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Abstract. Fully distributed hydrological models take into ac-
count the spatial variability of a catchment, and allow for
assessing its hydrological response at virtually any loca-
tion. However, these models can be time-consuming when
it comes to model runtime and calibration, especially for5

large-scale catchments. Meanwhile, deep learning models
have shown great potential in the field of hydrological mod-
elling, but a multivariable, fully distributed hydrological deep
learning model is still lacking. To address the aforemen-
tioned challenges associated with fully distributed models10

and deep learning models, we explore the possibility of
developing a fully distributed multivariable deep learning
model by using Graph Neural Networks (GNN), an exten-
sion of deep learning methods to non-Euclidean topologies.
We develop a surrogate model of wflow_sbm, a fully dis-15

tributed, physics-based hydrological model, by exploiting the
similarities between its underlying functioning and GNNs.
The GNN model uses the same input as wflow_sbm: grid-
ded static parameters based on physical characteristics of
the catchment and gridded dynamic meteorological forcings.20

The GNN model is trained to approximate wflow_sbm out-
puts, consisting of multiple gridded hydrological variables
such as streamflow, actual evapotranspiration, subsurface
flow, saturated and unsaturated groundwater storage, snow
storage, and runoff. Our results show that the GNN model25

accurately predicts multiple hydrological variables in unseen
catchments (median KGE=0.76), and can serve as an emu-
lator of wflow_sbm with a shorter runtime. We furthermore
demonstrate how the GNN model can function up to a pre-
diction horizon of a full year, using physical system states to30

account for system memory, as well as a curriculum learn-
ing strategy combined with a multi-step ahead loss function

during training. Overall, this study contributes to the field of
fully distributed modelling using a deep learning approach.

1 Introduction 35

Hydrological models play a pivotal role in understanding
and managing water resources by simulating the complex
interactions within hydrological systems, aiding in forecast-
ing, planning, and decision-making processes. To do so,
these models use data on (meteorological) forcings and the 40

physical characteristics of the system as input, and pre-
dict the hydrological response. Hydrological models can be
lumped, semi-distributed, or fully distributed. Lumped mod-
els consider the catchment as a single unit, assuming all in-
put and output to be uniformly distributed (Beven, 2012). 45

Semi-distributed models divide the catchment into multiple
subcatchments based on relevant characteristic (Refsgaard,
1996). Fully distributed models go a step further and dis-
cretize the catchment into a grid, enabling a detailed repre-
sentation of a catchment’s spatial variability (Chen, 2019). 50

Furthermore, they allow for an assessment of the hydrologi-
cal response of a catchment not only at the outlet, but at every
grid cell within the simulated region. (Francés et al., 2007).

1.1 Limitations of fully distributed models

Because of their more detailed representation of the catch- 55

ment compared to lumped and semi-distributed models, fully
distributed generally have more parameters (Beven, 1989).
As a result, the runtime if often also longer and calibra-
tion is more difficult (Khakbaz et al., 2012). Especially for
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large-scale catchments, the runtime can be problematic if one
wants to model many different scenarios or longer time peri-
ods (Gichamo et al., 2020).

Nevertheless, fully distributed hydrological models are fa-
vored for their versatility and applicability across various do-5

mains, such as flood prediction (e.g. Garrote and Bras, 1995;
Liu et al., 2005; Blöschl et al., 2008; Mendoza et al., 2012;
Chen et al., 2017), drought prediction (e.g. Liuzzo et al.,
2009; Mishra and Singh, 2011; Zhao et al., 2016; Ameli
and Creed, 2019), groundwater resources management (e.g.10

Seibert et al., 1997; Kollet and Maxwell, 2006; Seo et al.,
2018; Dai et al., 2021), sediment management (e.g. Hui et al.,
2014; Giardino et al., 2018), assessing evaporation, transpi-
ration, and soil moisture (e.g. Barling et al., 1994; Chen et al.,
2005; López et al., 2017; Wanders et al., 2014), water qual-15

ity management (e.g. Richards et al., 1996; Rode et al., 2010;
Gao and Lo, 2015) and snow modelling (Dunn and Colohan,
1999; Bhatti et al., 2016; Dong, 2018; van Verseveld et al.,
2022). Given the wide range of applications for fully dis-
tributed, and given their long runtimes, the need exists for a20

rapid implementation of a fully distributed model.

1.2 Fully distributed multivariable modelling with
deep learning

Deep learning (DL) models, a type of data-driven model
based on artificial neural networks, have gained increasing25

interests in hydrological modelling (Shen, 2018; Sit et al.,
2020). Studies investigating the use of deep learning mod-
els within hydrology have shown promising results (Xu and
Liang, 2021). Various types of deep learning models, such as
Long-Short-Term Memory (LSTM) models, Convolutional30

Neural Networks (CNN), Transformers, Attention Models,
Generative Adversarial Networks (GAN), and Graph Neural
Networks (GNN) have successfully been used for predict-
ing different hydrological variables, such as water quality,
streamflow, water temperature, groundwater, floods, and soil35

moisture (Tripathy and Mishra, 2024; Sit et al., 2022). De-
spite all the advances made in the field, so far no fully dis-
tributed multivariable deep learning model has been devel-
oped.

Multivariable models provide several advantages over40

single-variable models. Firstly, a models capacity to accu-
rately predict multiple variables is a confident indicator that
the model captures the occurring processes in the catch-
ment well. In contrast, a single-variable model may pre-
dict its one variable with great accuracy, but it may do so45

for the wrong reasons (Beldring, 2002). Secondly, multi-
variable deep learning models may be less of a black box
compared to their single-variable counterparts. Contrary to
physics-based models and conceptual models, deep learn-
ing models yet provide little understanding of the catchment50

and their parameters and equations are difficult to interpret
(Reichstein et al., 2019). In recent years, efforts have been
made to improve the interpretability of deep learning mod-

els. Such efforts include investigating model states (Kratzert
et al., 2019), differentiable models (Bindas et al., 2022), and 55

using neural ODE models (Höge et al., 2022). Developing a
multivariable deep learning model can contribute to this ef-
fort. The internal parameters and equations of a multivariable
deep learning model may yet have litte physical meaning.
However, if multiple storages and fluxes within the catch- 60

ment can be assessed, the behaviour of the catchment can be
understood more easily.

Given the potential of DL models, the use of fully dis-
tributed in a wide range of applications, and the advantages
of multivariable models over single-variable models, there is 65

an opportunity to develop such a fully distributed multivari-
able deep learning model.

1.3 Fully distributed modelling with GNNs

This paper addresses the aforementioned issues associated
with fully distributed models and deep learning models with 70

graph neural networks (GNN). They are a type of deep learn-
ing technique capable of operating on non-Euclidean data
(Zhou et al., 2020). A graph consists of nodes, which are
connected to each other by edges. Each node has properties
known as the node embeddings. In a GNN, nodes can ex- 75

change information with each other and subsequently update
their embedding via a process called message-passing. We
hypothesize that GNNs are suitable for hydrological mod-
elling, because their functioning offers the possibility to de-
sign a model that mimics the behaviour of catchments. Dif- 80

ferent parts of the catchment can be represented by differ-
ent nodes, and these different parts are connected to each
other via the river network, just as the nodes are connected
to each other by edges. Furthermore, in a catchment an event
occurring in one region can influence also other regions of 85

the same catchments, i.e. snow melt in an upstream part of
the catchment may lead to increased discharge downstream.
Similarly, the embeddings of one node can be influenced by
another node via message-passing. The capacity of a GNN
to update the embeddings of all nodes renders it a highly 90

suitable candidate for fully distributed modeling. Further-
more, the fact it can update multiple embeddings at a single
node, means it is capable of predicting multiple variables.
We therefore hypothesize that GNNs are a viable candidate
for a fully distributed, multivariable, hydrological deep learn- 95

ing model. We furthermore hypothesize GNNs can achieve a
significant speedup compared to traditional fully distributed
models, as GNNs have been shown to be fast emulators (e.g.
Bentivoglio et al., 2023; Choi and Kumar, 2024).

Additionally, as a GNN can exploit the inductive bias of 100

a graph to generalize to unseen graphs (Yang et al., 2023),
they should be well-suited for generalizing to unseen catch-
ments. This spatial transferability implicates the model can
be utilized outside the geographic domain it was originally
trained on. It is particularly relevant for prediction in un- 105

gauged catchments (Hrachowitz et al., 2013), and further-
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more considered a more stringent test than temporal trans-
ferability (Klemeš, 1986; Merz and Blöschl, 2004; Parajka
et al., 2005), even though the latter is more common (Gao
et al., 2016). Overall, spatial transferability is seen as a more
confident indicator of accurate representation of the hydro-5

logical processes at play (Blöschl et al., 2011; Gupta et al.,
2014). This is especially relevant for deep learning models,
given their black-box nature and the fact that little to no
physics is usually embedded (Li et al., 2022).

1.4 Related studies on fully distributed modelling with10

GNNs

GNNs have already been used successfully for fully dis-
tributed hydrological modelling. For instance, Sun et al.
(2022) presented a GNN-based model for fully distributed
operational streamflow forecasting, employing a pre-training15

phase on a physics-based model followed by fine-tuning with
observational data. Similarly, Jia et al. (2021b) proposed a
fully distributed physics-guided recurrent graph model ca-
pable of predicting both streamflow and water temperature,
integrating pre-training on a physics-guided model alongside20

observational data assimilation. Xiang and Demir (2022) pre-
sented a physics-informed fully distributed model based on
graph neural networks to predict runoff. (Liu et al., 2022) de-
veloped a graph deep neural network to predict the lumped
streamflow seven days ahead. Additionally, Bai and Tah-25

masebi (2023) tilized a GNN to forecast groundwater levels
across multiple wells in Canada. While these initial works
show promising results for GNNs, none of the developed
models were tested for generalization to unseen catchments.

