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A B S T R A C T   

Both intentional attacks and accidental technical failures can lead to abnormal behaviour in components of 
industrial control systems. In our previous work, we developed a framework for constructing Bayesian Network 
(BN) models to enable operators to distinguish between those two classes, including knowledge elicitation to 
construct the directed acyclic graph of BN models. In this paper, we add a systematic method for knowledge 
elicitation to construct the Conditional Probability Tables (CPTs) of BN models, thereby completing a holistic 
framework to distinguish between attacks and technical failures. In order to elicit reliable probabilities from 
experts, we need to reduce the workload of experts in probability elicitation by reducing the number of con
ditional probabilities to elicit and facilitating individual probability entry. We utilise DeMorgan models to reduce 
the number of conditional probabilities to elicit as they are suitable for modelling opposing influences i.e., 
combinations of influences that promote and inhibit the child event. To facilitate individual probability entry, we 
use probability scales with numerical and verbal anchors. We demonstrate the proposed approach using an 
example from the water management domain.   

1. Introduction 

Modern societies rely on proper functioning of Critical In
frastructures (CIs) in different sectors such as energy, transportation, 
and water management which is vital for economic growth and societal 
wellbeing. Over the years, CIs have become over-dependent on Indus
trial Control Systems (ICSs) to ensure efficient operations, which are 
responsible for monitoring and steering industrial processes as, among 
others, electric power generation, automotive production, and flood 
control. ICSs were originally designed for isolated environments [1]. 
Such systems were mainly susceptible to technical failures. The blackout 
in the Canadian province of Ontario and the North-eastern and 
Mid-western United States is a typical example of a technical failure in 
which the absence of alarm due to software bug in the alarm system left 
operators unaware of the need to redistribute power [2]. However, 
modern ICSs no longer operate in isolation, but use other networks to 
facilitate and improve business processes [3]. This increased connec
tivity, however, makes ICSs more vulnerable to cyber-attacks apart from 
technical failures. A cyber-attack on a German steel mill is a typical 

example in which adversaries made use of corporate network to enter 
into the ICS network [4]. As an initial step, the adversaries used both the 
targeted email and social engineering techniques to acquire credentials 
for the corporate network. Once they acquired credentials for the 
corporate network, they worked their way into the plant’s control sys
tem network and caused damage to the blast furnace. 

It is essential to distinguish between attacks and technical failures 
that would lead to abnormal behaviour in the components of ICSs and 
take suitable measures. In most cases, the initiation of response strategy 
presumably aimed at technical failures would be ineffective in the event 
of a targeted attack and may lead to further complications. For instance, 
replacing a sensor that is sending incorrect measurement data with a 
new sensor would be a suitable response strategy to technical failure of a 
sensor. However, this may not be an appropriate response strategy to an 
attack on the sensor as it would not block the corresponding attack 
vector. Furthermore, the initiation of inappropriate response strategies 
would delay the recovery of the system from adversaries and might lead 
to harmful consequences. Noticeably, there is a lack of decision support 
to distinguish between attacks and technical failures. 
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Bayesian Networks (BNs) have the capacity to tackle this challenge 
especially based on their real-world applications in medical diagnosis 
[5] and fault diagnosis [6–8]. In addition, there are other BN-based 
applications in domains like resilience engineering [9], structural sys
tems [10]. BNs belong to the family of probabilistic graphical models 
[11], consisting of a qualitative and a quantitative part [12]. The 
qualitative part is a Directed Acyclic Graph (DAG) of nodes and edges. 
Each node represents a random variable, while the edges between the 
nodes represent the conditional dependencies among the random vari
ables. BN structure modelling includes determining nodes and re
lationships between the determined nodes [13]. The quantitative part 
takes the form of a priori marginal and conditional probabilities so as to 
quantify the dependencies between connected nodes. BN parameter 
modelling includes specifying prior marginal and conditional probabil
ities [13]. 

In order to address the above-mentioned research gap, we developed 
a framework in our previous work to help construct BN models for 
distinguishing attacks and technical failures [14]. Furthermore, we 
extended and combined fishbone diagrams within our framework for 
knowledge elicitation to construct the qualitative part of such BN 
models. However, our previous work lacks a systematic method for 
knowledge elicitation to construct the quantitative part of such BN 
models. This present study aims to provide a holistic framework to help 
construct BN models for distinguishing attacks and technical failures by 
addressing the research question: “How could we elicit expert knowledge to 
effectively construct Conditional Probability Tables of Bayesian Network 
models for distinguishing attacks and technical failures?”. The research 
objectives are:  

• RO1. To propose an approach that would help to effectively 
construct Conditional Probability Tables (CPTs) for our application.  

• RO2. To demonstrate the proposed approach using an example in the 
water management domain. 

Empirical data is one of the data sources utilised to populate CPTs of 
BN models in cyber security [15]. This empirical data can be extracted 
from specific sources like cyber security incidents database, technical 
failure reports, and red team vs. blue team exercises. However, in the 
water management domain in the Netherlands, there is no/limited 
cyber-attacks on their infrastructures [16]. In addition, information 
corresponding to limited cyber-attacks and technical failure reports are 
not shareable due to the sensitivity of data [16]. Furthermore, red team 
vs. blue team exercises were not possible due to practicalities, especially 
there is a lack of testbeds which could facilitate such exercises in the 
Netherlands [16]. Expert knowledge is one of the predominant data 
sources utilised to populate conditional probability tables (CPTs) espe
cially in domains where there is a limited availability of data like cyber 
security [15]. Probability elicitation is the most challenging part of 
constructing BN models especially when it relies on expert knowledge as 
we need to elicit probability for every possible combination of parent 
variables state to complete the CPT of a child variable from experts. The 
CPT size of a child variable grows exponentially with the number of 
parents. For instance, the CPT size of a binary child with 5 binary par
ents is 64 (25+1) entries. The burden of probability elicitation could be 
reduced by: (i) reducing the number of conditional probabilities to elicit 
by imposing structural assumptions, and (ii) facilitating individual 
probability entry by providing visual aids to help experts answer elici
tation questions in terms of probabilities [17]. We evaluate several 
techniques for reducing the number of probabilities to elicit, and 
conclude that DeMorgan models is most suitable for our purpose [18]. 
Furthermore, we review several methods for facilitating individual 
probability entry and conclude that probability scales with numerical 
and verbal anchors is most appropriate for our application [19,20]. 

The main contributions of this paper are as follows: 

(i) we propose an approach involving DeMorgan model and proba
bility scales with numerical and verbal anchors that could help to 
effectively construct quantitative part (CPTs) of BN models for 
distinguishing attacks and technical failures.  

(ii) we demonstrate the proposed approach using an example in the 
water management domain to mainly show which parameters 
need to be elicited from experts and corresponding questions that 
needs to be asked in addition to how the rest of the probabilities 
in the CPTs are computed. 

This paper is not about “anomaly detection” (i.e., detecting whether 
an anomaly has occurred or not), but rather “diagnosis” (i.e., pin
pointing whether the detected anomaly is due to cyber-attack or tech
nical failure). Diagnosis is prevalent in medical and safety domains [21, 
22]. Furthermore, we utilised Design Science Research (DSR) method to 
tackle our RQ, which is widely used to create artefacts [23]. An artefact 
is defined as an object made by humans for the purpose of solving 
practical problems like distinguishing attacks and technical failures 
[24]. An artefact could be a construct (or concept), a model, a method, 
or an instantiation [25]. The practical problems can be solved using 
artefacts in numerous cases. There are five main phases in the DSR 
process: (i) problem identification, (ii) design and development, (iii) 
demonstration, (iv) evaluation, and (v) communication. In the problem 
identification phase, we gather constraints and high-level requirements 
using semi-structured interviews and focus group sessions with experts 
in safety and/or security of ICS in the water management domain in the 
Netherlands. The list of questions which we asked the experts in addition 
to constraints and requirements are provided in the Appendix. These 
constraints and high-level requirements are mainly for developing our 
holistic framework which would then help to construct BN models for 
distinguishing attacks and technical failures and their evaluation. This 
phase results in a set of high-level requirements and constraints based on 
the responses from experts, which are mainly used as an input for the 
“design and development” and “evaluation” phases of the DSR process. 
This paper corresponds to the “design and development” and “demon
stration” phases in the DSR process. However, evaluating the perfor
mance of the proposed approach is outside the scope of this study, which 
corresponds to the “evaluation” phase in the DSR process. Our related 
work that has already been published corresponds to the “evaluation” 
phase in the DSR process [16]. The set of constraints and high-level 
requirements mentioned in the Appendix plays an important role in 
structuring the problem space and deriving design decisions systemati
cally. This is used as a basis for the “design and development” and 
“evaluation” phase of the DSR process. 

