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A

In 2006, N. Stam (Stamsolve) performed small scale experimental research (seling tube with inter-
nal diameter D ≈ 120 mm) to investigate whether the hindered seling process could be improved
for silt and fine sand fractions (d = 170 − 15 µm). Hindered seling (Richardson and Zaki, 1954)
causes the average seling velocity of the solid particles to decrease due to the presence of neighbor-
ing particles (Winterwerp, 2002). N. Stam visually observed that the presence of a repeating shock
wave through a seling mixture could influence the hindered seling process such that the average
seling velocity increased (or the negative influence of the hindered seling process decreased). A
shock wave was defined as a single input of energy which creates a propagating pressure wave.

Two hypotheses were created based on different physical processes. N. Stam’s hypothesis was based
on the dissipation of return flow energy by applying a shock wave perpendicular to the seling direc-
tion (Stam, 2007). J. van Wijk’s hypothesis did not include an increase in hindered seling velocity,
but mentioned that only compaction of the bed layer would occur (Van Wijk, 2013). A collaboration
between Royal IHC and Stamsolve resulted in small scale and semi-industrial scale model exper-
iments to investigate N. Stam’s hypothesis. During the experiments, inconsistencies in observed
seling behavior caused only partially satisfactory results. It was therefore concluded that the phys-
ical processes were not fully understood.
To investigate these physical processes, this thesis project was created, starting with an elaborate
literature study (Van de Wetering, 2015b). e hypothesis by Van Wijk (2013) was concluded to be
correct and some boundary conditions were established. Regarding the hypothesis by Stam (2007),
it was concluded that shock waves do not effect the hindered seling velocity positively. A velocity
field perpendicular to the seling direction causes a higher drag force and a longer traveling distance
for the particles to sele. However, during the literature study an interesting technique was found,
where non-uniform (sawtooth-like) fluid oscillations proved to be capable of levitation solid spher-
ical particles against gravity (Van Oeveren and Houghton, 1971). e particle response motion to a
non-stagnant fluid could be described using a differential equation suggested by Boussinesq (1885),
Basset (1888) and Oseen (1927). is equation is referred to as the BBO-equation.

e goal of this thesis is to theoretically and numerically investigate whether the hindered seling
influences can be decreased by an oscillatory motion of the fluid. is oscillatory motion can either
be uniform or non-uniform.
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Uniform oscillations are described by a sinusoidal fluid displacement whereas non-uniform fluid os-
cillations are described by a sawtooth wave fluid displacement. e BBO-equation was adjusted to
account for fluid oscillations and implemented in MATLAB. Two different scenarios which could
lead to a possible increase in the average hindered seling velocity were developed.

e first scenario is based on the ”vein-like” principle described by Kuenen (1968). He found that
particles have a natural tendency to fall in vertically oriented clusters or ”veins”, creating drainage
paths to dissipate the pore water (horizontal density gradient). is phenomenon is called seling
convection and decreases the hindered seling effects (Kranenburg and Geldof, 1974). ese find-
ings, combined with the BBO-equation, were implemented in MATLAB and solved for the particle
response velocities as function of the fluid oscillations. It was found that non-uniform oscillations are
indeed capable of migrating a single solid particle horizontally, artificially creating Kuenen’s veins.
Using a fluid amplitude of 5 mm and a frequency of 40 Hz, an average horizontal relative particle
velocity of approximately two times the terminal seling velocity was found, using a particle diam-
eter d = 100 µm. It is important to note that these findings are highly theoretical, as the sawtooth
wave shape used as fluid displacement input will be extremely hard to reproduce in practice due to
system properties such as friction and inertia.

e direction of migration was found to be dependent on the direction of the highest velocity, caused
by the differentiated sawtooth fluid displacement. Although the model does not take concentration
into account, it strongly suggests that two veins (horizontal density gradient) can be created using
this technique. One of the veins will contain the migrated particles, so the mixture density will be
high. e other vein will act as the drainage path, dissipating the water and creating a convection
flow, increasing the average hindered seling velocity.

e second scenario is also based on experimental results published by Van Oeveren and Houghton
(1971). As mentioned, they experimentally demonstrated that it is possible to make particles hover
or even rise against gravity using vertically non-uniform oscillations with the highest velocity of
the sawtooth-wave pointed upwards. Hence, the non-uniform oscillations produce a resultant force
upwards which is larger than the downward gravity force. So, simply reversing the direction of the
highest velocity resulted in a predicted increase in seling velocity of a single solid particle. Using
an equal oscillation frequency and amplitude as during the first scenario, an increase of two and a
half times the terminal seling velocity was predicted by the model.

e particle response behavior is described using an amplitude ratio (Ap/Af ) and a phase angle
(φ). e response behavior was found to be dependent on the ratio between viscous forces and in-
ertial forces. A force analysis for both mentioned scenarios showed that the viscous forces (history
force and Stokes drag force) were always dominant, using the particle sizes of interest. When the
viscosity was neglected (inviscid model), it was found that the decoupled motion (amplitude ratio)
is dependent on the inertial differences between fluid and particle and no phase angle would occur.
e addition of viscosity showed that the decoupled motion decreased with respect to the inviscid
model and a phase difference between particle and fluid arose. In the upper limit of viscosity, it was
proven that also no phase angle would occur, i.e. φ = 0. ese observations together with more
calculations showed that the phase angle is maximum if the ratio between viscous and inertial forces
is approximately unity.

Regarding the fluid oscillations properties, it was found that the fluid amplitude more dominant than
oscillation frequency if particle migration is desired.
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N

A

BBO Boussinesq (1885), Basset (1888) and Oseen (1927)
CPT Cone Penetration Test
DFT Discrete Fourier Transform
DNS Direct Numerical Simulation
DUT Del University of Technology
EOM Equation Of Motion
FFT Fast Fourier Transform
MSc Master of Science
ODE Offshore and Dredging Engineering
ODE Ordinary Differential Equation
PRT Particle Response Time
PSD Particle Size Distribution
RHS Right Hand Side
SHS Smart Hopper Seling
TSHD Trailing Suction Hopper Dredger
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S

L S

Notation Description Units

a Fourier series coefficient [−]
A Amplitude [m]
Ac Acceleration number [−]
Acc Fluid acceleration parameter Herringe (1976) [−]
b Fourier series coefficient [−]
b0 Retardation coefficient uniform oscillations [−]
b1 Retardation coefficient non-uniform oscillations [−]
c Concentration [−]
C Coefficient [−]
d Particle diameter [m]
dt Time step [s]
D Seling tube diameter [m]
e Void ratio [−]
f Frequency [s−1]
F Force [N]
g Gravitational constant [m s−2]
k Slope estimation equation Runge-Kua method [r.u.∗]
ki Shape factor non-uniform wave (input) [−]
ko Shape factor non-uniform wave (output) [−]
L Length [m]
m Mass [kg]
n Exponent nonlinear drag law [−]
r Particle radius [m]
Re Reynolds number [−]
s Fluid displacement (uniform oscillations) [m]
S Fluid velocity (uniform oscillations) [m s−1]
Sl Strouhal number [−]
St Stokes number [−]
t Wall thickness [m]
t Time [s]
T Temperature [°C]
u Horizontal particle velocity [m s−1]
v Vertical particle velocity [m s−1]
V Volume [m3]
w Empirical variable [−]
y Certain variable in differential equation [r.u.]

∗ r.u. = relative units.
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G 

Notation Description Units

β Amplitude scale [−]
γ Density ratio [−]
δ Inverse Stokes number [−]
∆ Relative density [−]
Θ Particle seling parameter [−]
µ Dynamic viscosity [Pa s]
µ Micro [−]
ν Kinematic viscosity [m2 s−1]
π Pi [−]
ρ Density [kg m−3]
τ Dummy variable [−]
τ Time scale [s]
ϕ Empirical correction factor to Stokes drag force [−]
φ Phase shi [rad]
ω Angular frequency [rad]
Ω Dimensionless frequency [−]

M 

Notation Description Units

d(...)/d(...) Specified derivative of certain parameter [−]
x̄ Mean value [−]∫ y

x Bounded integral [−]
∞ Infinity [−]
|...| Absolute value [−]
log10 Logarithm [−]∑∞

x=1 Summation from 1 to infinity [−]
f(...) Function of certain parameters [−]
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S

Notation Description Units

0 Starting point Fourier Series [−]
1 Empirical value Odar and Hamilton (1964) [−]
1 Empirical value Ferguson and Church (2004) [−]
1 First slope estimation value [r.u.]
2 Empirical value Ferguson and Church (2004) [−]
2 Second slope estimation value [r.u.]
3 ird slope estimation value [r.u.]
4 Fourth slope estimation value [r.u.]
a Added mass [−]
b Buoyancy [−]
bed Bed [−]
d Drag [−]
f Fluid [−]
g Gravity [−]
h History or Basset [−]
h Horizontal [−]
inertial Collection of all inertial forces [N]
m Added mass [−]
m Mixture [kg m−3]
mean Mean or average [−]
n Amount of sine waves [−]
p Particle [−]
p Pore [−]
p Pressure [N m−2]
pot Potential theory [−]
res Resultant [−]
s Soil [−]
S Fluid velocity (uniform oscillations) [m s−1]
t Terminal [−]
t Total [−]
v Vertical [−]
v Viscous [−]
v Volumetric [−]
viscous Collection of all viscous forces [N]
w Non-uniform oscillation [−]
wx Horizontal displacement non-uniform oscillations [m]
x Horizontal displacement uniform oscillations [m]
y Vertical displacement uniform oscillations [m]
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I

In the dredging industry Trailing Suction Hopper Dredgers (TSHD) are deployed to transport large
quantities of sand or silt (∼ 1.500 − 46.000 m3). is can either be from the open sea to a deposit
area (land reclamation) or from harbors to the open sea (maintenance work). As the name suggests,
the vessel uses a suctionhead or draghead to create a mixture of sand and water (called a slurry) at
the seabed (Figure 1). Without water being added to the sand, what is also known as fluidization, the
sand would not be pumpable by the on board dredgepumps. ese are centrifugal pumps that create
the needed suction and discharge pressure to pump the slurry into the hopper.

Figure 1: TSHD (http://atozhub.weebly.com/mechanical-engineers/dredging)

e hopper can be seen as a temporary storage area where the slurry mixture is separated again by
the fact that without any kinetic energy input, creating turbulence (a highly chaotic process needed
to suspend the sand particles), solid particles will sele under the influence of gravity (gravitational
separation). Slurry mixtures are rarely uniformly graded, which means that a lot of different particle
sizes are present in the mixture. All these different sizes have different seling velocities, varying
from minutes to even days. e water, which has now become of no use, is redirected overboard
through the overflow. All the particles which did not sele, or feel sufficient horizontal force due to
the flow towards the overflow, will be washed or eroded overboard.
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is phenomenon of losing production (the solid material is desired) through the overflow is known
as overflow losses and is undesired in multiple ways. Economically for the dredging operator, it will
require longer dredging times to fill the hopper entirely. Environmentally it has some consequences
as well: the carbon footprint per dredge cycle increases and because the overflow exits at the boom
of the vessel, a so-called dredgeplume emerges.

Figure 2: Overflow inside the hopper and dredgeplume behind the THSD

Considering Figure 2, the overflow is located at the boom le, whereas the dredgeplume is visible
at the top right of the figure. e presence of (usually fine) particles in the sea or harbor where
the dredger is operating, creates a high turbidity area where low amounts of light can penetrate.
Furthermore, the fine particles eventually form a ”blanket” over the seabed. Both of these can be
harmful for the underwater flora and fauna.

Clean water through the overflow would therefore be the ultimate goal. is means that all the dif-
ferent particle sizes which enter the hopper need to sele before they can reach the overflow. Exten-
sive research has already been performed to all the physical processes which determine the overflow
losses, such as; hindered seling (Richardson and Zaki, 1954; Van Rhee, 2002; Dankers, 2006; Te Slaa
et al., 2012), eroding of particles due to horizontal currents, particle behavior in turbulent flows etc.
If we neglect the turbulence and horizontal currents, than hindered seling is a very important pro-
cess, which occurs when a concentration of particles sele in a fluid. is process can be compared
with the velocity of multiple cars on the highway. If the amount of cars (concentration) increases,
the average velocity of all cars will decrease. is principle also holds for solid particles. During this
thesis project, especially the particle fractions in the range of 170 − 15 µm are of interest (fine sand
to medium silt (Matousek, 2004)), because of their low terminal seling velocities.

In 2006, N. Stam from Stamsolve performed small scale experimental research (seling tube with
an internal diameter D ≈ 120 mm) to investigate whether the hindered seling process could be
improved. He visually observed that the presence of a repeating shock wave through the seling
mixture could influence the hindered seling process such that the average seling velocity increased
(or the negative influence of the hindered seling process decreased).
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Subsequently, N. Stam built a small model scale hopper (1:100) in which a slender vertical plate was
placed. is plate added the shock wave through the seling mixture by a small but highly accel-
erated horizontal displacement. e obtained results from a series of experiments were partially
satisfactory. A stable but relatively low improvement of the seling velocity was achieved (∼ 3%)
by measuring the bed growth velocity. A more dominant observation however, proved that the soil
surrounding the vertical plate got compacted.

Using the visual observations, N. Stam stated the following hypothesis (Stam, 2007):

”e addition of a shock wave in a seling mixture dissipates the energy of the upward return flow in
such a way that the particles no longer feel the presence of this return flow. e energy of the shock

wave itself should be small enough to not be the driving force for the particles to stay longer in
suspension than without any”.

e term ”shock wave” was defined as a single energy input which creates a horizontally propagating
pressure wave through the seling mixture. e addition of a shock wave and its visible influence
N. Stam called: Smart Hopper Seling (SHS).

Besides N. Stam, J. van Wijk from MTI Holland B.V. also created a hypothesis based on the same
visual observations. His hypothesis is based on a different physical process and was described as
follows (Van Wijk, 2013):

”When the sand seles naturally under the influence of gravity, a loosely packed layer is created (bed
layer). By the addition of repeating shock waves this layer is compacted: the particle-particle

interaction strongly increases. At the transition between hindered seling and the bed layer it is
difficult to visually determine the governing process”.

In 2011, a collaboration between Royal IHC and Stamsolve was established to experimentally in-
vestigate Stam’s hypothesis on a larger model scale (1:4). is semi-industrial scaled hopper did
not provide the satisfactory results concerning the increase of the average seling velocity. Uncer-
tainties in obtaining a more or less homogeneous mixture and measuring the bed growth velocity,
influenced the measurements such that no quantitative conclusion could be made. Compaction how-
ever, was proven to be found over the entire length of the hopper (11m). Still, unanswered questions
remained. In order to answer these questions and achieve higher consistency, an additional small
scale hopper (1:55) was built. In contrast to the previous scale models, the third scale model wasmade
of transparent Perspex with a relatively large wall thickness (instead of thin steel walls). Again, the
vertically placed plate was used to horizontally excite the seling mixture. e addition of shock
waves in the seling mixture proved to have no influence on the seling velocity in this case. Fur-
thermore, the compaction as found during previous scale experiments, was also concluded not to be
present as severely as previously found.

It was concluded that the hindered seling process in combination with shock waves (fluid oscil-
lations) was not fully understood. To beer understand the physics behind this combination, this
thesis project was created, starting with an elaborate literature study.
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In Chapter 1 a summary of the performed literature study (Van de Wetering, 2015b) is presented.
Chapter 2 will discuss the thesis outline together with the hypotheses created in response to the
literature study, which will form the basis of this thesis. Chapter 3 provides an explanation and
derivation of inviscid and viscous models (the BBO-equation), together with some adjustments to
specific force terms, in order to increase the validity range of the viscous model. ese models are
used to numerically investigate the mentioned hypotheses. In Chapter 4 the numerical model cre-
ated to solve the BBO-equation is presented, together with assumptions and simplifications made in
order to do so. A validation study using experimental data from literature is performed, to examine
the usability and accuracy of the numerical model. e particle response motion results, using the
inviscid model, are presented in Chapter 5. Chapter 6 presents the particle response motion results
using the viscous model. Here, multiple parameters are varied to find relations between particle re-
sponse behavior and different fluid oscillation properties. Finally, in Chapter 7 conclusions regarding
the hypotheses are drawn, together with some general conclusions and recommendations regarding
future work.
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CHAPTER 1

L  

is chapter presents an overview of the literature study, whichwas performed to theoretically deter-
mine the influences of shockwaves (fluid oscillations) on the seling behavior of solid particles. First,
the research objectives are discussed, which formed the basis of the literature study. Subsequently,
a summary of the literature study is presented, together with the conclusions and recommendations
towards the thesis.

1.1 R O

e main research question of the thesis literature study was:

Do shock waves influence the hindered seling process and the amount of deposited material in time?

As mentioned, the definition of a shock wave reads: a single input of energy which creates a propa-
gating pressure wave with certain amplitude and frequency. To answer the main research question, a
number of research objectives were created:

1. What kind of natural sediment distribution, i.e. particle size and concentration as function of
height (under the influence of gravity and kinetic energy) is found when no kinetic energy is
added to a fluidized mixture?

2. What is the influence of a shock wave through the naturally obtained layer system?

3. How does a shock wave influence the seling velocity and the amount of deposited material?

4. What physical process governs the transitional area between the suspended layer and the
deposited bed layer?

(a) Liquefaction where the effective stress σ′ = 0? Terzaghi’s effective stress principle:
σ′ = σ − p describes the relation between total stress (σ) and pore pressure (p). e
effective stress describes the amount of contact force between the particles. When the
effective stress equals zero, the pressure in the pores is equal to the present normal and
shear stresses. In this case the soil acts like a liquid (quicksand) (Verruijt, 2011).
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CHAPTER 1. LITERATURE STUDY REVIEW

(b) Hindered settling principle (Richardson and Zaki, 1954) still applies? In this case the
transitional area is considered to be a slowly seling layer where the terminal seling
velocity is strongly dependent on the concentration.

(c) Consolidation/compaction of the loosely packed layer? e loosely packed layer is
still suspended and seles very slowly by the gravitational force combined with a sub-
merged weight, squeezing out the pore water uniformly over the entire surface.

(d) Channel/cloud formation applies? A hypothesis suggested by prof. C. van Rheewhere
a similar process described by (c) takes place. e only difference is the fact that the
outflow of the pore water is not uniformly distributed, certain channels are created by
the pore water choosing the path with the least resistance.

5. If either one or more of the hypotheses is correct then what are the boundary conditions?

Both the main research question and the research objectives aim to examine the hypotheses by N.
Stam and J. van Wijk.

1.2 S

e literature study starts at the very basics by describing soil classification and properties. is is
more or less a summary of the soil mechanics book of Verruijt (2011). Important parameters describ-
ing the gradation of the soil are given in order to distinguish different soil mixtures. Furthermore, it
is described which stresses occur when the transition between seling and forming a grain skeleton
takes place. is is important when considering the transitional layer as described in the research
objectives.

e second chapter of the literature study goes into depth about the seling velocity of a single solid
particle in a stagnant fluid. General seling velocity equations are given for different flow regimes
together with visual representations. It was found that different equations still predict relatively
large differences (∼ 30%) in terminal seling velocity (vt). As this project focuses at particles in
the range of 170 − 15 µm, the equations by Ferguson and Church (2004) and Stokes (1851) are used
during the modelling. Using the equation of motion (EOM) by Van Rhee (2002), it was found that
the particle response time (PRT) is in the order of milliseconds. is proves that the particle seling
in a stagnant fluid, travels almost instantaneously at its terminal seling velocity.

In chapter three a concentration of particles is considered instead of a single one. is can either be a
mono-sizedmixture (rarely found in practice) or amulti-sizedmixture. First, an elaborate description
of the hindered seling process is given, starting with the definition (Winterwerp, 2002):

hindered seling is the reduced sedimentation rate of a concentrated suspension of particles, caused by
the influence of neighboring particles on the seling velocity of an individual particle within a

suspension.

e presence of a concentration of particle causes seven different interaction processes to occur: re-
turn flow and wake formation, dynamic flow effect, collisions, particle-particle interaction, effective
viscosity, reduced gravity and seling convection. It was found that seling convection is the only
positive interaction process, named aer Kuenen (1968). It describes the tendency of particles to
sele in groups (clusters), temporary increasing the seling velocity.
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1.2. SUMMARY

e hindered seling velocity as function of concentration can be calculated with the well known
equation fromRichardson and Zaki (1954), using the exponent m fromRowe (1987). It was found that
the seling velocity decreased with approximately 80%, using a volumetric concentration cv = 0.3
and particle sizes d < 100 µm.

Te Slaa et al. (2012) discussed the seling velocity of silt water mixtures using non-cohesive sedi-
ment with particle sizes d = 2 − 63 µm. ey found that the particle flux can be divided into three
phases: a hindered seling phase and two consolidation phases. e hindered seling phase will
evolve to the first consolidation phase when a volumetric concentration cv ≈ 0.4 is reached. At
this concentration, a structure between the solid particles is created. At the first consolidation phase
permeability and effective stress are dominant until the volumetric concentration of the structure in-
creases to approximately cv ≈ 0.55 (this increase is created by the outflow of pore water). Now, the
second consolidation phase starts, where compaction and creep are dominant.

Because of the mentioned seling convection process being a positive side effect from having a con-
centration of particles, the behavior of particles seling in a cluster is the last subject of the third
chapter. Kuenen (1968) experimentally showed that two types of seling convection can occur: a
chaotic-type or a vein-type.
Kajishima and Takiguchi (2002) showed that wake-induced clusters are predicted using a Direct Nu-
merical Simulation (DNS) method, at relatively low volumetric concentrations cv ≈ 0.002 using
relatively heavy particles (ρp/ρf ≈ 10). e clustering process is mentioned to be a cycle between
cluster formation, break-up and reforming. All three mentioned cluster types cause the seling ve-
locity to temporary (in the order of PRT) increase due to the increased weight. Increasing shear
stresses eventually break up the formed clusters.

e fourth chapter of the literature study is about the effects of shock waves (fluid oscillations)
through a seling or seled mixture of solid particles within a fluid. First the properties of acoustic
waves through suspensions are covered. It is found that the velocity of sound waves increases with
increasing solids fraction (dependent on particle size). Subsequently, the wave propagation velocity
in slurry pipe flow and porous granular material is discussed.
When the mixture is seled, it is interesting to determine the effects of shock waves through the
bed layer. It was found that two types of compaction are oen used in the dredging industry: Dy-
namic impact compaction and vibratory compaction. e first method uses a pounder (heavy weight),
dropped form a certain height to introduce a shock wave through the soil, which is almost exactly
equal to the slender vertical plate used by Kuypers et al. (2011); Kuypers and Stam (2013a,b, 2014).
is shock wave results in compression of the soil together with partial liquefaction and the creation
of drainage paths. An empirical relation was found to predict the depth of influence (Mayne et al.,
1984). e second method uses continuous vibrations to compact the soil. e vibration frequency
has to be at the resonance frequency (15 − 20 Hz) of the soil in order to compact the soil effectively.

Chapter four closes with two interesting techniques using continuous oscillations (both fluid and
acoustic) to manipulate solid particles, suspended in a fluid. e technique which uses fluid os-
cillations is described by Houghton (1963, 1966); Baird et al. (1967). Vertical sinusoidal (uniform)
fluid oscillations were used to retard solid spherical particles from traveling at their terminal seling
velocity. Furthermore, Van Oeveren and Houghton (1971) experimentally showed that the use of
non-uniform oscillations (sawtooth-like wave shape) in vertical direction were capable of levitating
solid particles against gravity. ey used the nonlinear Langevin equation in order to predict the
measured data, but found that the retardation could not be accurately predicted.
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e second technique uses ultrasonic standing-waves to migrate solid particle toward the antinodes
(Whitworth et al., 1991; Whitworth and Coakley, 1992; Benes et al., 2001). is causes the particles
to form clusters in a vertical string configuration (similar to the vein-type seling convection as
described by Kuenen (1968)). Aer the formation of the vertical string of clusters, the transducer
(which creates the ultrasonic standing-waves either by reflection or a second transducer) is turned
off. e string of clusters will start to sele under the influence of gravity, resulting in an increased
seling velocity by a factor 1000. Unfortunately, this technique limited because of scaling possibili-
ties.

e fih and last chapter in the literature study discusses the hypotheses (Stam, 2007; Van Wijk,
2013) and the physical SHS experiments, performed a few years ago. At first, the theory used at that
time was analyzed and it was found that certain aspects were not interpreted correctly. During the
experiments, it was found that a three layer system would occur (dependent on concentration). e
SHS technology focused on the so-called ”soup-layer” which could not be described using hindered
seling. is layer did already become a part of the bed layer, but remained liquefied due to the high
pore pressure and low permeability because segregation was present. e addition of shock waves to
this layer causes the particles to rearrange, creating drainage paths to dissipate the pore water and
therefore compacting the bed layer. Furthermore, it was thought that hindered seling would only
occur when the solids mixture was well-graded, which is not the case (Winterwerp, 2002).

1.3 C

e conclusions made at the end of the literature study, answering the main research question and
the research objectives, are repeated here. First, the main research question as formulated at the start
of the literature study is repeated and answered:

Do shock waves influence the hindered seling process and the amount of deposited material in time?

e shock waves, as applied during the SHS experiments, do indeed influence the hindered seling
process (hereaer sedimentation process). By introducing a velocity field perpendicular to the sedi-
mentation direction in the form of a single oscillation (uniform or non-uniform), it is expected that
the drag coefficient Cd will increase up to 2Cd. is expectation is based on experiments where
vertical retardation of multiple spherical particles was found as a result of oscillatory fluid motion
(Houghton, 1963, 1966; Baird et al., 1967; Houghton, 1968). e results of these experiments were
theoretically examined using the Langevin equation. Because of the particle sizes used during the
experiments, in combination with the amplitude of the shock wave, it is expected that the particles
will follow the horizontal oscillation. is causes the overall distance, which has to covered to sele
completely, to increase. e amount of deposited material as function of time t will therefore de-
crease as well.

