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A B S T R A C T   

In this paper, to increase the performance of the sparse reconstruction method in real complex 
engineering structures an adaptive dictionary learning framework is proposed which updates the 
dictionary matrix, to allow improved compatibility with the complex structure. This proposed 
framework was developed by combining analytical modeling with training data sets and learning 
methods. An experimental evaluation of the proposed dictionary learning framework was per-
formed on an anisotropic composite plate with a stiffener. In this experimental evaluation, a 
moving magnet was used as the artificial damage to capture the training data set, and both 
artificial damage in several locations and real impact damage was used for detection and location 
of the target damage. The obtained results confirmed the concept of the proposed dictionary 
learning framework for the improved health monitoring of complex structures.   

1. Introduction 

In recent years, structural health monitoring (SHM) has received extensive attention in aerospace industries as a way of tran-
sitioning the maintenance paradigm from scheduled maintenance to condition-based maintenance (CBM). This important task is 
performed by continuous real-time integrity monitoring of in-service structures and could reduce maintenance costs and provide active 
safety for aircraft structures [1]. 

Recently, the use of composite materials is expanding in aerospace and other industries due to their lightweight, high operating 
temperature, and increased affordability [2]. In primary aircraft structures in the maritime industry as well as for civil infrastructures, 
composite skin-stiffener assemblies are extensively used to reinforce the structures with the least amount of weight gain. The extended 
use of complex composite structures and their vulnerability to in-service damages such as barely visible impact damage (BVID) [3] 
increases the demand for online health monitoring of complex composite structures. 

Among the various existing tools for SHM systems, the guided Lamb waves are considered to be one of the promising tools for 
integrity assessment of plate-like for several reasons. Guided Lamb waves systems offer relatively large coverage areas per sensor and 
are sensitive to small and barely visible internal and external damages [4]. Lamb wave-based SHM systems are often feasible in the 
inspection of inaccessible parts or those with limited access. In addition, the transducers used for generating and capturing Lamb waves 
are easily embedded and relatively inexpensive [5]. 

To perform active SHM via Lamb waves requires a network of lead zirconate titanate (PZT) actuators/sensors. The basic tasks of an 
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SHM system are damage detection and location and many researchers have focused on damage imaging methods to detect and locate 
failures quickly and efficiently. For this purpose, various imaging techniques based on Lamb waves and a PZT-network configuration 
have been developed that can be categorized as tomography [6,7], phased array techniques [8–10], and sparse array methods [11–14]. 
While each configuration is suitable for a specific application, sparse array imaging is particularly attractive due to its excellent 
coverage area per sensor and its capability of seeing damage from different angles [15]. 

Most of the sparse array methods extract damage features by comparing measured signals (possibly from a faulty state) with 
baseline signals from pristine states [6,16]. Among the sparse array-based techniques, the Delay-and-Sum (DAS) method is the most 
commonly used method due to its robustness and conceptual simplicity. It was developed by Wang et al. in 2004 [14] and was evolved 
by Michaels in 2008 [17]. However, the performance of this method tends to be poor in the presence of multiple damages or complex 
structures [18]. In 2013 Levine and Michaels developed an imaging method that is based on sparse reconstruction (SR) and in some 
cases, the images reconstructed via this method are superior to the conventional DAS [19]. Also, in 2019 and 2020 Nokhbatolfoghahai 
et al. developed the hybrid DAS-SR method by combining the SR method with DAS and increased the performance of these methods in 
case of multiple damages and under-sampled signals and they extended their developed method to anisotropic composite plates in 
references [20,21]. Furthermore, as this method is dictionary-based it has the potential to act as an adaptive method if some of the 
structural complexities could be modeled in a pre-computed dictionary matrix. 

