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Abstract

The Monitoring technique plays a vital role in ensuring the proper functioning of modern
industrial systems that are highly sophisticated and automated. On two different applications,
this thesis investigates two major categories of information redundancy monitoring techniques,
model-based and data-driven.

The first application focuses on ground fault detection in microgrid systems. Leveraging the
model information of the system, we propose a design approach for the fault detection filter
by creating a linear programming problem. This design ensures the complete decoupling of
the disturbance and guarantees fault sensitivity. Recognizing that decoupling is not always
feasible, we create a new optimization problem by exploiting available disturbance patterns,
so that the filter suppresses the impact of the disturbances while ensuring the fault sensi-
tivity. Simulation studies validate the effectiveness of the proposed designs. The second
application deals with non-intrusive load monitoring (NILM) in building systems. Our ap-
proach involves a two-stage process that utilizes data to perform NILM. In the first stage,
events are identified from the aggregate load measurement. In the second stage, an integer
programming problem is formulated to estimate the load for each appliance. The effectiveness
of our method is evaluated on a real-world dataset and compared with several other NILM
approaches, demonstrating competitive performance in terms of accuracy and computational
complexity.
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Chapter 1

Introduction

Modern industrial systems, such as power systems, smart buildings, and transportation sys-
tems, are evolving with high complexity and large amounts of data to improve the efficiency
of the system. However, this also makes the industrial systems safety-critical in the sense
that systems are vulnerable to faults and cyber-attacks occurring in actuators, sensors, and
processes [2]. These anomalies can lead to degradation in system performance, economic loss,
and even personal safety issues. For example, in August 2019, a severe power outage affected
over a million people in parts of England and Wales. A large number of individual customers
lost their power supply, and many critical public facilities, such as hospitals, airports, and
surface transportation systems, were affected to a certain extent [3]. In June 2010, an in-
cident happened in a nuclear power plant due to false data that, caused disastrous effects
and destroyed over 3000 centrifuges [4]. Thus, guaranteeing the safe operation of industrial
systems becomes a crucial issue.

As a key solution to the system safety operation problem, system monitoring techniques
have attracted enormous attention over the past few decades. One approach to monitoring
systems is to add physical sensors (called hardware redundancy [5]), the availability of which
has advanced significantly with the development of industrial systems. Another approach
is to design process monitoring methods by making use of the system’s information and
historical data (called information redundancy [6] or soft sensors [7]). Compared to hardware
redundancy, information redundancy offers advantages in terms of implementation and cost.
Moreover, fruitful theoretical results of information redundancy monitoring techniques can
be found in the literature.

In light of this, our research on system monitoring techniques takes information redundancy as
the center of attention. Specifically, we study two major categories of information redundancy
system monitoring techniques: model-based and data-driven, on two practical systems. First,
we consider the problem of detecting the ground fault in the microgrid system and prob a
model-based method to solve the problem. Second, we consider the problem of non-intrusive
load monitoring (NILM) of a building system and explore how a data-driven method can be
applied to this problem.
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2 Introduction

1. Ground fault detection for inverter-based microgrid systems

The microgrid, which consists of localized power generators, energy storage devices, and
loads [8], is a vital part of modern intelligent power systems. It can not only regulate the
amount of power supplied to customers to avoid high energy costs, but also operate in the
islanded mode in the case of a crisis like a blackout or a storm. In the islanded mode,
the microgrid disconnected from the main grid operates independently and allows for local
control of distributed generate [9]. However, in such mode, the microgrid system is susceptible
to inverter fault currents which alter the expected behavior of the microgrid system and
threaten equipment safety [10, 11]. In this study, we focus on developing a strategy to detect
a significant cause of the inverter fault currents, namely the three-phase symmetrical ground
fault on the load side (referred to as the ground fault). We summarize the following challenges
for the detection.

• Only the output currents of the inverter-based microgrid are available for fault detection.

• The ground fault does not lead to large changes in the measurements, e.g., the fault
current does not exceed the rated current by more than 1-2 times [12];

• Some disturbances have similar effects on the output currents as the ground fault.

Employing overcurrent relays to avoid the fault currents caused by the ground fault is widely
adopted in conventional grids. This strategy can be low efficient in inverter-based micro-
grids as it relies on large fault current [13, 14]. An alternative solution is to introduce more
advanced protection hardware rather than the simple overcurrent relay mechanism. Such
hardware can be differential relays [15], central protection units [16], and additional energy
storage units [17, 18]. Yet these strategies have a high intrusive level on the system, increase
the complexity of the system architecture and might have a high cost. Furthermore, relying
on communication infrastructures can lead to the robustness degradation of the system during
cyber attacks. Recently emerged active fault detection approach is algorithm-based. By in-
troducing carefully designed input signals into the system, active fault detection methods can
enhance the detectability of faults. In [19], the author ensures that the output sets of normal
and faulty modes of an inverter-based microgrid system are separated with a probabilistic
guarantee. The detection can then be achieved by comparing the output of the system with
those sets. But again, it has a high intrusive level on the system. Besides, given that the
injected signal needs to be constantly updated, the extensive computation can be a problem
for online operation.

With these issues taken into consideration, we turn to the category of strategy that generates
the residual for detecting faults. This category of strategy exploits the full potential of the
model, enabling real-time fault detection while avoiding the need for complicated hardware
or the injection of external signals. Observer-based [20] and parity-space methods [21] are
commonly employed to construct residual generators. Decomposition techniques such as the
unknown input observer (UIO) [22] can be utilized to decouple disturbances from the residual.
In [23], the authors propose a parity-space-like approach for designing residual generators
in the framework of the linear differential-algebraic equation (DAE), enabling disturbance
decoupling without the requirements on observability and controllability.
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3

In the context of this particular application, there is a practical demand for decoupling dis-
turbances, and the UIO method is infeasible due to the failure to meet the detectability
conditions mentioned in [22]. Therefore, we develop a fault detection strategy in the DAE
framework. We begin by investigating the dynamic model of an inverter-based microgrid both
with and without the ground fault and, subsequently, propose two methods to design fault
detection filters. In the first method, we develop a design method for the fault detection filter
utilizing model-based knowledge of the microgrid. We reformulate the filter design problem
as optimization problems to obtain a class of linear operators. Such a class of linear operators
fully decouples the fault-free system dynamics but keeps sensitive to the system dynamics
with the ground fault. Considering that the unknown disturbance cannot be ideally decou-
pled in some cases, we develop the second method, which combines the system model and a
set of disturbances that the system may encounter. We propose an optimization-based train-
ing framework to robustify the filter to the system output changes caused by the disturbance
patterns from the set, coupled with a guarantee of the filter’s sensitivity to the fault.

The filters designed by both methods allow online fault detection with the disturbance current
in the microgrid system. The proposed filters have a simple structure, a low intrusive level to
the system, and a low requirement on the hardware. In addition, as the design process is done
offline, online updating is avoided. Therefore, the proposed method has low computational
complexity.

2. Non-intrusive load monitoring for building systems

Modern smart buildings monitor the load for different appliances in the buildings to improve
short- and long-term forecasting of demand profiles and spatial load forecasting, supporting
the design of demand response and demand management schemes and thereby improving
energy efficiency [24]. In addition, load monitoring is capable of exposing abnormal power
profiles that may be caused by faults or attacks, which improves the safety of the system.

The traditional technique for load monitoring is intrusive load monitoring (ILM). ILM is a
multi-sensor approach [25], which deploys sensors for each device under interest. Despite the
promising performance of ILM in conducting load monitoring tasks, its limitations cannot
be ignored. Given the large number of appliances in a smart building, equipping each appli-
ance with a sensor would significantly increase the cost. The installation, maintenance, and
modification of these sensors are also challenging. To strike a balance between cost and per-
formance, an advanced load monitoring technique, non-intrusive load monitoring (NILM), has
emerged. Instead of using multiple sensors, NILM employs a single smart meter to measure
the total load in a system and then breaks this measurement into the load status of individual
appliances through mathematical means. Compared to the traditional ILM solution, NILM
has lower cost, simpler physical architecture, and lower complexity for users to access [26, 27].

Non-intrusive load monitoring (NILM) has been extensively studied since its inception in [28].
Machine learning-based NILM (ML-NILM) algorithms have shown promising results using
supervised learning methods [29–32], structured prediction [33], and artificial neural net-
works [34–37]. However, these algorithms have notable limitations. One of the significant
shortcomings of ML-NILM algorithms is their dependency on high-quality and substantial
amounts of data for both aggregate and disaggregate signals. As a result, their performance
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4 Introduction

significantly relies on data availability and quality, which may limit their robustness and ap-
plicability in various scenarios. Another limitation of ML-NILM algorithms is the challenge
of deploying them in practice, as their training process can be time-consuming and may re-
quire considerable computational resources. Although recent developments in unsupervised
learning-based NILM [38] enable immediate deployment, they still require some time before
they can perform real disaggregation tasks.

We are aware that an alternative implementation, optimization-based NILM (Op-NILM), has
been rapidly evolving in recent years. Op-NILM is usually formulated as integer programming
(IP) problem, whose main idea is to find the best combination of individual appliance loads
that approaches the aggregate measurement at a specific time instance or within a certain
period of time. It benefits from limited or no training of individual models for each appliance,
thus can be deployed easily and is more tolerant of data quality. In addition, intuition,
interpretability, and flexibility are also regardes as features of Op-NILM. After a series of
studies [39–42], Op-NILM has provided performance comparable to that of ML-NILM. Even
though, the challenges listed below are still open:

• In consideration of the fact that the power consumption behavior of appliances depends
on time and can be causal, some Op-NILM algorithms use all sample points over a
time window for disaggregation. The large number of sample points introduces a large
number of decision variables, leading to the problem of high real-time computational
complexity.

• Op-NILM algorithms have limitations in identifying appliances that do not have con-
sistent step-change load signatures.

• Op-NILM may have multiple solutions that conform to the data, e.g., load at some
states are combinations of that of other states. This could lead to instability in the
estimates.

In the second part of the thesis, we investigate the state-of-the-art Op-NILM methods, then
make the modification to address some of the challenges mentioned above. We also analyze
potential improvements that can be further made. The application background is chosen to
be building systems, as the dominant NILM studies concentrate on building systems.
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Chapter 2

Ground fault detection in an
inverter-based microgrid system

2-1 Model Description and Problem Statement

In this section, we first present the models of an inverter-based microgrid system in the
absence and presence of faults. Then we provide a formal description of the ground fault
detection problem we aim to solve in this study.

2-1-1 System Description

Figure 2-1 shows the microgrid architecture studied in this work, consisting of four compo-
nents: the power supplier, LCL filter, controller, and load. Each part is described below.
Power supply: The power supplier generates power to the microgrid according to the ref-
erence voltage v∗

i (t) given by the controller. We first assume that

(1) An ideal distributed generator (DG) source is available for the voltage source inverter
and thus DC dynamics is no longer taken into account.

(2) The inverter applies a high switching frequency.

