_ p(zkv Xk|Z1:k—1) <314>
p(Zk|Z1:k—1)
_ p(zkz\Xk,Z1:k—1)p(Xk|Z1:k—1) (3‘15)
P(Zk|Z1:k—1)

Since the state z; is independent with all the past observations z;.;_; when given
the xi, then the posterior density is

(Zklxk)p(xk |Z1:k—1)

(2| Z1.51) (3.16)

p(Xk|Z1:k) = P
where the p(zi|z1.6-1) = [ p(2k|xk)p(Xk|Z1:4-1)d

3.1.3 Estimation

The posterior probability density p(xy|z1.x) contains all the available information for the
state xi, which can achieve an optimal estimate of the position under certain criteria.
The common methods of estimation are maximum a posterior (MAP) and minimum
mean square error (MMSE) [33, 34],

XA = arg max p(xg|z1.4.) (3.17)
Xk
)ACQ/IMSE — E{Xk‘zlzk} = /ka(Xk’ZLk)ka (318)
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Bayesian recursive filtering provides only a conceptual solution to the tracking prob-
lem in general. For dynamic systems in practice, the solution of posterior probability
density can not be analytically determined [35]. When the state space model is lin-
ear and Gaussian, Kalman filtering is the optimal solution of Bayesian filtering, while
for the case of the state space model is non-linear and non-Gaussian, particle filtering
has better estimation performance [35]. In acoustic source tracking the performance
of Kalman filtering is seriously degraded due to the effect of the spurious TDOA ob-
servations resulting from the reverberation and noise. Moreover, in the actual speaker
tracking problem, the state space model can be non-linear and non-Gaussian due to
the TDOA observations and reverberant environment. Thus, the particle filtering is
introduced to solve the problem of speaker tracking[3].

3.2 Particle Filter

Particle filter algorithm is based on Monte Carlo simulation and recursive Bayesian
filtering [19]. The results obtained by particle filtering have high accuracy and are
close to the optimal estimation for the nonlinear system.

3.2.1 Importance Sampling

The core idea of the PF algorithm is to generate a set of random samples (that is,
particles) in the space, and to assign them certain weights. Then approximating the
posterior distribution p(xg.x|z1.x) of the acoustic source state by a set of weighted par-
ticles {X}.,, wi 2, as

P(X0:£|21:1) Z wk(? X0k — ) (3.19)

where ¢ is the Dirac delta function, {X}, 1}~ is the set of particles with associated
weights {wi}, which can be described as

X ~ a(Xok|21:4) (3.20)

{ o P Xbulza) (3.21)
4(Xx|21:)

where the particles are drawn from a predefined importance probability density, which

is called proposal function or importance density q(xo.x|Z1.x)-

The proposal function needed to be designed to ensure the weight is bounded. As a
rule of thumb, choosing the ¢(X¢.x|21.;) similar to p(Xg.x|Z1.,) to minimize the variance
of weight w! [30]. Represent the posterior density by a set of randomly chosen weighted
samples (particles) is shown in Figure 3.2. As the number of samples becomes very
large, the characterization of samples becomes more likely to the true posterior density.
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Figure 3.2: Represent the posterior density by a set of weighted particles

3.2.2 Sequential Importance Sampling Algorithm

In importance sampling, the estimation of the posterior density requires the observation
data at all times, which makes the calculation of the entire algorithm complicated. In
order to facilitate recursive calculations, sequential importance sampling (SIS) was
proposed [19]. The SIS algorithm samples the particle set according to the importance
density, and updates the weight of the particle through the current observation value.
The particles and their corresponding weights are weighted and summed to approximate
the acoustic source state.

Suppose that the proposal function is chosen to factorize such that

Q(XO:k\lek) = Q(Xk, Xo:kq’ZLk) (3-22)
= q(Xx[X0:k-1, Z14)q(X0k-1|2Z1:%) (3.23)
= q(xk|X0x—1, Z1:6) ¢(X0:k—1|Z1:5—1) (3.24)

The equation (3.24) indicates that the particle set {Xi, Y ~ ¢(xo|z1) can be
obtained by augmenting the existing set {ngk_l}fvzsl ~ q(Xo.x—1|21.5—1) With the current
set { X} 1% ~ q(XulXok—1, Z14)
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Hence, the posterior probability density can also be rewritten as

(211 |X0:)P(X0:1)

P(Xok|Z1k) = P(Z10) (3.25)

_ P(2Zk, Z1:6—1|Xo0:1)P(X0:) (3.26)
p(z1x) '

_ P(Zx|Z1:0-1, X0 ) P(Z1:0—1 [X0:0) P (X0:1) (3.27)
P(z1:) '

_ (21| Z1:0—1, X0:k) P(Z 10— 1| Xo0:k ) P(Xke| X0:k—1) P (X0:k—1) (3.28)
p(Zk|Z1:k—1)p(Z1:k—1) '

_ P(Zk|Z1:k—1, Xo:k)p(Xk|X0:k—1)p(Z1:k—1|Xo:k—1)P(X0:k—1) (3 29)
P(2k|Z15-1)P(Z1:5-1) '

_ P(Zk|Z1:0—1, Xouk ) P(Xk | X0:k—1) P (X0:k—1|Z1:0—1) (3.30)
P(2zk|Z1:-1) '

_ (21| %) P (X [Xk—1)P(X0:k—1]Z1:6-1) (3.31)
(21| Z1:0-1) '

p(Xk|Xk—1)p(Zk|Xk)
= p(Xok—1|Z1:k-1) NCALTE (3.32)
oC P(Xo:k—1|Z1:0—1)P(Xk [Xk—1) D (21| X1) (3.33)

where p(zy|z14-1) = [ p(zk|Xk)p(Xk|Z1.5—1)dXy, is the normalized constant.
By substituting (3.24) and (3.33) into (3.21), the weight update equation can be
rewritten by

p( Oklzlk)
w}, q(X6 170r) (3.34)
— p(za] X)p(XG X5 )p(XG g1 |Z18-1)
(X X1z a(X |20k 1)
_ wliilp(zlei)p(X%;!X?;_l)
(X5 |1X0 -1 Z1:k)

(3.35)

(3.36)

Moreover, when the proposal function is under Markov assumption which means
the importance density depends only on the x;_; and z; as
q(Xk|Xok—1, Z1:k) = q(Xp|Xp—1, Z1) (3.37)

The most common and sub-optimal choice of proposal function is the state transition
function q(xx|Xk—1,2r) = p(Xk|Xr—1) as the bootstrap filter [19].
Finalllly, the particles and weights can be updated by

X}, ~ q(xk/ X, z) (3.38)

wi o wi p(zﬂXZ)p(XﬂX}%l)
UM (XX 2)

(3.39)
The particle filter based on SIS algorithm is shown in Algorithm 1.
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Algorithm 1 Particle filter based on sequential importance sampling algorithm

Input: X};_l, wz_l, Zj

Output: X7, wy, Xj

Initial: X ~ p(xo), wh =1/Ns, i =1,2,..., Ny

Iteration process: k =1,2,...