The remainder of this paper is structured as follows. In Section 2, we 
illustrate the different layers and the components of an ICS and describe 
a case study in the water management domain that is used to demon
strate our proposed approach. In Section 3, we describe our existing 
framework in addition to a systematic method for knowledge elicitation 
to construct the qualitative part of BN models for distinguishing attacks 
and technical failures. Section 4 provides an essential foundation of 
techniques to reduce the burden of probability elicitation to construct 
the quantitative part of BN models for distinguishing attacks and tech
nical failures. In Section 5, we demonstrate the proposed approach using 
an example in the water management domain. Section 6 presents dis
cussion followed by the conclusions and future work directions in Sec
tion 7. 

2. Industrial control systems 

In this section, we illustrate the three different layers and major 
components in each layer of an ICS. Furthermore, we provide an over
view of a case study in the water management domain. 

S. Chockalingam et al.                                                                                                                                                                                                                         



Journal of Information Security and Applications 75 (2023) 103497

3

2.1. ICS architecture 

Domain knowledge on ICSs is the starting point for the development 
and application of our proposed approach. A typical ICS consists of three 
layers: (i) Field instrumentation, (ii) Process control, and (iii) Supervi
sory control [26], bound together by network infrastructure, as shown in 
Fig. 1. 

The field instrumentation layer consists of sensors (Si) and actuators 
(Ai), while the process control layer consists of Programmable Logic 
Controllers (PLCs)/Remote Terminal Units (RTUs). Typically, PLCs have 
wired communication capabilities whereas RTUs have wired or wireless 
communication capabilities. The PLC/RTU receives measurement data 
from sensors, and controls the physical systems through actuators [27]. 
The supervisory control layer consists of historian databases, software 
application servers, the Human-Machine Interface (HMI), and the 
workstation. The historian databases and software application servers 
enable the efficient operation of the ICS. The low-level components are 
configured and monitored with the help of the workstation and the HMI, 
respectively [27]. 

2.2. Case study overview 

This case study overview is based on a site visit to a floodgate in the 
Netherlands. Some critical information has purposely been anonymised 

Fig. 1. Typical ICS Architecture and Layers.  

Fig. 2. Physical Layout of the Floodgate.  

Fig. 3. SCADA Architecture of the Floodgate.  
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for security concerns. This case study is also used in our previous work 
[14]. Fig. 2 schematises a floodgate being primarily operated by Su
pervisory Control and Data Acquisition (SCADA) system along with an 
operations centre. 

Fig. 3 illustrates the SCADA architecture of the floodgate. The sensor 
(S1), which is located near the floodgate, is used to measure the water 
level. There is also a water level scale which is visible to the operator 
from the operations centre. The sensor measurements are then sent to 
the PLC. If the water level reaches the higher limit, PLC would send an 
alarm notification to the operator through the HMI, and the operator 
would need to close the floodgate in this case. The HMI would also 
provide information such as the water level and the current state of the 
floodgate (open/close). The actuator opens/closes the floodgate. This 
case study would be used to demonstrate our proposed approach that 
would help to effectively construct CPTs involving domain experts. 

3. Framework for distinguishing attacks and technical failures 

This section describes the proposed framework including extended 
fishbone diagrams in our previous work with an example that could help 
to construct qualitative part (DAG) of BN models for distinguishing at
tacks and technical failures [14], which corresponds to structural 
modelling of BNs. 

The framework consists of three layers as shown in Fig. 4, which 
mainly shows different type of variables (i.e., contributory factors, 
problem, and observations (or test results)) and their relationships. The 
middle layer consists of a problem variable which is the major cause for 
an abnormal behaviour in a component of the ICS (observable problem). 
In the example shown in Fig. 4, we considered “Sensor (S1) sends 
incorrect water level measurements” as the problem, which is observ
able. For instance, this problem could be observed by comparing the 
water level measurements sent by the sensor (S1) against the 

Fig. 4. Framework for Distinguishing Attacks and Technical Failures: Example.  

Fig. 5. Extended Fishbone Diagram: Example.  
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measurements in the water level scale. We considered the major causes 
of the problem (intentional attack and accidental technical failure) as 
the states of the problem variable. In our work, we assume that problem 
(example: “Sensor (S1) sends incorrect water level measurements”) is 
already identified by the operator. The scope of our proposed approach 
is to distinguish between the major causes (i.e., intentional attack vs. 
accidental technical failure). 

The upper layer consists of factors contributing to the major causes of 
the problem. For instance, the factor “Weak physical access-control” 
contributes to “Sensor (S1) sends incorrect water level measurements” 
due to intentional attack, whereas “Lack of physical maintenance” 
contributes to “Sensor (S1) sends incorrect water level measurements” 
due to accidental technical failure. The lower layer consists of obser
vations (or test results) which is defined as any information useful for 
determining the major cause of the problem based on the outcome of 
tests. For instance, the outcome of the test whether “Sensor (S1) sends 
correct water level measurements after cleaning the sensor” would 
provide additional information to determine the major cause (accidental 
technical failure or intentional attack) of the problem accurately. 

The framework which we proposed in our previous work includes a 
systematic method based on fishbone diagrams for knowledge elicita
tion to construct the qualitative part of BN models [14]. We adopted this 
approach because there are challenges to solely rely on BNs for knowl
edge elicitation to construct the qualitative part of BN models. It is not 
easy-to-use for knowledge elicitation involving domain experts as it 
could be time-consuming for elicitors to explain the notion of BNs [14]. 
Furthermore, it could not encourage and guide data collection by 
showing where knowledge is lacking as it is not well-structured. On the 
other hand, fishbone diagrams help to systematically identify and 
organise the possible contributing factors (or sub-causes) of a particular 
problem [28–32]. We extended fishbone diagrams to incorporate 

observations (or test results) in our previous work, which needs to be 
elicited for our application in addition to contributory factors. 

Fig. 5 shows an example extended fishbone diagram which consists 
of a problem (“Major cause for sensor (S1) sends incorrect water level 
measurements”), contributing factors (or sub-causes) sorted and related 
under different categories on the left side of the problem. Each category 
on the left side of the problem represents the major causes of the 
problem (intentional attack and accidental technical failure). Our 
example shows that “Lack of physical maintenance” is the contributing 
factor to the problem (“Sensor (S1) sends incorrect water level mea
surements”) due to accidental technical failure. Furthermore, the ob
servations (or test results) on the right side of the problem would 
provide additional information to determine the major cause of the 
problem accurately. Each category on the right side of the problem are 
used for reference to elicit observations (or test results) that would be 
useful for determining the particular major causes of the problem [14]. 
Our example shows that the observation “abnormalities in other loca
tions” would increase the probability of the problem (“Sensor (S1) sends 
incorrect water level measurements”) due to intentional attack. 

Once the extended fishbone diagram is developed, it would be 
translated into a corresponding qualitative BN model based on the 
mapping scheme in our previous work [14]. However, the proposed 
framework lacked a systematic method for knowledge elicitation to 
construct the quantitative part of BN models (the CPTs), which we 
address in the current work. 

4. Techniques for reducing the burden of probability elicitation 

Probability elicitation is a challenging task in building BNs, espe
cially when it relies heavily on expert knowledge [17]. The extensive 
workload for experts in probability elicitation could affect the reliability 

Fig. 6. Application of Noisy-OR: Problem.  
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of elicited probabilities. However, the workload for experts in proba
bility elicitation could be reduced by reducing the number of conditional 
probabilities to elicit and facilitating individual probability entry. 

4.1. Technique for reducing the number of conditional probabilities to 
elicit 

This section analyses well-known techniques and describes the most 
suitable technique for our application, which would help to reduce the 
number of conditional probabilities to elicit. 

In order to reduce the number of conditional probabilities to elicit, 
we could exploit the causal independence models [17]. Causal inde
pendence refers to the situation where the contributory factors (causes) 
contribute independently to the problem (effect) [33]. By utilising these 
models, only a number of parameters that is linear in the number of 
contributory factors is needed to be elicited to define a full CPT for the 
problem variable as the total influence on the problem is a combination 
of the individual contributions [34]. As an example, we shall consider 
the BN model depicted in Fig. 4, where the problem variable (Y) is a 
binary discrete variable with the states “Intentional Attack” and “Acci
dental Technical Failure”. In the CPT shown in Fig. 6, Y = “Intentional 
Attack” denotes Y = “True”, and Y = “Accidental Technical Failure” 
denotes Y = “False”. We translated the states of Y into “True” and “False” 
to comply with the inherent assumptions of the noisy-OR model with 
regard to the states of variables. The typical state of each variable in the 
noisy-OR model is “False”. For instance, the typical state of a child 
variable (Fever) in the noisy-OR model is “False” as it is normal. 
Therefore in our application, we assigned Y = “False” for Y = “Acci
dental Technical Failure” as this is the a priori expected major cause, 
based on the higher frequency of technical failures compared to the 
intentional attacks [14]. 

