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SUMMARY

Seismic imaging is a method for generating images of the subsurface of the Earth with-
out the need to drill down to observe it directly. Using a seismic source, high-amplitude
acoustic waves are generated, which propagate through the Earth. When these waves
encounter interfaces between different layers, part of their energy is reflected, traveling
back upwards. At the surface, these scattered waves are recorded using an array of sen-
sors. These recorded wavefields are then used as input for a seismic imaging algorithm,
which attempts to reconstruct an accurate image of the subsurface based on these mea-
surements.

While many different seismic imaging methods exist, this thesis focuses specifically on
Full-Wavefield Migration (FWM). FWM is a least-squares migration method, based on
iteratively updating the image in order to minimize the misfit between the recorded data
and the forward modelled wavefield at the surface. Using this iterative approach, FWM
is able to incorporate multiple scattering effects into the imaging process, increasing the
accuracy of the resulting images. Also, by using explicit convolutional operators based
on the one-way wave equation, the computational cost of FWM is reduced compared to
alternative iterative imaging methods based on finite-difference modelling.

In this thesis, we describe a number of recent advancements to the FWM method. Our
main focus is the extension of the FWM method to include converted waves. In order
to take these effects into account, we need accurate reflection and transmission oper-
ators. However, the true, elastic reflection and transmission operators are notoriously
non-linear, making them difficult to work with. Therefore, we introduce a novel set of
approximations of these operators, which we name the extended Shuey approximations.
To benchmark these approximations, we apply them in a simple, 1.5D scenario. This test
shows that the extended Shuey approximations yield improved results for forward mod-
elling and imaging, compared to the conventional Shuey approximation.

We then use these extended Shuey approximations to derive accurate reflection and
transmission operators for the 2D case. Combining these operators with the existing
theoretical framework of FWM we develop a robust imaging algorithm which takes con-
verted waves into account. We then apply this algorithm, which we name elastic FWM,
to two synthetic models. We show that, for these models, the elastic FWM method out-
performs the conventional, acoustic FWM method. We also demonstrate that, using this
method, additional information regarding the elastic medium parameters of the subsur-
face can be recovered.

Finally, we examine the known issue of slow convergence for the conventional, acous-
tic FWM algorithm. We introduce a novel preconditioner, based on approximating the
pseudo-inverse using Proper Orthogonal Decomposition (POD). Using this precondi-
tioner, we demonstrate improved convergence for the synthetic Marmousi model and a
field data set from the Vøring basin in Norway.
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SAMENVATTING

Seismische beeldvorming is een methode om afbeeldingen van de ondergrond van de
aarde te maken zonder boringen uit te voeren om deze direct waar te nemen. Met een
seismische bron worden akoestische golven met een hoge amplitude opgewekt, die door
de aarde propageren. Wanneer deze golven overgangen tussen verschillende aardlagen
tegenkomen wordt een deel van hun energie gereflecteerd en naar boven gepropageerd.
Aan het oppervlak worden deze verstrooide golven opgenomen door een reeks senso-
ren. Deze opgenomen geluidsgolven worden vervolgens als input gebruikt voor een seis-
misch afbeeldingsalgoritme, welk probeert een accurate afbeelding te reconstrueren van
de ondergrond op basis van deze metingen.

Hoewel er vele verschillende seismisch afbeeldingsalgoritmes bestaan, zal deze thesis
zich specifiek concentreren op Full-Wavefield Migration (FWM). FWM is een zogeheten
kleinste-kwadraten migratie methode, die gebaseerd zijn op het iteratief bijwerken van
de afbeelding om het verschil te minimaliseren tussen de opgenomen data en het voor-
waarts gemodelleerde golfveld aan de oppervlakte. Door gebruik te maken van deze
iteratieve aanpak is FWM in staat om meervoudige-verstrooiingseffecten in het afbeel-
dingsproces op te nemen, wat leidt tot een verbeterde nauwkeurigheid van de afbeel-
dingen. Tevens zijn de computationele kosten van FWM, door het gebruik van ope-
ratoren gebaseerd op expliciete convoluties op basis van de een-weg golfvergelijking,
verminderd ten opzichte van alternatieve afbeeldingsmethodes gebaseerd op eindige-
differentie methodes.

In deze thesis beschrijven we een aantal recente vorderingen in de FWM afbeeldings-
methode. Onze voornaamste focus is de uitbreiding van FWM om geconverteerde gol-
ven mee te nemen. Om deze effecten in ogenschouw te nemen hebben we accurate
reflectie en transmissie operatoren nodig. De echte, elastische reflectie en transmissie
operatoren zijn echter notoir niet-lineair, wat ze moeilijk in het gebruik maakt. Daarom
introduceren we een nieuwe set benaderingen voor deze operatoren, die we de uitge-
breide Shuey benaderingen noemen. Om deze benaderingen te toetsen, passen we ze
toe op een eenvoudig, 1.5D scenario. Deze toets laat zien dat de uitgebreide Shuey be-
naderingen een beter resultaat opleveren voor voorwaartse modellering en inversie, ten
opzichte van de conventionele Shuey benadering.

Vervolgens gebruiken we deze uitgebreide Shuey benaderingen om accurate reflec-
tie en transmissie operatoren af te leiden voor de 2D situatie. Door deze operatoren te
combineren met het theoretische raamwerk van FWM ontwikkelen we een robuust af-
beeldingsalgoritme dat rekening houdt met geconverteerde golven. Vervolgens passen
we dit algoritme, dat we elastische FWM noemen, toe op twee synthetische modellen.
We laten zien dat, voor deze modellen, elastische FWM beter presteert dan de conventi-
onele, akoestische FWM methode. We laten ook zien dat met deze methode aanvullende
informatie over de elastische parameters van de ondergrond kan worden bepaald.
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X SAMENVATTING

Als laatste bekijken we het bekende probleem van langzame convergentie voor het
conventionele, akoestische FWM algoritme. We introduceren een nieuwe preconditio-
ner, gebaseerd op het benaderen van de pseudo-inverse door gebruik van Proper Ortho-
gonal Decomposition (POD). Door gebruik te maken van deze preconditioner behalen
we een verbeterde convergentie voor het synthetische Marmousi model als ook voor een
veld dataset afkomstig van het Vøring basin in Noorwegen.
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INTRODUCTION

1.1. SEISMIC IMAGING
Seismic imaging is a method for generating images of the subsurface of the Earth,
based on measurements usually taken at the surface. The goal is to gather
information about the subsurface without having to drill down into the Earth to
observe it directly. In this sense, the goals of seismic imaging are similar to the
goals of medical imaging, where one wishes to image part of a patient’s body
without having to perform invasive surgeries to examine the region directly. Much
of the process of seismic imaging is analogous to the process of medical ultrasound
imaging, for example. Both begin by taking measurements of the region of interest
using acoustic waves. Once the measurement is performed, an imaging algorithm
is applied to the data to obtain an image of the region of interest, as shown in
figure 1.1. Finally, using the resulting image, alongside other information, relevant
conclusions can be drawn about the region being imaged.

The main difference between seismic imaging and medical imaging is the area to
which it is applied. Seismic imaging was originally developed for the discovery of
hydrocarbon resources, i.e. oil and gas fields, within the subsurface. As these fields

(a) (b)

Figure 1.1: An example of an ultrasound image of a baby [1] (left) and an example of
a seismic image of the Earth [2] (right).
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are often located deep within the subsurface, as illustrated in figure 1.2, drilling
down to these areas is costly. The cost of drilling a single oil well is in the order of
10 million USD [3], and may be up to an order of magnitude more in challenging
areas [4]. To mitigate the risks of drilling a so-called ’dry’ well, where no oil or gas
is found, seismic imaging methods are applied to explore the prospective drilling
site. Note that, even with modern, sophisticated techniques, more than 50% of
exploration wells are still dry [5]. This illustrates the need for the development of
more precise seismic imaging techniques.

Seismic imaging is not limited to hydrocarbon exploration, however. Due to the
energy transition, the need for oil and gas exploration is decreasing, while other
applications are becoming feasible. An example of this development has been
the application of seismic imaging techniques to perform site characterization for
offshore wind farms [7]. In a similar vein, seismic imaging is used in carbon
capture and storage programs to monitor storage sites [8], as these are often located
in depleted gas fields. Locating geothermal reservoirs is another application where
seismic imaging has been used [9], as many of the principles of locating geothermal

Figure 1.2: Diagram showing the relative depths of different regions of interest within
the subsurface [6].
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wells are similar to those of locating oil and gas wells. Finally, techniques originating
from seismic imaging in complex media have also been applied to medical
ultrasound imaging, as the underlying physics of the propagation and scattering
of acoustic waves is the same for both fields [10]. As the medical ultrasound
community moves towards the imaging of areas containing large contrasts, such as
bones and the skull, these techniques are becoming increasingly important within
that field [11].

Let us now examine the different elements of the seismic imaging process in more
detail, beginning with the acquisition of seismic data. First, using a seismic source,
high-amplitude acoustic waves are generated, which travel into the subsurface. This
source may take the form of a truck with a heavy vibrating plate for measurements
on land, or an air gun, which produces acoustic waves by releasing compressed air
[13], for measurements on water. The waves generated by this source propagate
through the subsurface, encountering interfaces between different geological layers.
At these interfaces, part of the energy of the wave is reflected, leading to waves
traveling back up towards the surface. At the surface, these reflected waves are
recorded using an array of sensors, called geophones, if the measurements are on
land, or hydrophones, if they are on water. This process is illustrated in figure 1.3.

While the topic of seismic acquisition is outside the scope of this thesis, it
is non-trivial to generate high-quality seismic data in this manner, and therefore
significant research is done into the process of collecting this data. This is of note, as
without the availability of high-quality seismic data, many of the more complicated
imaging techniques, such as those described in section 1.2, cannot function. Also
note that within the field of seismic acquisition, multiple alternative methods exist
to acquire seismic data compared to the description given above. For example,
instead of an ‘active’ source located at the surface, ‘passive’ sources, based on
naturally occurring seismic activity within the subsurface, can be used instead [14].
Also, additional information, such as gravity and electromagnetic measurements, can

Figure 1.3: Marine seismic acquisition setup [12].
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be used alongside conventional acoustic measurements in so-called multi-physics
imaging setups [15].

After a set of measurements has been acquired, the next step in seismic imaging is
to apply an imaging algorithm to recover an image of the subsurface. This step, often
referred to as ‘migration’ within the seismic imaging community, will be the focus of
the rest of this thesis. An overview of the existing literature on migration methods
is given in section 1.2. Finally, after an image has been generated, conclusions
must be drawn about the region of interest. As the images produced by seismic
imaging techniques generally only provide structural information, the underlying
medium properties must be inferred using additional geological data. This process,
commonly referred to as ‘interpretation’, falls outside the scope of this thesis.

1.2. IMAGING ALGORITHMS

In this section, we will give a general, mostly chronological, overview of the different
imaging algorithms used in seismic imaging. In the very early days of seismic
imaging, no imaging algorithms were used at all. Instead, operators in the field
would attempt to interpret the recorded wavefields directly [16]. While this approach
gave rudimentary information about the subsurface, it was quickly realized that
higher degrees of accuracy could be achieved by using some form of imaging. One of
the first true seismic imaging algorithms was developed in the 1950’s by Hagedoorn
[17], who used Huygens’ principle to determine the total travel time of recorded
events. With this approach, reflecting surfaces within the subsurface could be
mapped. Using similar principles, the method of common midpoint (CMP) stacking
[18] was developed. In this method, events are sorted by the midpoint between
source and receiver, after which a travel time correction, referred to as normal
moveout (NMO) correction, is applied. After NMO correction is applied, the events
are summed together, generating an image of the reflectivity at each midpoint.
While this method relies on strong assumptions, most noticeably assuming that all
the layers in the subsurface are flat, it is highly efficient and surprisingly robust, and
is still used as a baseline for comparison with other imaging methods [19].

As computers became more powerful, more advanced imaging techniques were
developed. The main advancement in this period was the application of wave
equation principles by Claerbout [20]. Claerbout realized that, in cases where
the source was known, one can extrapolate the source wavefield forward in time
to model the incident wavefield at each point in the medium. Using the same
principles, one can also propagate the recorded wavefield backwards in time,
modelling the scattered wavefield at each point in the medium. Using these two
wavefields, one can finally apply the imaging condition, which states that at every
point where the incident and scattered wavefields meet, there must be a reflector.
More formally, the imaging condition states that a reflector must exist at each point
where the correlation between the incident and scattered wavefields is non-zero.
Using these principles, more accurate images can be made of the subsurface, most
noticeably in areas with lateral variations in the velocity profile.

In order to get around the limitations of computers at the time, Claerbout also
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introduced the concept of wavefield separation. By separating the total wavefield
into up- and downgoing components, one-way propagation methods could be
used, reducing the computational cost of the method compared to full, two-way
modelling. While Claerbout’s original method of one-way propagation was based
on finite-difference methods, in later years, this approach was reformulated into
an integral approach by Berkhout [21]. Using Green’s functions, Berkhout was
able to formulate explicit convolutional operators for one-way propagation. In
recent years, due to increasing computational power, the full, two-way, modelling of
wavefields has become feasible. This has led to the development of reverse-time
migration (RTM) [22, 23], which solves the full, two-way wave equation to model
the wavefields. Using this approach, regions with strongly dipping reflectors and
strong diving waves can be imaged, which is challenging when using one-way wave
propagation methods.

The most recent advancement in imaging methods has been the introduction of
least-squares migration (LSM) techniques, first introduced by Nemeth [24]. With
LSM, the full propagation and scattering of the wavefield throughout the medium is
modelled in order to generate modelled data at the surface, where it is compared
to the true, measured data. The difference between these two wavefields, called
the residual, is then propagated backwards into the medium. Finally, using the
backpropagated residual, the reflectivity at each point in the medium is updated.
This process is then repeated as many times as desired, leading to an update of
the reflectivity at each iteration. This iterative approach has multiple advantages,
the main one being that it allows acquisition issues such as missing receivers and
variations in illumination to be compensated. Based on these principles, several
powerful imaging algorithms have been developed. The most well-known of these
is least-squares RTM (LS-RTM) [25], an iterative extension to the conventional RTM
approach. Another example is Full-Wavefield Migration (FWM) [26], an iterative
imaging algorithm using one-way operators, which we will explore in more detail in
section 1.3.

Note that, as imaging algorithms have become more sophisticated, the need
for an accurate velocity model has also increased. In a conventional imaging
workflow, it is assumed that a (kinematically) accurate velocity model exists, which
is used as an input for imaging. In recent years, however, this velocity estimation
step has increasingly been incorporated into the imaging algorithm itself, often
by iteratively updating both the velocity and reflectivity model simultaneously.
The most well-known example in this field is Full Waveform Inversion (FWI) [27,
28], which attempts to reconstruct the underlying medium properties directly. In
situations where this approach is not feasible, combined velocity estimation and
imaging algorithms are commonly used. Examples of these algorithms are Reflection
Waveform Inversion (RWI) [29, 30] and Joint Migration Inversion (JMI) [31, 32]. As
this thesis focuses on imaging, detailed examinations of these methods are outside
the scope of this thesis. However, it is important to note that generating an
accurate velocity model is an essential step in generating an accurate image of the
subsurface.



1

6 1. INTRODUCTION

1.3. FULL-WAVEFIELD MIGRATION

This thesis focuses mainly on the method of Full-Wavefield Migration (FWM). FWM
is a LSM method originally developed by Berkhout [33, 34] and expanded on by
others [26, 35]. The method is based on one-way propagators, represented by the
convolutional operators W [21].

FWM has a number of advantages compared to other popular imaging
methodologies. In particular, while many imaging methodologies struggle with
multiple scattering events, FWM incorporates primary and multiple scattering in
a single, unified framework. In seismic imaging, two types of multiple scattering
events, commonly referred to as ‘multiples’, are generally present in the data, as
illustrated in figure 1.4. The first type are called surface multiples, represented by
the blue lines in figure 1.4, where the wavefield reflects at the surface of the medium
and travels back into the subsurface. The second type are called internal multiples,
represented by the green lines in figure 1.4, where an upgoing wavefield reflects
downwards at an interface in the subsurface. If these multiple scattering events are
not accounted for in the imaging step, additional, spurious reflectors are generated
within the image, reducing the quality of the final image. To avoid this problem,
multiple-removal techniques are often applied to the data in an effort to remove
these events from the measured data [36, 37]. FWM, however, takes these events
into account by incorporating these multiples into its imaging algorithm. This makes
the method more robust with respect to multiples, as well as providing additional
illumination in areas that may not be reached by primary events [38].

An additional advantage of FWM compared to other LSM techniques is its
relatively low computational cost. As FWM utilizes one-way propagators in an
integral approach, it is computationally much less expensive compared to a method
such as LS-RTM, which utilizes finite-difference modelling. Specifically, due to the
use of integral-based operators, the underlying grid used in FWM can be made
much coarser compared to the grids utilized in finite-difference modelling methods,

Figure 1.4: Diagram showing the wavepaths of primaries (black), surface multiples
(blue) and internal multiples (green) [39].
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drastically reducing computational times. This effect is particularly noticeable in
areas with low velocities, as these areas require very fine grids in finite-difference
setups. This makes FWM especially good in taking converted waves into account [33,
34], as the low velocities associated with converted wave events pose a particular
challenge in finite-difference frameworks.

Finally, due to the use of explicit operators within the FWM framework, one
can choose which effects to take into account and which to ignore in each part
of the model. Specifically, one can choose to use simple, angle-independent,
acoustic imaging methods for the overburden, while still accurately modelling the
wavepaths at the reservoir level, for example [40]. In this manner, a balance
between computational efficiency and accuracy can be achieved. In finite-difference
based approaches, by contrast, all scattering and propagation effects are modelled
automatically. While in principle this is an advantage, it also requires one to take all
effects into account throughout the entire subsurface, increasing the computational
cost unnecessarily in areas of the model where the geometry is relatively simple.

However, FWM also faces a number of challenges. First of all, in certain
cases the method can suffer from slow convergence. To address this issue,
pre-conditioning can be applied in the inversion process [41]. Secondly, when
applied in combination with velocity estimation, FWM struggles to accurately model
the full, angle-dependent reflectivity [42]. This is due to an overparameterisation of
the problem in these cases. Finally, because of the use of one-way operators, the
method struggles to image areas containing steep reflectors or strong diving waves.
While certain strategies have been proposed to extend the FWM framework to an
omni-directional approach that takes these effects into account [43, 44], it remains
challenging to incorporate these effects in FWM.

1.4. THESIS OUTLINE
In this thesis, we present a number of recent advancements within FWM, with a
focus on the modelling and imaging of converted waves. Specifically, we will attempt
to answer the following research questions:

• Can we accurately incorporate the reflection and transmission coefficients for
elastic wave propagation in a forward and inverse modelling scheme?

To answer this question, in chapter 2 we present a novel set of accurate
approximations to the full set of elastic reflection and transmission coefficients,
which we name the extended Shuey’s approximations. These extended
approximations are based on applying Taylor expansions to the so-called
Zoeppritz equations. We show that the results of these approximations reduce
to the well-known Shuey’s approximation in the linear case. In addition, we
show how Shuey’s approximation can be extended to retrieve more accurate
approximations for both the PP-reflection coefficient as well as the other
reflection and transmission coefficients. We then apply these approximations
to a simple forward and inverse modelling scenario to give a proof-of-concept
of how these approximations can improve the accuracy of modelling wave
conversions in practice.
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• Can we extend the 2D FWM algorithm to include converted wave effects?

To make this extension, in chapter 3 we combine the extended Shuey
approximations of chapter 2 with the theoretical framework developed by
Berkhout [33] to formulate a robust algorithm for the forward and inverse
modelling of converted waves in FWM. We show that this approach reduces
the number of parameters required to accurately describe the angle-dependent
reflection and transmission operators compared to traditional, angle-dependent
FWM approaches, thereby avoiding over-parametrization. We then test the
algorithm on synthetic data of a model with flat reflectors as well as on
a model containing a lens-shaped anomaly and compare the results to the
results obtained by acoustic FWM.

• Can we improve the convergence of the 2D, acoustic FWM algorithm?

To investigate this, in chapter 4 we present a novel preconditioner for acoustic
FWM, based on approximating the pseudo-inverse using Proper Orthogonal
Decomposition (POD) [45]. The preconditioned FWM algorithm, which we
call Model-Order Reduced FWM (MOR-FWM), is tested on both the synthetic
Marmousi model as well as on a field dataset from the Vøring basin.

