

Delft University of Technology

A study and toolkit for asynchronous programming in c#

Okur, Semih; Hartveld, David L.; Dig, Danny; van Deursen, Arie

DOI
10.1145/2568225.2568309
Publication date
2014
Document Version
Accepted author manuscript
Published in
ICSE 2014 Proceedings of the 36th International Conference on Software Engineering

Citation (APA)
Okur, S., Hartveld, D. L., Dig, D., & van Deursen, A. (2014). A study and toolkit for asynchronous
programming in c#. In ICSE 2014 Proceedings of the 36th International Conference on Software
Engineering (pp. 1117 - 1127). Association for Computing Machinery (ACM).
https://doi.org/10.1145/2568225.2568309
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/2568225.2568309
https://doi.org/10.1145/2568225.2568309

Delft University of Technology
Software Engineering Research Group

Technical Report Series

A Study and Toolkit for Asynchronous
Programming in C#

Semih Okur, David L. Hartveld, Danny Dig and Arie van
Deursen

Report TUD-SERG-2013-016

SERG

TUD-SERG-2013-016

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: This paper is currently under review.

c© copyright 2013, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

A Study and Toolkit for Asynchronous Programming in C#

Semih Okur1, David L. Hartveld2, Danny Dig3, Arie van Deursen2

1University of Illinois 2Delft University of Technology 3Oregon State University
okur2@illinois.edu d.l.hartveld@student.tudelft.nl

arie.vandeursen@tudelft.nl
digd@eecs.oregonstate.edu

ABSTRACT
Asynchronous programming is in demand today, because
responsiveness is increasingly important on all modern de-
vices. Yet, we know little about how developers use asyn-
chronous programming in practice. Without such knowl-
edge, developers, researchers, language and library design-
ers, and tool vendors can make wrong assumptions.
We present the first study that analyzes the usage of

asynchronous programming in a large experiment. We an-
alyzed 1378 open source Windows Phone (WP) apps, com-
prising 12M SLOC, produced by 3376 developers. Using this
data, we answer 2 research questions about use and mis-
use of asynchronous constructs. Inspired by these findings,
we developed (i) Asyncifier, an automated refactoring tool
that converts callback-based asynchronous code to the new
async/await; (ii) Corrector, a tool that finds and corrects
common misuses of async/await. Our empirical evaluation
shows that these tools are (i) applicable and (ii) efficient.
Developers accepted 313 patches generated by our tools.

1. INTRODUCTION
User interfaces are usually designed around the use of a

single user interface (UI) event thread [16, 17, 24, 25]: every
operation that modifies UI state is executed as an event on
that thread. The UI “freezes” when it cannot respond to in-
put, or when it cannot be redrawn. It is recommended that
long-running CPU-bound or blocking I/O operations exe-
cute asynchronously so that the application (app) continues
to respond to UI events.
Asynchronous programming is in demand today because

responsiveness is increasingly important on all modern de-
vices: desktop, mobile, or web apps. Therefore, major pro-
gramming languages have APIs that support non-blocking,
asynchronous operations (e.g., to access the web, or for file
operations). While these APIs make asynchronous program-
ming possible, they do not make it easy.
Asynchronous APIs rely on callbacks. However, callbacks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14 Hyderabad, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

invert the control flow, are awkward, and obfuscate the in-
tent of the original synchronous code [38].
Recently, major languages (F# [38], C# and Visual Ba-

sic [8] and Scala [7]) introduced async constructs that re-
semble the straightforward coding style of traditional syn-
chronous code. Thus, they recognize asynchronous program-
ming as a first-class citizen.
Yet, we know little about how developers use asynchronous

programming and specifically the new async constructs in
practice. Without such knowledge, other developers cannot
educate themselves about the state of the practice, language
and library designers are unaware of any misuse, researchers
make wrong assumptions, and tool vendors do not provide
the tools that developers really need. This knowledge is also
important as a guide to designers of other major languages
(e.g., Java) planning to support similar constructs. Hence,
asynchronous programming deserves first-class citizenship in
empirical research and tool support, too.
We present the first study that analyzes the usage of asyn-

chronous libraries and new language constructs, async/await
in a large experiment. We analyzed 1378 open source Win-
dows Phone (WP) apps, comprising 12M SLOC, produced
by 3376 developers. While all our empirical analysis and
tools directly apply to any platform app written in C# (e.g.,
desktop, console, web, tablet), in this paper we focus on the
Windows Phone platform.
We focus on WP apps because we expect to find many ex-

emplars of asynchronous programming, given that respon-
siveness is critical. Mobile apps can easily be unresponsive
because mobile devices have limited resources and have high
latency (excessive network accesses). With the immediacy
of touch-based UIs, even small hiccups in responsiveness are
more obvious and jarring than when using a mouse or key-
board. Some sluggishness might motivate the user to unin-
stall the app, and possibly submit negative comments in the
app store [37]. Moreover, mobile apps are becoming increas-
ingly more important. According to Gartner, by 2016 more
than 300 billion apps will be downloaded annually [18].
The goal of this paper is twofold. First, we obtain a deep

understanding of the problems around asynchronous pro-
gramming. Second, we present a toolkit (2 tools) to address
exactly these problems. To this end, we investigate 1378 WP
apps through tools and by hand, focussing on the following
research questions:

RQ1: How do developers use asynchronous programming?