Thanks to the two assumptions, the DC dynamics is no longer taken into account and the
switching process of the inverter can be neglected. In this manner, we can directly set the
voltage of the inverter vi(t) = v∗

i (t). The real-time current output of the inverter is denoted by
il(t). It is important to note that our case differs from that presented in [43], where multiple
DGs operate in parallel to supply power to the load. In our study, we focus on a single DG,
and therefore, the droop control method employed in [43] is not required.
LCL filter: The LCL filter is used to filter the harmonics produced by the inverter. It
consists of two resistors Rf and Rc, two inductors Lf and Lc, and a capacitor Cf . The
real-time voltage and current of the microgrid are denoted by vo(t) and io(t), respectively.

MSc Thesis Yucheng Liao



6 Ground fault detection in an inverter-based microgrid system

Current
controller

FCL
Voltage

controller

DG

Power supply

Control

LCL filter Load

Bus

Fault detection
filter

Diagnosis component

Microgrid system

Figure 2-1: Architecture of an inverter-based microgrid system with the diagnosis component.

Control: The control component utilizes the classical cascade internal model control (IMC)
to regulate the voltage of a microgrid vo(t) at a specific reference point v⋆

o(t). The IMC
employs an inner current controller and an outer voltage controller [44], both of which are PI
controllers. In addition, the control component incorporates a fault current limiter (FCL),
which acts as a saturation block for the output of the voltage controller i∗l (t). This is a crucial
safety mechanism that prevents excessive output current from the inverter.

Load: We assume the load is purely resistive denoted by RL. Note that the unknown part
of the load is the main source of disturbances.

Note that the diagnosis component is not a part of the microgrid system. As the main
proposition of this study, we will elaborate it in section 2-1-4.

The mentioned variables of voltage and current are based on three-phase system. To simplify
the analysis, we introduce the direct-quadrature (dq) transform. Consider a three-phase
system with current i(t) = [ia(t) ib(t) ic(t)]⊤ and voltage v(t) = [va(t) vb(t) vc(t)]⊤ in abc
frame, the dq transform projects the phase currents of the stator, namely, ia(t), ib(t) and ic(t)
onto d-axis and q-axis, i.e.,

idq(t) = Pi(t), vdq(t) = Pv(t),

where idq(t) = [id(t) iq(t)]⊤ , vdq(t) = [vd(t) vq(t)]⊤ , and the projection matrix P is given by

P = 2
3

 cos(θ) cos
(
θ − 2π

3

)
cos

(
θ + 2π

3

)
sin(θ) sin

(
θ − 2π

3

)
sin
(
θ + 2π

3

)  .
The angle θ represents the constantly changing angle between the d-axis and the a-axis.
Specifically, with the d-axis rotating at an angular velocity ω with respect to the a-axis, it
follows that θ = ωt. For more information about the dq transformation, interested readers
can refer to [45].
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2-1 Model Description and Problem Statement 7

Throughout this paper, we add subscripts to denote the variables after the dq transforma-
tion for ease of expression. For example, v(t) dq−→ vdq(t) = [vd(t) vq(t)]⊤, i(t) dq−→ idq(t) =
[id(t) iq(t)]⊤, and so on.

2-1-2 State-space model derivation for the fault-free microgrid system

We now derive the state-space models for the voltage controller, current controller, and LCL
filter. Subsequently, we give the state-space model of the fault-free microgrid system.
We start with the modeling of the voltage controller. According to 2-1, the inputs of the volt-
age controller include the microgrid voltage vo(t), the microgrid current io(t), and the reference
voltage v∗

o(t). The output of the voltage controller is i∗l (t). Let us convert vo(t), v∗
o(t), io(t)

and i∗l (t) into dq frame, which are represented as

vodq(t) = [vod(t) voq(t)]⊤ , v∗
odq(t) =

[
v∗

od(t) v∗
oq(t)

]⊤
,

iodq(t) = [iod(t) ioq(t)]⊤ , i∗ldq(t) = [i∗ld(t) i∗lq(t)]⊤.

Considering that the voltage controller is a PI controller, we introduce ϕdq(t) = [ϕd(t) ϕq(t)]⊤
to represent the cumulative error between vodq(t) and v∗

o(t), i.e.,

dϕd(t)
dt := v∗

od(t) − vod(t), dϕq(t)
dt := v∗

oq(t) − voq(t). (2-1)

Then, we obtain the dynamics of the voltage controller according to Kirchhoff’s laws:

i∗ld(t) = Fiod(t) − ωCfvoq(t) +Kv
P (v∗

od(t) − vod(t)) +Kv
I ϕd(t) , (2-2a)

i∗lq(t) = Fioq(t) + ωCfvod(t) +Kv
P

(
v∗

oq(t) − voq(t)
)

+Kv
I ϕq(t) , (2-2b)

where F is a feedforward coefficient, Kv
P and Kv

I denote the proportional and integral gain,
respectively. By combining Equations (2-1) and (2-2), the state space model of the voltage
controller is given by ϕ̇dq(t) = Bv1v

∗
odq(t) +Bv2

[
ildq(t) vodq(t) iodq(t)

]⊤
,

i∗ldq(t) = Cvϕdq(t) +Dv1v
∗
odq(t) +Dv2

[
ildq(t) vodq(t) iodq(t)

]⊤
,

(2-3)

where
Bv1 =

[
1 0
0 1

]
, Bv2 =

[
0 0 −1 0 0 0
0 0 0 −1 0 0

]
, Cv =

[
Kv

I 0
0 Kv

I

]
,

Dv1 =
[
Kv

P 0
0 Kv

P

]
, Dv2 =

[
0 0 −Kv

P −ωCf F 0
0 0 ωCf −Kv

P 0 F

]
.

A similar procedure can be used to derive the current controller. The inputs of the current
controller include the output current of the inverter il and the reference current i∗l (t) generated
by the voltage controller. Its output is the reference voltage for the inverter v∗

i (t). Again, we
convert il, i∗l (t) and v∗

i (t) into dq frame and arrive at

ildq(t) = [ild(t) ilq(t)]⊤ , i∗ldq(t) =
[
i∗ld(t) i∗lq(t)

]⊤
, v∗

idq(t) = [v∗
id(t) v∗

iq(t)]⊤.
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8 Ground fault detection in an inverter-based microgrid system

We define the cumulative error between ildq(t) and i∗ldq(t) by γdq(t) = [γd(t) γq(t)]⊤, i.e.,

dγd(t)
dt := i∗ld(t) − ild(t), dγq(t)

dt := i∗lq(t) − ilq(t). (2-4)

Then, we obtain the dynamics of the current controller according to Kirchhoff’s laws:

v∗
id(t) = −ωLf ilq(t) +Kc

P (i∗ld(t) − ild(t)) +Kc
Iγd(t) , (2-5a)

v∗
iq(t) = ωLf ild(t) +Kc

P

(
i∗lq(t) − ilq(t)

)
+Kc

Iγq(t) , (2-5b)

where Kc
P and Kc

I denote the proportional and integral gain, respectively. According to
Equations (2-4) and (2-5), the state space model for the current controller can be written as γ̇dq(t) = Bc1i

∗
ldq(t) +Bc2

[
ildq(t) vodq(t) iodq(t)

]⊤
,

v∗
idq(t) = Ccγdq(t) +Dc1i

∗
ldq(t) +Dc2

[
ildq(t) vodq(t) iodq(t)

]⊤
,

(2-6)

where
Bc1 =

[
1 0
0 1

]
, Bc2 =

[
−1 0 0 0 0 0
0 −1 0 0 0 0

]
, Cc =

[
Kc

I 0
0 Kc

I

]
,

Dc1 =
[
Kc

P 0
0 Kc

P

]
, Dc2 =

[
−Kc

P −ωLf 0 0 0 0
ωLf −Kc

P 0 0 0 0

]
.

In order to model the LCL filter, let us convert the output voltage of the inverter vi into
dq frame, which is vidq = [vid viq]⊤. The bus voltage in dq frame is denoted by vbdq(t) =
[vbd(t) vbq(t)]⊤. By applying Kirchhoff’s laws, we get the dynamics of the LCL filter as
follows

dild(t)
dt = −Rf

Lf
ild(t) + ωilq(t) + 1

Lf
vid(t) − 1

Lf
vod(t) ,

dilq(t)
dt = −Rf

Lf
ilq(t) − ωild(t) + 1

Lf
viq(t) − 1

Lf
voq(t) ,

dvod(t)
dt = ωvoq(t) + 1

Cf
ild(t) − 1

Cf
iod(t) ,

dvoq(t)
dt = −ωvod(t) + 1

Cf
ilq(t) − 1

Cf
ioq(t) ,

diod(t)
dt = −Rc

Lc
iod(t) + ωioq(t) + 1

Lc
vod(t) − 1

Lc
vbd(t) ,

dioq(t)
dt = −Rc

Lc
ioq(t) − ωiod(t) + 1

Lc
voq(t) − 1

Lc
vbq(t) .

Recall that we make assumptions about the power supply, and it follows that vi(t) = v∗
i (t).

Given this, vidq(t) = v∗
idq(t) holds. With the load RL, we indicate the bus voltage is vbdq(t) =[

RL 0
0 RL

]
iodq(t). So far, we arrive at the state space model of the LCL filter

 i̇ldq(t)
v̇odq(t)
i̇odq(t)

 = Al

 ildq(t)
vodq(t)
iodq(t)

+
[
Bl1 Bl2

] [ vidq(t)
vbdq(t)

]
, (2-7)
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2-1 Model Description and Problem Statement 9

where the matrices are

Al =



−Rf

Lf
ω − 1

Lf
0 0 0

−ω −Rf

Lf
0 − 1

Lf
0 0

1
Cf

0 0 ω − 1
Cf

0
0 1

Cf
−ω 0 0 − 1

Cf

0 0 1
Lc

0 −Rc
Lc

ω

0 0 0 1
Lc

−ω −Rc
Lc


,

Bl1 =
[ 1

Lf
0 0 0 0 0

0 1
Lf

0 0 0 0

]⊤

, Bl2 =
[

0 0 0 0 − 1
Lc

0
0 0 0 0 0 − 1

Lc

]⊤

,

By combing the state-space models (2-3), (2-6), and (2-7), we arrive the complete state-space
model of the fault-free microgrid system,{

x(t) = Ahx(t) +Bhv
∗
odq(t) +Bdd(t),

iodq(t) = Cx(t) (2-8)

where x(t) =
[
ϕ⊤

dq(t) γ⊤
dq(t) i⊤ldq(t) v⊤

odq(t) i⊤odq(t)
]⊤

is the augmented state of the micro-
grid system and d(t) denotes the disturbance. The system matrices Ah, Bh, and C are given
by

Ah =

 02×2 02×2 Bv2
Bc1Cv 02×2 Bc1Dv2 +Bc2

Bl1Dc1Cv Bl1Cc Ah33

 , Bh =

 Bv1
Bc1Dv1

Bl1Dc1Dv1

 , C =
[
02×8 I2×2

]
,

where Ah33 = Al +Bl1 (Dc1Dv2 +Dc2) +Bl2

[
RL 0
0 RL

] [
02×4 I2

]
. The matrix Bd depends

on the form of the disturbance.