While these methods are straightforward for simple structures, in complex structures all geometric irregularities (stiffener ele-
ments, material changes, boundaries, etc.) cause waves to scatter and these multipath reflections further complicate the accurate 
damage detection and localization. In 2009 Clarke et al. evaluated the damage detection capability of a sparse-array Lamb-wave SHM 
system applied to a complex structure [12]. Using optimal baseline subtraction, he could successfully detect 5 mm and 10 mm diameter 
holes on a complex steel panel. Clarke and Cawley 2011 improved the defect localization capability of a Lamb-wave-based SHM system 
applied to a complex structure by placing a gate on signals, but at a cost in area coverage [22]. In 2011 Qui et. al. proposed a time- 
reversal focusing-based impact imaging method for impact localization in a complex composite structure [23]. They evaluated 
their proposed method on a composite panel with holes and stiffeners and their results showed that their method could estimate the 
position of impact. Qui et al. also proposed another method in 2013 [24] in which they divided a complex structure into some sub- 
areas and performed damage imaging in each sub-area. The complete structural image was generated by merging the images of 
sub-areas by considering the probability of the existence of damage in each of them. In 2015 Hall and Michaels presented a multipath 
guided wave imaging algorithm based on experimental and numerical simulated data in which a large number of echoes and re-
verberations present in recorded ultrasonic waveforms were leveraged [25]. Furthermore, Rébillat and Mechbal 2019 proposed a 
method based on the canonical polyadic decomposition of the Lamb wave difference signal tensor for damage localization and 
evaluated their method with a geometrically complex aeronautic structure [26]. 

Also, some previous works have focused on modeling Lamb wave propagation in complex structures [27–30], and some of them 
dedicated their efforts to the optimal network design for SHM of complex structures [31–33]. In addition, some previous studies have 
proposed a method for damage or disbound detection in the stiffener bonded to a plate [34–36]. 

For guided wave-based inspection of structures with complexities, there are two fundamental approaches. The first one is to 
construct a high-fidelity model of wave propagation based on fundamental wave equations by considering all of the geometric and 
material properties and boundary conditions to accurately predict the structural response to guided waves. Following this approach, 
several researchers have focused on analytical solutions and obtained such solutions for very specific conditions [37,38]. However, 
many researchers have employed numerical methods (such as a finite element) to characterize the propagation and interaction of those 
waves with defects [39–41]. The second approach is based on a statistical viewpoint and machine learning techniques in which, signals 
are captured at a random process and characterized to perform the SHM data mining procedure. This approach makes decisions purely 
based on prior training data sets [42,43]. 

While these approaches can work in some situations, for structures with high complexity, the first approach can quickly become 
infeasible due to the high uncertainty and intractability of analytical solutions [44] and numerical models can become too delayed to 
calculate for wave propagation problems. Also, in some cases, the statistical approaches tend to be impractical due to their heavy 
reliance on a large amount of experimental training data sets [45]. 

In this paper, a new method is proposed for structural health monitoring of complex structures based on sparse reconstruction and a 
dictionary learning framework. This method is developed by a combination of two approaches (using analytical modeling and a 
statistical viewpoint). In this framework, we update an initial analytically calculated dictionary by applying dictionary learning to 
experimentally captured guided wave data from a complex structure in the presence of multi-location artificial damages. In addition, 
for specific kinds of problems, a new approach is proposed to train the dictionary matrix using significantly fewer data sets in com-
parison with conventional dictionary learning methods. In the new approach, we locally update the elements of the dictionary matrix 
using the weighting matrix achieved from the training data. We also demonstrate our method with data from a non-isotropic composite 
plate with a bonded stiffener. 

2. Theoretical background 

In this section, a summary of the mathematical formulations of the sparse representation model and the dictionary learning 
framework for damage localization in composite complex structures are presented. 
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2.1. The sparse reconstruction method 

In this study, sparse reconstruction (SR) refers to an imaging method for defect localization in a thin-wall structure in which the PZT 
transducers perform as both actuator and sensor in a pitch-catch network. This method is mainly based on the sparsity assumption of 
structural damages [19] which means a discretized structure is mostly undamaged and defects happen only in sparse segments of the 
structure. In this method, the residual signals from the structure are used and are assumed to be composed of a linear combination of 
scattering signals from possible damages. The residual signal of a Lamb wave which is propagated from source “s” and received by 
receiver “r” is calculated as: 