A summary of the work done and the conclusions drawn based on the results are
presented in chapter 5. In this chapter, we also give our recommendations for future
work on the FWM method.
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2
EXTENDING SHUEY ’S

APPROXIMATION USING TAYLOR

EXPANSIONS FOR FORWARD AND

INVERSE MODELLING

As seismic imaging moves towards the imaging of more complex media, properly
modelling elastic effects in the subsurface is becoming of increasing importance. In
this context, elastic wave conversion, where acoustic, pressure (P-) waves are converted
into elastic, shear (S-) waves, is of great importance. Accounting for these wave
conversions, in the framework of forward and inverse modelling of elastic waves, is
crucial to creating accurate images of the subsurface in high-contrast, elastic media.
The underlying mechanism of wave conversion is well understood and described
by the Zoeppritz equations. However, as these equations are highly non-linear,
approximations are commonly used. The most well-known of these approximations
is Shuey’s approximation. However, this approximation only holds for small angles
and small contrasts, making it insufficient for realistic forward and inverse modelling
scenarios, where angles and contrasts may be large. In this paper we present a
novel set of approximations, based on Taylor expansions of the Zoeppritz equations,
which we name the extended Shuey approximations. We examine the quality of
these approximations to the Zoeppritz equations and compare them to existing
approximations described in literature. For a first demonstration. we apply these
extended Shuey approximations to the elastic Full-Wavefield Modelling algorithm for a
simple, synthetic, 1.5D example, where we show that we can accurately model the P-
and S-wavefields in a forward modelling case. Finally, we apply our approximations

This chapter is based on the paper: L. Hoogerbugge, K.W.A. van Dongen and D.J. Verschuur.
"Extending Shuey’s approximation using Taylor expansions for forward and inverse modelling". In:
Geophysical Journal International 241(2) (April 2025), pp. 876–890.
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to the elastic Full-Wavefield Migration algorithm for a simple, synthetic, 1.5D example,
where we show that we can recover an accurate image in an inverse modelling case.

2.1. INTRODUCTION

Properly modelling the propagation and scattering of elastic waves throughout the
subsurface of the Earth is an important aspect in many seismic applications. In
this context, the process of wave conversion, which occurs due to the elastic nature
of the Earth’s subsurface, has received increased interest in recent years. Wave
conversion is a process where acoustic, pressure waves, known as P-waves, convert
into elastic, shear waves, known as S-waves. This conversion takes place when a
wavefield strikes an interface between two different media. This process is highly
relevant in multiple areas, such as subsurface imaging in complex media, anisotropy
analysis and reservoir characterization [1].

The underlying mechanism by which wave conversion occurs is well understood
in literature, and exact reflection and transmission coefficients can be derived for flat
interfaces between two media. These exact reflection and transmission coefficients
are known as the Zoeppritz equations (see [2] and [3]). However, while these
equations are exact, they are also notoriously difficult to work with. This is due to
the non-linearity of the Zoeppritz equations, which presents itself in two different
ways. First of all, the Zoeppritz equations depend on the medium properties of
the two media in a very non-linear fashion. This makes it difficult to use these
equations in inversion settings, where one wishes to recover the medium properties
from the measurement data. Secondly, as an additional complication, the Zoeppritz
equations need to account for critical angles, where the reflection and transmission
coefficients diverge, which can cause a multitude of issues.

Due to these challenges, when working with the Zoeppritz equations in practice,
approximations are commonly applied. By far the most well-known of these
approximations is Shuey’s approximation [4]. With Shuey’s approximation the
Zoeppritz equations are linearised, which makes them simple to invert, and removes
the critical points from the Zoeppritz equations. Due to this ease of inversion, it has
become the standard in amplitude variation with offset (AVO) analysis. However,
Shuey’s approximation is only accurate for small angles and weak contrasts, which
limits its applicability. Also, it only describes the PP-reflection coefficient, which
means that wave conversions are not taken into account.

To address these issues, alternative approximations have been developed. The most
influential of these alternative approximations are the linearized approximations of
Aki and Richards [3]. These approximations do address wave conversions, extending
their applicability. However, these approximations are also only applicable in
situations where the contrasts are weak. Other approximations, such as by Wang
[5], have also been developed. However, most of these approximations focus on the
PP-reflection coefficient, as this coefficient has been of the most interest historically.

In recent years, the forward and inverse modelling of wave-paths including wave
conversions have become of greater interest. As the focus of seismic imaging shifts
towards more challenging scenarios, specifically those with strong reflectors [6], or
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towards cases where the goal is the recovery of the elastic parameters [7], it is
important to accurately describe these wave conversions. To do this, high quality
approximations of the full set of Zoeppritz equations are required.

In this paper, we present a novel set of accurate approximations to the full set of
Zoeppritz equations, which we name the extended Shuey’s approximations, based
on applying Taylor expansions to the Zoeppritz equations. We show that the result
of this approximation reduces to the well-known Shuey’s approximation in the linear
case. In addition, we show how it can be extended to retrieve more accurate
approximations for both the PP-reflection coefficient as well as the other reflection
and transmission coefficients. We then apply our approximation to a simple forward
and inverse modelling scenario to give a proof-of-concept of how this approximation
can improve the accuracy of modelling wave conversions in practice.

2.2. THEORY

This section is split into three parts. First, in section 2.2.1, we derive the extended
Shuey’s approximations, where we focus on the RPP term, and show that they are
a natural extension of the traditional Shuey approximation. Next, in section 2.2.2,
we apply this approximation to a simple, elastic, forward modelling algorithm called
elastic Full-Wavefield Modelling (FWMod). Finally, in section 2.2.3 we discuss the
inverse problem associated with the forward model of section 2.2.2, referred to as
elastic Full-Wavefield Migration.

2.2.1. DERIVATION OF THE EXTENDED SHUEY ’S APPROXIMATIONS

We begin by deriving the extended Shuey’s approximations of the Zoeppritz
equations. Consider a flat, laterally invariant interface between two media located
at a depth level z = zn . Following the notation used in [3], each medium is
characterised by its P-wave velocity α, S-wave velocity β and mass density ρ. The
subscript 1 is used to denote properties within the medium above the interface (at a
depth z < zn), while properties within the medium below the interface (at a depth
z > zn) are denoted by the subscript 2.

In this situation, the reflection and transmission coefficients are given analytically
by the Zoeppritz equations. As these equations are unwieldy to write down directly,
we once again follow the notation used in [3] and introduce a set of intermediate
variables. We begin by introducing the dimensionless contrast parameters

cα = α2 −α1
1
2 (α2 +α1)

, cβ =
β2 −β1

1
2

(
β2 +β1

) , cρ = ρ2 −ρ1
1
2

(
ρ2 +ρ1

) . (2.1)

Rewriting the medium parameters above and below the interface in terms of these
contrast parameters gives

α1 = ᾱ
(
1− 1

2 cα
)

, β1 = β̄
(
1− 1

2 cβ
)

, ρ1 = ρ̄
(
1− 1

2 cρ
)

,
α2 = ᾱ

(
1+ 1

2 cα
)

, β2 = β̄
(
1+ 1

2 cβ
)

, ρ2 = ρ̄
(
1+ 1

2 cρ
)

,
(2.2)
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where
ᾱ= 1

2 (α1 +α2) , β̄= 1
2

(
β1 +β2

)
, ρ̄ = 1

2

(
ρ1 +ρ2

)
. (2.3)

Next, we introduce the intermediate variables a, b, c and d , which we write in terms
of the contrast parameters cα, cβ and cρ , viz.

a = ρ̄ã = ρ̄ (
cρ − d̃V̂ 2sin2 (θ)

)
, b = ρ̄b̃ = ρ̄ (

1+ 1
2 cρ − d̃V̂ 2sin2 (θ)

)
,

c = ρ̄c̃ = ρ̄ (
1− 1

2 cρ + d̃V̂ 2sin2 (θ)
)

, d = ρ̄β̄2d̃ = ρ̄β̄2
(
4cβ+2cρ

(
1+ 1

4 c2
β

))
,

(2.4)

with generalized angle of incidence θ, and where we use the shorthand notation
V̂ = β̄/ᾱ. Also note the use of the ˜ symbol in equation 2.4 to indicate dimensionless
variables.

In equation 2.4 we have introduced the generalized angle of incidence θ, which is
defined implicitly using Snell’s law, viz

sin(θ)

ᾱ
= sin(i1)

α1
= sin(i2)

α2
= sin

(
j1

)
β1

= sin
(

j2
)

β2
, (2.5)

where i1 and i2 are the angles of incidence and refraction of the P-waves in
the medium above and below the interface, respectively, while j1 and j2 are
the angles of incidence and refraction of the S-waves in the medium above and
below the interface. Using equations 2.5, along with the trigonometric identity
sin2 (θ)+cos2 (θ) = 1, we write the associated cosine terms as

cos(i1) =
√

1− (
1− 1

2 cα
)2

sin2 (θ), cos
(

j1
)=√

1− V̂ 2
(
1− 1

2 cβ
)2

sin2 (θ),

cos(i2) =
√

1− (
1+ 1

2 cα
)2

sin2 (θ), cos
(

j2
)=√

1− V̂ 2
(
1+ 1

2 cβ
)2

sin2 (θ).
(2.6)

Next, we introduce the additional intermediate variables

E = ρ̄

ᾱ
Ẽ = ρ̄

ᾱ

(
b̃

cos(i1)

1− cα/2
+ c̃

cos(i2)

1+ cα/2

)
, F = ρ̄

V̂ ᾱ
F̃ = ρ̄

V̂ ᾱ

(
b̃

cos
(

j1
)

1− cβ/2
+ c̃

cos
(

j2
)

1+ cβ/2

)
,

G = ρ̄G̃ = ρ̄
(

ã − d̃V̂
cos(i1)

1− cα/2

cos
(

j2
)

1+ cβ/2

)
, H = ρ̄H̃ = ρ̄

(
ã − d̃V̂

cos(i2)

1+ cα/2

cos
(

j1
)

1− cβ/2

)
,

D = EF +G H p2 = ρ̄2

ᾱ2

(
Ẽ F̃

V̂
+G̃ H̃sin2 (θ)

)
,

(2.7)
where we have once again indicated dimensionless variables with the ˜ symbol.
Finally, using equations 2.2, 2.4, 2.6 and 2.7, the Zoeppritz PP-reflection coefficient
for waves coming from above equals

R∪
PP

(
sin(θ) ,cα,cβ,cρ

)=
(
b̃

cos(i1)

1− cα/2
− c̃

cos(i2)

1+ cα/2

)
F̃

V̂
−

(
ã + d̃V̂

cos(i1)

1− cα/2

cos
(

j2
)

1+ cβ/2

)
H̃sin2 (θ)

Ẽ F̃

V̂
+G̃ H̃sin2 (θ)

.

(2.8)
As expected, R∪

PP

(
sin(θ) ,cα,cβ,cρ

)
is dimensionless, and only depends on the
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dimensionless variables cα, cβ, cρ , V̂ , as well as the angle sin(θ). In a similar way,
the expressions for the remaining reflection and transmission coefficients can be
found.

The goal of our work is to find accurate approximations of the Zoeppritz reflection
and transmission coefficients. To do this, we begin by noting that cα, cβ, cρ
and sin(θ) all have a magnitude smaller than 1 for normal seismic applications.
Therefore, a natural approximation is given by taking the Taylor expansion of
equation 2.8 with respect to cα, cβ, cρ and sin(θ). For a function of multiple
variables, the Taylor expansion is given by

R∪
PP

(
sin(θ) ,cα,cβ,cρ

)≈ ∑
n,m,k,l

1

n!m!k !l !

d n+m+k+l R∪
PP

d(sin(θ))ndcm
α dck

β
dc l

ρ

∣∣∣∣∣
(0)

sinn (θ)cm
α ck

βc l
ρ , (2.9)

where the argument |(0) is used as shorthand for sin(θ) = 0, cα = 0, cβ = 0 and
cρ = 0. As the Zoeppritz equations are well-behaved up to the critical angle
sin(θc ) = ᾱ/max(α1,α2), we know that the Taylor series of equation 2.9 will converge
to RPP for angles θ < θc , given enough terms. For ease of interpretation, we order
the terms of equation 2.9 in terms of the power n of the sinn (θ) term and the total
power λ= m +k + l of the contrast terms cm

α , ck
β and c l

ρ , hence

R∪
PP

(
sin(θ) ,cα,cβ,cρ

)≈ N∑
n=0

Λ∑
λ=0

(
R̃∪

PP

)n
λ, (2.10)

with

(
R̃∪

PP

)n
λ =

λ∑
m=0

λ−m∑
k=0

1

n!m!k ! (λ−k −m)!

d n+λR∪
PP

d(sin(θ))ndcm
α dck

β
dc(λ−k−m)

ρ

∣∣∣∣∣∣
(0)

sinn (θ)cm
α ck

βc(λ−k−m)
ρ .

(2.11)
While equation 2.11 is difficult to evaluate by hand, by using mathematical software
such as Maple it is straightforward to calculate the necessary terms. The first few
terms of equation 2.11 are given by

(
R̃∪

PP

)0
1 =

1

2

(
cα+ cρ

)
,

(
R̃∪

PP

)0
2 = 0,

(
R̃∪

PP

)0
3 =−1

8
cαcρ

(
cα+ cρ

)
,(

R̃∪
PP

)2
1 =

(
1

2
cα−2V̂ 2 (

cρ +2cβ
))

sin2 (θ) ,
(
R̃∪

PP

)2
2 =

(
V̂ 3(cρ +2cβ

)2 − 1

4
V̂ c2

ρ

)
sin2 (θ) ,(

R̃∪
PP

)4
1 =

1

2
cαsin4 (θ) , . . .

(2.12)
Also note that

(
R̃∪

PP

)n
λ = 0 for odd values of n, as we know that R∪

PP is an even
function with respect to θ (meaning that it contains no sinn (θ) terms for odd values
of n).

Let us now examine the terms of equation 2.11 in more detail. We begin by writing
the two-term Shuey approximation, which, using the notation used in this paper, is
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denoted as

R∪
PP

(
sin(θ) ,cα,cβ,cρ

)≈ 1

2

(
cα+ cρ

)+(
1

2
cα−2V̂ 2 (

cρ +2cβ
))

sin2 (θ) . (2.13)

However, this is exactly equal to the approximation given by taking N = 2 and Λ= 1
in equation 2.10. Continuing in this manner, we examine the three-term Shuey
approximation, which can be written as

R∪
PP

(
sin(θ) ,cα,cβ,cρ

)≈ 1

2

(
cα+ cρ

)+(
1

2
cα−2V̂ 2 (

cρ +2cβ
))

sin2 (θ)+1

2
cα

(
tan2 (θ)− sin2 (θ)

)
.

(2.14)
We note that the Taylor expansion of tan2 (θ)− sin2 (θ) is given by

tan2 (θ)− sin2 (θ) ≈ sin4 (θ)+ sin6 (θ)+ sin8 (θ)+ . . . , (2.15)

which, once again, matches the approximation given in equation 2.10 for N = 8 and
Λ= 1. Therefore, we conclude that the approximation presented here can be viewed
as an extension to Shuey’s approximation.

In a similar way, we can construct approximations to the rest of the Zoeppritz
equations. For example, the SP-reflection coefficient R∪

SP , which describes the
conversion of P-waves to S-waves for waves coming from above, is given by

R∪
SP =−2

(
ãb̃ + c̃ d̃V̂

cos(i2)

1+ cα/2

cos
(

j2
)

1+ cβ/2

)
cos(i1)sin(θ)(

1− cβ/2
)(

Ẽ F̃ +G̃ H̃V̂ sin2 (θ)
) . (2.16)

Once again, we take the Taylor expansion

R∪
SP

(
sin(θ) ,cα,cβ,cρ

)≈ ∑
n,λ

(
R̃∪

SP

)n
λ, (2.17)

with

(
R̃∪

SP

)n
λ =

λ∑
m=0

λ−m∑
k=0

1

n!m!k ! (λ−k −m)!

d n+λR∪
SP

d(sin(θ))ndcm
α dck

β
dc(λ−k−m)

ρ

∣∣∣∣∣∣
(0)

sinn (θ)cm
α ck

βc(λ−k−m)
ρ .

(2.18)
The first few terms of equation 2.18 are given by

(
R̃∪

SP

)1
1 =−

(
V̂

(
cρ +2cβ

)+ 1

2
cρ

)
sin(θ) ,(

R̃∪
SP

)1
2 =

(
1

4

(
2V̂ −1

)
c2
ρ +

1

4
cρ

(
V̂

(
4cβ+2cα

)− cβ
)+ V̂ cαcβ

)
sin(θ) ,(

R̃∪
SP

)3
1 =

1

4

(
V̂ 2 (

8cβ+3cρ
)+ V̂

(
2cρ +4cβ

))
sin3 (θ) .

(2.19)

In a similar way as before for the R∪
PP terms, we note that

(
R̃∪

SP

)n
λ = 0 for even values

of n, as we know that R∪
SP is an odd function with respect to θ.
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A thorough analysis of the quality of these extended Shuey approximations are
given in sections 2.3.1 and 2.4. In section 2.3.1 we examine how many terms of
the Taylor expansion are required to produce an accurate approximation. In section
2.4 we compare the approximation introduced here with well-known approximations
from literature, such as the standard Shuey’s approximation and the linearized
approximation of [3].

2.2.2. ELASTIC FULL WAVEFIELD MODELLING

We now apply these extended Shuey approximations, described in section 2.2.1, to
the elastic Full-Wavefield Modelling (FWMod) algorithm [8]. For simplicity’s sake
we consider a 1.5D medium: a laterally homogeneous, but potentially vertically
changing medium, characterised by a P- and S-wave velocity profile α (z) and
β (z), respectively, and a mass density profile ρ (z). As the medium is laterally
homogeneous, we will work in the (kx ,ω)-domain, where kx is the lateral wave
number and ω is the angular frequency. Our goal is to describe the propagation and
scattering of the P- and S-wavefields pP (kx ,ω, z) and pS (kx ,ω, z), respectively.

Figure 2.1: Schematic representation of the wavefields and operators at depth level
zn and its neighbouring levels.

Assume the existence of an interface at a depth level zn , illustrated in figure 2.1.
At a depth level z−

n right above the interface, the P- and S-wavefields are given by

pP/S
(
kx ,ω, z−

n

)= p+
P/S

(
kx ,ω, z−

n

)+q−
P/S

(
kx ,ω, z−

n

)
, (2.20)

where we have split the P- and S-wavefields pP/S
(
kx ,ω, z−

n

)
into downgoing

components, p+
P/S

(
kx ,ω, z−

n

)
, travelling towards the interface, and upgoing

components, q−
P/S

(
kx ,ω, z−

n

)
, travelling away from the interface. Similarly, at a depth

level z+
n right below the interface, the P− and S−wavefields are given by

pP/S
(
kx ,ω, z+

n

)= q+
P/S

(
kx ,ω, z+

n

)+p−
P/S

(
kx ,ω, z+

n

)
, (2.21)

where we have once again split the P- and S-wavefields into upgoing components,
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p−
P/S

(
kx ,ω, z+

n

)
, travelling towards the interface, and downgoing components,

q+
P/S

(
kx ,ω, z+

n

)
, travelling away from the interface. Note the notation used here.

Superscripts above the field quantities p and q are used to indicate the direction
of propagation, where + and − denote downwards and upwards propagation,
respectively. The characters p and q are used to denote wavefields propagating
towards or away from the interface, respectively. Finally, the subscripts P and S are
used to differentiate between P- and S-wavefields, respectively.

At the interface at z = zn , the relationships between these wavefields are given by(
q+

P
q+

S

)
=

(
R∩

PP R∩
PS

R∩
SP R∩

SS

)(
p−

P
p−

S

)
+

(
T +

PP T +
PS

T +
SP T +

SS

)(
p+

P
p+

S

)
, (2.22)

(
q−

P
q−

S

)
=

(
R∪

PP R∪
PS

R∪
SP R∪

SS

)(
p+

P
p+

S

)
+

(
T −

PP T −
PS

T −
SP T −

SS

)(
p−

P
p−

S

)
, (2.23)

where, for ease of legibility, we have omitted the dependency on (kx ,ω), as well as
the dependency on the depth level zn . For similar reasons, we also introduce the
following shorthand notation for equations 2.22 and 2.23, viz

q+ (zn) = R∩ (zn)p− (zn)+T+ (zn)p+ (zn) , (2.24)

q− (zn) = R∪ (zn)p+ (zn)+T− (zn)p− (zn) , (2.25)

which we will use throughout the rest of this paper.

In equations 2.22 and 2.23 the terms R∪
... and T +

... represent the reflection and
transmission coefficients for waves coming from above, respectively, while the terms
R∩

... and T −
... represent the reflection and transmission coefficients for waves coming

from below. In principle, it is possible to use the true Zoeppritz reflection and
transmission coefficients for these terms. We will, however, use the extended Shuey
approximations detailed in section 2.2.1 instead, to simplify the inverse problem
described in section 2.2.3. Applying the extended Shuey approximations to R∪

PP , for
example, we write

R∪
PP (kx ,ω, zn) ≈

N∑
n=0

Λ∑
λ=0

(
R̃∪

PP (zn)
)n
λ

(
ᾱ (zn)kx

ω

)n

, (2.26)

where we have used the relationship

kx = ωsin(θ (zn))

ᾱ (zn)
. (2.27)

In a similar way, we can write the approximations to the other reflection and
transmission coefficients.