Assumption 2-1.1 (Disturbance). In this study, we assume a disturbance d(t) that reflects
the impact of load changes on iodq. Specifically, we consider the following two structures for
Bd: (1) Bd =

[
01×8 [ξ1 ξ2]

]⊤
for d(t) ∈ R; (2) Bd =

[
02×8 diag([ξ1 ξ2])

]⊤
for d(t) ∈ R2,

where ξ1, ξ2 ∈ R represent the level of disturbance in the corresponding channel. These two
structures correspond to one-dimensional and two-dimensional disturbances, respectively.

2-1-3 State-space model derivation for the microgrid system with faults

We consider the three-phase symmetrical ground fault on the load side in this study. Once
the fault occurs, we can regard the load RL as no longer existing and therefore denote RL = 0.
As a result, the current output iodq(t) rises sharply. This makes the output of the voltage
controller i∗ldq(t) immediately reach the upper limit set in the FCL. In such a case, the reference
signal received by the current controller is constant, i.e. the limit value τdq, which can be
denoted as i∗ldq(t) = τdq As a result, the cumulative error in (2-4) becomes

dγf
d (t)
dt = τd(t) − ild(t),

dγf
q (t)
dt = τq(t) − ilq(t), (2-9)
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10 Ground fault detection in an inverter-based microgrid system

and (2-6) becomes[
γ̇f

d (t)
γ̇f

q (t)

]
= Bc1

[
τd(t)
τq(t)

]
+Bc2

 ildq(t)
vodq(t)
iodq(t)


[
v∗

id(t)
v∗

iq(t)

]
= Cc

[
γf

d (t)
γf

q (t)

]
+Dc1

[
τd(t)
τq(t)

]
+Dc2

 ildq(t)
vodq(t)
iodq(t)


(2-10)

Then, we align (2-3),(2-7), and(2-10) and obtain the following state-space representation for
the microgrid system with three-phase ground faults:{

ẋ(t) = Auhx(t) +Buh1v
∗
odq(t) +Buh2τdq,

iodq(t) = Cx(t), (2-11)

where the matrices Af , Bf1, and Bf2 are

Auh =

02×2 02×2 Bv2
02×2 02×2 Bc2
06×2 Bl1Cc Al +Bl1Dc2

 , Buh1 =

Bv1
02×2
06×2

 , Buh2 =

 02×2
Bc1

Bl1Dc1

 .
In order to integrate the above fault dynamics of the microgrid into the original fault-free
microgrid model, we herewith define a fault signal f , which can be taken as an indicator of
the occurrence of the three-phase symmetrical ground fault.
Definition 2-1.2 (Fault signal f). Given I is some time interval, the fault signal f satisfies

f(t) ∈ {0, 1} ,∀t ∈ I ,

where f(t) = 0 indicates that no fault occurs at t while f(t) = 1 does the opposite.

With the above definition, we arrive at the following compact representation of the microgrid
system, {

ẋ(t) = A(f(t))x(t) + Bu(f(t))u(t) + Bd(f(t))d(t),
y(t) = Cx(t), (2-12)

where u(t) = [v∗
odq(t) τdq]⊤ consists of the known input signals, y(t) = iodq(t) denotes the

output current. The system matrices are

A(f(t)) = Ah + f(t)(Auh −Ah), Bu(f(t)) = [Bh + f(t)(Buh1 −Bh) f(t)Buh2],
Bd(f(t)) = (1 − f(t))Bd.

The intuition behind (2-12) is that when f(t) = 0 (fault-free), the inverter will behave the
same way as the model given in (2-8). On the other hand, while f(t) = 1 (the fault occurs),
the faulty behavior of the inverter will be activated by f(t).
Remark 2-1.3. Throughout the rest of the study, we employ the above microgrid system
in discrete form. We specify that k ∈ N and the system output y(k) := iodq(k), then the
discretized complete microgrid model is as below,{

x(k + 1) = A(f(k))x(k) + Bu(f(k))u(k) + Bd(f(t))d(t),
y(k) = Cx(k), (2-13)

where x(k) ∈ Rnx, u(k) ∈ Rnu, d(k) ∈ Rnd, y(k) ∈ Rny and f(k) ∈ {0, 1}.
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2-1 Model Description and Problem Statement 11

2-1-4 Problem Statement

The complete microgrid model has revealed that the microgrid’s behavior is significantly
influenced by the presence or absence of a fault signal, caused by load anomaly and the
activation of the FCL. If the fault signal f(k) = 0, the microgrid is functioning normally.
However, if f(k) = 1, indicating a three-phase symmetrical ground fault occurs, the system
is operating improperly. Naturally, a microgrid system is expected to operate safely and
normally at all times. In the event of a fault occurrence, it is essential to have a diagnosis
component, as shown in 2-1, capable of generating an alert for the operators. In a more
general sense, the following architecture can be used for fault detection,

Figure 2-2: General architecture for fault detection filter [1].

According to Figure 2-2, the fault detection (FD) filter receives y(k) and u(k) and produces a
signal r(k). This signal r(k) is the diagnosis signal we mentioned which can also be referred
to as the residual.

Definition 2-1.4 (Residual). Suppose an implementation of the FD filter is F(p) with p
the time shift operator. The FD filter takes Y (k) :=

[
y(k)⊤ u(k)⊤

]⊤
∈ Rny+nu, as its input

and, after processing, generates the signal r(k) ∈ R as its output, which is the residual.
Mathematically, r(k) is denoted as

r(k) := F(p)Y (k)

Recalling the task that the filter has to perform, we expect the filter to produce different
residuals depending on whether a fault occurs or not. Ideally, the filter should only be
sensitive to the fault.

Remark 2-1.5 (Requirements for the FD filter design). (rq.1) The residual signal generated
by the filter is expected to be 0 when no faults occur (f = 0) and (rq.2) the residual signal is
not 0 when the fault signal is introduced into the system.

At this point, we summarize the above preparations and propose the following problem as
the main point of our study.

Problem Statement Given a discrete linear dynamic system with d(k) ∈ Rnd, f(k) ∈
{0, 1} and u(k) ∈ Rnu three types of inputs, i.e., the model described by Equation (2-13)
where d(k) represents the unknown inputs, typically some disturbances, f(k) stands for the
inaccessible fault signal and u(k) denotes the known inputs. Our goal is to design an FD filter
F(p) that fits the general structure indicated in Figure 2-2, converting u(k) and the measurable
outputs of the system model y(k) into the residual r(k) ∈ R to meet the requirements in Remark
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12 Ground fault detection in an inverter-based microgrid system

2-1.5. Expanding on this, in light of Remark 2-1.5, we can consider the residual signal r(k)
as r(f(k)), and the below equations hold,{

r(f(k) = 0) ≡ 0 , (2-14a)
r(f(k) = 1) ̸= 0 . (2-14b)

It is worth to realize a challenge in addressing the above problem is dealing with the dis-
turbance d(t). According to (2-12)(2-13), when f(k) = 0, the disturbance affects the states
of the system and consequently impacts the measurement iodq(t). Designing a filter that de-
couples such impact can facilitate fault detection. Nevertheless, this is not always achievable,
depending on the type of disturbance and the available measurement.

Remark 2-1.6 (Disturbance decoupling condition). Let Tdiodq
denote the transfer function

from the disturbance d(t) to the measurement iodq(t), and Rank(Tdiodq
) denotes the rank

of Tdiodq
. According to the result in [46, Chapter 6], d(t) can be decoupled from iodq(t) if

the number of unknown inputs is smaller than the number of sensors, i.e., Rank(Tdiodq
) < 2.

Therefore, recalling Assumption 2-1.1, we conclude that d(t) can be decoupled from iodq(t)
when d(t) is a one-dimensional disturbance signal but not for a two-dimensional (and higher-
dimensional) disturbance.

2-2 Main Results

In this section we address the design of the FD
filter in detail. The first part 2-2-1 introduces the DAE framework for designing the filter
and also defines the normal and fault modes of the microgrid system. The second part 2-
2-2 proposes a model-based filter design approach, discussing the cases where disturbance
decoupling is feasible and infeasible. The last part 2-2-3 presents an alternative data-driven
filter design approach.

2-2-1 DAE framework

To carry out the suitable fault detection filter design for the inverter-based microgrid system
to detect the three phase symmetrical ground fault, we begin by converting Equation (2-13)
in DAE framework [1]. Suppose k indicates the discrete time instance over the time horizon
T ,

H(p, f(k))X(k) + L(p, f(k))Y (k) = 0, ∀k ∈ T , (2-15)
in which,

X(k) :=
[
x(k)
d(k)

]
, Y (k) :=

[
y(k)
u(k)

]

H(p, f(k)) :=
[

−p + A(f(k)) Bd(f(k))
C 02×nd

]
, L(p, f(k)) :=

[
010×2 Bu(f(k))
−I2×2 02×4

]
.

Here, X(k) ∈ RnX ,Y (k) ∈ RnY and p is the time-shift operator we mentioned before,
satisfying pX(k) := X(k + 1).
By observing the above equations, we can give the definition of the system modes.
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2-2 Main Results 13

Definition 2-2.1 (System modes). Consider the inverter-based microgrid system, whose nor-
mal dynamics and a certain fault dynamics can be described an equation written in the DAE
framework with the form shown in (2-15). We define the two modes of the system

Normal Mode
{
Hn(p) := H(p, 0)
Ln(p) := L(p, 0)

, Faulty Mode
{
Hf(p) := H(p, 1)
Lf(p) := L(p, 1)

.

The two DAEs describing the normal and faulty modes of the system can be represented
according to Equation (2-15) and the Definition 2-2.1,{

Hn(p)X(k) + Ln(p)Y (k) = 0 , (2-16a)
Hf(p)X(k) + Lf(p)Y (k) = 0 , (2-16b)

where

Hn(p) :=
dH∑
i=0

Hnipi , Ln(p) :=
dL∑
i=0

Lnipi . (2-17)

Hni ∈ Rnr×nX , Lni ∈ Rnr×nY . Besides, dN and dH represent the degree of the polynomial
matrices Hn(p) and Ln(p). Note that we only give the explicitly expressions for Hn(p) and
Ln(p), as Hf(p), Lf(p) have the same forms with that of Hn(p) and Ln(p).

2-2-2 Robust filter design

Perfect decoupling

We first dive into the robust filter design approach with the one-dimensional disturbance
nd = 1, where disturbance decoupling is feasible according to Remark 2-1.6. Based on the
DAEs, we introduce an implementation of the FD filter F(p),

F(p) := a(p)−1N(p)Ln(p) ,

with

N(p) :=
dN∑
i=0

Nipi , Ni ∈ R1×nr .