Rs.r(t) = Ŝs.r(t) − Ŝ
b
s.r(t) (1)  

ys.r(t) = abs(Hilbert(Rs.r(t) ) ) (2) 

In the above equations, Ŝs.r(t) and Ŝ
b
s.r(t) are the measured and baseline signals respectively which are scaled based upon the 

maximum amplitude of the signal and reduced by the square root of the propagation distance as in [17] and Rs.r(t) is the residual signal. 
However, since the scattering pattern is unknown and to avoid the problem of phase mismatch [15] the envelope-detected the residual 
signal ys.r(t) is used as the input to the SR method which is obtained from the absolute value of the signal analytic representation. The 
residual signals are decomposed into the sparse location-based components that are analytically computed from the Lamb wave 
propagation model as follows: 

a(t.θ) =
(

d
dref

)− 1
2
∫

R
x′(f )e

− i2πfd
Cg (θ) ei2πftdf (3)  

ys.r(t) =
∑p

q=1
xqds.q.r(t.θ) (4) 

In Eq. (3),a(t.θ) is the far-field shape of a propagating wave after traveling a distance “d” in the direction “θ” and “dref ” is the 
reference distance, x′(f) is the Fourier transform of the excitation signal x′

(t), i =
̅̅̅̅̅̅̅
− 1

√
, f is the time–frequency and Cg(θ) is the 

direction-dependent group velocity that is applicable in anisotropic materials [21]. Also, Eq. (4), shows the linear combination of 
signals from individual scattering points which is assumed to generate the residual signal ys.r(t). In Eq. (4), “p” shows the number of 
pixels in the discretized structure, and xq is the unknown coefficient that non-zero values of it show the presence of damage in the pixel 
“q”. In addition, ds.q.r is the analytically computed signal that indicates the shape of the scattering Lamb-wave that propagated from 
point “s” then interacts with the scatterer located at point “q” and is then received by a sensor placed at point “r”. This can be calculated 
for an anisotropic material as follows: 

ds.q.r(t) =

(
‖r − q‖2.‖q − s‖2

d2
ref

)− 1
2∫

R

{

H
(
f .θs.q.θq.r

)
.x′

(f ).e
− i2πf‖q− s‖2

Cg(θs.q) .e
− i2πf‖r− q‖2

Cg(θq.r)

}

ei2πftdf (5)  

where H
(
f .θs.q.θq.r

)
describes the interaction of the Lamb wave with damage and due to unknown prior information about the type of 

damage, this set is equal to 1 [15]. Also, θa.b = ∠(b − a) and ‖ ‖2 denotes the l2-norm of a vector. By concatenation of Eq. (4) for all pairs 
of sensor-actuators, an underdetermined linear Eq. y = Dx is formed which can be used to calculate the unknown sparse vector x, using 
the known vector y of the envelope-detected residual signals and the dictionary matrix D. For a distributed array of N transducers the 
linear Eq. y = Dx is formed as [20]: 

⎡

⎢
⎢
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⎢
⎢
⎢
⎢
⎢
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⎣
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⎥
⎥
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X

(6) 

In Eq. (6) ya.r and da.i.r are the vectors of discrete time-domain signals. To solve the linear inverse Eq. (6), sparse reconstruction 
techniques such as Basis Pursuit Denoising (BPDN), LASSO, etc. can be used. 

2.2. Dictionary learning framework 

In this section, we describe our framework for using dictionary learning to update our analytic dictionary for damage location on a 
complex structure. 

Dictionary learning is a process in which a dictionary is learned using a signal training set and it has mainly two steps: the Sparse 
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representation step and the dictionary update step. Dictionary learning has been extensively used in image processing such as for 
super-resolution [46], image denoising [47], and edge-detection [48]. An overview of the theory, methodology, and application of 
dictionary learning is provided by Tosic and Frossard [49]. 