In our application, we are dealing with a combination of promoting 
and inhibiting influences. In case of a promoting influence, the presence 
(or absence) of the parent will result in the child event with a certain 
probability. When the parent is absent (or present), it is certain not to 
cause the child event. In other words, the presence (or absence) of the 
contributory factor will result in the problem (“Sensor (S1) sends 
incorrect water level measurements”) due to “intentional attack” with a 
certain probability as it denotes “True” state. For instance, the presence 
of “Weak physical access-control” will result in the problem (“Sensor 
(S1) sends incorrect water level measurements”) due to “intentional 
attack” with a certain probability, whereas the absence of “Weak 
physical access-control” will not certainly result in the problem (“Sensor 
(S1) sends incorrect water level measurements”) due to “intentional 
attack”. This type of promoting influence is defined as a cause [18]. On 
the other hand, the absence of “Sensor data integrity verification” will 
result in the problem (“Sensor (S1) sends incorrect water level mea
surements”) due to “intentional attack” with a certain probability, 
whereas the presence of “Sensor data integrity verification” will not 
certainly result in the problem (“Sensor (S1) sends incorrect water level 
measurements”) due to “intentional attack”. This type of promoting 
influence is defined as a barrier [18]. 

In case of an inhibiting influence, the presence (or absence) of the 
parent will inhibit the child event with a certain probability. When the 
parent is absent (or present), it is certain not to inhibit the child event. In 
other words, the presence (or absence) of the contributory factor will 
result in the problem (“Sensor (S1) sends incorrect water level mea
surements”) due to “accidental technical failure” with a certain proba
bility as it denotes “False” state. For instance, the presence of “Lack of 
physical maintenance” will result in the problem (“Sensor (S1) sends 
incorrect water level measurements”) due to “accidental technical fail
ure” with a certain probability, whereas the absence of “Lack of physical 
maintenance” will not certainly result in the problem (“Sensor (S1) sends 
incorrect water level measurements”) due to “accidental technical fail
ure”. This type of inhibiting influence is defined as an inhibitor [18]. On 
the other hand, the absence of “Well-written maintenance procedure” 

will result in the problem (“Sensor (S1) sends incorrect water level 
measurements”) due to “accidental technical failure” with a certain 
probability, whereas the presence of “Well-written maintenance pro
cedure” will not certainly result in the problem (“Sensor (S1) sends 
incorrect water level measurements”) due to “accidental technical fail
ure”. This type of inhibiting influence is defined as a requirement [18]. 

Our example BN model shows that it possesses a mixture of pro
moting and inhibiting influences (causes and inhibitors) especially with 
regard to the interaction between the contributory factors and the 
problem. Therefore, we need a technique that would help to model 
opposing influences as we deal with a mixture of promoting and 
inhibiting influences in our application, which would help to reduce the 
number of conditional probabilities to elicit. 

We analysed several techniques and chose the most suitable tech
nique for our application which would be described in Section 4.1.1. The 
description of techniques that are unsuitable for our application can be 
found in Appendix which includes the noisy-OR model and Causal 
Strength (CAST) logic. The noisy-OR model is one of the most commonly 
used causal independence models which helps to reduce the number of 
conditional probabilities to elicit [5,35]. The noisy-OR model inherently 
assumes binary variables [36]. The noisy-MAX model is an extension of 
the noisy-OR model which is suitable for multi-valued variables [37]. 
We analysed the noisy-OR model as we deal with only binary variables 
in our application. 

The noisy-OR model assumes that the properties of exception inde
pendence and accountability hold true [38]. In case all the modelled 
contributory factors of the problem (“Sensor (S1) sends incorrect water 
level measurements”) are false, the property of accountability requires 
that the problem be presumed false (“Sensor (S1) sends incorrect water 
level measurements” due to “accidental technical failure”). However, 
this would not work for inhibiting influences such as “Lack of physical 
maintenance” in the noisy-OR model as shown in Fig. 6. In case “Lack of 
physical maintenance” is absent, it is certain not to inhibit the problem 
which is incompatible with the property of accountability. Therefore, we 
found that the noisy-OR model is unsuitable for the purposes of our 
application because the property of accountability does not hold true. 

Alternatively, CAST logic is one of the techniques mainly developed 
for modelling opposing influences [39]. CAST logic assumes all the 
variables in the model are binary. The parameters which need to be 
elicited to completely define CPTs using CAST logic are: (i) causal 
strengths for each edge, and (ii) baseline probability for each variable. 
The baseline probability of a parent variable can be interpreted as the 
prior probability of the corresponding parent variable. However, it 
would not be appropriate to interpret the baseline probability of the 
child variable as a prior probability or a leak probability, as the parent 
variables have no state in which they are guaranteed to have no influ
ence on the child variable [40]. As the definition of baseline probability 
of child variable is not clear, we cannot formulate appropriate question 
to elicit baseline probability of child variable. This is the major disad
vantage of CAST logic which resulted in the lack of practical applications 
[18,40]. We conclude that neither the noisy-OR model nor the CAST 
logic is suitable for the purposes of our application. 

4.1.1. DeMorgan model 
As an alternative to the previously discussed models, the DeMorgan 

model can potentially be used to tackle the challenge of modelling 
opposing influences, which would help to reduce the number of condi
tional probabilities to elicit. This section explains the DeMorgan model. 
This section corresponds to parameter modelling of BNs, which show 
parameters that needs to be elicited from experts and corresponding 
questions that needs to be asked to experts during this elicitation process 
in addition to how the rest of the parameters in the CPTs are computed. 

The DeMorgan model is a technique mainly developed for modelling 
opposing influences, which would help to reduce the number of condi
tional probabilities to elicit [18,40]. The DeMorgan model is applicable 
when there are several parents and a common child. The DeMorgan 
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model inherently assumes binary variables. The DeMorgan model as
sumes that one of the two states of each variable is always the distin
guished state as shown in Fig. 7. Usually such state of the child variable 
depends on the modelled domain [41]. This is a typical state of the 
corresponding child variable [42]. In case the child variable consists of 
two states (“disease”, “no disease”) in the medical domain, the distin
guished state of the corresponding child variable is chosen as “no dis
ease” as it is normal [41]. In our application, the distinguished state of 
the problem variable (“Major cause for sensor (S1) sends incorrect water 
level measurements”) is chosen as “accidental technical failure” as this is 
the a priori expected major cause, based on the higher frequency of 

technical failures compared to the intentional attacks [14]. The distin
guished state of a parent variable is relative to the type of causal 
interaction with the child variable [18]. The same parent variable can 
have different distinguished states in different interactions that it par
ticipates in with the different child variables. 

There are 4 different types of causal interactions between an indi
vidual parent (X) and a child (Y) in the DeMorgan model: (i) cause, (ii) 
barrier, (iii) inhibitor, and (iv) requirement.  

(i) Cause: X is a causal factor and has a positive influence on Y. In 
this type of causal interaction between an individual parent (X) 
and a child (Y), the distinguished state of the corresponding 
parent variable is “False” [18]. Consequently, when the parent 
variable is “False”, it is certain not to trigger a change from the 
typical state of the child variable as shown in Table 1. When the 
parent variable is “True”, it will trigger a change from the typical 
state of the child variable, with a certain probability (vX) as 
shown in Table 1.  

(ii) Barrier: This is a negated counterpart of cause, i.e., X′ is a causal 
factor and has a positive influence on Y. In this type of causal 
interaction between an individual parent (X) and a child (Y), the 
distinguished state of the corresponding parent variable is “True” 
[18]. Accordingly, when the parent variable is “True”, it is certain 
not to trigger a change from the typical state of the child variable 
as shown in Table 2. When the parent variable is “False”, it will 
trigger a change from the typical state of the child variable, with a 
certain probability (vX) as shown in Table 2.  

(iii) Inhibitor: X inhibits Y. In this type of causal interaction between 
an individual parent (X) and a child (Y), the distinguished state of 
the corresponding parent variable is “False” [18]. As a result, 
when the parent variable is “False”, it is certain not to prevent a 
change from the typical state of the child variable as shown in 
Table 3. When the parent variable is “True”, it will prevent a 
change from the typical state of the child variable, with a certain 
probability (dX) as shown in Table 3.  

(iv) Requirement: The relationship between an inhibitor and 
requirement is similar to the relationship between a cause and 

Fig. 7. DeMorgan Model: Causal Interaction Types.  

Table 1 
Type of Causal Interaction: Cause.  