We specify that N(p) is a polynomial matrix of degree dN , a(p) is a polynomial with sufficient
order and with all roots inside the unit circle. Both N(p) and a(p) can be considered as design
parameters and F(p) is the realization of the filter. However, to simplify the design, we fix
a(p) and focus only on N(p). By combining the expression of the residual signal (2-1.4) and
the DAE of the normal mode (2-16a), we arrive at

r(k) := a(p)−1N(p)Ln(p)Y (k)︸ ︷︷ ︸
(I)

= −a(p)−1N(p)Hn(p)X(k)︸ ︷︷ ︸
(II)

. (2-18)

Note that part (I) is equal to part (II) holds only if the system is operating in the normal
mode. We then look into the faulty mode.
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14 Ground fault detection in an inverter-based microgrid system

Fact 2-2.2. In the faulty mode, suppose Lf(p) has full column rank, referring to (2-16b), the
derivation of Y (k) is shown below,

Y (k) = Lf(p)†Hf(p)X(k) . (2-19)

in which ( · )† is defined as the pseudo-inverse of an matrix. By plugging (2-19) into part (I)
of (2-18), we arrive at

r(k) := a(p)−1N(p)Ln(p)Y (k) = a(p)−1N(p)Ln(p)Lf(p)†Hf(p)X(k) . (2-20)

Lemma 2-2.3 (Ideal conditions for the robust filter design). Consider a polynomial vector
N(p) that is a design parameter of the robust diagnosis filter, polynomial matrices Hn(p),
Ln(p), Hf(p) and Lf(p) are from DAEs of a system that descrbie the system behaviour under
the normal mode and the fault mode, as shown in (2-16). If Fact 2-2.2 holds, by fulfilling the
following two conditions, the requirements for the FD design (rq.1) and (rq.2) in Remark
2-1.5 can be met. They are

N(p)Hn(p) = 0 , (2-21a)
N(p)Ln(p)Lf(p)†Hf(p) ̸= 0 , (2-21b)

Proof. Accoding to the equation (2-18), the first condition (2-21a) ensures that r(k) = 0 if
the system is in the normal mode and thus (rq.1) is fulfilled. On the other hand, through
the equation (2-20), the condition (2-21b) guarantees r(k) ̸= 0, thus (rq.2) is satisfied.

To build the linear programming problem, we convert N(p), Hn(p) and Ln(p) into matrix
form that

N(p)Hn(p) = N̄H̄n

[
I pI · · · piI

]⊤
,

N(p)Ln(p)Lf(p)†Hf(p) = N̄L̄nL̄f
†
H̄f

[
I pI · · · piI

]⊤
, i := dN + dH ,

(2-22)

in which

N̄ :=
[
N0 N1 · · · NdN

]
, L̄n := diag

(
Ln0 Ln0 · · · Ln0

)

H̄n :=


Hn0 Hn1 · · · HndH 0 · · · 0

0 Hn0 Hn1 · · · HndH 0
...

... . . . . . . . . . 0
0 · · · 0 Hn0 Hn1 · · · HndH

 ,

Still, H̄f and L̄f are omitted as they have the same structure as H̄n and L̄n.

Proposition 2-2.4 (Ideal robust filter design). The design conditions in Lemma 2-2.3 can be
equated to the following linear programming problem, through solving which we can complete
the design of the robust filter,

N̄H̄n = 0 , (2-23a)

∥N̄L̄nL̄f
†
H̄f∥∞ ≥ 1 . (2-23b)

By solving the problem 2-23, the optimizer N̄ can be obtained and the optimal design parameter
N((p) is found.
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2-2 Main Results 15

Proof. From (2-22), we observe that by satisfying condition (2-23a), we ensure that (2-21a)
holds true. Similarly, condition (2-23b) ensures the validity of (2-21b). This completes the
proof.

Remark 2-2.5. We clarify that the constraint ∥N̄L̄nL̄f
†
H̄f∥∞ is non-convex, but the opti-

mization problem above can be converted into multiple linear programming problems.

It could happen that, Lf(p) does not have full column rank and the derivation in 2-2.2 does
not apply, either that pseudo-inverse is computational expensive or the computation has
numerical problem. In such cases, we can introduce a loose constraint to replace (2-21b),
which gives the following relaxed conditions,

{(2-21a), N(p) ̸= 0}. (2-24)

We can build a linear programming problem from the above conditions as,

{(2-23a), ∥N̄∥∞ ≥ 1}. (2-25)

The relaxed conditions guarantee that (rq.1) is met, and the filter is non-trivial. Yet fault
sensitivity is not necessarily ensured. Hence, this design methodology is a fallback option.

Incapable of perfect decoupling

We now consider the two-dimensional disturbance nd = 2, where disturbance decoupling is
infeasible. In this scenario, the design parameter N(p) that satisfying both (rq.1) and (rq.2)
of Remark 2-1.5 does not exist.

One can, however, still consider following the design framework developed in Section 2-2-2,
but with some changes for (rq.1) and (rq.2). Since it is impossible to make the residual
signal in the normal mode exactly equal to 0, we can suppress it as much as possible by
limiting the gain of the filter at steady state in the normal mode, and we also need to ensure
that the gain of the filter at steady state in the faulty mode is large enough to avoid the false
alarm.

Lemma 2-2.6 (Steady-state robust filter design). Consider the inverter-based microgrid sys-
tem with two-dimensional disturbance nd = 2 and the corresponding disturbance matrix Bd.
Suppose the system has steady-state in both normal mode and fault mode, then the linear
programming problem below gives the design parameter N̄

min
γ,N̄

γ

s.t. ∥a(1)−1N̄H̄n

[
I I · · · I

]⊤
∥∞ ≤ γ∥∥∥∥∥a(1)−1N̄L̄n

[
I I · · · I

]⊤ [ C(I − A(1))−1Bu(1) C(I − A(1))−1Bd(1)
I 0

]∥∥∥∥∥
∞

≥ 1.

(2-26)
where γ determines the maximum value of the residual gain at the steady state of the system
in normal mode.
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16 Ground fault detection in an inverter-based microgrid system

Proof. Referring to Equation (2-18) and Equations (2-22), the steady-state residual in normal
mode can be explicitly represented as,

r(k) = a(1)−1N(1)Hn(1)X(k)

= a(1)−1N̄H̄n

[
I I · · · I

]⊤
X(k),

(2-27)

It is easy to see that the steady-state gain of the filter in normal mode is a(1)−1N̄H̄n

[
I I · · · I

]⊤
.

If the gain is close to 0, then r(k) is suppressed, from where the first constraint yields. In the
faulty mode, on the other hand, r(k) is given as,

r(k) : = a(p)−1N(p)Ln(p)Y (k)

= a(p)−1N(p)Ln(p)
[
y(k)
u(k)

]

= a(p)−1N(p)Ln(p)
[
C(pI − A(1))−1(Bu(1)u(k) + Bd(1)d(k))

u(k)

]

= a(p)−1N(p)Ln(p)
[
C(pI − A(1))−1Bu(1) C(pI − A(1))−1Bd(1)

I 0

] [
u(k)
d(k)

]
.

(2-28)
Suppose the system is operating at steady state in fault mode, based on Equation (2-28), we
can further denote the residual signal as

r(k) = a(1)−1N̄L̄n

[
I I · · · I

]⊤ [ C(I − A(1))−1Bu(1) C(I − A(1))−1Bd(0)
I 0

] [
u(k)
d(k)

]
,

By this point we can see that the introduction of the second constraint helps to keep the
steady-state filter gain in the faulty mode deviating from 0, that is, to ensure that the steady-
state r in fault mode is significantly different from that in normal mode.

Keep in mind that the prerequisite for this approach is that the system has steady state
regardless of whether the fault occurs, we have to perform a careful check before utilizing this
approach.

Fact 2-2.7. The inverter-based microgrid model employed in this study has no steady state
after the happening of the three phase symmetrical ground fault.

Due to the above fact, the second constraint in the optimization problem (2-26) is not appli-
cable to our situation. By dropping the second constraint, we can get a filter that is robust to
the system output all the time, or the filter is sensitive to both the disturbance and the fault.
This is not surprising, because when the perfect decoupling is not possible, employing only
the first constraint cannot guarantee that the residual signal is sufficiently different before
and after the occurrence of the fault. In light of this, we have to come up with a new design
approach.

The previously proposed methods share the same basic idea, which is to make the filter
robust to the output of the system in normal mode and sensitive to the output in faulty
mode. Realizing this, one can also think about a corresponding dual problem.
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Definition 2-2.8 (The dual problem). Consider the system, the inputs and the residual given
in the Problem Statement, we define r̂(k) ∈ Rnr , and the dual problem can be represented as

r̂(f(k) = 0) ̸= 0 ,
r̂(f(k) = 1) ≡ 0 .

(2-29)

Generally, we define a new residual r̂(k) and r̂(k), opposite to r(k), it is 0 in the faulty mode
and it is not 0 in the normal mode. In this manner, one can still easily detect the fault by
observing r̂−1. Therefore we call it the dual problem. Just like r(k), the representation of
r̂(k) follows the framework in Definition 2-1.4 but with the change of the filter realization,

r̂(k) :=

F̂(p)︷ ︸︸ ︷
a(p)−1N(p)Lf(p)Y (k) . (2-30)

In the faulty mode, the above equation can be further extended to

r̂(k) := a((p)−1N((p)Lf((p)Y (k) = −a((p)−1N((p)Hf((p)X(k). (2-31)

We are also capable of deriving the representation for r̂(k) in the normal mode as below,

r̂(k) : = a(p)−1N(p)Lf(p)Y (k)

= a(p)−1N(p)Lf(p)
[
C(pI − A(0))−1Bu(0) C(pI − A(0))−1Bd(0)

I 0

] [
u(k)
d(k)

]
,

(2-32)
After the residual signals in both modes can be formulated mathematically, we naturally
study how N(p) can be designed to satisfy the two conditions in the dual problem. To ad-
dress the characteristics of the inverter-based microgrid system model under two-dimensional
disturbance, we put forward the following approach.
Proposition 2-2.9 (Dual Design of Robust Filter). The below optimization problem is for-
mulated to solve the dual problem. With the filter design parameters N̄ obtained by the opti-
mization problem, conditions in (2-29) can be fulfilled.
min

N̄
∥N̄∥∞

s.t. N̄H̄f = 0∥∥∥∥∥a(1)−1N̄L̄f

[
I I · · · I

]⊤ [ C(I − A(0))−1Bu(0) C(I − A(0))−1Bd(0)
I 0

]∥∥∥∥∥
∞

≥ 1.