As for the research objectives, these will be answered in the same order as they have been described:
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1. What kind of natural sediment distribution, i.e. particle size and concentration as
function of height (under the influence of gravity and kinetic energy) is found when
no kinetic energy is added to a fluidized mixture?
In the dredging industry, typically found mixture densities (ρm) are in the range 1100 −
1600 kg/m3. Corresponding volumetric concentrations cv are found to be in the range 0.1 −
0.4. Besides the amount of particles, the Particle Size Distribution (PSD) is of importance.
Obviously, when considering a narrow graded (or mono-sized) mixture, the particle size and
concentration are not a function of the height of the seled bed.
In the case of a well-graded mixture, the particle size and concentration are found to be a
function of the height of for instance the seling column or hopper (Ooijens et al.). Until the
concentration of the mixture reaches approximately the concentration of the bed cv = cbed

which is found to be approximately cv = cbed ≈ 0.45, a physical process called segregation
will be present. Segregation is caused by the weight differences between the various particle
sizes found in a well-graded mixture. Because of these weight differences, larger particles will
travel faster than smaller particles. If volumetric concentrations are as high as the bed con-
centration, segregation is reduced, as measurements showed reduced vertical concentration
gradients (Te Slaa et al., 2012).
In this specific situation, the largest particles will be found at the boom, while the smallest
particles will be found at the top of the seled bed. erefore, there can be concluded that
the particle size as well as the concentration and permeability are a function of the height of
bed layer. e volumetric concentration will increase with increasing height of the bed layer,
while the permeability will decrease with increasing height of the bed layer.

2. What is the influence of a shock wave through the naturally obtained layer system?
e influence of a shock wave through the naturally obtained layer system can be compared
with a pounder (weight) being dropped from a certain height. is technique is used to com-
pact granular soil and is also known as dynamic impact compaction.
e shock or compression waves and high stresses induced by dropping the pounder result
in compression of the soil, together with partial liquefaction and the creation of preferential
drainage paths through which pore water can be dissipated. e dissipation of pore water
automatically lowers the pore pressure, leading to an increase in effective stress. Furthermore,
the void ratio (e = Vp/Vs) reduces, resulting in compaction of the soil (Mayne et al., 1984; Pan
and Selby, 2002; Gupta et al., 2013).
As mentioned in the previous research objective (1), segregation oen occurs when typical
dredging concentrations are used. e segregation process has a negative influence on the
compaction effect, as the permeability decreases with increasing height of the bed. In the PSD
used to perform the SHS experiments a clay fraction was present, which created an imperme-
able layer on top of the bed because of segregation.
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3. How does a shock wave influence the settling velocity and the amount of deposited
material?
During the literature study, no publication or paper was found where the exact influence or
relation of a shock wave on the terminal seling velocity was described. In all cases, a con-
tinuous input of vibratory energy was used instead of a single input. Publications were found
describing the influence of a suspension on pressure and acoustic wave propagation, velocity
and aenuation (Paterson, 1956; Atkinson and Kytömaa, 1992; Wenliang et al., 1998).
On the other hand, publications were found describing the influence of acoustic waves on the
solid phase of the suspension (particles). Using ultrasonic standing-waves it was showed that
seling convection aer Kuenen (1968) could be created and manipulated. Experiments were
performed using multiple particle sizes (spherical and non-spherical) and a theory was created
for the use of acoustic radiation forces (Whitworth et al., 1991; Whitworth and Coakley, 1992;
Benes et al., 2001). On a small scale it was even showed that it would be possible to use this
technique during a continuous flow situation. By the growing of clusters mechanism using
ultrasonic standing-waves, clusters become large and heavy enough to sele by gravity against
the continuous flow (Hawkes and Coakley, 1996; Prest et al., 2015).
Besides the use of high frequency (ultrasonic) standing-waves, research was performed using
low frequency, vertically oscillating fluids in which particles were led to sele (Houghton,
1963, 1966; Baird et al., 1967; Houghton, 1968). It was found that uniform and non-uniform
vertically oscillating fluids cause retardation in the terminal seling velocity. Increasing fre-
quency and amplitude could even make particles hover (vt ≈ 0) or rise against gravity (non-
uniform oscillations). e occurrence of the retarded motion was theoretically explained by
an increase in drag coefficient Cd and the drag exponent n of the nonlinear drag law, using
the nonlinear Langevin equation.
By introducing a velocity field perpendicular to the sedimentation direction in the form of
a single oscillation (uniform or non-uniform), it is expected that the drag coefficient Cd will
increase up to 2Cd. Furthermore, because of the particle sizes used during the experiments,
in combination with the amplitude of the shock wave, it is expected that the particles will
follow the horizontal oscillation. is causes the overall distance, which has to covered to
sele completely, to increase. e amount of deposited material as function of time t will
therefore decrease as well.

4. What physical process governs the transitional area between the suspended layer and
the deposited bed layer?
e transitional area (or soup-layer according to Stam (2007)) is not governed by a single phys-
ical process. As the hindered seling process reaches its final stage, only the very small par-
ticles (fine silt and clayey particles) are found in the transitional layer. Visually no signs of
hindered seling can be observed any more, as a structure has been formed (cv ≈ 0.4). When
segregation was present due to a regular volumetric particle concentration, the permeability of
the layer is found to be a function of its height. Two consolidation phases can be distinguished
(Te Slaa et al., 2012). During the first consolidation phase the governing physical processes are
permeability and effective stress. As time proceeds, a second consolidation phase will start at a
volumetric concentration cv ≈ 0.55. From here the governing physical processes were found
to be compaction and creep. e initial volumetric concentration (when all the solid particles
are still in suspension) determines if segregation will take place and how the sedimentation
process looks like (Kynch, 1952).
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1.4. RECOMMENDATIONS

5. If either one or more of the hypotheses is correct then what are the boundary condi-
tions?
e hypothesis by Van Wijk (2013) about compacting the naturally formed bed layer, was
proven to be correct. It was found that indeed compaction had taken place during the SHS
experiments conducted by Kuypers and Stam. Boundary conditions of compaction were men-
tioned by Massarsch (1991) with the use of a compactibility graph, which can only be deter-
mined by performing a Cone Penetration Test (CPT).
Furthermore, Mayne et al. (1984) compared 128 sites to create an empirical equation which
approximates the depth of influence as function of the amount of energy per blow. e used
SHS energy proved to be too low to influence the seled mixture over the entire length of
the industrial scaled hopper. It was therefore concluded that the walls of the hopper played
an important role during the performed experiments (Kuypers et al., 2011; Kuypers and Stam,
2013a,b, 2014). Because of the enclosure by thin steel walls, the shock wave could be trans-
ferred over the entire length. In the case of the small scaled Perspex hopper, this process could
not occur by the much larger wall thickness over the length (t/L) ratio. Further boundary
conditions were le untouched, as compaction is not the main interest.
As for the hypothesis by Stam (2007), it was already mentioned that no direct validation could
be made with the use of literature. e conclusions stated by Houghton (1966); Baird et al.
(1967); Van Oeveren and Houghton (1971) created the expectation that the addition of a shock
wave in horizontal direction, perpendicular to the seling direction, creates a higher drag force.
Furthermore, the particle sizes used during the experiments, were relatively small compared
with the used amplitudes of the shock wave. It is expected that the particles will follow the
horizontal fluid oscillation causing the overall distance, which has to covered by the particles to
sele completely, to increase. is retards the particle instead of improve its seling velocity.

1.4 R

e mentioned technique by Van Oeveren and Houghton (1971) of using non-uniform fluid oscilla-
tions to make solid spherical particles with a density greater than that of the fluid (ρp > ρf ) hover
(no absolute vertical displacement) or even levitate (absolute vertical motion against gravity), proved
to be very interesting.

Aer reading more articles using the same technique, it was found that these fluid oscillations could
be uniform (Odar and Hamilton, 1964; Odar, 1966; Baird et al., 1967; Tunstall and Houghton, 1968;
Houghton, 1968; Herringe, 1976; Takahashi et al., 1992; Abbad and Souhar, 2004a,b) or non-uniform
(Van Oeveren and Houghton, 1971; Boyadzhiev, 1973; Maxey and Riley, 1983).
In most cases the oscillations were applied in vertical direction, whereas only a few were applied in
horizontal direction (Weinstein, 2008). One extreme case even reported physical experiments where
the fluid oscillations were applied in in two directions simultaneously (Herringe, 1977). e men-
tioned nonlinear Langevin equation proved to be a simplification of the complete equation to predict
the resulting particle motion vertically (seling or rising) and horizontally (migration) due to the fluid
oscillations. It was found that the complete equation was derived by Boussinesq (1885), Basset (1888)
and Oseen (1927), which is known as the BBO-equation.

It is therefore recommended to solve the BBO-equation numerically, to simulate whether it would
be possible to increase the hindered seling velocity by using non-uniform fluid oscillations.
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CHAPTER 2

T O

As explained in the introduction, the ultimate goal would be to have zero production losses and
thus find clean water in the overflow. By finding the mentioned technique of using non-uniform
oscillatory fluid motions to manipulate and control particle motion, two possible scenario’s were
developed in which the hindered seling velocity may actually be increased. is chapter provides a
general overview of the thesis project together with the hypotheses which this thesis aims to prove
by a theoretical and numerical approach.

2.1 T 

To provide a clear overview of the entire thesis project, Figure 2.1 was created.

Literature study

(November, 2015) 
Hypotheses

Numerical model 

single particle

Validation using 

experimental data 

from literature

Calculations
Thesis proposal

(April, 2015)

Hypothesis N. Stam

(2007)

SHS experiments 

Royal IHC & 

Stamsolve

(2011-2014)

Research objectives

Conclusions & 

Recommendations

Thesis proposal Literature study Numerical calculations

Conclusions & 

Recommendations

Thesis project

Figure 2.1: Outline of the entire thesis project

MSc esis 13 March 18, 2016



CHAPTER 2. THESIS OUTLINE

As shown, the thesis project is divided in two phases. e thesis proposal was created prior to the
thesis project in a preliminary phase Van de Wetering (2015a). Here, the main research question and
research objectives were created which were aimed to be answered by the first phase: the literature
study Van de Wetering (2015b). An thorough review of the literature study was given in Chapter 1.
e conclusions and recommendation found during the literature study, resulted in two hypotheses.
is thesis aims to prove these hypotheses theoretically and numerically, using the second phase
of the thesis project. Both hypotheses will be presented together with a short discussion on the
execution of the second phase.

2.2 H

I      

When a graded concentration of solid particles, up to approximately 45% by volume (cv ≈ 0.45),
is seling under gravity, a process known as segregation occurs (Te Slaa et al., 2012). During this
process, the larger and therefore heavier particles (assuming similar particle density) travel faster
than the smaller fractions. It was found that the smaller fractions tend to fall in the wake of the larger
particles (Minkov et al., 2015), creating a so-called vein-like system (Kuenen, 1968). is process is
also known as seling convection and is the only one out of seven processes occurring during hindered
seling (Winterwerp, 2002; Dankers, 2006), which causes an increase in average seling velocity.
Because of the veins, paths are being created to dissipate the water. e first hypothesis uses this
vein-like principle of dissipating pore water to increase the hindered seling velocity:

”Using non-uniform fluid oscillations in horizontal direction causes solid spherical particles to migrate
in the direction of oscillation, creating a horizontal density gradient which introduces a convection flow

and therefore increases the average seling velocity”

Van Oeveren and Houghton (1971) showed experimentally that solid particles could be made hover-
ing or even levitated against gravity using non-uniform fluid oscillations, with the highest velocity
directed upwards. Non-uniform fluid oscillations are defined as a sawtooth wave inputs for the fluid
displacement whereas uniform fluid oscillations are defined as a sinusoidal wave inputs. If a vertical
particle motion against gravity can be achieved, than horizontal migration of particles should also
be possible.
is horizontal migration creates a horizontal density gradient (two ”veins”) at which particles will
gather in the direction of oscillation and the carrier fluid will flow in the opposite direction.

Let’s consider a rectangular seling tube in which a mixture has been created of solid spherical
particles having a density larger than the carrier fluid (ρp > ρf ) and being mixed more or less
homogeneously (Figure 2.2, le). e particles will sele by gravity in downward direction, forcing
the water to flow through the particles upwards (indicated by the black arrow). is is known as the
return flow phenomenon during the hindered seing process.
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2.2. HYPOTHESES

𝑑𝑆𝑤
𝑑𝑡

, 𝑆𝑤 , 𝑠𝑤 

𝜌𝑓 𝜌𝑓 

Figure 2.2: Creating a horizontal density gradient using horizontal non-uniform oscillations

Non-uniform oscillations are applied to the seling tube in horizontal direction, indicated by a fluid
displacement sw, a fluid velocity Sw and an fluid acceleration dSw/dt. e particles migrate in the
direction of the highest velocity, creating a vein with a higher density and a vein where the water
can flow upwards freely (Figure 2.2, right). A density driven convection flow is expected to occur,
which is known from inclined seling tubes.

I      

As mentioned in the previous section, Van Oeveren and Houghton (1971) made solid spherical par-
ticles with a density greater than the carrier fluid, move against gravity by applying non-uniform
fluid oscillations with the highest velocity in upward direction. Perhaps a more convenient way of
increasing the average hindered seling velocity would be to just reverse the direction of the highest
velocity of the fluid:

”Using non-uniform fluid oscillations in vertical direction with the highest velocity faced downwards,
causes solid spherical particles to sele with increased average seling velocity”

is hypothesis is supported by the theoretical work of Boyadzhiev (1973). He showed, with a slightly
different force-balance model than used in the BBO-equation, that it would be theoretically possible
to either levitate particles against gravity or accelerate particles in the gravitational direction. is
particle motion behavior was found to be dependent on the direction of the highest velocity of a saw-
tooth wave input for displacement. e force-balance used in the calculations was mentioned to be
taken from Houghton (1963), which is in fact a simplified modification of the general BBO-equation.

As mentioned and shown at Figure 2.1, MATLAB will be used to create a numerical model which
solves the BBO-equation in two separate directions. e model predicts the particle response be-
havior to the fluid oscillations for a single, solid, spherical particle. erefore, only a qualitative
conclusion can be made regarding the both hypotheses. In order to fully prove the hypotheses, the
addition of a the volumetric concentration in the BBO-equation is required. A validation study using
available experimental data from literature is performed in order to investigate the usability and ac-
curacy of the model. Subsequently, calculations will be performed in order to find relations between
different parameters and determine (qualitatively) whether the hypotheses can be proven.
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CHAPTER 3

D    

ere is an enormous amount of existing literature in the field of solid particle dynamics in stagnant
fluids. However, this number decreases significantly when only oscillatory motion in translation is
considered as mentioned by Weinstein (2008) and experienced by the author during this research.
Weinstein (2008) gave a visual representation of his estimation on relative articles, considering bub-
bles and solid particles:

 

 

22

 

Figure 13: Summary of bubble dynamics literature and relative #’s of articles 
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Figure 3.1: Estimation of articles on the oscillatory motion in translation (Weinstein, 2008)

e amount of articles decreases even further when the oscillatory motion of spheres becomes non-
uniform. In this section, available literature on solid particle behavior, in both uniformly and non-
uniformly oscillating fluids, is reviewed. e review is used to derive the inviscid and viscous models
which will be solved using MATLAB.
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CHAPTER 3. DERIVATION INVISCID  VISCOUS MODELS

3.1 O T  S  I F

Let’s start by examining the problem of a rigid spherical particle falling in an unsteady velocity
field by assuming an inviscid fluid. Using this assumption and neglecting heat transfer, the Navier-
Stokes equations simplify to the so-called Euler equations. Using potential flow theory (inviscid
and irrotational flow field), the solution of the Euler equations provides the necessary equations of
motion (EOM) for this particular problem (Weinstein, 2008).
e particle response velocity to the unsteady velocity field is affected by an added mass (Fa) and a
pressure force (Fp) in horizontal direction, whereas gravity (Fg) and buoyancy forces (Fb) need to
be added in vertical direction. Here, it is assumed that particle and fluid move in a single direction
only, resulting in a pure rectilinear motion. We are interested in the force balance in both directions,
yielding for the horizontal force balance:

Fh,t = Fa + Fp, (3.1)

Fh,t = 1
2

ρf Vp

(
dS

dt
− dupot

dt

)
+ ρf Vp

dS

dt
, (3.2)

where the volume of the particle is wrien as:

Vp = 4
3

πr3. (3.3)

For the vertical direction the force balance becomes:

Fv,t = Fa + Fp + Fg, (3.4)

Fv,t = 1
2

ρf Vp

(
dS

dt
− dvpot

dt

)
+ ρf Vp

dS

dt
+ Vp g (ρf − ρp) . (3.5)

Here, S is the fluid velocity and upot & vpot are the particle response velocities in horizontal and
vertical direction, respectively. e density is described using ρ where the subscript p or f refers to
particle or fluid. Equation 3.2 and Equation 3.5 are visualized using Figure 3.2:
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(b) Forces in vertical direction

Figure 3.2: Visual representation of all the forces in the inviscid model in two directions

At both Figure 3.2(a) and Figure 3.2(b), the black arrow at the right side indicates the fluid oscillations.
ese are described using the fluid displacement, velocity and acceleration for both uniform and non-
uniform oscillations. is will discussed thoroughly in Subsection 4.2.2.
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3.1. OSCILLATORY TRANSLATION OF SPHERES IN INVISCID FLUIDS

Considering Equation 3.2, the first force on the right hand side (RHS) accounts for the added mass
effect (Fa) which is caused by the acceleration of the surrounding fluid due to the spherical particle
which is constantly displacing fluid as it moves through the flow field. e added mass force is
determined by the shape of the object, which is described using an added mass coefficient (Ca). In
the case of objects with an asymmetrical arbitrary shape, this coefficient can be hard to obtain and
will be dependent on the orientation at which the object is placed in the flow field. Luckily, in the
case of a symmetrical sphere this coefficient is independent of orientation and found to be one half
of the mass of the displaced fluid Ca = 1

2 (Weinstein, 2008). e second force in Equation 3.2 is an
inertial, buoyancy-like force caused by the acceleration of the fluid relative to an inertial frame. e
acceleration of the fluid causes a pressure gradient over the particle which produces the pressure
force term (Fp). For Equation 3.5 the first two terms are the same as for Equation 3.2, with the
addition of a combined gravity force (Fg) and buoyancy force (Fb) term. Newton’s second law of
motion can be applied to obtain a differential equation for particle motion. With the mass of the
sphere times its acceleration on the le and the sum of the force on the right, Equation 3.2 becomes:

Vp ρp
dupot

dt
= 1

2
ρf Vp

(
dS

dt
− dupot

dt

)
+ ρf Vp

dS

dt
. (3.6)

Rewriting gives: (
1 + 2ρp

ρf

)
dupot

dt
= 3 dS

dt
. (3.7)

Applying the same method to Equation 3.5 in the case of vertical direction:

Vp ρp
dvpot

dt
= 1

2
ρf Vp

(
dS

dt
− dvpot

dt

)
+ ρf Vp

dS

dt
+ Vp g (ρf − ρp) . (3.8)

Again, rewriting yields: (
1 + 2ρp

ρf

)
dvpot

dt
= 3 dS

dt
+ 2 g

(
1 − ρp

ρf

)
. (3.9)

Equation 3.7 indicates that for a particle of negligible density (bubble) in water (ρp ≪ ρf ) the parti-
cle will have three times the acceleration of the fluid. Integrating the equation twice shows that the
particle travels three times as far as the fluid per oscillation of the seling tube. A particle having
the same density as water (droplet) (ρp = ρf ) will have the same position, velocity and acceleration
responses as the fluid. If the particle is more dense than the fluid (ρp ≫ ρf ), then the fluid will
experience greater acceleration than the particle.

e fluid phase is assumed to be incompressible and generally to move directly with the tube as a
rigid body (Weinstein, 2008). It is clear from Equation 3.7 that the density ratio is the most important
parameter for the potential flow analysis of decoupling, as it completely determines the amplitude
ratio (Ap/Af ) of the two phases. As would be expected, we find that the inertial difference between
the two phases drives the relative acceleration and causes decoupling (Chapter 5).
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CHAPTER 3. DERIVATION INVISCID  VISCOUS MODELS

3.2 O T  S  V F

Stokes (1851) was the first who investigated harmonic and rectilinear oscillations of a sphere, cylin-
der and an infinitely long flat plate in a viscous fluid. He neglected the nonlinear (inertia) terms
in the Navier-Stokes equations and derived expressions for the forces exerted by the fluid on these
objects. One of these is the widely known Stokes drag force (Fd).

Later, Boussinesq (1885), Basset (1888) and Oseen (1927) (BBO) independently studied the rectilinear
motion of a sphere which has a rapid but arbitrary acceleration in a viscous fluid. ey neglected the
nonlinear terms in the Navier-Stokes equations as well, when the force expressions were derived. It
was agreed however, that the force on a sphere not only depends on its instantaneous velocity and
acceleration, but also on a force term which describes the effect of its entire history of acceleration.
is term is knows as the history or Basset term (Fh).

In order to accurately predict the particle motion behavior, it is necessary to extend the potential
flow theory described in the previous section by incorporating viscous effects. e viscous model
includes two extra forces: the Stokes drag force (Fd) and the history or Basset force (Fh). By addi-
tion of these forces, it is expected that decoupling between the phases decreases (especially at higher
viscosity). It is also expected that the motion between particle and fluid will be out of phase because
of the lag in acceleration and deceleration of the particle, caused by the addition of the drag force.

Because of the addition of the above mentioned drag and history force, it instantly becomes more
difficult to predict the oscillatory motion of a particle in a fluid. In a stagnant fluid, a viscous wake
region develops behind the particle, as fluid flows past it and boundary separation occurs. However,
in an oscillating fluid, the particle oscillates back and forth through its own wake, making it more
difficult to correctly predict its behavior.

rough solution of the unsteady Stokes equations, Basset determined the expression for particle
motion with no-slip boundary condition in horizontal direction to be:

Vp ρp
du

dt
= Fd + Fh + Fa + Fp, (3.10)

or in its complete form:

Vp ρp
du

dt
= 6πµf r(S − u) +

6 r2√
πµf ρf

∫ t

−∞

(
dS

dτ
− du

dτ

) 1√
t − τ

dτ +

2
3

πρf r3
(

dS

dt
− du

dt

)
+ (3.11)

4
3

πρf r3 dS

dt
,

and in vertical direction:

Vp ρp
dv

dt
= Fg + Fd + Fh + Fa + Fp, (3.12)
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3.2. OSCILLATORY TRANSLATION OF SPHERES IN VISCOUS FLUIDS

or in its complete form:

Vp ρp
dv

dt
= Vp g(ρf − ρp) +

6πµf r(S − v) +

6 r2√
πµf ρf

∫ t

−∞

(
dS

dτ
− dv

dτ

) 1√
t − τ

dτ + (3.13)

2
3

πρf r3
(

dS

dt
− dv

dt

)
+

4
3

πρf r3 dS

dt
,

where r, ρp, ρf , µf are particle radius, particle density, fluid density and fluid viscosity (dynamic),
respectively. Both equations are essentially Newton’s second law of motion. Considering the RHS
of Equation 3.13, the first force term occurs due to gravity and buoyancy acting on the particle, the
second term describes the Stokes drag law, whereas the third term describes the history or Basset
force which accounts for the effects of the past motion of the particle. e forth and fih term again
describe the added mass force and buoyancy-like pressure force, respectively.

Visually, all the different forces can be distinguished using Figure 3.3.
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(b) Forces in vertical direction

Figure 3.3: Visual representation of all the forces in the BBO-equation in two directions

e Stokes drag force as presented in Equation 3.11 and Equation 3.13 is limited to very low particle
Reynolds numbers i.e. Rep < 0.1 (Odar and Hamilton, 1964; Herringe and Flint, 1974), which is in
vertical direction defined to be:

Rep = 2 r |S − v|
νf

, (3.14)

where the kinematic fluid viscosity (νf ) is obtained by the ratio of the dynamic fluid viscosity (µf )
over the fluid density (ρf ):

νf = µf

ρf
. (3.15)
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To examine the acceleration effects on the motion of the particle, Odar and Hamilton (1964); Odar
(1966) experimentally studied the oscillations of a guided sphere in oil for particle Reynolds numbers
up to 62. Amodification of the BBO-equation was proposed by multiplying the Stokes drag force, the
added mass force and the history force with the empirical coefficients C1, Cm and Ch respectively.
ese coefficients depend on the particle Reynolds number and the acceleration number:

Ac = 2 r

|S − v|2

∣∣∣∣dS

dt
− dv

dt

∣∣∣∣ , (3.16)

and are given by:

C1 = 1 + 0.15Re0.687
p , Cm = 2.1 − 0.132Ac2

(1 + 0.12Ac2)
, Ch = 0.48 + 0.52Ac3

(1 + Ac)3 . (3.17)

Based on the resulting equation of motion proposed by Odar and Hamilton (1964), several studies
were carried out to simulate the motion of a sphere at higher particle Reynolds numbers. Karanfilian
and Kotas (1978) conducted similar experiments at 102 < Rep < 104 and found that the coefficients
proposed by Boussinesq (1885), Basset (1888) and Oseen (1927) are still valid (Cm = Ch = 1). It
must be noted that these experiments were performed using relatively high amplitudes (up to 60
mm) and relatively low frequencies (up to 0.4 Hz).