X Y 

Intentional Attack Accidental Technical Failure 

True vX 1 – vX 

False 0 1  

Table 2 
Type of Causal Interaction: Barrier.  

X Y 

Intentional Attack Accidental Technical Failure 

True 0 1 
False vX 1 – vX  

Table 3 
Type of Causal Interaction: Inhibitor.  

X Y 

Intentional Attack Accidental Technical Failure 

True 1 – dX dX 

False 1 0  
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barrier. X′ inhibits Y. In this type of causal interaction between an 
individual parent (X) and a child (Y), the distinguished state of 
the corresponding parent variable is “True” [18]. Hence, when 
the parent is “True”, it is certain not to prevent a change from the 
typical state of the child variable as shown in Table 4. When the 
parent variable is “False”, it will prevent a change from the 
typical state of the child variable, with a certain probability (dX) 
as shown in Table 4. 

The DeMorgan model is an extension and a combination of the noisy- 
OR and noisy-AND model which supports modelling the above- 
mentioned types of causal interactions [18]. Maaskant et al. modelled 
promoting influences which includes causes and barriers by mimicking 
the noisy-OR model [18]. Furthermore, Maaskant et al. modelled 
inhibiting influences which includes inhibitors and requirements by 
mimicking the noisy-AND model [18]. Finally, Maaskant et al. modelled 
the combination of promoting and inhibiting influences by combining 
the noisy-OR and noisy-AND model. 

The property of accountability in the noisy-OR model is applicable to 
the DeMorgan model with a slight modification as it also exploits causal 
independence: In case all the modelled parents of the child are in their 
distinguished state, the property of accountability requires that the child 
be presumed their distinguished state. However, in many cases, this is 
not a realistic assumption as it is difficult to capture all the possible 
parents of the child [34]. Specifically, this is not realistic in our example 
as it is difficult to capture all the possible contributory factors of the 
problem (“Sensor (S1) sends incorrect water level measurements”) due 
to “intentional attack”. In the DeMorgan model, the leak parameter (vXL ) 
deals with the possible parents of the child that are not previously 
known and explicitly modelled. 

In general, the size of the CPT of a binary variable with n binary 
parents is 2n + 1. However, only n + 1 parameters are sufficient to 
completely define CPT using the DeMorgan model as it exploits causal 
independence. In the example shown in Fig. 7, only 5 parameters are 
sufficient to completely define the CPT of child variable (Y) using the 
DeMorgan model instead of 64 entries. There are 2 different parame
terisations for the Noisy-OR model with a leak parameter (the Leaky 
Noisy-OR model) proposed by Henrion [43] and Diez [37] which are 
mathematically equivalent. These 2 parameterisations differ only in the 
type of question that needs to be asked to the experts for knowledge 
elicitation. Henrion’s parameterisation is supported by a question like: 
“What is the probability that the effect is true given that a cause (Xi) is true 
and all the modelled causes are false?”. On the other hand, Diez’s 
parameterisation is supported by a question like: “What is the probability 
that the effect is true given that a cause (Xi) is true and all other modelled and 
unmodelled causes are false?”. The DeMorgan model utilised the Diez’s 
parameterisation with a slight modification. 

We could find the values for required parameters from the experts to 
completely define CPT using the DeMorgan model based on appropriate 
question for each type of causal interaction detailed below:  

(i) The leak parameter: To find the value for the leak parameter, the 
elicitor could ask experts: “What is the probability that the child 
is in their non-distinguished state given that the parents are in 
their distinguished states?”. In our example shown in Fig. 7, the 
elicitor could ask experts to find the value for parameter (vXL): 
“What is the probability that the major cause for the observed 

problem (sensor (S1) sends incorrect water level measurements) 
is intentional attack given that the physical access-control for 
sensor (S1) is strong, data integrity verification is performed for 
sensor (S1) data, sensor (S1) is always physically maintained, 
maintenance procedure for sensor (S1) is well-written?”.  

(ii) Cause: To find the value for parameter corresponding to a cause, 
the elicitor could ask experts: “What is the probability that the 
child is in their non-distinguished state given that all the parents 
are in their distinguished states, except Xiand no other unmod
elled causal factors are present?”. In our example shown in Fig. 7, 
the elicitor could ask experts to find the value for parameter (vX1): 
“What is the probability that the major cause for the observed 
problem (sensor (S1) sends incorrect water level measurements) 
is intentional attack given that the physical access-control for 
sensor (S1) is weak, data integrity verification is performed for 
sensor (S1) data, sensor (S1) is always physically maintained, 
maintenance procedure for sensor (S1) is well-written, and no 
other unmodelled causal factors are present?”. 

(iii) Barrier: To find the value for parameter corresponding to a bar
rier, the elicitor could ask experts: “What is the probability that 
the child is in their non-distinguished state given that all the 
parents are in their distinguished states, except Xi and no other 
unmodelled causal factors are present?”. In our example shown in 
Fig. 7, the elicitor could ask experts to find the value for 
parameter (vX2): “What is the probability that the major cause for 
the observed problem (sensor (S1) sends incorrect water level 
measurements) is intentional attack given that the physical 
access-control for sensor (S1) is strong, data integrity verification 
is not performed for sensor (S1) data, sensor (S1) is always 
physically maintained, maintenance procedure for sensor (S1) is 
well-written, and no other unmodelled causal factors are 
present?”.  

(iv) Inhibitor: Maaskant et al. did not directly determine the value for 
parameters corresponding to inhibitors similar to causes and 
barriers as it is not practical for the example which they consid
ered [40]. Specifically, it makes less sense to ask for the effect of 
presence of parent (“Rain”) on the child (“Bonfire”), when the 
child (“Bonfire”) is “False”. Therefore, they determined the value 
for parameter corresponding to each inhibitor by determining the 
negative influence relative to an arbitrary (non-empty) set of 
causes/barriers/leak parameter. However, in our application, it is 
possible to determine the value for parameter corresponding to 
inhibitors directly as we ask for the effect of presence of parent 
(“Lack of physical maintenance”) on the child (“Major cause for 
sensor (S1) sends incorrect water level measurements”), when the 
latter (“Major cause for sensor (S1) sends incorrect water level 
measurements”) is “Accidental technical failure”. In order to find 
the value for parameter corresponding to an inhibitor directly, 
the elicitor could ask the experts: “What is the probability that the 
child is in their distinguished state given that the parents are in 
their distinguished states, except Ui and no other unmodelled 
causal factors are present?”. In our example shown in Fig. 7, the 
elicitor could ask experts to find the value for parameter dU1: 
“What is the probability that the major cause for the observed 
problem (sensor (S1) sends incorrect water level measurements) 
is accidental technical failure given that the physical 
access-control for sensor (S1) is strong, data integrity verification 
is performed for sensor (S1) data, sensor (S1) is not always 
physically maintained, maintenance procedure for sensor (S1) is 
well-written and no other unmodelled causal factors are 
present?”.  

(v) Requirement: Maaskant et al. did not directly determine the value 
for parameters corresponding to requirements similar to causes 
and barriers as it is not practical for the example which they 
considered [40]. Specifically, it makes less sense to ask for the 
effect of absence of parent on the child, when the child is “False”. 

Table 4 
Type of Causal Interaction: Requirement.  

X Y 

Intentional Attack Accidental Technical Failure 

True 1 0 
False 1 – dX dX  
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Therefore, they determined the value for parameter correspond
ing to each requirement by determining the negative influence 
relative to an arbitrary (non-empty) set of causes/barriers/leak 
parameter. However, in our application, it is possible to deter
mine the value for parameter corresponding to requirements 
directly as we ask for the effect of absence of parent (“Well-
written maintenance procedure”) on the child (“Major cause for 
sensor (S1) sends incorrect water level measurements”), when the 
latter (“Major cause for sensor (S1) sends incorrect water level 
measurements”) is “Accidental technical failure”. In order to find 
the value for parameter corresponding to a requirement directly, 
the elicitor could ask the experts: “What is the probability that the 
child is in their distinguished state given that the parents are in 
their distinguished states, except Ui and no other unmodelled 
causal factors are present?”. In our example shown in Fig. 7, the 
elicitor could ask experts to find the value for parameter dU2: 
“What is the probability that the major cause for the observed 
problem (sensor (S1) sends incorrect water level measurements) 
is accidental technical failure given that the physical 
access-control for sensor (S1) is strong, data integrity verification 
is performed for sensor (S1) data, sensor (S1) is always physically 
maintained, maintenance procedure for sensor (S1) is not 
well-written and no other unmodelled causal factors are 
present?”. 