1: Predict step, importance sampling (draw particles): X ~ Q(X’?|X3€*1’ Zk)
i Pl Xp(XLIXE )

2: Update step, update important weight: w’,‘; X Wy 1™ (XL XL 20)

. . NS -
3: Normalize particle weight: o}, = w}/ > wj
i=1
NS . .
4: Calculate the state estimation: X, = > W, X},
i=1

Table 3.1: Particle filter based on sequential importance sampling algorithm

3.2.3 Sequential Importance Resampling Algorithm

The main problem of sequential importance sampling-based particle filter (SIS-PF)
algorithm is the phenomenon of particle degradation [35]. The particle degradation
occurs after multiple iterations. Most of the particles would have small weights which
have negligible influence while a few particles have large weights. The result of particle
degradation is that the number of effective particles in the state space becomes smaller,
which causes a large amount of computation to be wasted on the update of the parti-
cles with small weights and results in performance degradation of the algorithm. The
effective sample size is introduced as the measure of degeneracy described by [30]

N

1+ var(w}") ( )

Neyy

where wi" = p(X&|z1.)/q(X5|XE |, z;) represents the true weights. A small value of
Ncss indicates severe degeneracy due to the large variance of weights. Because the
exact value of N.¢; cannot be evaluated, a common method is to approximate this
value using normalized weights as [37]

A 1
Nesr = v 772
Zi:sl (wlzc)

In order to reduce the influence of particle degradation on the algorithm perfor-
mance, one method is to increase the number of particles, which is effective but causes

(3.41)

a sharp increase in the amount of calculation, rarely used in practice [35]. Another
way is to choose the appropriate proposal function. The most convenient approach is
to use the state transition density as the importance probability density [19]. In addi-

tion, resampling technique is utilized. The basic idea of resampling is to eliminate the
particles with small importance weights and duplicate the particles with large weights
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Figure 3.3: Resampling process

when the N, #¢ is below a certain threshold, which is given by

i # 1N,
{X%, wk}f'v:sl — {X%, F}f\il

(3.42)

where {X& }N+ are the particles after resampling.

The process of resampling is shown in Figure 3.3, we can see that the particles
with small importance weights are abandoned and the particles with large importance
weights are duplicated at the same time after the importance sampling.

The particle filter based on sequential importance resampling (SIR) algorithm is

shown in Algorithm 2.

Algorithm 2 Particle filter based on sequential importance resampling algorithm

Input: X};_'l, wli_l, Z,
Output: X7, wy, Xj

Initial: X} ~ p(xo), wh = 1/Ns, i =1,2,..., Ng

Iteration process: k=1,2,...

1: Predict step, importance sampling (draw particles): Xﬁc ~ q(xk\X};_l, Zi)

Pl X P IX )
A(X} X 78)

2: Update step, update important weight: w}'€ o w};_l
) . Ns .
3: Normalize particle weight: @}, = w},/ '21 wy,
]:
. . ~ NS 2 .
4: Calculate the state estimation: x = 231 wy X4,
1=
5: Resampling: Compute the Norf = ———
Pangs LOmp TS )

. N, " N,
{ X wp bz = {XG N%}z'zl

S, if N, rf < Ny, resampling the particles as

Table 3.2: Particle filter based on sequential importance resampling algorithm

Resampling reduces degeneracy phenomenon, however, new problems arise. For ex-
ample, the complex computation limits the performance of parallelization. In addition,
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the particles with large importance weights are repeatedly selected many times leading
to loss of diversity.

3.3 Adaptive Particle Filtering with Variable Sample Set Size
through KLD-sampling

The computation complexity and time consumption of the particle filter algorithm are
relatively high, mainly because of the large number of particles exploited in the filtering
process since the computation complexity of the particle filter approach is proportional
to the number of particles. Traditional particle filtering algorithm exploits a fixed
number of particles for filtering. The required amount of particles is set according to
prior experience in advance and cannot be changed during the filtering process. In
order to ensure the high filtering accuracy of the system and meet the application
requirements, we should set a relatively large number of particles.

When the number of particles can be dynamically changed during the filtering pro-
cess according to the conditions of the system at different times and under the premise
of ensuring certain filtering performance, the number of particles participating in the
filtering can be effectively reduced, thereby achieving the purpose of reducing the filter-
ing complexity and improving the filtering time performance. According to this idea,
the literature [20] proposed a method of controlling the number of particles by setting
two sets of particle filters in parallel with different numbers of particles, and then calcu-
lating the difference of some statistics results of the two sets. If the difference is greater
than a certain threshold, the filtering accuracy is considered to be low, and the number
of particles is increased according to a preset ratio; if the difference is less than a certain
threshold, the filtering accuracy is considered to exceed the accuracy requirement, and
the number of particles is reduced according to a preset ratio. This method requires
simultaneous use of two sets of particle parallel filtering, one of which does not actually
contribute to the filtering result. Therefore, this approach of controlling the number of
particles is too expensive in terms of computation.

Another method introduced in [27] is to determine the number of samples by the
Kullback-Leibler distance (KL-distance), with certain probability and error, between
the sample-based estimated posterior probability density and the true posterior density
in the sampling process. The key idea of the Kullback-Leibler distance sampling (KLD-
sampling) approach is to use more particles when the posterior distribution area spreads
out over a wide range of values, that is to say, when the uncertainty is high; on the
contrary, to use fewer particles when the posterior distribution area is concentrated, in
other words, when the uncertainty is low.

The goal of adaptive particle filtering with variable sample set size is to determine
the number of samples such that, with a certain probability, the error between the true
posterior and the sample-based representation is bounded.