To adjust the Stokes drag force for higher particle Reynolds numbers, an empirical correction factor
ϕ(Rep) has been determined from the results of experiments by Cli et al. (1978). Using this coeffi-
cient the drag force is accurate in steady flow up to particle Reynolds numbers of 1500.

e final form of the drag force term (Fd) becomes:

Fd = 6πµf r(S − v)ϕ(Rep), (3.18)

where:

ϕ(Rep) = 1 +
( 3

16

)
Rep, 0 < Rep ≤ 0.01 (3.19)

ϕ(Rep) = 1 + 0.1315Re0.82−0.05w
p , 0.01 < Rep ≤ 20 (3.20)

ϕ(Rep) = 1 + 0.1935Re0.6305
p , 20 < Rep ≤ 260 (3.21)

ϕ(Rep) = 1.8335(Rep) 10−1.1242w+0.1558w2
, 260 < Rep ≤ 1500 (3.22)

and where:

w = log10(Rep). (3.23)

Figure 3.4 shows how the correction factor for the Stokes drag law varies with the particle Reynolds
number. In the lower limit, ϕ(Rep) is unity, where the Stokes drag low does not need correction. In
the limit of particle Reynolds numbers up to 1500 the value of ϕ(Rep) increases to about 27.
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Figure 3.4: Correction to the Stokes drag law at high particle Reynolds numbers

As mentioned previously, the work of Karanfilian and Kotas (1978) showed that the added mass and
history force are more or less independent of the particle Reynolds number and therefore do not
need correction.

It is however presented by Coimbra et al. (2004) that the history force depends on the dimensionless
frequency, defined as:

Ω = Sl Rep = r2ω

9νf
, (3.24)

Where Sl is also known as the Strouhal number, given by:

Sl = ω r

|S − v|
. (3.25)

is dimensionless parameter represents a ratio of the viscous diffusion time to the oscillation time.
When the diffusion time is similar to the oscillation time, vorticity generated on the surface of the
sphere is especially important and history effects are significant. When the dimensionless frequency
is much greater than unity, inviscid added mass effects dominate and when it is small, the Stokes
drag force dominates.

Considering Equation 3.11 and Equation 3.13, it shows a complex and numerically intensive integral
form of the history force (Fh), which takes into account the entire history of the relative acceleration
between the fluid and particle.

MSc esis 23 March 18, 2016



CHAPTER 3. DERIVATION INVISCID  VISCOUS MODELS

Fortunately, the integral form of the history force can be simplified to an explicit form for the case
of quasi-steady oscillations and the no-slip boundary condition, as presented by Abbad and Souhar
(2004a):

Fh = 6πµf r

[
S − v

δ
+ δτv

2

(
dS

dt
− dv

dt

)]
, (3.26)

where the dimensionless parameters δ and τv are defined as:

δ =
√

2νf

r2ω
, (3.27)

and:

τv = r2

νf
. (3.28)

e dimensionless parameter δ is also known as the inverse Stokes number. It represents a ratio of
the oscillation time to the viscous diffusion time scale. e second dimensionless parameter (τv), de-
scribes the viscous diffusion time scale. e explicit form of the history force as presented by Abbad
and Souhar (2004b) is experimentally proven to be accurate for particle Reynolds numbers Re ≤ 2.5
and Strouhal numbers 1 ≤ Sl ≤ 20. Later, Weinstein (2008) showed that the Strouhal validity range
could be extended to 1 < Sl < 45.

With the addition to the Stokes drag force by Cli et al. (1978) and the explicit form of the history
force by Abbad and Souhar (2004a), the final form of the BBO-equation in both horizontal and vertical
direction becomes:

Vp ρp
du

dt
= 6πµf r(S − u)ϕ(Rep) +

6πµf r

[
S − u

δ
+ δτv

2

(
dS

dt
− du

dt

)]
+

2
3

πρf r3
(

dS

dt
− du

dt

)
+ (3.29)

4
3

πρf r3 dS

dt
,

and:

Vp ρp
dv

dt
= Vp g(ρf − ρp) +

6πµf r(S − v)ϕ(Rep) +

6πµf r

[
S − v

δ
+ δτv

2

(
dS

dt
− dv

dt

)]
+ (3.30)

2
3

πρf r3
(

dS

dt
− dv

dt

)
+

4
3

πρf r3 dS

dt
.
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CHAPTER 4

M   BBO

In this chapter the solution method for the particle motion in uniformly and non-uniformly oscil-
lating fluids is described. First the assumptions and simplifications are discussed, aer which the
model is explained in detail. In Section 4.3 we close this chapter with a discussion on the validity
and accuracy of the model, using datasets from literature.

4.1 A  

Certain assumptions and simplifications had to be made in order to create the model. A very impor-
tant note to the BBO-equation is that it is a rectilinear model, meaning it is only found to be valid
when the particle motion is in the direction of oscillation. In the case of a particle falling in a ver-
tically oscillating seling tube, this condition is always satisfied. However, when a solid particle is
falling through a horizontally oscillating seling tube, the model can loose its validity. In recent
work from Weinstein (2008) the BBO-equation was found to be in good agreement with the exper-
iments of solid particles, seling in a horizontally oscillating tube, when the following condition is
satisfied:

Θ = vt

2 r ω
≤ 0.4. (4.1)

is dimensionless parameter compares the distance traveled vertically by the particle in one cy-
cle to the particle diameter. Furthermore, it is assumed that the explicit form of the history force,
suggested by Abbad and Souhar (2004a) is valid for higher particle Reynolds numbers and Strouhal
numbers. Karanfilian and Kotas (1978) have showed that the added mass coefficient and the history
force coefficient both can be kept approximately unity (Ca = Ch = 1) but they did not use this ex-
plicit form. Also, the fluid phase is assumed to be incompressible andmoves directly with the seling
tube as a rigid body.
Regarding the solid particle, it is assumed that it is perfectly spherical and that it will sele in a two
dimensional space where no wall-effects will be present as long as the distance to the wall is ≥ 8d
(Abbad and Souhar, 2004b; Weinstein, 2008). As for now, the model will only calculate the motion
of a single particle, so concentrations can not be simulated.
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4.2 S 

A MATLAB model has been developed which allows the user to obtain the particle motion in an
oscillating fluid over a wide range of particle and fluid conditions. ese will be discussed separately
in this section.

4.2.1 P   

e model starts by seing the particle properties. As mentioned in Section 4.1, the model will only
calculate the motion for a single particle in a two dimensional space. At first, the radius (r) must be
set to a certain value. Subsequently, the particle volume is calculated by:

Vp = 4
3

π r3. (4.2)

By seing the density of the particle (ρp) to a certain value (oen the density of quartz sand ≈
2650 kg/m3 is used), the mass of the particle is calculated using:

mp = ρp Vp. (4.3)

By seing these properties, the model calculates the terminal seling velocity in a stagnant fluid
using the equation by Stokes (1851) as function of the particle diameter (d = 2r):

vs = ∆gd2

18νf
, (4.4)

where g describes the gravitational constant (≈ 9.81 m/s2) and ∆ the relative density, defined by:

∆ = ρp − ρf

ρf
. (4.5)

Because of the very limited validity of the Stokes equation (d ≤ 0.1mm), the equation for the terminal
seling velocity proposed by Ferguson and Church (2004) is also added to the model:

vp = ∆gd2

C1νf +
√

0.75C2∆gd3 . (4.6)

For spherical particles the coefficients C1 and C2 are given to be 18 and 0.44, respectively. In case
of natural sands these coefficients were determined to be C1 = 18 and C2 = 1. In the model only
the coefficients for the spherical particles are included.
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4.2.2 O  

To simulate an oscillating fluid, first the fluid properties have to be determined. In the dredging
industry the fluid used to create a pumpable mixture will always be fresh or salt water. e model
always assumes fresh water. e properties of water are temperature dependent, so the first parame-
ter to set is the temperature (T ). is being done, the model uses the following equation to approach
the temperature dependent fluid density (ρf ) (Matousek, 2004):

ρf = 999.7 − 0.10512(T − 10) − 0.005121(T − 10)2 + 0.00001329(T − 10)3. (4.7)

e viscosity (both dynamic and kinematic) depends on the temperature (T ) as well. e kinematic
viscosity is calculated using the approximation of Van Rhee (2002):

νf = 40 × 10−6

20 + T
. (4.8)

Using both Equation 4.7 and Equation 4.8, the dynamic viscosity can be determined using:

µf = ρf νf . (4.9)

ese three equations are valid in a temperature range of 5 °C < T < 105 °C. Once the fluid
properties have been determined, the oscillation properties need to be set. e model enables the
user to set a fluid oscillation amplitude (Af ) and frequency (f) which are needed to calculated the
fluid displacement, velocity and acceleration. First, the angular frequency is calculated using the
user defined frequency:

ω = 2πf. (4.10)

Let’s now consider a seling tube which oscillates uniformly. To initiate the sinusoidal motion, a
displacement has to be generated by some sort of driver (solenoid, camsha etc.). e obtained fluid
displacement (which is assumed to be exactly equal to the seling tube) can be described as:

s = Af sin(ωt). (4.11)

By differentiating Equation 4.11 twice, the fluid velocity (S) and acceleration (dS/dt) are found:

S = Af ω cos(ωt), (4.12)
dS

dt
= −Af ω2 sin(ωt). (4.13)

e fluid displacement, velocity and acceleration as described above are independent of direction,
so they will be used to solve the inviscid and viscous model (BBO-equation) in both horizontal and
vertical direction. It is expected that the particle responds to the inviscid uniform fluid oscillations
with an equal frequency (ω) and a response amplitude (Ap) and can be described for both horizontal
and vertical direction as:

[u, v] = Ap ω cos(ωt). (4.14)

In case of the viscous fluid oscillations a phase lag (φ) is expected to occur:

[u, v] = Ap ω cos(ωt + φ). (4.15)
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Considering the hypotheses presented in Chapter 1, we are especially interested in the particle re-
sponse behavior using non-uniform fluid oscillations. Unfortunately this is not as straightforward
as the previously described uniform oscillations. Let’s again consider a seling tube which oscillates
around the zero axis, but this time having a sawtooth like displacement. e sawtooth wave is a
discontinuous or piecewise continuous function. is means that between certain points, the function
does not exist.

y

t

1

1 2 3 4

FIGURE 6.3.9 A sawtooth wave.

Figure 4.1: Piecewise continuous sawtooth function (Boyce et al., 1969)

Because the sawtooth wave will be used for the displacement, it has to be differentiated twice to find
the velocity and acceleration. is can only be done if the function is continuous, which is be solved
by using a Fourier series to approximate the sawtooth wave. e Fourier series uses a summation of
multiple sinusoidal waves to approach for instance a sawtooth wave or square wave. e general
form of the Fourier series expansion is known as:

a0 +
∞∑

n=1
an cos(nωt) + bn sin(nωt). (4.16)

As said earlier, the sawtooth wave needs to oscillate around the zero axis and start at the origin for
the fluid displacement, similar to the sinusoidal wave. ese boundary conditions determine that
a0 = 0 and an = 0. To describe the sawtooth wave using the Fourier series, the bn term was found
to be:

bn = −2(−1)nki2

n2(ki − 1)π2 sin
(

n(ki − 1)π
ki

)
. (4.17)

Here, the factor n determines the amount of sinusoidal functions which will be used to approach the
piecewise continuous function that is required. In the case of the MATLAB model this variable has
been set to be n = 40 by trial and error, but can be adjusted if needed. e shape factor ki enables
the user to adjust the steepness of the sawtooth wave. is factor was described by Van Oeveren
and Houghton (1971) to be the ratio between the downstroke duration and the upstroke duration
and determines the shape of the wave:

ki = downstroke duration
upstroke duration . (4.18)

is ki factor can be varied between unity (1) and infinity (∞) the way it is programmed in the
model. e final form of the sawtooth wave fluid displacement can thus be approximated using:

sw = Af

40∑
n=1

−2(−1)nki2

n2(ki − 1)π2 sin
(

n(ki − 1)π
ki

)
sin(nωt). (4.19)
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is form is easily differentiable and by again differentiating twice with respect to t, the fluid velocity
and acceleration are found:

Sw = (Af n ω)
40∑

n=1

−2(−1)nki2

n2(ki − 1)π2 sin
(

n(ki − 1)π
ki

)
cos(nωt), (4.20)

dSw

dt
=
(
−Af n2 ω2

) 40∑
n=1

−2(−1)nki2

n2(ki − 1)π2 sin
(

n(ki − 1)π
ki

)
sin(nωt). (4.21)

Using Equation 4.11, Equation 4.19 and the built-inMATLAB function to generate sawtoothwaves for
the fluid displacement resulted in Figure 4.2. Here, the following seings were applied; a frequency
of f = 1 Hz, a fluid amplitude Af = 1 mm and a shape factor ki = 1.
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Figure 4.2: Fluid displacement using uniform and non-uniform oscillations (ki = 1)

Comparing the exact sawtooth wave generated by MATLAB with the Fourier series approximation,
it is clearly visible that the Fourier series approximation has some overshoot at the locations where
the sawtooth wave has a sharp transition in direction. is is know as the Gibbs phenomenon. Using
the current seings, the overshoot error was determined to be ∼ 15% for the fluid displacement.
However, examining the fluid velocity (Sw) and fluid acceleration (dSw/dt) this error rapidly in-
creases to ∼ 80%, which dramatically decreases the accuracy.

Fortunately, it was found that the Gibbs phenomenon could significantly be decreased by adjusting
the range of the shape factor (ki). Limiting the shape factor in the range ki = 1.05 − 21 gives a
slightly less perfect sawtooth wave, but gains a large improvement in overshoot.
Seing the shape factor at ki = 1.05, Figure 4.3 was created. In this case the largest velocity is
pointed in downward direction. As can be seen, the approximation and exact solution are hardly to
distinguish and the resulting overshoot error was determined to be < 1%.
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Figure 4.3: Fluid displacement using uniform and non-uniform oscillations (ki = 1.05)

e other limiting value of the shape factor (ki = 21) has its largest velocity in upward direction
and looks as follows:
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Figure 4.4: Fluid displacement using uniform and non-uniform oscillations (ki = 21)

eother possibilities within the shape factor range adjust the sawtooth wavewithin these extremes.
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e fluid velocity S and Sw resulting from differentiating Figure 4.3 and Figure 4.4 look as follows:
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Figure 4.5: Fluid velocity using uniform and non-uniform oscillations (ki = 1.05)
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Figure 4.6: Fluid velocity using uniform and non-uniform oscillations (ki = 21)
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And the fluid acceleration dS/dt and dSw/dt resulting from differentiating Figure 4.5 and Figure 4.6
look as follows:
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Figure 4.7: Fluid acceleration using uniform and non-uniform oscillations (ki = 1.05)
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Figure 4.8: Fluid acceleration using uniform and non-uniform oscillations (ki = 21)
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4.2.3 ODE45 S

e equations of motion (inviscid and viscous model) for a solid, spherical particle in an uniformly
or non-uniformly oscillating fluid are solved in MATLAB. e built-in ODE45 solver is used to solve
the particle response velocities in horizontal direction u and uw and vertical direction v and vw.
is built-in solver is convenient for solving non-stiff, first order differential equations, as it uses an
explicit fourth order Runge-Kua method. Its most general form will be explained shortly in this
section. First an ordinary differential equation is defined:

dy(t)
dt

= f(y(t), t) with y(t0) = y0. (4.22)

e Runge-Kua method involves the weighted average of values of f(y(t), t) at different points in
the interval t0 ≤ t ≤ t0 + dt. It is given by :

y(t0 + dt) = y(t0) + (k1 + 2k2 + 2k3 + k4) dt

6
, (4.23)

where:

k1 = f(y(t0), t0),

k2 = f

(
y(t0) + k1

dt

2
, t0 + dt

2

)
,

k3 = f

(
y(t0) + k2

dt

2
, t0 + dt

2

)
,

k4 = f(y(t0) + k3dt, t0 + dt).

Here, dt is defined to be the stepsize, which is set at 1/5000, but can be adjusted by the user. e
sum (k1 + 2k2 + 2k3 + k4)/6 can be interpreted as an average slope. Note that k1 is the slope at
the le end of the interval, k2 is the slope at the midpoint using the Euler formula to go from t0 to
t0 + dt/2, k3 is a second approximation to the slope at the midpoint and k4 is the slope at t0 + dt
using the Euler formula and the slope k3 to go from t0 to t0 + dt (Boyce et al., 1969). In our case
y(t0 + dt) represents the velocity being updated to the next time step.

Figure 4.9: Fourth order Runge-Kua method

Two important parameters which can be set by the user, are the relative and absolute accuracy toler-
ances. By default these are set to be 10−3 and 10−6, respectively. To obtain more accurate values and
because the built-in solver is very time efficient, these values were set to 10−7 and 10−9, respectively.
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4.2.4 D   

Aer the particle velocity is calculated numerically using the fourth order Runge-Kua solver, the
next step is to determine the amplitude ratio (decoupling) and phase angle between the particle and
fluid. e amplitude ratio describes the response amplitude of the particle (Ap) as function of the
imposed fluid amplitude (Af ). e phase angle described whether the particle is lagging behind
(negative) the fluid motion or is leading (positive) with respect to the fluid motion. When the parti-
cle and fluid are in phase, i.e. φ = 0, the particle will follow the fluid motion one to one.

e amplitude ratio and phase angle are both used to describe the particle response behavior. As
mentioned previously, it is expected that the particle will respond to the fluid oscillations having the
same frequency as the fluid (ω), a particle response amplitude (Ap) and a phase angle (φ) (Equa-
tion 4.15). e amplitude ratio is defined as:

Decoupling = Ap

Af
. (4.24)

To determine the amplitude ratio and phase angle, first a built-in Fast Fourier Transform (FFT) al-
gorithm is used to calculate the Discrete Fourier Transform (DFT). As input, both the fluid velocity
(S, Sw) and the particle response velocities u, uw and v, vw are used. To find the magnitude of the
desired amplitudes, the absolute value is determined aer which MATLAB calculates the maximum
of the fluid velocity and particle response velocity signals. Both magnitudes are then divided using
Equation 4.24.

To find the phase difference in radians (rad), the built-in MATLAB function ”angle” is applied at
the transformed signals. e fluid phase (φS , φSw) and response phases φu, φuw and φv, φvw are
determined and subtracted to find the final phase angle:

φ = φu − φS ,

φ = φuw − φSw,

φ = φv − φS , (4.25)
φ = φvw − φSw.

R.G. van de Wetering 34 4256182



4.3. VALIDATION

4.3 V

e goal of this section is to validate the numerical model and its performance. Within this thesis
project no physical experiments were performed because of the tight schedule. Fortunately, two
datasets were found during the literature study, enabling detailed comparison.

4.3.1 H (1976)

e first dataset was published by Herringe (1976) and is added in Appendix B. Herringe varied
the particle density between glass (ρp ≈ 2960 kg/m3), steel (ρp ≈ 7800 kg/m3) and lead (ρp ≈
11400 kg/m3) and used two fluid amplitudes (Af ≈ 1 & 3 mm). Four parameters were defined:

Amplitude scale : β = Af

d
, (4.26)

Density ratio : γ = ρp

ρf
, (4.27)

Stokes number : St =
√

νf

ωd2 , (4.28)

Fluid acceleration : Acc = Af ω2

g
. (4.29)

ese four parameters were used to investigate their dependency on the retardation (b0 = v̄/|vt|),
amplitude ratio (Ap/Af ) and phase lag (φ). Particle retardation is defined as the ratio between the
mean oscillating seling velocity (v̄) and the absolute terminal seling velocity |vt|. e exper-
imental retardation is ploed against the inverse Stokes number using a particle density variation
(Figure 4.10) and a fluid amplitude (Af ) variation (Figure 4.11), indicated by the colorbar.
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Figure 4.10: Retardation versus inverse Stokes number (δ), particle density variation
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Figure 4.11: Retardation versus inverse Stokes number (δ), fluid amplitude variation

It’s important to note that uniform oscillations were used during all Herringe’s experimental runs.
Furthermore, Herringe defined a Stokes number, whereas in Figure 4.10 and Figure 4.11 (and coming
figures) the inverse Stokes number (δ) has been used. is is done in order to compare the results
with more recent studies (Abbad and Souhar, 2004b; Weinstein, 2008) where the inverse Stokes num-
ber is used. Another important parameter is the ratio between the seling tube diameter (D) and the
particle diameter (d). As mentioned in Section 4.1, no wall-effects will occur as long as the distance
between the particle and the wall is larger than eight times the particle diameter (≥ 8d). is results
in:

D/d ≥ 16. (4.30)

Even considering the largest particle used during the experiments, this condition is easily satisfied.
Herringe explicitly mentioned the phase angle to be lagging because he found that a solid particle
having a larger density than the carrier fluid will always lag behind on the fluid oscillation (this will
be discussed more thoroughly in Chapter 6).

During the analysis of the provided dataset, it was found that Herringe did not include the density
ratio. Although the kinematic viscosity (νf ) could be calculated using the provided Stokes number
(St), the fluid density could not be determined. is proved to be a major issue when reproducing
his physical experiments by the numerical model, because the model needs the fluid density as input
parameter. e fluid used, was mentioned to be a glycerol-water solution of which the mixture ratio
was varied. Using another paper (Herringe, 1977) and an online calculator, the fluid density as func-
tion of glycerol fraction could be approximated (Figure 4.12). It is assumed that all the experiments
were performed at a constant fluid temperature T ≈ 15 °C.

e online calculator: http://www.met.reading.ac.uk/~sws04cdw/viscosity_calc.html.
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Figure 4.12: Fluid density (ρf ) as function of glycerol fraction with T ≈ 15 °C

Aer approximating the fluid density (ρf ) calculations were conducted, resulting in Figure 4.13.
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Figure 4.13: Retardation validation using experimental data

MSc esis 37 March 18, 2016



CHAPTER 4. MODELLING THE NONLINEAR BBOEQUATION

When the retardation coefficient is found to be −1, the average oscillating seling velocity (v̄) is
approximately equal to the terminal seling velocity |vt|. In this case, the particle is hardly influ-
enced by the presence of the fluid oscillations. On the other hand, when the retardation coefficient
goes to zero, the particle is made hovering due to the vertically oscillating seling tube. Analyzing
Figure 4.13, it is found that the predicted retardation is much greater than experimentally measured.
Herringe also concluded this, but his numerical model (using a different form of the drag force (Fd)
and history force (Fh)) seems to be 50% more accurate. In our comparison, an average discrepancy
of 55% was found, whereas Herringe found a discrepancy of 26%. Great care has been taken to
eliminate the possibility that the found discrepancy was being caused by the experimental appara-
tus. He concluded it had to be a shortcoming of the theory rather than some error in the imposed
motion. e force terms causing this discrepancy were mentioned to be the Stokes drag force and the
history force, because of their limited and unknown validity at higher particle Reynolds numbers.
In the model, the Stokes drag force has been corrected to account for particle Reynolds numbers
up to 1500 and besides three experimental runs, the model fell within that range. is leaves the
unknown factor to be the history force (Fh). ere can be concluded that the numerical model does
not provide satisfactory results in this region of inverse Stokes numbers.

Fortunately, the comparison with the amplitude ratio (Ap/Af ) showed a beer result. An average
discrepancy of 13% was found, mostly caused by the lead particles (Figure 4.14). is conclusion was
also found by Herringe, as he found an average discrepancy of 5.7%. Herringe also concluded that
the discrepancy between model and theory was larger for the lead particles. Possible reasons were
given to be the likelihood of the lead particles being non-spherical and the higher relative velocity
due to the much larger density ratio.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inverse Stokes number, δ [-]

A
m

pl
itu

de
 r

at
io

, A
p/

A
f [

-]

Herringe (1976)
Model 2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

D
en

si
ty

 [k
g/

m
3
]

Figure 4.14: Amplitude ratio validation using experimental data
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An increase in inverse Stokes number indicates an increase in viscosity or decrease in particle size,
which makes it physically logical that the amplitude ratio goes to unity as shown in Figure 4.14.

Regarding the phase angle (φ) comparison between the model and experimental data, a discrepancy
of 60.7% was found. is again indicates that the model would not be accurate, as Herringe found a
discrepancy of 17.1% between the experimental data and his model. However, analyzing Figure 4.15
does not result in such an inaccuracy.
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Figure 4.15: Phase lag validation using experimental data

It must be noted that two runs presented by Herringe (1976) were odd compared with the rest. ese
runs gave the largest discrepancy with the model, which were up to two orders of magnitude larger.
Ignoring these two runs, the average discrepancy between model and experiments dropped to 10%
for the amplitude ratio and 17.6% for the phase lag. Combined with the uncertainty of the fluid
density approximation, it seems that the model is able to predict the phase lag and amplitude ratio
reasonably well. e retardation coefficient in the used range of inverse Stokes numbers however,
is significantly overestimated.

As mentioned earlier, Herringe used four parameters to study the influence on the retardation coeffi-
cient. He found that the (inverse) Stokes number (St), is a major factor affecting the amplitude ratio
(Ap/Af ) and phase lag (φ). e amplitude scale (β) and density ratio (γ) were concluded to have a
significant influence on the retardation coefficient (b0). Regarding the fluid acceleration parameter
(Acc) it was noted that it influenced the retardation coefficient the least.
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4.3.2 T (1992)

e second dataset was published by Takahashi et al. (1992) and is added in Appendix C. A more
systematic approach was used, compared with the experiments of Herringe (1976). ree differ-
ent particle sizes were used: d = 8, 12.7 and 15.9 mm having densities of ρp = 1380, 1350 and
1250 kg/m3, respectively. Fluid amplitudes Af = 13.6, 23.6 and 40.8 mm were used in combina-
tion with eight different frequencies, varying between f = 0.8 − 2.2 Hz. e experiments were
conducted using fresh water at a constant fluid temperature T ≈ 20 °C. Two figures were cre-
ated where the retardation is ploed against the inverse Stokes number applying a particle density
variation (Figure 4.16) and fluid amplitude variation (Figure 4.18), indicated by the colorbar.
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Figure 4.16: Retardation versus inverse Stokes number, particle density variation

Again, it must be noted that all the experiments were performed using uniform fluid oscillations.
Unfortunately it was found that, because of the relatively large and dense particles used, the particle
Reynolds numbers are not within the validity range of our model. Furthermore, during the analysis
of the experimental apparatus using Equation 4.30, it turned out that the ratio between the seling
tube diameter (D) and largest particle diameter (d) was too small:

D/d ≈ 4. (4.31)

is means that wall-effects could have been present during the experiments. It is not mentioned
whether Takahashi et al. (1992) took wall-effects into account. Analyzing Figure 4.16, it can be
seen that all the different particle densities used during the experiments are more or less sorted into
groups. It must be noted that this is not because of the different densities of the particles, but because
every density has its own particle size. Some of the experiments also show an increase in seling
velocity (b0 < −1), which is not expected. Considering Figure 4.17, these measurements show a
reasonably large standard deviation.
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Figure 4.17: Retardation versus inverse Stokes number, standard deviation included

When the distinction between measuring points is changed from density to amplitude, a more inter-
esting behavior is found:
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Figure 4.18: Retardation versus inverse Stokes number, fluid amplitude variation
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If we now isolate certain measuring series (d = 8 mm & ρp = 1380 kg/m3) at which we vary the
fluid amplitude and the inverse Stokes number (δ), the following is found:
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Figure 4.19: Retardation versus inverse Stokes number, fluid amplitude variation

Lower inverse Stokes numbers indicate a higher frequency (f), larger particle size (d) or lower fluid
viscosity. In Figure 4.19 the particle size was kept constant together with the fluid viscosity, result-
ing in only a frequency dependency between the individual points per measurement series. It can
be seen that a lower inverse Stokes number (and thus higher frequency) generally results in a higher
retardation coefficient (b0). Using a standard fiing tool in MATLAB, a line (polynomial) is curve
fied through the measuring points per measuring series. Between the series, only the fluid ampli-
tude is varied as indicated by the colorbar.