(2-33)

Proof. Similarly as the conversion between N((p)Hn((p) and N̄H̄n in Lemma 2-2.3, we give

N(p)Hf(p) = N̄H̄f

[
I pI · · · piI

]⊤
. (2-34)

We see that if N̄H̄f = 0, N(p)Hf(p) = 0 holds. Then according to Equation (2-31), r̂(k) = 0
under fault mode, or we say r̂(f(k) = 1) ≡ 0. The second constraint in the optimization
problem comes from Equation (2-32). The derivation is skipped as a similar one is done in
Lemma 2-2.6. In short, it guarantees the Ln norm of the normal model steady-state gain
of the filter is larger than 1. Under the assumption that [u(k)⊤ d(k)⊤]⊤ ̸= 0, we arrive at
r̂(k) ̸= 0 in normal mode, equally r̂(f(k) = 0) ̸= 0. Regarding the objective function, we
clarify that it is employed to smooth the output of the filter.
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18 Ground fault detection in an inverter-based microgrid system

2-2-3 Data-assisted approach

In the previous section, the design of the filter is done by studying the features of the model,
and we see the problem when the dimension of the disturbance becomes two. Although
fault detection of this microgrid system can be accomplished through dual design, it is not a
universal solution for this type of problem. Instead, a more common solution is to constrain
the H∞ or H2-norm of the transfer function from d to r to suppress the effect of d. Recent
research [47] has posed a convex optimization method for minimizing the difference between a
nonlinear simulator and its linear mathematical model. Inspired by this method, we tackle the
problem from a data-driven perspective, namely, using the historical data of the disturbance
to train the filter so that the filter is robust to the disturbance.
Observing the structure of Hn(p), we split it into two parts, i.e., Hn(p) = [En1(p) En2(p)],
and obtain

r = 1
a(p)N(p)Ln(p)[Y ] = − 1

a(p)N(p)Hn(p)[X]

= − 1
a(p)N(p)En1(p)[x] − 1

a(p)N(p)En2(p)[d], (2-35)

where En1(p) corresponds to the unknown internal states x that can be decoupled and En2(p)
corresponds to the non-decoupled disturbance d. To make the residual as small as possible in
the normal mode, we design N(p) to decouple x from r, i.e., N(p)En1(p) = 0. We further sup-
pose that the information of multiple instances of load disturbances di for i ∈ {1, . . . ,m} that
are available. For each instance of the dis turbances, let us define rdi

= − 1
a(p)N(p)En2(p)[di].

Therefore, we can suppress the effect of the disturbance by minimizing ∥rdi
∥L2 in the normal

mode. Based on the above discussion, we provide the following optimization problem.

Lemma 2-2.10 (Minimizing the effect of the disturbance on the residual). Consider the
state-space model of the inverter-based microgrid system (2-12) with three-phase symmetrical
ground faults with nd = 2. Given multiple instances of disturbances di for i ∈ {1, . . . ,m},
design a fault detection filter F(p) through the optimization problem.

min
F(p)

{
1
m

m∑
i=1

∥rdi
∥2

L2 : N(p)En1(p) = 0, (2-21b)
}
. (2-36)

We show later the approach to constructing the objective function ∥rdi
∥L2 with a combination

of the system model and the data di.

Proof. In constructing the optimization problem, we take all m disturbance sequences into
account according to the average-cost viewpoint [47]. As we mentioned before, the first
condition ensures the internal states have no contribution to the residual signal. The second
condition (2-21b) is adopted to enhance the sensitivity of the residual to the fault mode.

To the end of constructing the objective function of (2-36), we first denote one instance of
disturbances di = [di(1), . . . , di(T )] with a time horizon T ∈ N. Next, we extend the time
shift operator p to the matrix level, denoted by P, such that the time shift of the matrix di

can be represented as pdi = diP. In this light, the matrix Pi can be defined as

Pi :=
[
d⊤

i (diP)⊤ · · ·
(
diPdN

)⊤
]⊤

(2-37)
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2-2 Main Results 19

we also introduce the positive semidefinite matrix G that

G(α, β) =
〈
a(p)−1uα, a(p)−1uβ

〉
(2-38)

with uα, uβ the discrete unit impulses over the time window [1, T ], i.e.,

uα = [0 · · · 1
↑

αth

· · · 0]1×T . (2-39)

Having completed the preparations above, we now express the contribution of the distur-
bance di to the residual as rdi

is rdi
= −a−1(p)N(p)En2(p)[di]. Then cost function for this

particular di can be given as

∥rdi
∥2

L2
= (−a(p)−1N(p)En2(p)di)(−a(p)−1N(p)En2(p)di)⊤

= a(p)−1N̄Ēn2


I

pI
...

piI

 di

a(p)−1N̄ Ēn2


I

pI
...

pdN I

 di


⊤

= N̄ Ēn2PiG(Ēn2Pi)⊤︸ ︷︷ ︸
Qi

N̄⊤

(2-40)

It is worth emphasizing that Qi is positive semi-definite since ∥rdi
∥2

L2
= N̄QiN̄

⊤ ≥ 0 for all
non-zero N̄ .
Proposition 2-2.11 (Data-assisted approach). Consider Qi given in Equation (2-40), di

for i ∈ {1, . . . ,m} are those disturbance sequences used to assist the filter design. The follow-
ing optimization problem is established to obtain the filter design parameter N̄ ,

min
N̄

N̄Q̄N̄⊤ − ∥N̄L̄nL̄f
†
H̄n∥∞ s.t. N̄Ēn1 = 0, (2-41)

where Q̄ = 1
m

∑m
i=1Qi,

Ēn1 =


E10 E11 0 . . . 0

0 E10 E11 0
...

... 0 . . . . . . 0
0 . . . 0 E10 E11

 , E11 =
[
−I
0

]
, E10 =

[
A(0)
C

]
,

Ēn2 = diag
(
E2 E2 · · · E2

)
, E2 =

[
Bd(0)

0

]
.

Proof. The first term in the objective function, i.e., N̄
(

1
m

∑m
i=1Qi

)
N̄⊤, relates to the cost

function in (2-36), which ensures that the effects of different instances of disturbances on the
residual are bounded. We show the derivation process of the quadratic form of ∥rdi

∥2
L2

in
(2-37)-(2-40). The second term in the objective function, i.e., −∥N̄L̄nL̄f

†
H̄n∥∞, relates to the

condition (2-21b), which is introduced to ensure that the sensitivity of residual to the fault
mode is enhanced. The constraint N̄Ēn1 = 0 related to the first condition N(p)En1(p) = 0
in 2-36, which is used to decouple the internal state x from the residual. One can show
through the multiplication rule of polynomial matrices that N(p)En1(p) = 0 ⇔ N̄Ēn1 = 0.
This completes the proof.
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20 Ground fault detection in an inverter-based microgrid system

2-3 Numerical Result

In this section, we carry out the simulations to evaluate the performance of the proposed fault
detection approaches.

2-3-1 Simulation setup

All simulations are run on a laptop with Intel(R) Core(TM) i7-8565U CPU and 8G RAM
using Matlab R2020a. All optimization problems are modeled by YALMIP [48] and tackled
by Mosek solver [49].

The microgrid used for the simulation has the parameters and initial conditions shown in
Table 2-1 and the initial conditions shown in Table 2-2. It is important to also give the
reference voltage (operating point) of the microgrid v∗

odq = [381, 0]⊤ and the FCL parameter
τdq = [35, 0.7]⊤. Note that in this study, the reference voltage and the FCL parameter are
assumed to be unchanged during the experiment. The sampling time is set to 0.1 ms and the
simulation time is 500 ms.

Table 2-1: Microgrid parameters.

Parameter Value Parameter Value
f 50 Hz RL 12 Ω
Lf 0.1 mH Kc

P 28
Rf 0.1 Ω Kc

I 5
Cf 30 µF Kv

P 0.1
Lc 1 mH Kv

I 170
Rc 0.03 Ω F 0.75
ω 314.1

Table 2-2: Initial conditions.

Parameter Value Parameter Value
vod 380.8 ild 11.4
voq 0 ilq −5.5 × 103

iod 11.4 vbd 379.5
ioq 0.4 vbq -6
ϕd 0.13 γd 0.0115
ϕq 0 γq 0

2-3-2 Simulation results for fault

We first consider the scenario that the disturbance has dimension nd = 1 with the disturbance
matrix Bd =

[
01×8 [1 1]

]⊤
. We set the occurrence time of the fault and the disturbance

to t = 3001 ms and t = 1001 ms, respectively. For the fault, we denote f(k) = 0 for
k ≤ 3000 and f(k) = 1 for k > 3000. Since both disturbance and fault affect the output
behavior of the system, in order to better validate the filter design approaches, we purposely
design the disturbance signal so that its effect on the system outputs is similar to the effect
of the fault signal on the system outputs. Therefore, it follows d(k) = 0 for k ≤ 1000
and d(k) = 1.2 + 0.1 sin(k/40) + 0.08 sin(k/30) + 0.02 sin(k/60) for k > 1000, where the
constant represents an abrupt change, while the sinusoidal terms capture the short-term load
fluctuations [1].

To conduct the ideal robust filter design proposed in (2-23), we select dN = 10 and fix the
a(p) with all poles within the unit circle to ensure the stability of the filter F, and also ensures
its degree larger than dN . The simulation result is shown in Figure 2-3.

According to the figure, while the output currents exhibit only slight changes during the fault,
rendering the differentiation between the fault and disturbance challenging, the residual, as
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Figure 2-3: Fault detection under nd = 1 with ideal robust filter design (2-23).

shown in Figure 2-3, remains insensitive to the disturbance until the fault is introduced.
This observation is consistent with the performance criteria of the filter design, which aim
to enhance the sensitivity of the residual signal to faults while suppressing the effect of dis-
turbances. The immediate and accurate confirmation of fault occurrence provided by the
residual signal underlines the effectiveness of the proposed approach.

2-3-3 Simulation results for fault detection under two-dimensional disturbance

We next move to the scenario where nd = 2 with Bd =
[
02×8 diag([0.5 0.5])

]⊤
. We keep

the setting for the fault signal the same, but adjust the disturbance d(k) = 02×1 for k ≤ 1000
and

d(k) =
[
1.0 + 0.12 sin(k/40) + 0.08 sin(k/50) + 0.1 sin(k/30) + 0.08 sin(k/45) + 0.1 sin(k/20)

1.2 + 0.1 sin(k/40) + 0.08 sin(k/30) + 0.02 sin(k/60)

]
,

where k > 1000. The training set for the data-assisted approach is generated to capture the
above disturbance. According to [1], the similar set of disturbances can be denoted by,

d(k) =
[
αd,0 +

∑η
i=1 αd,i sin(ωd,ik + ψd,i)

αq,0 +
∑η

i=1 αq,i sin(ωq,ik + ψq,i)

]
,

where the parameters (αd,i)η
i=0, (αq,i)η

i=0, (ωd,i)η
i=1, (ωq,i)η

i=1, (ψd,i)η
i=1, (ψq,i)η

i=1, and η are
random variables and follow uniform distributions in certain bounds. We generate m = 30
disturbance patterns and set the time horizon for the disturbance to T = 50. In the simulation
for the data-assisted approach, we remain a(p) and dN unchanged.

For the dual design (2-33), we keep the setting for a(p) unchanged but set the dN = 6.

Simulation results for the dual design and data-assisted methods are shown in Fig. 2-4 and
Fig. 2-5, respectively. Clearly, for two-dimensional disturbances, neither method guarantees
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22 Ground fault detection in an inverter-based microgrid system

Figure 2-4: Fault detection under nd = 2 with
dual design (2-33).

Figure 2-5: Fault detection under nd = 2 with
data-assisted approach (2-41).

the complete rejection of the effects of the disturbance. However, they are both effective
in suppressing the effect of disturbances on the residuals to a low level until a fault occurs.
In more detail, the residual signal generated by the dual design rises and remains at a high
level immediately after a fault occurs. The residual signal generated by the data-assisted
method shows similar characteristics, with a relatively lower power level than that of the dual
design after the onset of the fault. Although the transient response of the step signal causes
a spike in the residual at t = 1000 disturbance, it quickly vanishes. As we mentioned before,
the advantage of the data-assisted approach is more generalizable and applicable to different
models. Again, we see that the filters designed by both methods are able to detect the faults.