In the common approach of dictionary learning for image processing, the number of training signal sets (ytr) with unknown related 
xtr (the “tr” subdivisions represent training related parameters) is usually much larger than the number of dictionary atoms. An explicit 
and adaptive dictionary learns from large training data sets and an initial dictionary which is guessed numerically (not estimated from 
physics). But, in the current work, due to restrictions on the size of the experimental data that can be gathered, the number of training 
signal sets is much smaller than the number of dictionary atoms for which the xtr vector for each training set is known. In addition, in 
our problem, an initial dictionary can be estimated well from the physical modeling of Lamb-wave propagation. To adapt the con-
ventional dictionary learning algorithm to our conditions, we propose a modification of the conventional dictionary learning algo-
rithm. The output of the proposed dictionary learning algorithm is an improved structured dictionary based on the well estimated 
initial dictionary, instead of an explicit adaptive dictionary which is the output of the conventional dictionary learning algorithm. 

2.2.1. Sparse representation step 
In conventional dictionary learning algorithms, if we consider training xtr vectors as known vectors, which are sparse represen-

tations output in the first step, during the dictionary update step, only the atoms which are related to the non-zero elements of sparse 
vectors xtr will be updated and the other atoms of the dictionary will not be excited. So, to cure this problem and to use the training data 
sets efficiently, we assume that the sparse vector xu is unknown and employed the known sparse vectors xtr indirectly in the sparse 
representation step. To use these known xtr indirectly, in the sparse representation step, based on known xtr we defined a weighting 
matrix wtr and applied it to the sparse representation method as prior support information and solved the weighted sparse recon-
struction in the first step of the dictionary learning framework. To define the weighting matrix wtr, we first define the probability 
distribution Etr for each point in the location of r→ as: 

Etr( r→) =
∑N

i=1

1
0.01 + a(| r→− ri

→| )
b (7)  

where N is the number of non-zero atoms of the known sparse vectors xtr and ri
→ is the location of the corresponding points on the 

structure. Also, a and b are the empirical training parameters that depend on the locations and density of training data points on 
structure and could be determined during the learning procedure through a trial-and-error process on the convergence of the algorithm 
for training data. Then, to define the training weighting matrix wtr we use the exponential weighting function as follows [20]: 

wtr( r→) =
1 + exp(1)

1 + exp(1 + 10Etr( r→) )
(8) 

To solve this weighted sparse reconstruction problem we solve a weighted l1 minimization using the Basis Pursuit with weight 
matrix (BPW) method as: 

xu = argmin ‖x‖1. w→subject to‖ytr − Dxu‖2 < σ (9)  

where σ is the user-specified parameter that should be between 0 ≤ σ < ‖y‖2. Choosing an optimal σ is not straightforward and is a 
trade-off between sparsity (when σ approaches to ‖y‖2) and reconstruction fidelity (when σ goes to 0). Based on the selection of σ in 
previous works [15,19,50]. In this work, we set this value as a random variable in the range 0.6 ≤ σ

‖y‖2
< 0.85. Also ‖x‖1. w→ is the 

weighted l1-norm, which can be calculated as: 

‖x‖1. w→ =
∑n

i=1
wi|xi| (10) 

This trick allows the dictionary matrix to be updated locally for each training point. 

2.2.2. Dictionary update step 
For the dictionary updating step, there are several methods including the K singular value decomposition (K-SVD) method, the 

method of optimal directions (MOD), online dictionary learning (ODL), etc. MOD is one of the classical dictionary learning algorithms 
in which the training data are used in batches and at each iteration the whole training data is used to update the dictionary. This 
however causes high computational complexity and requires a large memory to keep the training data. In the K-SVD algorithm, 
dictionary atoms are updated one by one, so the signal SVD process is quite time-consuming. Recently, the ODL algorithm [51] has 
received extensive attention from researchers who mainly work in the field of image processing. This method is more efficient and uses 
simple mathematical operations to update the dictionary matrix and can iteratively update the dictionary using online captured data 
during system operation. Later we will show that the online dictionary learning method works better for our problem than the other 
methods. 