3.3.1 The KL-distance

The KL-distance can also be called relative entropy introduced in [37]. The entropy
of a random variable is a measure of the uncertainty of the random variable, which

23



3
275
251
225
ot
1.75
15
1.25
1+
0.75 [
05
0.25 [

0 02505075 1 12515175 2 22525275 3 32535375 4
Figure 3.4: Example of bins in the two dimension room

does not depend on the actual values taken by the random variable, but only on the
probabilities. The KL-distance is a measure of the difference between two probability
distributions:

Drct(p) = 3 i) o (3.43)

In the above equation (3.43), KL-distance is always non-negative and it is zero if
and only if the two distributions are identical. It is not a metric of true distance since it
is not symmetric and does not satisfy the triangle property. Nonetheless, it is accepted
as a standard measure for the difference between two probability distributions [37].
However, the problem is that we can not obtain the true posterior distribution, which
means the KL-distance can not be calculated directly. The mathematical knowledge
about likelihood ratio test provides a method to connect the KL-distance and the
number of samples [38]. [27] represented a sample-based approximation of the predictive
belief as an estimation for the posterior.

T

3.3.2 Likelihood Ratio Test

In order to discretize the posterior probability distribution, we divide the room space
into different small areas which are called the bins. An example is illustrated in Figure
3.4, each grid represents a bin.

Suppose that N, samples are drawn from a discrete distribution with Npg differ-
ent bins, Npg represents the number of bins with support in whose the bins contain
at least one particle inside. Each bin has N ; particles, where j = {1,2,..., Npg}.
Let the vector Ngps = (Ns1,Nsa,..., Nsnys) denotes the number of particles in
each bin with support, which is according to multinomial distribution Nggg ~
Multinomialy,, (Ns,p), where p = {p1,p2,...,Pnys} Performs the true probability
of each bin and p is short for p(xx|z1.) in this section. The maximum likelihood es-
timate (MLE) of p is given by p = Ngps/Ns. The total number of samples can be
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expressed as

Nps
N,=> N, (3.44)
j=1
From mathematical knowledge [35], the likelihood ratio statistic Ay, for testing p is
NBs i N j
v, =[] (—J) (3.45)
j=1 \Pi

To inverse the ratio Ay, and then to take logarithm as

1 NBS ]5 Nsvj
loge —=1o —]> 3.46
B3, =08 ]li[l <pj (3.46)

Since the N, ; is identical to Np;, the equation (3.46) can be rewritten as

NBS ~
—log AN, = Z N; jlog (&> (3.47)

j=1 Pj

NBS ij
=N, ) p;log (—J) (3.48)
i=1 bi

From the (3.43) and (3.48) we can find the relationship between the likelihood ratio
statistic and KL-distance in terms of the MLE and true distribution:

—log An, = NyDk (P, p) (3.49)

From the mathematical knowledge of likelihood ratio test in the book [38], the
distribution of —2log Ay, tends to a chi-square distribution with degrees of freedom
NBs—laSNS%OOZ

—210g AN, —*d XApe—1 (3.50)

Let Py (Dk (P, p) < €) denote the probability that the KL- distance is less than or
equal to certain error bound. When N, samples come from the true posterior distribu-
tion, the relation between the number of samples and that probability can be derived
from (3.49) is as follows:

Py (Drr(p,p) <€) = By (2N D (P, p) < 2Ns¢) (3.51)
= P, (—2log Ay, < 2Nge) (3.52)
~ P (XFye-1 < 2N,g) (3.53)

The quantile X?VBS—Ll_ s of the chi-square distribution with probability 1 —4¢ is given
by
P (X?VBS—l S X?VBs—l,l—(s) =1-9¢ (354)
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We can see that if the sample size Ny is selected as 2N = x3,,_11_> WE Can
obtain
Py (Dkr(p.p) <e)m1-46 (3.55)

The derivation process is summarized as follows: if we choose the number of samples

N, as
1

N = 2_€X?VBS_171_5 (356)

where the number of particles depends only on the number of bins with support (out of
J total bins), we can ensure the KL-distance between the MLE and the true distribution
is less than € with probability 1 — 4.

The number of particles is related to the bin size A since the small size of bins results
in the large number of bins with support, which increases the number of particles.
In addition, the number of particles is inversely proportional to the KL-distance. It
can be understood that when the sampled particles are very scattered, the required
number of particles increases. Contrarily, when particles are used to converge together
(concentration), the required number of sampled particles is reduced.

3.3.3 KLD-sampling in Particle Filter

The number of particles depends only on the number of bins with support, which means
we can adjust the sample set during the sampling process by counting the bins with
support. The algorithm of adaptive particle filter with variable sample set size through
KLD-sampling is in Algorithm 3. In step 4 in this algorithm, we propose the method
that starts to select the particle corresponding to the largest weight, and then choose
the samples in descending order by weight. Note that we also need to set the maximum
potential number of the particles, which guarantees to terminate when the bin size,
error bound and probability are fixed in advance.

3.4 Simulation Results

In this section, to verify the validity of the proposed speaker tracking methods, some
simulation experiments are executed.

3.4.1 Simulation Setup

The simulation environment is a typical room of size of 5m x 5m x 3m with M = 8§
microphone pairs placed on the walls, and the location of microphones are known as
prior information. As shown in Figure 3.5, the positions of microphones and speaker
are located on the x — y plane with the height of 1.5m (for the 2D source tracking).
The spacing of each microphone pair is set to 0.6m and the speaker trajectory is a
semi-circle moving from (1,2.5)m to (3,2.5)m with a radius of 1m.

The source signal is a 3s female speech taken from the TIMIT database with a
sampling frequency of 16kHz, and the frame length is AT = 32ms. The speed of
sound propagation is 340m/s. The RIR from the speaker positions to microphones is
simulated based on the image method. For the multi-hypothesis GCC-PHAT function,
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Algorithm 3 SIR particle filter based on KLD-sampling algorithm

] ] N@,k—l
Input: S,_; = {Xi_l,wi_l}jzl , Zk, €, 0, A, Noin

Output: S; = {X}{, w};}f-v:s’lk, Xk

Initial: S = @, Ns,k =0, Nkrp =0, Ngg=0,71=0
Iteration process: k=1,2,...