We would also like to highlight two papers that did not30

employ GNNs, but that are worth mentioning nonetheless.
(Maxwell et al., 2021) trained different types of CNNs on an
integrated hydrologic model to fully distributed the pressure
head in a fully distributed fashion. Although the CNNs pre-
dicted only a single variable in a 25 by 25 meter synthetic35

catchment, they were capable of producing accurate results
in unseen catchment. (Tran et al., 2021) proposed a predic-
tive recurrent neural network, which was also trained on an
integrated hydrological model. They showed their proposed
model is capable of multivariable, fully distributed hydrolog-40

ical modelling, but did not test on unseen catchments. Hence,
we draw the conclusion that, to the best of our knowledge,
there exists no fully distributed multivariable hydrological
model capable of generalizing to unseen catchments.

The objective of this research is to explore the poten-45

tial of GNNs for the task of fully distributed multivariable
hydrological modelling. This objective can be subdivided
into three key facets. First, we aim to assess the perfor-
mance capabilities of GNNs. Second, we investigate their
runtime efficiency. And third, we seek to identify suitable50

model architectures and training configurations. To address
these questions, we develop a GNN-based surrogate model
of wflow_sbm, a physics-based fully distributed hydrologi-

cal model developed at Deltares (van Verseveld et al., 2023).
By training the GNN model on a physics-based model, we 55

mitigate some challenges arising from limited observation
data availability. Furthermore, we hypothesize that by train-
ing the GNN model on a physics-based model, it can learn
the embedded physics, and is better capable of generalizing
to unseen catchments compared to models directly trained 60

on observations (Jia et al., 2021a). The GNN is trained to
approximate ten gridded output variables from wflow_sbm,
covering different hydrological processes such as streamflow,
snow pack, subsurface flow, saturated and unsaturated wa-
ter storage, runoff, and actual evapotranspiration. The model 65

is tested in unseen catchments, with performance assessed
through a diverse ensemble of metrics. The remainder of this
paper is structured as follows. Section 2 details the theory
behind graphs and graph neural networks. Section 3 illus-
trates how to use GNNs specifically for the task of hydrolog- 70

ical modelling. Section 4 describes the experimental setup. In
Section 5 the results are shown. Finally, Section 6 discusses
the results and suggests a pathway for future work.

2 Theoretical background

This section gives a brief introduction into graph theory and 75

Graph Neural Networks, including the relevant mathemat-
ical notations. We refer to the work of Sanchez-Lengeling
et al. (2021) for a more general and complete introduction
into graph theory and GNNs, and to the work of Daigavane
et al. (2021) for a complete overview of the different types 80

of GNNs. Next, we introduce the fully distributed hydrologi-
cal modeling framework wflow_sbm. The section concludes
with a discussion on deep learning models and catchment
memory.

2.1 Graph theory 85

A graph G is a mathematical structure that consists of nodes,
connected to each other by edges. The set of all N nodes
is denoted as V = {vi}Ni=1, where vi is the i-th node. The
set of all E edges is denoted as E = {eij}, where edge eij
connects node pair (vi,vj), for vi ∈ V and vj ∈ V . A graph, 90

with its nodes and edges, is thus denoted as G(V,E). The
neighbourhood N of node vi is the set of all nodes directly
connected to vi, so N ∈ V . The neighbourhood of node vi
can be denoted as N (vi) = {vj ∈ V |(vi,vj) ∈ E}.

Each node has certain properties called node features, 95

which can be expressed by a node feature vector xi ∈ RD,
whereD is the number of node features. The features of allN
nodes can be combined into node feature matrix X ∈ RN×D,
where each column represent all features of a single node,
and each row represents a single features for all nodes. Simi- 100

lar to nodes, edges can also have features. Every edge has P
features, and the features of edge eij are denoted as eij ∈ RP .
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The features of all edges can be combined into edge feature
matrix E ∈ RE×P .

Connections between nodes can be indicated by the set
of edges E , but the adjacency matrix A ∈ RN×N can also be
used. If an edge exists between node vi and vj , element aij of5

the matrix is 1; if no edge exists it is 0. If eij is bidirectional,
aij = aji = 1, but if it is unidirectional aij = 1 ̸= aji = 0.
Nodes can also be connected to themselves, in which case
the adjacency matrix is denoted as Ã=A+ I. In practice,
a normalized version of the adjacency matrix is often used,10

which is defined as

Â= D̃(−1/2)ÃD̃(−1/2) (1)

Here, D̃ is the diagonal matrix containing the node degrees of
Ã. This normalized version of the matrix is used to improve
the numerical stability (Kipf and Welling, 2016).15

If node vi is connected to node vj , it can send a message
mij to vj . The message depends on the node features of both
nodes, and the features of the connecting edge. The message
is computed as

mij = ψ(xi,xj ,eij) (2)20

Based on the messages a node receives, it can update its node
features according to

hi = σ

(
xi, ⊕

vj∈Ni

mij

)
(3)

where hi are the hidden states, which represent the updated
node features of node vi. σ(·) is some function used to in-25

troduce non-linearity, and can be a non-learnable activation
function, as well as a multi-layer perceptron (MLP). ⊕(·)
is some function aggregating all messages from the neigh-
bours vj ∈N (vi) of node vi. All nodes simultaneously send
messages, receive messages, and compute their hidden states.30

The process of sending, receiving, and hidden state compu-
tation is also called message-passing (Battaglia et al., 2018).

2.2 Graph Neural Networks

A Graph Neural Network is a type of deep learning model
that can be applied to graph-structured data. They can be35

seen as a more general type of Convolutional Neural Net-
work, able to operate in non-Euclidian space (Zhou et al.,
2020). A GNN consists of a total of L layers, where each
layer is a repetition of the process of message-passing, each
time with updated hidden states. By combining Equation (2)40

and Equation (3), we can write the l-th layer as

hl+1
i = σ

(
hl
i, ⊕

vj∈Ni

ψ(hl
i,h

l
j ,eij)

)
(4)

where hl
i are the hidden states of node vi at the l-th layer.

The dimension of hl
i can be different than that of hl−1

i , and
is denoted asDl. Note that h0

i ≡ xi. Equation (4) is the same45

for all nodes in the graph. The number of parameters thus
does not increase with more nodes, meaning GNNs do not
suffer from the "curse of dimensionality" common to some
other types of machine-learning models (Poggio et al., 2017).
We can write Equation (4) also at the graph level, like 50

Hl+1 = f(Ã,Hl,E) (5)

where Hl ∈ RN×Dl is the hidden state matrix at the l-th
layer, and f(·) is the message-passing function. Again, at the
first layer the node features are used, so H0 ≡X.

The hidden states hl
i of node vi at the l-th layer depend on 55

the hidden states hl−1
i of its direct neighbours vj ∈N (vi) at

layer l− 1. However, these hidden states of its neighbours at
layer l−1 in turn depend on the hidden states of their neigh-
bours at layer l−2. Thus, in a GNN withL layers, the original
node features xi of node vi can propagate to nodes that are 60

at most L steps removed from it, also known as the L-hop
neighbourhood.

The output of the last layer HL is also the output of the
GNN. All layers of the GNN combined can be written as

HL =Φ(X,E,A) (6) 65

where Φ(·) denotes a sequence of learnable GNN layers. The
GNN can be given some input, and trained to let its output ap-
proximate some target. The target vector and prediction vec-
tor of node vi are denoted as yi ≡ hL

i ∈ RO and ŷi ∈ RO, re-
spectively. Here,O is the number of output variables. The tar- 70

get matrix and prediction matrix are denoted as Y ∈ RN×O

and Ŷ ≡HL ∈ RN×O, respectively. The error between the
predictions and the targets is computed according to

L= J(Ŷ,Y) (7)

where L denotes the loss and J denotes some loss function. 75

The gradients of the loss indicate how the loss would change
with small changes to the parameters of the GNN. Through
backpropagation, the parameters of the GNN are adjusted as
to minimize L.

The general message-passing layer given in Equation (4) 80

knows many modifications (Zhou et al., 2020). Furthermore,
many different types of layers can be added before, in-
between, or after the message-passing layers, and there are
various ways to connect layers with each other. Additionally,
different configurations are possible when training a GNN. 85

The hyperparameter search encompasses the identification of
the optimal GNN architecture and the refinement of the train-
ing configuration.

2.3 wflow_sbm

We train the GNN model on wflow_sbm, a fully distributed, 90

physics-based hydrological model (van Verseveld et al.,
2022). It is written in the Julia language and part of the wflow
modelling framework. In wflow_sbm, a catchment is divided
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Figure 1. The concept of wflow_sbm visualized for a small caatch-
ment. The catchment is divided into grid cells, and a routing scheme
is derived from the elevation of each gridcell.

into grid cells, which are connected to each other via a rout-
ing scheme based on the elevation and the slope. Each grid
cell contains its own static parameters, representing the phys-
ical characteristics in that area, its own forcings, and its own
storages and fluxes. Each cell can receive lateral fluxes, such5

as overland flow, river discharge, and subsurface flow, from
upstream cells. Within this lumped grid cell model, the verti-
cal fluxes are then modelled, such as snowfall, rainfall, evap-
oration, transpiration, infiltration, capillary rise, and snow
melt. The different storages within the cell, such as saturated10

storage, unsaturated storage, land storage, snow storage, and
interception storage, are updated, and the cell then generates
lateral fluxes for downstream cells. The process of receiving
input from upstream cells and forcings, updating storages,
and generating output for downstream cells is repeated for15

each timestep. Figure 1 visualizes the concept of wflow_sbm
is visualized in .