When the inverse Stokes number increases (thus the frequency decreases), the retardation coefficient
(b0) goes to minus one (or actually unity (1) because the sign only indicates direction). is is ex-
pected behavior: as the frequency approaches zero, the terminal seling velocity in stagnant water
should be found. Figure 4.19 shows that the retardation coefficient depends on both the oscillation
frequency and fluid amplitude, but also suggests that the amplitude might have a larger influence
than the frequency. is will be discussed thoroughly in Chapter 4.

Again ploing all the measured data (without standard deviation to increase clarity of the figure),
together with the numerical calculations, resulted in Figure 4.20.
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Figure 4.20: Retardation validation using experimental data

At first glance the model does not seem to fit the data very well. However, considering the scale of
the y-axis it was found that the fit was actually reasonably good. An average discrepancy of only
6.4% was found. is is interesting, taking into account that the particle Reynolds numbers are well
above the maximum of 1500 and that the used Inverse Stokes numbers are one order of magnitude
smaller compared with the data from Herringe (1976). e largest discrepancy between the Fergu-
son and Church (2004) equation Equation 4.6 and the measured terminal seling velocity (vt) by
Takahashi et al. (1992) was found to be 4.3%. is discrepancy thus influenced the overall error
significantly.

Furthermore, it was found that increasing the fluid amplitude, particle size (Herringe’s parameter
β = Af /d) and the frequency during specific measurement series, the discrepancy between exper-
iments and numerical model increased up to 30%. It is expected to be caused by the increase in
relative velocity between particle and fluid (Herringe, 1976) together with the mentioned the Stokes
drag force (Fd) being outside the validity range. Unfortunately, Takahashi et al. (1992) did not mea-
sure the decoupling and phase angle during their experiments.

Summarizing:
From the validation study it can be concluded that the phase angle (φ) and decoupling (Ap/Af )
are reasonably well predicted by the numerical model, having a accuracy of 17.6% and 10%, re-
spectively. e retardation coefficient (b0) however, proved to be significantly overestimated at the
higher inverse Stokes numbers (0.2 < δ < 1.6) in combination with particle Reynolds numbers
within the validity range. When the particle Reynolds numbers went well outside the validity range,
but the inverse Stokes number were low δ < 0.16, it was found that the retardation coefficient could
be estimated within 6.4% accuracy. However, the retardation behavior at higher frequencies was
underestimated.
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CHAPTER 5

I   

In this chapter the particle response motions due to inviscid fluid oscillations are presented. As
mentioned, it is expected that no phase angle will occur because of the lag of viscosity. Uniform as
well as non-uniform fluid oscillations are examined in order to determine whether a difference in
particle response behavior will occur. Besides this, the particle response motions are separated in
horizontal and vertical direction to study the hypotheses (Chapter 2).

5.1 H 

5.1.1 U 

Let’s consider a horizontally oscillating seling tube, the horizontal force balance (as derived in
Chapter 3), yields:

Vp ρp
dupot

dt
= 1

2
ρf Vp

(
dS

dt
− dupot

dt

)
+ ρf Vp

dS

dt
. (5.1)

Rewriting the force balance shows that the inviscid particle acceleration only depends on the density
ratio (γ = ρp/ρf ):

dupot

dt
= 3 (dS/dt)

1 + 2(ρp/ρf )
. (5.2)

Substituting the uniform fluid acceleration (dS/dt) and integrating with respect to t yields the par-
ticle response velocity in horizontal direction (upot):

upot = 3 Af ω

1 + 2(ρp/ρf )
cos(ωt). (5.3)

Ploing Equation 5.3 and the uniform fluid velocity (S) where ρp > ρf , results in the following
figure:
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Figure 5.1: Horizontal particle response velocity upot, uniform oscillations γ > 1

When the particle is less dense than the fluid, i.e. ρp < ρf , the following figure is obtained:
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Figure 5.2: Horizontal particle response velocity upot, uniform oscillations γ < 1
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5.1. HORIZONTAL OSCILLATIONS

Both Figure 5.1 and Figure 5.2 clearly show the decoupled motion between the fluid and the par-
ticle. e results are as discussed in Section 3.1, where it was expected that a relative motion
would occur when the particle is more or less dense than the fluid. e fluid density was chosen
to be ρf ≈ 998 kg/m3 (fresh water) whereas the density of the particle was either quartz sand
(ρp ≈ 2650 kg/m3) or a random material (ρp ≈ 650 kg/m3). In both figures the fluid amplitude
(Af ) was kept constant. For a solid particle with a larger density than the fluid the response ampli-
tude is lower than that of the fluid, i.e. Ap/Af < 1 (Figure 5.1) and for a less dense solid particle the
response amplitude is higher, i.e. Ap/Af > 1 (Figure 5.2).

As described in Chapter 3, using Equation 3.7 (which is repeated at the beginning of this subsection),
it is expected that for very low particle densities (ρp ≪ ρf ) the particle acceleration will be at
maximum three times as high as the fluid acceleration. By integrating twice, it is found that this is
also the case for the particle velocity and displacement. e amplitude ratio (Ap/Af ) as function of
the density ratio (γ = ρp/ρf ), is presented in Figure 5.3:
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Figure 5.3: Decoupling as function of density ratio (γ) for the inviscid model

It is nicely shown that in the lower limit of the density ratio, i.e. ρp ≪ ρf the amplitude ratio is
maximal three and when the density ratio becomes large (ρp ≫ ρf ) the amplitude ratio goes to zero
(Ap eventually becomes zero). Furthermore, when the density ratio is unity (ρp = ρf ) the amplitude
ratio is also unity, ensuring the particle motion to be exactly equal to the fluid motion.

Besides the decoupled motion it was also expected that the particle would oscillate in phase with the
fluid because of the neglected drag and history force. is expectation is also clearly shown in both
Figure 5.1 and Figure 5.2. e particle oscillates at the drive frequency of the fluid, which is assumed
to be exactly equal to the frequency of the seling tube.
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5.1.2 N 

Until now, only uniform oscillations were used to excite the seling tube. In case of non-uniform
fluid oscillations, the horizontal particle acceleration is defined as:

duw,pot

dt
= 3 (dSw/dt)

1 + 2(ρp/ρf )
, (5.4)

where dSw/dt is the non-uniform fluid acceleration (as derived in Subsection 4.2.2). Again the par-
ticle velocity and displacement are found by integrating twice with respect to t. Unfortunately, no
simple equation is obtained by substituting the non-uniform fluid velocity (Sw), so in final form, the
horizontal particle velocity using non-uniform inviscid fluid oscillations yields:

uw,pot = 3 Sw

1 + 2(ρp/ρf )
. (5.5)

It is expected that Figure 5.3 will also hold for Equation 5.5. Solving for the particle velocity using
the same seings as for the uniform fluid oscillations, except the shape factor (ki) results in:
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Figure 5.4: Horizontal non-uniform particle response velocity uw,pot, ki = 1.05

is fluid velocity profile is obtained by using a sawtooth-like fluid displacement where ki = 1.05
(Figure 4.3). Because of the greater steepness incorporated into the sawtooth wave fluid displace-
ment, the fluid velocities found by differentiating are also an order of magnitude larger compared
with uniform oscillations (both the fluid and the particle response velocity). Because of the approx-
imation using the Fourier series, the fluid displacement, velocity and acceleration will never show
exact straight lines. Especially in the discontinuous regions the approximation comes up short. To
clarify the fluid and particle response motion, Figure 5.5 was added.
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Figure 5.5: Horzontal non-uniform particle response velocity uw,pot, single wave

Changing the shape factor to its upper limit (ki = 21) results in mirrored velocity profiles:
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Figure 5.6: Horizontal non-uniform particle response velocity uw,pot, ki = 21
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Performing calculations with the particle being less dense than the fluid, resulted in the same particle
motion behavior as shown at Figure 5.2 (also identical for both shape factors). erefore, it was
chosen to show the difference in shape factor (Figure 5.6) instead of the difference in particle density.
Analyzing the shape factor ki = 21, it is shown that the fluid velocity profile mirrors over the x-
axis. is results from the fluid displacement sawtooth wave having its steepest incline in an upward
direction.
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Figure 5.7: Horizontal non-uniform particle response velocity uw,pot, single wave

Furthermore, it is shown that the average particle response velocity using a shape factor ki = 1.05
(Figure 5.5) is positive, whereas the high velocity peak is in the le direction. is behavior is due to
the sawtooth wave shape presented in Subsection 4.2.2. Again, changing the shape factor to ki = 21,
this behavior is exactly mirrored over the x-axis.
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5.2. VERTICAL OSCILLATIONS

5.2 V 

5.2.1 U 

Let’s now consider a vertically oscillating seling tube, the vertical force balance (Chapter 2), yields:

Vp ρp
dvpot

dt
= 1

2
ρf Vp

(
dS

dt
− dvpot

dt

)
+ ρf Vp

dS

dt
+ Vp g (ρf − ρp). (5.6)

Rewriting gives:

dvpot

dt
= 3 (dS/dt)

1 + 2(ρp/ρf )
+ 2g(ρf − ρp)

(ρf + 2ρp)
. (5.7)

Substituting the uniform fluid acceleration (dS/dt) and integrating with respect to t yields the par-
ticle response velocity in vertical direction (vpot):

vpot = 3 Af ω

1 + 2(ρp/ρf )
cos(ωt) + 2g(ρf − ρp)

(ρf + 2ρp)
. (5.8)

Ploing Equation 5.8 and the uniform fluid velocity (S) where ρp > ρf , results in:
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Figure 5.8: Vertical particle response velocity vpot, γ > 1

To compare Figure 5.8 to Figure 5.1, equal seings were applied (shown at the top of the figure).
Clearly the gravity term in Equation 5.8 is more dominant than the combined pressure and added
mass term. Slight oscillatorymotion of the particle is visible, but at these seings the terminal seling
velocity is much larger than the particle response velocity to the vertical uniform fluid oscillations.
Increasing both the frequency and amplitude, results in:
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Figure 5.9: Vertical particle response velcoity vpot, γ > 1

Lowering the particle density to ρp = 650 kg/m3, yields:
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Figure 5.10: Vertical particle response velcoity vpot, γ < 1
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Using a oscillation frequency f = 10Hz and amplitude Af = 5mm, results in a more visible particle
response motion. e particle density being larger than the fluid density again results in a amplitude
ratio Ap/Af < 1, as expected (Figure 5.9).

Conducting more calculations (Figure 5.10) showed that a density ratio γ < 1, thus the fluid being
more dense than the particle, resulted in a decoupling ratio Ap/Af > 1 with a maximum ratio of 3.
is proved that Figure 5.3 is also valid in the case of vertical oscillations. If the fluid is more dense
than the particle, then the particle velocity is also found to be oscillating in the positive quadrant
because it will rise instead of sele. Furthermore, it may be harder to see immediately, but again the
fluid and particle oscillate in phase (φ = 0) at the same driving frequency.

5.2.2 N 

Considering non-uniform fluid oscillations to excite the seling tube, first the equation for the ver-
tical particle response acceleration is defined:

dvw,pot

dt
= 3 (dSw/dt)

1 + 2(ρp/ρf )
+ 2g(ρf − ρp)

(ρf + 2ρp)
, (5.9)

Integrating with respect to time (t) yields the non-uniform vertical particle response velocity:

vw,pot = 3 Sw

1 + 2(ρp/ρf )
+ 2g(ρf − ρp)

(ρf + 2ρp)
. (5.10)

Ploing Equation 5.10 and the non-uniform fluid velocity (Sw) where ρp > ρf , using both shape
factors ki = 1.05 and ki = 21 results in Figure 5.11 and Figure 5.12, respectively.
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Figure 5.11: Vertical non-uniform particle response velocity vw,pot, ki = 1.05
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Figure 5.12: Vertical non-uniform particle response velocity vw,pot, ki = 21

Aer calculating the particle response velocity using a density ratio γ < 1, it was again concluded
that similar particle behavior was found in the case of non-uniform oscillations (Ap/Af ). ese fig-
ures will not be shown.

Analyzing the average vertically oscillating particle velocity, combined with the particle size (d) in
either the uniform or the non-uniform inviscid fluid oscillations ( ¯vpot & ¯vw,pot), it is noted that the
fall velocity under gravity is extremely high. is is caused by the lag of the Stokes drag force and
history force. As mentioned, it is expected that the decoupled motion between the particle and the
fluid will decrease when the fluid becomes viscous (with addition of the Stokes drag force (Fd) and
history force (Fh)) and the history force is added. e addition of these forces will presumably also
cause a phase difference between the fluid and particle. is phase difference is expected to depend
on the density ratio (γ), as the decoupled motion also showed this dependency.

e inviscid model has clearly shown that the inertial difference between the particle and the fluid is
essentially the driving force for the decoupledmotion. However, due to the viscosity being neglected,
this model cannot be used to predict a possible relative velocity between particle and fluid.
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CHAPTER 6

V   

From this point forward, the fluid is considered to be viscous, ensuring the Stokes drag force (Fd) and
history or Basset force (Fh) to be non-zero. During the calculations, the fluid density and viscosity
are calculated for fresh water having a temperature T = 20 °C. Dependency between fluid oscil-
lation frequency (f), amplitude ratio (Ap/Af ), phase difference (φ), shape factor (ki) and particle
migration or seling velocity (u, uw, v, vw) for uniform and non-uniform fluid oscillations is exam-
ined. First, the horizontal direction is discussed, for both uniform and non-uniform fluid oscillations.
Subsequently, the vertical direction is covered for both oscillations types.

6.1 H 

6.1.1 U 

Let’s again consider a horizontally oscillating seling tube, using uniform fluid oscillations. e
exact same seings are used as shown in Figure 5.1, except for the model. e viscous model (BBO-
equation) is repeated here for convenience:

Vp ρp
du

dt
= 6πµf r(S − u)ϕ(Rep) +

6πµf r

[
S − u

δ
+ δτv

2

(
dS

dt
− du

dt

)]
+

2
3

πρf r3
(

dS

dt
− du

dt

)
+ (6.1)

4
3

πρf r3 dS

dt
.

Solving for the viscous particle response velocity (u), using the same oscillation frequency and am-
plitude as in Figure 5.1, results in the following figure:
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Figure 6.1: Horizontal particle response velocity u, uniform oscillations γ > 1, d = 0.1 mm

Analyzing Figure 6.1, there is hardly any observable difference between the fluid motion and the par-
ticle response motion. As expected, the addition of drag causes the decoupling between the particle
and fluid to decrease compared to the particle motion results presented in Figure 5.1. In combi-
nation with a relatively small particle (d = 0.1 mm), the particle will follow the fluid oscillation
almost exactly as the viscous force terms dominate the inertial force terms. Also, no phase angle
can be visually observed. e calculations showed a decoupling Ap/Af ≈ 0.99 and a phase angle
φ ≈ −0.01 rad, which is negligible.

Increasing the weight of the particle by either increasing its size (d) or its density (ρp) should re-
sult in higher inertial difference between the fluid and the particle and therefore a higher decoupling.

Seing the particle size to a diameter of 2 mm results in the following particle response behavior:
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Figure 6.2: Horizontal particle response velocity u, uniform oscillations γ > 1, d = 2 mm

Now the decoupling was found to be Ap/Af ≈ 0.61 and the phase difference φ ≈ −0.17 rad. If the
particle density is lowered again, such that the density ratio γ < 1, the following is found:
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Figure 6.3: Horizontal particle response velocity u, uniform oscillations γ < 1, d = 2 mm
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As expected, it is shown that the decoupled motion between the particle and fluid is larger than
unity when the density ratio is smaller than unity (γ < 1). Running the calculation showed that
the decoupling turned out to be Ap/Af ≈ 1.13 and the phase difference φ ≈ 0.10 rad. e phase
angle has shied from lagging behind (negative value) to leading (positive value) with respect to the
fluid motion. ese observations are experimentally validated for dense solid particles (Van Oeveren
andHoughton, 1971; Herringe, 1976) as well as for particles with a very low density (Weinstein, 2008).

In the limit of low viscosity (inertial forces dominate) using potential theory, no phase differences
will occur between the fluid and the particle and the amplitude ratio is at maximum Ap/Af = 3. In
cases that the drag forces dominate the inertial forces, no decoupling or phase angle will be found
(Figure 6.1). Non-zero values for the phase angle are only found when the drag and inertial forces
compete.

6.1.2 N 

Using non-uniform fluid oscillations, the exact same particle response behavior is found as for the
uniform oscillations. Using the same seings as at Figure 5.4 but now using the viscousmodel, yields:
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Figure 6.4: Horizontal particle response velocity uw, γ > 1, d = 0.1 mm

It may be difficult to distinguish directly, but it is again shown that the Stokes drag force (Fd) and
the history force (Fh) cause the particle to follow the fluid oscillations more closely.

To clarify Figure 6.4, again an enlarged single wave is added:
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Figure 6.5: Horizontal particle response velocity uw, γ > 1, d = 0.1 mm

Despite higher fluid velocities, viscous forces are still dominant in Figure 6.5, causing the fluid and
particle motion to be almost one to one. Using the same method to calculate the amplitude ratio
and phase angle showed that the results were similar, compared with the uniform fluid oscillations.
Hence, the larger fluid accelerations (using these seings) did not influence the particle response
motion (amplitude ratio or phase angle).

Again, the case of a particle being less dense than the fluid (γ < 1) has been examined. Similar
results were found, compared with the uniform oscillations (Figure 6.3). is also holds for changing
the shape factor of the non-uniform fluid oscillations (ki = 21). Similar behavior (mirrored over the
x-axis) is found compared with Figure 6.5. ese calculations are therefore not adopted in the thesis.

e analysis between the uniform and non-uniform fluid oscillations has not shown any signifi-
cant difference, besides that the fluid and particle velocities are both one order of magnitude larger.
Currently, the used amplitudes (Af ) and frequencies (f) are low, to qualitatively indicate the par-
ticle response behavior. Later, both are enlarged to determine whether an average relative velocity
(migration) will occur between the particle and fluid.
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6.1.3 D   

Performing calculations using the inviscid and viscous model, showed that the amplitude ratio is in-
fluenced by the inertial difference between fluid and particle. e addition of viscous forces caused
the particle to follow the fluid motion more closely. To determine whether the amplitude ratio is
sensitive on frequency, an analysis is performed where the above mentioned parameters were kept
constant except for the particle diameter (d) and oscillation frequency (f).

If the relative motion is not sensitive to small changes in frequency, then it is not important to always
be on the exact frequency to describe the particle response behavior. Figure 6.6 shows the decoupling
or amplitude ratio for the particle sizes of interest using uniform (red doed lines) and non-uniform
(black doed lines) fluid oscillations. e shape factor was set to be ki = 1.05.
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Figure 6.6: Decoupling (Ap/Af ) as function of frequency (f)

It is nicely shown that the amplitude ratio is smaller than unity for the chosen range of frequencies
when the particle is more dense than the fluid (γ > 1). A wide range of frequencies was chosen in
order to achieve higher accuracy in theoretically predicting the dependency between the amplitude
ratio and oscillation frequency.

Considering the y-axis, Figure 6.6 shows that the amplitude ratio is not particularly sensitive to small
changes in oscillation frequency. e maximum decrease in amplitude ratio of approximately 2% is
found when the frequency is increased with 5 Hz using d = 0.2 mm. However, the dependency
increases with increasing particle size. Because only the very small fractions are of interest, it can
be assumed that decoupling does not depend on frequency. Is is remarkable though, that the non-
uniform fluid oscillations show even more constant behavior. Using the other limit of the shape
factor (ki = 21) resulted in similar magnitudes, so this figure will not be adopted in the thesis.
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To study the shown behavioral difference between the uniform and non-uniform oscillations, the
particle response velocities are ploed in a single figure for f = 5 Hz and f = 80 Hz.
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Figure 6.7: Decoupled motion for uniform and non-uniform oscillations, f = 5 Hz
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Figure 6.8: Decoupled motion for uniform and non-uniform oscillations, f = 80 Hz
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It is indeed shown that an increase in fluid oscillation frequency of 75 Hz, causes the decoupled
motion to increase for both the uniform and non-uniform oscillations. Analyzing Figure 6.7 and
Figure 6.8, it is questionable whether the non-uniform oscillations are indeed less dependent on
frequency. It is also clearly shown that the increase in oscillations frequency causes a phase angle
(φ) increase to occur. A similar analysis is therefor performed, studying the dependency of the phase
angle on oscillation frequency.

6.1.4 P    

Calculating the phase angle dependency on frequency, resulted in Figure 6.9. Again, the red doed
lines indicate uniform fluid oscillations whereas the black doed lines indicate non-uniform fluid
oscillations (ki = 1.05).
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Figure 6.9: Phase angle (φ) as function of frequency (f)

Figure 6.9 shows that the phase angle (φ), just like the amplitude ratio, does not significantly change
over small changes in frequency for the smallest particle sizes. Again, increasing the particle size
causes the dependency of phase angle with frequency to increase as well. Unlike the amplitude ratio
however, the non-uniform show a larger dependency on frequency than the uniform oscillations.
Analyzing Figure 6.7 and Figure 6.8 is it again questionable whether is is truly the case.

e dependency must be considered when large differences in oscillation frequency are analyzed.
en, both the decoupling and phase angle are not just dependent on the ratio between viscous and
inertial forces.
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6.1.5 D   

During the inviscid modelling of the particle response behavior, decoupling was shown to occur
because of inertial differences between the fluid and particle. When the viscosity terms (Fd & Fh)
were added to the model, the decoupling decreased. is shows that the amplitude ratio (Ap/Af ) is
dependent on the balance between the inertial forces (Fa & Fp) and the viscosity forces (Fd & Fh).
To determine the decoupling behavior as function of viscosity and particle size (using a fixed par-
ticle density of quartz sand), Figure 6.10 was created. Note that uniform fluid oscillations at a fixed
frequency of f = 15 Hz were used.
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Figure 6.10: Decoupling (Ap/Af ) as function of viscosity (νf ), uniform oscillations

As the particle size (d) increases at fixed viscosity, the viscous drag on the particle is overwhelmed
by the inertial forces due to the decreased particle surface to volume ratio. It is nicely shown that
in the limit of low viscosity, the same decoupling is found as predicted by the inviscid model (Fig-
ure 5.3). e lowest viscosity used is 5 × 10−7 m2/s, which is equivalent to the viscosity of fresh
water of approximately 50 degrees. It is not possible to run the model at viscosities less than this
value because the particle Reynolds number (Rep) becomes too large for the model to remain valid.
e kinematic viscosity of water (using a temperature of 20 degrees) is approximately 1×10−6m2/s.

e particle density was kept constant during the analysis, but if it would be preferable to study a
certain higher or lower particle density, the same behavior would be found as long as γ > 1. e
lower viscosity limit would shi to another value which can be determined using Figure 5.3, but the
shape of the dependency will remain similar.
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Besides the uniform fluid oscillations, the same figure for the amplitude ratio was created using
non-uniform fluid oscillations. A shape factor ki = 1.05 was used.
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Figure 6.11: Decoupling (Ap/Af ) as function of viscosity (νf ), non-uniform oscillations

Considering the amplitude ratio between the particle and fluid using non-uniform fluid oscillations,
it was found that the average decoupling is lower compared to the uniform fluid oscillations. is
observation is expected to be caused by the higher dependency on the fluid acceleration for the
uniform oscillations (Figure 6.6). Considering the amplitude ratio at the used frequency of 15 Hz, it
is shown that (especially for the particles larger than d = 0.1mm) the found difference in dependency
is in the order of 10%.
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6.1.6 P    

Unlike the amplitude ratio (Ap/Af ), the phase angle (φ) reaches a maximum at intermediate values
of particle size and fluid viscosity and will go to zero for the inviscid and infinite viscosity limits
(Figure 6.12). is balance between the viscous and inertial forces is especially well shown for the
larger particle sizes d = 0.5 mm and d = 1 mm. When the viscous forces dominate, the relative
motion is reduced, eventually to the extent that no relative motion and no phase angle are possible.
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Figure 6.12: Phase angle (φ) as function of viscosity (νf ), uniform oscillations

As viscosity decreases (especially for the larger particles, having larger inertial forces) the inviscid
model is approached where there is no phase angle but maximum decoupling. In summary, when the
ratio inertial to viscous forces is either extremely large or extremely small, there is no phase angle:

1 ≪ Finertial

Fviscous
≪ 1, φ = 0, (6.2)

but when these forces roughly balance, the phase angle will be maximum:

Finertial

Fviscous
≈ 1, φ = maximum. (6.3)

is causes the nicely shown parabola, using a particle size d = 1mm. Again performing the similar
analysis but applying non-uniform fluid oscillations resulted in Figure 6.13:
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Figure 6.13: Phase angle (φ) as function of viscosity (νf ), non-uniform oscillations

Analyzing Figure 6.13, it is observed that the maximum phase angles found before inertial forces
dominate, are somewhat larger compared to the uniform oscillations. Considering Figure 6.9 at again
an oscillation frequency of 15 Hz, it does not directly show this discrepancy. It is however expected
that this found difference has the same cause as foundwith the decoupling dependency on frequency.