1: while (Ns,k < Nkrp or Ns,k < Nmm) do

2: Ns,k:Ns,k+1

3 1= Nng
4: Sample a particle with index j from the set Sp_1
5 Predict step, importance sampling: X} ~ q(x;|X7_,,z)

i plzalXL)p(XEIX] ;)

. Lo
6: Update step, update important weight: wj oc wy_ SOUXT L)
7 if XZ; falls into empty bin b then
8: Nps = Npg+1
9: b = non-empty

10: Nkgrip = ﬁX?VBSfl,lfé

11: end if

12: end while
Ns,k

13: Normalize particle weight: @} = w! / IZI wt
N:,k o

14: Calculate the state estimation: X = 231 W X,
1=

15: Resampling: Compute the Neyr = W, if Nepr < Ny, resampling the particles as
i=1 (W

. _. N, o N,
(X wt b0k — XY ﬁ =1 to produce Sy

Table 3.3: SIR particle filter based on KLD-sampling algorithm

N, = 4 TDOA candidates are extracted, and the initial prior probability of the hypoth-
esis Hy is set as qo = 0.25. The observation noise deviation is 02 = 5 x 107°. To model
the dynamic motion of the speaker, parameters of the Langevin model are 8 = 1057+
and ¥ = 1ms™!, respectively.

3.4.2 Performance Metrics

The root mean square error (RMSE) is chosen as the performance measure to indicate
the deviation of the estimated positions from the truth, which is defined as [20)]

K
1 R
RMSE = | = Ek e — £ (3.57)

where the r; and T, are the true position and the corresponding estimated position
of the sound source, respectively. The lower RMSE value, the better performance of
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Figure 3.5: Microphone positions (crosses) and the speaker trajectory (semi-circle curve) in
3D

tracking.

3.4.3 Simulation Results

In this section, we present some experiments of speaker tracking and compare the
performance between the SIR particle filtering and the SIR particle filtering based on
KLD-sampling.

3.4.3.1 Parameter Settings of KLD-sampling

This part discusses the performance of tracking based on KLD-sampling in terms of the
different choices of parameters. The critical parameters of the KLD-sampling method
are the bin size A, the error bound ¢, and the probability bound 0 (the quantile is
1 —0). In each experiment, runs 20 Monte Carlo simulations, only one parameter is
changed while the other two parameters are fixed, the noise level (signal-to-noise ratio,
SNR) is SNR=20dB and reverberant time is Tgo = 0.2s.

Figure 3.6(a) and Figure 3.6(b) show the influence of the different bin size A on the
performance of KLD-sampling. The error bound ¢ = 0.15 and the quantile 1 —§ = 0.9
are fixed. The required number of samples decreases with larger bin size since larger bin
size causes smaller quantity of bins with support, thereby the corresponding tracking
error rises as shown in Figure 3.6(a). The average number of particles has a dramatic
decrease before the bin size increases to 0.4.

The bin size A = 0.05 and the quantile 1 —§ = 0.9 are fixed in Figure 3.6(c) and
Figure 3.6(d). As can be seen in the formula (3.56), the required number of particles
is inversely proportional to the error bound e, which is consistent with the result in
Figure 3.6(d). Similar to the result in Figure 3.6(a), the RMSE increases with the fewer
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Figure 3.6: RMSE and average number of particles versus different settings of parameters in
SIR particle filter based on KLD-sampling algorithm.

particles used which is shown in Figure 3.6(c). More specifically, the curve has declined
drastically until the error bound reaches 0.15 from where the RMSE curve becomes a
flat rising trend.

For fixed value of bin size A = 0.05 and error bound ¢ = 0.1, the performance of
KLD-sampling based on quantile 1 — § is presented in Figure 3.6(e) and Figure 3.6(f).

29



The required number of samples increases with larger quantile which satisfies the chi
square distribution in equation (3.56). Likewise, the RMSE decreases with the larger
size of samples in particle filtering. The number of particles varies less significantly
with different values of probability bound § compared with the changes of bin size A
and error bound .

Therefore, we can set the parameters of KLD-sampling method as: the bin size
A = 0.04, the error bound ¢ = 0.15, and the quantile is 1 — § = 0.9.

3.4.3.2 Speaker tracking results

In this part, we make the comparisons of the performance between the SIR particle
filtering and the SIR particle filtering based on KLD-sampling shown as in Figure
3.7. The SIR-PF has a fixed number of particles as 500, and the parameters of KLD-
sampling method is set according to the conclusions of the previous section. Figure
3.7(a) illustrates both the two algorithms can successfully estimate the speaker tra-
jectory. Figure 3.7(b) and Figure 3.7(c) are the tracking results in x-coordinate and
y-coordinate, respectively. In Figure 3.7(d), we can see the adaptive adjustment of
particle number by the KLD-sampling method during particle filtering progress. The
RMSE results in Figure 3.7(e) shows that the SIR particle filtering has better perfor-
mance of tracking accuracy since it holds 500 particles to perform the PF while the
KLD-sampling approach utilizes around 100 particles in average through the progress.
The results in Figure 3.7 demonstrates that the PF based on KLD-sampling algorithm
is an effective approach to adjust the number of particles for the speaker tracking task
within an acceptable error range.
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Figure 3.7: Speaker tracking results with SNR=20dB.
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Adaptive Distributed Particle
Filtering with Variable Sample
Set Size

The existing speaker tracking methods based on particle filter mostly adopt centralized
processing mode, that is, all of the audio signals received by microphone arrays are
transmitted to a processing center, where the task of sound source tracking is com-
pleted. The main advantage of this method is that it can exploit all the information of
audio data from the entire microphone network to estimate the location of the sound
source. However, this centralized processing method has a large communication burden,
high requirements for data processing capacity, and the poor scalability of microphone
networks. In addition, once the exception occurred in the central unit, the whole net-
work will not be able to complete the tracking task [22]. Therefore, distributed particle
filter (DPF) algorithms are appealing since all the nodes can exploit particle filtering
individually to estimate a global state of target.

This chapter introduces the classification of various DPF algorithms based on dif-
ferent methods of data fusion, then recommends two DPF algorithms and implements
the adaptation of the sample set size of particles. Finally, the simulations of speaker
tracking based on DPF algorithms and comparisons with CPF algorithms are presented.