In summary, our proposed dictionary learning framework can be explained in 5 steps: 
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Step 1: define training points on the structure and use magnets as moving artificial damage locations and gather experimental data 
for each defined training point. 
Step 2: define constant values “a” and “b” of the exponential weighting function via the try and error process. It should be noted that 
like the other training problems, choosing the optimal training parameters is not straightforward as a closed-form formulation. 
However, considering the convergence behavior and validation points during the learning process, could help us to choose better 
training parameter. 
Step 3: using the weighted sparse reconstruction method, find the sparse vector xu which satisfies ytr = Dxu using Eq. (8). Here ytr 
are the training signals captured from the structure in the presence of moving artificial damage. 
Step 4: update the dictionary matrix using the ODL algorithm using the following five steps [51]: 

4i. D=
[
d1,⋯,dp

]
∈RN(N− 1)×p , A=

[
a1,⋯,ap

]
∈Rp×p =

∑t

i=1
xixT

i , B=
[
b1,⋯,bp

]
∈RN(N− 1)×p =

∑t

i=1
yixT

i , t(numberof iteration)

4ii. A0 ←0 , B0 ←0 , D0 ← initialestimateddictionary

4iii. At ← At− 1+xtxT
t , Bt ← Bt− 1+ytxT

t

4iv. Dt ≜
argmin
D∈C

1
t
∑t

i=1

1
2
‖yi − Dxi‖

2
2+λ‖xi‖1 = =

argmin
D∈C

1
t

(
1
2

Tr
(
DTDAt

)
− Tr

(
DTBt

)
)

Tooptimizefor(4)weupdatethejthcolumnandrepeatitforallcolumns.

4v. uj ←
1

Ajj

(
bj − Daj

)
+dj

dj ←
1

max
( ⃦
⃦uj
⃦
⃦

2,1
)uj

(11)  

where Tr represents the trace of a matrix, Ajj is the diagonal element of matrix A, and aj , bj and dj are the jth columns of matrix A, B, and 
D respectively. 

Step 5: check the convergency condition according to: 

|xu − xtr| < ε (12) 

Fig. 1 illustrates both the conventional and the proposed dictionary learning algorithms for comparison in a flowchart diagram. 

Fig. 1. Flowchart diagram of the common approach and our new approach for dictionary learning.  
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Also, after performing the dictionary learning we can use the upgraded dictionary for damage localization which is illustrated in the 
flowchart diagram depicted in Fig. 2. 

2.3. Case study 

To evaluate the performance of our new dictionary learning framework, an experimental test was performed on a composite plate 
with a bonded stiffener. The composite plate was manufactured using twelve unidirectional prepreg plies from AS4/8552 carbon fiber 
epoxy with a cross-ply layup of [0/90]3S. The thickness of the plate after thermal curing was 2.17 mm and the plate has a size of 60 cm 
by 60 cm. Also, an additional stiffener with the dimension of 52 cm by 2 cm was bonded on the plate (see Fig. 3). The material 
properties of the prepreg used are shown in Table 1. 

To generate and detect Lamb waves, the PZT transducer was used. The type of PZT is PIC 255 from Physik Instrumente (PI) with 10 
mm diameter and 0.5 mm thickness were attached to the composite plate with superglue. The configuration and a picture of the 
specimen with the attached stiffener and PZTs and the zero-degree fiber orientation are shown in Fig. 3. 

The PZT transducers act as both transmitters and receivers. To generate Lamb waves, Agilent 33500B waveform generator supplied 
an 80 kHz four-cycle Hann windowed tone burst signal to a wideband voltage amplifier (Agilent 33502A) to give a 40 V peak-to-peak 
excitation voltage to the PZT transducers. Also, to capture received signals with high quality, the output of the PZT transducers was 
transferred to a wideband preamplifier (MISTRAS 2/4/6C) and then digitized and recorded by a PicoScope 6402 with a 1 MHz 
sampling rate. Fig. 4 shows the experimental setup at the Aerospace Non-Destructive Testing Laboratory of TU Delft. 