As mentioned, this study is mostly interested in the behavior of the smallest fractions, up to approx-
imately 170 µm. For these particle sizes, the particle response behavior is more or less similar for
both uniform and non-uniform fluid oscillations. e performed analysis of the particle response
behavior dependency on viscosity showed that the response behavior will always be dominated by
the viscous forces.
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6.1.7 P 

Now that the influence of the inertial and viscous force terms in the BBO-equation on the decoupling
and phase angle is quantified, it is interesting to study the particle response velocity as function
of frequency and amplitude. Doing so, it can be determined whether the first hypothesis can be
numerically proven for a single particle.
Figure 6.14 shows the particle response velocity for uniform (red doed lines) and non-uniform fluid
oscillations (black and blue doed lines), as function of the inverse Stokes number (δ). A variety of
fluid amplitudes (Af ) are applied in combination with the limiting shape factors ki = 1.05 (black
doed lines) and ki = 21 (blue doed lines).
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Figure 6.14: Average migration velocities (ū & ūw) as function of the inverse Stokes number (δ)

Clearly, the non-uniform fluid oscillations are capable of producing an average relative particle ve-
locity in a certain direction. Note that the sign convention indicates the direction of motion. A
negative value describes an average velocity to the le, whereas a positive value indicates an aver-
age velocity to the right. is difference is caused by the shape factor (ki). It must be emphasized
that the results are highly theoretical. e wave shapes used for the fluid as excitation input will not
be the wave shapes found in practice because of friction and inertia of the system. For this reason
Van Oeveren and Houghton (1971) also defined an output shape factor ko:

ko = downstroke duration
upstroke duration , (6.4)

where the ratio of ki over ko describes the transfer function between theory and practice. e
magnitude of the average particle migration velocities shown in Figure 6.14 will therefore always be
within the extremes. As expected, the uniform oscillations cause almost no relative particle velocity.
But at very low inverse Stokes numbers, still an average velocity of 1mm/s is found. By integrating
the relative particle response velocity, the relative particle displacement is found.
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Let’s consider the oscillating and average relative particle displacement at δ ≈ 3.57 and δ ≈ 2.52
for ki = 1.05:
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Figure 6.15: Relative particle displacement (ux & uwx) at δ ≈ 3.57, Af = 1 mm
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Figure 6.16: Relative particle displacement ux & uwx at δ ≈ 2.52, Af = 5 mm
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e colors used, correspond with Figure 6.14. It is nicely shown that the average relative particle
displacements for the uniform and non-uniform are almost equal at δ ≈ 3.57 and Af = 1mm. How-
ever, when the inverse Stokes number decreases, with an increased fluid amplitude Af = 5 mm the
average relative particle displacement for the uniform oscillations stays more or less constant, while
the displacement for the non-uniform oscillations increases rapidly.

Considering the oscillating and average relative displacement using δ ≈ 2.52, Af = 5 mm and the
shape factor ki = 21, resulted in:
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Figure 6.17: Relative particle displacement ux & uwx at δ ≈ 2.52, Af = 5 mm

Using the other limit of the shape factor (ki = 21) shows the expected migration in opposite di-
rection (right). is displacement however, is shown to be less pronounced compared with a shape
factor ki = 1.05. It is expected that this difference is caused by the initial difference between the
two wave types.
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6.1.8 F 

To determine the origin of the relative velocities, a force analysis has been performed.
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Figure 6.18: Forces due to uniform fluid oscillations at inverse Stokes number, δ ≈ 3.57
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Figure 6.19: Average forces due to uniform fluid oscillations at inverse Stokes number, δ ≈ 3.57
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In Figure 6.18 the different uniformly oscillating forces are visualized together with a resultant force
(Fres). e colors used, correspond to the colors in Figure 3.3(a), whereas the resultant (summation)
force is indicated by the black line. At a relatively high inverse Stokes number (equal to the dis-
placement figures), the added mass force (Fa) is approximately zero. Furthermore, the Stokes drag
force (Fd), the history or Basset force (Fh) and the pressure force (Fp), all oscillate with different
amplitudes and phase angles with respect to each other.

To determine which force has the largest influence, the average of each oscillating force is shown in
Figure 6.19. Here, the average pressure force (Fp) is shown to be zero, because of its dependency on
the particle volume (Vp) and the fluid acceleration (dS/dt). Figure 6.19 also proves that the conclu-
sion of the viscous forces (Fd&Fh) being dominant, is correct. As expected and shown at Figure 6.14,
decreasing the inverse Stokes number to ≈ 2.52 did not show significant difference for the average
forces (not adopted in the thesis).

Still Figure 6.19 does not instantly showwhy a migration velocity occurs when the fluid is oscillating
uniformly. erefore, each of the force terms from the BBO-equation was suppressed one by one to
study the individual influence on the particle velocity. Doing so, it was found that a relative velocity
is only achieved if the history or Basset force (Fh) is included:

Fh = 6πµf r

[
S − v

δ
+ δτv

2

(
dS

dt
− du

dt

)]
. (6.5)

e history force shows a dependency on both the viscosity as well as the relative acceleration be-
tween the fluid and particle, causing it to contribute both to the viscous forces and the inertial forces.
For now, a physical explanation cannot be given for this phenomenon.

e behavioral difference between shape factors and inverse Stokes numbers should translate in a
difference between specific forces as well. Considering the oscillating forces for the uniform and
non-uniform fluid oscillations using ki = 1.05 and two different inverse Stokes numbers are given
in Figure 6.18, Figure 6.20 and Figure 6.22. It is shown that the forces increase linearly with increas-
ing fluid acceleration. is is expected behavior, taking into account Newton’s second law of motion.

More interesting are the average forces, shown at Figure 6.19, Figure 6.21 and Figure 6.23, respec-
tively. All three figures show that the pressure force (Fp) is again zero. A surprising difference
between Figure 6.19 and Figure 6.21 is that the uniform oscillations show a resultant force (Fres)
which is one order of magnitude larger compared with the non-uniform oscillations. Taking into
account Figure 6.14, it is suspected that the uniform oscillations have a slightly higher acceleration
at δ ≈ 3.57.

Comparing Figure 6.21 and Figure 6.23 it is found that the history force (Fh) and Stokes drag force
(Fd) have a changed sign. e combination of the two is expected to be the driving force for the
horizontal particle migration in le direction, as they are dominant and therefore mainly determine
the magnitude of the resultant force.
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Figure 6.20: Forces due to non-uniform fluid oscillations, ki = 1.05, δ ≈ 3.57
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Figure 6.21: Average forces due to non-uniform fluid oscillations, ki = 1.05, δ ≈ 3.57
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Figure 6.22: Forces due to non-uniform fluid oscillations, ki = 1.05, δ ≈ 2.52
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Figure 6.23: Average forces due to non-uniform fluid oscillations, ki = 1.05, δ ≈ 2.52
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Besides the horizontal particle migration in le (negative) direction using ki = 1.05, a migration
velocity in right (positive) direction is found at ki = 21. To determine the influence of both limiting
shape factors, Figure 6.20, Figure 6.21, Figure 6.22 and Figure 6.23 have been reproduced using the
shape factor ki = 21. Analyzing the oscillating forces (Figure 6.20 and Figure 6.24) it is found
that both magnitudes are exactly equal. As expected, they are again mirrored over the x-axis. e
pressure force (Fp) always shows a significant influence in the oscillating force plots, but when
averaged it loses its contribution to the resultant force (Fres) because:

F̄p = 0. (6.6)

Comparing their average magnitudes (Figure 6.21 and Figure 6.25), there is not much of a difference
other than that they differ one order of magnitude. is difference could explain why both shape
factor do not show equal particle migration behavior at δ ≈ 3.57. e physical origin however is not
yet known. e Stokes drag force (Fd) and history force (Fh) show the exact same behavior despite
different shape factors.

e inverse Stokes number has again been lowered to δ ≈ 2.52. Analyzing the oscillating forces
(Figure 6.22 and Figure 6.26), again results in an equal magnitude and mirrored appearance with
respect to the x-axis. eir average magnitudes shown at Figure 6.23 and Figure 6.27 predict opposite
behavior between the Stokes drag force and history force. It is expected that this causes the difference
in either a positive average relative velocity or a negative average relative velocity between particle
and fluid. It is also shown that the resulting average forces for ki = 21 are generally one order of
magnitude larger, despite the migration velocities not begin as high as using ki = 1.05. Currently,
there is no physical explanation why this occurs.
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Figure 6.24: Forces due to non-uniform fluid oscillations, ki = 21, δ ≈ 3.57
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Figure 6.25: Average forces due to non-uniform fluid oscillations, ki = 21, δ ≈ 3.57
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Figure 6.26: Forces due to non-uniform fluid oscillations, ki = 21, δ ≈ 2.52
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Figure 6.27: Average forces due to non-uniform fluid oscillations, ki = 21, δ ≈ 2.52
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6.2 V 

6.2.1 U 

Let’s now consider a vertically oscillating seling tube using uniform oscillations. Because of the
orientation, gravity and buoyancy are included in the BBO-equation using a single force term (Fg):

Fg = Vp g (ρp − ρf ). (6.7)

is term is also known as the submerged weight. Using the same seings as Figure 6.1 yields:

0 0.5 1 1.5 2 2.5 3
-30

-25

-20

-15

-10

-5

0

5

10

15

20

25
A

f
 = 1 [mm],  f = 3 [Hz],  d = 0.1 [mm],  ρ

p
 = 2650 [kg/m3]

Time, t [s]

V
el

oc
ity

 [m
m

/s
]

v
v

t

S

Figure 6.28: Vertical particle response velocity v, uniform oscillations γ > 1, d = 0.1 mm

Besides the vertically oscillating response velocity of the particle (v) and the fluid velocity (S) the
terminal seling velocity in stagnant water (vt) is shown by the green line for comparison. It is
shown that the submerged weight of the particle causes an average negative velocity. e particle
velocity oscillates slightly above the terminal seling velocity whereas the fluid oscillation velocity
logically oscillates around zero. Because of the relatively small particle size chosen, hardly any
decoupling Ap/Af ≈ 0.99 or phase difference φ ≈ −0.012 rad is found.
Again, increasing the weight of the particle by increasing either its size (d) or its density (ρp) should
result in a higher inertial difference, which will translate in a larger decoupling and phase angle.
Considering Figure 6.29, the particle size was increased to d = 2 mm. It is now clearly shown
that retardation (b0 = v̄/|vt| < 1) occurs, because the average oscillating seling velocity of the
particle (v̄) is well above the terminal seling velocity. As expected, the phase difference increased
to φ ≈ −0.346 rad. e amplitude ratio however, shows different behavior compared to the case of
the horizontally oscillating seling tube. Because of the gravity term being 20 times larger, the fluid
oscillations are no longer capable of fully controlling the particle and a decoupling Ap/Af ≈ 1.15 is
found. is indicates that a downward overshoot exists due to the higher inertial forces.
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Figure 6.29: Vertical particle response velocity v, uniform oscillations γ > 1, d = 2 mm

Integrating the velocity yields the displacement. Using a frequency f = 5 Hz and an amplitude
Af = 5 mm resulted in the following oscillating and average relative particle displacement:
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Figure 6.30: Vertical particle displacement vy & vt,y , uniform oscillations γ > 1
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Analyzing Figure 6.30, it is shown that at t = 0, the oscillating displacement of the particle is approx-
imately equal to the terminal displacement. e oscillating displacement oscillates nicely around the
terminal displacement. Using the average displacements, it is clearly shown that these two lines sep-
arate aer some time due to the retardation effect. Obviously, the average displacement of the fluid
(blue line) is shown to be zero.

Now considering a density ratio γ < 1 yields a positive phase angle φ ≈ 0.004rad and an amplitude
ratio Ap/Af ≈ 0.99:
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Figure 6.31: Vertical particle response velocity v, uniform oscillations γ < 1, d = 0.1 mm

e density ratio being less than unity, results in an average upward velocity due to the change in
sign of the gravity term. e decoupling between particle and fluid proved to be minimum. It was
expected that, using for instance a bubble (having very small particle density) an amplitude ratio
greater than unity would be found. is however, is not the case. e amplitude ratio remained
smaller than unity Ap/Af ≈ 0.99. Equation 6.7 shows why this does not occur. Because the dif-
ference between fluid and particle density is taken, the resultant density will never be as high for a
bubble as for a solid particle. Even when the particle size was increased twenty times, no amplitude
ratio larger than unity was found.

6.2.2 N 

In case of non-uniform fluid oscillations (using a shape factor ki = 1.05), again particle response
behavior similar to Figure 6.28 was found. Because the peak velocity is one order of magnitude larger
than the uniform oscillations it may be difficult to see, but the average seling velocity is exactly the
same as in case of the uniform oscillations.

MSc esis 79 March 18, 2016



CHAPTER 6. VISCOUS PARTICLE MOTION RESULTS

0 0.5 1 1.5 2 2.5 3
-160

-140

-120

-100

-80

-60

-40

-20

0

20
A

f
 = 1 [mm],  f = 3 [Hz],  ki = 1.05 [-],  d = 0.1 [mm],  ρ

p
 = 2650 [kg/m3]

Time, t [s]

V
el

oc
ity

 [m
m

/s
]

v
w

v
t

S
w

Figure 6.32: Vertical particle response velocity vw, γ > 1, d = 0.1 mm, ki = 1.05

e amplitude ratio (Ap/Af ) and phase angle (φ) were also found to be exactly similar to these
of the uniform fluid oscillations (Figure 6.28). Because the fluid and particle motion are shown to
be almost one to one, it can be concluded that viscous forces are dominant using these oscillation
seings. Following the mentioned similarities, no difference in retardation (v̄w/|vt|) was found.

Because the gravity force term (Fg) is static (only dependent on the particle volume (Vp), particle
density (ρp) and fluid density (ρf )) it has no influence on the overall particle response behavior
described by the amplitude ratio (Ap/Af ) and phase angle (φ). As described in the previous subsec-
tion, the particle response behavior only depends on the ratio between the inertial forces (Finterial)
and viscous forces (Fviscous).

It is therefore concluded that the figures describing the decoupling dependency on frequency (Fig-
ure 6.6) and phase angle dependency on frequency (Figure 6.9) are also valid for the vertically oscil-
lating seling tube. is also holds for the dependency of decoupling on viscosity (Figure 6.10) and
the phase angle dependency on viscosity (Figure 6.12).

To clarify the vertical particle response velocity for the limiting shape factors ki = 1.05 and ki = 21,
Figure 6.33 and Figure 6.34 are added. e influence of gravity is visible in the regions with the largest
discontinuities. When the largest fluid velocity is pointed in downward direction (ki = 1.05), a slight
overshoot is found, whereas the largest velocity pointed upwards, shows that gravity impedes the
particle from fully following the fluid.
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Figure 6.33: Vertical particle response velocity vw, γ > 1, d = 0.1 mm, ki = 1.05

0.25 0.3 0.35 0.4 0.45

-20

0

20

40

60

80

100

120

140

160
A

f
 = 1 [mm],  f = 3 [Hz],  ki = 21 [-],  d = 0.1 [mm],  ρ

p
 = 2650 [kg/m3]

Time, t [s]

V
el

oc
ity

 [m
m

/s
]

v
w

v
t

S
w

Figure 6.34: Vertical particle response velocity vw, γ > 1, d = 0.1 mm, ki = 21
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6.2.3 P   

It only rests to prove the second hypothesis, mentioned in Chapter 2. e inverse Stokes number
again has been used in combination with different amplitudes to describe the vertical particle re-
sponse behavior. is is done by the retardation coefficients for uniform oscillations b0 (indicated
by the red doed lines) and b1 for the non-uniform oscillations. e blue doed lines use a shape
factor ki = 21 and the black doed lines a shape factor ki = 1.05. e retardation coefficients
describe the mean oscillating velocity v̄ or v̄w, normalized by the absolute terminal seling velocity
|vt|:

b0 = v̄

|vt|
and b1 = v̄w

|vt|
. (6.8)

e coefficient b0 or b1 being between zero and minus one, describes a retarded seling velocity of
the particle. When the coefficient is found to be zero, particle hovering is predicted, as experimentally
found by Van Oeveren and Houghton (1971). Hovering means that the particle will not sele nor rise
against gravity. When the coefficient becomes larger than zero, the particle will rise against gravity
due to the present combination of fluid amplitude, oscillation frequency and shape factor. As shown
on Figure 6.35, this is only possible using ki = 21 (blue doed lines).
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Figure 6.35: Particle retardation b0 & b1 as function of the inverse Stokes number (δ)

e other extreme is found when the retardation coefficient predicts a value smaller than minus
one. If this is the case (which is only possible using a shape factor ki = 1.05) an increasing seling
velocity is found. Considering Figure 6.35, using these seings a theoretical increase of 2.5 times the
terminal seling velocity is found. Again it must be mentioned that these retardation results (using
the non-uniform oscillations) are highly theoretical. e wave shapes used as input (ki) to excite
the seling tube will be different from the wave shapes found in practice due to the specific system
properties such as inertia and friction.
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6.2.4 F 

A force analysis has again been performed to determine which force is causing the increase in set-
tling velocity or the possibility of particle levitation.

e uniformly oscillating forces are given at Figure 6.36 for the specific case of the inverse Stokes
number δ ≈ 3.57. In contrast with Figure 6.18, the history force (Fh) and Stokes drag force (Fd)
are both positive. Due the presence of the gravity term (Fg) the average response velocity of the
particle will be negative (seling), this is expected to cause the history force and Stokes drag force
to be positive.

Considering the average oscillating forces (Figure 6.37), the pressure force is again found to be ex-
actly zero, whereas the added mass force is two orders of magnitude smaller compared to the gravity,
history and drag terms and therefore not clearly visible. As expected, the balance of forces is domi-
nated by the gravity term and the Stokes drag term, similar to a particle seling in stagnant water.
e retardation (b0) found using Figure 6.35 has a magnitude of approximately 20%. It is again ex-
pected to be caused by the presence of the history force, as will be shown by further analyzing the
particle response behavior.

Considering the retardation plot (Figure 6.35) using again δ ≈ 3.57 but for the non-uniform waves
having an equal fluid amplitude of 1 mm and a shape factor ki = 1.05, shows that the found re-
tardation is almost exactly equal. is finding is clearly if Figure 6.37 is compared with Figure 6.39.
Despite the higher fluid accelerations the force balance is dominated by the Stokes drag force and
the gravity force. e pressure force is again exactly zero, whereas the added mass force and the re-
sultant force are two orders of magnitude smaller than the Stokes drag force and gravity force. is
leads to the conclusion that at this inverse Stokes number, not much difference is found between the
uniform and non-uniform fluid oscillations.

Increasing both the fluid amplitude and frequency such that the inverse Stokes number decreases to
δ ≈ 2.52 in combination with a shape factor ki = 1.05 shows an increased history force. Taking into
account Figure 6.35, the increased history force causes the relative motion of the particle to increase
in negative direction. An increase in seling velocity of approximately 30% is found.
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Figure 6.36: Forces due to uniform fluid oscillations at inverse Stokes number δ ≈ 3.57
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Figure 6.37: Average forces due to uniform fluid oscillations at inverse Stokes number δ ≈ 3.57
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Figure 6.38: Forces due to non-uniform fluid oscillations, shape factor ki = 1.05, δ ≈ 3.57
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Figure 6.39: Average forces due to non-uniform oscillations, shape factor ki = 1.05, δ ≈ 3.57
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Figure 6.40: Forces due to non-uniform fluid oscillations, shape factor ki = 1.05, δ ≈ 2.52
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Figure 6.41: Average forces due to non-uniform oscillations, shape factor ki = 1.05, δ ≈ 2.52
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Changing the shape factor to ki = 21, resulted in the four figures presented from this point onward.
Figure 6.42 uses exactly the same seings as used at Figure 6.38. Both magnitudes were found to be
equal, as expected. Again, the forces are mirrored around the x-axis due to the mentioned change in
shape factor. eir averages (Figure 6.25 and Figure 6.21) also show similar magnitudes. Considering
the particle retardation behavior presented at Figure 6.35, this proves to be a logical conclusion, as
the predicted retardation is shown to be approximately equal.

Again increasing both the fluid amplitude and frequency such that the inverse Stokes number de-
creases to δ ≈ 2.52, in combination with a shape factor ki = 21 shows a significant decreased
average history force (Figure 6.27). e sign change as found during the horizontal analysis is again
found. is decrease instantly causes the history force to be more dominant than the gravity force,
causing the particle to rise against gravity. is however, still raises some questions, because the
history force obtained the same sign as the gravity force, but levitation is found.

e ratio between forces is found to be similar to the horizontal particle migration analysis at Fig-
ure 6.27. It is thus concluded that the history force is the driving force for the relativemotion between
fluid and particle.
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Figure 6.42: Forces due to non-uniform fluid oscillations, shape factor ki = 21, δ ≈ 3.57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
×10-8  A

f
 = 1 [mm],  δ = 3.5682 [-],  ki = 21 [-],  ρ

p
 = 2650 [kg/m3]

Time, t [s]

F
or

ce
, F

 [N
]

Added mass
Stokes drag
Basset force
Pressure force
Gravity + buoyancy
Resultant

Figure 6.43: Average forces due to non-uniform oscillations, shape factor ki = 21, δ ≈ 3.57
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Figure 6.44: Forces due to non-uniform oscillations, shape factor ki = 21, δ ≈ 2.52
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Figure 6.45: Average forces due to non-uniform oscillations, shape factor ki = 21, δ ≈ 2.52

MSc esis 89 March 18, 2016





CHAPTER 7

C  R

e main goal of this research was to theoretically and numerically investigate whether it would
be possible to increase the hindered seling velocity using fluid oscillations. e idea of increasing
the hindered seling velocity using fluid oscillations (shockwave) was first suggested by Stam (2007).

A literature study was performed to theoretically examine his hypothesis (Van de Wetering, 2015b).
It was concluded that horizontal fluid oscillations (in the form of a shock wave) perpendicular to the
seling direction will increase the drag coefficient and elongate the total distance to be covered by
the particle. However, an interesting technique was found which uses non-uniform fluid oscillations
to manipulate particle motion. at the response particle motion to these non-uniform fluid oscil-
lations could be described by a differential equation, suggested by Boussinesq (1885), Basset (1888)
and Oseen (1927) (BBO-equation). e BBO-equation was adjusted to account for both uniform (si-
nusoidal) and non-uniform (sawtooth) fluid oscillations and its validity range was extended by an
empirical factor to the Stokes drag force, suggested by Cli et al. (1978).

Two hypotheses were created to increase the hindered seling velocity by applying the mentioned
non-uniform fluid oscillations in either horizontal or vertical direction. In horizontal direction it is
numerically examined whether particles could migrate in order to create a vein-like system (Kue-
nen, 1968), introducing a density driven convection flow. is convection flow would increase the
seling velocity. In vertical direction it is numerically examined whether reversed sawtooth fluid
oscillations (largest velocity in downward direction) could accelerate the particle in gravitational di-
rection with an increased seling velocity.

is chapter presents the conclusions of the research towards the hypotheses, together with some
general conclusions and discusses the possible improvements in the form of recommendations.
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7.1 C

7.1.1 I      

e first hypothesis this thesis has studied, is repeated here for convenience:

”Using non-uniform fluid oscillations in horizontal direction causes solid spherical particles to migrate
in the direction of oscillation, creating a horizontal density gradient which introduces a convection flow

and therefore increases the average seling velocity”.

e numerical model has shown that non-uniform fluid oscillations cause an average relative mo-
tion between the particle and fluid. e shape factor (ki) used to change the wave shape of the
non-uniform oscillations determines the direction of migration. e migration velocity was calcu-
lated as function of the inverse Stokes number and fluid amplitude. Migration velocities in the order
of two times the terminal seling velocity were found, which showed that the hypothesis is qualita-
tively feasible.

However, the limiting shape factors ki = 1.05 and ki = 21, produce wave shapes which in practice
will not occur due to system properties such as friction and inertia. e predictedmigration velocities
are therefore highly theoretical. Furthermore, the model is only capable of predicting the migration
velocity for a single particle. Because the hypothesis suggests a mixture to be present, migration
velocities will be lower than theoretically predicted (as known from hindered seling theory).

7.1.2 I      

e second hypothesis this thesis has studied, is also repeated here for convenience:

”Using non-uniform fluid oscillations in vertical direction with the highest velocity faced downwards,
causes solid spherical particles to sele with increased average seling velocity”.

Applying the numerical model in vertical direction, using the same limiting shape factors ki = 1.05
and ki = 21 has shown that the seling velocity of a single particle can be increased. Using non-
uniform oscillations with the largest velocity pointed downwards (ki = 1.05), resulted in predicted
seling velocities being approximately two and a half times larger than the terminal seling velocity.
It is therefore concluded that the second hypothesis is predicted to be qualitatively correct.

To prove this conclusion, the direction of highest velocity was reversed (ki = 21), resulting in the
experimentally found particle hovering and levitation (Van Oeveren and Houghton, 1971). is gave
confidence in the usability and accuracy of the model.
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7.1.3 G

1. Neglecting viscosity results in a decoupled motion between particle and fluid without a phase
angle.
Using the inviscid model, it is concluded that the decoupled motion (Ap/Af ) between the
particle and fluid is caused by inertial differences. It is also shown that the lack of viscosity
causes the particle and fluid to oscillate at the driving frequency of the seling tube without a
phase difference (φ = 0).