4.1 Data Fusion

Consider a microphone network composed of M microphone nodes randomly placed in
space with the vertex set V = {1,2,..., M}. Each microphone pair can receive and
process the signal independently. Let the local observation of speaker at microphone
pair m at time k is z,, ;, and the relationship between local observation z,, ; and sound
source state x; can be described by the following local observation model:

Zm,k - gm,k(xk7 Vm,k:)7vm E V (41)

where g, is the local observation function at node m, vy, is the corresponding ob-
servation noise which is independent of all past and current states.

Generally, the reliable estimation of the state of the speaker can not be obtained
only by the observation of a single node [22]. Therefore, in practice, it is often necessary
to analyze and synthesize the observation information of all or part of the nodes in the
network, and then simultaneously acquire the global and reliable estimation of the state
of the sound source. This process is called the data fusion [39].

Data fusion plays an important role in the field of distributed sensor networks and
mainly includes the following three implementation architectures [39].

e DPF based on fusion center
At every moment, each node in the network obtains the local estimation of the
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state by local particle filter, and then transmits the local estimation to the fusion
center. Finally, the fusion center merges the local estimation of each node to get
the global estimation of the state. In this kind of algorithm, each node communi-
cates directly with the fusion center. Since the nodes do not execute any particle
filtering process, this method can not be regarded as real DPF, which means it
also has the same problems as CPF [22].

e DPF based on leader agent

In this kind of algorithm, information propagates and accumulates along a path
composed of a series of adjacent nodes which saves the costs of energy [10]. Specif-
ically, at each time only one active node, the leader agent (LA), performs particle
filtering, which estimates the state of the target at the current time by using its
own observation and the accumulated information from the previous agent; then,
according to a certain node scheduling algorithm, the new LA for the next time
is selected from its neighborhood nodes; finally, the posterior estimation of the
state or the posterior parameters obtained by the LA is transferred to the next
active node. However, when the topological structure of the network changes, an
appropriate online node scheduling algorithm is needed to pick out the LA, which
causes huge computation [22]. Moreover, how to restore the original information
and how to choose another active node when the LA fails at a certain time also
increase the complexity of the algorithm.

e DPF based on consensus

In this algorithm, information is communicated between neighboring nodes. At
each time, all microphone pairs in the network carry out particle filtering simul-
taneously to estimate the posterior probability density of the state. Specifically,
each node can make an agreement on certain global quantities through the con-
sensus algorithm, and then the quantities are adopted by each node to obtain the
estimation of the global posterior probability density of the state by particle fil-
ter. Compared with the previous two DPF algorithms, the consensus based DPF
algorithm has many advantages such as scalability and robustness. For example,
scalability mainly refers to the communication bandwidth or power consumption
of each node that does not depend on (or only partially depends on) the total
number of network nodes since each node only communicates with its instanta-
neous neighbor nodes. In addition, when some nodes or communication links in
the network are abnormal or damaged, the whole network can still work since
each node performs the particle filtering individually [22].

4.2 Consensus Algorithm

In the distributed networks, consensus mainly refers to that each node reaches a unified
agreement on some certain parameters, which often depend on the information of all
nodes. The goal of the consensus algorithm is to make each node in the network
exchange information with its neighbors continuously to obtain the global parameters.
Consensus algorithms are iterative schemes for distributed computation and the most
common types are the average consensus and max-consensus [22, 11, 12].
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4.2.1 Average Consensus

Let c,, 1, represent the local parameters of microphone pair m € V at the time k. The

goal of the average consensus algorithm is to achieve the average of the parameters of
M

all the nodes by distributed iteration, that is, ¢, = ﬁ > Cmyk- In general, the iterative
m=1

formula is defined as [11, 12]

Cm,k(g + 1) - Cmmcm,k<€> + Z Cmm’cm’,k(f) (42)
m/ENm
where the / is the index of consensus iteration, (., are the consensus weights between
node m and m'. Let ¢, x(0) = ¢, repeat the iterative process of the above formula
(4.2), the estimation c,, (¢) at each node m can finally converge to the global average
Ci as

lim Cm,k(g) = Ek,Vm ey (43)

{—00

where the equation (4.3) holds if and only if [11]

17¢ =17 (4.4)
¢1=1
p(¢— (1/M)117) <1

where 1 = [1,1,...,1]7, p(-) denotes the spectral radius of a matrix (the maximum
absolute value of the eigenvalue), ¢ is the weight matrix of average consensus.

Under the constraint of formula (4.4), (4.5) and (4.6), the average consensus weight
matrix has many choices. Different weight matrices affect the convergence speed of the
average consensus algorithm. In practice, the most widely used weight matrices are
max-degree weights and metropolis weights:

o Max-degree weights

% if m' € N,
Cmm’ =4q1- dﬁm if m= m’, (47)
0 otherwise.

e Metropolis weights

1 .
1+max{dm,d,, } if m’ e Nm’
Cmm’ = 1-— m/;/\/ Cmm’ if m= m/> (48)
0 otherwise.
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The maximum-degree weights in the equation (4.7) require each node to know the
total number of nodes in the network, while the metropolis weight matrix does not
need to know the information about the entire network. The metropolis weights in
(4.8) merely need to know the degree of the neighborhood of each node, thus the
metropolis weights are employed to construct the weight matrix of average consensus
in this thesis.

4.2.2 Max-consensus

Let c,, 1 represent the local parameters of microphone pair m € V at the time k. The
goal of max-consensus is to obtain the maximum of the parameters c¢;'** = Max Cpn at
me

all the pairs by distributed iteration, and the max-consensus iteration is defined as [22]

Crnye (0 + 1) = max {cpi(0), {Cm’,k(g)}m/eNm} (4.9)

Unlike the average consensus, each ¢, x in (4.9) can converge to the global maximum
c'® within a finite number of iterations which does not exceed the diameter of the
communication graph [22]. Therefore, in order to ensure that each node has the same

result, the max-consensus is often used after the average consensus step.

4.3 Consensus-based DPF

In particle filtering, the posterior distribution of the acoustic source state is approx-
imated by a set of weighted particles {X% wi}Y. And in consensus-based DPF, all
nodes run particle filtering simultaneously and individually. Therefore, we can con-
sider two types of quantities to be distributed computed: the particle weights and the

parameters of the posterior.