RQ2: To what extent do developers misuse async/await?

We found that developers heavily use callback-based asyn-

1

SERG A Study and Toolkit for Asynchronous Programming in C#

TUD-SERG-2013-016 1

chronous idioms. However, Microsoft no longer officially rec-
ommends these asynchronous idioms [30] and has started to
replace them with new idioms in new libraries (e.g., WinRT).
Developers need to refactor callback-based idioms to new id-
ioms that can take advantage of the async/await language
constructs. The changes that the refactoring requires are
non-trivial, though. For instance, developers have to inspect
deep call graphs. Furthermore, they need to be extra careful
to preserve the exception-handling. Thus, we implemented
the refactoring as an automated tool, Asyncifier.
We also found that nearly half of WP8 apps have started

to use the 9-month-old async/await keywords. However,
developers misuse async/await in various ways. We de-
fine misuse as anti-patterns, which hurt performance and
might cause serious problems like deadlocks. For instance,
we found that 14% of methods that use (the expensive)
async/await do this unnecessarily, 19% of methods do not
follow an important good practice [22], 1 out of 5 apps miss
opportunities in async methods to increase asynchronicity,
and developers (almost) always unnecessarily capture con-
text, hurting performance. Thus, we implemented a trans-
formation tool, Corrector, that finds and corrects the mis-
used async/await.
This paper makes the following contributions:

Empirical Study: To the best of our knowledge, this is the
first large-scale empirical study to answer questions about
asynchronous programming and new language constructs,
async/await, that will be available soon in other major pro-
gramming languages. We present implications of our find-
ings from the perspective of four main audiences: develop-
ers, language and library designers, researchers, and tool
vendors.
Toolkit: We implemented the analysis and transformation
algorithms to address the challenges (Asyncifier and Cor-
rector).
Evaluation: We evaluated our tools by using the code cor-
pus and applied the tools hundreds of times. We show that
our tools are highly applicable and efficient. Developers find
our transformations useful. Using Asyncifier, we applied
and reported refactorings in 10 apps. 9 replied and accepted
each one of our 28 refactorings. Using Corrector, we found
and reported misuses in 19 apps. 18 replied and accepted
each of our 285 patches.
Outreach: Because developers learn new language con-
structs through both positive and negative examples, we de-
signed a website, http://LearnAsync.NET/, to show hundreds
of such usages of asynchronous idioms and async/await key-
words.

2. BACKGROUND
When a button click event handler executes a synchronous

long-running CPU-bound or blocking I/O operation, the
user interface will freeze because the UI event thread can-
not respond to events. Code listing 1 shows an example of
such an event handler, method Button_Click. It uses the
GetFromUrl method to download the contents of a URL, and
place it in a text box. Because GetFromUrl is waiting for
the network operation to complete, the UI event thread is
blocked, and the UI is unresponsive.
Keeping UIs responsive thus means keeping the UI event

thread free of those long-running or blocking operations. If
these operations are executed asynchronously in the back-
ground, the foreground UI event thread does not have to

Code 1 Synchronous example
1 void Button_Click (...) {
2 string contents = GetFromUrl (url)
3 textBox .Text = contents ;
4 }
5 string GetFromUrl (string url) {
6 WebRequest request = WebRequest . Create (url);
7 WebResponse response = request . GetResponse ();
8 Stream stream = response . GetResponseStream ();
9 return stream . ReadAsString ();

10 }

busy-wait for completion of the operations. That frees the
UI event thread to respond to user input, or redraw the UI:
the user will experience the UI to be responsive.
CPU-bound operations can be executed asynchronously

by (i) explicitly creating threads, or (ii) by reusing a thread
from the thread pool.
I/O operations are more complicated to offload asyn-

chronously. The naive approach would be to just start
another thread to run the synchronous operation asyn-
chronously, using the same mechanics as used for CPU-
bound code. However, that would still block the new thread,
which consumes significant resources, hurting scalability.
The solution is to use asynchronous APIs provided by the

platform. The .NET framework mainly provides two models
for asynchronous programming: (1) the Asynchronous Pro-
gramming Model (APM), that uses callbacks, and (2) the
Task Asynchronous Pattern (TAP), that uses Tasks, which
are similar to the concept of futures found in many other
languages such as Java, Scala or Python.