Once we determine the required parameters based on appropriate 
elicitation questions, we can completely define the CPT of the child 
variable using (1): 

P(y|X, U) =

(

1 − (1 − vXL )
∏

Xi∈ +X
(1 − vXi )

)
∏

Ui ∈ +U
(1 − dUi ) (1) 

In the Eq. (1), Y represents the effect variable which has values y for 
the effect being in the non-distinguished state (“Intentional attack”) and 
y′ for the effect being in the distinguished state (“Accidental technical 
failure”). X denotes the set of parents which interact with the effect 
variable as promoting influences, U denotes the set of parents which 
interact with the effect variable as inhibiting influences, + X denotes the 
subset of X that contains all parents that are in their non-distinguished 
states, + U denotes the subset of U that contains all parents that are in 
their non-distinguished states. vXL denotes the leak parameter which 
expresses the probability of y (“Intentional attack”) given all parents are 
in their distinguished states, vXi denotes the probability of y (“Intentional 
attack”) given that the parent Xi is not in its distinguished state and all 
other parents are in their distinguished states, dUi denotes the proba
bility of y′ (“Accidental technical failure”) given that the parent Ui is not 
in its distinguished state and all other parents are in their distinguished 
states. 

We choose the DeMorgan model for our application to reduce the 
number of conditional probabilities to elicit as they support modelling 
opposing influences with clear parameterisations. 

4.2. Technique for facilitating individual probability entry 

This section explains our chosen technique for facilitating individual 
probability entry for our application. 

Our systematic method for knowledge elicitation to construct CPTs 
of BN models would be incomplete without a technique that facilitates 
individual probability entry. The DeMorgan models would help to 
reduce the number of conditional probabilities to elicit and allow 

elicitors to ask appropriate questions during probability elicitation. In 
addition, there should be a suitable technique which would make it easy 
for experts to answer elicitation questions in terms of probabilities. 

There are well-known methods such as probability scale [19,44], and 
probability wheel [45] which would help to facilitate individual prob
ability entry [17,46]. The basis for choosing a particular method in
cludes accuracy, less probability elicitation time, and usability [46]. 
Wang et al. compared three different methods: (i) direct estimation, (ii) 
probability wheel and (iii) probability scale in terms of their accuracy 
and time taken to elicit probabilities from experts [47]. They pointed out 
that probability scale is better in terms of both accuracy and probability 
elicitation time compared to the other two methods. 

A probability scale can be a horizontal or vertical line with several 
anchors [46]. Fig. 8 shows a probability scale with 7 numerical and 
verbal anchors [48]. However, there are several variants of probability 
scales which would help to facilitate individual probability entry. Wit
teman et al. compared 3 probability scales: (i) probability scale with 
numerical and verbal anchors, (ii) probability scale with only numerical 
anchors, and (iii) probability scale with only verbal anchors [49]. They 
compared 3 probability scales based on a study with general practi
tioners in the domain of medical decision making. They concluded that 
all 3 probability scales are equally suitable to facilitate individual 
probability entry. However, they recommended the probability scale 
with numerical and verbal anchors to facilitate individual probability 
entry as it provides numerical anchors for experts who prefer numbers 
and verbal anchors for experts who prefer words. Furthermore, Witte
man et al. compared 2 different probability scales: (i) probability scale 
with numerical and verbal anchors, (ii) probability scale with only nu
merical anchors [50]. They compared 2 probability scales based on a 
study with arts and mathematics students. They concluded that the 
probability scale with numerical and verbal anchors is more comfortable 
to use compared to the probability scale with only numerical anchors. 

There are real-world applications of the probability scale with nu
merical and verbal anchors in the elicitation of probabilities to construct 
the quantitative part of BN models [19,44]. Van der Gaag et al. used the 
probability scale with numerical and verbal anchors for a case study in 
oesophageal cancer [19]. This study was conducted with two experts in 
gastrointestinal oncology. The experts found that this method is easier to 
use than any other method they used before. Van der Gaag et al. also 
highlighted that the large number of probabilities are elicited in a 
reasonable time using this method. Furthermore, Hanninen et al. used 
the probability scale with numerical and verbal anchors for the con
struction of quantitative part of collision and grounding BN model [44]. 
This study was conducted with 8 experts who possessed maritime 
working experience between 3 and 30 years. These studies show that the 
probability scale with numerical and verbal anchors can be used for 
facilitating individual probability entry involving experts with different 
background. 

We choose probability scales for our application as they are better in 
terms of accuracy and probability elicitation time compared to other 
methods. In particular, we would employ the probability scale with 
numerical and verbal anchors to facilitate individual probability entry in 
our application as they are effective and practicable based on previous 
studies. We would utilise the probability scale with 7 numerical and 
verbal anchors to facilitate individual probability entry with a variation. 
In our application, the experts could mark the suitable probability 
among 7 anchors in the scale directly or express fine-grained probabil
ities using the probability scale with numerical and verbal anchors as a 
supporting aid to visualise the probability range. This is convenient 
when the experts would like to express fine-grained probabilities based 

Fig. 8. Probability Scale with Numerical and Verbal Anchors.  

S. Chockalingam et al.                                                                                                                                                                                                                         



Journal of Information Security and Applications 75 (2023) 103497

10

on historical data which is realistic for accidental technical failures in 
our application. 

As a part of the probability elicitation process, in addition to the case 
outline, we also need to provide information related to the type of 
floodgate (example – criticality rating: very high) and context (example 
– threat level: substantial). This guideline would help to avoid very 
diverse responses over participants as they have substantive information 
based on the system knowledge. This is evident from our application of 
the proposed approach [16]. Furthermore, it is also important to select 
appropriate group of experts to elicit probabilities considering the type 
of floodgate and needed expertise. For instance, in our application of the 
proposed approach, we relied on experts who have experience working 
with safety and/or security of ICS in the water management sector in the 
Netherlands as we dealt with a type of floodgate in the Netherlands [16]. 

Finally, focus group workshop is one of the approaches that can be used 
to facilitate the probability elicitation process in addition to question
naire [16]. The use of focus group workshops can also help to facilitate 
discussion among the participants once we gather the responses from 
each of them on the reasoning behind the varied probabilities which 
they provided for some variables (if any) [16]. These mechanisms would 
supplement the probability scales with numerical and verbal anchors 
and allow us to elicit reliable probabilities. 

5. Application of the methodology 

In this section, we use an illustrative case of a floodgate in the 
Netherlands to explain how we effectively construct CPTs of BN models 
for distinguishing attacks and technical failures. 

We considered the upper and middle layer of our framework for the 
application of our methodology. It is important to reduce the number of 
conditional probabilities to elicit for the problem variable as a consid
erable number of contributory factors (upper layer), corresponding to 
intentional attack and accidental technical failure, typically interact 
with the problem variable (middle layer), which in turn increases the 
CPT size of the problem variable exponentially. On the other hand, the 
conditional probabilities for observations (or test results) (lower layer) 
would be easy to elicit directly as there is only one problem variable 
(middle layer) in our framework, which makes the CPT size of an 
observation (or test result) variable to 4 (21+1). We shall consider the BN 
model with the upper and middle layer of our framework depicted in 
Fig. 7 for the application of our methodology. We considered the 
problem “Sensor (S1) sends incorrect water level measurements" as it 
could develop more complex situations in the case of floodgate. In case 
the floodgate closes when it should not be based on the incorrect water 
level measurements sent by the sensor (S1), it would lead to severe 
economic damage, for instance, by delaying cargo ships. On the other 
hand, in case the floodgate opens when it should not be due to incorrect 
water level measurements sent by the sensor (S1), it would lead to 
flooding. 

The normal text (i.e., text without bold formatting) in Table 5 de
notes the explicitly mentioned causal factors that are absent (Example: 
data integrity verification is performed for the sensor (S1) data, sensor 
(S1) is always physically maintained, maintenance procedure for sensor 
(S1) is well-written). This makes the probability elicitation process 
simple as they do not affect the corresponding probability based on our 
structural assumptions. The experts could directly read the remaining 
text (i.e., text with bold formatting) (Example: “What is the probability 
that the major cause for the observed problem (sensor (S1) sends 
incorrect water level measurements) is intentional attack given that the 
physical access-control for sensor (S1) is weak and no other unmodelled 
causal factors are present?”) and mark the answer which could also 
reduce probability elicitation time. 

We considered 4 contributory factors to the major causes (intentional 
attack or accidental technical failure) of the observed problem: (i) Weak 
physical access-control (X1), (ii) Sensor data integrity verification (X2), 
(iii) Lack of physical maintenance (U1), and (iv) Well-written mainte
nance procedure (U2) as shown in Fig. 7 to depict each type of causal 
interaction. The type of causal interaction between individual parent X1 
and the child Y is cause. The type of causal interaction between indi
vidual parent X2 and the child Y is barrier. The type of causal interaction 
between individual parent U1 and the child Y is inhibitor. The type of 
causal interaction between individual parent U2 and the child Y is 
requirement. In this example, we need to elicit only 5 (4 + 1) parameters 
instead of 32 (24+1) to completely define CPT for the problem variable. 
The 5 parameters which we need to elicit are: vXL ,vX1 , vX2 ,dU1 , dU2 .