4.3.1 Particle Weights Consensus-based DPF

The weights consensus-based DPF algorithm assumes that each node in the network
shares the identical set of particles [22] and runs the local PF. For each particle set, its
global weights are obtained by the consensus fusion algorithm. The specific steps are
as follows:

(1) Prediction step: Suppose that each node holds the same particles {X% |} at
time £ — 1. Draw the particles according to the state transition function

X ~ Pk[Xf 1), Ym € Vi=1,2,... .M (4.10)

which requires the local random number generators at each node are synchronized to
ensure the entire network obtains the same pseudo-random numbers Xj = X . [22]
such that the same particles are drawn in prediction step at each microphone pair.
(2) Update step: For each particle, the node m € V calculates the local weights by
the local observation z,, ; [22]
Wy, . = P(Zm k| X}) (4.11)

m,k
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The goal of DPF algorithm is to get the global weights of particles at each node
wh, = p(z|X}) (4.12)

(3) Fusion step: When the observations of each node in the network are independent
under the condition of the given state X%, then the global likelihood can be decomposed
into the product form of each local likelihood as

p(zi|Xi) = H D(Zgn 1| XE) (4.13)

Taking the logarithm of (4.13) yields

Inw}, = In (H p(zmk|X§§)> (4.14)

m=1
M

=Y Inp(zn sl X}) (4.15)

m=1

Then, taking the exponentiation of (4.15) and substituting (4.11), we can the ex-
pression of global weights

wj, = exp (Inw},) (4.16)
M

= exp (Z lnp(zm,k|X}€)> (4.17)
m=1
M

= exp (Z In w;7k> (4.18)
m=1

It can be seen from the equation (4.18) that the calculation of the global weights
of particles can be transformed into the exponential form of the sum of logarithm
of the corresponding local weights, which can be computed by the average consensus

algorithm.

M

fk = 31 2 Wi where the @} can be calculated by the

Let w! In w? w

mk_ m,k>?

average consensus in (4.2)

m/'ENm

Finally, the global weights can be rewritten as
wj, = exp(M@}, ;) (4.20)

If errors resulting from the consensus iteration are disregarded, this DPF based
on weights consensus algorithm can obtain the same estimation performance as the
centralized PF (Note that M has to be provided to each microphone pair in advance or
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Algorithm 4 Particle weights consensus-based DPF algorithm

Input: X};_l, zj,

Output: 'Xﬁﬁ, wy,, X '

Initial: X§ ~ p(xo), wy =1/Ng, i =1,2,..., N,

Iteration process: k =1,2,...

1: Predict step, importance sampling (draw particles): X4 ~ p(xx|X} ;)
: Update step, update important weight: wimk = p(zmk\X};)

m,k ) )
. Calculate the @', , by average consensus: @', , ((+1) = Gum@’, ((O+ > G’ 1(€)
9 b b mle./\/-m K
5: Calculate the global particle weights wi by equation: wi = exp(M @fnk)

2
3: Taking the logarithm of local weight: wfn = In w!
4

. . Ns
6: Normalize particle weight: @}, = wj,/ }- w,

7j=1
NS . .
7. Calculate the state estimation: X, = > w; X},
i=1
8: Resampling: Compute the Ngpr = W, if Nepp < Ny, resampling the particles as
1=1 k

i ~i1N. . N,
(X Wy iz = X N%}z‘:l

Table 4.1: Particle weights consensus-based DPF algorithm

a distributed algorithm for counting the total number of nodes may be exploited) [22]
since the calculation. On the other hand, the communication requirement is related
to the number of particles since each particle weights are exchanged between neighbor
nodes in consensus step.

The particle weights consensus-based DPF algorithm is shown in Algorithm 4.

4.3.2 Posterior Parameters Consensus-based DPF

Each node utilizes its local observation to run PF to achieve the Gaussian approxima-
tion of the local posterior probability density of the state [22, 43]. Then, the parameters
of the local posterior approximation of each node are fused in a distributed manner uti-
lizing the average consensus, and finally the global posterior estimation of each node is
obtained.

Let each node m € V have the Gaussian approximation N (xj_1;Xs_1, Px_1) of

the posterior p(xx_1|z1.5-1) [13]. The progress of posterior parameters consensus-based
DPF is as follows:

(1) Prediction step: Once the estimated global mean and covariance at time k — 1
are achieved, they can be propagated through the state transition function to predict
the probability density function p(xx|z;.,—1) as
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Pz 1) = / N T T N (4.21)
~ /p(xk|xk_1)/\f (Xk;ik—lapk—l)dxk—l (422)

where the p(xy|z1.5-1) is still approximated as the Gaussian approximation since the
transition function p(xy|xx_1) is complied to Gaussian distribution,

P(Xk|Z1-1) = N (45 Rip—1, Prj—t) (4.23)

where the X1 and Pyp_q are estimated by scaled unscented transformed (UT)
method [44].

In the UT, the n, dimensional state x; is approximated by a set of 2n, + 1 weighted
samples or sigma points firstly as [11]

N A
Xo = Xp—1, Wy =

Ng+A

=X+ (Ve + A)Pk—l)isy Wi, = m, is=1,...,n, (4.24)
‘)(iernz = Xj-1 — (\/ (nx + )\)Pkfl)iy Wis+nz = ma is=1,...,ny

where the X, is the i,th sigma point associated with the weight W;_, (1/(n, + A)Pr_1);.
is the is; column of the matrix square root (Cholesky decomposition matrix) of
(ng + A)Pr_1, and the A is the scaling control parameter to adjust the distance
between the sigma points, which can be any number (positive or negative) providing
that (n, + ) # 0.
Then, each sigma point is propagated through the process model to yield a set of
transformed samples

Vi, = fu(Xi,,ug),ig =0,1,...,2n, (4.25)

The Xyx—1 and Py_; are computed as

2ng

Repo1 = Y Wi Vi, (4.26)

15¢=0

2N

Prjp—1 = Z Wi, Vise — Zipe1) (Vi — fik|k—1)T (4.27)

i5¢=0

According to (4.23), we can get the Gaussian approximation of p(xy|z1.,—1) and utilize
it as the local proposal function to sample the particles at each node at time k as [13]

i

m,k ~ Q(Xin7k|zlzk—17 Zm,k) ~ N (Xm,k; )’\(m,k\kfla Pm,k|k71> (428)

(2) Update step: Update the local particle weights based on the local observation
as
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wi = (X plZ1-1, Zmt) (4.29)
Ta(X kel Z k-1, Zo k)
Pz kX5, )X, |21 1)
q(X} | 2101, Zs k)
P(Zom o) X )N (X, Rimifo—1> Prili—1)
N (K ts; Kol o—15 Prmkji—1)
= P(Zm kX5 ) (4.32)