2.1 Asynchronous Programming Model
APM, the Asynchronous Programming Model, was part

of the first version of the .NET framework, and has been
in existence for 10 years. APM asynchronous operations
are started with a Begin method invocation. The result is
obtained with an End method invocation. In Code listing 2,
BeginGetResponse is such a Begin method, and EndGetResponse
is an End method.

BeginGetRepsonse is used to initiate an asynchronous HTTP
GET request. The .NET framework starts the I/O opera-
tion in the background (in this case, sending the request
to the remote web server). Control is returned to the call-
ing method, which can then continue to do something else.
When the server responds, the .NET framework will “call
back" to the application to notify that the response is ready.
EndGetResponse is then used in the callback code to retrieve
the actual result of the operation. See Figure 1 for an illus-
tration of this flow of events.
The APM Begin method has two pattern-related param-

eters. The first parameter is the callback delegate (which is
a managed, type-safe equivalent of a function pointer). It
can be defined as either a method reference, or a lambda
expression. The second parameter allows the developer to
pass any single object reference to the callback, and is called
state.
The .NET framework will execute the callback delegate

on the thread pool once the asynchronous background oper-
ation completes. The EndGetResponse method is then used in
the callback to obtain the result of the operation, the actual
WebResponse.
Note a subtle difference between the synchronous, sequen-

tial example in Code listing 1 and the asynchronous, APM-

2

A Study and Toolkit for Asynchronous Programming in C# SERG

2 TUD-SERG-2013-016

Code 2 APM-based example
1 void Button_Click (...) {
2 GetFromUrl (url);
3 }
4 void GetFromUrl (string url) {
5 var request = WebRequest . Create (url);
6 request . BeginGetResponse (Callback , request);
7 }
8 void Callback (IAsyncResult asyncResult) {
9 var request = (WebRequest) asyncResult . AsyncState ;

10 var response = request . EndGetResponse (asyncResult);
11 var stream = response . getResponseStream ();
12 var content = stream . ReadAsString ();
13 Dispatcher . BeginInvoke (() => {
14 textBox .Text = content ;
15 });
16 }

Figure 1: Where is callback-based APM code executing?

based example in Code listing 2. In the synchronous ex-
ample, the Button_Click method contains the UI update
(setting the download result as contents of the text box).
However, in the asynchronous example, the final callback
contains an invocation of Dispatcher.BeginInvoke(...) to
change context from the thread pool to the UI event thread.

2.2 Task-based Asynchronous Pattern
TAP, the Task-based Asynchronous Pattern, provides for

a slightly different approach. TAP methods have the same
base operation name as APM methods, without ‘Begin’ or
‘End’ prefixes, and instead have an ‘Async’ suffix. The API
consists of methods that start the background operation and
return a Task object. The Task represents the operation in
progress, and its future result.
The Task can be (1) queried for the status of the oper-

ation, (2) synchronized upon to wait for the result of the
operation, or (3) set up with a continuation that resumes
in the background when the task completes (similar to the
callbacks in the APM model).

2.3 Drawbacks of APM and plain TAP
Using APM and plain TAP directly has two main draw-

backs. First, the code that must be executed after the asyn-
chronous operation is finished, must be passed explicitly to
the Begin method invocation. For APM, even more scaffold-
ing is required: The End method must be called, and that
usually requires the explicit passing and casting of an ‘async
state’ object instance - see Code listing 2, lines 9-10. Sec-
ond, even though the Begin method might be called from the
UI event thread, the callback code is executed on a thread
pool thread. To update the UI after completion of the asyn-

Code 3 TAP & async/await-based example
1 async void Button_Click (...) {
2 var content = await GetFromUrlAsync (url);
3 textBox .Text = content ;
4 }
5 async Task <string > GetFromUrlAsync (string url) {
6 var request = WebRequest . Create (url);
7 var response = await request . GetResponseAsync ()
8 . ConfigureAwait (false);
9 var stream = response . GetResponseStream ();

10 return stream . ReadAsString ();
11 }

chronous operation from the thread pool thread, an event
must be sent to the UI event thread explicitly - see Code
listing 2, line 13-15.