As explained above, to train the dictionary we captured data from the structure in the presence of moving artificial damage in 
different locations. Fig. 5(a) shows the spatial distribution of artificial damage for capturing the training data set and Fig. 5(b) shows a 
picture of the plate with the attached magnet (with a diameter of 6 mm) that acts as moving artificial damage. 

According to the distribution of the training points and the trial and error process, the “a” and “b” constants are defined as a = 5 and 
b = 2. However, based on the sensitivity analysis we already performed, the sensitivity of selecting “a” in the range 3–8 does not 
significantly affect the final results. So, Eq. (7) is used in the form [53]: 

Fig. 2. Flowchart diagram of sparse reconstruction method for damage localization.  

Fig. 3. Configuration of Composite plate with attached stiffener and PZTs.  
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Table 1 
Material properties of prepreg [52].   

UD tensile  
strength (MPa) 

UD tensile modulus  
(GPa) 

UD compressive  
strength (MPa) 

UD compressive  
modulus (GPa) 

45
◦

in-plane shear strength  
(MPa) 

45
◦

in-plane shear modulus  
(GPa) 

AS4/8552 2205 141 1530 128 128  5.6  

Fig. 4. The experimental setup for data gathering.  

Fig. 5. (a) spatial distribution of training points (denoted by the “×” symbol) and test points (denoted by the “■” symbol) with PZTs (denoted by 
the “•” symbol) and stiffener configuration (b) the stiffened composite plate with attached moving magnet. 
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Etr( r→) =
∑N

i=1

1
0.01 + 5(| r→− ri

→| )
2 (13) 

Fig. 6 shows the probability distribution Etr( r→) for a typical training damage location. 
After training the dictionary, the proposed algorithm was evaluated by localizing the artificial damage and then real impact 

damage which was placed on the structure. It should be noted that there are two types of complexity in the tested structure, which are 
the anisotropy of the structure and the presence of the stiffener. 

3. Results and evaluation 

In this section, two types of damage are detected and located on the stiffened composite plate. The first one is a magnet that acts as 
artificial damage and is placed in several locations. The second type of damage is impact damage that is created on the stiffened 
composite plate at a single location. 

Fig. 6. probability distribution function Etr( r→) for a typical training damage location.  

Fig. 7. The stiffened plate with artificial damage was placed at two different locations.  
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3.1. Localization of artificial damage using the proposed learning method 

In the first step, the proposed algorithm was evaluated using a magnet with a different size (with a diameter of 10 mm) and 
magnetic force than the one previously used for training. Also, the artificial damage was placed at different locations to the training 
damage locations. Fig. 7 shows the plate with the magnet attached for the evaluation of the method. 

In the following, the results of the experimental tests to detect and locate artificial defects placed on a reinforced composite plate 
are shown. The images reconstructed using the sparse reconstruction and BPDN method for structure with artificial damage are shown 
in Figs. 8–11. In each figure, the result obtained from the analytically estimated dictionary (which is used as the initial dictionary in the 

Fig. 8. Images reconstructed using the SR method with (a) the initial analytically estimated dictionary and (b) the upgraded dictionary via the 
dictionary learning method. Black circles denote the PZTs and the triangle shows the artificial damage location (33 cm, 33 cm). 

Fig. 9. Images reconstructed using the SR method with (a) the initial analytically estimated dictionary and (b) the upgraded dictionary via the 
dictionary learning method. Black circles denote the PZTs and the triangle shows the artificial damage location (24 cm, 28 cm). 
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learning procedure) is compared with the result obtained from the upgraded dictionary achieved from the proposed learning method. 
Also, it should be noted that due to the very small number of training data sets, the conventional dictionary learning method is not 
applicable and we could not achieve any meaningful results from this method. 

In these figures, the symbol “∇” indicates the location of the failure, and the symbol “●” indicates the location of the PZTs. 
As shown in Fig. 8, the image reconstructed by the SR method using the initial estimation dictionary matrix gives completely 

erroneous results in the damage detection and location. However, using the trained dictionary matrix, the damage has been detected 
and located with great accuracy (the error is less than 5 mm). 