Next, we write the relationship between wavefields at different depth levels, viz.(
p+

P (zn+1)
p+

S (zn+1)

)
=

(
WP (zn+1, zn) 0

0 WS (zn+1, zn)

)(
q+

P (zn)
q+

S (zn)

)
, (2.28)



2.2. THEORY

2

23

(
p−

P (zn−1)
p−

S (zn−1)

)
=

(
WP (zn−1, zn) 0

0 WS (zn−1, zn)

)(
q−

P (zn)
q−

S (zn)

)
, (2.29)

where we have introduced the propagation operators WP and WS for P- and
S-wavefields, respectively. These operators are given by

WP (zn+1, zn) = exp

−i∆z

√√√√(
ω

α
(
z+

n
) )2

−k2
x

 , WS (zn+1, zn) = exp

−i∆z

√√√√(
ω

β
(
z+

n
) )2

−k2
x

 ,

WP (zn−1, zn) = exp

−i∆z

√√√√(
ω

α
(
z−

n
) )2

−k2
x

 , WS (zn−1, zn) = exp

−i∆z

√√√√(
ω

β
(
z−

n
) )2

−k2
x

 ,

(2.30)
where ∆z is the distance between neighbouring depth levels. Note that the quantity√(

ω/α
(
z−

n
))2 −k2

x may become imaginary for certain values of ω, α
(
z−

n

)
and kx . To

avoid problems during modelling and inversion, we make the following substitution√(
ω/α

(
z−

n
))2 −k2

x → Re

[√(
ω/α

(
z−

n
))2 −k2

x

]
− i

∣∣∣∣Im

[√(
ω/α

(
z−

n
))2 −k2

x

]∣∣∣∣ (2.31)

in practice. Finally, we once again introduce shorthand notations for equations 2.28
and 2.29, viz.

p+ (zn+1) = W (zn+1, zn)q+ (zn) , (2.32)

p− (zn−1) = W (zn−1, zn)q− (zn) . (2.33)

With the building blocks of equations 2.24, 2.25, 2.32 and 2.33 in place, we
now examine the forward modelling algorithm. To initialize the algorithm, we
set all upgoing and downgoing wavefields to zero, i.e. p−,0 (zn) = p+,0 (zn) = 0.
Note the notation of p−,0 and p+,0, where we have introduced an extra number
in the superscript, which denotes how many so-called ‘round-trips’ have been
modelled. Each round-trip increases the maximum order of multiples which are
taken into account by one, up to the chosen number of round-trips to be modelled.
Furthermore, for simplicity’s sake, we assume that there are no sources within
the subsurface, only at the surface. In that case, we set p+,m (z0) = s0 for all m
round-trips, where s0 is a vector containing the source wavefield for one shot at
z = z0. Finally, we assume that there are no upgoing waves coming from below the
deepest depth level zn = zNz . Therefore, we write p−,m (

zNz

)= 0 for all m round-trips.
We then begin by computing the downgoing wavefields for the first round-trip.

Starting at zn = z0, we use equation 2.24 to write q+,1 (z0) = T+ (z0)p+,1 (z0)+
R∩ (z0)p−,0 (z0). Next, we apply the propagation operators, using equation 2.32 to
write p+,1 (z1) = W (z1, z0)q+,1 (z0). At the depth level zn = z1 we simply repeat this
process with the appropriate transmission, reflection and propagation operators. In
this way, we model the downgoing wavefield p+,1 (zn) at all depth levels.

Next, we compute the upgoing wavefield p−,1 (zn) at all depth levels. We
start at the deepest depth level zn = zNz . We then use equation 2.25 to write
q−,1 (

zNz

)= T− (
zNz

)
p−,1 (

zNz

)+R∪ (
zNz

)
p+,1 (

zNz

)
and apply the propagation operators

of equation 2.33 to write p−,1 (
zNz−1

) = W
(
zNz−1, zNz

)
q−,1 (

zNz

)
. Once again, we



2

24 2. EXTENDING SHUEY ’S APPROXIMATION USING TAYLOR EXPANSIONS

Algorithm 1: Elastic Full-Wavefield Modelling (FWMod)

Result: p+,M (zn) and p−,M (zn) for all zn .
Input: s0

1 Set p−,0 (zn) = 0;
2 for m = 1 : M do
3 Set p+,m (z0) = s0;
4 for n = 0 : Nz −1 do
5 q+,m (zn) = T+ (zn)p+,m (zn)+R∩ (zn)p−,m−1 (zn);
6 p+,m (zn+1) = W (zn+1, zn)q+,m (zn);
7 end
8 Set p−,m (

zNz

)= 0;
9 for n = Nz : -1 : 2 do

10 q−,m (zn) = T− (zn)p−,m (zn)+R∪ (zn)p+,m (zn);
11 p−,m (zn−1) = W (zn−1, zn)q−,m (zn);
12 end
13 end

continue to apply these operators to find the upgoing wavefield p−,1 (zn) at each
depth level.

We now repeat this process as many times as we wish to account for higher-order
scattering, where the scattering order is increased by one after each round-trip. The
full process for finding the wavefields p+,M (zn) and p−,M (zn) for up to M scattering
orders is illustrated in algorithm 1.

2.2.3. ELASTIC FULL WAVEFIELD MIGRATION

Next, we examine the elastic FWM algorithm [9], which is the inversion process
associated with the elastic FWMod algorithm described in section 2.2.2. As in section
2.2.2, we limit our analysis to the 1.5D case.

Consider a situation with known, P- and S-wave measurement data d (kx ,ω) at
the surface. We also assume the source wavefield s0 and the propagation operators
W (zn+1, zn) and W (zn−1, zn) to be known. Our goal is to recover the contrast
parameters cα (zn), cβ (zn) and cρ (zn) at all depth levels zn .

To achieve this, we first define a cost function J , which measures the mismatch
between the measured data d (kx ,ω) and the forward modelled data at the surface
after M roundtrips, p−,M (kx ,ω, z0), viz.

J = 1

2

∑
kx

∑
ω

∣∣d (kx ,ω)−p−,M (kx ,ω, z0)
∣∣2

. (2.34)

To retrieve the contrast parameters, we now apply a gradient-descent algorithm with
respect to these parameters to minimize J . Taking the gradient of the cost function
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Algorithm 2: Elastic Full-Wavefield Migration (FWM)

Result: cα (zn), cβ (zn) and cρ (zn) for all zn .
Input: d, s0, W (zn+1, zn) and W (zn−1, zn) for all zn .

1 for m = 1 : M do
2 Use algorithm 1 to calculate p+,M (zn) and p−,M (z0);
3 for n = 1 : Nz do
4 for c ∈ cα,cβ,cρ do
5 Construct the matrices ÇR∪

c(zn ), ÇR∩
c(zn ), ÇT+

c(zn ) and ÇT−
c(zn );

6 Calculate the gradient
ÇJ

Çc (zn)
;

7 end
8 end

9 Calculate the wavefield perturbation ∆p−,M (z0);
10 Calculate γ;
11 for c ∈ cα,cβ,cρ do

12 Update the contrasts using cnew (zn) = cold (zn)+γ ÇJ

Çc (zn)
;

13 end
14 end

with respect to the contrast parameter cα at depth level zn , for example, yields

ÇJ

Çcα (zn)
=−∑

kx

∑
ω

Re

[
Çp−,M (kx ,ω, z0)

Çcα (zn)

H

e (kx ,ω)

]
, (2.35)

where e (kx ,ω) = d (kx ,ω)−p−,M (kx ,ω, z0).

We now examine the derivative of p−,M (kx ,ω, z0) with respect to cα (zn). To
evaluate this, we first examine the contribution of a scatterer located at the depth
level z = zn to the forward modelled wavefield p−,M (kx ,ω, z0), viz

p−,M (z0; zn) = W̄− (z0, zn)
[
R∪ (zn)p+,M (zn)+T− (zn)p−,M (zn)

]+
W̄∪ (z0, zn)

[
R∩ (zn)p−,M (zn)+T+ (zn)p+,M (zn)

]
,

(2.36)

where we have assumed p−,M−1 (zn) ≈ p−,M (zn). In equation 2.36 we have also
introduced the generalized propagation operators W̄− (z0, zn) and W̄∪ (z0, zn). These
operators are constructed by applying sequences of propagation, reflection and
transmission operators and are defined as

W̄− (
z j , zi

)= j+1∏
m=i−1

[W (zm−1, zm)T− (zm)]W (zi−1, zi ) ∀ j < i , (2.37)

W̄+ (
z j , zi

)= j−1∏
m=i+1

[W (zm+1, zm)T− (zm)]W (zi+1, zi ) ∀ j > i , (2.38)



2

26 2. EXTENDING SHUEY ’S APPROXIMATION USING TAYLOR EXPANSIONS

W̄∪ (z0, zn) =
Nz∑

m=n+1
W̄− (z0, zm)R∪ (zm)W̄+ (zm , zn). (2.39)

If we assume that the contrast parameters are independent at each depth level, we
can write

Çp−,M (kx ,ω, z0)

Çcα (zn)
= Çp−,M (z0; zn)

Çcα (zn)
, (2.40)

with

Çp−,M (z0; zn)

Çcα (zn)
= W̄− (z0, zn)

[
ÇR∪

cα(zn ) (zn)p+,M (zn)+ÇT−
cα(zn ) (zn)p−,M (zn)

]
+

W̄∪ (z0, zn)
[
ÇR∩

cα(zn ) (zn)p−,M (zn)+ÇT+
cα(zn ) (zn)p+,M (zn)

]
,

(2.41)
where ÇR∪

cα(zn ), ÇR∩
cα(zn ), ÇT+

cα(zn ) and ÇT−
cα(zn ) are 2×2 matrices. These matrices

are constructed by calculating the derivatives of the approximate reflection and
transmission coefficients introduced in section 2.2.1. For example, the PP-component
of the matrix ÇR∪

cα(zn ) is given by

ÇR∪
cα(zn ) (zn)

∣∣∣
11

= ÇR∪
PP (kx ,ω, zn)

Çcα (zn)
=

N∑
n=0

Λ∑
λ=0

Ç
(
R̃∪

PP (zn)
)n
λ

Çcα (zn)

(
ᾱ (zn)kx

ω

)n

, (2.42)

with similar definitions for the other components. Using equations 2.41 and 2.42 we
can now evaluate equation 2.35 for all depth levels zn .

In a similar fashion, we can calculate the gradients with respect to cβ (zn) and
cρ (zn). Using the full gradient, we calculate the linearized wavefield perturbation at
the surface, viz.

∆p−,M (z0) =
∑
n

∑
c∈cα,cβ,cρ

ÇJ

Çc (zn)

Çp−,M (z0; zn)

Çc (zn)
. (2.43)

Finally, using equation 2.43, we calculate the update to the contrast parameters using

cnew (zn) = cold (zn)+γ ÇJ

Çc (zn)
, (2.44)

for c ∈ cα,cβ,cρ , where the (real) constant γ is given by

γ=

∑
kx

∑
ω

Re
[
∆p−,M (kx ,ω, z0)He (kx ,ω)

]
∑
kx

∑
ω

∣∣∆p−,M (kx ,ω, z0)
∣∣2 . (2.45)

Repeating the process described above for as many iterations as desired, one can
retrieve the contrast parameters cα (zn), cβ (zn) and cρ (zn) at all depth levels zn . This
process is summarized in algorithm 2
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2.3. NUMERICAL RESULTS
This section is, once again, split into three parts. First, in section 2.3.1, we examine
how many terms of the extended Shuey’s approximation introduced in section 2.2.1
are required to accurately approximate the Zoeppritz equations. Next, in section
2.3.2, we compare the forward modelled wavefields using the FWMod algorithm of
2.2.2 to true, synthetic, data generated using an elastic Kennett algorithm. Finally,
in section 2.3.3, we examine the inversion results of the elastic FWM algorithm of
section 2.2.3.

2.3.1. EXTENDED SHUEY ’S APPROXIMATIONS

We begin by examining the quality of the approximation of equation 2.26 of section
2.2.1. Specifically, we are interested in how many terms n ≤ N and λ ≤Λ of the
Taylor expansion are required for a good approximation. The Taylor expansions of
R∪

PP and R∪
SP for different values of N and Λ for both a low- and a high-contrast

interface are shown in figure 2.2. The associated medium parameters used for the
low- and high-contrast interface are displayed in table 2.1.

From the results of figure 2.2 we can draw a number of conclusions. First of all,
we see that increasing N and Λ improves the approximation up to the critical angle,
as we would expect. If the contrasts at the interface are low, we see that the quality
of the approximation is mostly determined by the number of sinn (θ) terms N taken
into account. By contrast, if the contrasts are high, we see that the quality is mostly
determined by the number of contrast terms Λ taken into account.

In general, we conclude that, in order to obtain a high-quality approximation,
one should choose a value of N > 2, as well as a value of Λ> 1, at the very least,
especially for interfaces with high contrasts. In this case, the extended Shuey’s
approximation yields reasonable results for both R∪

PP and R∪
SP . Note that, while

figure 2.2 only shows the results for R∪
PP and R∪

SP , a similar analysis has been
performed for the other reflection and transmission coefficients. These results can
be found in the appendix.

2.3.2. ELASTIC FWMOD

Next, we examine the results of the elastic FWMod algorithm, as described in
section 2.2.2. To benchmark the method, we compare the results to synthetic data
generated using an elastic Kennett algorithm [10], which takes the full, Zoeppritz,
reflection and transmission coefficients into account. The medium parameters used
are equivalent to the high-contrast scenario described in table 2.1. Note that, as we
know that the approximation presented in section 2.2.1 only holds up to the critical
angle θc , data corresponding to angles θ > 0.8 ·θc have been removed from the data.

In figures 2.3 and 2.4 we have displayed the difference between the forward
modelled data and the true, synthetic, data at the surface for P- and S-waves,
respectively. From these figures, we see similar behaviour as in figure 2.2. The
difference between the true data at the surface and the forward modelled data
decreases as N and Λ increase. Once again, we see that high-quality results are only
achieved for N > 2 and Λ> 1.
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Table 2.1: Parameters figure 2.2
Low contrast High contrast
α1 = 1500 m/s α2 = 1800 m/s α1 = 1500 m/s α2 = 3000 m/s
β1 = 750 m/s β2 = 1000 m/s β1 = 750 m/s β2 = 1600 m/s
ρ1 = 1000 m/s ρ2 = 1400 m/s ρ1 = 1000 m/s ρ2 = 1700 m/s

This conclusion is supported by the plots of the cost function J , seen in the
top-right corner of figures 2.3 and 2.4. In these plots we see that the cost function
sharply decreases up to N = 4, after which it remains more or less constant. Also, we
see a considerable improvement when comparing the curves for Λ= 1 (blue lines) to
the curves for Λ= 2 (red lines).

2.3.3. ELASTIC FWM

Finally, we examine the results of the FWM algorithm using the extended Shuey
approximations, as described in section 2.2.3. We apply the FWM algorithm to
synthetic data, generated using the same elastic Kennett algorithm as we used in
section 2.3.2 for the high-contrast case of table 2.1. The results of this process are
shown in figure 2.5.

From this figure, we initially conclude that the FWM algorithm recovers the
contrasts to a reasonable accuracy, irrespective of the value of N and Λ chosen.
Looking closer, however, we notice that increasing the value of N to at least N = 4
improves the result somewhat. From the figures of the contrasts, we see a slightly
improved recovery of the ground truth for N = 4 compared to N = 2. Also, examining
the cost function (displayed in the top-right corner of figure 2.5), we see that the
cost function still decreases between N = 2 and N = 4.

Also note the case N = 0,Λ= 1, displayed as blue lines in the plots on the left-hand
side of figure 2.5. This case is of special interest, as it represents the result of
applying conventional, angle-independent, acoustic FWM to the data. Note that, in
this case, the contrasts cα and cρ are impossible to separate. This can be seen in
figure 2.5, where the results for cα and cρ are identical for the acoustic result. Also,
we see that cβ cannot be recovered in this case. These effects may lead to artefacts,
which can be seen in the area between the two reflectors, as well as the area below
the lowest reflector. While some artefacts are also visible for the other cases, they
are reduced compared to the acoustic result.

Finally, we note that, in this case, taking Λ> 1 does not appear to improve the
results significantly. This is most likely due to the fact that, due to the band-limitation
of the source wavefield, it is impossible to recover the sharp interfaces present in
the medium. Instead, a spread-out, band-limited approximation of the contrasts is
recovered. As this reduces the value of the contrasts, higher-order powers of the
contrasts do not noticeably impact the result. In cases where this band-limitation is
compensated for, however, taking Λ> 1 will improve the results.
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2.4. DISCUSSION

In this section, we compare the extended Shuey’s approximations derived in
this paper to two existing sets of approximations in literature. The first set of
approximations we consider are the two- and three-term Shuey approximations,
given by

R∪
PP,Shue y2 ≈

1

2

(
cα+ cρ

)+(
1

2
cα−2V̂ 2 (

cρ +2cβ
))

sin2 (θ) , (2.46)

R∪
PP,Shue y3 ≈

1

2

(
cα+ cρ

)+(
1

2
cα−2V̂ 2 (

cρ +2cβ
))

sin2 (θ)+ 1

2
cα

(
tan2 (θ)− sin2 (θ)

)
. (2.47)

Secondly, we also consider the linearized approximations of Aki and Richards [3],
which are given by

R∪
PP,Aki ≈

1

2

(
1−4V̂ 2sin2 (θ)

)
cρ + 1

2cos2 (i )
cα−4V̂ 2sin2 (θ)cβ, (2.48)

R∪
SP,Aki ≈− sin(θ)

2cos
(

j
) [

cρ −2
(
V̂ 2sin2 (θ)− V̂ cos(i )cos

(
j
))(

cρ +2cβ
)]

, (2.49)

where we have introduced the average P-wave angle i = (i1 + i2)/2 and the average
S-wave angle j = (

j1 + j2
)

/2, following the notation of section 2.2.1.

The reflection coefficients for the approximations under consideration at different
angles are shown in figure 2.6. From this figure, we can draw a number of
conclusions. First of all, we notice that for high contrasts, both the 2- and
3-term Shuey’s approximations, shown in blue, as well as the linearized Aki-Richards
approximations, shown in red, fail for angles up to the critical angle. In this case,
one requires non-linear terms with respect to the contrasts to properly approximate
the reflection coefficients, which are absent in these approximations. This can be
seen most clearly in the bottom right figure of figure 2.6, where we see that one
requires third-order terms with respect to the contrasts to accurately approximate
the reflection coefficient up to the critical angle.

Secondly, we see that the standard, 2-term Shuey approximation (solid blue line),
as well as the equivalent approximation for R∪

SP using N = 1,Λ = 1, only holds
for small contrasts and angles far from the critical angle. While this behaviour
is expected, one should note the very small range of angles for which this
approximation holds, especially for the R∪

SP term. This limits the applicability of this
approximation for forward and inverse modelling, where good performance of the
approximation over a range of angles is required.