2-4 Conclusion

The aim of this study is to present effective strategies for identifying ground faults in inverter-
based microgrid systems in the presence of disturbances. We propose two approaches: a
model-based approach and a model-based data-assisted approach. Both approaches are de-
signed to meet specific requirements, such as disturbance suppression and fault sensitivity en-
hancement. Our simulation results demonstrate the effectiveness of the proposed approaches
in identifying ground faults in an inverter-based microgrid system that operates in an islanded
mode.

To extend this study, there are two potential directions to consider. Firstly, the inclusion of
multiple DGs and loads and the incorporation of droop control will allow the system model to
become nonlinear, thereby providing the opportunity to investigate ground fault detection in
more complex systems. Secondly, for the data-assisted approach, a possible extension could
be the development of a training approach based on the likelihood of disturbance occurrences.
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Chapter 3

Non-intrusive Load Monitoring

3-1 Related Work

In this section, we provide a brief introduction of three algorithms [39–41], which apply integer
programming (IP) to solve the NILM problem framed by Hart [28].
Reference [39] is the first study that formulates Hart’s problem as an integer quadratic pro-
gramming (IQP) problem. The IQP formulation considers the appliances to have discrete
operating states. Each state corresponds to a periodic current waveform. The objective is to
find the optimal combination of appliance states so that the current waveform corresponding
to these states can reconstruct the overall measurement within the current waveform period
( 1

50s or 1
60s [39]), denoted by C = {1, · · · , C}. Given a set of N appliances in a building

system, denoted by N = {1, · · · , N}, we assume that the current waveform signature of each
appliance n ∈ N over a single period has been previously measured and stored. Specifically,
the current waveform signature of appliance n is denoted by in(ζ) ∈ RSn with ∀ζ ∈ C repre-
sents the sample point, and Sn is the number of operating states of appliance n. Then, the
cost function is expressed as

L(x(ζ)) :=
∑
ζ∈C

(
y(ζ) −

∑
n∈N

in(ζ)⊤xn(ζ)
)2

. (3-1)

The y(ζ) indicates the aggregate current measurement at ζ, and the decision variable xn(ζ) ∈
{0, 1}Sn is the on/off status of each state of the nth appliance.
There are some problems with the IQP approach:

1. The implementation of this approach relies on a high sampling rate considering the short
current waveform period.

2. It can be computationally complex when the number of sampling points is large.

3. The proposed method exhibits a short-sighted characteristic by utilizing only a limited
amount of data from a very short period of time for each disaggregation.
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24 Non-intrusive Load Monitoring

The Binary Quadratic Programming (BQP) approach, as introduced in [41], has a low require-
ment on sampling rate and does not suffer from the short-sightedness problem. The approach
updates the IQP formulation by replacing the current waveform signature with rated power
(W). The new cost function has the following form,

L(x(t)) :=
∑
t∈T

(
y(t) −

∑
n∈N

r⊤
n xn(t)

)2

, (3-2)

where t denotes a specific time instance in a time horizon T = {1, 2, · · · , T} consisting of
T time instances, y(t) denotes the aggregate power measurement at time instance t, and
the vector rn contains the rated power values for each operating state of the n-th appliance.
The constant signature vector rn in the BQP formulation provides a significant advantage
in terms of flexibility in selecting the time horizon for disaggregation compared to the IQP
formulation. Unlike the IQP approach is limited to the current waveform period C, the BQP
formulation can consider a more extended time horizon T , such as a day with 1440 time in-
stances. This flexibility not only allows for a lower sampling rate requirement but also avoids
the short-sightedness problem encountered in the IQP approach. The BQP formulation can
leverage more time-dependent information as regulations or constraints to improve the disag-
gregation performance. For more details on how to incorporate time-dependent information
into regulations and constraints to construct the complete BQP problem, we recommend re-
ferring to [41]. Despite the fact that the BQP approach offers several advantages, it remains
computationally challenging, and even memory-intensive in practice due to the large number
of decision variables that can be involved.

Alternatively, one may consider the aided linear integer programming (ALIP) proposed in
study [40] that has relatively low computational complexity to perform disaggregation in T .
Instead of solving the problem at once T at once, it solves the optimization problem at each
time instance t ∈ T iteratively for T times. The original optimization problem for each time
instance is considered as,

L(x(t)) :=
(
y(t) −

∑
n∈N

r⊤
n xn(t)

)2

, (3-3)

then by utilizing auxiliary decision variables, the original optimization problem can be con-
verted to the integer linear programming (ILP) problem, in which way the computational
complexity is reduced. It is further improved with the addition of constraints, corrections
based on the state machine, and the implementation of median filters. These modifications
result in the final ALIP approach. However, similar to the short-sightedness problem of the
IQP approach, ALIP approach focuses on individual time instances and thus suffers from
a limited consideration of time-dependent information, which may compromise its ability
to fully capture longer-term trends and patterns. This, in turn, affects its disaggregation
performance.

3-2 Problem Description and Our Contributions

In this section, we aim to provide a formal description of the problem that this study intends
to address, together with a summary of our contributions.
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3-2-1 Problem Description

Both the BQP and ALIP methods represent improvements over the original IQP method.
However, the BQP method comes with a high computational complexity, while the ALIP
method reduces computational complexity at the cost of sacrificing disaggregation perfor-
mance. This limitation is due to the method’s short-sighted characteristic, which fails to
incorporate time-dependent information. Then, a question is naturally raised:

Would it be possible to strike a balance between computational complexity and preserving
time-dependent information?

To address this question, it is crucial to note that both the BQP and ALIP methods are
intended to disaggregate each time instance, either iteratively or in a single pass. Therefore,
rather than reducing the computational complexity at the level of a single time instance, as
ALIP does, it is worth exploring the possibility of reducing the number of time instances that
need to be disaggregated at the global level, while retaining the time-dependent information.
Following this direction, the present study aims to investigate the construction of a compressed
optimization problem that approximates the original BQP problem using fewer time instances.

We now provide a more formal description of the problem. To begin with, We convert the
cost function for BQP formulation (3-2) into the fllowing standard mathematical programming
form,

L(z) = ⟨z,Qz⟩ + ⟨c, z⟩ , z ∈ {0, 1}m , (3-4)

specifically with formulation (3-2) coincides with (3-4) for the choice of

z = x , Q = R⊤R , c = −2y⊤R , (3-5)

where

x =
[
x(1)⊤ x(2)⊤ · · · x(T )⊤

]⊤
, R = diag

[
r r · · · r

]
, y =

[
y(1) y(2) · · · y(T )

]⊤
,

x(t) =
[
x1(t)⊤ x2(t)⊤ · · · xN (t)⊤

]⊤
, r =

[
r⊤

1 r⊤
2 · · · r⊤

N

]
.

Recall that Sn denotes the number of operating states for the n-th appliance, xn(t) ∈ {0, 1}Sn

denotes the on/off status of each operating state of the n-th appliance at time t, and rn denotes
the rated power for each operating state of the n-th appliance. The dimension of z is given
as m = T

∑
n ∈N Sn, and Q ∈ Sm

+ , c ∈ Rm. We clarify that the term y⊤y is omitted in the
cost function as it does not have any impact on the optimal solution.

The complete BQP problem still requires the setting of the regulation and the constraints.
We will dive into details of the BQP’s regulation and constraints in section 3-3-2. Here,
let us first denote the regulation, equality constraint ,and inequality constraint for the BQP
problem as V(z), g(z), and h(z), respectively, without providing the details. Then, we arrive
at the standard mathematical programming form of the complete BQP problem,

J ⋆(z) := min
z∈{0,1}m

L(z) + V(z)

s.t. g(z) ≤ 0
h(z) = 0 .

(P)
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Problem Statement Consider problem (P) over a time horizon T = {1, · · · , T}. We first
aim to determine a set T̂ = {k1, k2, · · · , k

T̂
}, satisfying (i) k1 ≤ k2 ≤ · · · ≤ kD; (ii) T̂ ⊆ T

; (iii) the number of time instances in T̂ is T̂ ≪ T . Once we have determined the set T̂ ,
which is essentially a compressed version of the original set T , we can accordingly determine
a compressed version of the variable x in equation 3-5, denoted by x̂. We then aim to design
a mapping with the following requirement,

H(x̂, T̂ ) := x̃ ≈ x , (3-6)

where x̃ is an approximation of x. Therefore, we can approximate problem (P) formulated
with the z = x using z = x̂. The Q, c, V, g and h are modified accordingly with the form

Q = R̄⊤R̄ , c = −2y⊤R̄ , V = V̄ , g = ḡ , h = h̄ . (3-7)

A new Op-NILM formulation is unveiled by solving the problem outlined above. The new
formulation does not rely on the high sampling rate. As the elements in T̂ are much less
than that of T , the computational complexity of the problem is limited. The presence of
the mappings ensures that the newly created problem is similar to the optimization problem
containing complete time-dependent information over the entire time horizon T .

3-2-2 Our Contributions

In this study, we tackle the two-fold challenge of formulating the new Op-NILM formulation in
determining T̂ with minimal time instances while also ensuring the feasibility of the mappings.
Specifically, our technical contributions are summarized below:

(i) We exploit the idea of event detection to determine T̂ , where an event is considered
to be any change in the states of the appliances. The event detection is achieved by
adaptive threshold setting [50] with our modifications. It is simple to realize, sensitive
to events, and robust to noise.

(ii) We propose architectures of the mapping defined in (3-6) and formulate the optimization
problem (P) by the choice (3-7). By adopting (3-7) for the optimization problem, the
problem scale is significantly compressed compared using (3-5). Thanks to the mapping,
the compressed problem still retains much of the time-dependent information.

(iii) We conduct an evaluation of the proposed approach and several state-of-the-art Op-
NILM methods on a real-world dataset, and compare their performance.

Apart from the technical contributions, we discuss potential directions for extending the
proposed approach in future research.

3-3 Main Results

This section outlines the design perspective and implementation details of our approach,
which consists of two main steps. Firstly, we explain how we identify specific time instances
to build T̂ . Next, we describe the generation of the mapping and provide the compressed
optimization problem in standard mathematical programming form.
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3-3-1 Building of T̂ : detection of the change points

It is crucial to observe that aggregate measurements taken at different time instances may not
all be equally informative. Changes in the states of appliances are typically reflected in the
change points of the aggregate measurements, which makes these instances more informative
than those with similar measurements to the previous time instances. Furthermore, these
change points account for only a small proportion of all time instances. All these facts make
the change points excellent candidates for building T̂ . To identify the change points in T , we
employ an adaptive threshold approach based on [50].