(4.30)

(4.31)

Then we can obtain the parameters X, and P,, ; of the Gaussian approximation
N (Xg; Kk, Pmie) of local posterior p(Xg|z1.6-1, Zmx) by

)A(m,k = Z w:‘nykxfmk (4.33)
i=1
NS . . . T

P = Z Wi (X = Fn) (Kb = Zim) (4.34)

where the .k 18 the normalized particle weights of w! ke

(3) Fusmn step The local parameters X,,, ,, and P,, ;, are fused into the parameters of
the Gaussian approximation N (xy; Xy, Py) of the global posterior p(xx|z1.x) by means of
consensus-based fusion rule. The estimation of global state vector X; and its covariance
matrix Py of x; based on merge algorithm for the linear minimum-variance unbiased
estimate in [13] are expressed as

M
J=Y Pl (4.35)
m=1
M 1 m
— (Z P;n}k> > P KXk (4.36)
m=1 m=1
M
=P,Y P L% (4.37)
m=1
Moreover, let I,4x(0) = Pl I = £ 30 Pl Ji(0) = PLliXg, Ju =

ﬁ Zn]\le P;n}kfcmk, then the I, and J; can be calculated through average consensus

algorithm with finite consensus iterations

Loi(C+ 1) = GumIma(D) + D Com L i (0) (4.38)
m'€Nm
m/'€Nm
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Finally, the estimation of global state vector X; and its covariance matrix P, of x
is

-
P, = Mlkl (4.40)
xp =1 'J ! (4.41)

However, computing the covariance matrix Py in (4.40) is still needed to be provided
the total number of microphone pairs in the distributed network, which reduces the
network scalability. Therefore, we can calculate the covariance matrix P, at each
node individually when we obtain the global estimate of state x; in (4.41) after fusion
step as

Ns
P = D O (X = %) (X = %) (4.42)
i=1

The posterior parameters consensus-based DPF algorithm is shown in Algorithm
5. Compared with the common particle filtering algorithm, the posterior parameters
consensus-based DPF algorithm does not need the resampling process since it adopts
the Gaussian approximation to sample the particles which reduces the computational
complexity.

Algorithm 5 Posterior parameters consensus-based DPF algorithm
Input: x;_1, Py -1, Z
Output: x;, P, 1,
Initial: Xg, Py, 7=1,2,..., N;
Iteration process: k =1,2,...

1: Unscented transform: utilize the xx_; and Py, ;1 to calculate the Xy ;1 and Py, px—1
via UT method

2: Predict step, importance sampling (draw particles): X! , ~ N (xm,k; Kon klk—1 Pm7k|k_1)
3: Update step, update particle weights: w? , = p(zy,£|X? ;)

) o Ns o
4: Normalize particle weight: @}, = w} / Zl wy,

]:

Obtain the local parameters X, and P, ; via (4.33) and (4.34)
Calculate the average consensus iterations in (4.38) and (4.39)
Estimate the global state x5 by equation (4.41)
Compute the covariance matrix P, ;, at each node by equation (4.42)

Table 4.2: Posterior parameters consensus-based DPF algorithm
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4.4 Adaptive Distributed Particle Filtering with Variable
Sample Set Size through KLD-sampling

As mentioned in the previous chapter, the sample set of the particle filtering can be
adaptively adjusted during the sampling progress. Therefore, we can insert the KLD-
sampling algorithm in Algorithm 6 into the sampling step in which ank is generated
in Algorithm 4 and Algorithm 5.

Algorithm 6 KLD-sampling algorithm
Input: {Xi_l}jy:s’lk_l, Z, €, 0, A, Npin

Output: {X}C}fvzsl’“
Initial: Ns,k =0, Ngkrp =0, Ngg=0,71=0

1: while (Ns,k < Nkrp or Ns,k < Nmm) do

2 Ns,k = Ns,k +1

3 1= Nng

4 Sample a particle with weight with index j from the set Sp_;
5: Predict step, importance sampling: X} ~ q(x;|X7_,,z)

6 if X}; falls into empty bin b then

7 Nps = Nps+1
8 b = non-empty
9 NkLD = 2:XR5-1,1-5
10: end if
11: end while

Table 4.3: KLD-sampling algorithm

4.5 Simulation Results

In this section, the performance of the speaker tracking algorithm in distributed manner
is demonstrated.

4.5.1 Simulation Setup

Same as the previous chapter, the environment conditions and signal characteristics
are consistent with the previous chapter. The communication graph of the distributed
microphone network is shown in Figure 4.1, each microphone pair (node) can only
communicate with its neighboring nodes.

For the consensus-based DPF algorithm, the initial mean and covariance are ac-
cording to the Gaussian distribution near the truth, that is, the prior distribu-
tion of the speaker state satisfies the Gaussian distribution N (x;xg, Po), where
xo = [1,2.5,0.01,0.01]" and Py = diag([0.05,0.05,0.0025,0.0025]) [25].
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Figure 4.2: RMSE of different consensus iterations in consensus-based DPF for speaker track-
ing.

4.5.2 Simulation Results

In this section, we will present some experiments of speaker tracking in distributed
methods and compare its performance of tracking speaker with centralized approaches
including adjusting the sample size utilizing KLD-sampling algorithm.
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Figure 4.3: Speaker tracking results with SNR=20dB.

4.5.2.1 Convergency of DPF based on consensus

Figures 4.2(a) and 4.2(b) indicate both the two consensus-based DPFs converge with
the increase number of iterations. We can see that, as expected, better performance
is achieved for a larger number of consensus iterations. That is, we can adopt the
average consensus algorithm to reach an agreement on some certain parameters for
tracking sound source in the distributed networks. In addition, the tracking accuracy
of the particle weights consensus-based DPF (W-C-DPF) outperforms the posterior
parameters consensus-based DPF (P-C-DPF) since the W-C-DPF shares the identical
particles at each node. The improvement is not significant for more than eight iterations
for the W-C-DPF while the number of iterations is about four for the P-C-DPF.

4.5.2.2 Comparisons of different speaker tracking algorithms

Figure 4.3 and Figure 4.4 present the speaker tracking results based on different meth-
ods when SNR is 20dB. The six approaches composed of three methods with 500 fixed
particles: SIR-CPF in a centralized manner, the W-C-DPF, the P-C-DPF, and their
adaptive methods which adjust the sample set size utilizing KLD-sampling algorithm
named SIR-CPF-KLD, W-C-DPF-KLD, and P-C-DPF-KLD, respectively.