Finally, we note that the linearised Aki-Richards approximation (solid red line)
performs very well for low-contrast scenarios, showing a very good approximation
for all angles. This is due to the 1/cos2 (i ) and 1/cos

(
j
)

terms in equations 2.48 and
2.49. While these terms lead to a high-quality approximation, they also introduce
critical points in the approximations, making them difficult to invert for directly. The
extended Shuey’s approximations of this paper avoid this problem, while showing
similar behaviour up to the cutoff angle θc for N ≥ 4 and Λ≥ 2.
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2.5. CONCLUSION
In this paper, we present an alternative set of approximations to the Zoeppritz
equations for the elastic reflection and transmission coefficients, which we call
the extended Shuey approximations. We show that these approximations can
be applied to the elastic FWMod forward modelling algorithm as well as the
elastic FWM migration algorithm, where we have shown that using the extended
Shuey approximations improves the forward and inverse modelling results compared
to using the standard Shuey approximations. Finally, we have compared the
extended Shuey approximations to the conventional approximations in literature,
where we have shown that the extended Shuey approximations achieve comparable
performance in cases where the contrasts are low, up to the critical angle, and
achieve better results in cases with large contrasts. Based on these results, we
conclude that the extended Shuey approximations presented in this paper are a
useful addition to the existing approximations to the Zoeppritz equations, specifically
in their application in forward and inverse modelling.
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2.7. APPENDIX
In this section we show the approximations to the full set of reflection and
transmission coefficients. Figure 2.7 shows the four terms of R∪, figure 2.8 shows
the four terms of R∩, figure 2.9 shows the four terms of T+ and figure 2.10 shows
the four terms of T−.
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Figure 2.2: A comparison of the extended Shuey approximation to the exact Zoeppritz
equations. On the left-hand side, results for a low-contrast interface are
shown, while the right-hand side shows the results for a high-contrast
interface. The medium parameters used for both interfaces are displayed
in table 2.1. Within each figure, the number of contrast terms Λ taken
into account is constant, while the different colored lines represent the
results for different values of N . These results are compared to the
true, Zoeppritz, equations, which are represented by the solid black lines.
Also note the dashed vertical lines, which indicate the maximum angle
θmax = 0.8 ·θc up to which the approximation holds.
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Figure 2.3: Comparison of the FWMod results to true, synthetic, data for P-waves. In
the top-left corner the synthetic data, generated using an elastic Kennett
algorithm, is displayed. The top-centre image shows the underlying
model parameters used. In the top-right corner the cost function J for
the P-waves is displayed for different values of N and Λ after 5 iterations.
The remaining figures show the data misfit between the synthetic data
and the forward modelled data at the surface for different values of N
and Λ after 5 iterations. Note that these figures have been clipped to a
value of 10% of the maximum value of the data.
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Figure 2.4: Comparison of the FWMod results to true, synthetic, data for S-waves. In
the top-left corner the synthetic data, generated using an elastic Kennett
algorithm, is displayed. The top-centre image shows the underlying
model parameters used. In the top-right corner the cost function J for
the S-waves is displayed for different values of N and Λ after 5 iterations.
The remaining figures show the data misfit between the synthetic data
and the forward modelled data at the surface for different values of N
and Λ after 5 iterations. Note that these figures have been clipped to a
value of 10% of the maximum value of the data.
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Figure 2.5: Results of the FWM method after 30 iterations, applied to synthetic data
generated using an elastic Kennett algorithm. The underlying medium
parameters are displayed in table 2.1. On the left-hand side, the results
for cα, cβ and cρ are displayed. The band-limited, ground truth contrasts
are displayed in black, with the results for different values of N and Λ

displayed in different colors. In the top-right corner, the cost function J
after 30 iterations is displayed for different values of N and Λ. Finally,
the data residual for both P− and S−waves after 30 iterations is displayed
in the centre-right and bottom-right figures, respectively, for N = 4 and
Λ= 1.
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Figure 2.6: Comparison of the extended Shuey approximations with the standard two-
and three-term Shuey approximations and the linearised Aki-Richards
approximations. On the left-hand side the PP-reflection coefficients are
shown for a low and high contrast case. The parameters used are given
in table 2.1. On the right-hand side, the SP-reclection coefficients are
shown.
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Figure 2.7: A comparison of the extended Shuey approximation to the exact
Zoeppritz equations for R∪. The left-most column shows the 1,1-element,
which corresponds to the PP-term. The centre-left column shows the
1,2-element, which corresponds to the PS-term. The centre-right column
shows the 2,1-element, which corresponds to the SP-term. Finally, the
right-most column shows the 2,2-element, which corresponds to the
SS-term. The medium parameters used for the interface correspond to
the low-contrast parameters displayed in table 2.1. Within each figure,
the number of contrast terms Λ taken into account is constant, while
the different colored lines represent the results for different values of
N . These results are compared to the true, Zoeppritz, equations, which
are represented by the solid black lines. Also note the dashed vertical
lines, which indicate the maximum angle θmax = 0.8 ·θc up to which the
approximation holds.
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Figure 2.8: Same as figure 2.7, but for the R∩ terms.

Figure 2.9: Same as figure 2.7, but for the T+ terms.
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Figure 2.10: Same as figure 2.7, but for the T− terms.
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3
INCLUDING CONVERTED WAVES

USING EXTENDED SHUEY ’S

APPROXIMATIONS IN ELASTIC

FULL-WAVEFIELD MIGRATION

The phenomenon of elastic wave conversions, where acoustic, pressure (P-) waves
are converted to elastic, shear (S-) waves, and vice-versa, is commonly disregarded
in seismic imaging. This can lead to lower-quality images in regions with strong
contrasts in elastic parameters. While a number of methods exist that do take wave
conversions into account, they either deal with P- and S-waves separately, or are
computationally expensive, as is the case for elastic Full-Waveform Inversion. In this
paper an alternative approach to taking converted waves into account is presented by
extending Full Wavefield Migration (FWM) to account for wave conversions. FWM is
a full-wavefield inversion method based on the so-called WRW model in the context
of seismic imaging. This WRW model describes wave propagation and scattering in
heterogeneous media in terms of convolutional propagation and reflection operators in
the space-frequency domain. By applying these operators recursively, multi-scattering
data can be modelled. The WRW model is used by the FWM algorithm to reconstruct
the reflection properties of the subsurface (i.e. the ‘image’). In this paper, the
FWM method is extended by accounting for wave conversions due to angle-dependent
reflections and transmissions using an extended version of Shuey’s approximation. The
resulting algorithm is tested on two synthetic models to give a proof of concept. The
results of these tests show that the proposed extension can model wave conversions
accurately and yields better inversion results than applying conventional, acoustic
FWM.

This chapter is based on the manuscript: L. Hoogerbugge, J. van der Neut, K.W.A. van Dongen and
D.J. Verschuur. "Including converted waves using Shuey’s approximation in elastic Full-Wavefield
Migration". Submitted to: Geophysical Journal International
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3.1. INTRODUCTION

Although the earth is an elastic medium in reality, most of the time seismic imaging
methods have treated it as an acoustic medium, due to the challenges in true elastic
modelling. In doing so, many significant results have been achieved. However,
certain wave propagation effects in the earth are neglected by treating it as an
acoustic medium. Specifically, acoustic methods disregard wave conversions, where
pressure (P-) waves are converted to shear (S-) waves and vice versa, as well as the
propagation of S-waves through the medium.

Two areas in seismic imaging where these aforementioned effects play a particular
role are areas with large contrasts and areas below so-called ‘gas clouds’. In the
presence of large contrasts, such as around salt structures, the amplitudes of the
converted waves may become large, which necessitates a method that takes these
conversions into account [1]. Gas clouds, by contrast, block the propagation of
P-waves, but not S-waves [2]. Therefore, by incorporating the propagation of
S-waves in the imaging process, higher quality images of structures below these
areas may be obtained.

At time of writing, there are two main strategies to take wave conversions into
account. The first strategy is to perform migration for P- and S-waves separately [3,
4], by changing the velocity profile used. The advantage of these techniques is that
they are computationally inexpensive and relatively easy to implement. However,
these techniques examine each mode separately, where ideally one would like to
examine all modes in an integrated framework. The second strategy is to use a full
wavefield technique such as elastic Full-Waveform Inversion (FWI) [5, 6], which takes
all elastic effects into account at once. Although these techniques are very powerful,
they are very computationally expensive, and run the risk of getting trapped in local
minima if the starting model is far from the ground truth.

In this paper, we present a third approach based on an extension of acoustic
Full-Wavefield Migration (FWM) to include wave conversions. This can be seen as
an approach in-between the two aforementioned strategies. Acoustic FWM is a
migration technique introduced by Berkhout [7] and expanded on by others [8–10].
It is based on recursively applying one-way propagation and reflection operators to
describe the propagation and scattering of the full wavefield, including all multiples,
within the subsurface. It is closely related to the WRW method [11], which can be
seen as the primaries-only version of FWM.

The potential for extending acoustic FWM to include converted waves has been
recognized from the start [12], as the technique has two main properties which
makes it a good candidate for dealing with wave conversions. First, as FWM
is an integral-based migration technique, in contrast to the finite-difference-based
techniques of FWI, its requirements for the grid size used when describing S-wave
propagation are less stringent. Secondly, as the framework has been developed
specifically to deal with multiple scattering effects, it can naturally describe multiple
wave conversions.

The main challenge in extending acoustic FWM to include wave conversion effects
is the angle-dependent nature of the elastic transmission and reflection coefficients.
Traditionally, angle-dependent reflection and transmission effects are taken into
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account in FWM by inverting for each angle separately [9]. However, when
taking wave conversion effects into account, this approach leads to a significant
over-parametrisation of the reflection and transmission coefficients, as it would
require inverting each of the 16 possible reflection and transmission coefficients
separately for every angle.

Therefore, to avoid this over-parametrisation, an extended version of Shuey’s
approximation, described in chapter 2, is used to link the different reflection and
transmission coefficients at all angles. As an additional important benefit, these
extended Shuey’s approximations reduce the non-linearity present in the full elastic
reflection and transmission coefficients, making the resulting problem easier to
invert. By combining these approximations with the extension of the framework of
FWM to the elastic case [12], we introduce a robust, elastic FWM algorithm which
accounts for wave conversions and S-wave propagation in a controlled manner.

The remaining part of this paper consists of four sections. First, the elastic FWM
algorithm is described in detail in the Theory section. Next, some preliminary results
using this method are presented in the Results section. Some general remarks on
the presented method are then discussed in the Discussion section. Finally, the
conclusions of this paper are presented in the Conclusions section.

3.2. THEORY
In this section, which consists of four parts, we present the theoretical framework
for the extension of two-dimensional FWM to account for converted waves. First, we
examine the extension of the acoustic FWM forward modelling scheme to include
converted waves. Next, we examine the propagation operators for P- and S-waves in
detail. Then, we do the same for the reflection and transmission operators. Finally,
we examine the inversion process.

3.2.1. FORWARD MODELLING

To include converted waves in the forward modelling algorithm, we follow the
structure used by Berkhout [12] and begin by examining the wavefields at an
interface located at a depth level zn . A schematic representation of this situation is
shown in figure 3.1.

At a location right above the interface, which we denote by
(
xi , z−

n

)
, the P-wavefield

is given by
pP

(
xi , z−

n

)= p+
P

(
xi , z−

n

)+q−
P

(
xi , z−

n

)
, (3.1)

where we have split the P-wavefield pP
(
xi , z−

n

)
into a downgoing component,

p+
P

(
xi , z−

n

)
, travelling towards the interface, and an upgoing component, q−

P

(
xi , z−

n

)
,

travelling away from the interface. Note that we will work in the temporal Fourier
domain throughout this paper, so for example pP

(
xi , z−

n

)= pP
(
xi , z−

n ,ω
)
, with ω the

(angular) frequency.
In a similar way, at a location

(
xi , z+

n

)
right below the interface, the P-wavefield is

given by
pP

(
xi , z+

n

)= p−
P

(
xi , z+

n

)+q+
P

(
xi , z+

n

)
, (3.2)



3

44 3. INCLUDING CONVERTED WAVES IN ELASTIC FULL-WAVEFIELD MIGRATION

Figure 3.1: Schematic representation of the wavefields and operators at the depth
level zn and the neighbouring levels.

where we have once again split the P-wavefield into an upgoing component,
p−

P

(
xi , z+

n

)
, travelling towards the interface, and a downgoing component, q+

P

(
xi , z+

n

)
,

travelling away from the interface.

Repeating the aforementioned process for the S-wavefield, we write

pS
(
xi , z−

n

)= p+
S

(
xi , z−

n

)+q−
S

(
xi , z−

n

)
, (3.3)

pS
(
xi , z+

n

)= p−
S

(
xi , z+

n

)+q+
S

(
xi , z+

n

)
. (3.4)

Note the notation used. Superscripts are used to indicate the direction of propagation,
where + and − denote downwards and upwards propagation, respectively. The
letters p and q are used to denote propagation towards or away from the interface,
respectively. Finally, the subscripts P and S are used to differentiate between P- and
S-wavefields, respectively.

We are now interested in the relationship between these different wavefields. As a
first step, we assume that our modelling takes place on a rectangular grid, meaning
that there are Nz equally-spaced depth levels with a spacing of ∆z, and each depth
level consists of Nx equally-spaced grid points with a spacing of ∆x. We then define
a vector p+

P

(
z−

n

)
of length Nx , with elements p+

P

(
z−

n

)∣∣
i = p+

P

(
xi , z−

n

)
, where the xi ’s

are the lateral grid points at the depth level zn . In the same way, we define the
corresponding vectors for the other wavefield components introduced in equations
3.1-3.4.

We now define the relationship between the different wavefield components at a
depth level zn . Once again following the formulation used by Berkhout [12], we
use convolutional reflection and transmission operators, denoted as R······ and T······,
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respectively, to write(
q+

P

(
z+

n

)
q+

S

(
z+

n

) )
=

(
R∩

PP R∩
PS

R∩
SP R∩

SS

)(
p−

P

(
z+

n

)
p−

S

(
z+

n

) )
+

(
T+

PP T+
PS

T+
SP T+

SS

)(
p+

P

(
z−

n

)
p+

S

(
z−

n

) )
, (3.5)

(
q−

P

(
z−

n

)
q−

S

(
z−

n

) )
=

(
R∪

PP R∪
PS

R∪
SP R∪

SS

)(
p+

P

(
z−

n

)
p+

S

(
z−

n

) )
+

(
T−

PP T−
PS

T−
SP T−

SS

)(
p−

P

(
z+

n

)
p−

S

(
z+

n

) )
, (3.6)

where R······ and T······ are matrices of size Nx ×Nx which relate the wavefields above
and below the interface. Note that we have dropped the zn-dependence of these
matrices for ease of legibility. These operators are described in more detail in section
3.2.3. For simplicity, we introduce the following shorthand notation for equations 3.5
and 3.6, viz.

q+ (zn) = R∩ (zn)p− (zn)+T+ (zn)p+ (zn) , (3.7)

q− (zn) = R∪ (zn)p+ (zn)+T− (zn)p− (zn) , (3.8)

which we will use throughout the rest of this paper.

Next, we examine the relationship between the wavefields at different depth levels
zn . To do this, we introduce a set of propagation operators WP/S (zn±1, zn) such that(

p+
P

(
z−

n+1

)
p+

S

(
z−

n+1

) )
=

(
WP (zn+1, zn) 0

0 WS (zn+1, zn)

)(
q+

P

(
z+

n

)
q+

S

(
z+

n

) )
, (3.9)

(
p−

P

(
z+

n−1

)
p−

S

(
z+

n−1

) )
=

(
WP (zn−1, zn) 0

0 WS (zn−1, zn)

)(
q−

P

(
z−

n

)
q−

S

(
z−

n

) )
, (3.10)

with WP/S (zn±1, zn) matrices of size Nx × Nx which describe the propagation
of waves between the depth levels zn and zn±1, and 0 the zero matrix of
size Nx × Nx . Note that we assume that there is no difference between the
propagation of upgoing and downgoing waves between two adjacent depth levels,
i.e. WP/S (zn+1, zn) = WP/S (zn , zn+1). These operators are described in more detail in
section 3.2.2. We once again introduce shorthand notation for equations 3.9 and
3.10, viz.

p+ (zn+1) = W (zn+1, zn)q+ (zn) , (3.11)

p− (zn−1) = W (zn−1, zn)q− (zn) . (3.12)

With the building blocks of equations 3.7, 3.8, 3.11 and 3.12 in place, we
now examine the forward modelling algorithm. To initialize the algorithm, we
set all upgoing and downgoing wavefields to zero, i.e. p−,0 (zn) = p+,0 (zn) = 0.
Note the notation of p−,0 and p+,0, where we have introduced an extra number
in the superscript, which denotes how many so-called ‘round-trips’ have been
modelled. Each round-trip increases the maximum order of multiples that are taken
into account by one, up to the chosen number of round-trips to be modelled.
Furthermore, for simplicity’s sake, we assume that there are no sources within
the subsurface, only at the surface. Consequently, we set p+,m (z0) = s0 for all m
round-trips, where s0 is a vector containing the source wavefield for one shot at
z = z0. Finally, we assume that there are no upgoing waves coming from below the
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deepest depth level zn = zNz . Therefore, we write p−,m
(
zNz

)= 0 for all m round-trips.

We then begin by computing the downgoing wavefields for the first round-trip.
Starting at zn = z0, we use equation 3.7 to write

q+,1 (z0) = T+ (z0)p+,1 (z0)+R∩ (z0)p−,0 (z0) . (3.13)

Next, we apply the propagation operators, using equation 3.11 to write

p+,1 (z1) = W (z1, z0)q+,1 (z0) . (3.14)

At the depth level zn = z1 we simply repeat this process with the appropriate
transmission, reflection and propagation operators. In this way, we model the
downgoing wavefield p+,1 (zn) at all depth levels.

Next, we compute the upgoing wavefield p−,1 (zn) at all depth levels. We start at
the deepest depth level zn = zNz . We then use equation 3.8 to write

q−,1 (
zNz

)= T− (
zNz

)
p−,1 (

zNz

)+R∪ (
zNz

)
p+,1 (

zNz

)
, (3.15)

and apply the propagation operators of equation 3.12 to write

p−,1 (
zNz−1

)= W
(
zNz−1, zNz

)
q−,1 (

zNz

)
. (3.16)

Once again, we continue to apply these operators to find the upgoing wavefield
p−,1 (zn) at each depth level.

We now repeat this process as many times as we wish to account for higher-order
scattering, where the scattering order is increased by one after each round-trip. The
full process for finding the wavefields p+,M (zn) and p−,M (zn) for up to M scattering
orders is illustrated in algorithm 3.

3.2.2. PROPAGATION OPERATORS

We now examine the propagation operators introduced in equations 3.9 and 3.10 in
more detail. To begin, we examine the propagation operators between a depth level
zn and zn+1. We initially assume that the P-wave velocity α (zn+1/2) and S-wave
velocity β (zn+1/2) are laterally homogeneous between zn and zn+1 and only vary
between depth levels. In that case, the propagation of the P-wavefield between these
depth levels is described in the spatial Fourier domain by [13]

p̂+
P

(
kx , z−

n+1

)= e− j kz,P (zn+1/2)∆z q̂+
P

(
kx , z+

n

)
, (3.17)

where j 2 =−1 and kz,P (zn+1/2) is given by

k2
z,P (zn+1/2) =ω2α−2 (zn+1/2)−k2

x , (3.18)
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Algorithm 3: Modeling wavefields

Result: p+,M (zn) and p−,M (zn) for all zn .
Input: s0

1 Set p−,0 (zn) = 0;
2 for m = 1 : M do
3 Set p+,m (z0) = s0;
4 for n = 0 : Nz −1 do
5 q+,m (zn) = T+ (zn)p+,m (zn)+R∩ (zn)p−,m−1 (zn);
6 p+,m (zn+1) = W (zn+1, zn)q+,m (zn);
7 end
8 Set p−,m

(
zNz

)= 0;
9 for n = Nz :1 do

10 q−,m (zn) = T− (zn)p−,m (zn)+R∪ (zn)p+,m (zn);
11 p−,m (zn−1) = W (zn−1, zn)q−,m (zn);
12 end
13 end

where kx is the spatial frequency. Note that q̂+
P

(
kx , z+

n

)
is obtained by taking the

spatial Fourier transform of the wavefield, i.e.

q̂+
P

(
kx , z+

n

)=F
{

q+
P

(
x, z+

n

)}= +∞∫
−∞

q+
P

(
x, z+

n

)
e j kx x d x. (3.19)

We now wish to write equation 3.17 in the spatial domain. Using the inverse
Fourier transform and the convolution property of the Fourier transform [14], we
obtain

p+
P

(
xi , z−

n+1

)= ∞∫
−∞

WP (xi −x, zn+1, zn) q+
P

(
x, z+

n

)
d x, (3.20)

with WP (x, zn+1, zn) defined as

WP (x, zn+1, zn) =F−1
{

e− j kz,P (zn+1/2)∆z
}

. (3.21)

Note that WP (x, zn+1, zn) is an even function with respect to x, as e− j kz,P (zn+1/2)∆z is
an even function with respect to kx . Therefore, we write

WP (xi −x, zn+1, zn) =WP (x −xi , zn+1, zn) =F−1
{

e− j kz,P (zn+1/2)∆z e j kx xi
}

. (3.22)

We now discretize equation 3.20 as follows

p+
P

(
xi , z−

n+1

)= Nx∑
j=1

WP
(
x j −xi , zn+1, zn

)
q+

P

(
x j , z+

n

)
∆x, (3.23)
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where we have used equation 3.22. Rewriting equation 3.23 using the notation of
equation 3.9 yields

p+
P

(
z−

n+1

)= WP (zn+1, zn)q+
P

(
z+

n

)
, (3.24)

where WP (zn+1, zn) is a matrix of size Nx ×Nx . Combining equations 3.23 and 3.24,
we see that the elements of the propagation operator WP (zn+1, zn) are given by

WP (zn+1, zn)|i j =WP
(
x j −xi , zn+1, zn

)
∆x, (3.25)

with WP
(
x j −xi , zn+1, zn

)
defined according to equation 3.22.