2.4 Memory of catchments

The hydrological response of a catchment to forcings often
has a strong temporal componenent, and hydrological mod-20

els need to consider this component. For example, if the soil
is completely saturated because of previous rainfall events,
a next rainfall event will generate a large amount of runoff,
whereas a rainfall event occurring after a period of drought
might generate no runoff at all. The state of the catchment25

thus partially influences its response to forcings, and the
GNN model has to take this phenomenon into consideration.

There are two common ways for a hydrological model to
account for this temporal component (Gharari and Razavi,
2018). The first method is to include storages into the model, 30

adding them to the model input and thus supplying it with
information on the state of the catchment. The storages fur-
thermore provide extra information about the catchment and
its behaviour to the user. However, since there is often lit-
tle observation data available on the storages (McCabe et al., 35

2017), the model has to be capable of predicting the storages
auto-regressively by itself. It is therefore a method mostly
used by conceptual and physics-based models, wflow_sbm
included. LSTM models use this approach as well in the
form of cell states, although these do not explicitly repre- 40

sent a physical component of the catchment (Kratzert et al.,
2022).

The second method is to provide the model with a his-
tory of forcings, enabling the model to assess the state of the
catchment indirectly. Explicitly adding some form of mem- 45

ory to the model is thus avoided (e.g. Sun et al., 2022),
which can be challenging especially for data-driven models
lacking any physics. However, the lag time between a forc-
ing event and the hydrological response can be more than a
year, depending on the processes at play (De Lavenne et al., 50

2022). This implies that the supplied history should be of
the same order of magnitude. That would in turn result in
large amounts of input data, which increases model runtime
(Vivoni et al., 2011). Furthermore, no additional information
on the state and behaviour of the catchment is provided by 55

the model to the user. Nonetheless, many data-driven models
use this approach, since they often lack the physics to model
catchment storages, and observation data on storages is gen-
erally not available (Kashinath et al., 2021).

3 Hydological modelling with GNNs 60

3.1 GNN architecture

We propose a GNN inspired by wflow_sbm. We discretize
the grid cells of wflow_sbm into a graph, using the D8 local
drainange direction to define the edges. The physical charac-
teristics of a grid cell are represented by the static node fea- 65

tures xs,i of node vi. The forcings in a grid cell at time t are
represented by the dynamic forcing features xt

f,i of the cor-
responding node vi. The storages and fluxes of a grid cell at
time t are represented by the targets yt

i , and the GNN’s pre-
dictions of these storages and fluxes are denoted as ŷt

i. The 70

connections between grid cells are represented by edges, and
the characteristics of the connection (its slope and length)
are represented by the edge features eij . As suggested by
You et al. (2020), we employ a encoder-processor-decoder
architecture; the GNN acts as the processor, and the encoder 75

and decoder are both Multi-Layer Perceptrons (MLP), which
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consist of multiple linear layers with activation functions in-
between. Figure 2 shows the GNN architecture.

Two encoders are used, one for the node features and one
for the edge features. They increase the dimensionality of the
input data, allowing for a higher expressivity (Bentivoglio5

et al., 2023). The edge encoder is defined as

E ′ = ϕe(E) (8)

where E ′ ∈ RP×D0 is the encoded edge feature matrix and
ϕe(·) is the edge encoder. The node encoder is defined as

H0 = ϕx(X
t) (9)10

where H0 ∈ RN×D0 is the encoded node feature matrix,
ϕx(·) is the node encoder, and Xt is the node feature ma-
trix at timestep t. The GNN with L layers is defined as

HL =Φ(H0,E ′,A) (10)

We opt for letting the GNN predict the change relative to15

the previous timestep, instead of having it predict the abso-
lute value. This is inspired by traditional hydrological mod-
els; these commonly do no predict the absolute storages of
the catchment directly. Instead, they predict the occurring
fluxes, and simply update the storages based on these fluxes.20

The GNN uses a similar approach, by predicting the change
instead of the absolute value for all variables, storages and
fluxes alike. Deng et al. (2024) achieved improved perfor-
mance using this method.

The decoder is defined as25

Ŷ
t+1

= Ŷ
t
+φ(HL) (11)

where φ(·) is the decoder, transforming the embedded pre-
dictions from the GNN-processor to hydrological variables.
Combining Equations (8) to (11) we get

Ŷ
t+1

= Ŷ
t
+φ

(
Φ(ϕx(X

t),ϕe(E),A)
)

(12)30

In general, more complex GNNs tend to result in bet-
ter performance, but at the expense of increased computa-
tional costs due to the higher number of parameters. (Li
et al., 2019). The number of parameters of a GNN is pre-
dominantly determined by the dimensions of the embeddings35

Dl at each layer l and the total number of layers L. In-
creasing the number of layers in the GNN enables nodes
to indirectly exchange information with more distant nodes
within the network. This is particular relevant for hydrolog-
ical modelling, as water in a catchment can traverse signif-40

icant distances in a short timeperiod. The number of layers
in a GNN should be sufficient to encompass the influence
radius that a region can exert within the given timestep. As
the model timestep increases, water can potentially flow over
longer distances within that timestep, affecting other areas45

of the catchment. Hence, with coarser temporal resolutions,
the GNN requires more layers to adequately capture all rel-
evant processes. Conversely, fewer layers are required as the
spatial resolution is reduced. With the same number of hops,
information from a node has traversed a greater distance.50

3.2 Training strategy

The node feature matrix Xt at timestep t is defined as

Xt =
[
Xa Xt−p:t

f Ŷ
t−q:t

]
(13)

where Xa is the static feature matrix, Xt
f is the dynamic

forcing matrix at time t, p is the lookback window for the 55

forcings, Ŷ
t

is the prediction matrix at timestep t, and q is
the lookback window for the storages and fluxes. The GNN
model thus accounts for catchment memory both by includ-
ing storages and by taking a history of forcings as input.
However, we limit the length of the forcing history, as to con- 60

strain the size of the input data and reduce the computational
costs. Therefore, the GNN model is predominately relying
on the storages to account for catchment memory. The short
history of forcings can nonetheless be utilized by the GNN
model to introduce a temporal aspect to the input data and 65

harness knowlegde of previous timesteps (Bentivoglio et al.,
2023). For the same reasons, the GNN model is supplied with
not just the storages and fluxes of the last timestep, but of
multiple previous timesteps. Although the GNN model ini-
tially lacks the physics to model the storages, it can approx- 70

imate the physics as encoded in wflow_sbm during training.
Furthermore, the storages provide us with extra information
and enable us to compute the water balance. We hypothesize
this balance between the two approaches enables the GNN
model to reach optimal performance without a significant re- 75

duction in running time.
The storages and fluxes used as input by the GNN model

are initially given by wflow_sbm. With these inputs the GNN
model makes a prediction for the next timestep. These pre-
dictions, in turn, serve as inputs for the following timestep. 80

Consequently, the GNN model uses its own output from
timestep t as input for timestep t+1. Following q timesteps,
the input storages and fluxes are exclusively based on the
GNN model’s output. This auto-regressive process continues
until reaching the prediction horizon T . Figure 3 shows the 85

input and output of the GNN model for various timesteps.
Given the autoregressive nature of the GNN model, train-

ing across multiple timesteps poses computational chal-
lenges and may compromise stability, particularly for larger
values of T . To overcome these limitations, we employ a 90

multi-step-ahead loss function together with a curriculum
learning strategy similar to Bentivoglio et al. (2023). The
multi-step-ahead loss function evaluates the cumulative error
across several successive timesteps, and is defined as

L=
1

T O

T∑
t=0

O∑
o=1

{
1
2 (y

t
o − ŷt

o)
2 if

∣∣(yt
o − ŷt

o)
∣∣< δ

δ((yt
o − ŷt

o)− 1
2δ) otherwise

(14) 95

where δ is a threshold parameter. For each timestep t, the
output of the GNN model is evaluated against the output of
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Figure 2. Overview of the encoder-processor-decoder architecture. The physical characteristics of the catchment, the connection attributes,
the forcings, and the states and storages are discretized into the static node features xs,i, the edge features eij , the dynamic node forcings
xt
f,i, and the node predictions ŷt

i , respectively, and used as input into the model (blue box). The model then makes a predictions for
the states and storages for the next timestep t+1; this process is then repeated autoregressively, using the predicted output as input for
the next timestep. The black box shows the encoder-processor-decoder architecture of Equation (12). First, the model inputs are encoded
by the MLPs ϕ(·)x and ϕ(·)e according to Equations (8) and (9), resulting in a higher dimension embedding of the node features H0

(RN×D → RN×D0 ) and the edge features E ′ (RE×P → RE×D0 ). The encoded input is then processed by the GNN Φ(·) with L layers
according to Equation (10), resulting in a embedded prediction of the change in storages and fluxes HL. This embedded prediction is then
decoded by the decoder according to Equation (11), resulting in the prediction of the states and storages Ŷ

t+1
at timestep t+1. This figure

is adapted from Bentivoglio et al. (2023).