Also, the results shown in Fig. 9, show the success of the proposed dictionary learning algorithm in detecting and locating artificial 
defect locations. The noteworthy point in these experimental results is the location of the artificial failure that is placed under the 
stiffener. Because of this and due to the relatively high probability of failure in these areas, the results obtained in this experiment are 

Fig. 10. Images reconstructed using the SR method with (a) the initial analytically estimated dictionary and (b) the upgraded dictionary via the 
dictionary learning method. Black circles denote the PZTs and the triangle shows the artificial damage location (20 cm, 31 cm). 

Fig. 11. Images reconstructed using the SR method with (a) the initial analytically estimated dictionary and (b) the upgraded dictionary via the 
dictionary learning method. Black circles denote the PZTs and the triangle shows the artificial damage location (33 cm, 27 cm). 
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important. 
Also, the results are shown in Figs. 10 and 11 show that although there are some false detections and errors in the location of 

damage that occurred when using the updated dictionary, the results have still significantly have been improved. The SR method using 
the initial analytically estimated dictionary matrix has completely failed to detect and locate the damages. 

3.2. Localization of impact damage using the proposed learning method 

In the final step, the algorithm was evaluated for impact damage. The impact damage was created on the plate using the impact 
tower. The impact energy was 17.5 J (1.972 kg, 4.22 ms1) and the impactor was semi-spherical with a radius of 8 mm. The impact 
tower and the C-scan image of the plate after impact are shown in Fig. 12. 

As it is clear in Fig. 12(b) that damage is created at the impact location and in the C-scan image, the location of the PZTs and 
stiffener is visible. Also, the impact damage on the plate is shown in Fig. 12(c) which is barely visible. 

Fig. 13 shows the images reconstructed via the SR method from the post-impacted structure. Fig. 13(a) shows the result obtained 
from SR using the initial analytically estimated dictionary compared with Fig. 13(b) which is the result obtained by the SR method 
using a trained dictionary matrix. However, due to the impact event and variations in the experimental setup, although there is some 
poor baseline subtraction and consequently some errors have happened in damage location, the comparison shows that the proposed 
learning method is still significantly improved for the detection and location of the damage compared to the initial analytically 
estimated dictionary. 

4. Conclusion 

In this work, a new approach has been proposed for the health monitoring of complex structures based on sparse reconstruction and 
a new dictionary learning framework. According to the results, it can be concluded that in the presence of geometric complexities in 
the structure, the SR method loses its efficiency without considering the structural complexities in calculating the dictionary matrix. 
On the other hand, in many cases, it is not possible to accurately calculate the dictionary matrix analytically considering all the 
structural complexities in a real structure. 

Fig. 12. (a) The impact tower with the specimen (b) The C-scan result of the post-impacted plate (c) The plate with the impact damage.  
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To solve this problem, in this article, a framework was proposed to update an initial rough estimated dictionary matrix adaptively 
using experimental data as well as the dictionary learning method. 

To do this, the first challenge was the ineffectiveness of conventional dictionary learning algorithms for structural health moni-
toring, as most of the existing algorithms were developed based on image processing applications. In those algorithms, generating 
training data is low cost, and training an explicit and non-structured dictionary with a huge number of training data is possible. But in 
the present problem, due to the lack of access to a huge amount of training data and avoiding the time needed to develop a detailed 
physics-based wave propagation model, we needed to develop a new framework for dictionary learning. After developing the new 
framework, an anisotropic composite plate with a stiffener was used to evaluate the efficiency of the developed method for detection 
and location of artificial damage and real impact damage. The obtained results showed that using a trained dictionary matrix 
significantly improved the efficiency of the SR method in the health monitoring of complex structures. It should also be noted that 
although the results can confirm the feasibility of the proposed method in the laboratory, more investigation is needed to prove its 
applicability in larger structures. 
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