We specify the aggregate measurement in power (W). If the absolute value of the aggregate
power measurement change between two time instances is larger than the setting threshold
θ(t), then t is identified as a change point. Suppose δ(t) = |y(t) − y(t− 1)| for t ∈ T , then a
time instance t is a change point if

δ(t) > θ(t) , t ∈ T (3-8)

The setting of θ leverages the statistical features of the aggregate power measurement. Taking
into account the potentially significant differences in power signatures of different appliances,
a pre-processing step is taken to identify and replace the change points with large δ(t). These
points are also considered as major change points. The pre-processing reduces the effect of
extreme values on statistical features and helps to avoid the missed detection of change points
with small θ values.

Similar as research [50], we first define a sliding window W1 with the length W1 that is smaller
than T . But instead of using Pauta criterion as in [50] to detect the major change points,
we use Hampel identifier. The median ηi and median absolute deviation (MAD) of the δ in
the ith sliding window W i

1 are represented as ηi and σ̄i, respectively. Then an major change
point t′ is identified with

δ(t′) > θi := ηi + 3σ̄i , t
′ ∈ W i

1 . (3-9)

We next replace the δ(t′) following the rule below

δ(t′) = δ(t′ − 1) + δ(t′ + 1)
2 . (3-10)

The application of the Hample identifier results in a more rigorous identification of major
change points compared to using the Pauta criterion. This approach produces a smaller range
of fluctuation for the data, which simplifies the subsequent step of handling the data. Despite
the heightened level of detection stringency, it is unlikely that the noise-induced changes will
exceed θ because the unprocessed data contains multiple change points with large δ. Moreover,
this modification does not introduce any additional computational complexity, making it a
desirable enhancement to the overall method.

The second step is the same as that described in [50]. After being processed by the first step,
for t ∈ T , δ(t) is updated to δ̄(t). Next, for every time instance t, we define a time window

Wt
2 := {α | max( t−W2

2 ,min(T )) ≤ α ≤ min( t+W2 − 1
2 ,max(T )) , t ∈ T ,W2 ≪ W1} .
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Then suppose µt and σt are the mean and standard deviation of δ̄(α), ∀bα ∈ Wt
2, a minor

change point t⋆ is detected if

δ̄(t⋆) > θ(t⋆) := µt⋆ + 3σt⋆ , t⋆ ∈ T . (3-11)

Finally, we collect the start point t = 1, all major change points, and all minor change points
detected by either (3-9) or (3-11) and build T̂ .

3-3-2 Mapping architecture and compressed optimization problem formulation

Towards the formulation of the compressed optimization problem based on the T̂ , we start
with providing the mapping H(x̂, T̂ ) and the matrix R̄. Next, we determine V,g, and h,
the regulations and constraints of the original problem P, which hold the time-dependent
and consecutive information. We then convert these constraints and regulations into their
compressed counterparts V̄, ḡ, using the mapping.

Before giving the mapping, we express T̂ explicitly as T̂ = {k1, k2, · · · , k
T̂

} with k1 = 1, and
the time difference between each change point is stored in

d = [(k2 − k1)︸ ︷︷ ︸
d1

(k3 − k2)︸ ︷︷ ︸
d2

· · · (k
T̂

− k
T̂ −1)︸ ︷︷ ︸

d
T̂ −1

(T − k
T̂

+ 1)︸ ︷︷ ︸
d

T̂

] . (3-12)

Proposition 3-3.1 (The mapping H). Given x(i) ∈ {0, 1}c where c =
∑

n∈N Sn for i ∈
{1, 2, · · · , T̂}, we build a helper matrix bi := 1di

⊗ Ic×c . The mapping H, which takes
x̂ := [x(k1)⊤ x(k2)⊤ · · · x(k

T̂
)⊤]⊤ ∈ {0, 1}m′ with m′ = cT̂ and the information of T̂

to provide approximating x, is defined as

x̃ = H(x̂, T̂ ) := Bx̂ , B = diag( b1 b2 · · · b
T̂

) . (3-13)

Proof. Since the states of the appliances considered in this study should be invariant between
two change points, given a ki ∈ T̂ , the equations below hold,[

x(ki) x(ki + 1) · · · x(ki+1 − 1)
]⊤

≈
[
x(ki) x(ki) · · · x(ki)

]⊤
, ki ∈ T̂ \{k

T̂
}[

x(k
T̂

) x(k
T̂

+ 1) · · · x(T )
]⊤

≈
[
x(k

T̂
) x(k

T̂
) · · · x(k

T̂
)
]⊤

, ki = kT

Then, according to the above equations, one can rewrite x as

x =
[
x(1)⊤ x(2)⊤ · · · x(T )⊤

]⊤
≈
[
x(k1)⊤

×d1
x(k2)⊤

×d2
· · · x(k

T̂
)⊤
×d

T̂

]⊤
= diag( b1 b2 · · · b

T̂
)x̂ = H(x̂, T̂ ) .

This completes the proof.

We then give the expression for R̄ mentioned in (3-7) to build the Q and c of the compressed
optimization problem.

Yucheng Liao MSc Thesis



3-3 Main Results 29

Corollary 3-3.2 (Form of R̄). Given the mapping H(x̂, T̂ ) in (3-13), the R̄ can be expressed
as,

R̄ = RB . (3-14)

Proof. Recalling that we define x̃ to approximate x, combined with the structure of the above
mapping H(x̂, T̂ ), we give the following derivation,

Rx ≈ Rx̃ = RH(x̂, T̂ ) = RBx̂
= Rdiag( b1 b2 · · · b

T̂
)x̂ = R̄x̂ .

This completes the proof.

With the choice (3-5) to build the problem (P), the regulation setting can be flexible. In
this study, we consider two regulations that are employed in [41]. The first regulation Vo

1
penalizes the change between two consecutive states of an appliance. The second regulation
VP

2 penalizes the number of active appliances at a time instance t, respectively. The original
formulations are shown below,

VP
1 (xn(t)) = η1

∑
t∈T

∑
n∈N

λn ∥xn(t) − xn(t− 1)∥2
ℓ2
,VP

2 (xn(t)) = η2
∑
t∈T

∑
n∈N

γnυn(t)∥xn(t)∥2
ℓ2

(3-15)
where η1 and η2 are two non-negative penalty parameters, λn is a non-negative parameter
inversely proportional to the frequency of the appliance n state switching, and γn is a non-
negative parameter proportional to the OFF time of the appliance n. The parameter υn(t)
indicates the probability that the appliance n is OFF at a given time t.

To demonstrate the impact of the mapping H(x̂, T̂ ) on the above two regulations, we convert
both VP

1 and VP
2 into standard mathematical programming form. Let λ := [

√
λ1

√
λ2 · · ·√

λN ] and u := diag( 11×S1 11×S2 · · · 11×SN
), we define

Λ := 1⊤
(T −1) ⊗ (λu) ,E :=


−Ic×c Ic×c 0 · · · 0 0

0 −Ic×c Ic×c · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · −Ic×c Ic×c


(m−c)×m

.

We rewrite the regulations VP
1 as,

VP
1 (x) := η1x⊤QP

1x , QP
1 = (ΛE)⊤ΛE . (3-16)

Then let γ := [ √
γ1

√
γ2 · · · √

γN ] and υ(t) := diag(υ1(t) υ2(t) · · · υN (t)). We
define,

Γ := 1⊤
T ⊗ γ , Υ := diag( υ(1)u υ(2)u · · · υ(T )u ) ,

The regulation VP
2 can be converted to,

VP
2 (x) = η2x⊤QP

2x , QP
2 = (ΓΥ)⊤ΓΥ (3-17)
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Corollary 3-3.3 (Form of V̄). Given the mapping H(x̂, T̂ ) := Bx̂ , and the regulation
VP(x) = VP

1 (x)+VP
2 (x) of the original problem, where the regulation VP

1 is aligned with (3-16),
and the regulation VP

2 is aligned with (3-17). The regulation V̄ of the compressed problem has
the following form,

V̄(x) = η1x̂⊤Q̄1x̂ + η2x̂⊤Q̄2x̂ , Q̄i = B⊤QP
i B, i ∈ {1, 2} (3-18)

Proof. The proof is similar to that of 3-3.2 and thus is omitted here.

The last stage in realizing the compressed optimization problem is to formulate the new
constraints according to the original optimization problem. Again, there are various choices
of constraints for the original optimization problem. We take here a common inequality
constraint gP that limits an appliance should have no more than one active state at a time,
and a common equality hP constraint that limits an always-on appliance always to have one
active state at a time. Let the set of indicators for always-on appliances be N ⋆ ⊆ N , the
inequality constraint g can be indicated as

gP(xn(t)) = 1⊤
Sn
xn(t) − 1 , ∀t ∈ T , ∀n ∈ N \N ⋆ . (3-19)

The equality constraint h can be indicated as

hP(xn(t)) = 1⊤
Sn
xn(t) − 1 , ∀t ∈ T , ∀n ∈ N ⋆ . (3-20)

Similar to the process of dealing with the regulations, we transform the above constraints into
matrix form to provide a more transparent representation. This allows for straightforward
construction of the matrices ḡ and h̄. To achieve this, we introduce two indicator functions
ϕ1(n) and ϕ2(n), defined as follows:

ϕ1(n) :=
{

1, if n ∈ N \N ⋆

0, otherwise
, ϕ2(n) :=

{
1, if n ∈ N ⋆

0, otherwise
. (3-21)

Using these indicator functions, we build Φi := [ϕi(1) ϕi(2) · · · ϕi(N)] for ∀i ∈ {1, 2}, and
define G := IN×N ⊗(Φ1u), A := IN×N ⊗(Φ2u). Then, the equality and inequality constraints
of the original problem can be given in the matrix form as follow,

gP(x) = Gx − 1⊤
(NT ) , h

P(x) = Ax − 1⊤
(NT ) . (3-22)

Corollary 3-3.4 (Form of ḡ and h̄). Considering the mapping H(x̂, T̂ ) defined in (3-13) and
the constraints gP(x) and hP(x) as shown in (3-22). We derive the corresponding equality
constraint ḡ(x̂) and the equality constraint h̄(x̂) for the the compressed problem as

ḡ(x̂) = Ḡx̂ − 1⊤
(NT̂ ) , Ḡ = B⊤GB

h̄(x̂) = Āx̂ − 1⊤
(NT̂ ) , Ā = B⊤AB .

(3-23)

Proof. The proof is similar to that of 3-3.2 and thus is omitted here.

Yucheng Liao MSc Thesis



3-4 Numerical Results 31

Therefore, consider the orginal Op-NILM problem (P) with z = x, Q = R⊤R, c = −2y⊤R,
V = VP(x) , g = gP(x) and h = hP(x), the compressed Op-NILM problem can be formulated
using the mapping H in Lemma 3-3.1. The compressed problem is defined by

z = x̂, Q = R̄⊤R̄, c = −2y⊤R̄, V = V̄(x̂), g = ḡ(x̂), h = h̄(x̂), (3-24)

where x̂ is the compressed decision variable, and R̄, V̄, ḡ, and h̄ are constructed according
to Corollaries 3-3.2, 3-3.3, and 3-3.4, respectively. Once the optimal solution x̂⋆ to the
compressed OP-NILM problem is obtained, we can estimate the aggregate power measurement
y by

ỹ⋆ = R̄x̂⋆ . (3-25)

To calculate the estimated power ỹ⋆
n for each appliance, we first rebuild the original decision

variable x as x̃⋆ = Bx̂⋆. From this, we can extract x̃⋆
n for each device. Then, we arrive at

ỹ⋆
n =

[
ỹ⋆

n(1) ỹ⋆
n(2) · · · ỹ⋆

n(T )
]

=
[
r⊤

n x̃
⋆
n(1) r⊤

n x̃
⋆
n(2) · · · r⊤

n x̃
⋆
n(T )

]
. (3-26)

The approach proposed in this section enables an efficient approximation of the original prob-
lem with reduced computational complexity while preserving time-dependent information.