In a similar way, one can construct the S-wave propagation operator WS (zn+1, zn)
by replacing the P-wave velocity α (zn+1/2) in equation 3.18 with the S-wave velocity
β (zn+1/2), viz.

k2
z,S (zn+1/2) =ω2β−2 (zn+1/2)−k2

x , (3.26)

and following the same steps as above.
In situations where the P- or S-wave velocities are not laterally homogeneous,

we approximate the propagation operators by using the local velocity α (xi , zn+1/2)
or β (xi , zn+1/2). In this case, kz,P/S (zn+1/2) becomes laterally heterogeneous, i.e.
k2

z,P (xi , zn+1/2) = ω2α−2 (xi , zn+1/2)−k2
x . Using this heterogeneous kz,P/S (xi , zn+1/2),

we approximate the laterally heterogeneous propagation operator by extending
equation 3.22, i.e.

WP/S (x −xi , zn+1, zn) =F−1
{

e− j kz,P/S (xi ,zn+1/2)∆z e j kx xi
}

. (3.27)

This approximation is reasonable under the condition that the lateral variations in
the velocity profile are smooth. In situations where this is not the case, alternative
forms of the propagation operator can be used [15–17].

Finally, we note that evanescent waves cannot be handled within this framework.
In order to prevent these waves from creating problems within the inversion, we add
a spatial filter to remove them. This gives us the final form of equation 3.22, viz.

WP/S (x −xi , zn+1, zn) =F−1
{

e− j kz,P/S (xi ,zn+1/2)∆z e j kx xi FP/S (kx , xi , zn+1/2)
}

, (3.28)

where the spatial filter FP (kx , xi , zn+1/2) is defined as

FP (kx , xi , zn+1/2) =
{

1 ∀|kx | <ωα−1 (xi , zn+1/2) ,
0 else.

, (3.29)

with a similar definition for FS (kx , xi , zn+1/2).

3.2.3. REFLECTION AND TRANSMISSION OPERATORS

In a similar way to the previous section, we now examine the reflection and
transmission operators introduced in equations 3.5 and 3.6. As discussed in the
introduction, we use an extended version of Shuey’s approximation [18], described
in chapter 2, to couple the reflection and transmission coefficients and to reduce
the amount of non-linearity present in the full (Zoeppritz) elastic transmission and



3.2. THEORY

3

49

reflection coefficients. To start, we assume a flat reflector at the depth level zn , and
assume the incident P-wavefield to be a plane wave, striking the interface at an
angle θ. In this case, we can approximate the true PP-reflection coefficient by taking
a Taylor expansion with respect to the angle sin(θ) and the contrasts cα, cβ and cρ .
Grouping the terms of this Taylor expansion with respect to the order of the angle κ

and the total order of the contrasts λ we write

R∪
PP

(
sin(θ) ,cα,cβ,cρ

)≈ K∑
κ=0

Λ∑
λ=0

(
R̃∪

PP

)κ
λsinκ (θ), (3.30)

with

(
R̃∪

PP

)κ
λ =

λ∑
m=0

λ−m∑
k=0

1

κ!m!k ! (λ−k −m)!

dκ+λR∪
PP

d(sin(θ))κdcm
α dck

β
dc(λ−k−m)

ρ

∣∣∣∣∣∣
(0)

cm
α ck

βc(λ−k−m)
ρ ,

(3.31)
where R∪

PP is the full, Zoeppritz PP-reflection coefficient for waves from above [19]
and with the dimensionless contrast parameters cα, cβ and cρ defined as

cα = α
(
z+

n

)−α(
z−

n

)
1
2

[
α

(
z+

n
)+α(

z−
n
)] , cβ =

β
(
z+

n

)−β(
z−

n

)
1
2

[
β

(
z+

n
)+β(

z−
n
)] , cρ =

ρ
(
z+

n

)−ρ (
z−

n

)
1
2

[
ρ

(
z+

n
)+ρ (

z−
n
)] , (3.32)

where z+
n and z−

n denote depth levels just below and above the interface, respectively.
While equation 3.31 is difficult to evaluate by hand, it can be straightforwardly
evaluated using mathematical software such as Maple. Evaluating the above
expression for N = 2 and Λ= 1, for example, we find

R∪
PP

(
sin(θ) ,cα,cβ,cρ

)≈ 1

2

(
cα+ cρ

)+(
1

2
cα−2V̂ 2 (

cρ +2cβ
))

sin2 (θ) , (3.33)

which is just the conventional, 2-term Shuey approximation, written in the notation
used in this paper.

If the incoming P-wavefield is not a pure plane wave, we use the spatial Fourier
transform to decompose the wavefield into plane-wave components. In this domain,
the angle of incidence θn is given by

sin(θn) = ᾱ (zn)kx

ω
, (3.34)

where ᾱ (zn) = 1
2

[
α

(
z+

n

)+α(
z−

n

)]
. Note that the angle of incidence depends on the

depth level at which the reflector is located, as indicated by the notation θn . Using
equations 3.30 and 3.34, we approximate the action of the PP-reflection coefficient
R∪

PP on the downgoing P-wavefield at z = zn in the kx domain as

R∪
PP (kx , zn) p̂+

P (kx , zn) ≈
K∑
κ=0

Λ∑
λ=0

(
R̃∪

PP

)κ
λ

(
ᾱ (zn)

ω

)κ
kκx p̂+

P (kx , zn). (3.35)



3

50 3. INCLUDING CONVERTED WAVES IN ELASTIC FULL-WAVEFIELD MIGRATION

We now take the inverse Fourier transform of equation 3.35 to find the action of
the reflection operator in the space domain. Using the convolution property of the
Fourier transform [14] we write

F−1 {
R∪

PP (kx , zn) p̂+
P (kx , zn)

}≈ K∑
κ=0

Λ∑
λ=0

(
R̃∪

PP

)κ
λSκθ (x, zn)∗p+

P (x, zn), (3.36)

where ∗ represents a convolution with respect to the spatial coordinate x, and where

Sκθ (x, zn) =F−1
{(
ᾱ (zn)

ω

)κ
kκx

}
. (3.37)

Following the approach of section 3.2.2, we now discretize equation 3.36 to find
the discretized reflection operator

R∪
PP (zn)p+

P (zn) ≈
K∑
κ=0

Λ∑
λ=0

(
R̃∪

PP

)κ
λ (zn)Sκθ (zn)p+

P (x, zn), (3.38)

where the matrices R∪
PP (zn),

(
R̃∪

PP

)κ
λ

(zn) and Sκ
θ

(zn) are matrices of size Nx ×Nx .
Using the definition of the convolution, we see that the elements of Sκ

θ
(zn) are given

by
Sκθ (zn)

∣∣
i j = (−1)κSκθ

(
x j −xi , zn

)
∆x, (3.39)

where we have used that Sκ
θ

(
x j −xi , zn

)
is an even function for even values of κ and

an odd function for odd values of κ. Using equation 3.31 we write the matrices(
R̃∪

PP

)κ
λ

as

(
R̃∪

PP

)κ
λ (zn) =

λ∑
m=0

λ−m∑
k=0

1

κ!m!k ! (λ−k −m)!

dκ+λR∪
PP

d(sin(θ))κdcm
α dck

β
dc(λ−k−m)

ρ

∣∣∣∣∣∣
(0)

Cm
α (zn)Ck

β (zn)C(λ−k−m)
ρ (zn),

(3.40)

where the matrices Cα (zn), Cβ (zn) and Cρ (zn) are diagonal matrices of size Nx ×Nx

with elements
C... (zn)|i j = c... (xi , zn)δi j . (3.41)

We now expand the approach used above to construct the remaining parts of the
reflection and transmission operators. We write the full reflection operator R∪ (zn) as

R∪ (zn) =
(

R∪
PP R∪

PS
R∪

SP R∪
SS

)
≈

K∑
κ=0

Λ∑
λ=0

( (
R̃∪

PP

)κ
λ

Sκ
θ

(
R̃∪

PS

)κ
λ

Sκ
θ(

R̃∪
SP

)κ
λ

Sκ
θ

(
R̃∪

SS

)κ
λ

Sκ
θ

)
, (3.42)

where we have omitted the zn dependency for ease of legibility. In equation 3.42(
R̃∪

PS

)κ
λ

,
(
R̃∪

SP

)κ
λ

and
(
R̃∪

SS

)κ
λ

are matrices of size Nx ×Nx defined in a similar way as
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(
R̃∪

PP

)κ
λ

, i.e.

(
R̃∪

SP

)κ
λ (zn) =

λ∑
m=0

λ−m∑
k=0

1

κ!m!k ! (λ−k −m)!

dκ+λR∪
SP

d(sin(θ))κdcm
α dck

β
dc(λ−k−m)

ρ

∣∣∣∣∣∣
(0)

Cm
α (zn)Ck

β (zn)C(λ−k−m)
ρ (zn).

(3.43)

The remaining reflection operator R∩ (zn) and the transmission operators T+ (zn) and
T− (zn) are defined in an analogous way.

Finally, we consider the case where the reflector is not a flat layer. In this case, we
must adjust the angle of incidence θ to account for the local dip. We assume that the
interface can be locally approximated to be a flat plane under an angle θ0. In that
case, we use the trigonometric identities sin(θ+θ0) = sin(θ)cos(θ0)+cos(θ)sin(θ0)

and cos(θ) =
√

1− sin2 (θ) to write

sinκ
′
(θ+θ0) =

[
sin(θ)cos(θ0)+

√
1− sin2 (θ)sin(θ0)

]κ′
. (3.44)

Taking a Taylor expansion with respect to sin(θ) gives

sinκ
′
(θ+θ0) ≈

K∑
κ=0

sκ
′

κ (θ0)sinκ (θ), (3.45)

with

sκ
′

κ (θ0) = 1

κ!

dκsinκ
′
(θ+θ0)

d(sin(θ))κ

∣∣∣∣∣
0

. (3.46)

Combining equations 3.45 and 3.30 we can approximate the true PP-reflection
coefficient for a dipping reflector by

R∪
PP

(
sin(θ+θ0) ,cα,cβ,cρ

)≈ K∑
κ′=0

Λ∑
λ=0

(
R̃∪

PP

)κ′
λ sinκ

′
(θ+θ0) ≈

K∑
κ=0

K∑
κ′=0

Λ∑
λ=0

(
R̃∪

PP

)κ′
λ sκ

′
κ (θ0)sinκ (θ). (3.47)

Using equation 3.47, we can write the PP-reflection operator for a dipping reflector
as

R∪
PP (zn) ≈

K∑
κ=0

K∑
κ′=0

Λ∑
λ=0

(
R̃∪

PP

)κ′
λ (zn)Sκ

′
κ (θ0)Sκθ (zn), (3.48)

where Sκ
′
κ (θ0) is a diagonal matrix of size Nx ×Nx with elements

Sκ
′
κ (θ0)

∣∣∣
i j
= sκ

′
κ (θ0 (xi , zn))δi j . (3.49)
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Note that we assume the local dip of the reflector to be known in equation 3.45. In
practice, this can be computed by first using a conventional imaging technique, or
performing a single iteration of elastic FWM using θ0 = 0, followed by a local dip
estimation scheme, such as the one developed by Fomel [20].

3.2.4. INVERSION PROCESS

In this section, we examine the inversion process associated with the forward
modelling scheme described earlier. We consider a seismic experiment with NS

sources with a known source wavefield s0 (z0), Nx receivers located at the surface
and Nω measured frequencies. In this case, we define the mismatch between the
measured data and the forward modelled wavefields at the surface after M round
trips as

J = 1

2

Nω∑
i=1

NS∑
j=1

∥∥e
(
z0, s j ,ωi ,cα,cβ,cρ

)∥∥2, (3.50)

where we have defined the residual e as

e
(
z0, s j ,ωi ,cα,cβ,cρ

)= d
(
z0, s j ,ωi

)−p−,M (
z0, s j ,ωi ,cα,cβ,cρ

)
, (3.51)

with d
(
z0, s j ,ωi

)
the known data recorded at the surface and the L2-norm ∥·∥2

defined as ∥∥p
∥∥2 =

Nx∑
i=1

(∣∣pP (xi )
∣∣2 + ∣∣pS (xi )

∣∣2
)
. (3.52)

Note that in equation 3.50 we have explicitly written the dependence of the forward
modelled wavefields p−,M on the contrasts cα, cβ and cρ , the source s j and the
frequency ωi .

We now apply a gradient descent scheme with respect to the contrasts cα, cβ and
cρ to minimize the objective function J . To do this, we must first compute the
gradient with respect to the contrast parameters. Using algorithm 1, we write the
contribution to the forward modelled wavefields at the surface due to the contrasts
at a depth level zn as

p−,M (z0; zn) =W̄− (z0, zn)
[
R∪ (zn)p+,M (zn)+T− (zn)p−,M (zn)

]+
W̄∪ (z0, zn)

[
R∩ (zn)p−,M (zn)+T+ (zn)p+,M (zn)

]
, (3.53)

where we have introduced the operators W̄− (z0, zn) and W̄∪ (z0, zn). These operators
are constructed by applying sequences of propagation, reflection and transmission
operators and are defined as

W̄− (
z j , zi

)= j+1∏
m=i−1

[W (zm−1, zm)T− (zm)]W (zi−1, zi ) ∀ j < i , (3.54)

W̄+ (
z j , zi

)= j−1∏
m=i+1

[W (zm+1, zm)T− (zm)]W (zi+1, zi ) ∀ j > i , (3.55)
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W̄∪ (z0, zn) =
Nz∑

m=n+1
W̄− (z0, zm)R∪ (zm)W̄+ (zm , zn). (3.56)

For simplicities’ sake, we will focus on the first term of equation 3.53, viz.

p−,M (
z0; zn ,R∪)= W̄− (z0, zn)R∪ (zn)p+,M (zn) . (3.57)

Taking the derivative of p−,M with respect to the contrast cα (xi , zn) gives

Çp−,M
P

(
x j , z0; zn ,R∪)

Çcα (xi , zn)
=W̄−

PP (z0, zn)
∣∣

j i

Çq̃−,M
P (xi , zn)

Çcα (xi , zn)
+

W̄−
PS (z0, zn)

∣∣
j i

Çq̃−,M
S (xi , zn)

Çcα (xi , zn)
, (3.58)

Çp−,M
S

(
x j , z0; zn ,R∪)

Çcα (xi , zn)
=W̄−

SP (z0, zn)
∣∣

j i

Çq̃−,M
P (xi , zn)

Çcα (xi , zn)
+

W̄−
SS (z0, zn)

∣∣
j i

Çq̃−,M
S (xi , zn)

Çcα (xi , zn)
, (3.59)

where we have introduced the wavefields q̃−,M (zn), which, based on equation 2.25,
are defined as q̃−,M (zn) = R∪ (zn)p+,M (zn). Taking the derivative of these wavefields
with respect to cα (xi , zn) yields

Çq̃−,M
P (xi , zn)

Çcα (xi , zn)
=

Nx∑
j=1

ÇR∪
PP (zn)

∣∣
i j

Çcα (xi , zn)
p+,M

P

(
x j , zn

)+ Nx∑
j=1

ÇR∪
PS (zn)

∣∣
i j

Çcα (xi , zn)
p+,M

S

(
x j , zn

)
, (3.60)

Çq̃−,M
S (xi , zn)

Çcα (xi , zn)
=

Nx∑
j=1

ÇR∪
SP (zn)

∣∣
i j

Çcα (xi , zn)
p+,M

P

(
x j , zn

)+ Nx∑
j=1

ÇR∪
SS (zn)

∣∣
i j

Çcα (xi , zn)
p+,M

S

(
x j , zn

)
, (3.61)

where we have used the fact that the contrasts cα (xi , zn) at different locations are
independent variables. Finally, note the use of the partial extended propagation
operators W̄−

PP , W̄−
PS , W̄−

SP and W̄−
SS in equation 3.58. These are matrices of size

Nx ×Nx , which are related to the full operator W̄− in the same way as the partial
reflection and transmission operators of equation 3.6. We now examine these

derivatives in more detail. Using equation 3.38, we expand
ÇR∪

PP (zn )
∣∣
i j

Çcα(xi ,zn ) as

ÇR∪
PP (zn)

∣∣
i j

Çcα (xi , zn)
≈

K∑
κ=0

Λ∑
λ=0

Ç
(
R̃∪

PP

)κ
λ

(zn)
∣∣
i i

Çcα (xi , zn)
δi j Sκθ (zn)

∣∣
i j , (3.62)
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with

Ç
(
R̃∪

PP

)κ
λ

(zn)
∣∣
i i

Çcα (xi , zn)
=

λ∑
m=1

λ−m∑
k=0

m

κ!m!k ! (λ−k −m)!

dκ+λR∪
PP

d(sin(θ))κdcm
α dck

β
dc(λ−k−m)

ρ

∣∣∣∣∣∣
(0)

cm−1
α ck

βc(λ−k−m)
ρ , (3.63)

where we have omitted the (xi , zn) dependency for ease of legibility. In a similar
way, we can find the derivatives of the other reflection and transmission operators.

We now examine the derivative of the full objective function with respect to the
contrast cα (xi , zn). Combining equations 3.50, 3.53, 3.58 and 3.59, and once again
limiting our analysis to the first term of equation 3.53, yields

ÇJ
(
R∪)

Çcα (xi , zn)
=−Re

(
Nx∑
j=1

W̄−
PP (z0, zn)

∣∣∗
j i eP

(
x j

) Çq̃−,M
P (xi , zn)∗

Çcα (xi , zn)

+ W̄−
PS (z0, zn)

∣∣∗
j i eP

(
x j

) Çq̃−,M
S (xi , zn)∗

Çcα (xi , zn)

+ W̄−
SP (z0, zn)

∣∣∗
j i eS

(
x j

) Çq̃−,M
P (xi , zn)∗

Çcα (xi , zn)

+ W̄−
SS (z0, zn)

∣∣∗
j i eS

(
x j

) Çq̃−,M
S (xi , zn)∗

Çcα (xi , zn)

)
, (3.64)

where we have used the superscript ∗ to indicate complex conjugation. Note
the structure of equation 3.64: the terms W̄−

... (z0, zn)
∣∣∗

j i eP/S
(
x j

)
represent the

back-propagation of the data residual at the surface, while the multiplication with
Çq̃−,M

S/P (xi ,zn )∗

Çcα(xi ,zn ) represents the application of the imaging condition at the location
(xi , zn).

We now consider the update direction for all points xi at depth level zn . We first
define a vector ∆cR∪

α (zn), with elements

∆cR∪
α (zn)

∣∣∣
i
=− ÇJ

(
R∪)

Çcα (xi , zn)
. (3.65)

Using equation 3.64, we write the vector ∆cR∪
α (zn) as

∆cR∪
α (zn) =Re

[(
W̄−

PP
H eP +W̄−

SP
H eS

)◦ ((
ÇcαR∪

PP

)
p+,M

P + (
ÇcαR∪

PS

)
p+,M

S

)∗
+ (

W̄−
PS

H eP +W̄−
SS

H eS
)◦ ((

ÇcαR∪
SP

)
p+,M

P + (
ÇcαR∪

SS

)
p+,M

S

)∗]
, (3.66)

where we have used the symbol ◦ to denote element wise multiplication and H
to denote the conjugate transpose. Note that we have dropped the dependence
on the depth level zn for ease of legibility. Also note the notation Çcα to indicate
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differentiation with respect to cα, where ÇcαR∪
PP is a matrix of size Nx ×Nx with

elements

ÇcαR∪
PP

∣∣
i j =

ÇR∪
PP (zn)

∣∣
i j

Çcα (xi , zn)
. (3.67)

Extending the approach described above to the other terms of equation 3.53, we
write the full update direction of the contrast cα as a vector ∆cα (zn), viz.

∆cα (zn) =
∑
ω

∑
s

[
∆cR∪

α (zn)+∆cR∩
α (zn)+∆cT +

α (zn)+∆cT −
α (zn)

]
. (3.68)

Given the update direction of equation 3.68, we now examine the amplitude of the
update. We again limit our analysis to the first term of equation 3.53. Using the fact
that R∪ depends linearly on the contrasts gives

∆p−,M (
R∪)= W̄−

(
∆cα ◦ÇcαR∪+∆cβ ◦ÇcβR∪+∆cρ ◦ÇcρR∪

)
p+,M , (3.69)

where we have not written the zn dependence explicitly for ease of legibility.
Extending equation 3.69 to include the other terms of equation 3.53, we find

∆p−,M (z0) =
Nz∑

n=1
∆p−,M (

z0; zn ,R∪)+∆p−,M (
z0; zn ,R∩)

+∆p−,M (
z0; zn ,T +)+∆p−,M (z0; zn ,T −) , (3.70)

with ∆p−,M (z0) the total change in the wavefields at the surface due to the change
in the contrast parameters at all depth levels. We now take the size of the update as

γ=
∑
ω

∑
s

Re
(
∆p−,M (z0)∗ ·e

)
∑
ω

∑
s

∥∥∆p−,M (z0)
∥∥2 , (3.71)

where · denotes the vector inner product. Finally, we update the contrast parameters

cnew
α (xi , zn) = col d

α (xi , zn)+γ∆cα (xi , zn) , (3.72)

with similar definitions for the cβ and cρ terms.
The full procedure used to find the gradient can be implemented in a

straightforward manner, shown in algorithm 4, analogous to the procedure for
wavefield modelling illustrated in algorithm 3.