The values for these 5 parameters could be elicited from experts by 
providing the appropriate elicitation questions based on the DeMorgan 
model and the probability scale with numerical and verbal anchors, 
which could help experts answer in terms of probabilities to elicitation 
questions as shown in Table 5. The normal text in Table 5 makes the 

Table 5 
Parameter Elicitation for the Problem Variable (Y): Example.  

Major cause for sensor (S1) sends incorrect water level measurements (Y) 

vXL “What is the probability that the major cause for the observed problem 
(sensor (S1) sends incorrect water level measurements) is intentional 
attack given that the physical access-control for sensor (S1) is strong, data 
integrity verification is performed for sensor (S1) data, sensor (S1) is always 
physically maintained, maintenance procedure for sensor (S1) is well- 
written?”  

vX1 “What is the probability that the major cause for the observed problem 
(sensor (S1) sends incorrect water level measurements) is intentional 
attack given that the physical access-control for sensor (S1) is weak, 
data integrity verification is performed for sensor (S1) data, sensor (S1) is 
always physically maintained, maintenance procedure for sensor (S1) is well- 
written, and no other unmodelled causal factors are present?”  

vX2 “What is the probability that the major cause for the observed problem 
(sensor (S1) sends incorrect water level measurements) is intentional 
attack given that the physical access-control for sensor (S1) is strong, data 
integrity verification is not performed for sensor (S1) data, sensor (S1) is 
always physically maintained, maintenance procedure for sensor (S1) is well- 
written, and no other unmodelled causal factors are present?”  

dU1 “What is the probability that the major cause for the observed problem 
(sensor (S1) sends incorrect water level measurements) is accidental 
technical failure given that the physical access-control for sensor (S1) is 
strong, data integrity verification is performed for sensor (S1) data, sensor 
(S1) is not always physically maintained, maintenance procedure for 
sensor (S1) is well-written, and no other unmodelled causal factors are 
present?”  

dU2 “What is the probability that the major cause for the observed problem 
(sensor (S1) sends incorrect water level measurements) is accidental 
technical failure given that the physical access-control for sensor (S1) is 
strong, data integrity verification is performed for sensor (S1) data, sensor (S1) 
is always physically maintained, maintenance procedure for sensor (S1) is 
not well-written, and no other unmodelled causal factors are present?”   

Table 6 
Application of the DeMorgan Model: CPT Example.   

X2 U1 U2 Y     

Intentional 
Attack 

Accidental Technical 
Failure 

True True True True 0.09 0.91 
True True True False 0.04 0.96 
True True False True 0.50 (vX1) 0.50 
True True False False 0.29 0.71 
True False True True 0.10 0.90 
True False True False 0.05 0.95 
True False False True 0.68 0.32 
True False False False 0.34 0.66 
False True True True 0.15 0.85 (dU1) 
False True True False 0.01 0.99 
False True False True 0.15 (vXL) 0.85 
False True False False 0.50 0.50 (dU2) 
False False True True 0.05 0.95 
False False True False 0.03 0.97 
False False False True 0.25 (vX2) 0.75 
False False False False 0.18 0.82  
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probability elicitation process simple as they do not affect the corre
sponding probability based on our structural assumptions. The experts 
could directly read the remaining text and mark the answer for each 
question in Table 5 which could also reduce probability elicitation time. 
Suppose the expert marks the answer for vXL as 0.15, vX1 as 0.50, vX2 as 
0.25, dU1 as 0.85, dU2 as 0.50. These probabilities are examples to 
demonstrate the application of the methodology. 

Once we elicit all the required parameters, we could use (1) to 
completely define CPT for our example BN model. For instance, we 
could use (1) to calculate: P(Y|X1

′,X2
′,U1,U2

′) = (1 − (1 − 0.15)(1 −
0.25))(1 − 0.85)(1 − 0.50) = 0.03. The number with bold formatting in 
Table 6 denotes this probability. The completed CPT for the problem 
variable (Y) is shown in Table 6. 

Once we complete the CPT for the problem variable, we could define 
the a priori probabilities for each contributory factor and observation (or 
test result) by eliciting corresponding probabilities directly from the 
experts as they are not complicated. An example BN model with corre
sponding CPTs for each variable is shown in Fig. 9. 

Once the problem (“Sensor (S1) sends incorrect water level mea
surements”) is observed in the floodgate, the evidence (True/False) 
contributory factors and observations (or test results) could be set by the 
operator (or end-user) to determine the major cause for the observed 
problem. Once the evidence for contributory factors and observations 
(or test results) is set, the posterior probability of the problem variable 
would be computed accordingly. Based on the computed posterior 
probability, the appropriate response strategy could be put in place for 

the most likely major cause (intentional attack/accidental technical 
failure) for the observed problem (“Sensor (S1) sends incorrect water 
level measurements”) thereby minimising negative consequences. 

In the example shown in Fig. 10, we provided the evidence for the 
contributory factors “Weak physical access-control (X1) = True”, 
“Sensor data integrity verification (X2) = False”, “Lack of physical 
maintenance (U1) = False”, “Well-written maintenance procedure (U2) 
= True”, and observation (or test result) “Abnormalities in other loca
tions (Z1) = True”, “Sensor (S1) sends correct water level measurements 
after recalibrating the sensor (Z3) = False”. On the other hand, we did 
not provide the evidence for the problem “Major cause for sensor (S1) 
sends incorrect water level measurements (Y)” and observation (or test 
result) “Sensor (S1) sends correct water level measurements after 
cleaning the sensor (Z2)”. The BN computes the posterior (updated) 
probabilities of the other nodes (Y, and Z2) based on the provided evi
dence. The BN in Fig. 10 determines that the major cause for the 
observed problem “Sensor (S1) sends incorrect water level measure
ments” is most likely due to intentional attack as the corresponding 
posterior probability (0.97306) is higher compared to the posterior 
probability of accidental technical failure (0.02694). 

6. Discussion 

An example parameter elicitation for the problem variable (Y) 
without reduced number of conditional probabilities is provided in 
Table 7). This example helps to highlight key challenges especially in 

Fig. 9. BN Model with CPTs Example.  
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terms of number of conditional probabilities to elicit in addition to 
complexity of questions that experts need to answer in both cases (i.e., 
during parameter elicitation with and without reduced number of con
ditional probabilities). In the case of without number of reduced con
ditional probabilities, we need to elicit 16 parameters from experts for 
the problem variable (Y) as shown in Table 7. However, in the case of 
parameter elicitation with reduced number of conditional probabilities, 
we need to elicit only 5 parameters from experts for the problem vari
able (Y) as shown in Table 5. This reduces the burden of probability 
elicitation, which in turn can also ensure the accuracy of elicited 
parameters. 

Moreover, in the case of parameter elicitation without reduced 
number of conditional probabilities based on our structural assump
tions, experts need to think about multiple conditions which influence 
the major cause as shown in Appendix (Table 7). For instance, experts 
need to answer questions when all the conditions which influence the 
major cause are “True”: “What is the probability that the major cause for 
the observed problem (sensor (S1) sends incorrect water level measurements) 
is intentional attack given that the physical access-control for sensor (S1) is 
weak, data integrity verification is performed for sensor (S1) data, sensor 
(S1) is not always physically maintained, maintenance procedure for sensor 
(S1) is well-written?” This in turn makes it merely impossible for experts 
to provide reliable probabilities. However, experts need to think about 
only a condition which influence the major cause, in the case of 
parameter elicitation with reduced number of conditional probabilities 
as shown in Table 5. This can also ensure the accuracy of elicited 

Fig. 10. BN with Updated Probabilities Based on the Evidence.  

Table 7 
Parameter Elicitation for the Problem Variable (Y) without Reduced Number of 
Conditional Probabilities: Example.  

Major cause for sensor (S1) sends incorrect water level measurements (Y) 

1 “What is the probability that the major cause for the observed problem (sensor 
(S1) sends incorrect water level measurements) is intentional attack given that 
the physical access-control for sensor (S1) is weak, data integrity verification is 
performed for sensor (S1) data, sensor (S1) is not always physically maintained, 
maintenance procedure for sensor (S1) is well-written?” 

2 “What is the probability that the major cause for the observed problem (sensor 
(S1) sends incorrect water level measurements) is intentional attack given that 
the physical access-control for sensor (S1) is weak, data integrity verification is 
performed for sensor (S1) data, sensor (S1) is not always physically maintained, 
maintenance procedure for sensor (S1) is not well-written?” 