2. e model has proven to be accurate within certain ranges, using datasets from literature.

From the validation study it can be concluded that the phase angle (φ) and decoupling (Ap/Af )
are reasonably well predicted by the numerical model, having a accuracy of 17.6% and 10%,
respectively. e retardation coefficient (b0) however, proved to be significantly overestimated
at the higher inverse Stokes numbers (0.2 < δ < 1.6) in combination with particle Reynolds
numbers within the validity range. When the particle Reynolds numbers went well outside
the validity range, but the inverse Stokes number were low δ < 0.16, it was found that the
retardation coefficient could be estimated within 6.4% accuracy. However, the retardation
behavior at higher frequencies was underestimated.

3. e addition of the gravity term did not influence the amplitude ratio or the phase angle for both
the inviscid and viscous model.

Because the gravity force term is not dependent on the fluid or particle acceleration and there-
fore static, it did not contribute to the particle response behavior described by the amplitude
ratio and phase angle.

4. e addition of viscosity decreased the decoupled motion between fluid and particle and causes a
phase difference.

As mentioned, using the inviscid model showed that the decoupled motion between fluid and
particle is causes by the inertial differences. e addition of viscosity showed a reduced de-
coupled motion, as the viscous forces impede the particle from acceleration and deceleration.
is causes the particle to follow the fluid motions more closely.

5. e amplitude ratio and phase angle were found to be not particularly sensitive for small changes
in oscillation frequency, especially for the smallest fractions d < 100 µm.

e oscillation frequency (f) was varied over a wide range of frequencies using constant os-
cillation amplitude (Af ), particle density (ρp) and fluid density (ρf ). It was concluded that,
especially for the smallest fractions, the amplitude ratio and phase angle were not particularly
sensitive for small changes in frequency. However, the dependency on frequency tends to in-
crease with increasing particle size for both the amplitude ratio and phase angle. When large
frequency differences are compared, this dependency should be taken into account.
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6. e dependency of the amplitude ratio on viscosity is accurately predicted by the viscous model.

e dependency of the amplitude ratio on fluid viscosity was examined for a variety of par-
ticle sizes. e viscous model nicely showed that equal values were found in the limit of low
viscosity, compared with the inviscid model. is shows that the decoupled motion between
particle and fluid is correctly predicted by the viscous model, using the BBO-equation.

7. e phase angle is maximum when the ratio of the inertial forces over the viscous forces is approx-
imately unity.

e inviscid model showed that no phase angle occurred between the particle and fluid. e
viscous model showed that in the limit of high viscosity also no phase angle would occur, as
the particle would follow the fluid motion one to one. When the particle size was increased
(increasing the inertial forces), it was found that the maximum phase angle occurs when the
ratio between the inertial and viscous forces is approximately unity.

8. e average relative velocity between the particle and the oscillating fluid is caused by a combi-
nation of the Stokes drag force and the history force.

By performing a force analysis, it is shown that the Stokes drag force and the history force
change consistentlywith changing shape factor ki. Neglecting every term of the BBO-equation
one by one, showed that no average relative velocity would occur if the history force was not
included in the numerical model. It is therefore concluded that the combination of these forces
is responsible for the relative motion between particle and fluid. A physical explanation for
this phenomenon can not yet be given.

9. Particle hovering and rising against gravity is predicted by themodel using a shape factor ki = 21.

Van Oeveren and Houghton (1971) experimentally demonstrated that it would be possible to
cause solid particles to hover (no relative vertical displacement) or even rise against gravity
using vertical non-uniform fluid oscillations. e model predicts the same behavior using the
retardation coefficient (b1) as function of the inverse Stokes number (δ). Unfortunately, it
is not possible to use the data from Van Oeveren and Houghton (1971) to validate the model
because of the mentioned difference between theoretical input and practical output of the fluid
oscillations.

10. e fluid amplitude is the most dominant fluid variable in particle migration or seling behavior.

Examining the average particle response velocities in both horizontal and vertical direction
using the inverse Stokes number (δ) and a variety of oscillations frequencies (f) and ampli-
tudes (Af ), proved that the increase in fluid amplitude is more effective than the increase of
oscillation frequency.
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7.2. RECOMMENDATIONS

7.2 R

1. Extend the numerical model by wave shape inputs which are more feasible in practice.

e used wave shapes for the non-uniform fluid oscillations (sawtooth) are highly theoreti-
cal. System properties such as friction and inertia cause the sawtooth wave to be much more
continuous, especially at sharp transitions between upward and downward motion or vice
versa. To create more accurate predictions, it is therefore recommended to extend the numer-
ical model by implementing wave shapes which are more feasible in practice. is limits the
transfer function between the input shape factor ki and output shape factor ko (Van Oeveren
and Houghton, 1971).

2. Physical experiments (single particle) should be conducted to validate the numerical model.

To extend the already performed validation, physical experiments using a single particle should
be conducted to validate the numerical model and found average relative particle velocities in
Chapter 6.

3. e numerical model should be extended to calculate the particle response motion for multiple
particles (concentration).

Both hypotheses suggest multiple particles (concentration) to be present in the seling tube,
whereas the model is only capable of predicting the behavior of a single solid spherical particle.
e influences of a concentration instead of a single particle are thoroughly described in Van de
Wetering (2015b). If the model could be extended with the option to add a concentration, even
greater accuracy in predicting migration and seling velocities could be achieved.

4. Phyiscal experiments (multiple particles) should be conducted to entirely prove the hypotheses.
If the physical experiments using a single particle are in good agreement with the numerical
model and average relative particle velocities are found, then the hypotheses should be proven
entirely by adding a concentration.

5. Investigate whether the assumption of the history force being valid over the entire range of particle
Reynolds numbers can be justified.

e history force (Fh) suggested by Abbad and Souhar (2004a) is used in the numerical model,
to account for the particle oscillating back and forth in its own wake. is term however, was
not proven to be accurate for large particle Reynolds numbers. It should therefore be studied
whether the used form of the history force is still valid in the current calculations.
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6. e numerical model could be extended to take both the horizontal oscillations and the vertical
seling behavior into account.

Currently, both the horizontal and vertical particle motions are completely separated. Because
a solid particle tends to sele vertically during the horizontal migration, the rectilinear model
looses its validity. Weinstein (2008) experimentally validated that the model still predicts the
horizontal particle response behavior accurately when the seling velocity is small compared
to the horizontal fluid oscillations Θ ≤ 0.4. To increase accuracy in determining the necessary
migration time during horizontal oscillations, the seling motion of the particle should be
added to the horizontal particle response motion.

7. e numerical model should be improved by additional function handles.

Currently, the model calculates the particle response velocities in every direction during each
calculation. Calculation times are acceptable, but the efficiency could be improved by the
addition of function handles in the model. is enables the user to specify the desired direction
of the particle response velocity, therefore reducing the calculation time.
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APPENDIX A. MATLAB CODE

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % Solving the nonl inear Boussinesq (1885) , Basset (1888) & Oseen (1927) equation %
4 % Copyright R.G. van de Wetering 2015 − 2016 © %
5 % In achievement o f the Master o f Sc ience degree %
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8

9 t i c
10 c l c
11 c l e a r a l l
12 c l o s e a l l
13

14 h = waitbar (0 , ’ Please wait . . . 0% ’ , ’Name ’ , ’ Nonlinear BBO−equation ’ ) ;
15

16 disp ( ’ Copyright R.G. van de Wetering , 2015 − 2016 © ’ )
17 disp ( ’ Al l r i gh t s reserved ’ )
18 disp ( ’ This program i s va l id f o r p a r t i c l e Reynolds numbers in the range 0 − 1500 ’ )
19 disp ( ’ This program i s va l id f o r terminal s e t t l i n g v e l o c i t i e s v_t of max . 0 .08 m/s ’ )
20 disp ( ’___________________________________________________________________________’ )
21

22 %% Osc i l l a t o ry prope r t i e s
23 A_f = 0 .001 ; % Amplitude [m]
24 f = 20; % Temporal frequency [1/ s ]
25 P = 1/ f ; % Period [ s ]
26 w = f *2* pi ; % Angular frequency [ rad/ s ]
27 ki = 1 . 0 5 ; % Shape f a c t o r 1.05−21 [− ]
28 c = 1 : 1 : 4 0 ; % Harmonics in Fourier s e r i e s (n) [− ]
29

30 %% Physica l p rope r t i e s
31 T = 20; % Temperature [ Ce lc ius ]
32 g = 9 . 81 ; % Grav i tat iona l a c c e l e r a t i on [m/s ^2]
33

34 %% Par t i c l e geometry and prope r t i e s
35 r = 50E−6; % Par t i c l e rad ius [m]
36 d = 2* r ; % Par t i c l e diameter [m]
37 Vp = 4/3* pi * r ^3; % Par t i c l e volume [m^3]
38 rho_p = 2650; % Par t i ca l dens i ty [ kg/m^3]
39 mp = Vp*rho_p ; % Par t i c l e mass [ kg ]
40 c1 = 18; % Coe f f i c i e n t Ferguson & Church (2004) [− ]
41 c2 = 0 . 44 ; % Ferguson & Church ( sphe r i c a l ) [− ]
42

43 waitbar (10/100 ,h , ’ Please wait . . . 10% ’ ) % Update waitbar
44 %% Calcu lat ing t h e o r e t i c a l terminal s e t t l i n g ve l o c i t y in stagnant water
45

46 % Density as funct ion o f temperature (Matousek , 2004) [ kg/m^3]
47 rho_f = 999.7−0.10512*(T−10)−0.005121*(T−10)^2+0.00001329*(T−10)^3;
48

49 % Viscos i ty as funct ion o f temperature (van Rhee , 2002)
50 nu_f = (40E−6)/(20+T) ; % Kinematic v i s c o s i t y [m^2/ s ]
51 mu_f = nu_f*rho_f ; % Dynamic v i s c o s i t y [Pa s ]
52

53 % Relat ive dens i ty [− ]
54 Delta = (rho_p−rho_f )/ rho_f ;
55

56 % Terminal s e t t l i n g v e l o c i t y vt [m/s ]
57 vp = Delta*g*d^2/( c1*nu_f+sqr t (0 .75* c2*Delta*g*d^3 ) ) ; % F&G (2004)
58 vs = (g*d^2*(rho_p−rho_f/rho_f ) )/ ( nu_f *18) ; % Stokes (1851)
59
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60 % Inverse Stokes number or the penetrat ion depth of v o r t i c i t y
61 de l ta = sqr t ((2*nu_f )/( r ^2*w) ) ;
62

63 % Timescales
64 tau_v = ( r ^2)/nu_f ; % Di f f u s i v e or v i scous t imesca l e [− ]
65 f_v = 9/w; % Flow time s c a l e (Coimbra (2004) 9=sphere [− ]
66

67 %% In t i a l cond i t ions f o r the ODE45 so l v e r
68

69 % I n i t i a l time cond i t ions [ s ]
70 t0 = 0 ; % Start ing time so l v e r
71 dt = 1/5000; % Time step RK so lv e r
72 tmax = 1 ; % Total time
73 t = t0 : dt : tmax ; % Timespan
74

75 % I n i t i a l v e l o c i t y cond i t ions [m/s ]
76 v0 = 0 ; % Ver t i ca l s i nu so i da l o s c i l l a t i n g v e l o c i t y
77 vt0 = 0 ; % Ver t i ca l stagnant s e t t l i n g v e l o c i t y
78 vw0 = 0; % Ver t i ca l sawtooth o s c i l l a t i n g v e l o c i t y
79 u0 = 0 ; % Horizonta l s i nu so i da l o s c i l l a t i n g v e l o c i t y
80 uw0 = 0 ; % Horizonta l sawtooth o s c i l l a t i n g v e l o c i t y
81

82 % Fluid displacements , v e l o c i t i e s and a c c e l e r a t i on s at t=0 [m] , [m/s ] or [m/s2 ]
83 swf ( c , 1 ) = 0 ; % Fi r s t column sawtooth displacement Fourier
84 Sw(1) = (−2*A_f*w/pi )*(−1)*( cos (w*t ( 1 ) ) ) ; % F i r s t entry sawtooth ve l o c i t y Fourier
85 dSw(1) = 0 ; % Fi r s t entry sawtooth ac c e l e r a t i on Fourier
86 dSwv( c ,1)= 0 ; % Fi r s t column acc e l e r a t i on Fourier s e r i e s
87

88 %% Fluid displacement , v e l o c i t y and ac c e l e r a t i on f o r s i nu so i da l and sawtooth
89

90 % Sinuso ida l o s c i l l a t i o n s
91 s = A_f.* s in (w.* t ) ; % Fluid displacement [m]
92 S = A_f*w.* cos (w.* t ) ; % Fluid v e l o c i t y [m/s ]
93 dS = −A_f*w^2.* s in (w.* t ) ; % Fluid a c c e l e r a t i on [m/s ^2]
94

95 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
96 % Sawtooth displacement using Fourier S e r i e s
97 i f k i == 1;
98 f o r n = c ;
99 f o r j =1: c e i l ( tmax/dt ) ;

100 % Update timestep
101 t ( j+1) = t ( j )+dt ;
102 % Fourier s e r i e s sawtooth wave i f k i = 1
103 swf (n , j+1) = ((−2*A_f)/( pi *n))*((−1)^n)*( s in (n*w*t ( j +1))) ;
104 end
105 end
106 e l s e
107 f o r n = c ;
108 f o r j =1: c e i l ( tmax/dt )
109 % Update timestep
110 t ( j+1) = t ( j )+dt ;
111 % Fourier s e r i e s t r i a n g l e wave i f k i =/= 1
112 swf (n , j+1) = (A_f)*(((−2*((−1)^n)*( k i ^ 2 ) ) / . . .
113 ( ( n^2)*( ki −1)*( pi ^2)))* s in ( (n*( ki −1)*pi )/ k i )* s in (n*w*t ( j +1))) ;
114 end
115 end
116 end
117

118 % Summation of a l l rows to f ind the Fourier curve
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119 swx = sum( swf , 1 ) ;
120

121 % Standard sawtooth wave in MATLAB
122 sw = A_f*sawtooth (w.* t+(pi / k i ) ,1/ k i ) ;
123

124 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
125 % Fir s t de r i va t i v e to f ind the v e l o c i t y wave from previous Fourier s e r i e s
126 i f k i == 1 ;
127 % Create a non−zero f i r s t column with ca l cu l a t ed values
128 f o r n = c
129 Swv(n , 1 ) = (−2*A_f*w/pi )*(((−1)^n)*( cos (w*t (1)*n ) ) ) ;
130 end
131 % F i l l the r e s t o f the matrix
132 f o r n = c ;
133 f o r j =1: c e i l ( tmax/dt )
134 % Update timestep
135 t ( j+1) = t ( j )+dt ;
136 % Fourier s e r i e s wave i f k i == 1
137 Swv(n , j+1) = (−2*A_f*w/pi )*(((−1)^n)*( cos (w*t ( j +1)*n ) ) ) ;
138 end
139 end
140 e l s e
141 % Create a non−zero f i r s t column with ca l cu l a t ed values
142 f o r n = c ;
143 Swv(n , 1 ) = (A_f*n*w)*(((−2*((−1)^n)*( k i ^ 2 ) ) / . . .
144 ( ( n^2)*( ki −1)*( pi ^2)))* s in ( (n*( ki −1)*pi )/ k i )* cos (n*w*t ( 1 ) ) ) ;
145 end
146 f o r n = c ;
147 f o r j =1: c e i l ( tmax/dt )
148 % Update timestep
149 t ( j+1) = t ( j )+dt ;
150 % Fourier s e r i e s wave i f k i =/= 1
151 Swv(n , j+1) = (A_f*n*w)*(((−2*((−1)^n)*( k i ^ 2 ) ) / . . .
152 ( ( n^2)*( ki −1)*( pi ^2)))* s in ( (n*( ki −1)*pi )/ k i )* cos (n*w*t ( j +1))) ;
153 end
154 end
155 end
156

157 % Summation of a l l rows to f ind the Fourier curve
158 Sw = sum(Swv , 1 ) ;
159

160 % Using standard MATLAB command to f ind the de r i va t i v e
161 Sw_mat = d i f f ( swx ) . / dt ;
162

163 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
164 % Second de r i va t i v e to f ind ac c e l e r a t i on from previous Fourier s e r i e s
165 i f k i == 1 ;
166 f o r n = c ;
167 f o r j =1: c e i l ( tmax/dt )
168 % Update timestep
169 t ( j+1) = t ( j )+dt ;
170 % Fourier s e r i e s wave i f k i == 1
171 dSwv(n , j+1) = (−2*A_f*n*w^2/ pi )*(((−1)^n)*( s in (w*t ( j +1)*n ) ) ) ;
172 end
173 end
174 e l s e
175 f o r n = c ;
176 f o r j =1: c e i l ( tmax/dt )
177 % Update timestep
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178 t ( j+1) = t ( j )+dt ;
179 % Fourier s e r i e s wave i f k i =/= 1
180 dSwv(n , j+1) = (−A_f*n^2*w^2)*(((−2*((−1)^n)*( k i ^ 2 ) ) / . . .
181 ( ( n^2)*( ki −1)*( pi ^2)))* s in ( (n*( ki −1)*pi )/ k i )* s in (n*w*t ( j +1))) ;
182 end
183 end
184 end
185 % Summation of a l l rows to f ind the Fourier curve
186 dSw= sum(dSwv , 1 ) ;
187

188 % Using standard MATLAB command to f ind the de r i va t i v e
189 dSw_mat = d i f f (Sw_mat) . / dt ;
190

191 waitbar (20/100 ,h , ’ Please wait . . . 20% ’ ) % Update waitbar
192 %% Osc i l l a t i n g p a r t i c l e v e l o c i t y using po t en t i a l f low theory ( inv i s c i d , i r r o t a t i o n a l ) :
193

194 % Vert i ca l d i r e c t i on s i nu so i da l and sawtooth
195 v_pot = (3 .*S)./(1+2*( rho_p/rho_f ) ) + (2*g*( rho_f−rho_p)/( rho_f+2*rho_p ) ) ;
196 vw_pot = (3 .*Sw)./(1+2*( rho_p/rho_f ) ) + (2*g*( rho_f−rho_p)/( rho_f+2*rho_p ) ) ;
197

198 % Horizontal d i r e c t i on s i nu so i da l and sawtooth
199 u_pot = (3 .*S)./(1+2*( rho_p/rho_f ) ) ;
200 uw_pot = (3 .*Sw)./(1+2*( rho_p/rho_f ) ) ;
201

202 % Inv i s c i d decoupl ing behavior as funct ion of dens i ty r a t i o
203 decoup = xl s read ( ’ Decoupling_beta . x l sx ’ , ’ Decoupling ’ , ’B4 : E48 ’ ) ;
204

205 %% Use the bu i l t−in ODE45 so l v e r to so lve the nonl inear BBO equation
206

207 % Tolerance s e t t i n g s
208 r e l t o l = 1E−7;
209 absto l = 1E−9;
210 opt ions = odeset ( ’ RelTol ’ , r e l t o l , ’AbsTol ’ , abs to l ) ;
211

212 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
213 % Solve bbo−equation f o r v e r t i c a l d i r e c t i on ( terminal )
214 [ t , vt_ode45 ] = ode45 (@( t , vt_ode45 ) bboequation_vt ( t , vt_ode45 ,mu_f , rho_f , nu_f , rho_p ,Vp . . .
215 , r , d , delta , tau_v , g ) , [ t0 : dt : tmax ] , vt0 , opt ions ) ;
216 Re_vt_ode45 = ( abs ( vt_ode45 ’ ) . * d ) . / nu_f ; % Calculate p a r t i c l e Reynolds number
217

218 % Calcu lat ing the co r r e c t i on f a c t o r f o r the Stokes Drag Force ( C l i f t et a l . , (1978))
219 f o r k = 1 : 1 : length (Re_vt_ode45 ) ;
220 f o r i = Re_vt_ode45(k ) ;
221 i f i == 0 ; %Re=0
222 phi_vt_ode45 (k) = 1 ;
223 e l s e i f ( i >0) && ( i <=0.01); %0<Re<=0.01
224 phi_vt_ode45 (k) = 1+(3/16)* i ;
225 e l s e i f ( i >0.01) && ( i <=20); %0.01<Re<20
226 phi_vt_ode45 (k) = 1+0.1315* i ^(0.82−0.05*( log10 ( i ) ) ) ;
227 e l s e i f ( i >20) && ( i <=260); %20<Re<260
228 phi_vt_ode45 (k) = 1+0.1935* i ^ (0 . 6305 ) ;
229 e l s e i f ( i >260) && ( i <=1500); %260<Re<1500
230 phi_vt_ode45 (k) = 1.8335*( i )*10^(−1.1242*( log10 ( i ))+0.1558*( log10 ( i ) ) ^ 2 ) ;
231 e l s e
232 phi_vt_ode45 (k) = 1.8335*( i )*10^(−1.1242*( log10 ( i ))+0.1558*( log10 ( i ) ) ^ 2 ) ;
233 ( disp ( ’WARNING Re_vt_ode45 i s too high , equation no longer va l id ’ ) ) ;
234 end
235 end
236 end
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237

238 % Calcu lat ing p a r t i c l e a c c e l e r a t i on using the BBO−equation
239 dvt_ode45dt = . . .
240 + (Vp*g*( rho_f−rho_p ) )/ (Vp*rho_p+3*pi *mu_f* r* de l ta *tau_v+(2/3)* pi * r ^3*rho_f ) . . .
241 − (6* pi * r *mu_f.* phi_vt_ode45 .* vt_ode45 ’ ) . / . . .
242 (Vp*rho_p+3*pi *mu_f* r* de l ta *tau_v+(2/3)* pi * r ^3*rho_f ) ;
243

244 % Validate dvt_ode45dt using bu i l t−in Matlab d i f f ( ) funct ion
245 dvtdt_mat = d i f f ( vt_ode45 ) . / dt ;
246

247 waitbar (30/100 ,h , ’ Please wait . . . 30% ’ ) % Update waitbar
248

249 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
250 % Solve bbo−equation f o r v e r t i c a l d i r e c t i on ( s i nu so i da l )
251 [ t , v_ode45 ] = ode45 (@( t , v_ode45 ) bboequation_v ( t , v_ode45 ,A_f , f ,mu_f , rho_f , nu_f , rho_p , . . .
252 Vp, r , d , delta , tau_v , g ) , [ t0 : dt : tmax ] , v0 , opt ions ) ;
253 vm_ode45 = mean(v_ode45 ’ ) . * ones (1 , length ( t ) ) ; % Calculate mean o s c i l l a t i n g v e l o c i t y
254 Re_v_ode45 = ( abs (S−v_ode45 ’ ) . * d ) . / nu_f ; % Calculate p a r t i c l e Reynolds number
255

256 % Calcu lat ing the co r r e c t i on f a c t o r f o r the Stokes Drag Force ( C l i f t et a l . , (1978))
257 f o r k = 1 : 1 : length (Re_v_ode45 ) ;
258 f o r i = Re_v_ode45(k ) ;
259 i f i == 0 ; %Re=0
260 phi_v_ode45 (k) = 1 ;
261 e l s e i f ( i >0) && ( i <=0.01); %0<Re<=0.01
262 phi_v_ode45 (k) = 1+(3/16)* i ;
263 e l s e i f ( i >0.01) && ( i <=20); %0.01<Re<20
264 phi_v_ode45 (k) = 1+0.1315* i ^(0.82−0.05*( log10 ( i ) ) ) ;
265 e l s e i f ( i >20) && ( i <=260); %20<Re<260
266 phi_v_ode45 (k) = 1+0.1935* i ^ (0 . 6305 ) ;
267 e l s e i f ( i >260) && ( i <=1500); %260<Re<1500
268 phi_v_ode45 (k) = 1.8335*( i )*10^(−1.1242*( log10 ( i ))+0.1558*( log10 ( i ) ) ^ 2 ) ;
269 e l s e
270 phi_v_ode45 (k) = 1.8335*( i )*10^(−1.1242*( log10 ( i ))+0.1558*( log10 ( i ) ) ^ 2 ) ;
271 ( disp ( ’WARNING Re_v_ode45 i s too high , equation no longer va l id ’ ) ) ;
272 end
273 end
274 end
275

276 % Calcu lat ing p a r t i c l e a c c e l e r a t i on using the BBO−equation
277 dv_ode45dt = . . .
278 + (Vp*g*( rho_f−rho_p ) )/ (Vp*rho_p+3*pi *mu_f* r* de l ta *tau_v+(2/3)* pi * r ^3*rho_f ) . . .
279 + (6* pi * r*mu_f.* phi_v_ode45 . * ( S−v_ode45 ’ ) ) . / . . .
280 (Vp*rho_p+3*pi *mu_f* r* de l ta *tau_v+(2/3)* pi * r ^3*rho_f ) . . .
281 + (6* pi * r*mu_f . * ( ( ( S−v_ode45 ’ ) . / de l ta )+0.5* de l ta *tau_v .*dS ) ) . / . . .
282 (Vp*rho_p+3*pi *mu_f* r* de l ta *tau_v+(2/3)* pi * r ^3*rho_f ) . . .
283 + (2* pi * r ^3*rho_f .*dS ) . / (Vp*rho_p+3*pi *mu_f* r* de l ta *tau_v+(2/3)* pi * r ^3*rho_f ) ;
284

285 % Validate dv_ode45dt using bu i l t−in Matlab d i f f ( ) funct ion
286 dvdt_mat = d i f f ( v_ode45 ) . / dt ;
287

288 waitbar (40/100 ,h , ’ Please wait . . . 40% ’ ) % Update waitbar
289

290 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
291 % Solve bbo−equation f o r v e r t i c a l d i r e c t i on ( sawtooth )
292 [ t , vw_ode45 ] = ode45 (@( t , vw_ode45) bboequation_vw( t , vw_ode45 ,A_f , f ,mu_f , rho_f , nu_f , rho_p , . . .
293 Vp, r , d , delta , tau_v , g , ki , c , tmax , dt ) , [ t0 : dt : tmax ] , vw0 , opt ions ) ;
294 vwm_ode45 = mean(vw_ode45 ’ ) . * ones (1 , length ( t ) ) ; % Calculate mean o s c i l l a t i n g v e l o c i t y
295 Re_vw_ode45 = ( abs (Sw−vw_ode45 ’ ) . * d ) . / nu_f ; % Calculate p a r t i c l e Reynolds number
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296