Figure 3. The input and output of the GNN model for several timesteps. As input, the GNN model uses the connection attributes, the static
attributes, the forcings with a lookback window p, and the storages and fluxes with a lookback window q. Blue indicates a given, while
orange indicates predicted. For timestep 0, the storages and fluxes are all given by wflow_sbm. The predicted storages and fluxes, i.e. the
output for the timestep 1, are then used auto-regressively as input for the next timestep. The storages and fluxes at timestep q+1 are entirely
predicted by the GNN model itself. The model predicts up to a prediction horizon T . This figure was adapted from Bentivoglio et al. (2023).
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wflow_sbm using the Hüber loss (Huber, 1964). This loss
function was chosen as it is less sensitive to outliers than for
example the mean squared error. For every timestep t > 0,
the GNN model is recursively incorporating its own output
into the input of the next timestep, and the loss is averaged5

over all timesteps T within the prediction horizon. Through
this method, the GNN model learns to adjust its own predic-
tions, as well as to produce accurate outputs even when pro-
vided with inaccurate inputs, thereby enhancing its robust-
ness and stability (Bentivoglio et al., 2023).10

The curriculum training strategy gradually increments the
prediction horizon T during training, and is used to improve
stability (Wang et al., 2022). Initially, T = 1 and the model is
trained to predict just a single-day-ahead. An epoch denotes
a complete iteration through all training data, and following15

a pre-determined number of epochs, known as the curricu-
lum epoch, the prediction horizon is extended. By govern-
ing the prediction horizon, the GNN model is at first trained
to recognize short-term patterns and predict a few timesteps
ahead. As the prediction horizon expands, the GNN model20

is trained to capture longer-term patterns and generate out-
put for a greater number of consecutive timesteps. The cur-
riculum training strategy is adapted from Bentivoglio et al.
(2023) and can be seen in Algorithm 1.

Algorithm 1 Curriculum training strategy

Initialize:
T = 1

for epoch = 1 to MaxEpochs do
Ŷ

t+1
= Ŷ

t
+φ

(
Φ(ϕx(X

t),ϕe(E),A)
)

L= J(Ŷ,Y) following Equation (14)
Update parameters
if epoch > CurriculumEpoch ·H then
H =H +1

end if
end for

3.3 Training on wflow_sbm25

We train the GNN model on wflow_sbm output instead
of observation data. Training deep learning models on
physics-based models has gained increasing interest in re-
cent years (e.g. Yang et al., 2019; Sun et al., 2019; Yu-
val and O’Gorman, 2020; Lu et al., 2021; Nonnenmacher30

and Greenberg, 2021; Jia et al., 2021b, a; Sun et al., 2022),
and has been used to overcome several challenges faced by
DL models. Firstly, training on physics-guided improves a
DL model’s ability to generate physically consistent results
(Willard et al., 2022). Furthermore, DL models trained on35

physics-guided models have been shown to better general-
ize to unseen scenarios (Read et al., 2019). Additionally,
physics-guided models can provide the significant amount of
training data needed to train DL models, which may not al-
ways be available from observations (Kashinath et al., 2021).40

By training on wflow_sbm output instead of directly on
observation data, the GNN model should thus produce results
that are more conform the energy and water balance, and
have better spatial transferability. Furthermore. wflow_sbm
can provide us with many different hydrological variables in 45

gridded format. These hydrological variables include stream-
flow, evaporation, snow pack, saturated and unsaturated stor-
age, runoff, and subsurface flow. The GNN requires signifi-
cant amounts of data of all these variables in gridded format,
of the same area, of the same time period, and with the same 50

temporal and spatial resolution. Despite significant advances
in the field of remote sensing in the past decade, these may
not be available from observation data in the required quan-
tity and quality.

4 Experimental setup 55

4.1 Study area

We consider 3 different areas in northern England and south-
ern Scotland. The first of the three areas will be used for
training the GNN, the second for evaluation, and the third
for testing. They make up 70%, 15%, and 15% of the to- 60

tal area, respectively. Figure 4 shows the three areas. Small
catchments close to the coasts are omitted from the study
area, as the spatial resolution of 30 by 30 arc seconds is too
coarse to properly model them.

All areas are dominated by an oceanic climate (Köppen 65

climate classification Cfb) and experience relatively mild
winters and mild summers (Mayes and Wheeler, 2002). Pre-
cipitation is fairly equally distributed over the year, with the
annual precipitation coming to about 1000 - 1300 mm. The
landscape is mostly hilly, with most elevations being around 70

100 - 300 masl, and peaks being around 700 - 800 masl. Ta-
ble 1 reports various statistics on the climate and landscapes
of the areas.

We use data from globally available open-source datasets.
Data of the three areas is extracted, projected, clipped, and re- 75

sampled with HydroMT, v0.9.3 (Eilander et al., 2023a). We
subsequently build a wflow_sbm model of each area with
HydroMT-wflow (v0.5.0), which also converts the prepro-
cessed data into model parameters (Eilander et al., 2023b).
The models are then run with wflow, v0.7.3 (van Verseveld 80

et al., 2023).
We use a temporal resolution of 1 day, and a spatial reso-

lution of 30 arc seconds by 30 arc seconds (approximately 1
km by 1 km at the equator). Each wflow_sbm model is run
with input data from 01-01-1988 up until 31-12-2009. We 85

only use wflow_sbm output data from 01-01-2000 onwards,
resulting in a spin-up time of 12 years, and 10 years of data
available for the GNN model.

As input, wflow_sbm uses gridded catchment attributes
and gridded forcing data. We selected ten different variables, 90

which enable us to calculate the water balance at each grid
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Figure 4. Overview of the three areas used in this study.

Table 1. Statistics on the three areas considered in this study. Max.
size denotes the area of the largest catchment in the dataset. The
snow fraction is the percentage of precipitation occurring during
sub-zero temperatures. The aridity index is the total amount of po-
tential evapotranspiration divided by the total amount of precipita-
tion.

Training Evaluation Testing

Area [km2] 24067 5224 5206
No. catchments [-] 104 50 14
Max. size [km2] 4990 1223 2985
Elevation* [masl] 191 ± 134 159 ± 118 178 ± 113
Slope* [%] 4.1 ± 3.7 3.9 ± 0.31 2.9 ± 2.4
Precip.* [mmd−1] 2.9 ± 4.5 3.7 ± 5.2 3.5 ± 4.9
Snow fraction [%] 0.9 0.4 0.5
Aridity index [-] 0.52 0.41 0.42
Temp. Jan.* [◦C] 4.3 ± 2.9 5.0 ± 2.8 4.6 ± 2.9
Temp. July* [◦C] 14.6 ± 2.4 14.4 ± 2.1 14.5 ± 2.2

*Mean and standard deviation are reported

cell. Based on some catchment attributes, we compute con-
nection attributes, to be used as edge features. Table 2 lists
all input and output data we used for the GNN model. The
GNN model does not make use of all the same inputs as
wflow_sbm; some are left out as to limit the computational5

costs.
Deep learning models tend to perform poorly for scenarios

outside the training domain. Therefore, we investigate the oc-
curance of extreme streamflow events at the outlets of the five
biggest catchments for each of the three wflow_sbm datasets.10

Figure 5 shows the results of this investigation. Low flows

Figure 5. The probability of exceedance curve for streamflow for
each dataset with a 95% confidence interval. Each curve is based on
the wflow_sbm output at the outlet of the five biggest catchments
per dataset. Top image shows the top 2% of flows, i.e. the peak
flows. Bottom image shows the bottom 30% of flows, i.e. the low
flows.
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Table 2. The input and output variables of wflow_sbm we used in
the surrogate GNN model

Data type Variables Unit

Catchment
attributes
RN×Da

river mask*
river length
river width
river depth
river slope
Manning coefficient river
upstream area
Manning coefficient land
grid cell area
soil thickness
rooting depth
fraction paved surface
fraction open water
porosity
residual water content
extinction coefficient
vertical hydraulic conductivity

-
m
m
m
-
sm−1/3

km2

sm−1/3

km2

mm
mm
-
-
-
-
-
mmd−1

Connection
attributes
RE×P

slope
distance

-
km

Forcings
RN×Df×T

temperature
precipitation
potential evapotranspiration

◦C
mmd−1

mmd−1

Storages
and

fluxes
RN×O×T

streamflow
actual evapotranspiration
runoff river
runoff land
solid snow pack
liquid snow pack
incoming subsurface flow
outgoing subsurface flow
saturated storage
unsaturated storage

m3 s−1

mmd−1

mmd−1

mmd−1

mm
mm
m3 d−1

m3 d−1

mm
mm

*wflow_sbm by default considers any cell with an upstream area of 30 km2 to
be a river cell

in the testing data are within the domain of the training and
evaluation data. Peak flows in the testing dataset are slightly
outside the domain of the training and evaluation data, but
the difference is small. Only for the top 0.1%, the difference
is outside the 95% confidence interval.5

4.2 Performance metrics

To assess the performance of the GNN model, we employ
multiple metrics. Firstly, we employ the Kling-Gupta Effi-
ciency (Gupta et al., 2009), which is defined as

KGE = 1−
√
(r− 1)

2
+(α− 1)

2
+(β− 1)

2 (15)10

where r is the correlation coefficient, α is a measure for the
variability error defined as σŷ/σy , and β indicates the bias,
defined as µŷ/µy . The KGE ranges from −∞ to 1, where
1 is a perfect fit of the predictions to the ground truth. If the
predictions fit just as good as the mean, the KGE will be -0.41 15