2.4 Pause’n’play with async & await
To solve this problem, the async and await keywords have

been introduced. When a method has the async keyword
modifier in its signature, the await keyword can be used
to define pausing points. When a Task is awaited in an
await expression, the current method is paused and control is
returned to the caller. When the await’ed Task’s background
operation is completed, the method is resumed from right
after the await expression. Code listing 3 shows the TAP- &
async/await-based equivalent of Code listing 2, and Figure 2
illustrates its flow of execution.
The code following the await expression can be consid-

ered a continuation of the method, exactly like the callback
that needs to be supplied explicitly when using APM or
plain TAP. Methods that have the async modifier will thus
run synchronously up to the first await expression (and if it
does not have any, it will complete synchronously). Merely
adding the async modifier does not magically make a method
be asynchronously executed in the background.

Figure 2: Where is the async/await code executing?

2.5 Where is the code executing?
There is one important difference between async/await

continuations, and APM or plain TAP callback continua-
tions: APM and plain TAP always execute the callback on
a thread pool thread. The programmer needs to explicitly
schedule a UI event to interface with the UI, as shown in
Code listing 2 and Figure 1.
In async/await continuations, the await keyword, by de-

fault, captures information about the thread in which it is
executed. This captured context is used to schedule execu-
tion of the rest of the method in the same context as when
the asynchronous operation was called. For example, if the

3

SERG A Study and Toolkit for Asynchronous Programming in C#

TUD-SERG-2013-016 3

await keyword is encountered in the UI event thread, it will
capture that fact. Once the background operation is com-
pleted, the continuation of the rest of the method is sched-
uled back onto the UI event thread. This behavior allows
the developer to write asynchronous code in a sequential
manner. See Code listing 3 for an example.
Comparing the code examples in listings 1 and 3 will show

that the responsive version based on TAP & async/await
only slightly differs from the sequential version. It is read-
able in a similar fashion, and even the UI update (setting
the contents of the text box) is back at its original place.
By default, await expressions capture the current context.

However, it is not always needed to make the expensive
context switch back to the original context. To forestall
a context switch, an await’ed Task can be set to ignore cap-
turing the current context by using ConfigureAwait(false).
In Code listing 3, in GetFromUrlAsync, none of the
statements following the await expressions require ac-
cess to the UI. Hence, the await’ed Task is set with
ConfigureAwait(false). In Button_Click, the statement fol-
lowing await GetFromUrlAsync(url) does need to update the
UI. So that await expression should capture the original
context, and the task should not be set up with Config-
ureAwait(false).

3. RESEARCH QUESTIONS
We are interested in assessing the usage of state of the art

asynchronous programming in real world WP apps.

3.1 Methodology
Corpus of Data: We chose Microsoft’s CodePlex [11]

and GitHub [19] as sources of the code corpus of WP apps.
According to a recent study [27], most C# apps reside in
these two repositories. We developed WPCollector to
create our code corpus. It is available online [10] for reuse
by other researchers.
We used WPCollector to download all recently up-

dated WP apps which have a WP-related signature in their
project files. It ignores (1) apps without commits since 2012,
and (2) apps with less than 500 non-comment, non-blank
lines of code (SLOC). The latter “toy apps” are not repre-
sentative of production code.

WPCollector makes as many projects compilable as
possible (e.g. by resolving-installing dependencies), because
the Roslyn APIs that we rely on (see Analysis Infrastruc-
ture) require compilable source code.

WPCollector successfully downloaded and prepared
1378 apps, comprising 12M SLOC, produced by 3376 devel-
opers, which we all used in our analysis, without sampling.
WP7, released in October 2010, is targeted by 1115 apps.

WP8, released in October 2012, is targeted by 349 apps. 86
apps target both platforms, because WP8 apps cannot run
on WP7 devices.

Analysis Infrastructure: We developed AsyncAnalyzer
to perform the static analysis of asynchronous program-
ming construct usage. We used Microsoft’s recently released
Roslyn [31] SDK, which provides an API for syntactic and
semantic program analysis, AST transformations and edi-
tor services in Visual Studio. Because the publicly avail-
able version of Roslyn is incomplete and does not support
the async/await keywords yet, we used an internal build ob-
tained from Microsoft.
We executed AsyncAnalyzer over each app in our corpus.

WP7 WP8
App App% # App App%

I/O APM 1028 242 22% 217 65 19%
I/O TAP 123 23 2% 269 57 16%
New Thread 183 92 8% 28 24 7%
BG Worker 149 73 6% 11 6 2%
ThreadPool 386 103 9% 52 24 7%
New Task 51 11 1% 182 28 8%

Table 1: Usage of asynchronous idioms. The three columns
per platform show the total number of idiom instances, the
total number of apps with instances of the idiom, and the
percentage of apps with instances of the idiom.

For each of these apps, it inspects the version from the main
development branch as of August 1st, 2013. We developed
a specific analysis to answer each research question.