3-4 Numerical Results

This section presents the evaluation of the proposed approach, which is introduced in the
previous section to address the problem statement of this research. To assess the effectiveness
of the proposed approach, simulations are conducted on a real-world dataset with added noise.
The performance of our approach is compared to that of state-of-the-art methods, namely,
ALIP [40], NMF-S2k [31] and BQP [41].

3-4-1 Criteria for performance evaluation

The performance evaluation is based on two criteria: computational efficiency and disaggrega-
tion accuracy. Computational efficiency is evaluated by measuring the time taken to execute
the algorithm. Disaggregation accuracy is evaluated using two metrics: accuracy and overall
accuracy, which are commonly used in NILM research, as mentioned in [51] and employed in
many other studies [40, 41, 52, 53]. Let ACn to be the accuracy for appliance n and OAC to
be the overall accuracy, we denote

ACn = 1 −
∥yn − ỹ⋆

n∥2
ℓ2

2(1⊤
T yn)

, ∀n ∈ N

OAC = 1 −
∥y − ỹ⋆∥2

ℓ2

2(1⊤
T y)

,

(3-27)

where yn and y are the ground-truth power measurement for the appliance n and the ground-
truth aggregate power measurement, respectively.
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3-4-2 Simulation setup

All simulations are run on a laptop with Intel(R) Core(TM) i7-8565U CPU and 8G RAM
using Matlab R2020a. All optimization problems are modeled by YALMIP [48] and tackled
by Gurobi [54].

The real-world dataset AMPDs [55] collected from real-world households is used to conduct
the simulations. Given the repetitive nature of many appliance use patterns on a daily basis,
we set the time horizon T to one day with T = 1440, corresponding to the 1Hz sampling rate
of the AMPDs dataset. Specifically, we select Day 1 to conduct the performance evaluation.
Instead of selecting all appliances in the dataset, we refer to the study [41] and select six
appliances to comprise the set N : the dryer (CD) for n = 1, dishwasher (DW) for n = 2, fan
and thermostat (FT) for n = 3, entertainment (EN) for n = 4, refrigerator (FR) for n = 5,
and heat pump (HP) for n = 6. To assess the robustness of the proposed Op-NILM algorithm
and the other approaches in the presence of noise, we introduce additive white Gaussian noise
(AWGN) to the aggregate measurement vector y, resulting in:

y =
∑

n∈N
yn + ∆ ,

where ∆ refers to additive white Gaussian noise. We adopt a stringent signal-to-noise ratio
(SNR) of 60 dB, which is higher than the typical SNR range of 20-40 dB used in previous
studies such as [56–58]. This challenging condition provides comprehensive evaluations of the
all algorithms performance under noisy conditions.

The determination of the Sn, rn, λn, and υn for ∀n ∈ N can be carried out by the state
detection and parameter estimation method proposed in [41]. However, as this aspect is not
the focus of our research, we utilize the results directly and do not provide further details
regarding state detection and parameter estimation.

The set of always-on appliances, denoted by N ∗, is identified through empirical observations.
Out of the six appliances considered, the fan and thermostat (FT) and entertainment (EN)
are determined to be always-on appliances. As a result, we set N ⋆ = {3, 4}. Furthermore,
two non-negative penalty parameters, η1 and η2, were also set empirically. Specifically, η1 was
set to 200, and η2 was set to 100. For the event detection, We set the length of the window
W1 and W2 for the event detection to be W1 = 100 and W2 = 15, respectively. This setting
takes reference from [50], but as T is shorter and contains fewer time instances, we shrink W1
and W2 accordingly.

Note that, all simulations do not take into account the state machine behavior of the appli-
ances considering the difficulty of obtaining such information. We clarify that this could lead
to a degradation of the performance of both the ALIP and BQP methods. For the NFM-S2k
method, we use specific measurement durations as the base for various appliances starting
from the first day of the second week (day 8) in the NFM-S2k method. Specifically, we adopt
30 weeks of measurement as the base for CD, FT and HP; 7 weeks of measurement as the
base for DW; 15 weeks of measurement as the base for ET; 3 weeks of measurement as the
base for FG.
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3-4-3 Simulation results

The table 3-1 reports the simulation results of different methods on Day 1. The proposed
method stands out as it achieves high overall accuracy (OAC=0.98) with competitive accuracy
on most criteria while keeping the computation time relatively low (25.3 seconds). The
ALIP method has the highest overall accuracy (OAC=0.99) but shows variable performance
across different criteria. In contrast, the N2M-S2k method has the lowest overall accuracy
(OAC=0.73) and performs particularly poorly on AC2 (DW), AC5 (FR), and AC6 (HP).
The BQP method demonstrates high scores on most criteria but with a significantly higher
computation time (373.4 seconds).

Methods OAC AC1 (CD) AC2 (DW) AC3 (FT) AC4 (EN) AC5 (FR) AC6 (HP) Time
N2M-S2k 0.73 0.20 0.26 0.50 0.62 0.28 0.49 5.0

ALIP 0.99 0.82 0.03 0.77 0.60 0.54 0.97 79.3
BQP1 0.98 0.99 0.85 0.99 0.93 0.75 0.96 373.4

Poposed 0.98 0.97 0.77 0.99 0.70 0.67 0.96 25.3

Table 3-1: Performance of the different methods on Day 1

Figure 3-1: Ground truth (GT) and estimated aggregate power signal.

To gain further insight into the performance of the different methods, we provide the dia-
gram 3-1 comparing the ground truth aggregate power signal and the estimated aggregate
power signals for the four different methods. The diagram shows that the proposed method,
ALIP, and BQP can closely estimate the ground truth aggregate power signal, while the
NFM-S2k method can only capture the trend of the aggregate power signal and show a high
degree of instability.

However, while the proposed method, ALIP, and BQP have similar OAC, the accuracy of
individual appliances can vary considerably. In this light, we explore further how the different
methods estimate the power signal for each appliance. Specifically, we present the power
signal estimations for each appliance in two groups in 3-2 and 3-3, respectively. The first
group includes CD, FT, and HP, as we found that the estimation accuracy of the proposed
method, ALIP, and BQP for these appliances are better than for the other three. The second
group includes DW, EN, and FR. This grouping allows us also to analyze more intuitively
the reasons behind the differing appliance estimation accuracies for each method.

1This method can have the out-of-memory problem when using the standard mathematical programming
formulation. To still make a comparison, we use the discrete formulation, e.g., 3-2.
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34 Non-intrusive Load Monitoring

Figure 3-2: Ground truth (GT) and estimated power Signals for the clothes dryer, fan and
thermostat, and heat pump.

Figure 3-3: Ground truth (GT) and estimated power signals of the dishwasher, entertainment,
and fridge.
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Comparing the two groups, we observe that the power signals of appliances in Group 1 (Fig-
ure 3-2) have smoother, step-like dynamics with fewer transients and rapid changes compared
to Group 2 (Figure 3-3). Additionally, appliances with higher power signals are generally eas-
ier to estimate. The estimations from the ALIP method exhibit high instability overall, which
is due to the lack of time-dependent information and separate disaggregation at each time
instance. According to Figure 3-2, both the proposed method and the BQP method provide
nearly perfect estimations compared to the other two methods. However, in Figure 3-3, the
BQP method outperforms the proposed method, especially in estimating the power signal for
EN. The proposed method employs event detection to reduce the number of time instances to
be disaggregated and decrease computational complexity, which can lead to missing or incor-
rect detections and a resulting gap in accuracy compared to the BQP method. Nevertheless,
the proposed method still outperforms the other two methods.

These results suggest that the proposed method strikes a balance between computational time
and accuracy, making it a promising approach for NILM.

3-5 Conclusion

In this part of the study, we investigate state-of-the-art Op-NILM methods and propose an
integer programming-based Op-NILM method that leverages event detection to compress the
number of decision variables and thus reduce computational complexity.The direct mapping
between the decision variables of the compressed problem and the decision variables of the
original problem ensures the preservation of information. It thus largely prevents the degra-
dation of the disaggregation accuracy.

To extend this study, several directions can be considered. One of these directions involves
addressing the limitations of the proposed method in handling appliances without fixed states,
which are common in modern electronics. As these appliances present difficulties for the pro-
posed method, finding effective solutions to overcome these issues could significantly broaden
the applicability of the approach. Another direction is to explore more reliable event detec-
tion algorithms that can enhance the stability of the proposed method. Although the current
approach uses statistical features for event detection, other methods may be more effective in
avoiding fault alerting or missing detection, leading to an overall improvement in the method’s
effectiveness. In addition, the proposed method’s performance is highly dependent on its pa-
rameter settings. By reducing the number of parameters that require advanced settings, the
algorithm could perform more reliably and predictably in various scenarios. Finally, to further
improve the proposed method’s performance, alternative features, such as voltage or current,
could be considered in addition to power.
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Chapter 4

Conclusions and Future Directions

This thesis investigates the field of monitoring techniques for modern industrial systems, with
a specific focus on the application of information redundancy monitoring techniques in two
scenarios. The first scenario addressed in this thesis is ground fault detection in inverter-
based microgrid systems. The proposed two design approaches for fault detection filters are
model-based as well as model-based with data assistance, respectively. The simulation re-
sults indicate the effectiveness of the proposed approaches. The second scenario examined
is load monitoring in building systems. An integer programming-based NILM algorithm is
developed, utilizing event detection to reduce computational complexity. The proposed algo-
rithm achieves high disaggregation accuracy compared to other Op-NILM algorithms, while
significantly reducing the computational complexity. This demonstrates the effectiveness of
the proposed approach for load monitoring.

Landing on applications, this thesis provides two promising solutions to efficient and effective
monitoring techniques in modern industrial systems, which have the potential for practical
deployment. Additionally, the thesis highlights the significance of utilizing models and data
information in the development of monitoring techniques.

Future research could focus on developing monitoring techniques for larger and more complex
industrial systems, and how monitoring can support automated decision-making in these
systems. Beyond the scale and complexity of the systems, more scenarios can be taken
into account, e.g., the types of faults can also be extended from hardware faults to include
software faults, communication faults, and cyber-attacks. With regard to system monitoring
techniques themselves, both model-based and data-driven approaches have their respective
strengths, and research into how they can complement each other and be effectively combined
is a possible direction. Moreover, it is also essential to explore and address the security and
privacy issues related to system monitoring techniques, especially when sensitive information
is involved. In this regard, developing secure and privacy-preserving monitoring techniques
could be another interesting direction for future research.
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