(1−
√
2 to be exact), as shown by Knoben et al. (2019). We

furthermore make use of the Mean Absolute Error (MAE),
defined as

MAE =

T∑
t=1

|y− ŷ| (16)

The MAE ranges from 0 to inf , where 0 is a perfect score. 20

Additionally, we also employ the Nash-Sutcliffe Efficiency
(Nash and Sutcliffe, 1970), which is defined as

NSE = 1−
∑T

t=1 (y
t − ŷt)

2∑T
t=1 (y

t − y)
2

(17)

Like the KGE, the NSE ranges from −∞ to 1, where 1 is a
perfect fit of the predictions to the ground truth. A score of 0 25

means the predictions fit to the ground truth just as good as
the mean. Lastly, we also make use of six metrics focused on
streamflow prediction at the outlet, as proposed by Yilmaz
et al. (2008). These are the runoff bias (BiasRR), low flow
bias (BiasFLV), peak flow bias (BiasFHV), median flow bias 30

(BiasFMM), lag time bias (BiasTLag), and the flow dura-
tion curve midsegment slope bias (BiasFMS). All six met-
rics have their optimum at 0, with negative and positive val-
ues indicating a negative and a positive bias in the model,
respectively. 35

4.3 Training setup

We search a wide range of hyperparameters, the full list of
which can be found in Appendix A. As part of the hyperpa-
rameter search, we try five different types of layers within
the GNN processor that are capable of node-level regression. 40

Namely, the graph convolutional operator (Kipf and Welling,
2016), the chebyshev spectral graph convolutional opera-
tor (Defferrard et al., 2016), the graph attentional operator
(Veličković et al., 2017), the GraphSAGE operator (Hamilton
et al., 2017), and the residual gated graph convolutional oper- 45

ator (Bresson and Laurent, 2017). Only the graph attentional
operator and the the residual gated graph convolutional oper-
ator are capable of handling multidimensional edge features.
Other important hyperparameters are the number of layers in
the GNN processor, the number of layers in the encoder and 50

decoder, the dimensionality of the hidden states, and the type
of connection between layers in the GNN processor.

We train GNN models using the AdamW optimizer
(Loshchilov and Hutter, 2017) and an early-stopping algo-
rithm. We tried a wide range of hyperparameters, the full 55

list of which can be found in Appendix A. The maximum
prediction was set to 60 days during training and evalua-
tion, and to 365 days during testing. In wflow_sbm, not ev-
ery variable is predicted at every cell; predictions by the
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GNN model of such variables at the corresponding nodes are
masked. Streamflow and runoff from river are predicted only
at cells with a river. Incoming subsurface flow only occurs at
cells that have a connection to an upstream cell. The GNN
model’s negative predictions are constrained to zero in the5

post-processing, given that none of the variables can be neg-
ative, with the sole exception being net runoff from river.

We scaled all data prior to training; this is needed as deep
learning models usually cannot learn on data that isn’t all in
the same order of magnitude. For scaling we use standard-10

ization, according to

xi,scaled =
xi −µx

σx
(18)

where x is some variable, xi is a single sample from that vari-
able, and xi,scaled is the scaled sample. We also tried nor-
malization as a form of scaling, but found the GNN model15

cannot learn on normalized data. Hydrological data is often
rich in outliers; hence, normalization would cause the bulk
of the data to be restricted to a small domain, limiting the
expressivity.

Our scripts are written in Python 3.11 (Van Rossum and20

Drake Jr, 1995). Data handling was done with the xarray li-
brary (Hoyer and Hamman, 2017). We furthermore use Py-
Torch (Paszke et al., 2019) and PyTorch Geometric (Fey and
Lenssen, 2019) for the deep learning part of our work. All
figures, with the excepetion of Figure 4 were produced with25

Matplotlib (Hunter, 2007). QGIS was utlized for producing
Figure 4 and selecting the areas used in this study (QGIS De-
velopment Team, 2023). Each wflow_sbm model is run with
four threads; glaciers, lakes, reservoirs, and masswasting are
turned off. We use the default model settings. Input data for30

the GNN model is acquired using the HydroMT-wflow plu-
gin (Eilander et al., 2023b, a). Hyperparameter tuning was
done using Weights & Biases (Biewald, 2020). Training and
testing is both done with a batch size of 1. During training
this is needed to constrain the computational costs. During35

testing, this is done as to ensure the GNN model predicts all
timesteps sequentially similar to wflow_sbm, thus allowing
for a fair comparison of the runtime. We used a NVIDIA
A100 80GB GPU (Delft High Performance Computing Cen-
tre, 2022) for training and testing the GNN model, and two40

Intel Xeon Gold 6144 CPU @ 3.50GHz processors for run-
ning wflow_sbm.

5 Results

Unless stated otherwise, the performance of the GNN model
is always reported with regards to the full ten years of unseen45

testing data, assuming wflow_sbm output to be the ground
truth, using a prediction horizon of 365 days, and for the best
performing GNN model only.

5.1 Predicting hydrological variables

5.1.1 Performance per variable 50

Figure 6 displays the KGE and MAE of the GNN model
for streamflow, land runoff, net runoff from river, solid snow
pack, and liquid snow pack. Figure 7 displays the KGE and
MAE of the GNN model for incoming subsurface flow, out-
going subsurface flow, solid snow pack, liquid snow pack, 55

and actual evapotransporation.
The GNN model accurately predicts streamflow in most

parts of the testing area. Poor KGE values are primarily ob-
served in upstream regions due to a small absolute error,
leading to a proportionally larger relative error owing to the 60

overall lower flows. During training, the GNN model does
not account for relative error, leading to a inclination towards
peak flows. This is evidenced by the MAE which shows,
contrary to the KGE, poor values in the downstream parts
of the catchment. While it is possible to correct this incli- 65

nation towards peak flows during training, e.g. by utilizing
the logarithm of streamflow or incorporating factors such as
upstream area or Strahler order, we omit this step to main-
tain the scope of our research focused on demonstrating the
overall performance of the GNN model. 70

In addition, we evaluate the streamflow predictions of the
GNN model using the six metrics proposed by Yilmaz et al.
(2008). Table 3 presents the performance scores of the GNN
model across the five largest catchments for each of the six
metrics. Performance across all six metrics appears consis- 75

tent across catchment sizes, except for bias in peak flow pre-
diction (BiasFHV). This absolute bias in peak flow predic-
tion appears to increase as catchment size and subsequently
discharge volume decrease, underscoring the GNN model’s
aforementioned inclination towards peak flows during train- 80

ing. The overall small bias in peak flow prediction further
reinforces the presence of an inclination towards peak flows
during training. Consistent with these observations, the GNN
model displays a significantly larger bias in low flow predic-
tion (BiasFLV) compared to peak flow prediction. The em- 85

phasis on high flows during training results in substantial
under- or overprediction of low flows.

The GNN model exhibits an overall positive bias towards
the runoff coefficient (BiasRR), indicating that the GNN
model potentially may not be able to close the water bal- 90

ance. Furthermore, the GNN model displays a pronounced
positive bias towards the slope of the midsegment of the
probability of exceedance curve (BiasFMS), suggesting that
the hydrographs it generates are flashier compared to those
produced by wflow_sbm. The GNN model does not ex- 95

hibit any bias with regards to the time lag, which could
also orignate from the relative coarse temporal performance
of daily timesteps. Median flows are consistently underpre-
dicted across all catchments, albeit with a small bias. Overall,
the GNN model demonstrates good performance in predict- 100
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Figure 6. The KGE and MAE at every cell in the testing data for streamflow, land and net river runoff, and solid and liquid snow. Median
KGE and MAE are reported above the maps. For each variable, two cells have been selected; the timeseries as given by the GNN model and
wflow_sbm are plotted for a certain timeperiod.

.
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Figure 7. The KGE and MAE at every cell in the testing data for incoming and outgoing subsurface flow, solid and liquid snow, and actual
evapotranspiration. Median KGE and MAE are reported above the maps. For each variable, two cells have been selected; the timeseries as
given by the GNN model and wflow_sbm are plotted for a certain timeperiod.

.
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Figure 8. A heatmap showing the Pearson correlation coefficient between the GNN model performance of each output variable, as assessed
by both the KGE and the MAE, and an ensemble of catchment parameters.

.

ing streamflow based on these six metrics, except for low
flows.

Table 3. The GNN model performance as assessed by the six met-
rics proposed by Yilmaz et al. (2008). Each metric considers the bias
of the GNN model compared to wflow_sbmc for a certain stream-
flow signature. The optimal value of each metric is 0%. Each met-
ric is computed for streamflow at the outlet of a catchment. Perfor-
mance is given for the five biggest catchments within the testing
data.