3.2 How do developers use asynchronous pro-
gramming?

Asynchronous APIs: We detected all APM and TAP
methods that are used in our code corpus as shown in Ta-
ble 1. Because in WP7 apps, TAP methods are only ac-
cessible via additional libraries, Table 1 tabulates the us-
age statistics for WP7 and WP8 apps separately. The data
shows that APM is more popular than TAP for both WP7
and WP8.
We also manually inspected all APM and TAP methods

used and categorized them based on the type of I/O oper-
ations: network (1012), file system (310), database (145),
user interaction (102) and other I/O (e.g. speech recogni-
tion) (68). We found that asynchronous operations are most
commonly used for network operations.
There are two ways to offload CPU-bound operations to

another thread: by creating a new thread, or by reusing
threads from the thread pool. Based on C# books and ref-
erences [1], we distinguish 3 different approaches developers
use to access the thread pool: (1) the BackgroundWorker
class, (2) accessing the ThreadPool directly, and (3) creat-
ing Tasks. Table 1 tabulates the usage statistics of all these
approaches. Because Task is only available in WP7 apps by
using additional libraries, the table shows separate statis-
tics for WP7 and WP8 apps. The data shows that Task is
used significantly more in WP8 apps, most likely because of
availability in the core platform.

Language Constructs: async/await have become acces-
sible for WP development in last quarter of 2012. While
they are available by default in WP8, WP7 apps have to
the reference Microsoft.Bcl.Async library to use them.
We found that 45% (157) of WP8 apps use async/await

keywords. While nearly half of all WP8 apps have started to
use the new 9-month-old constructs, only 10 WP7 apps use
them. In these 167 apps, we found that there are 2383 async
methods that use at least one await keyword in their method
body. An async method has 1.6 await keywords on average,
meaning that async methods call other async methods.�
�

�
�

Callback-based APM is the most widely used idiom.
While nearly half of all WP8 apps have started to use

async/await, only 10 WP7 apps use them.

4

A Study and Toolkit for Asynchronous Programming in C# SERG

4 TUD-SERG-2013-016

3.3 Do developers misuse async/await?
Because async/await are relatively new language con-

structs, we have also investigated how developers misuse
these constructs. We define misuse as anti-patterns which
hurt performance and might cause serious problems like
deadlocks. We detected the following typical misusage id-
ioms.

3.3.1 Fire & Forget methods
799 of 2382 async/await methods are “fire&forget”, which

return void. Unless a method is only called as a UI event
handler, it must be awaitable. Otherwise, it is a code smell
because it complicates control flow and makes error detec-
tion & correction difficult. Exceptions in fire&forget meth-
ods cannot be caught in the calling method, causing termi-
nation of the app. Instead, they should return Task which
does not force the method to return anything; but it enables
easier error-handling, composability, and testability.
However, we found that only 339 out of these 799 async

void methods are event handlers. It means that 19% of
all async methods (460 out of 2383) are not following this
important practice [22].
One in five async methods violate the principle

that an async method should be awaitable unless it
is the top level event handler.

3.3.2 Unnecessary async/await methods
Consider the example from “Cimbalino Windows Phone

Toolkit” [3]:
public async Task <Stream > OpenFileForReadAsync (...)
{

return await Storage . OpenStreamForReadAsync (path);
}
The OpenStream method is a TAP call, which is awaited in
the OpenFile method. However, there is no need to await
it. Because there is no statement after the await expression
except for the return, the method is paused without reason:
the Task that is returned by Storage.OpenStream can be im-
mediately returned to the caller. The snippet below behaves
exactly the same as the one above:
public Task <Stream > OpenFileForReadAsync (...)
{

return Storage . OpenStreamForReadAsync (path);
}
It is important to detect this kind of misuse. Adding the

async modifier comes at a price: the compiler generates some
code in every async method.
We discovered that in 26% of the 167 apps, 324 out of all

async 2383 methods unnecessarily use async/await. There
is no need to use async/await in 14% of all async meth-
ods.

3.3.3 Long-running operations under async methods
We also noticed that developers use some potentially long

running operations under async methods even though there
are corresponding asynchronous versions of these methods
in .NET or third-party libraries. Consider the following ex-
ample from indulged-flickr [15], a Flickr:
public async void GetPhotoStreamAsync (...)
{

var response = await DispatchRequest (...);
using (StreamReader reader = new StreamReader (...))
{

string jsonString = reader . ReadToEnd ();
}

}

The developer might use await ReadToEndAsync() instead of
the synchronous ReadToEnd call, especially if the stream is
expected to be large.
In the example below from iRacerMotionControl [23], the

situation is more severe.
private async void BT2Arduino_Send (string WhatToSend)
{

...
await BTSock . OutputStream . WriteAsync (datab);
txtBTStatus .Text = "sent";
System . Threading . Thread . Sleep (5000);
....