297 % Calcu lat ing the co r r e c t i on f a c t o r f o r the Stokes Drag Force ( C l i f t et a l . , (1978))
298 f o r k = 1 : 1 : length (Re_vw_ode45 ) ;
299 f o r i = Re_vw_ode45(k ) ;
300 i f i == 0 ; %Re=0
301 phi_vw_ode45(k) = 1 ;
302 e l s e i f ( i >0) && ( i <=0.01); %0<Re<=0.01
303 phi_vw_ode45(k) = 1+(3/16)* i ;
304 e l s e i f ( i >0.01) && ( i <=20); %0.01<Re<20
305 phi_vw_ode45(k) = 1+0.1315* i ^(0.82−0.05*( log10 ( i ) ) ) ;
306 e l s e i f ( i >20) && ( i <=260); %20<Re<260
307 phi_vw_ode45(k) = 1+0.1935* i ^ (0 . 6305 ) ;
308 e l s e i f ( i >260) && ( i <=1500); %260<Re<1500
309 phi_vw_ode45(k) = 1.8335*( i )*10^(−1.1242*( log10 ( i ))+0.1558*( log10 ( i ) ) ^ 2 ) ;
310 e l s e
311 phi_vw_ode45(k) = 1.8335*( i )*10^(−1.1242*( log10 ( i ))+0.1558*( log10 ( i ) ) ^ 2 ) ;
312 ( disp ( ’WARNING Re_vw_ode45 i s too high , equation no longer va l id ’ ) ) ;
313 end
314 end
315 end
316

317 % Calcu lat ing p a r t i c l e a c c e l e r a t i on using the BBO−equation
318 dvw_ode45dt = . . .
319 + (Vp*g*( rho_f−rho_p ) )/ (Vp*rho_p+3*pi *mu_f* r* de l ta *tau_v+(2/3)* pi * r ^3*rho_f ) . . .
320 + (6* pi * r*mu_f.* phi_vw_ode45 . * (Sw−vw_ode45 ’ ) ) . / . . .
321 (Vp*rho_p+3*pi *mu_f* r* de l ta *tau_v+(2/3)* pi * r ^3*rho_f ) . . .
322 + (6* pi * r*mu_f . * ( ( (Sw−vw_ode45 ’ ) . / de l ta )+0.5* de l ta *tau_v .*dSw ) ) . / . . .
323 (Vp*rho_p+3*pi *mu_f* r* de l ta *tau_v+(2/3)* pi * r ^3*rho_f ) . . .
324 + (2* pi * r ^3*rho_f .*dSw) . / (Vp*rho_p+3*pi *mu_f* r* de l ta *tau_v+(2/3)* pi * r ^3*rho_f ) ;
325

326 % Validate dvw_ode45dt using bu i l t−in Matlab d i f f ( ) funct ion
327 dvwdt_mat = d i f f (vw_ode45 ) . / dt ;
328

329 waitbar (50/100 ,h , ’ Please wait . . . 50% ’ ) % Update waitbar
330

331 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
332 % Solve bbo−equation f o r hor i zonta l d i r e c t i on ( s i nu so i da l )
333 [ t , u_ode45 ] = ode45 (@( t , u_ode45) bboequation_u ( t , u_ode45 ,A_f , f ,mu_f , rho_f , nu_f , rho_p , . . .
334 Vp, r , d , delta , tau_v , g ) , [ t0 : dt : tmax ] , u0 , opt ions ) ;
335 um_ode45 = mean(u_ode45 ’ ) . * ones (1 , length ( t ) ) ; % Calculate mean o s c i l l a t i n g v e l o c i t y
336 Re_u_ode45 = ( abs (S−u_ode45 ’ ) . * d ) . / nu_f ; % Calculate p a r t i c l e Reynolds number
337

338 % Calcu lat ing the co r r e c t i on f a c t o r f o r the Stokes Drag Force ( C l i f t et a l . , (1978))
339 f o r k = 1 : 1 : length (Re_u_ode45 ) ;
340 f o r i = Re_u_ode45(k ) ;
341 i f i == 0 ; %Re=0
342 phi_u_ode45 (k) = 1 ;
343 e l s e i f ( i >0) && ( i <=0.01); %0<Re<=0.01
344 phi_u_ode45 (k) = 1+(3/16)* i ;
345 e l s e i f ( i >0.01) && ( i <=20); %0.01<Re<20
346 phi_u_ode45 (k) = 1+0.1315* i ^(0.82−0.05*( log10 ( i ) ) ) ;
347 e l s e i f ( i >20) && ( i <=260); %20<Re<260
348 phi_u_ode45 (k) = 1+0.1935* i ^ (0 . 6305 ) ;
349 e l s e i f ( i >260) && ( i <=1500); %260<Re<1500
350 phi_u_ode45 (k) = 1.8335*( i )*10^(−1.1242*( log10 ( i ))+0.1558*( log10 ( i ) ) ^ 2 ) ;
351 e l s e
352 phi_u_ode45 (k) = 1.8335*( i )*10^(−1.1242*( log10 ( i ))+0.1558*( log10 ( i ) ) ^ 2 ) ;
353 ( disp ( ’WARNING Re_u_ode45 i s too high , equation no longer va l id ’ ) ) ;
354 end
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355 end
356 end
357

358 % Calcu lat ing p a r t i c l e a c c e l e r a t i on using the BBO−equation
359 du_ode45dt = . . .
360 + (6* pi * r*mu_f.* phi_u_ode45 . * ( S−u_ode45 ’ ) ) . / . . .
361 (Vp*rho_p+3*pi *mu_f* r* de l ta *tau_v+(2/3)* pi * r ^3*rho_f ) . . .
362 + (6* pi * r*mu_f . * ( ( ( S−u_ode45 ’ ) . / de l ta )+0.5* de l ta *tau_v .*dS ) ) . / . . .
363 (Vp*rho_p+3*pi *mu_f* r* de l ta *tau_v+(2/3)* pi * r ^3*rho_f ) . . .
364 + (2* pi * r ^3*rho_f .*dS ) . / (Vp*rho_p+3*pi *mu_f* r* de l ta *tau_v+(2/3)* pi * r ^3*rho_f ) ;
365

366 % Validate du_ode45dt using bu i l t−in Matlab d i f f ( ) funct ion
367 dudt_mat = d i f f (u_ode45 ) . / dt ;
368

369 waitbar (60/100 ,h , ’ Please wait . . . 60% ’ ) % Update waitbar
370

371 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
372 % Solve bbo−equation f o r hor i zonta l d i r e c t i on ( sawtooth )
373 [ t , uw_ode45 ] = ode45 (@( t , uw_ode45) bboequation_uw( t , uw_ode45 ,A_f , f ,mu_f , rho_f , nu_f , rho_p , . . .
374 Vp, r , d , delta , tau_v , g , ki , c , tmax , dt ) , [ t0 : dt : tmax ] , uw0 , opt ions ) ;
375 uwm_ode45 = mean(uw_ode45 ’ ) . * ones (1 , length ( t ) ) ; % Calculate mean o s c i l l a t i n g v e l o c i t y
376 Re_uw_ode45 = ( abs (Sw−uw_ode45 ’ ) . * d ) . / nu_f ; % Calculate p a r t i c l e Reynolds number
377

378 % Calcu lat ing the co r r e c t i on f a c t o r f o r the Stokes Drag Force ( C l i f t et a l . , (1978))
379 f o r k = 1 : 1 : length (Re_uw_ode45 ) ;
380 f o r i = Re_uw_ode45(k ) ;
381 i f i == 0 ; %Re=0
382 phi_uw_ode45(k) = 1 ;
383 e l s e i f ( i >0) && ( i <=0.01); %0<Re<=0.01
384 phi_uw_ode45(k) = 1+(3/16)* i ;
385 e l s e i f ( i >0.01) && ( i <=20); %0.01<Re<20
386 phi_uw_ode45(k) = 1+0.1315* i ^(0.82−0.05*( log10 ( i ) ) ) ;
387 e l s e i f ( i >20) && ( i <=260); %20<Re<260
388 phi_uw_ode45(k) = 1+0.1935* i ^ (0 . 6305 ) ;
389 e l s e i f ( i >260) && ( i <=1500); %260<Re<1500
390 phi_uw_ode45(k) = 1.8335*( i )*10^(−1.1242*( log10 ( i ))+0.1558*( log10 ( i ) ) ^ 2 ) ;
391 e l s e
392 phi_uw_ode45(k) = 1.8335*( i )*10^(−1.1242*( log10 ( i ))+0.1558*( log10 ( i ) ) ^ 2 ) ;
393 ( disp ( ’WARNING Re_uw_ode45 i s too high , equation no longer va l id ’ ) ) ;
394 end
395 end
396 end
397

398 % Calcu lat ing p a r t i c l e a c c e l e r a t i on using the BBO−equation
399 duw_ode45dt = . . .
400 + (6* pi * r*mu_f.* phi_uw_ode45 . * (Sw−uw_ode45 ’ ) ) . / . . .
401 (Vp*rho_p+3*pi *mu_f* r* de l ta *tau_v+(2/3)* pi * r ^3*rho_f ) . . .
402 + (6* pi * r*mu_f . * ( ( (Sw−uw_ode45 ’ ) . / de l ta )+0.5* de l ta *tau_v .*dSw ) ) . / . . .
403 (Vp*rho_p+3*pi *mu_f* r* de l ta *tau_v+(2/3)* pi * r ^3*rho_f ) . . .
404 + (2* pi * r ^3*rho_f .*dSw) . / (Vp*rho_p+3*pi *mu_f* r* de l ta *tau_v+(2/3)* pi * r ^3*rho_f ) ;
405

406 % Validate duw_ode45dt using Matlab ’ s bu i l t in d i f f ( ) funct ion
407 duwdt_mat = d i f f (uw_ode45 ) . / dt ;
408

409 waitbar (70/100 ,h , ’ Please wait . . . 70% ’ ) % Update waitbar
410

411 %% Analyzing the d i f f e r e n t f o r c e terms in the nonl inear BBO equation
412

413 % Terminal s e t t l i n g v e l o c i t y non−o s c i l l a t i n g f l u i d
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414 Fb_vt_ode45 = Vp*g*( rho_f−rho_p ) . * ones (1 , length ( t ) ) ;
415 Fd_vt_ode45 = −(6*pi * r *mu_f.* phi_vt_ode45 .* vt_ode45 ’ ) ;
416 Fa_vt_ode45 = −(2/3)* pi * r ^3*rho_f .* dvt_ode45dt ;
417

418 Fres_vt_ode45 = Fb_vt_ode45 + Fd_vt_ode45 + Fa_vt_ode45 ;
419

420 % Sinuso ida l waveform v e r t i c a l l y o s c i l l a t i n g
421 Fb_v_ode45 = Vp*g*( rho_f−rho_p ) . * ones (1 , length ( t ) ) ;
422 Fd_v_ode45 = (6* pi * r*mu_f.* phi_v_ode45 . * ( S−v_ode45 ’ ) ) ;
423 Fh_v_ode45 = (6* pi * r*mu_f . * ( ( ( S−v_ode45 ’ ) . / . . .
424 de l ta )+0.5* de l ta *tau_v . * ( dS−dv_ode45dt ) ) ) ;
425 Fa_v_ode45 = (2/3* pi * r ^3*rho_f . * ( dS−dv_ode45dt ) ) ;
426 Fp_v_ode45 = (4/3* pi * r ^3*rho_f .* dS ) ;
427 Fd_vm_ode45 = mean(Fd_v_ode45 ) . * ones (1 , length ( t ) ) ;
428 Fh_vm_ode45 = mean(Fh_v_ode45 ) . * ones (1 , length ( t ) ) ;
429 Fa_vm_ode45 = mean(Fa_v_ode45 ) . * ones (1 , length ( t ) ) ;
430 Fp_vm_ode45 = mean(Fp_v_ode45 ) . * ones (1 , length ( t ) ) ;
431

432 Fres_v_ode45 = Fb_v_ode45 + Fd_v_ode45 + Fh_v_ode45 + . . .
433 Fa_v_ode45 + Fp_v_ode45 ;
434 Fres_vm_ode45 = Fb_v_ode45 + Fd_vm_ode45 + Fh_vm_ode45 + . . .
435 Fa_vm_ode45 + Fp_vm_ode45 ;
436

437 % Sawtooth waveform v e r t i c a l l y o s c i l l a t i n g
438 Fb_vw_ode45 = Vp*g*( rho_f−rho_p ) . * ones (1 , length ( t ) ) ;
439 Fd_vw_ode45 = (6* pi * r*mu_f.* phi_vw_ode45 . * (Sw−vw_ode45 ’ ) ) ;
440 Fh_vw_ode45 = (6* pi * r*mu_f . * ( ( (Sw−vw_ode45 ’ ) . / . . .
441 de l ta )+0.5* de l ta *tau_v . * (dSw−dvw_ode45dt ) ) ) ;
442 Fa_vw_ode45 = (2/3* pi * r ^3*rho_f . * (dSw−dvw_ode45dt ) ) ;
443 Fp_vw_ode45 = (4/3* pi * r ^3*rho_f .*dSw) ;
444 Fd_vwm_ode45 = mean(Fd_vw_ode45 ) . * ones (1 , length ( t ) ) ;
445 Fh_vwm_ode45 = mean(Fh_vw_ode45 ) . * ones (1 , length ( t ) ) ;
446 Fa_vwm_ode45 = mean(Fa_vw_ode45 ) . * ones (1 , length ( t ) ) ;
447 Fp_vwm_ode45 = mean(Fp_vw_ode45 ) . * ones (1 , length ( t ) ) ;
448

449 Fres_vw_ode45 = Fb_vw_ode45 + Fd_vw_ode45 + Fh_vw_ode45 + . . .
450 Fa_vw_ode45 + Fp_vw_ode45 ;
451 Fres_vwm_ode45= Fb_vw_ode45 + Fd_vwm_ode45 + Fh_vwm_ode45 + . . .
452 Fa_vwm_ode45 + Fp_vwm_ode45 ;
453

454 % Sinuso ida l waveform hor i z on ta l l y o s c i l l a t i n g
455 Fd_u_ode45 = (6* pi * r*mu_f.* phi_u_ode45 . * ( S−u_ode45 ’ ) ) ;
456 Fh_u_ode45 = (6* pi * r*mu_f . * ( ( ( S−u_ode45 ’ ) . / . . .
457 de l ta )+0.5* de l ta *tau_v . * ( dS−du_ode45dt ) ) ) ;
458 Fa_u_ode45 = (2/3* pi * r ^3*rho_f . * ( dS−du_ode45dt ) ) ;
459 Fp_u_ode45 = (4/3* pi * r ^3*rho_f .* dS ) ;
460 Fd_um_ode45 = mean(Fd_u_ode45 ) . * ones (1 , length ( t ) ) ;
461 Fh_um_ode45 = mean(Fh_u_ode45 ) . * ones (1 , length ( t ) ) ;
462 Fa_um_ode45 = mean(Fa_u_ode45 ) . * ones (1 , length ( t ) ) ;
463 Fp_um_ode45 = mean(Fp_u_ode45 ) . * ones (1 , length ( t ) ) ;
464

465 Fres_u_ode45 = Fd_u_ode45 + Fh_u_ode45 + Fa_u_ode45 + Fp_u_ode45 ;
466 Fres_um_ode45 = Fd_um_ode45 + Fh_um_ode45 + Fa_um_ode45 + Fp_um_ode45 ;
467

468 % Sawtooth waveform hor i z on ta l l y o s c i l l a t i n g
469 Fd_uw_ode45 = (6* pi * r*mu_f.* phi_uw_ode45 . * (Sw−uw_ode45 ’ ) ) ;
470 Fh_uw_ode45 = (6* pi * r*mu_f . * ( ( (Sw−uw_ode45 ’ ) . / . . .
471 de l ta )+0.5* de l ta *tau_v . * (dSw−duw_ode45dt ) ) ) ;
472 Fa_uw_ode45 = (2/3* pi * r ^3*rho_f . * (dSw−duw_ode45dt ) ) ;

MSc esis 105 March 18, 2016



APPENDIX A. MATLAB CODE

473 Fp_uw_ode45 = (4/3* pi * r ^3*rho_f .*dSw) ;
474 Fd_uwm_ode45 = mean(Fd_uw_ode45 ) . * ones (1 , length ( t ) ) ;
475 Fh_uwm_ode45 = mean(Fh_uw_ode45 ) . * ones (1 , length ( t ) ) ;
476 Fa_uwm_ode45 = mean(Fa_uw_ode45 ) . * ones (1 , length ( t ) ) ;
477 Fp_uwm_ode45 = mean(Fp_uw_ode45 ) . * ones (1 , length ( t ) ) ;
478

479 Fres_uw_ode45 = Fd_uw_ode45 + Fh_uw_ode45 + Fa_uw_ode45 + Fp_uw_ode45 ;
480 Fres_uwm_ode45= Fd_uwm_ode45 + Fh_uwm_ode45 + Fa_uwm_ode45 + Fp_uwm_ode45 ;
481

482 waitbar (80/100 ,h , ’ Please wait . . . 80% ’ ) % Update waitbar
483 %% Calculated ve l o c i t y integrated to f ind pa r t i c l e displacement as funct ion o f time
484

485 % Vert i ca l
486 vy = cumtrapz ( t , v_ode45 . *1000 ) ; % Par t i c l e displacement s i nu so i da l [mm]
487 vty = cumtrapz ( t , vt_ode45 . *1000 ) ; % Par t i c l e displacement terminal [mm]
488 vwy = cumtrapz ( t , vw_ode45 . *1000 ) ; % Par t i c l e displacement sawtooth [mm]
489 vmy = cumtrapz ( t , vm_ode45 . *1000 ) ; % Par t i c l e displacement s i nu so i da l mean [mm]
490 vwmy = cumtrapz ( t , vwm_ode45 . *1000 ) ; % Par t i c l e displacement sawtooth mean [mm]
491

492 % Horizonta l
493 ux = cumtrapz ( t , u_ode45 . *1000 ) ; % Par t i c l e displacement s i nu so i da l [mm]
494 umx = cumtrapz ( t , um_ode45 . *1000 ) ; % Par t i c l e displacement s i nu so i da l mean [mm]
495 uwx = cumtrapz ( t , uw_ode45 . *1000 ) ; % Par t i c l e displacement sawtooth [mm]
496 uwmx = cumtrapz ( t , uwm_ode45 . *1000 ) ; % Par t i c l e displacement sawtooth mean [mm]
497

498 % Fluid s i nu so i da l
499 S_int = cumtrapz ( t , S . *1000 ) ; % Integra te to f ind f l u i d displacement [mm]
500

501 waitbar (90/100 ,h , ’ Please wait . . . 90% ’ ) % Update waitbar
502 %% Calculate Dimensionless numbers
503

504 % Stokes number ( Herringe , 1974)
505 Sto = sqrt ( ( nu_f )/(w*d^2 ) ) ;
506

507 % Inverse Stokes number (Weinstein et a l . , 2008)
508 Sto_inv = sqrt ((2*nu_f )/(w*r ^2 ) ) ;
509

510 % Strouhal number v e r t i c a l s inus osc . (Weinstein et a l . , 2008)
511 Str_v = w*r ./ abs (S−v_ode45 ’ ) ;
512

513 % Strouhal number v e r t i c a l sawtooth osc . (Weinstein et a l . , 2008)
514 Str_vw = w*r ./ abs (Sw−vw_ode45 ’ ) ;
515

516 % Strouhal number hor i zonta l s inus osc . (Weinstein et a l . , 2008)
517 Str_u = w*r ./ abs (S−u_ode45 ’ ) ;
518

519 % Strouhal number hor i zonta l sawtooth osc . (Weinstein et a l . , 2008)
520 Str_uw = w*r ./ abs (Sw−uw_ode45 ’ ) ;
521

522 % Veloc i ty r a t i o o s c i l l a t e d s i nu so i da l wave to stagnant
523 b0 = mean(v_ode45 ’ ) / abs ( vt_ode45 (end) ) ;
524

525 % Veloc i ty r a t i o o s c i l l a t e d sawtooth wave to stagnant
526 b1 = mean(vw_ode45 ’ ) / abs ( vt_ode45 (end) ) ;
527

528 % Ratio o f f l u i d a c c e l e r a t i on over g r av i t a t i ona l a c c e l e r a t i on ( Herringe , 1975)
529 Ra = (A_f*w^2)/g ;
530

531 % Density r a t i o (Weinstein et a l . , 2008)
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532 Rd = rho_p/rho_f ;
533

534 % Ratio between d i s tance t r av e l l e d and pa r t i c l e diameter (Weinstein , 2008)
535 Rf = abs ( vt_ode45 (end) )/(2* r*w) ;
536

537 % Dimensionless frequency (Coimbra et a l . , 2004)
538 Om = ( r^2*w)/(9*nu_f ) ;
539

540 %% Calculate phase d i f f e r e n c e and amplitude r a t i o Ap/Af ( decoupl ing )
541

542 % Horizontal
543 [ amp_u_pot , ph_u_pot ] = response_u_pot (S , u_pot , dt , t ) ;
544 [amp_u, ph_u ] = response_u (S , u_ode45 , dt , t ) ;
545 [amp_uw, ph_uw] = response_uw (Sw, uw_ode45 , dt , t ) ;
546

547 % Vert i ca l
548 [amp_v, ph_v ] = response_v (S , v_ode45 , dt , t ) ;
549 [ amp_v_pot , ph_v_pot ] = response_v_pot (S , v_pot , dt , t ) ;
550 [amp_vw, ph_vw] = response_vw (Sw, vw_ode45 , dt , t ) ;
551

552 %% Load experimental va l i da t i on data
553

554 % Data Herringe (1976) [−]
555 herr inge1976 = xl s read ( ’ Val idat ion . x l sx ’ , ’ Herringe (1976) ’ , ’B3 :X31 ’ ) ;
556

557 % Data Herringe (1977) [−]
558 herr inge1977 = xl s read ( ’ Aquaeous_glycerol . x l sx ’ , ’ Herringe (1977) ’ , ’B4 : F34 ’ ) ;
559

560 % Data Takahashi (1992) [−]
561 takahashi1992 = xl s read ( ’ Val idat ion . x l sx ’ , ’ Takahashi (1992) ’ , ’B3 : Z74 ’ ) ;
562

563 %% Check Stokes drag co r r e c t i on f a c t o r phi (Re)
564

565 % Arbitrary p a r t i c l e Reynolds numbers to check phi (Re)
566 Re = 1:1/10 :1500 ;
567

568 % Calcu lat ing the co r r e c t i on f a c t o r f o r the Stokes Drag Force ( C l i f t et a l . , (1978))
569 f o r z = 1 : 1 : length (Re ) ;
570 f o r i = Re( z ) ;
571 i f i == 0 ; %Re=0
572 phi ( z ) = 1 ;
573 e l s e i f ( i >0) && ( i <=0.01); %0<Re<=0.01
574 phi ( z ) = 1+(3/16)* i ;
575 e l s e i f ( i >0.01) && ( i <=20); %0.01<Re<20
576 phi ( z ) = 1+0.1315* i ^(0.82−0.05*( log10 ( i ) ) ) ;
577 e l s e i f ( i >20) && ( i <=260); %20<Re<260
578 phi ( z ) = 1+0.1935* i ^ (0 . 6305 ) ;
579 e l s e i f ( i >260) && ( i <=1500); %260<Re<1500
580 phi ( z ) = 1.8335*( i )*10^(−1.1242*( log10 ( i ) ) + 0.1558*( log10 ( i ) ) ^ 2 ) ;
581 end
582 end
583 end
584

585 waitbar (100/100 ,h , ’ Please wait . . . 100% ’ ) % Update waitbar
586 c l o s e (h) % Close waitbar
587 %% Load Decoupling Ap/Af and Phase Angle as funct ion o f frequency
588

589 % Amplitude r a t i o as funct ion of frequency
590 decoup_freq = xl s read ( ’ Decoupling_frequency . x l sx ’ , ’ diameter ’ , ’B3 :M70 ’ ) ;
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591

592 % Phase angle as funct ion o f frequency
593 phase_freq = xl s read ( ’ Phase_angle_frequency . x l sx ’ , ’ diameter ’ , ’B3 :Q70 ’ ) ;
594

595 %% Load Decoupling Ap/Af and Phase Angle as funct ion of v i s c o s i t y
596

597 % Phase angle as funct ion o f v i s c o s i t y
598 phase_visc = xl s read ( ’ Phase_angle_viscosity . x l sx ’ , ’ v i s c o s i t y ’ , ’B3 :H72 ’ ) ;
599

600 % Decoupling as funct ion o f v i s c o s i t y
601 decoup_visc = xl s read ( ’ Decoupl ing_viscos ity . x l sx ’ , ’ v i s c o s i t y ’ , ’B3 : F73 ’ ) ;
602

603 %% Load migration ve l o c i t y (u & uw) as funct ion of inve r s e Stokes number
604

605 % Horizonta l migration v e l o c i t i e s as funct ion of the inve r s e Stokes number
606 horvel_stokes = xl s read ( ’ Partvel_invStokes_hor ’ , ’ amplitude ’ , ’B3 : L128 ’ ) ;
607

608 toc
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D H (1976)
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rho_s
(kg/m3)

rho_f
(kg/m3)

d (m) r (m) St (-)
St.inverse

(-)
Nu (m^2/s) Ra (-) beta (-) Af (m) w (rad/s) f (Hz) b0 (-) Ap/Af (-)

phase lag
phi (rad)

F&G
(2004) Vt

(m/s)

Model Vt
(m/s)