3.3. RESULTS
In this section, we show the results of applying algorithm 4 on two synthetic models.
First, we examine a flat, layered model, which will serve as a proof-of-concept and
allows us to explore the properties of the inversion results generated by the method.
Second, we examine a model featuring a lens-shaped inclusion with a large contrast
with respect to the surroundings. This model represents a simplified version of a salt
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Algorithm 4: Calculating gradients

Result: ∆cα (zn), ∆cβ (zn) and ∆cρ (zn) for all zn .
Input: p+,M (zn) and p−,M (zn) for all zn .

1 Set W̄− (z0, z1) = W (z0, z1);
2 for n = 1 : Nz −1 do
3 for c ∈ {

cα,cβ,cρ
}

do
4 Calculate ∆cR∪

(zn) and ∆cT −
(zn);

5 ∆c (zn) =∆cR∪
(zn)+∆cT −

(zn);
6 end
7 W̄− (z0, zn+1) = W̄− (z0, zn)T− (zn)W (zn , zn+1);
8 end
9 Set W̄∪ (

z0, zNz

)= 0;
10 for n = Nz −1:1 do
11 W̄∪ (z0, zn) =

W̄∪ (z0, zn+1)T+ (zn+1)W (zn+1, zn)+W̄− (z0, zn+1)R∪ (zn+1)W (zn+1, zn);
12 for c ∈ {

cα,cβ,cρ
}

do
13 Calculate ∆cR∩

(zn) and ∆cT +
(zn);

14 ∆c (zn) =∆c (zn)+∆cR∩
(zn)+∆cT +

(zn);
15 end
16 end

body in the subsurface, which is a situation which is difficult to image properly if
converted waves are not taken into account.

3.3.1. FLAT LAYERED MODEL

We begin our analysis with a simple, flat, layered model, based on the model used
by Wu et al. [21]. This model will serve as a toy model, which is used to benchmark
the proposed method. It has been constructed such that the S-wave velocity β in the
middle layer is close to the P-wave velocity α in the surrounding layers, as shown in
figures 3.2a)-3.2c), which represents the case of a salt body within the subsurface.

Synthetic data was generated for the aforementioned model using 61 P-wave
sources evenly spaced along the surface. The source wavelet used was a Ricker
wavelet with a peak frequency of 17 Hz. Both P- and S-wave data was recorded
with 301 receivers with a receiver spacing of 10 metres. To avoid an inverse crime
scenario, elastic Kennett modelling [22] was used to generate the synthetic data.
This data was then filtered in the spatial Fourier domain to remove post-critical
effects, as we know that the extended Shuey approximations used for the reflection
and transmission operators only hold up to the critical angle. Migration was then
performed on the synthetic data using algorithm 4, with a smoothed version of
the true velocity models used for the propagation velocities. Forward and inverse
modelling was performed on a grid of 301 by 151 points, with a lateral spacing of 10
metres and a vertical spacing of 5 metres. For the extended Shuey approximations,
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Taylor expansions up to K = 6 and Λ= 2 were used. The results of this process are
shown in figures 3.2 and 3.3.

We now analyze these results, starting with figure 3.2, which show the true
P-wave velocity contrast cα, S-wave velocity contrast cβ and density contrast cρ ,
along with the inverted contrasts after 10 iterations. We begin our analysis with
the reconstructed S-wave velocity contrast cβ, shown in figure 3.2e), which we see
matches the ground truth quite closely, with both reflectors clearly identifiable.
The reconstructed density contrast cρ , shown in figure 3.2f), also clearly shows
both reflectors, but contains some smearing above the top reflector. Finally, the
reconstructed P-wave velocity contrast cα, shown in figure 3.2d), struggles in this
case, with the two reflectors not being clearly visible.

For a more detailed analysis, we examine vertical profiles taken through the centre
of figures 3.2d) - 3.2f), which are shown in figures 3.2g) - 3.2i). From these figures,
we see a similar pattern. Once again, we see that the results for cβ match the
(band-limited) ground truth quite well. The result for cρ introduces additional
smearing, and also clearly overestimates the strength of the contrast. Finally, the
result for cα does not accurately reproduce the two reflectors.

To explore the reasons behind the lack of accuracy in the results for cρ and cα, we
examine the cross-talk between the different parameters. We begin by investigating(
R̃∪

PP

)0
1, the lowest-order component of the PP-reflectivity, which is given by

(
R̃∪

PP

)0
1 =

1

2

(
cα+ cρ

)
. (3.73)

From this expression, we see that there is strong cross-talk between the cα and cρ
terms for near-zero angles of incidence. In the same vein, we examine

(
R̃∪

SP

)1
1, the

lowest-order component of the SP-reflectivity, which is given by

(
R̃∪

SP

)1
1 =−

(
V̂

(
cρ +2cβ

)+ 1

2
cρ

)
, (3.74)

where V̂ = β/α. From this expression, we see that there is also cross-talk between
the cβ and cρ terms. This cross-talk between separate contrasts may explain why
the density contrast cρ is overestimated, while the P-wave velocity contrast cα is
simultaneously underestimated. A possible approach to reduce this cross-talk is to
apply some form of preconditioning, such as preconditioning the gradient with the
inverse of the Hessian [23].

To complete our analysis of the flat, layered example we examine a shot record,
seen in figure 3.3. Note the strong converted wave response in the P-wave data
shown in figure 3.3a), visible below the primary PP-reflection from the ‘base-salt’.
From figure 3.3d) we see that this converted wave response is due to PPSP and
PSPP wave paths in the medium, as the PSSS response is very small. Examining
figures 3.3b) and 3.3e), we see that the method has generally been able to capture
much of the converted wave response. This is confirmed by the residuals, shown in
figures 3.3c) and 3.3f).
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3.3.2. LENS-SHAPED INCLUSION MODEL

In this section we will examine a so-called lens-shaped inclusion model, with a lens
with a large contrast in the centre of the model and a number of flat layers beneath
it. In the same way as for the flat, layered model, the parameters of the lens
have been chosen such that the S-wave velocity inside the lens matches the P-wave
velocity outside the lens, representing a high-contrast salt body.

To generate data for the aforementioned model, finite-difference time-domain
modelling was used [24]. In total, 61 sources were used with a source spacing of 50
metres, together with 301 receivers with a receiver spacing of 10 metres. The source
wavelet employed was a Ricker wavelet with a peak frequency of 17 Hz. Once again,
post-critical effects were filtered from the data in the spatial Fourier domain. Next,
elastic FWM was applied on the synthetic data, using a grid of 301 by 381 points,
with a grid spacing of 10 metres in the lateral direction and 5 metres in the vertical
direction. For the extended Shuey approximations, Taylor expansions up to K = 8
and Λ= 2 were used. The ground-truth contrasts, as well as the inversion results
after 5 iterations, are shown in figure 3.4.

Examining the inverted contrasts, we see many of the same effects as those we
observed for the flat, layered model in the previous section. Once again starting with
the S-wave velocity contrast cβ, shown in figure 3.4e), we see that the lens has been
recovered well in this case. However, the deeper reflectors are not well resolved.
This is probably due to the fact that these deeper reflectors are only illuminated by
small angles of incidence, which are not sensitive to the S-wave velocity contrast cβ,
making it difficult to reconstruct properly.

Continuing our analysis, we examine the density contrast cρ , shown in figure 3.4f).
Once again, we notice that the density contrast has been overestimated in this case,
similar to the results of the flat model, shown in 3.2f). We also notice additional
smearing above the top reflector in this case. The P-wave velocity contrast cα,
shown in figure 3.4d), also shows similar results. Most noticeably, the top part of
the lens is not reconstructed well in this case, while the deeper layers are recovered
accurately. These observations are further confirmed by examining slices through the
centre of figures 3.4d) - 3.4f), shown in figures 3.4g) - 3.4i). Once again, it appears
that cross-talk between the different contrasts has made it difficult to accurately
recover the separate contrasts in this case.

Finally, we examine a shot record for the lens inclusion model, shown in figure
3.5. Comparing the forward modelled wavefields, shown in figures 3.5b) and 3.5e), to
the finite-difference data shown in figures 3.5a) and 3.5d), we see that the method
explains the data reasonably well. However, the residuals, shown in figures 3.5c)
and 3.5f), are clearly larger than those achieved for the flat model, shown in figures
3.3c) and 3.3f). This increased residual is probably caused by inaccuracies in the
modelling of the dipping reflectors, which are difficult to model accurately when
using one-way operators.
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3.4. DISCUSSION
In this section we will discuss some additional aspects regarding the elastic FWM
method presented in this paper. First, we compare the results shown in section 3.3
to the results of the conventional, acoustic FWM method for the same models. Next,
we examine the case where no S-wave data is available, such as in a marine setting.
Finally, we discuss a number of potential extensions of the elastic FWM method.

3.4.1. COMPARISON TO ACOUSTIC FWM
We begin by comparing the results for the elastic FWM algorithm with the
conventional, angle-independent, acoustic FWM algorithm. In the acoustic FWM
algorithm, the quantity of interest for inversion is the impedance contrast cZ , which
is defined as

cZ = 1

2

(
cα+ cρ

)
. (3.75)

Therefore, in order to compare the reconstructions of the acoustic and elastic FWM
methods fairly, we will compare the acoustic FWM image to the average of the
reconstructed P-wave velocity and density contrasts. Note that this comparison does
not take into account the fact that the elastic FWM algorithm provides additional
information by separating the contrasts, thus giving more insight into the underlying
medium properties.

We begin by comparing the elastic and acoustic FWM results for the flat model
described in section 3.3.1. The reconstructed impedance contrasts are shown in
figure 3.6. Comparing figures 3.6a) and 3.6b), we immediately notice that the
acoustic FWM algorithm is not able to reconstruct the reflectors properly in this case.
Most noticeably, the acoustic FWM image has flipped the sign of the reflectors. This
is easily explained by examining the shot records, shown in figure 3.7. Examining
the true P-wave data, shown in figure 3.7a), we notice that the reflectivity goes
from positive to negative at offsets away from zero incidence. As the acoustic FWM
algorithm assumes the reflectivity to be angle-independent, it is unable to account
for this effect, leading to it estimating the reflectivity with the wrong sign. Note
that this is a rather extreme case, as the change in reflectivity at different angles is
usually less strong.

Examining a slice through the middle of figures 3.6a) and 3.6b), shown in figure
3.6d), we see this effect more clearly. From this figure, we also see that, while the
elastic FWM result introduces some smearing for depths above the first reflector, the
overall result for elastic FWM is more consistent. Specifically, the two reflectors are
clearly recovered, with no spurious reflectors introduced below the bottom reflector.
The acoustic FWM image, on the other hand, does not recover the two reflectors
well, and is less consistent for areas below the top reflector. Note that the smearing
present in the elastic FWM result can be easily removed by filtering out the lowest
spatial frequencies present in the image.

Next, we compare the modelled P-wave data for elastic FWM, shown in figure
3.7b), and acoustic FWM, shown in figure 3.7e). Comparing these figures, we
see that the modelled wavefield for elastic FWM is more consistent than that of
acoustic FWM. Most noticeably, the wavefield recovered by elastic FWM captures
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wave-conversion effects accurately, while the acoustic method is unable to take these
effects into account. This leads to a significantly larger data residual when using
acoustic FWM, as is shown in figure 3.7f).

Finally, we compare the elastic and acoustic FWM results for the lens-shaped
inclusion model, described in section 3.3.2. The results for this comparison are
shown in figure 3.8. Comparing figures 3.8a) and 3.8b), we notice that the acoustic
FWM algorithm is unable to reconstruct the top of the lens-shaped inclusion
properly, which the elastic FWM algorithm is able to do. This is confirmed by figure
3.8d), which shows that the top of the lens is recovered well in elastic FWM while
being absent in the acoustic result. While the elastic FWM method does introduce
additional smearing above the top reflector, this can once again be removed by
filtering the final result.

3.4.2. MISSING S-WAVE DATA

In this section, we examine the results of the elastic FWM algorithm in cases where
only P-wave data is available. This situation corresponds to a marine acquisition
scenario, for example, where no S-waves can be recorded.

We begin by examining the results for the flat model of section 3.3.1, which are
shown in figure 3.9. Examining the reconstructed contrasts, shown in figures 3.9d)
- 3.9f), we notice a number of differences compared to the reconstructed contrasts
when S-wave data is available, shown in figures 3.2d) - 3.2f). Most noticeably, we
see that the S-wave velocity contrast cβ is significantly less well recovered when no
S-wave data is available. This is to be expected, as the SP-reflection coefficient
depends much more strongly on cβ than the PP-reflection coefficient. In cases
where there is no S-wave data available, therefore, the objective function J does
not depend as strongly on cβ. This makes it more difficult to recover accurately.
The other contrasts, however, are comparable with the results when S-wave data is
available.

Next, we examine the results for the lens-shaped inclusion model of section 3.3.2,
which are shown in figure 3.10. Once again, we compare figures 3.10d) - 3.10f)
with figures 3.4d) - 3.4f). In this case, we once again notice that the S-wave
velocity contrast is significantly less well recovered when no S-wave data is available.
However, once again we notice that the results for the density contrast and the
P-wave velocity contrast are comparable to the case where S-wave data is available.
This indicates that the elastic FWM algorithm can be used successfully in marine
cases, where no direct S-wave data is available.

3.4.3. POSSIBLE EXTENSIONS

Finally, in this section, we examine a number of possible extensions to the elastic
FWM algorithm presented in this paper. We begin by examining the local dip θ0,
which we have assumed to be known in section 3.2.3. In cases where the local dip
is not known a priori, one can begin by using a conventional, acoustic imaging
technique, such as angle-independent acoustic FWM, to generate an initial model of
the reflectivity. By applying a local dip estimation scheme on this preliminary image,
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one can find an estimate of the local dip, which can be used as an input for the
method presented here. In the case of the lens model presented in section 3.3.2, the
local dip was estimated by applying a dip estimation scheme on the ground-truth
reflectors, capping the maximal dip angle at 30 degrees.

Alternatively, one can estimate the local dip directly from the reflection operators,
by extending the inversion process described in section 3.2.4 to include the local
dip angle. To do this, one requires the derivative of the objective function J
with respect to θ0 (xi , zn). Summarizing the analysis of section 3.2.4, we find that
this derivative is proportional to the derivative of the reflection and transmission
operators. Examining the PP-reflection operator, we find

ÇR∪
PP (zn)

∣∣
i j

Çθ0 (xi , zn)
≈

K∑
κ=0

K∑
κ′=0

Λ∑
λ=0

(
R̃∪

PP

)κ′
λ (zn)

∣∣∣
i j

ÇSκ
′
κ (θ0)

∣∣∣
i i

Çθ0 (xi , zn)
δi j Sκθ (zn)

∣∣
i j , (3.76)

which can be straightforwardly evaluated using mathematical software. Using these
derivatives, the local dip can be updated at each iteration in a similar way to the
contrasts. In this manner, the estimation of the local dip can be integrated into the
elastic FWM framework with little additional effort.

Secondly, while the results presented in this paper have been achieved in the 2D
case, the method can also be extended to 3D applications, in a similar way as
the conventional, acoustic FWM method [9]. In the 3D case, the one-dimensional
convolutions of the 2D method need to be replaced with two-dimensional
convolutions to account for the propagation and scattering in three dimensions. An
additional challenge for elastic FWM is that it is necessary to take SH waves into
account as well as the SV waves that we have discussed in this paper. In principle,
these waves can be taken into account using the same framework as presented here.
However this will introduce additional complexity into the presented algorithm, and
is outside the scope of this paper.

Finally, the elastic FWM algorithm presented here can be incorporated into a joint
reflectivity and velocity estimation algorithm, such as Joint Migration Inversion (JMI)
[8, 25] or one-way Reflection Waveform Inversion (ORWI) [26]. In conventional,
acoustic JMI it is difficult to incorporate angle-dependent reflectivity, as estimating
both the angle-dependent reflectivity and the velocity model simultaneously leads to
overparametrisation [27]. However, by using the extended Shuey’s approximations of
section 3.2.3, the number of parameters required to estimate the angle-dependent
reflectivity is significantly reduced. This could potentially allow one to estimate both
angle-dependent reflectivity along with velocity simultaneously. By further extending
the acoustic JMI algorithm to also include S-wave velocity estimation, an elastic JMI
algorithm, which takes converted waves into account, could finally be developed.

3.5. CONCLUSIONS
In conventional, acoustic Full Wavefield Migration, we neglect wave conversions
from P- to S-waves, as well as the propagation of S-waves throughout the medium.
In this paper, we have presented an extension to the acoustic FWM algorithm which
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takes these effects into account using an extended version of Shuey’s approximation.
Our main conclusion, based on the results we have presented, is that elastic

FWM outperforms acoustic FWM in cases with large contrasts, where strong AVO
and wave-conversion effects are present. While the reconstructed contrasts are not
perfect, they are an improvement compared to the acoustic FWM results for the
same areas. Therefore, we conclude that elastic FWM serves as an effective extension
of acoustic FWM for these situations and can serve to improve the resulting images
in areas with strong converted waves.

Furthermore, we show that the method can still produce accurate results in cases
where S-wave data is not available, such as in marine settings. This makes the
method more widely applicable. We also present several possible areas where the
method can be extended, which can serve to further increase the potential of the
method.
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Figure 3.2: Results of elastic FWM for the flat, layered model. The ground-truth
P-wave velocity, S-wave velocity and density, along with their contrasts,
are shown in figure (a), (b) and (c), respectively. The reconstructed
P-wave velocity, S-wave velocity and density contrasts after 10 iterations
are shown in figure (d), (e) and (f), respectively. Finally, the ground-truth
P-wave velocity, S-wave velocity and density contrasts at x = 0 (black
lines), as well as the reconstructed contrasts (red lines), are shown in
figure (g), (h) and (i), respectively.
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Figure 3.3: Shot records for the flat, layered model. The synthetic P- and S-wave
data, generated by elastic Kennett modelling, are shown in figure (a)
and (d), respectively. The forward modelled P- and S-wave data after
10 iterations is shown in figure (b) and (e), respectively. Finally, the
difference between the synthetic P- and S-wave data and the forward
modelled data is shown in figure (c) and (f), respectively. Note that all
values have been clipped at 30% of the maximum value.
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Figure 3.4: Results of elastic FWM for the lens-shaped inclusion model. The
ground-truth P-wave velocity, S-wave velocity and density, along with
their contrasts, are shown in figure (a), (b) and (c), respectively. The
reconstructed P-wave velocity, S-wave velocity and density contrasts after
5 iterations are shown in figure (d), (e) and (f), respectively. Finally, the
ground-truth P-wave velocity, S-wave velocity and density contrasts at
x = 0 (black lines), as well as the reconstructed contrasts (red lines), are
shown in figure (g), (h) and (i), respectively.
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Figure 3.5: Shot records for the lens-shaped inclusion model. The synthetic P-
and S-wave data, generated by elastic, time-domain finite-difference
modelling, are shown in figure (a) and (d), respectively. The forward
modelled P- and S-wave data after 5 iterations is shown in figure (b)
and (e), respectively. Finally, the difference between the synthetic P- and
S-wave data and the forward modelled data is shown in figure (c) and
(f), respectively. Note that all values have been clipped at 30% of the
maximum value.
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Figure 3.6: Comparison of elastic FWM and acoustic FWM for the flat, layered
model. The reconstructed impedance contrast generated by elastic FWM
and acoustic FWM after 10 iterations are shown in figure (a) and (b),
respectively. The ground-truth impedance contrast is shown in figure (c).
Finally, a slice through figures (a) - (c) is shown in figure (d), showing the
ground-truth impedance contrast (black line), the elastic FWM result (red
line) and the acoustic FWM result (blue line).
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Figure 3.7: Shot records for the flat, layered model. The synthetic P-wave data,
generated by elastic Kennett modelling, is shown in figure (a) and (d).
The forward modelled P-wave data for elastic FWM and acoustic FWM
after 10 iterations is shown in figure (b) and (e), respectively. Finally, the
difference between the synthetic P-wave data and the forward modelled
data for elastic FWM and acoustic FWM is shown in figure (c) and
(f), respectively. Note that all values have been clipped at 30% of the
maximum value.
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Figure 3.8: Comparison of elastic FWM and acoustic FWM for the lens-shaped
inclusion model. The reconstructed impedance contrast generated by
elastic FWM and acoustic FWM after 5 iterations are shown in figure (a)
and (b), respectively. The ground-truth impedance contrast is shown in
figure (c). Finally, a slice through figures (a) - (c) is shown in figure
(d), showing the ground-truth impedance contrast (black line), the elastic
FWM result (red line) and the acoustic FWM result (blue line).
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Figure 3.9: Results of elastic FWM for the flat, layered model when no S-wave data is
available. The ground-truth P-wave velocity, S-wave velocity and density,
along with their contrasts, are shown in figure (a), (b) and (c), respectively.
The reconstructed P-wave velocity, S-wave velocity and density contrasts
after 10 iterations are shown in figure (d), (e) and (f), respectively. Finally,
the ground-truth P-wave velocity, S-wave velocity and density contrasts
at x = 0 (black lines), as well as the reconstructed contrasts (red lines),
are shown in figure (g), (h) and (i), respectively.
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Figure 3.10: Results of elastic FWM for the lens-shaped inclusion model when no
S-wave data is available. The ground-truth P-wave velocity, S-wave
velocity and density, along with their contrasts, are shown in figure (a),
(b) and (c), respectively. The reconstructed P-wave velocity, S-wave
velocity and density contrasts after 10 iterations are shown in figure
(d), (e) and (f), respectively. Finally, the ground-truth P-wave velocity,
S-wave velocity and density contrasts at x = 0 (black lines), as well as
the reconstructed contrasts (red lines), are shown in figure (g), (h) and
(i), respectively.
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4
MODEL-ORDER REDUCED

FULL-WAVEFIELD MIGRATION

USING PROPER ORTHOGONAL

DECOMPOSITION

As seismic migration is increasingly applied to more and more complex media, more
sophisticated imaging techniques are required to generate accurate images of the
subsurface. Currently, the best results for imaging are achieved by Least-Squares
Migration (LSM) methods, such as Least-Squares Reverse Time Migration (LS-RTM)
and Full-Wavefield Migration (FWM). These methods iteratively update the image
to minimize the misfit between the forward modelled wavefield and the recorded
data at the surface. However, a key challenge for these techniques is the speed of
convergence. To accelerate the speed of convergence, pre-conditioning is commonly
applied. The most common preconditioner is the reciprocal of the Hessian operator.
However, this operator is computationally expensive to calculate, making it difficult to
apply directly. In this paper, we present a novel, alternative, preconditioner for FWM.
This preconditioner is based on applying Galerkin projections to a linear system,
which projects the system onto a set of known basis vectors. To find an appropriate
set of basis vectors for this approach we apply Proper Orthogonal Decomposition
(POD) to a set of partial solutions of the linear system. The resulting method gives
an approximation to the pseudo-inverse based on these basis vectors. To test this
technique, which we name Model-Order Reduced FWM (MOR-FWM), we apply it
to the synthetic Marmousi model as well as to field data from the Vøring basin in
Norway. For these examples, we show that MOR-FWM yields an improved data-misfit
compared to the standard FWM approach. In addition, we show that the result for the
field data case can be improved by normalizing the partial solutions before applying
POD.