}
The UI event thread calls BT2Arduino_Send, which blocks the
UI thread by busy-waiting for 5 seconds. Instead of using
the blocking Thread.Sleep method, the developer should use
the non-blocking Task.Delay(5000) method call to preserve
similar timing behavior, and await it to prevent the UI to
freeze for 5 seconds.
We found 115 instances of potentially long-running oper-

ations in 22% of the 167 apps that use async/await. 1 out
of 5 apps miss opportunities in at least one async
method to increase asynchronicity.

3.3.4 Unnecessarily capturing context
async/await introduce new risks if the context is captured

without specifying ConfigureAwait(false). For example, con-
sider the following example from adsclient [2]:
void GetMessage (byte [] response) {

...
ReceiveAsync (response). Wait ();
...

}
async Task <bool > ReceiveAsync (byte [] message) {

...
return await tcs.Task;

}
If GetMessage is called from the UI event thread, the thread

will wait for completion of ReceiveAsync because of the Wait
call. When the await completes in ReceiveAsync, it attempts
to execute the remainder of the method within the captured
context, which is the UI event thread. However, the UI
event thread is already blocked, waiting for the completion
of ReceiveAsync. Therefore, a deadlock occurs.
To prevent the deadlock, the developer needs to set up

the await expression to use ConfigureAwait(false). Instead
of attempting to resume the ReceiveAsync method on the UI
event thread, it now resumes on the thread pool, and the
blocking wait in GetMessage does not cause a deadlock any
more. In the example above, although ConfigureAwait(false)
is a solution, we fixed it by removing await because it was
also an instance of unnecessary async/await use. The devel-
oper of the app accepted our fix as a patch.
We found 5 different cases for this type of deadlock which

can happen if the caller method executes on UI event thread.
Capturing the context can also cause another problem:

it hurts performance. As asynchronous GUI applications
grow larger, there can be many small parts of async methods
all using the UI event thread as their context. This can
cause sluggishness as responsiveness suffers from thousands
of paper cuts. It also enables a small amount of parallelism:
some asynchronous code can run in parallel with the UI
event thread instead of constantly badgering it with bits of
work to do.
To mitigate these problems, developers should await the

Task with ConfigureAwait(false) whenever they can. If the
statements after the await expression do not update the

5

SERG A Study and Toolkit for Asynchronous Programming in C#

TUD-SERG-2013-016 5

UI, ConfigureAwait(false) must be set. Detecting this mis-
use is important because using ConfigureAwait(false) might
prevent future bugs like deadlocks and improve the perfor-
mance.
1786 out of 2383 async methods do not update GUI

elements in their call graph after await expressions.
We found that ConfigureAwait(false) is used in only
16 out of these 1786 async methods in await expres-
sions. All 1770 other async methods should have used
ConfigureAwait(false). 99% of the time, developers did
not use ConfigureAwait(false) where this was needed.#

"

!

Table 3: Statistics of async/await Misuses
Misuse # Method% App%
(1)Fire&Forget 460 19% 76%
(2)Unneces. Async 324 14% 26%
(3)Potential LongRunning 115 5% 22%
(4)Unneces. Context 1770 74% 86%

4. TOOLKIT
Based on our findings, we developed a two-fold approach

to support the developer: (1) Asyncifier, a refactoring tool
to upgrade legacy callback-based APM code to take advan-
tage of async/await construct (see section 4.1) and (2) Cor-
rector, a tool for detecting and fixing misuses of async/await
in code (see Section 4.2).

Asyncifier helps the developer in two ways: (1) the code
is upgraded without errors, retaining original behavior, and
(2) it shows how to correctly use the async/await keywords
in production code. If the developer manually introduces
async/await, Corrector will help in finding and removing
misuses.

4.1 Refactoring APM to async & await

4.1.1 Challenges
There are three main challenges that make it hard to exe-

cute the refactoring quick and flawlessly by hand. First, the
developer needs to understand if the APM instance is a can-
didate for refactoring based on the preconditions in Section
4.1.2. Second, he must transform the code while retaining
the original behavior of the code - both functionally and in
terms of scheduling. This is non-trivial, especially in the
presence of (1) exception handling, and (2) APM End meth-
ods that are placed deeper in the call graph.