From Figure 4.3(a) and Figure 4.3(b) we can see that all the algorithms can suc-
cessfully track the speaker trajectory in two dimensions which means all the algorithms
proposed in this chapter can be worked for tracking the speaker in distributed micro-
phone networks.

Moreover, Figure 4.4 represents the adaptation of sample size during the tracking
progress based on particle filtering algorithm. The results in Figure 4.4(b) and Figure
4.4(c) demonstrate that the particle weights consensus-based DPF algorithm can exploit
the KLD-sampling method to adaptively adjust the sample size. The average number
of particles is significantly reduced while there is not an obvious rise in the RMSE value
through the P-C-DPF-KLD algorithm. It can effectively decrease the communication
burden since at each consensus step all the weights need to exchange with neighboring
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Figure 4.5: Speaker tracking results versus SNR

nodes. The results of the RMSE of W-C-DPF algorithm and SIR-CPF are quite similar,
the slight difference caused by insufficiently converged consensus algorithm.

In Figure 4.4(a), we can see that the number of particles with the P-C-DPF-KLD
method quickly reached the set limit and remained constant. Although the performance
of adaption in the P-C-DPF-KLD is not as well as the W-C-DPF-KLD method, the
KLD-sampling can also be employed as a method to adapt the sample size combined
with the posterior parameters consensus-based DPF. Because the posterior parameters
consensus-based DPF dose not require all the microphone pairs to be synchronized,
this method is much suitable to implement in reality.

4.5.2.3 Comparisons of different SNR conditions

In this simulation, we change the parameter error bound from ¢ = 0.15 to ¢ = 0.1
since the previous value was obtained in a low noise environment. In order to satisfy
the severe noise environment, we could set a tighter error bound of the KLD-sampling
algorithm.

The effect of noise on the tracking performance is also evaluated for the six different
tracking methods. Results from Figure 4.5 illustrate that all the approaches achieve
better tracking accuracy as the SNR level increases since the observations extracted
from the received signal at each microphone are more reliable with the larger the SNR
(less noise interference).

From Figure 4.5(a) we can see that the RMSE results of the all algorithms are
large when the noise effect is severe, and it decreases as the SNR value increases. The
performance of the SIR-CPF and W-C-DPF are similar and better than the P-C-DPF.
However, the SIR-CPF-KLD algorithm shows the largest tracking error when the SNR
is very low whereas the W-C-DPF-KLD performs best which infers it is more robust
against noise.

Figure 4.5(b) indicates the number of particles in different SNR conditions. Al-
though the number of particles does not change significantly with different noise envi-
ronments, it can still be seen that W-C-DPF-KLD is an effective tracking algorithm.
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Specifically, in a high SNR environment, the SIR-CPF-KLD method could obtain a
good tracking result with fewer particle numbers; however, in a low SNR environment,
it cannot significantly boost the number of particles to effectively track the speaker.
On the other hand, although the W-C-DPF-KLD utilizes more particles than the SIR-
CPF-KLD, the W-C-DPF-KLD performs better and is more robust in severe noise
environment.
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Conclusions and Future Work

5.1 Conclusions

In this thesis, two methods based on particle filter algorithm for tracking speaker in dis-
tributed pairwise microphone networks were proposed and adjusted by KLD-sampling
approach in terms of adapting the number of particles.

In Chapter 2, the general frameworks including the acoustic source motion model,
signal model and observation model in speaker tracking problem were introduced.

In Chapter 3, the particle filter algorithm has been studied in a centralized manner,
which is suitable to track the sound source in a reverberant and noisy environment.
The drawback of the required amount of particles should be set in advance according
to prior experience is not well suitable for practical application of speaker tracking
problem. To handle this problem, the KLD-sampling method was presented to adjust
the number of particles during the particle filtering process instead of setting fixed
number. The experimental results showed that the comparisons of different settings of
KLD-sampling and the validity of acoustic source tracking based on adaptive particle
filtering algorithm with variable sample set size within an acceptable error range.

In Chapter 4, two distributed particle filter (DPF) algorithms were proposed and
modified, the particle weights consensus-based DPF and the posterior parameters
consensus-based DPF approaches. The particle weights consensus-based DPF method
shares the identical set of particles to execute the local PF, which requires that the ran-
dom number generators are synchronized at each microphone pair, while the posterior
parameters consensus-based DPF approach exploits different sets of particles and the
synchronization of random number generators is not required. We developed the pos-
terior parameters consensus-based DPF method such that we did not need to provide
the total number of microphone pairs in the distributed networks. The KLD-sampling
was also applied to these two DPF algorithms to dynamically adjust the number of
particles. Especially for the particle weights consensus-based DPF method, the num-
ber of particles is a critical factor which affects the complexity of computation in the
data fusion process since the microphone pairs exchange all the local particle weights
with their neighboring nodes. The simulations proved that these two algorithms are
feasible to track the acoustic source in distributed microphone networks. The tracking
accuracy of the particle weights consensus-based DPF method outperformed the pos-
terior parameters consensus-based DPF approach. On the other hand, the posterior
parameters consensus-based DPF approach held less communication burden and no
synchronized generators required, which is more practicable in practice.
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5.2 Future Work

Future research could be aimed in the following directions.

In this thesis, a framework for the speaker tracking using distributed pairwise mi-
crophone networks in a noisy and reverberant environment was tested. The work has
been verified on some simulations, but further testing is needed to test the effectiveness
and robustness of the proposed algorithms in real-life situations.

In addition, the parameters of KLD-sampling in this thesis are selected according
to the fixed situation. Further study on how the parameters adaptively change with
the environment is needed.

Furthermore, the speaker state utilized in this thesis only considers the spatial
position and velocity information, which has a low dimension. In practical applications,
higher-dimensional speaker states can be used and appropriate motion models can be
selected as well, and the effect of increased state dimensions on the performance of the
tracking algorithm can be researched.

Finally, this thesis focuses on the tracking problem of a single speaker. In practice,
when multiple speakers appear in the room at the same time, the motion trajectory
of each speaker needs to be estimated separately. The multi-speaker tracking problem
could be a further research direction.
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