This chapter has been submitted for publication in ...
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4.1. INTRODUCTION

Seismic migration is an important tool for subsurface characterization, which is of
vital importance in many different areas. Examples include the study of the Earth’s
geological structures, the location of subsurface resources and the characterization
of potential sites for off-shore wind farms [1], to name a few.

While many different approaches for seismic migration exist [2], the general
approach commonly consists of three steps. First, the source wavefield at the surface
is propagated forward into the medium through a numerical forward modelling
scheme, where an estimate of the, generally unknown, speed-of-sound model is used
to ensure accurate propagation. Second, using a similar approach, the measured
data at the subsurface is propagated backwards in time into the medium. Finally,
the forward and backward propagated wavefields are correlated using an imaging
condition, leading to an estimate of the reflectivity model of the subsurface.

To improve upon the standard migration approach, Least-Squares Migration
(LSM) methods have been introduced [3, 4]. LSM methods aim to minimize
the misfit between the recorded data and forward modelled wavefield at the
surface by iteratively updating the reflectivity model of the subsurface. While
these methods come with an increase in computational costs due to their iterative
nature, the resolution of the final reflectivity image can be drastically improved,
as LSM techniques can suppress artifacts due to irregular acquisition geometries,
band-limited source functions, and geometric spreading, among others [5].

The current state-of-the-art of LSM is Least-Squares Reverse-Time Migration
(LS-RTM) [6], as it can achieve high-resolution reflectivity models due to its
sophisticated forward and backward propagation operators. However, conventional
LS-RTM suffers from two key limitations, namely a high computational cost and
an inability to deal with multiple scattering effects. An alternative approach
is given by Full-Wavefield Migration (FWM) [7, 8], which is based on one-way
operators and iterative Neumann modelling. While this method also has limitations,
most noticeably an inability to accurately model diving waves, its computational
complexity is significantly reduced due to the use of one-way operators, while being
able to accurately deal with multiple scattering effects.

A key challenge for all LSM techniques is the speed of convergence of the iterative
method. In most cases, some form of gradient descent is used to iteratively update
the reflectivity model. However, standard gradient descent algorithms typically
suffer from slow convergence [9]. To accelerate their convergence, preconditioning
can be applied. The most common preconditioner used in the context of LSM
is the reciprocal of the Hessian operator [9]. As this operator is computationally
expensive to calculate, approximations of the Hessian are commonly applied to
reduce the computational complexity [10, 11]. In recent years, alternative approaches
for constructing preconditioners have also been introduced, based on finding
approximations of the pseudo-inverse operator, [12, 13].

In this paper, we extend FWM with a novel preconditioner, based on approximating
the pseudo-inverse using Proper Orthogonal Decomposition (POD) [14]. To explore
this new method, which we name Model-Order Reduced FWM (MOR-FWM), we first
give a general description of the FWM method. Next, we discuss the POD method
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and illustrate how this can be used as a preconditioner for FWM. Note that this
approach can easily be extended to other least-squares migration techniques, which
makes the method of broader interest. The preconditioned FWM algorithm is then
tested on both the synthetic Marmousi model as well as on a field dataset from the
Vøring basin. Finally, we end with a discussion of these results as well as our final
conclusions.

4.2. THEORY
This section is split into two parts. In the first section we give a concise overview
of the Full-Wavefield Modelling (FWMod) and FWM methods. Interested readers are
encouraged to examine earlier work for a more comprehensive description of these
methods [7, 8, 15, 16]. In the second section, we describe the MOR-FWM method,
which uses Galerkin projections and POD to create a pre-conditioner.

4.2.1. FULL-WAVEFIELD MODELLING AND MIGRATION

We begin by examining a 2D version of the forward modelling algorithm FWMod.
FWMod is based on splitting the full, acoustic, wavefield into up- and down-going
wavefields. Following [15] and [8], we give the relationship between the up- and
down-going wavefields at an interface located at z = zn for angular frequency ω,
hence

q+ (zn) = R∩ (zn)p− (zn)+T+ (zn)p+ (zn) , (4.1)

q− (zn) = R∪ (zn)p+ (zn)+T− (zn)p− (zn) , (4.2)

where q+ (zn), q− (zn), p+ (zn) and p− (zn) are complex vectors of length
Nx , with Nx the number of gridpoints in the lateral (x) direction, with(

q/p
)±

(zn)
∣∣∣
i
= (

q/p
)±

(xi , zn). The symbols q and p denote waves traveling away

from and towards the interface, respectively, while the superscripts + and − denote
down- and up-going wavefields, respectively. The matrices R∪ (zn), R∩ (zn), T+ (zn)
and T− (zn) are real and of size Nx ×Nx , where R∪ (zn) and R∩ (zn) are the reflectivity
operators for waves striking the interface from above and below, respectively, while
T+ (zn) and T− (zn) are the transmission operators for waves striking the interface
from above and below, respectively. In a similar way, we give the relationship
between wavefields at different depth levels, viz.

p+ (zn+1) = W (zn+1, zn)q+ (zn) , (4.3)

p− (zn−1) = W (zn−1, zn)q− (zn) , (4.4)

where the propagation operators W (zn+1, zn) and W (zn−1, zn) are complex matrices
of size Nx ×Nx describing the propagation between neighbouring depth levels. By
recursively applying equations 4.1 - 4.4 we can model the wavefield at every depth
level. This process is described in algorithm 5. Note the introduction of the vector
σ (z0) and scalar K in algorithm 5, where σ (z0) is a complex vector of length Nx

which describes the source wavefield at the surface z0, while K denotes the number
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of round-trips modelled. For each round-trip, the order of (internal) multiples
modelled increases by one.

The procedure described in algorithm 5 can also be represented by the following
forward modelling equations

p+
k (zn) = W

+
(zn , z0)σ (z0)+

n−1∑
m=0

W
+

(zn , zm)R∩ (zm)p−
k−1 (zm), (4.5)

p−
k (zn) =

Nz∑
m=n+1

W
−

(zn , zm)R∪ (zm)p+
k (zm), (4.6)

where, following [16], we have introduced the generalised propagation operators

W
+

(zn , zm) =
[

m+1∏
i=n−1

W (zi+1, zi )T+ (zi )

]
W (zm+1, zm) , (4.7)

W
−

(zn , zm) =
[

m−1∏
i=n+1

W (zi−1, zi )T− (zi )

]
W (zm−1, zm) . (4.8)

We start examining the FWM inversion method using equations 4.5 - 4.8. Consider
a small perturbation R̂ (zn) to the background reflectivity operator R∪

0 (zn), viz.
R∪ (zn) = R∪

0 (zn)+ R̂ (zn). Using continuity of the wavefields at an interface, we find
R∩ =−R∪, T+ = I+R∪ and T− = I+R∩, which gives

R∪/∩ (zn) = R∪/∩
0 (zn)± R̂ (zn) , (4.9)

T± (zn) = T±
0 (zn)± R̂ (zn) . (4.10)

We now substitute equations 4.9 and 4.10 into equations 4.5 and 4.6 and model the
background wavefields p±

0,k propagating in the unperturbed, heterogeneous medium

described by R∪/∩
0 (zn) and W (zn±1, zn), hence

p+
0,k (zn) = W

+
0 (zn , z0)σ (z0)+

n−1∑
m=0

W
+
0 (zn , zm)R∩

0 (zm)p−
0,k−1 (zm), (4.11)

p−
0,k (zn) =

Nz∑
m=n+1

W
−
0 (zn , zm)R∪

0 (zm)p+
0,k (zm). (4.12)

Next, we model the additional wavefields p̂±
k arising from the perturbations R̂ (zn).

Ignoring second-order scattering due to these perturbations, we find

p̂+
k (zn) =

n−1∑
m=1

W
+
0 (zn , zm) R̂ (zm)

(
p+

0,k (zm)−p−
0,k−1 (zm)

)
, (4.13)

p̂−
k (zn) =

Nz∑
m=n+1

W
−
0 (zn , zm)

[
R∪

0 (zm) p̂+
i (zm)+ R̂ (zm)

(
p+

0,k (zm)−p−
0,k (zm)

)]
. (4.14)
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Algorithm 5: Full Wavefield Modelling (FWMod)

Result: p+
K (zn) and p−

K (zn) for all zn

Input: σ (z0)
1 Set p−

0 (zn) = 0 for all zn ;
2 for k = 1 : K do
3 Set p+

k (z0) =σ (z0);

4 for n = 0 : Nz −1 do
5 q+

k (zn) = R∩ (zn)p−
k−1 (zn)+T+ (zn)p+

k (zn);

6 p+
k (zn+1) = W (zn+1, zn)q+

k (zn);

7 end
8 Set p−

k

(
zNz

)= 0;

9 for n = Nz : -1 : 2 do
10 q−

k (zn) = R∪ (zn)p+
k (zn)+T− (zn)p−

k (zn);

11 p−
k (zn−1) = W (zn−1, zn)q−

k (zn);

12 end
13 end

Note the use of the subscript 0 to denote wavefields and operators in the unperturbed
background medium, and the use of the caret symbol ˆ to denote wavefields and
operators due to the perturbation R̂ (zn).

We now assume the reflectivity operator to be angle-independent, as we aim to
reconstruct a structural image of the subsurface, in which case R∪

0 (zn) and R̂ (zn)
are diagonal matrices. Assuming p−

0,k−1 (zn) ≈ p−
0,k (zn), the upgoing wavefield at the

surface is then given by

p̂−
k (z0) =

Nz∑
m=0

(
W

∪
0 (z0, zm)+W

−
0 (z0, zm)

)
r̂ (zm)◦

(
p+

0,k (zm)−p−
0,k (zm)

)
, (4.15)

where ◦ represents the Hadamard product, and we have introduced r̂ (zm), a real
vector of length Nx with elements r̂ (zm)|i = R̂ (zm)

∣∣
i i , and

W
∪
0 (z0, zn) =

Nz∑
m=n+1

W
−
0 (z0, zm)R∪

0 (zm)W
+
0 (zm , zn). (4.16)

As the Hadamard product is commutative, we can write

p̂−
k (z0) =

Nz∑
m=0

(
W

∪
0 (z0, zm)+W

−
0 (z0, zm)

)(
P+

0,k (zm)−P−
0,k (zm)

)
r̂ (zm), (4.17)

where P±
0,k (zm) = diag

(
p±

0,k (zm)
)
. As equation 4.17 is linear with respect to r̂ (zm), it

can be written as
p̂−

k (z0) = Aω,σr̂, (4.18)
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where Aω,σ is a complex matrix of size Nx ×Nx Nz , constructed by horizontally

chaining the matrices
(
W

∪
0 +W

−
0

)(
P+

0,k −P−
0,k

)
, and r̂ is a real vector of length Nx Nz ,

constructed by vertically chaining the vectors r̂ (zm). Up until now, we have examined
the wavefield at a single frequency ω due to a single source, with corresponding
source wavefield σ (z0), as represented by Aω,σ in equation 4.18. The full wavefield
for all sources and frequencies can be written as

p−,full
k (z0)−p−,full

0,k (z0) = Ar̂ ⇔

 p̂−
k (ω1,σ1, z0)

...
p̂−

k

(
ωNω ,σNσ , z0

)
=

 Aω1,σ1

...
AωNω ,σNσ

 r̂, (4.19)

which is constructed by vertically chaining the vectors p̂−
k (z0) and matrices Aω,σ of

equation 4.18.

To perform FWM, we first set p−,full
k (z0) = d, with d a complex vector of length

Nx NσNω containing the recorded wavefield at the surface for all Nσ sources and all
Nω frequencies. We now wish to solve equation 4.19 for the reflectivity vector r̂. The
most straightforward approach to obtain r̂ is via the pseudo-inverse of A, hence

r̂ = (
AHA

)−1
AH

(
d−p−,full

0,k (z0)
)

, (4.20)

where the superscript H represents the conjugate transpose. However, this is
impractical, as A is of size Nx NσNω×Nx Nz in 2D. This makes it prohibitively
expensive computationally to calculate the matrix inverse. Instead, we define a cost
function J , with

J = 1

2

∑
i , j

∥∥∥(
d

(
ωi ,σ j

)−p−
0,k

(
ωi ,σ j , z0

))−Aωi ,σ j r̂
∥∥∥2

, (4.21)

where ∥. . .∥ is the Euclidean norm of the vector. We now perform gradient descent to
find r̂. As equation 4.19 is linear in r̂, the gradient of the cost function J is given by

ÇJ

Çr̂
=−∑

i , j
Re

(
AH
ωi ,σ j

ek
(
ωi ,σ j

))
, (4.22)

where
ek

(
ωi ,σ j

)= d
(
ωi ,σ j

)−p−
0,k

(
ωi ,σ j , z0

)−Aωi ,σ j r̂. (4.23)

We now use this gradient to update the reflectivity

r∪ = r∪0 +αÇJ

Çr̂
, (4.24)
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where the (real-valued) scalar α is given by

α=
Re

[(
A ÇJ
Çr̂

)H
ek

]
∥∥∥A ÇJ

Çr̂

∥∥∥2 . (4.25)

Setting r∪0 = r∪, we can now repeat this process for multiple iterations to gradually
minimize the cost function J . The full FWM process is summarized in algorithm
6. Note that equations 4.22 and 4.25 can be calculated using a depth-recursive
approach similar to the one shown in algorithm 5. This significantly reduces the
computational cost of algorithm 6.

4.2.2. MODEL-ORDER REDUCED FULL-WAVEFIELD MIGRATION USING

PROPER ORTHOGONAL DECOMPOSITION

In this section, we examine an alternative approach to solve equation 4.19, based
on Galerkin projections and POD. We begin by describing the method of Galerkin
projections for a linear system. Assume the final solution r̂ can be written as a linear
combination of Nr known basis vectors r̂r,i where Nr ≪ Nx Nz , i.e.

r̂≈∑
i

ci r̂r,i = R̂r c, (4.26)

where R̂r is a real matrix of size Nx Nz ×Nr , with columns r̂r,i , and c is a vector of
the coefficients ci . Equation 4.19 can then be rewritten as

AR̂r c = d−p−,full
0,k (z0) . (4.27)

Left-multiplying both sides of equation 4.27 by
(
AR̂r

)H
and taking the inverse gives

c =
([

Re
(
AR̂r

)
Im

(
AR̂r

) ]H [
Re

(
AR̂r

)
Im

(
AR̂r

) ])−1[
Re

(
AR̂r

)
Im

(
AR̂r

) ]H
 Re

(
d−p−,full

0,k (z0)
)

Im
(
d−p−,full

0,k (z0)
)  , (4.28)

where we have separated the real and imaginary parts to ensure that the coefficient
vector c is real. After using equation 4.28 to find the coefficients ci , the perturbation
r̂ can be computed using equation 4.26.

Note the similarity of equation 4.28 to equation 4.20. Both equations represent
taking the pseudo-inverse of equation 4.19. However, equation 4.20 requires taking
the inverse of a matrix of size Nx Nz ×Nx Nz , while equation 4.28 reduces the size
of this matrix to Nr ×Nr . Therefore, in situations where one can find a small set
of basis vectors r̂r,i that describe the full solution r̂ such that Nr ≪ Nx Nz , the
method of Galerkin projections can dramatically reduce the cost of calculating the
(pseudo-)inverse. Note that this method can be applied generally to any linear
system, given that one can find an appropriate set of basis vectors r̂r,i .

To find an appropriate set of basis vectors r̂r,i to form R̂r we apply POD. Hence,
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Algorithm 6: Conventional Full Wavefield Migration (FWM)

Result: Reflectivity model r∪.
Input: Measured data d

1 Set r∪ = 0;
2 for k = 1 : K do
3 Set r∪0 = r∪;
4 Calculate p+

0,k (zn) and p−
0,k (zn) for all zn using algorithm 5;

5 Calculate ÇJ
Çr̂ =−∑

i , j
Re

(
AH
ωi ,σ j

ek
(
ωi ,σ j

))
;

6 Calculate α= Re

[(
A ÇJ
Çr̂

)H
ek

]/∥∥∥A ÇJ
Çr̂

∥∥∥2
;

7 Update reflectivity r∪ = r∪0 +α ÇJ
Çr̂

8 end

we will construct r̂r,i from a set of partial solutions s j for j = 1, . . . , Ns , such that
Nr ≪ Ns ≪ Nx Nz . These partial solutions may be solutions for a part of the domain,
solutions to related problems, or low-fidelity solutions acquired by applying a less
expensive approach. Note the correlation to machine learning, where the partial
solutions s j can be interpreted as the training data for the method.

To construct R̂r given the partial solutions s j , we begin by constructing the
so-called solution matrix S, which is a real matrix of size Nx Nz ×Ns , with columns
s j . Next, we take the Singular Value Decomposition (SVD) of S such that UΣVT = S.
The basis vectors r̂r,i are then given by the columns ui of the matrix U. The number
of basis vectors required depends on the decay of the singular values Σ|i i . The faster
the decay of the singular values, the fewer basis vectors r̂r,i are required to span the
same domain as the domain spanned by the vectors s j . Note that we assume that
the full solution r̂ falls within the span of s j , as this is required for the resulting
vectors r̂r,i of the POD process to be appropriate basis vectors for r̂.

To apply POD to FWM, we must therefore first construct an appropriate solution
matrix S. Recalling the conventional FWM approach described in section 4.2.1, we
find that a natural choice for the partial solution vectors s j is provided by the

components of the gradient ÇJ
Çr̂ , i.e.

S =
[

Re
(
AH
ω1,σ1

ek (ω1,σ1)
)

. . . Re
(
AH
ωNω ,σNσ

ek
(
ωNω ,σNσ

)) ]
, (4.29)

as these components are partial solutions of equation 4.19 for a given frequency ω

and source wavefield σ (z0). Next, we calculate the SVD of the solution matrix S and
construct the low-rank solution matrix R̂r from the left singular vectors ui as follows:

R̂r =
[

ÇJ
Çr̂ ũ1 . . . ũNΣ

]
, (4.30)

with NΣ the maximum rank we choose to take into account, which can be chosen
manually or by using an error criterion. In equation 4.30 we have explicitly included
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the conventional gradient ÇJ
Çr̂ and we have applied a Gram-Schmidt procedure to

the vectors ui to form the vectors ũ, which are orthogonal to the conventional
gradient. This guarantees that the original gradient always falls in the span of r̂r,i ,
guaranteeing that the reflectivity update produced by MOR-FWM can never be worse
than the update produced by the conventional method. Therefore, the method can
be seen as a pre-conditioner of the conventional gradient.