Model V
(m/s)

Model b0
(-)

Model
Ap/Af (-)

Model
phase lag

(rad)

Model
valid

2960 1222 1,85E-03 9,25E-04 0,256 0,724 9,87E-05 62,10 1,70 3,15E-03 440,12 70 -0,94 0,77 -0,24 -0,0245 -0,0251 -0,0097 -0,40 0,81 -0,19 Y
2960 1138 1,64E-03 8,20E-04 0,122 0,345 7,10E-06 10,10 1,92 3,15E-03 177,39 28 -0,95 0,61 -0,23 -0,1514 -0,1261 -0,0518 -0,34 0,66 -0,22 Y
2960 1145 1,70E-03 8,50E-04 0,129 0,365 8,23E-06 9,38 1,85 3,15E-03 171,05 27 -0,91 - - -0,1464 -0,1222 -0,0508 -0,35 - - Y
2960 1141 1,74E-03 8,70E-04 0,075 0,212 7,49E-06 62,10 1,81 3,15E-03 439,81 70 -0,89 0,56 -0,13 -0,158 -0,1315 -0,0343 -0,22 0,60 -0,19 Y
2960 1148 5,40E-04 2,70E-04 0,419 1,185 8,72E-06 9,38 5,87 3,17E-03 170,38 27 -0,89 0,88 -0,13 -0,0244 -0,0243 -0,0123 -0,50 0,90 -0,15 Y
2960 998 5,00E-04 2,50E-04 0,149 0,421 9,35E-07 9,11 6,30 3,15E-03 168,44 27 -0,85 0,66 -0,29 -0,1071 -0,0892 -0,0378 -0,35 0,70 -0,28 Y
2960 997 5,30E-04 2,65E-04 0,087 0,246 9,17E-07 21,10 2,10 1,11E-03 431,25 69 -0,94 - - -0,1147 -0,0958 -0,0334 -0,29 - - Y
2960 997 5,30E-04 2,65E-04 0,137 0,387 8,73E-07 3,11 2,10 1,11E-03 165,56 26 -0,95 0,62 -0,27 -0,1166 -0,0976 -0,0562 -0,48 0,66 -0,28 Y
2960 997 4,60E-04 2,30E-04 0,078 0,221 8,11E-07 44,30 2,38 1,09E-03 630,04 100 -0,89 0,61 -0,25 -0,1035 -0,0862 -0,0245 -0,24 0,56 -0,24 Y
2960 1138 5,10E-04 2,55E-04 0,214 0,605 7,18E-06 40,80 2,16 1,10E-03 602,77 96 -0,91 0,77 -0,26 -0,0263 -0,026 -0,0086 -0,33 0,77 -0,22 Y
2960 1153 5,20E-04 2,60E-04 0,453 1,281 9,77E-06 3,47 2,11 1,10E-03 176,14 28 -0,89 - - -0,0205 -0,0207 -0,0119 -0,58 - - Y
2960 1142 5,60E-04 2,80E-04 0,242 0,684 7,88E-06 20,50 1,95 1,09E-03 429,14 68 -0,89 0,78 -0,22 -0,0285 -0,0281 -0,0107 -0,38 0,79 -0,21 Y
2960 998 1,77E-03 8,85E-04 0,022 0,062 9,53E-07 129,00 1,81 3,20E-03 628,50 100 -0,86 0,48 -0,11 -0,2947 -0,2893 -0,0609 -0,21 0,47 -0,13 N
2960 998 2,44E-03 1,22E-03 0,016 0,045 9,59E-07 129,00 1,31 3,20E-03 629,21 100 -0,79 0,45 -0,02 -0,3573 -0,362 -0,0836 -0,23 0,46 -0,10 N
2960 1224 1,60E-03 8,00E-04 0,500 1,414 1,14E-04 9,94 1,93 3,09E-03 177,70 28 -0,92 0,91 -0,08 -0,0163 -0,0167 -0,0099 -0,61 0,92 -0,12 Y
7800 1223 1,59E-03 7,95E-04 0,509 1,440 1,03E-04 7,92 1,99 3,16E-03 156,70 25 -1,00 0,69 -0,25 -0,063 -0,0637 -0,0353 -0,56 0,76 -0,36 Y
7800 1222 1,59E-03 7,95E-04 0,299 0,846 9,92E-05 62,10 1,99 3,16E-03 438,79 70 -1,00 0,58 -0,51 -0,0651 -0,0657 -0,0239 -0,37 0,59 -0,45 Y
7800 1223 1,59E-03 7,95E-04 0,494 1,397 1,04E-04 9,24 1,99 3,16E-03 169,26 27 -1,00 0,71 - -0,0624 -0,0632 -0,0341 -0,55 0,75 - Y
7800 1136 1,59E-03 7,95E-04 0,123 0,348 6,77E-06 10,10 1,99 3,16E-03 176,96 28 -1,00 - - -0,3654 -0,3079 -0,1526 -0,42 - - Y
7800 1143 1,56E-03 7,80E-04 0,138 0,390 7,92E-06 9,24 1,99 3,10E-03 170,88 27 -1,00 0,33 -0,57 -0,339 -0,2833 -0,1409 -0,42 0,38 -0,48 Y
7800 1141 1,59E-03 7,95E-04 0,083 0,235 7,54E-06 60,40 1,99 3,16E-03 432,74 69 -0,92 0,31 -0,39 -0,3519 -0,2949 -0,0905 -0,26 0,30 -0,40 Y
7800 997 1,59E-03 7,95E-04 0,024 0,068 9,21E-07 129,00 1,99 3,16E-03 632,42 101 -0,44 0,23 -0,43 -0,538 -0,5457 -0,1367 -0,25 0,21 -0,27 N

11400 998 4,90E-04 2,45E-04 0,153 0,433 9,56E-07 9,38 6,49 3,18E-03 170,10 27 -0,61 0,27 -0,77 -0,3061 -0,2684 -0,1412 -0,46 0,34 -0,70 Y
11400 997 4,90E-04 2,45E-04 0,094 0,266 9,15E-07 21,10 2,27 1,11E-03 431,38 69 -0,77 0,17 -0,35 -0,3091 -0,2724 -0,1291 -0,42 0,21 -0,53 Y
11400 997 5,10E-04 2,55E-04 0,140 0,396 8,69E-07 3,28 2,17 1,11E-03 170,51 27 -0,91 0,24 -0,71 -0,3224 -0,2879 -0,2095 -0,65 0,33 -0,71 Y
11400 997 4,00E-04 2,00E-04 0,091 0,257 8,07E-07 40,80 2,70 1,08E-03 608,77 97 -0,71 0,11 -0,07 -0,2684 -0,2322 -0,0881 -0,33 0,21 -0,54 Y
11400 1136 4,10E-04 2,05E-04 0,251 0,710 6,85E-06 45,40 2,60 1,07E-03 646,37 103 -0,72 0,34 -0,54 -0,0886 -0,0827 -0,0282 -0,32 0,42 -0,61 Y
11400 1153 4,90E-04 2,45E-04 0,317 0,897 9,84E-06 18,70 2,25 1,10E-03 407,91 65 -0,95 0,58 -0,62 -0,089 -0,084 -0,0357 -0,40 0,48 -0,58 Y
11400 1138 5,20E-04 2,60E-04 0,248 0,701 7,14E-06 20,50 2,10 1,09E-03 429,14 68 -0,82 0,45 -0,55 -0,1242 -0,1117 -0,0454 -0,37 0,40 -0,60 Y
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rho_s
(kg/m3)

d (m) r (m) St (-)
St.inverse

(-)
nu (m2/s) Ra (-) beta (-) Af (m) w (rad/s) f (Hz) Vt (m/s) V (m/s) b0 (-)

Sigma/V
(-)

Std. Dev.
(m/s)

F&G (2004)
Vt (m/s)

Model Vt
(m/s)

Model V
(m/s)

Model b0
(-)

Model
valid

1380 8,00E-03 4,00E-03 0,0558 0,1578 1,001E-06 0,04 1,70 1,36E-02 5,03 0,8 -0,292 -0,286 -0,979 0,018 -0,0051 -0,295 -0,3089 -0,281 -0,953 N
1380 8,00E-03 4,00E-03 0,0499 0,1411 1,001E-06 0,05 1,70 1,36E-02 6,28 1,0 -0,292 -0,284 -0,973 0,021 -0,0060 -0,295 -0,3089 -0,279 -0,947 N
1380 8,00E-03 4,00E-03 0,0455 0,1288 1,001E-06 0,08 1,70 1,36E-02 7,54 1,2 -0,292 -0,286 -0,979 0,018 -0,0051 -0,295 -0,3089 -0,277 -0,940 N
1380 8,00E-03 4,00E-03 0,0422 0,1193 1,001E-06 0,11 1,70 1,36E-02 8,80 1,4 -0,292 -0,287 -0,983 0,019 -0,0055 -0,295 -0,3089 -0,276 -0,935 N
1380 8,00E-03 4,00E-03 0,0394 0,1116 1,001E-06 0,14 1,70 1,36E-02 10,05 1,6 -0,292 -0,288 -0,986 0,024 -0,0069 -0,295 -0,3089 -0,274 -0,929 N
1380 8,00E-03 4,00E-03 0,0372 0,1052 1,001E-06 0,18 1,70 1,36E-02 11,31 1,8 -0,292 -0,283 -0,969 0,022 -0,0062 -0,295 -0,3089 -0,273 -0,924 N
1380 8,00E-03 4,00E-03 0,0353 0,0998 1,001E-06 0,22 1,70 1,36E-02 12,57 2,0 -0,292 -0,269 -0,921 0,031 -0,0083 -0,295 -0,3089 -0,271 -0,919 N
1380 8,00E-03 4,00E-03 0,0336 0,0951 1,001E-06 0,26 1,70 1,36E-02 13,82 2,2 -0,292 -0,257 -0,880 0,026 -0,0067 -0,295 -0,3089 -0,270 -0,915 N
1350 1,27E-02 6,35E-03 0,035 0,0994 1,001E-06 0,04 1,07 1,36E-02 5,03 0,8 -0,353 -0,349 -0,989 0,029 -0,0101 -0,361 -0,3764 -0,346 -0,960 N
1350 1,27E-02 6,35E-03 0,031 0,0889 1,001E-06 0,05 1,07 1,36E-02 6,28 1,0 -0,353 -0,353 -1,000 0,021 -0,0074 -0,361 -0,3764 -0,344 -0,954 N
1350 1,27E-02 6,35E-03 0,029 0,0811 1,001E-06 0,08 1,07 1,36E-02 7,54 1,2 -0,353 -0,347 -0,983 0,021 -0,0073 -0,361 -0,3764 -0,343 -0,950 N
1350 1,27E-02 6,35E-03 0,027 0,0751 1,001E-06 0,11 1,07 1,36E-02 8,80 1,4 -0,353 -0,347 -0,983 0,026 -0,0090 -0,361 -0,3764 -0,341 -0,945 N
1350 1,27E-02 6,35E-03 0,025 0,0703 1,001E-06 0,14 1,07 1,36E-02 10,05 1,6 -0,353 -0,343 -0,972 0,021 -0,0072 -0,361 -0,3764 -0,340 -0,941 N
1350 1,27E-02 6,35E-03 0,023 0,0663 1,001E-06 0,18 1,07 1,36E-02 11,31 1,8 -0,353 -0,346 -0,980 0,025 -0,0087 -0,361 -0,3764 -0,338 -0,938 N
1350 1,27E-02 6,35E-03 0,022 0,0629 1,001E-06 0,22 1,07 1,36E-02 12,57 2,0 -0,353 -0,333 -0,943 0,027 -0,0090 -0,361 -0,3764 -0,337 -0,934 N
1350 1,27E-02 6,35E-03 0,021 0,0599 1,001E-06 0,26 1,07 1,36E-02 13,82 2,2 -0,353 -0,319 -0,904 0,033 -0,0105 -0,361 -0,3764 -0,336 -0,930 N
1250 1,59E-02 7,95E-03 0,028 0,0794 1,001E-06 0,04 0,86 1,36E-02 5,03 0,8 -0,328 -0,321 -0,979 0,04 -0,0128 -0,342 -0,3553 -0,324 -0,948 N
1250 1,59E-02 7,95E-03 0,025 0,0710 1,001E-06 0,05 0,86 1,36E-02 6,28 1,0 -0,328 -0,329 -1,003 0,038 -0,0125 -0,342 -0,3553 -0,323 -0,944 N
1250 1,59E-02 7,95E-03 0,023 0,0648 1,001E-06 0,08 0,86 1,36E-02 7,54 1,2 -0,328 -0,331 -1,009 0,023 -0,0076 -0,342 -0,3553 -0,321 -0,939 N
1250 1,59E-02 7,95E-03 0,021 0,0600 1,001E-06 0,11 0,86 1,36E-02 8,80 1,4 -0,328 -0,318 -0,970 0,03 -0,0095 -0,342 -0,3553 -0,320 -0,935 N
1250 1,59E-02 7,95E-03 0,020 0,0561 1,001E-06 0,14 0,86 1,36E-02 10,05 1,6 -0,328 -0,316 -0,963 0,031 -0,0098 -0,342 -0,3553 -0,319 -0,932 N
1250 1,59E-02 7,95E-03 0,019 0,0529 1,001E-06 0,18 0,86 1,36E-02 11,31 1,8 -0,328 -0,305 -0,930 0,042 -0,0128 -0,342 -0,3553 -0,317 -0,928 N
1250 1,59E-02 7,95E-03 0,018 0,0502 1,001E-06 0,22 0,86 1,36E-02 12,57 2,0 -0,328 -0,297 -0,905 0,04 -0,0119 -0,342 -0,3553 -0,316 -0,925 N
1250 1,59E-02 7,95E-03 0,017 0,0479 1,001E-06 0,26 0,86 1,36E-02 13,82 2,2 -0,328 -0,285 -0,869 0,026 -0,0074 -0,342 -0,3553 -0,315 -0,921 N
1380 8,00E-03 4,00E-03 0,056 0,1578 1,001E-06 0,06 2,95 2,36E-02 5,03 0,8 -0,292 -0,289 -0,990 0,033 -0,0095 -0,295 -0,3089 -0,283 -0,958 N
1380 8,00E-03 4,00E-03 0,050 0,1411 1,001E-06 0,09 2,95 2,36E-02 6,28 1,0 -0,292 -0,287 -0,983 0,019 -0,0055 -0,295 -0,3089 -0,281 -0,951 N
1380 8,00E-03 4,00E-03 0,046 0,1288 1,001E-06 0,14 2,95 2,36E-02 7,54 1,2 -0,292 -0,286 -0,979 0,022 -0,0063 -0,295 -0,3089 -0,279 -0,945 N
1380 8,00E-03 4,00E-03 0,042 0,1193 1,001E-06 0,19 2,95 2,36E-02 8,80 1,4 -0,292 -0,281 -0,962 0,025 -0,0070 -0,295 -0,3089 -0,277 -0,940 N
1380 8,00E-03 4,00E-03 0,039 0,1116 1,001E-06 0,24 2,95 2,36E-02 10,05 1,6 -0,292 -0,275 -0,942 0,022 -0,0061 -0,295 -0,3089 -0,276 -0,935 N
1380 8,00E-03 4,00E-03 0,037 0,1052 1,001E-06 0,31 2,95 2,36E-02 11,31 1,8 -0,292 -0,264 -0,904 0,035 -0,0092 -0,295 -0,3089 -0,274 -0,929 N
1380 8,00E-03 4,00E-03 0,035 0,0998 1,001E-06 0,38 2,95 2,36E-02 12,57 2,0 -0,292 -0,257 -0,880 0,024 -0,0062 -0,295 -0,3089 -0,273 -0,924 N
1380 8,00E-03 4,00E-03 0,034 0,0951 1,001E-06 0,46 2,95 2,36E-02 13,82 2,2 -0,292 -0,247 -0,846 0,035 -0,0086 -0,295 -0,3089 -0,271 -0,919 N
1350 1,27E-02 6,35E-03 0,035 0,0994 1,001E-06 0,06 1,86 2,36E-02 5,03 0,8 -0,353 -0,359 -1,017 0,049 -0,0176 -0,361 -0,3764 -0,348 -0,963 N
1350 1,27E-02 6,35E-03 0,031 0,0889 1,001E-06 0,09 1,86 2,36E-02 6,28 1,0 -0,353 -0,356 -1,008 0,034 -0,0121 -0,361 -0,3764 -0,346 -0,958 N
1350 1,27E-02 6,35E-03 0,029 0,0811 1,001E-06 0,14 1,86 2,36E-02 7,54 1,2 -0,353 -0,351 -0,994 0,037 -0,0130 -0,361 -0,3764 -0,345 -0,954 N
1350 1,27E-02 6,35E-03 0,027 0,0751 1,001E-06 0,19 1,86 2,36E-02 8,80 1,4 -0,353 -0,335 -0,949 0,065 -0,0218 -0,361 -0,3764 -0,343 -0,950 N
1350 1,27E-02 6,35E-03 0,025 0,0703 1,001E-06 0,24 1,86 2,36E-02 10,05 1,6 -0,353 -0,313 -0,887 0,034 -0,0106 -0,361 -0,3764 -0,342 -0,947 N
1350 1,27E-02 6,35E-03 0,023 0,0663 1,001E-06 0,31 1,86 2,36E-02 11,31 1,8 -0,353 -0,301 -0,853 0,051 -0,0154 -0,361 -0,3764 -0,340 -0,943 N
1350 1,27E-02 6,35E-03 0,022 0,0629 1,001E-06 0,38 1,86 2,36E-02 12,57 2,0 -0,353 -0,289 -0,819 0,027 -0,0078 -0,361 -0,3764 -0,339 -0,939 N
1350 1,27E-02 6,35E-03 0,021 0,0599 1,001E-06 0,46 1,86 2,36E-02 13,82 2,2 -0,353 -0,283 -0,802 0,032 -0,0091 -0,361 -0,3764 -0,338 -0,935 N
1250 1,59E-02 7,95E-03 0,028 0,0794 1,001E-06 0,06 1,48 2,36E-02 5,03 0,8 -0,328 -0,325 -0,991 0,031 -0,0101 -0,342 -0,3553 -0,326 -0,954 N
1250 1,59E-02 7,95E-03 0,025 0,0710 1,001E-06 0,09 1,48 2,36E-02 6,28 1,0 -0,328 -0,324 -0,988 0,028 -0,0091 -0,342 -0,3553 -0,325 -0,950 N
1250 1,59E-02 7,95E-03 0,023 0,0648 1,001E-06 0,14 1,48 2,36E-02 7,54 1,2 -0,328 -0,314 -0,957 0,035 -0,0110 -0,342 -0,3553 -0,324 -0,946 N
1250 1,59E-02 7,95E-03 0,021 0,0600 1,001E-06 0,19 1,48 2,36E-02 8,80 1,4 -0,328 -0,304 -0,927 0,049 -0,0149 -0,342 -0,3553 -0,322 -0,943 N
1250 1,59E-02 7,95E-03 0,020 0,0561 1,001E-06 0,24 1,48 2,36E-02 10,05 1,6 -0,328 -0,297 -0,905 0,044 -0,0131 -0,342 -0,3553 -0,321 -0,939 N
1250 1,59E-02 7,95E-03 0,019 0,0529 1,001E-06 0,31 1,48 2,36E-02 11,31 1,8 -0,328 -0,279 -0,851 0,043 -0,0120 -0,342 -0,3553 -0,320 -0,936 N
1250 1,59E-02 7,95E-03 0,018 0,0502 1,001E-06 0,38 1,48 2,36E-02 12,57 2,0 -0,328 -0,273 -0,832 0,041 -0,0112 -0,342 -0,3553 -0,319 -0,933 N
1250 1,59E-02 7,95E-03 0,017 0,0479 1,001E-06 0,46 1,48 2,36E-02 13,82 2,2 -0,328 -0,254 -0,774 0,033 -0,0084 -0,342 -0,3553 -0,318 -0,930 N



1380 8,00E-03 4,00E-03 0,056 0,1578 1,001E-06 0,11 5,10 4,08E-02 5,03 0,8 -0,292 -0,289 -0,990 0,041 -0,0118 -0,295 -0,3089 -0,284 -0,964 N
1380 8,00E-03 4,00E-03 0,050 0,1411 1,001E-06 0,16 5,10 4,08E-02 6,28 1,0 -0,292 -0,293 -1,003 0,046 -0,0135 -0,295 -0,3089 -0,283 -0,958 N
1380 8,00E-03 4,00E-03 0,046 0,1288 1,001E-06 0,24 5,10 4,08E-02 7,54 1,2 -0,292 -0,285 -0,976 0,082 -0,0234 -0,295 -0,3089 -0,281 -0,952 N
1380 8,00E-03 4,00E-03 0,042 0,1193 1,001E-06 0,32 5,10 4,08E-02 8,80 1,4 -0,292 -0,277 -0,949 0,034 -0,0094 -0,295 -0,3089 -0,279 -0,946 N
1380 8,00E-03 4,00E-03 0,039 0,1116 1,001E-06 0,42 5,10 4,08E-02 10,05 1,6 -0,292 -0,271 -0,928 0,026 -0,0070 -0,295 -0,3089 -0,277 -0,940 N
1380 8,00E-03 4,00E-03 0,037 0,1052 1,001E-06 0,53 5,10 4,08E-02 11,31 1,8 -0,292 -0,246 -0,842 0,062 -0,0153 -0,295 -0,3089 -0,275 -0,933 N
1380 8,00E-03 4,00E-03 0,035 0,0998 1,001E-06 0,66 5,10 4,08E-02 12,57 2,0 -0,292 -0,237 -0,812 0,058 -0,0137 -0,295 -0,3089 -0,273 -0,926 N
1380 8,00E-03 4,00E-03 0,034 0,0951 1,001E-06 0,79 5,10 4,08E-02 13,82 2,2 -0,292 -0,226 -0,774 0,055 -0,0124 -0,295 -0,3089 -0,271 -0,918 N
1350 1,27E-02 6,35E-03 0,035 0,0994 1,001E-06 0,11 3,21 4,08E-02 5,03 0,8 -0,353 -0,358 -1,014 0,044 -0,0158 -0,361 -0,3764 -0,350 -0,970 N
1350 1,27E-02 6,35E-03 0,031 0,0889 1,001E-06 0,16 3,21 4,08E-02 6,28 1,0 -0,353 -0,351 -0,994 0,054 -0,0190 -0,361 -0,3764 -0,349 -0,966 N
1350 1,27E-02 6,35E-03 0,029 0,0811 1,001E-06 0,24 3,21 4,08E-02 7,54 1,2 -0,353 -0,340 -0,963 0,037 -0,0126 -0,361 -0,3764 -0,347 -0,962 N
1350 1,27E-02 6,35E-03 0,027 0,0751 1,001E-06 0,32 3,21 4,08E-02 8,80 1,4 -0,353 -0,331 -0,938 0,069 -0,0228 -0,361 -0,3764 -0,346 -0,957 N
1350 1,27E-02 6,35E-03 0,025 0,0703 1,001E-06 0,42 3,21 4,08E-02 10,05 1,6 -0,353 -0,296 -0,839 0,044 -0,0130 -0,361 -0,3764 -0,344 -0,953 N
1350 1,27E-02 6,35E-03 0,023 0,0663 1,001E-06 0,53 3,21 4,08E-02 11,31 1,8 -0,353 -0,289 -0,819 0,018 -0,0052 -0,361 -0,3764 -0,342 -0,948 N
1350 1,27E-02 6,35E-03 0,022 0,0629 1,001E-06 0,66 3,21 4,08E-02 12,57 2,0 -0,353 -0,275 -0,779 0,049 -0,0135 -0,361 -0,3764 -0,341 -0,943 N
1350 1,27E-02 6,35E-03 0,021 0,0599 1,001E-06 0,79 3,21 4,08E-02 13,82 2,2 -0,353 -0,262 -0,742 0,051 -0,0134 -0,361 -0,3764 -0,339 -0,938 N
1250 1,59E-02 7,95E-03 0,028 0,0794 1,001E-06 0,11 2,57 4,08E-02 5,03 0,8 -0,328 -0,320 -0,976 0,027 -0,0086 -0,342 -0,3553 -0,329 -0,963 N
1250 1,59E-02 7,95E-03 0,025 0,0710 1,001E-06 0,16 2,57 4,08E-02 6,28 1,0 -0,328 -0,313 -0,954 0,032 -0,0100 -0,342 -0,3553 -0,328 -0,959 N
1250 1,59E-02 7,95E-03 0,023 0,0648 1,001E-06 0,24 2,57 4,08E-02 7,54 1,2 -0,328 -0,319 -0,973 0,05 -0,0160 -0,342 -0,3553 -0,327 -0,956 N
1250 1,59E-02 7,95E-03 0,021 0,0600 1,001E-06 0,32 2,57 4,08E-02 8,80 1,4 -0,328 -0,294 -0,896 0,045 -0,0132 -0,342 -0,3553 -0,326 -0,953 N
1250 1,59E-02 7,95E-03 0,020 0,0561 1,001E-06 0,42 2,57 4,08E-02 10,05 1,6 -0,328 -0,274 -0,835 0,052 -0,0142 -0,342 -0,3553 -0,325 -0,949 N
1250 1,59E-02 7,95E-03 0,019 0,0529 1,001E-06 0,53 2,57 4,08E-02 11,31 1,8 -0,328 -0,267 -0,814 0,053 -0,0142 -0,342 -0,3553 -0,324 -0,946 N
1250 1,59E-02 7,95E-03 0,018 0,0502 1,001E-06 0,66 2,57 4,08E-02 12,57 2,0 -0,328 -0,259 -0,790 0,027 -0,0070 -0,342 -0,3553 -0,322 -0,942 N
1250 1,59E-02 7,95E-03 0,017 0,0479 1,001E-06 0,79 2,57 4,08E-02 13,82 2,2 -0,328 -0,247 -0,753 0,048 -0,0119 -0,342 -0,3553 -0,321 -0,938 N
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