Exception handling
The refactoring from APM to async/await should retain

the functional behavior of the original program, both in the
normal case and under exceptional circumstances. In 52%
of all APM instances, try-catch blocks are in place to han-
dle those exceptions. The try-catch blocks surround the End
method invocation, which throws an exception if the back-
ground operation results in an exceptional circumstance.
These catch blocks can contain business logic: for exam-
ple, a network error sometimes needs to be reported to the
user (“Please check the data or WiFi connection”). Code
listing 4 shows such an example.
The naive approach to introducing async/await is to re-

place the Begin method invocation with an invocation to the
corresponding TAP method, and await the result immedi-
ately. However, the await expression is the site that can

Code 4 EndGetResponse in try-catch block
void Button_Click (...) {

WebRequest request = WebRequest . Create (url);
request . BeginGetResponse (Callback , request);

}
void Callback (IAsyncResult ar) {

WebRequest request = (WebRequest)ar. AsyncState ;
try {

var response = request . EndGetResponse (ar);
// Do something with successful response .

} catch (WebException e) {
// Error handling

}
}

Code 5 EndGetResponse on longer call graph path
void Button_Click (...) {

WebRequest request = WebRequest . Create (url);
request . BeginGetResponse (ar => {

IntermediateMethod (ar , request);
}, null);

}
void IntermediateMethod (IAsyncResult result ,

WebRequest request) {
var response = GetResponse (request , result);
// Do something with response

}
WebResponse GetResponse (WebRequest request ,

IAsyncResult result) {
return request . EndGetResponse (result);

}

throw the exception when the background operation failed.
Thus, the exception would be thrown at a different site, and
this can drastically change behavior. By introducing the
await expression as replacement of the End method call at
the exact same place, existing exception handling will work
exactly as it did before. This is not a non-trivial insight
for developers, because online examples of async/await only
show the refactoring for extremely simple cases, where this
is not a concern.
Hidden End methods
The developer needs to take even more care when the End

method is not immediately called in the callback lambda
expression, but is ‘hidden’ deeper down the call chain. In
that case, the Task instance must be passed down to where
the End method invocation was to retain exceptional be-
havior. This requires an inter-procedural analysis of the
code: each of the methods, through which the IAsyncResult
‘flows’, must be refactored, which makes the refactoring
more tedious. The developer must trace the call graph of
the callback to find the End method call, and in each encoun-
tered method: (1) replace the IAsyncResult parameter with a
Task<T> parameter (with T being the return type of the TAP
method, (2) replace the return type R with async Task<R>,
or void with async void or async Task, and (3) introduce
ConfigureAwait(false) at each await expression. As shown
in the results of the empirical study, when its presence is
critical to retain UI responsiveness, developers almost never
use ConfigureAwait(false) where it should be used. Code
listing 5 shows such an example.

4.1.2 Algorithm precondition
An invocation of a Begin method is a candidate for refac-

toring to async/await based constructs, if it adheres to the
following preconditions and restrictions:

6

A Study and Toolkit for Asynchronous Programming in C# SERG

6 TUD-SERG-2013-016

Code 6 Adheres to precondition
void Action (WebRequest request) {

request . BeginGetResponse (asyncResult => {
var response = request . EndGetRequest (asyncResult);
// Do something with response .

}, null);
}

Code 7 Code listing 2 refactored to meet preconditions
void GetFromUrl (string url) {

var request = WebRequest . Create (url);
request . BeginGetResponse (asyncResult => {

Callback (asyncResult , request);
}, null);

}

void Callback (IAsyncResult ar , WebRequest request) {
var response = request . EndGetResponse (ar);
var stream = response . getResponseStream ();
var content = stream . ReadAsString ();
Dispatcher . BeginInvoke (() => {

textBox .Text = content ;
});

}

P1: The APM method call must represent an asynchronous
operation for which a TAP-based method also exists. Ob-
viously, if the TAP-based method does not exist, the code
cannot be refactored.
P2: The Begin method invocation statement must be con-
tained in a regular method, i.e, not in a lambda expression
or delegate anonymous method. The Begin method will be
made async. While it is possible to make lambdas and del-
egate anonymous methods async, this is considered a bad
practice because it usually creates an async void fire & for-
get method (see Section 3.3.1).
P3: The callback argument must be a lambda expression
with a body consisting of a block of statements. The call
graph of that block must contain an End method invocation
that takes the lambda IAsyncResult parameter as argument.
This means that the callback must actually end the back-
ground operation.
P4: In the callback call graph, the IAsyncResult lambda pa-
rameter should not be used, except as argument to the End
method.
P5: The state argument must be a null literal. As
the IAsyncResult lambda parameter must be unused, its
AsyncState property should be unused as well, so the state
argument expression of the Begin method invocation should
be null.
P6: In the initiating method (the method containing the
Begin method invocation), the IAsyncResult return value of
the Begin method should not be used, because it is returned
by a method invocation that will disappear.
Code listing 6 shows a valid example in the context of

these preconditions.
Applying these preconditions to APM instances in real-

world applications would restrict the number of APM in-
stances that can be refactored. Fortunately, many instances
in other forms can be refactored into this form. Code listing
2 shows an example that fails P3 and P5: the callback ar-
gument is a method reference, and the state argument is not
null. This instance can be refactored into the code shown in
listing 7 by applying the “Introduce Parameter” refactoring
to the request variable in the original Callback method.