Using R̂r , we now apply equation 4.28 to calculate the coefficient vector c. Finally,
knowing R̂r and c, we use equation 4.26 to retrieve the reflectivity update, viz.
r̂ = R̂r c. This process is summarized in algorithm 7.

4.3. NUMERICAL RESULTS
In this section we examine the results obtained with the MOR-FWM method
for a synthetic and a field data example. We compare these results with the
reconstructions obtained using the conventional FWM method to illustrate the
advantages and disadvantages of the approach introduced in this paper.

4.3.1. SYNTHETIC EXAMPLE: MARMOUSI MODEL

We begin with the synthetic example, where we have applied the method on a part
of the Marmousi model. Data was generated using a time-domain finite-difference
scheme [17] using a source wavefield with a Ricker wavelet signature. The parameters
used in the modelling and inversion scheme are given in table 4.1. The imaging
results are shown in figure 4.1.

Examining figure 4.1, we see that both the conventional FWM method as well
as the MOR-FWM method outlined in section 4.2.2 have produced a reasonable
reconstruction of the reflectivity image corresponding to the underlying velocity
and density models. However, while the differences between the results of the
two methods are modest, in certain areas the MOR-FWM result shows improved
consistency and better resolution compared to the conventional method.

Comparing figures 4.1g) and 4.1h), for example, we see that the MOR-FWM
method has done a better job of reconstructing the two layers right above the strong
reflector in the middle of the figure (bottom three arrows). We also see that the
layers in figure 4.1h) are a bit sharper (top two arrows). Figures 4.1j) and 4.1k) show
a similar behaviour. The two layers at the top of the image are better resolved in
figure 4.1k) compared to figure 4.1j) (top three arrows), and the layers are slightly
sharper throughout the MOR-FWM figure (bottom two arrows).

This conclusion is further supported by figure 4.1c), where we have plotted the
cost function J as a function of the iteration number k. From this figure, we see that
the MOR-FWM method yields a reduced data residual compared to the conventional
FWM method, lending further support for the MOR-FWM method.

4.3.2. FIELD DATA EXAMPLE: VØRING BASIN

Next, we examine the field data example, where we have tested the method on a
marine field dataset from the Vøring basin in Norway (see [16] for more details). The



4

86 4. MODEL-ORDER REDUCED FULL-WAVEFIELD MIGRATION

Algorithm 7: Model-Order Reduced Full Wavefield Migration (MOR-FWM)

Result: Reflectivity model r∪.
Input: Measured data d

1 Set r∪ = 0;
2 for k = 1 : K do
3 Set r∪0 = r∪;
4 Calculate p+

0,k (zn) and p−
0,k (zn) for all zn using algorithm 5;

5 Calculate solution matrix S using equation 4.29;

6 Calculate SVD of S ⇒ UΣVT = S;
7 Construct low-rank partial solutions r̂r,i = ũi ;
8 Calculate wavefield perturbations AR̂r using a modified version of algorithm

5;

9 Solve reduced system AR̂r c = d−p−,full
0,k (z0) using equation 4.28;

10 Update reflectivity r∪ = r∪0 + R̂r c
11 end

parameters used for this dataset are shown in table 4.2 and the results in figure 4.2.

Comparing figures 4.2a) and 4.2b), as well as examining 4.2d), we see that the
difference between the two methods is significantly smaller than in section 4.3.1.
This can also be seen from the cost functional J , shown in figure 4.4d), we see similar
behaviour. Both the conventional FWM method as well as the MOR-FWM method
yield very similar values after 5 iterations. However, we note that the MOR-FWM
method outperforms the conventional FWM method when fewer iterations are used.
This effect is discussed in more detail in section 4.4.2.

Table 4.1: Parameters Marmousi model
Lateral grid spacing ∆x 10 m Vertical grid spacing ∆z 5 m

Number of lateral gridpoints Nx 431 Number of vertical gridpoints Nz 500
Peak frequency fpk 17 Hz Minimum frequency fmi n 2 Hz

Maximum frequency fmax 40 Hz Number of sources Nσ 44
Source spacing ∆σ 100 m Number of iterations K 8

Number of singular vectors NΣ 50

Table 4.2: Parameters Voring data
Lateral grid spacing ∆x 25 m Vertical grid spacing ∆z 5 m

Number of lateral gridpoints Nx 399 Number of vertical gridpoints Nz 1001
Minimum frequency fmi n 2 Hz Maximum frequency fmax 60 Hz

Number of sources Nσ 23 Source spacing ∆σ 450 m
Number of iterations K 5 Number of singular vectors NΣ 50



4.4. DISCUSSION

4

87

4.4. DISCUSSION

Based on the results shown in figure 4.1 and 4.2, we observe that the MOR-FWM
method generates slightly better reconstructions compared to the conventional FWM
method. More distinct layers are recovered and the layers are sharper to the eye
when the MOR-FWM method is used. This is consistent with the interpretation of
the method as a preconditioner to the conventional approach. In this section, we
compare the computational cost of both methods as well as exploring methods to
improve the results further.

Figure 4.1: FWM and MOR-FWM results for the synthetic Marmousi example. Figures
a) and b) show the velocity and density model, respectively, of the part
of the Marmousi model under consideration. Figure c) shows the data
residual J , which has been normalized with respect to the residual for
p−

0,1 = 0. Figures d), e) and f) show the conventional FWM and MOR-FWM
image after 8 iterations, respectively, as well as the difference between
the two images. Figures g), h) and i) show a zoom-in of the FWM image,
the MOR-FWM image and their difference at the location of the top box,
respectively, while figures j), k) and l) show zoom-ins of the bottom box.
Arrows indicate regions of interest within the figures.
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4.4.1. COMPUTATIONAL COSTS

We begin by comparing the computational costs of algorithm 6, which describes
the conventional FWM method, and algorithm 7, which describes the MOR-FWM
method.

Both algorithms begin by calculating the forward modelled wavefields p+
0,k (zn) and

p−
0,k (zn) in the background medium, followed by calculating Re

(
AH
ω,σek (ω,σ)

)
for all

frequencies ω and source wavefields σ (z0), which is either used to calculate the
gradient of the cost functional J (conventional FWM, equation 4.22), or construct
the solution matrix S (MOR-FWM, equation 4.29). Next, in the MOR-FWM algorithm,
the SVD of the solution matrix S is calculated to find the basis vectors r̂r,i = ũi .
Assuming that the maximum rank NΣ taken into account is much smaller than the
number of partial solutions s j , this step has a negligible computational cost.

The real difference between the two methods lies in the next step, the calculation
of the wavefield perturbations A ÇJ

Çr̂ (algorithm 6, step 6) and AR̂r (algorithm 7,
step 8). In the MOR-FWM method, the wavefield perturbations for each basis
vector r̂r,i must be calculated, while in the conventional FWM method only the
wavefield perturbation due to the gradient ÇJ

Çr̂ is required. Therefore, this step is
more expensive computationally by a factor of NΣ for the MOR-FWM method, where
NΣ is the number of basis vectors taken into account. As the other steps are
either identical or have negligible computational costs, this step fully determines the
difference in computational cost between the two methods.

To reduce the computational cost of this step, a number of approaches may be
used. First, one can reduce the number basis vectors NΣ used. This will reduce the
computational cost, but may lead to smaller improvements to the reconstruction.
Alternatively, other choices for the basis vectors may be explored. For example,
alternative choices for the partial solutions s j may lead to a more rapid decay of
the singular values of the solution matrix S, in which case fewer basis vectors are
required to yield a high-quality preconditioner. Finally, if the basis vectors r̂r,i can
be estimated a priori, the construction of the solution matrix S and its SVD can be
omitted, and the calculation of AR̂r can be performed offline, as it does not depend
on the measured data d. Such a situation may arise in monitoring applications, for
example, where high-quality estimates of the reflectivity may already exist.

4.4.2. RESULTS AFTER 1 ITERATION

Next, we compare the performance of the conventional FWM and the MOR-FWM
methods after a single iteration, the results of which are shown in figures 4.3 and
4.4. From this figure, we see that the MOR-FWM method requires fewer iterations to
produce a sharp image compared to the conventional method. Comparing figures
4.4a) and b), for example, we see that the MOR-FWM method displays an improved
resolution at the edges of the model at the first iteration (left-most arrow). Also, we
see an improved recovery of the strong reflectors in the zoomed-in image (top-left
arrow). Finally, we see an improved continuity of the weaker reflectors deeper in the
image (right and bottom arrows).

This result suggests that, using the MOR-FWM method, one may require fewer
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iterations to retrieve a sharp image. This is further supported by the cost function J ,
shown in figure 4.4d), which shows that the MOR-FWM method achieves a smaller
data misfit even at the first iteration. This is especially relevant when FWM is
applied in the context of One-way Reflection Waveform Inversion [18], also known as
Joint Migration Inversion [19], where the (background) speed-of-sound model is also
updated. In this context it is important to generate an accurate reflectivity model
using only a few iterations, as the reflectivity model must be updated each time the
speed-of-sound model is adjusted.

4.4.3. NORMALIZATION

Finally, we examine a potential alternative choice for the partial solutions s j . Recall
that the partial solutions s j are given by Re

(
AH
ω,σek (ω,σ)

)
for a given frequency ω

and source wavefield σ (z0) (equation 4.29). While this is a natural choice, a downside
of this approach is that it is sensitive to the source signature. This means that in
cases where certain frequencies or sources have larger amplitudes than others, the
corresponding partial solutions will also exhibit larger amplitudes. When taking the
SVD of the solution matrix S, the basis vectors ui will then be weighted towards
the partial solutions with the largest amplitudes, meaning that not all sources and
frequencies are treated equally in the construction of the basis vectors.

To circumvent this shortcoming, one can choose to normalize each partial solution
s j . This can be done in conventional FWM, where all contributions are simply
summed together, or in MOR-FWM, where the normalized partial solutions are used
in the SVD. Using this approach, we retrieve the results shown in figure 4.5. Looking
at this figure, we see that the imprint of the source signature has been removed,
removing a number of spurious reflectors. Due to this effect, we see an improved
image in the target zone below the overburden, indicated by the box.

We also notice a more pronounced difference between the two methods.
Comparing figures 4.5a) and b), we see that the reflectors in the target zone exhibit a
greater continuity when normalized MOR-FWM is applied compared to normalized
FWM. This observation is supported by the cost function J , shown in figure 4.4d),
which shows an improved data misfit for normalized MOR-FWM. These results
underline the sensitivity of the MOR-FWM method to the choice of basis vectors, as
a well-chosen set of basis vectors can significantly improve the results.

4.5. CONCLUSION
In this paper, we introduce a novel preconditioner for Full-Wavefield migration,
using Proper Orthogonal Decomposition to find a reduced basis. We show that this
reduced basis can be used to construct a preconditioner using Galerkin projections.
We tested the resulting algorithm on the synthetic Marmousi model and a field
data set from the Vøring basin, where we achieve improved results in both cases
compared to the conventional FWM algorithm. We discuss the challenge of the
computational cost of the method, which depends linearly on the number of basis
vectors used, and present some ideas to further improve the results and/or reduce
the computational costs. Based on the flexibility of the method, as well as the
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results we present in this paper, we conclude that the MOR-FWM method is a useful
addition to the existing work on migration in general and FWM in particular.
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Figure 4.2: FWM and MOR-FWM results for the Vøring field data example. Figure
c) shows the velocity model used for migration. Figures a), b) and d)
show the conventional FWM and MOR-FWM image after 5 iterations,
respectively, as well as the difference between the two images. Note that
the difference figures have been plotted with half the clip value of the
FWM and MOR-FWM images.
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Figure 4.3: FWM and MOR-FWM results for the Vøring field data example after
1 iteration. Figures a), b) and d) show the conventional FWM and
MOR-FWM image after 1 iteration, respectively, as well as the difference
between the two images. Figure c) shows the velocity model used for
migration. Note that the box plotted in the figures indicates the region
displayed in figure 4.4.
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Figure 4.4: Zoom-in of the FWM and MOR-FWM results for the Vøring field data
example after 1 iteration. Figures a), b) and c) show the conventional
FWM and MOR-FWM image after 1 iteration, respectively, as well as the
difference between the two images. Arrows indicate regions of interest
within the figures. Figure a) shows the velocity model used for migration.
Figure d) shows the data residual J , which has been normalized with
respect to the residual for p−

0,1 = 0.
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Figure 4.5: FWM and MOR-FWM results for the Vøring field data example. Figures
a), b) and d) show the normalized FWM and the normalized MOR-FWM
image after 5 iterations, respectively, as well as the difference between
the two images. Figure (c) shows the conventional FWM image for
comparison. The box indicates the main region of interest in these
figures.
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5
CONCLUSIONS AND FUTURE WORK

5.1. CONCLUSIONS

Full-Wavefield Migration (FWM) is a powerful method for making images of the
subsurface of the Earth. It belongs to the class of Least Squares Migration (LSM)
methods, which function by iteratively updating the image of the subsurface, based
on the misfit between the true data and the forward modelled wavefield at the
surface. FWM has several advantages over other imaging methods, most noticeably
its low computational cost and the fact that it incorporates multiple scattering effects
into the imaging algorithm.

However, there is still significant room for the FWM algorithm to be improved. One
area that is of particular interest is the inclusion of converted waves into the FWM
framework. In areas with large contrasts, failure to take converted waves into account
leads to significant degradation of the image. FWM is well-suited to incorporate
these effects in principle, due to its use of integral-based operators, which allow for
coarser grids to be used compared to finite-difference-based methods. This leads to
an important reduction in computational cost, which is a significant challenge in the
modelling and imaging of converted waves.

The primary contribution of this thesis is the development of an extension to
the acoustic FWM algorithm which takes converted waves into account. In order
to successfully incorporate wave conversions into FWM, accurate elastic reflection
and transmission operators are required. However, the true elastic reflection
and transmission coefficients, known as the Zoeppritz equations, are notoriously
non-linear, making them difficult to work with. To circumvent this issue, we have
presented a set of accurate approximations to the Zoeppritz equations in chapter
2, based on taking Taylor expansions of the true elastic reflection and transmission
coefficients. These approximations, which we have named the extended Shuey
approximations, reduce the non-linearity of the full Zoeppritz equations, making
them easier to work with in forward modelling and inversion. To benchmark these
extended Shuey approximations, we have compared them to other approximations
in literature, where we have shown that the extended Shuey approximations are
more accurate in areas with large contrasts. We have also shown that the extended
Shuey approximations lead to more accurate results in a simple, 1.5D modelling and
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inversion case, compared to the conventional Shuey approximation.
Next, in chapter 3, we have used these extended Shuey approximations, along

with the theoretical framework developed by Berkhout [1], to develop a robust,
elastic FWM algorithm which takes converted waves into account. By using the
extended Shuey approximations, we are able to formulate accurate reflection and
transmission operators which are linked through the underlying medium parameters.
Doing this allows us to avoid the overparameterisation problem which is otherwise
present when incorporating angle-dependent reflection and transmission operators
into FWM. We have succesfully tested the resulting elastic FWM method on two
synthetic models, providing a proof-of-concept. Also, we have shown that in the
models examined, the elastic FWM algorithm outperforms the conventional, acoustic
FWM method. This shows the importance of taking converted waves into account
when imaging areas with large contrasts.

Finally, we have examined the convergence of the conventional, acoustic FWM
method. A known issue of FWM, and LSM methods in general, is their speed
of convergence. To improve this, preconditioning is often applied to the gradient,
in order to improve the update direction. In chapter 4, we have presented a
novel preconditioner, based on approximating the pseudo-inverse using Proper
Orthogonal Decomposition (POD). Using this method, we have achieved improved
imaging results compared to the conventional FWM algorithm for both the synthetic
Marmousi model as well as for a field dataset from the Vøring basin in Norway.

Consequently, this work presents several advancements in the field of FWM.

5.2. FUTURE WORK
In this section we will discuss some potential future areas of research related to the
FWM algorithm.

5.2.1. INCORPORATING AVO EFFECTS IN ACOUSTIC FWM
As discussed in chapter 3, one of the main challenges in incorporating angle-
dependent reflection and transmission operators in the conventional, acoustic
FWM algorithm is the danger of overparametrisation. Therefore, in chapter 2,
we introduced a set of accurate approximations to the full, elastic reflection and
transmission operators, which are linked through the underlying medium parameters.
Using these approximations, we are able to avoid the issue of overparametrisation
when formulating the elastic FWM algorithm of chapter 3.

However, this approach can also easily be applied to the conventional, acoustic
FWM algorithm. By replacing the angle-independent reflection operator commonly
used in acoustic FWM with the approximate PP-reflection operator R∪

PP introduced
in chapter 3, we can take angle-dependent reflectivity effects into account without
incurring the additional computational costs associated with full, elastic FWM. This
is relevant, as these angle-dependent reflectivity effects, more commonly known as
amplitude-versus-offset (AVO) effects, can degrade the image if they are not taken
into account properly. Therefore, using this approach, more accurate images may be
created in areas which exhibit strong AVO effects.
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5.2.2. ELASTIC JOINT MIGRATION INVERSION

As we have discussed briefly in chapter 3, the elastic FWM method introduced
in this thesis can be used as a basis for the development of a so-called elastic
Joint Migration Inversion (JMI) algorithm. JMI, also known as one-way Reflection
Waveform Inversion (ORWI) [2], is a joint velocity and reflectivity estimation method,
based on the conventional, acoustic FWM algorithm [3, 4]. In a similar way, an
elastic JMI algorithm, which takes converted waves into account, can be developed
based on the elastic FWM algorithm.

The main challenge in the development of elastic JMI is the fact that one needs
to estimate the S- and P-wave velocity models simultaneously. In principle, this
extension is straightforward, as it is similar to the extension of the propagation
operators described in chapter 3. However, in practice the estimation of an accurate
velocity model is challenging [5], requiring additional research in order to develop a
robust method for combining velocity and reflectivity estimation in elastic JMI.

5.2.3. OMNI-DIRECTIONAL IMAGING

A key challenge for FWM is the imaging of steep reflectors and diving waves. As
FWM is based on one-way operators, it cannot take horizontally propagating waves
into account. Furthermore, it assumes that downgoing waves are only turned into
upgoing waves due to scattering at a reflector. Unfortunately, this is not the case
for diving waves, which go from downgoing to upgoing waves due to variations in
the velocity profile. Therefore, the conventional FWM framework cannot take these
waves into account, leading to inaccurate images in areas with strong diving waves
and/or steep reflectors.

While multiple attempts have been made to take these effects into account [6, 7],
a comprehensive, omni-directional framework has remained elusive. However, as
the FWM method is extended to include more angle-dependent effects, it becomes
increasingly important to develop such a framework. In particular, the method
currently used to take dipping reflectors into account in elastic FWM, described in
chapter 3, is only valid for small dipping angles. In order to take steep reflectors
into account, it is therefore important to revisit the challenge of omni-directional
imaging in FWM.

5.2.4. FREQUENCY INTERPOLATION

As the focus of seismic imaging slowly shifts away from the exploration of
hydrocarbon resources and towards alternative applications, the computational cost
of seismic imaging has come under increased scrutiny. While the computational
cost of FWM is significantly lower than that of other LSM methods, especially those
based on full, two-way finite-difference modelling, its cost is not insignificant.

The main factor in the computational cost of FWM is the need to calculate and
store the modelled wavefields for each frequency independently. Therefore, the
computational cost of the method can be reduced significantly by only calculating
the wavefields for a limited number of frequencies. Using interpolation methods,
the wavefields for frequencies which have not been evaluated explicitly can be
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recovered. In this manner, both the overall computational cost as well as the memory
requirements of the method can be significantly reduced. Initial research into this
topic has already begun, most noticeably by Zhao et al. [8], who use machine
learning to perform the interpolation. Alternatively, one can use a deterministic
method such as POCS [9] to interpolate the missing frequencies.

5.2.5. EXTENSION TO 3D
Finally, as discussed briefly in chapter 3, the elastic FWM algorithm presented in this
thesis can be extended to 3D applications. In 3D, the one-dimensional convolutions
of the 2D method need to be replaced with two-dimensional convolutions to account
for the propagation and scattering in three dimensions. Also, in order to properly
incorporate all elastic effects, it is necessary to take SH waves into account, as well
as the SV waves that we have discussed in this thesis. In principle, these waves can
be taken into account using the same framework discussed in chapter 3. However,
this will introduce additional complexity into the presented algorithm, requiring
further research to properly take into account.
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