Catchment 1 2 3 4 5
Area [km2] 2985 713 579 316 215

BiasFHV [%] 0.2 8.2 -3.1 -3.6 30.7
BiasFLV [%] -23.8 11.1 -49.7 -6.2 13.5
BiasRR [%] 11.3 2.5 14.3 1.4 -10.9
BiasFMS [%] 21.2 30.8 15.3 -5.9 28.5
BiasTLag [%] 0.0 0.0 0.0 0.0 0.0
BiasFMM [%] -2.5 -6.3 -5.8 -4.0 -10.1

Land runoff is predicted with high accuracy. In some cells,
wflow_sbm predicts no land runoff throughout the entire 10
years of data. Consequently, regardless of the GNN model’s5

prediction in these cells, the KGE cannot be computed there
(grey cells). Cells with poor KGE values often cluster near
those with no runoff. In such cases of poor performance, oc-
currences of land runoff are rare, amplifying the sensitivity of

the KGE metric to even minor errors by the GNN model. For 10

instance, consider a cell where according to wflow_sbm, no
land runoff occurs during the full 10 years, except for a single
day where 2 mm of land runoff occurs. In the event that the
GNN model predicts 1 mm of land runoff solely for that day,
while accurately predicting no land runoff for all other days, 15

the resulting KGE remains notably low at -0.41, notwith-
standing the model’s precision on all other days. This demon-
strates that, by definition, the KGE will be 1−

√
2≈−0.41 if

the mean has the same goodness-of-fit as the predicted time-
series. Thus, the KGE metric is highly sensitive when applied 20

to time series data with minimal variance, as is the case for
some cells with little land runoff. For these cells especially,
the MAE should also be studied to get a more complete pic-
ture of the performance. In some of these cells, MAE scores
are good, contradicting the poor KGE scores. Cells with no 25

land runoff at all, where the KGE cannot be computed, have
excellent MAE scores, suggesting that the GNN model ac-
curately predicts the lack of runoff in these cells. High MAE
values are primarily observed in downstream river cells, de-
spite these cells often exhibiting decent KGE scores, a phe- 30

nomenon similarly observed in streamflow predictions.
Net runoff from river is predicted with high accuracy

across both upstream and downstream cells, as indicated by
consistent KGE scores. However, downstream cells exhibit
significantly poorer performance in terms of MAE compared 35

to upstream cells. This discrepancy in performance can be at-
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tributed to the difference in absolute volume, as evident from
the timeseries plots. Such disparities render the MAE a less
suitable metric in this context, as it complicates the direct
comparison of cells with each other.

The performance of the GNN model in predicting both the5

solid snow pack and the liquid snow pack exhibits strong
similarity. Both variables yield high KGE scores, although
solid snow is predicted particularly well. KGE scores for
both variables appear to be lower in low-lying areas where
snow occurs less frequently, making the KGE metric more10

sensitive to errors in these cells. The higher-elevated south-
western portion of the testing area, characterized by colder
winters and more frequent snowfall, demonstrates better
KGE scores. The MAE seems to have an almost perfect in-
verse relationship with the KGE. Low-lying areas surround-15

ing the coast and rivers display good MAE scores, whereas
elevated regions exhibit poorer scores. Both the KGE and the
MAE for both variables are subpar in river cells, mirroring
the trends observed in streamflow and land runoff. Interest-
ingly, the direct cause of the poor performance in these cells20

is not immediately apparent, as the presence of a river should
not directly influence snow-related processes. The coarser
spatial resolution of the forcing data (0.25◦×0.25◦) can also
be dissected from the performance maps of both solid and
liquid snow pack.25

Incoming and outgoing subsurface flow are generally pre-
dicted with medium accuracy, demonstrating closely aligned
patterns between the two. Low KGE scores predominantly
occur in cells surrounding downstream parts of the area.
Analysis of timeseries plots of such cells reveals the sub-30

surface flow predicted by wflow_sbm is almost constant over
time, a process that the GNN model does not seem to capture.
The MAE exhibits distinct patterns compared to those ob-
served with the KGE, as areas surrounding the downstream
parts no longer stand out. Only the river cells themselves per-35

sist with poor MAE scores. Furthermore, poor MAE scores
predominantly occur at higher elevations, where subsurface
flow tends to be higher overall. The considerable differences
in the volume of subsurface flow across the area, akin to net
runoff from river, complicate the comparison of MAE scores40

among cells.
The GNN model demonstrates medium to good perfor-

mance in predicting both saturated and unsaturated storage,
with saturated storage generally exhibiting slightly higher
accuracy compared to unsaturated storage. Additionally, the45

two variables are characterized by very similar underlying
patterns. The KGE metric generally indicates poorer perfor-
mance at river cells, whereas the MAE tends to be poorer
in elevated parts of the area. Both saturated and unsaturated
have cells with minimal variance, subsequently resulting in50

poor KGE scores for some of these cells. For some cells
wflow_sbm even predicts a completely constant unsaturated
storage throughout the ten-year period, making it not possi-
ble to compute the KGE in these cells.

Actual evapotranspiration is predicted with excellent ac- 55

curacy. Some slight loss in performance can be observed
around the downstream and high-altitude parts, but the dif-
ferences are minimal.

Figure 8 presents a heatmap depicting the correlation coef-
ficient between the GNN model’s performance for each out- 60

put variable, as evaluated by both the KGE and the MAE,
and an ensemble of catchment parameters. Several notewor-
thy patterns emerge. For instance, KGE scores for incom-
ing and outgoing subsurface flow demonstrate a degree of
correlation, in line with expectations. Similarly, KGE scores 65

on solid and liquid snow pack also exhibit some correlation.
Suprisingly, KGE scores on saturated and unsaturated stor-
age do not appear to be correlated. The MAE of different
predicted variables demonstrates considerably more correla-
tion among each other compared to the KGE. Notably, sat- 70

urated and unsaturated storage exhibit a strong correlation,
a contrast to their KGE scores. Furthermore, elevation ap-
pears to be correlated with several other variables, consistent
with previous observations. The performance of actual evap-
otranspiration shows a negative correlation with the fraction 75

of open water, suggesting that the GNN model may not ad-
equately capture the process of open water evaporation. The
MAE of outgoing subsurface flow exhibits a strong corre-
lation with rooting depth, whereas this correlation is not as
pronounced between rooting depth and the MAE of incom- 80

ing subsurface flow. Strong correlations are evident between
saturated water content and the MAE of saturated and un-
saturated water storage, as well as the MAE of actual evapo-
transpiration. This correlation aligns with expectations, given
the underlying processes involved. Soil thickness and verti- 85

cal hydraulic conductivity exhibit similar correlation patterns
to saturated water content.

5.1.2 Water and energy balance

The ten output variables enable us to compute the water bal-
ance per timestep per gridcell. Ideally, the water balance is 90

closed, with the sum of all incoming and outgoing fluxes
equaling the change in storage, as is the case for wflow_sbm.
Figure 9 depicts both the the aggregated error over all grid-
cells per year, and the MAE per gridcell per day, based on the
predictions of the GNN model. Per gricell, the absolute daily 95

error of the GNN model is on average 1 mm. This is quite a
substantial deviation, particularly considering average daily
precipitation is approximately 3.5 mm. Furthermore, we ob-
serve a strong correlation between elevated precipitation lev-
els and an increase in the water balance error. Aggregating 100

all errors across all grid cells and time steps, the annual wa-
ter balance error averages only 4 mm. Considering the annual
precipitation of 1300 mm, this discrepancy represents a mi-
nor deviation. At first sight, the large difference between the
relative error of the annual aggregated water balance and the 105

MAE per gridcell per timecell is striking.
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Figure 9. Top: the annual error in the water balance, aggregated
over all cells and timesteps. Positive and negative errors can thus
cancel each other out. Bottom: the MAE per gridcell per day and
the mean daily precipitation.

.

However, it’s important to note that this error does not nec-
essarily indicate an overall imbalance in the GNN model’s
water budget across all grid cells. Rather, any surplus error
in one cell may be compensated by a deficiency in another
cell, allowing the model to maintain overall closure of the5

water balance. This phenomenon can also occur in the tem-
poral dimension. For example, consider a scenario where a
gridcell is predicted to receive inflow of water on day t+1,
but not on day t. As a result, on day t, this cell may exhibit a
deficiency in water by a certain amount, while on day t+1,10

it may show a surplus of the same amount. When aggregated
over multiple time steps, the cumulative water balance error
across all grid cells tends to cancel out, preserving the over-
all closure of the water balance. Therefore, while the GNN
model can exhibit discrepancies in the timing and allocation15

of water among grid cells on a daily basis, the aggregated
water balance can remain balanced over time and over all
gridcells.

Figure 10. The evapotranspiration index (ETI ) and the runoff co-
efficient (RC) per year for the entire testing area, as predicted by
wflow_sbm and the GNN model.

.

Figure 10 shows the runoff coefficient and evaporation in-
dex per year for the entire testing area. The evaporation index 20

is predicted nearly perfectly, with an NSE of 1.00. This result
is not surprising, given the high KGE scores achieved by the
GNN model for actual evapotranspiration, as shown in Fig-
ure 7. The runoff coefficient is consistently over-predicted, in
line with the bias reported in Table 3. Subsequently, the NSE 25

is very poor, although this can also be partially attributed to
the limited variance in the timeseries of the runoff coefficient.

Nevertheless, the GNN model exhibits a non-negligible er-
ror in predicting the annual runoff coefficient, whereas the
error in the aggregated annual water balance is considerably 30

smaller. This suggests that while the GNN model may effec-
tively close the overall annual water balance, it still inaccu-
rately predicts individual components of it.

The energy balance is closed in wflow_sbm, as it is a
physics-guided model. Since the GNN model predicts actual 35

evapotranspiration with very high accuracy, it can be inferred
that the energy balance of the GNN model is also closed.