3 “What is the probability that the major cause for the observed problem (sensor 
(S1) sends incorrect water level measurements) is intentional attack given that 
the physical access-control for sensor (S1) is weak, data integrity verification is 
performed for sensor (S1) data, sensor (S1) is always physically maintained, 
maintenance procedure for sensor (S1) is well-written?” 

4 “What is the probability that the major cause for the observed problem (sensor 
(S1) sends incorrect water level measurements) is intentional attack given that 
the physical access-control for sensor (S1) is weak, data integrity verification is 
performed for sensor (S1) data, sensor (S1) is always physically maintained, 
maintenance procedure for sensor (S1) is not well-written?” 

5 “What is the probability that the major cause for the observed problem (sensor 
(S1) sends incorrect water level measurements) is intentional attack given that 
the physical access-control for sensor (S1) is weak, data integrity verification is 
not performed for sensor (S1) data, sensor (S1) is not always physically 
maintained, maintenance procedure for sensor (S1) is well-written?” 

6 “What is the probability that the major cause for the observed problem (sensor 
(S1) sends incorrect water level measurements) is intentional attack given that 
the physical access-control for sensor (S1) is weak, data integrity verification is 
not performed for sensor (S1) data, sensor (S1) is not always physically 
maintained, maintenance procedure for sensor (S1) is not well-written?” 

7 “What is the probability that the major cause for the observed problem (sensor 
(S1) sends incorrect water level measurements) is intentional attack given that 
the physical access-control for sensor (S1) is weak, data integrity verification is 
not performed for sensor (S1) data, sensor (S1) is always physically maintained, 
maintenance procedure for sensor (S1) is well-written?” 

8 “What is the probability that the major cause for the observed problem (sensor 
(S1) sends incorrect water level measurements) is intentional attack given that 
the physical access-control for sensor (S1) is weak, data integrity verification is 
not performed for sensor (S1) data, sensor (S1) is always physically maintained, 
maintenance procedure for sensor (S1) is not well-written?” 

9 “What is the probability that the major cause for the observed problem (sensor 
(S1) sends incorrect water level measurements) is intentional attack given that 
the physical access-control for sensor (S1) is strong, data integrity verification is 
performed for sensor (S1) data, sensor (S1) is not always physically maintained, 
maintenance procedure for sensor (S1) is well-written?” 

10 “What is the probability that the major cause for the observed problem (sensor 
(S1) sends incorrect water level measurements) is intentional attack given that 
the physical access-control for sensor (S1) is strong, data integrity verification is 
performed for sensor (S1) data, sensor (S1) is not always physically maintained, 
maintenance procedure for sensor (S1) is not well-written?” 

11 “What is the probability that the major cause for the observed problem (sensor 
(S1) sends incorrect water level measurements) is intentional attack given that 
the physical access-control for sensor (S1) is strong, data integrity verification is 
performed for sensor (S1) data, sensor (S1) is always physically maintained, 
maintenance procedure for sensor (S1) is well-written?” 

12 “What is the probability that the major cause for the observed problem (sensor 
(S1) sends incorrect water level measurements) is intentional attack given that 
the physical access-control for sensor (S1) is strong, data integrity verification is 
performed for sensor (S1) data, sensor (S1) is always physically maintained, 
maintenance procedure for sensor (S1) is not well-written?” 

13 “What is the probability that the major cause for the observed problem (sensor 
(S1) sends incorrect water level measurements) is intentional attack given that 
the physical access-control for sensor (S1) is strong, data integrity verification is 
not performed for sensor (S1) data, sensor (S1) is not always physically 
maintained, maintenance procedure for sensor (S1) is well-written?” 

14 “What is the probability that the major cause for the observed problem (sensor 
(S1) sends incorrect water level measurements) is intentional attack given that 
the physical access-control for sensor (S1) is strong, data integrity verification is 
not performed for sensor (S1) data, sensor (S1) is not always physically 
maintained, maintenance procedure for sensor (S1) is not well-written?” 

15 “What is the probability that the major cause for the observed problem (sensor 
(S1) sends incorrect water level measurements) is intentional attack given that 
the physical access-control for sensor (S1) is strong, data integrity verification is 

(continued on next page) 
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parameters. Furthermore, Zhang et al. also highlighted that reducing the 
number of conditional probabilities to elicit reduces the uncertainty and 
bias and improves elicitation accuracy [57]. Finally, Zagorecki et al. 
conducted an empirical study to elicit probabilities under Noisy-OR 
assumptions in addition to elicit complete probabilities directly from 
human experts [57]. Like DeMorgan structural assumptions, the elici
tation of probabilities under Noisy-OR assumptions reduce the number 
of parameters that need to be elicited from exponential to linear in the 
number of parents to define a full CPT for the child variable. Based on 
the empirical study, Zagorecki et al. concluded that the elicitation of 
probabilities under Noisy-OR assumptions yield better accuracy than the 
elicitation of complete probabilities directly from human experts [58]. 

To determine the most critical variables, sensitivity analysis is per
formed with Y (Major cause for sensor (S1) sends incorrect water level 
measurements) selected as the target node. The sensitivity levels are 
shown in Fig. 11. According to the results of the tornado diagram which 
shows 10 most critical events leading to Y due to intentional attack, 
“Lack of physical maintenance”, “Well written maintenance procedure”, 
“Weak physical access control” were identified as the top three most 
effective variables. Based on the tornado diagram, “Lack of physical 
maintenance” is identified as the most influential variable in the 
occurrence of the studied scenario. This in turn would help to focus on 
most critical variables during elicitation. 

Performance-based weighting is one of the systematic approaches 
that can help to guarantee the accuracy of elicited parameters [51]. In 
this approach, each expert is weighted on their performance in 
answering calibration (or seed) questions. These are a set of questions 
from the experts’ field that have observed true values and also closely 
related to the variables of interest [52]. The overall weight for each 
expert can be obtained by multiplying two separate scores, which 

include statistical accuracy (or calibration) score and information score 
[53]. Accuracy score assesses how close an expert’s estimate to the truth 
value. Furthermore, information score assesses the amount of entropy in 
what the expert says or in the expert’s performance. This overall weight 
for each expert can then be used to combine multiple expert judgements. 
Eggstaff et al. highlighted that the performance-based weighting 
significantly outperforms equally weighting expert judgement [54]. 
There are various applications of performance-based weighting [51,55, 
56]. This can supplement the proposed framework to ensure the accu
racy of elicited parameters. 

7. Conclusions and future work directions 

Limited availability of data is one of the key challenges to construct 
BN models in domains like cyber security which results in modellers 
depending on expert knowledge. However, BNs are not suitable for 
knowledge elicitation involving domain experts. In our previous work, 
we developed a systematic method using fishbone diagrams for knowl
edge elicitation involving domain experts to construct the DAGs of BN 
models for distinguishing attacks and technical failures. Noticeably, the 
systematic method for knowledge elicitation involving domain experts 

Table 7 (continued ) 

Major cause for sensor (S1) sends incorrect water level measurements (Y) 

not performed for sensor (S1) data, sensor (S1) is always physically maintained, 
maintenance procedure for sensor (S1) is well-written?” 

16 “What is the probability that the major cause for the observed problem (sensor 
(S1) sends incorrect water level measurements) is intentional attack given that 
the physical access-control for sensor (S1) is strong, data integrity verification is 
not performed for sensor (S1) data, sensor (S1) is always physically maintained, 
maintenance procedure for sensor (S1) is not well-written?”  

Fig. 11. Tornado Diagram Obtained from Sensitivity Analysis for Major Cause for Sensor (S1) Sends Incorrect Water Level Measurements.  

Fig. 1A. Noisy-OR Model: Structure.  
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to construct the CPTs of such BN models is missing in our previous work. 
In this paper, we utilised (a) DeMorgan models to reduce the number 

of conditional probabilities to elicit and (b) probability scales with nu
merical and verbal anchors to facilitate individual probability entry. We 
thereby reduce the burden of probability elicitation, which is critical for 
BN models that rely on expert knowledge. The proposed approach can 
ensure the reliability of elicited probabilities by reducing the workload 
of experts in probability elicitation, especially DeMorgan models can 
reduce the number of parameters that need to be elicited from expo
nential to linear in the number of parents to define a full CPT for the 
child variable. The proposed approach also completes a holistic frame
work to distinguish between attacks and technical failures by proposing 
a systematic method for probability elicitation involving domain 
experts. 