5.2 GNN model analysis

5.2.1 Speedup and model complexity

Appendix A details the results of the hyperparameter search. 40

Overall, we find that using the GraphSAGE layer in the
GNN processor yields optimal results. Moreover, employ-
ing a single-layer encoder and decoder, alongside a GNN-
processor comprising 4-6 layers, each with a hidden di-
mension of 128, results in the best performance. Further- 45

more, we find that a lookback window of two timesteps for
forcings is adequate for achieving good performance with
the GNN. Increasing this window size p yields only min-
imal improvements in performance, while significantly in-
creasing the model’s parameter count. Similarly, a lookback 50

window of two days for previous predictions suffices, with
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Figure 11. The number of parameters of an ensemble of GNN mod-
els and the subsequent speedup on a GPU.

.

marginal gains in model performance observed when ex-
tending this window size q. Consequently, we consider both
the forcings’ lookback window p and the previous predic-
tions’ lookback window q to achieve their optimal value at
two timesteps, balancing performance gains with parameter5

count and model runtime considerations.
On a GPU, the best GNN model is 6.65 times faster than

wflow_sbm, while on a CPU it is twice as slow. Figure 11
illustrates the relationship between speedup and the number
of parameters across an ensemble of GNN models. In gen-10

eral, we observe a trend where the speedup decreases as the
number of parameters increases. However, notable outliers
are evident, indicating that additional factors influence com-
putational cost beyond just parameter count.

We also explore the relationship between the number of15

layers, model performance, and model runtime. Figure 12 il-
lustrates the relationship between the number of layers within
the GNN processor, the resulting speedup, and the Huber
evaluation loss. As anticipated, the speedup of the GNN
model declines as the number of layers in the GNN processor20

increases. Each additional layer introduces more parameters,
thus increasing the computational cost of the GNN model.
Surprisingly, the performance of the GNN model does not
show significant improvement with an increase in layers. Al-
though a slight decrease in loss is evident up to five layers,25

model performance begins to decline and then stabilize for
six or more layers. Notably, it is intriguing to observe that
a single-layer GNN model already achieves commendably
low loss. This contradicts the conventional wisdom suggest-
ing that more complex and deeper GNN models inherently30

yield superior performance.

5.2.2 Prediction over longer horizons

The GNN model initially relies on ground truth data as in-
put (see also Figure 2). However, as it progresses in mak-

Figure 12. The Huber evaluation loss and the speedup on a GPU
of GNN models with an increasing number of layers in the GNN
processor. With the exception of the number of layers in the GNN
processor, all other hyperparameters are left the same.

.

ing predictions over multiple timesteps, it recursively uses its 35

own output as input. Consequently, with a longer prediction
horizon, the model increasingly relies on its own predictions
rather than ground truth data. This transition can present a
challenge for the GNN model, as errors may accumulate over
time, potentially leading to a decrease in performance. To ex- 40

amine the impact of error accumulation on the GNN model’s
performance, we test the GNN model with increasing predic-
tion horizons, consistently utilizing the same model trained
with a prediction horizon of 60 days.

Figure 13 shows the evolution of the median KGE for 45

each predicted variable as the prediction horizon increases
during testing. For an initial prediction horizon of 90 days
during testing, the GNN model demonstrates high perfor-
mance, achieving a KGE exceeding 0.75 for all variables.
However, as the prediction horizon is extended, the perfor- 50

mance of the GNN model diminishes for most variables. The
decline in model performance varies significantly across dif-
ferent variables. Incoming and outgoing subsurface flow, sat-
urated and unsaturated storage, and runoff from land experi-
ence a rapid decline, although this decline appears to plateau 55

to some extent after a prediction horizon of five years. In con-
trast, solid and liquid snow pack, actual evapotranspiration,
and net runoff from river exhibit no decline in performance.
Streamflow experiences only a minor decline.

One potential explanation for the sustained performance 60

of certain variables over longer prediction horizons could be
their minimal auto-correlation. For instance, actual evapo-
transpiration is primarily influenced by factors such as poten-
tial evapotranspiration and unsaturated storage, with less re-
liance on the evaporation of preceding days. Likewise, solid 65

and liquid snow pack likely have minimal auto-correlation
over longer time periods as well, due to the short-lived na-
ture of snowpack in the testing region. Consequently, errors
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Figure 13. The evolution of the median KGE per variable across all cells in the testing data, as the prediction horizon is increased. The model
was trained using a prediction horizon of 60 days.

.

in the GNN’s predictions for these variables do not accumu-
late, as the model may not heavily depend on prior predic-
tions to forecast subsequent timesteps. Variables exhibiting a
more pronounced decline may possess higher levels of auto-
correlation, rendering them more susceptible to the influence5

of errors in preceding predictions.

6 Concluding remarks research

6.1 Summary and conclusion

In this paper, we explored the potential of graph neural net-
works (GNNs) for the task of fully distributed multivari-10

able hydrological modelling. We developed a surrogate GNN
model of wflow_sbm, a physics-based fully distributed hy-
drological model. The GNN model is trained to approxi-
mate wflow_sbm outputs, taking the same inputs, i.e. catch-
ment attribute data and forcing data. The GNN model auto-15

regressively predicts several catchment storages and fluxes.
We test the GNN model in previously unseen catchments
located in northern England and southern Scotland, using
a wide range of metrics to assess performance. Our results
revealed substantial variations in model performance across20

different variables, accompanied by pronounced spatial pat-
terns. Median KGE across all variables and gridcells was
0.76. Streamflow prediction at the outlets of the five biggest
catchment was assessed using several metrics, uncovering
significant variations in performance among different hydro-25

logical signatures, with a mean absolute bias of circa 10%.
An inquiry of the water balance revealed substantial daily
errors on gridcell level, yet only minor annual errors when
aggregated over the entire area. While the GNN model tends
to overpredict the runoff coefficient, it accurately models the30

evaporation index, indicating that it effectively closes the en-
ergy balance. Furthermore, the GNN model achieved a run-

time speedup of 6.65 compared to wflow_sbm on a GPU.
Adding more layers increased the runtime without signifi-
cant improvement in performance. Moreover, expanding the 35

prediction horizon during testing resulted in a reduction in
model performance, albeit with noticeable variations across
variables.

The main objective of our paper was to explore the poten-
tial of graph neural networks (GNNs) for the task of fully 40

distributed multivariable hydrological modelling. We subdi-
vided this objective into three key facets, namely 1) assessing
the performance capabilities of GNNs, 2) investigating their
runtime efficiency, and 3) identifying suitable model archi-
tectures and training configurations. Our key contributions 45

address these facets as follows:

1. We demonstrate GNNs achieve high performance for
the task of fully distributed multivariable hydrological
modelling. We develop the first deep learning model to
do so in unseen catchments. 50

2. We show that the GNN model can serve as a surrogate
for traditional fully distributed models with shorter run-
times, although speedup is yet limited.

3. We demonstrate how the GNN model can function up to
a prediction horizon of a full year, using physical sys- 55

tem states to account for system memory, as well as a
curriculum learning strategy combined with a multi-step
ahead loss function during training.

In alignment with our hypothesis, we thus conclude that
GNNs are a viable option for the task of fully distributed 60

multivariable hydrological modelling.
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6.2 Limitations and future research

6.2.1 GNN as emulator of wflow_sbm

In Section 1 we mentioned the runtime issues associated with
traditional fully distributed models, such as wflow_sbm. We
demonstrated that the proposed GNN model can serve as an5

accurate surrogate model of wflow_sbm with a speedup fac-
tor of 6.65. The GNN model could therefore be used as a
rapid alternative to wflow_sbm in modelling scenarios with
significant time constraints. The speedup factor identified in
this study is notably lower than those reported in other stud-10

ies exploring the use of GNNs as emulators (e.g. Bentivoglio
et al., 2023; Choi and Kumar, 2024). Future work could fo-
cus on improving the computational runtime of the proposed
GNN model.

Moreover, the GNN model could prove particularly advan-15

tageous in scenarios requiring multiple iterations with slight
variations in inputs, such as ensemble forecasting and model
calibration. In ensemble forecasting, this is done to account
for uncertainty and provide a range of possible outcomes,
whereas in model calibration, this is done to determine the20

optimal parameter set. Multiple sets of inputs can be com-
bined into a single batch, enabling the GNN model to run
them simultaneously with minimal additional runtime (You
et al., 2017). For example, 128 distinct parameter sets could
be combined into a single batch that the GNN model can25

process in a single run. Coupled with the existing speed up,
this could potentially yield a computational speedup exceed-
ing two orders of magnitude compared to wflow_sbm. As
an emulator of wflow_sbm, the GNN model could signifi-
cantly enhance wflow_sbm model calibration and ensemble30

forecasting, by enabling a significantly broader and more de-
tailed range of inputs within the same time frame. Future
work could focus on exploring the promising prospects of
this method.

The study area of our research is located in northern Eng-35

land and southern Scotland, and is characterized by a tem-
perate oceanic climate and subsequent mild winters and mild
summers. The catchments of such regions tend to be eas-
ier to model compared to catchments with an arid or semi-
arid climate (Wheater, 2008) or snow-dominated catchments40

(Klemes, 1989). Future research could thus explore training
the GNN model on catchments from different climatic zones,
as well as investigate the performance of the GNN model in
these zones. Furthermore, the study area contains only small
to mid-sized catchments, with the largest catchment span-45

ning slightly under 5000 km2. For instance, this catchment is
still 37 times smaller than the Rhine catchment, which cov-
ers an area of 187.000 km2. Subsequent research could thus
explore the functionality and performance of the GNN model
in larger catchments.50

We used a spin-up period to provide the wflow_sbm model
and subsequently the GNN model with initial states. We did
not investigate the behaviour of the GNN model compared

to wflow_sbm when no initial states are provided, nor did
we investigate the capability of the GNN model to spin up 55

independently from wflow_sbm. Subsequent research could
explore this gap in our study.