Furthermore, we demonstrated the proposed approach with an 
example problem of incorrect sensor measurements in the water man
agement domain. Our holistic framework is directly applicable to 
different domains for knowledge elicitation involving domain experts to 
construct BN models for distinguishing attacks and technical failures. 
The constructed BN models could be used by operators/end-users in 
different domains to determine the major cause (intentional attack or 
accidental technical failure) of an abnormal behaviour in a component 
of the ICS and initiate appropriate response strategies to minimise 
negative consequences. 

In the future, we aim to evaluate our proposed framework by con
structing BN models for observable problems in the water management 
domain involving domain experts. Furthermore, there is a need to 
compare the performance of BN model constructed with and without the 
use of DeMorgan model in the future and determine the accuracy of the 
proposed approach involving DeMorgan model in the future. However, 
this is currently almost impossible due to the lack of empirical data and 
the following challenges corresponding to expert knowledge: (i) limited 
experts on safety and/or security of ICS in the water management sector, 

(ii) limited time availability of experts [16]. In addition, we aim at 
addressing the limitation that the DeMorgan model is suitable for binary 
variables only. In order to be able to reduce the number of conditional 
probabilities to elicit involving parents and/or child with more than two 
states, it is important to extend the DeMorgan model for multi-valued 
variables in the future. 
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Appendix 

Noisy-OR Model 

The noisy-OR model is applicable when there are several parents (causes) and a common child (effect) as shown in Fig. 1A. In general, the CPT size 
of a binary variable with n binary parents is 2n + 1. However, only n parameters are sufficient to completely define CPT using the noisy-OR model. 

In the noisy-OR model, each cause variable (Xi) has the values xi and xi
′ for the presence and absence of the cause respectively. Furthermore, the 

effect variable (Y) has values y for the effect being present and y′ for the effect being absent. The noisy-OR model assumes that the properties of 
exception independence and accountability holds true [38]. The property of exception independence states that presence of any single cause is enough 

Fig. 2A. CAST Parameters.  
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to produce the effect and that the hidden processes that may inhibit the occurrence of the effect are mutually independent [35]. In case all the 
modelled causes of the effect are false, the property of accountability requires that the effect be presumed false, i.e., P(y′|x1

′,x2
′,…, xn

′) = 1. 
In the noisy-OR model, the effect can be caused by any cause similar to a logical-OR. However, the relationship is not deterministic – each of the 

causes Xi alone can cause the effect with probability pi, which is known as link probability [36]. 

pi = P(y|only Xi is present) = P
(
y
⃒
⃒x′

1, x′

2,…., xi,…., x′

n

)

Where x1
′,x2

′,…, xi,…, xn
′represents the absence of the other causes except Xi. 

The probability of any combination of active causes can be calculated as: 

P(y|X) = 1 −
∏

xi∈X
(1 − pi)

Where X represents all active causes. 

Causal strength (CAST) logic 

CAST logic is applicable when there are several parents and a common child as shown in Fig. 2A [39]. CAST logic assumes all the variables in the 
model are binary. CAST logic is only applied in the international policy and crisis analysis domain [41]. The interaction between a parent and the 
common child can be either promoting or inhibiting. The promoting influence is depicted by an arrowhead, whereas the negative influence is 
illustrated by a filled circle as shown in Fig. 2A. 

The parameters which need to be elicited to completely define CPTs using CAST logic are: (i) causal strengths (gXi,hXi) for each arc, and (ii) baseline 
probability (b) for each variable. The values of causal strengths (gXi,hXi) are not probabilities and can take any arbitrary values from the range [− 1, 1]. 
The value of causal strength (hXi) indicates the change in belief of Y relative to the baseline probability of Y (bY) under the assumption that Xi is in 
“True” state. For instance, hX1 indicates how much the presence of X1 would change our belief of Y. On the other hand, the value of causal strength (gXi) 
indicates the change in belief of Y relative to the baseline probability of effect (bY) under the assumption that Xi is in “False” state. For instance, gX1 

indicates how much the absence of X1 would change our belief of Y. 
Once we elicit the above-mentioned parameters, we could apply CAST algorithm for every combination of parent states to completely define the 

CPT of child variable. CAST algorithm consists of four steps: (i) aggregate positive causal strengths, (ii) aggregate negative causal strengths, (iii) 
combine the positive and negative causal strengths, and (iv) derive conditional probabilities. 

In the first step, the positive causal strengths are aggregated using (1A): 

S+ = 1 −
∏

i
(1 − sXi ) (1A) 

Where sXi can be gXi or hXi depending on the state of the parent. 
In the second step, the negative causal strengths are aggregated using (2A): 

S− = 1 −
∏

i
(1 − |sXi |) (2A) 

Where sXi can be gXi or hXi depending on the state of the parent. 
In the third step, the positive and negative causal strengths are combined. The overall influence (O) of all parents is determined using (3A) if S+ >

=S− and using (4A) if S− < S+: 

O = 1 −
1 − S+

1 − S−

(3A)  

|O| = 1 −
1 − S−

1 − S+

(4A) 

In the final step, the conditional probabilities are derived using (5A) if Oj ≥ 0 and using (6A) if Oj < 0: 

P
(
Y
⃒
⃒Xj
)
= bY + (1 − bY) Oj (5A)  

P
(
Y
⃒
⃒Xj
)
= bY − bY

⃒
⃒Oj
⃒
⃒ (6A) 

Where Oj denotes the overall influence of jth combination of parent states Xj. 

Requirements elicitation – discussion guide 

Q1. When the operator notices an abnormal behaviour in a component of the ICS, how do they respond to it? 
Q2. Do you have a mechanism for the operator to determine whether an abnormal behaviour in a component of the ICS is due to attacks or 
technical failures? 
Q3. Does the same department deal with the attacks and technical failures? If not, how? 
Q4. Which functionalities do you think are important in a system which helps to distinguish between attacks and technical failures? 
Q5. Are there any cyber-attacks reported in your infrastructure? 
Q6. Are there any technical failures reported in your infrastructure? 
Q7. Do you have a repository of technical failure reports? 
Q8. If so, whether this repository of technical failure reports is available for research or not? 
Q9. What do you think are the alternate data sources available for research? 
Q10. What are the challenges you foresee in the alternate data sources you proposed? 
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Q11. In addition to risk factors and symptoms based on tests, what are other elements that you would take into account when you diagnose an 
(intentional) attack on a component? 
Q12. In addition to risk factors and symptoms based on tests, what are other elements that you would take into account when you diagnose 
(accidental) technical failure? 
Q13. Is it possible to evaluate the developed method in the real water management infrastructure? If so, are there any challenges? 
Q14. Whether do we have access to system architectures of any real water management infrastructure or not? 

Constraints (Cs) and requirements (Rs) 

Based on the responses which we received from the experts to those questions, the following set of constraints and high-level requirements is 
extracted by manually analysing the interview notes and summarising the essence of the responses: 

C1. When the operators notice an abnormal behaviour in a component of the ICS, they presume that this is due to a technical failure and initiate 
corresponding response procedures. The response strategy initiated towards a technical failure is not effective in case of an attack. 
C2. There is a lack of real data regarding cyber-attacks as they claim that there are no/limited cyber-attacks on their infrastructures. Furthermore, 
this is not shareable due to the sensitivity of data. 
C3. Technical failures occur in their infrastructures which are documented as technical failure reports. However, they are also not shareable due to 
the sensitivity of data. 
C4. The automation department deals with the technical failures, whereas the security department deals with cyber-attacks in the water man
agement infrastructure. There are experts who have expertise in dealing with both technical failures and cyber-attacks. 
C5. Experts are limited in this domain with limited time availability. 
C6. The real water management infrastructure like a floodgate is not available for the evaluation of the developed method due to availability and 
criticality issues. 
C7. There are system architectures with specific components which are not shareable due to the sensitivity issues. However, there is a possibility to 
arrange a visit to a water management infrastructure which could help to understand the system architecture on a high-level. Furthermore, the 
system architecture needs to be anonymised when publishing it. 
C8. There is a need for decision support that would help operators to distinguish between intentional attacks and accidental technical failures as it 
provides input to the decision-makers to choose appropriate response strategy. However, the selection of these response strategies also depends on 
cost-benefit and feasibility. 
R1. An effective and practical alternative to data-driven approaches for developing decision support to distinguish between attacks and technical 
failures is required. 
R2. Decision support should help operators to distinguish between attacks and technical failures by taking into account real-time system 
information. 
R3. The method for developing decision support should facilitate to involve experts from the department that deals with technical failures and the 
department that deals with cyber-attacks including experts who have expertise in dealing with both technical failures and cyber-attacks. 
R4. The workload of experts during the knowledge elicitation process for developing decision support to distinguish between attacks and technical 
failures should be limited. 
R5. The reliability of knowledge elicited for developing decision support to distinguish between attacks and technical failures should be ensured. 
R6. The developed decision support should be scalable to different problems in the real environment. 
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