The proposed GNN model was trained on a wflow_sbm
model with a temporal resolution of a single day and a spa-
tial resolution of 30 by 30 arc seconds. The spatial and tem- 60

poral resolution of a wflow_sbm can be adjusted as needed,
but we expect the GNN model to perform poorly on differ-
ent spatio-temporal resolutions, as it was not trained on that.
Forthcoming studies could investigate methods to incorpo-
rate predictions at different temporal resolutions, i.e. similar 65

to Gauch et al. (2021), and different spatial resolutions.
We trained the GNN model to approximate ten differ-

ent hydrological outputs from wflow_sbm, but wflow_sbm
predicts many more variables, such as capillary rise, over-
land flow, percolation, and water ponding depth. Our flex- 70

ible workflow can easily be adapted to include these addi-
tional outputs. Additionally, wflow_sbm can model glaciers,
lakes, reservoirs, floodplains, and sediment transport. Future
research could investigate the feasibility and potential of in-
cluding these additional processes into the GNN model. 75

6.2.2 Incorporation of observation data

Throughout this study, we considered wflow_sbm output to
be the ground truth, and we did not compare the predic-
tions of either the GNN model or wflow_sbm to observation
data. Regardless of the performance of wflow_sbm, there 80

will be discrepancies between its predictions and the ob-
servation data. These mismatches between wflow_sbm and
observation data, as well as between the GNN model and
wflow_sbm, strongly imply that the disparity between the
GNN model and observational data will be substantial. The 85

integration of observation data into the GNN model is there-
fore an imperative future research direction.

To incorperate observation data, the GNN model could
first be pre-trained on wflow_sbm outputs, followed by fine-
tuning on observation data. Other studies have shown that 90

fine-tuning a DL model after it has been pre-trained on a
physics-guided model can significantly improve its perfor-
mance (e.g. Sun et al., 2022; Jia et al., 2021b). The fine-
tuning step can correct for biases and errors in the physics-
guided models (Andersson et al., 2021). We omitted this step, 95

as we wanted to limit the scope of this research to exploring
how GNNs can be used for fully distributed multivariable
hydrological modelling, instead of aiming for optimal GNN
model performance.

Recent advancements and efforts in remote sensing tech- 100

nology are leading to a growing availability of the observa-
tion data required for the aforementioned fine-tuning pro-
cess. For instance, satellite data can be used to derive ac-
tual evapotranspiration, saturated storage, unsaturated stor-
age, and snow pack (Dembélé et al., 2020; Frei et al., 2012). 105

Streamflow data is often available from gauges, but can also
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be derived from satellite data (Hulsman et al., 2020). Trans-
lating these remote sensing observations into model variables
can pose challenges, as there may be underlying assumptions
and margins of uncertainty in the observational data. Dur-
ing the fine-tuning phase of the training, wflow_sbm can be5

utilized to bridge gaps in cases where this is an issue, or if
observation data is lacking altogether.

We recognize that developing a high-performing fully dis-
tributed multivariable GNN model capable of generalizing
to unseen catchments and trained solely on observation data10

currently presents a significant challenge. Training the GNN
model on a physics-guided model may for now be neces-
sary to address issues related to the paucity of observation
data (Kashinath et al., 2021), enhance its capacity to gener-
ate physically consistent results (Willard et al., 2022), and15

to improve its capability to generalize to unseen catchments
(Read et al., 2019). Given the advancements in both deep
learning and remote sensing, this could be an opportunity
holding promise for future exploration.

In addition to incorporating observation data into the GNN20

model, it is also worthwhile to compare the model’s predic-
tions with observational data. This would enable a more com-
prehensive evaluation of the GNN model’s performance as a
hydrological model, while also providing a benchmark for
comparing the GNN model to other deep learning and tradi-25

tional models. Furthermore, since observation data provides,
to a certain extent, a tangible ground truth, there exists an
opportunity to benchmark alternative routing schemes. We
did not consider alternative routing schemes, instead opting
to mirror the default routing scheme of wflow_sbm. Future30

research could investigate alternative, possibly more sophis-
ticated routing schemes (Cortés-Salazar et al., 2023).

6.2.3 Enhancing GNN architecture

The focus of our study was on exploring the potential of
graph neural networks within hydrological modeling, rather35

than striving for an optimal GNN performance. Nonethe-
less, our preliminary findings demonstrate promising model
performance even with a moderately limited hyperparameter
search. It is plausible that a more thorough and comprehen-
sive exploration of hyperparameters could yield a superior40

model architecture and training configuration, making it an
intriguing direction for future research.

The dichotomy between land and river cells within a catch-
ment, along with the varying speeds at which processes oc-
cur in these respective areas, underscores the need for a tai-45

lored GNN model capable of addressing these differences.
In this context, the addition of pooling layers, which aggre-
gate information over multiple nodes, emerges as a potential
area for future work. Moreover, to further enhance informa-
tion flow between indirectly connected river nodes, synthetic50

edges could be introduced, effectively creating a supplemen-
tary network pathway. Furthermore, there is potential for re-
search to explore the potenrial of heterogeneous graph neural

networks (HGNN Zhang et al., 2019). These models could
leverage distinct node types for land and river cells, as well 55

as different edge types for connections between land cells,
between land and river cells, and between river cells.

Many papers on deep learning in hydrology benchmark
their proposed model against several common deep learning
models. We did not do this in this research, as we did not 60

propose any new model. We simply applied already existing
GNNs to show a proof of concept: GNNs are suitable for
multivariable, fully distributed modelling with spatial trans-
ferability. However, we do think future could explore bench-
marking GNNs for this task against other deep learning mod- 65

els. It could be interesting to see if other deep learning mod-
els are capable of achieving similar performance, especially
since we think the graph is what makes GNNs so powerful
for hydrological modelling.

Appendix A: Hyperparameter search 70

The hyperparameters we considered during our search can
be seen in Table A1. The parameters resulting in the optimal
performance are indicated in bold. These depend strongly
on the task at hand, and even the data used. Thus, the re-
sults of our hyperparameter search are not directly transfer- 75

able to other GNN tasks. Furthermore, the results are also
co-dependent and must therefore be seen as a set.

We briefly elaborate on hyperparameters that have not
been previously mentioned. The connection between layers
in the GNN processor determines how output from some 80

layer l is used as input by some layer l+ i, where i ∈ Z+ is
the size of the connection and i+ l ≤ L. In traditional feed-
forward neural networks, layers are connected sequentially,
and the output of layer l is used directly as input by layer l+1
(and i is thus always 1). With residual connections, the input 85

of layer l is summed with the input of layer l+ i He et al.
(2015). With dense connections, the input of layer l is con-
catenated with the input of layer l+ i (Huang et al., 2016).
Both residual and dense connections allow for easier conver-
gence during training, which is especially relevant for deeper 90

GNNs (Balduzzi et al., 2017).
The encoder and decoder layers are MLP’s, which contain

linear layers. These linear layers apply to each of their in-
puts a weight and optionally a bias. Whether this bias was
included is one of the hyperparameters. Dropout layers ran- 95

domly mask elements of the input, resulting in less overfit-
ting (Hinton et al., 2012). The probability of an element be-
ing randomly masked is one of the hyperparameters. Graphs
can be directed or undirected. In a directed GNN, edges
only allow one-way message-passing, whereas messages can 100

travel both ways of an edge in an undirected GNN. Whether
our GNN is directed or undirected is one of the hyperparam-
eters.

The learning rate determines the step size when GNN
model parameters are adjusted during backpropagation 105
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(Murphy, 2012). A larger learning rate can cause the GNN
model to converge quicker to the optimal solution, but can
also lead to overshooting or oscillations around it. A smaller
learning rate may lead to slower convergence but can also re-
sult in a more stable and accurate final solution. The learning5

rate is therefore an important hyperparameter. At the start of
the training, the model parameters are still far from the opti-
mal solution, and a larger learning rate can be employed. As
training progresses and the optimal solution is approached, a
smaller learning rate is desirable. To achieve this, a learning10

rate scheduler algorithm can be employed. These algorithms
adjust the learning rate during the training. Which algorithm
is employed during training is one of the hyperparameters.
We found the StepLR algorithm to be the best scheduler,
which multiplies the learning rate by some factor γ every15

fixed number of epochs. This multiplication factor γ is one
of the hyperparameters. How many epochs are between each
adjustment is known as the step size, and we choose to let
this step size be dependent on the curriculum epoch.

Code and data availability. The code repository is available at20

github.com/PeterNelemans/GNN-Wflow-paper-repo (Nelemans
and Bentivoglio, 2023). The Wflow modelling framework, in-
cluding wflow_sbm, is available at github.com/Deltares/wflow.jl
(van Verseveld et al., 2023). The HydroMT-Wflow plugin, used
to construct the wflow_sbm model and to preprocess the data, is25

available at https://github.com/Deltares/hydromt_wflow (Eilander
et al., 2023b). The data used by the wflow_sbm model and
subsequently the GNN model is all freely available online. LAI
data was provided by MODIS (Myneni et al., 2021). Hydrography
data was provided by MERIT Hydro (Yamazaki et al., 2019).30

Meteorological data was provided by ERA5 (Hersbach et al.,
2020). River width and backfull discharge is based on the dataset
from Lin et al. (2020). Soil data was provided by SoilGrid (Poggio
et al., 2021).
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