Based on encountered cases in the analyzed code corpus,
we have identified and (partially) implemented several such
refactorings in Asyncifier. Examples are (1) identification
of unused state arguments which can be replaced with null
(solves violations of P5), and (2) rewriting of some callback
argument expressions (solves violations of P3).

4.1.3 Refactoring APM instances
Asyncifier detects all Begin method invocations that ful-

fill the preconditions. It takes the following steps to refactor
the APM instance to async/await-based constructs.

Traveling the call graph from APM Begin to End
First, Asyncifier explores the call graph of the body of

the callback lambda expression to find the invocation path
to the End invocation. It does a depth-first search of the call
graph, by looking up the symbols of any non-virtual method
that is encountered. There are two possible scenarios: the
End method invocation (1) is placed directly in the lambda
expression, or (2) it is found on the call graph of the lambda
body in another method’s body. Code listing 6 is an example
of the first case.
In the second case, Asyncifier identifies three different

methods which are on the call graph path: (1) the initiating
method, the method containing the Begin method invocation,
(2) the result-obtaining method, the method containing the
End method invocation, and (3) intermediate methods, the
remaining methods on the path. Code listing 7 is an exam-
ple of the second case. This example is used in the descrip-
tion of the following steps.

Rewriting the initiating method
In both cases, the initiating method needs to be rewritten.

Asyncifier adds the async modifier to the signature of the
initiating method. It changes the return value is to either
Task instead of void, or Task<T> for any other return type
T.
void GetFromUrl (string url) { ... }

⇓
async Task GetFromUrl (string url) { ... }

Asyncifier replaces the Begin method invocation state-
ment with a local variable declaration of a task that is as-
signed the result of the corresponding TAP method invoca-
tion. The parameterized type is the return type of the End
method:
request . BeginGetResponse (...);

⇓
Task < WebResponse > task =

request . GetResponseAsync ();
It then concatenates the statements in the lambda expres-

sion body to the body of the initiating method:
async Task GetFromUrl (string url) {

var request = WebRequest . Create (url);
var task = request . GetResponseAsync ();
Callback (asyncResult , request);

}
It replaces the asyncResult lambda parameter reference

asyncResult with a reference to the newly declared Task in-
stance.

async Task GetFromUrl (string url) {
var request = WebRequest . Create (url);
var task = request . GetResponseAsync ();
Callback (task , request);

}

7

SERG A Study and Toolkit for Asynchronous Programming in C#

TUD-SERG-2013-016 7

Code 8 TAP- & async/await-based code after refactoring
async Task GetFromUrl (string url) {

var request = WebRequest . Create (url);
Task < WebResponse > task = request . GetResponseAsync ();
Callback (task , request);

}

async Task Callback (Task < WebResponse > task ,
WebRequest request) {

var response = await task. ConfigureAwait (false);
var stream = response . getResponseStream ();
var content = stream . ReadAsString ();
Dispatcher . BeginInvoke (() => {

textBox .Text = content ;
});

}

Rewriting the result-obtaining method
Asyncifier updates the signature of the result-obtaining

method as follows: (1) it adds the async modifier, (2) it
replaces return type void with Task, or any other T with
Task<T>, and (3) it replaces the IAsyncResult parameter with
Task<R>, with R the return type of the End method.
void Callback (IAsyncResult asyncResult ,

WebRequest request) { ... }
⇓

async Task Callback (Task < WebResponse > task ,
WebRequest request) { ... }

Then it replaces the End method invocation expression
with await task, without capturing the synchronization con-
text:
var response = request . EndGetResponse (asyncResult);

⇓
var response = await task. ConfigureAwait (false);

Asyncifier refactors the APM instance into the code shown
in listing 8. If the introduction of new variables leads to
identifier name clashes, Asyncifier disambiguates the newly
introduced names by appending an increasing number to
them, i.e., task1, task2, etc.

Callbacks containing the End call
If the End method invocation is now in the initiating method,

Asyncifier replaces it with an await expression, and the
refactoring is complete. The example in Code listing 6 would
be completely refactored at this point:
void Action (WebRequest request) {

var task = request . GetResponseAsync ();
var response = await task. ConfigureAwait (false);
// Do something with response .

}
Rewriting intermediate methods
Intermediate methods must be rewritten if the End method

is not invoked in the callback lambda expression body. Asyn-
cifier recursively refactors every method recursively, apply-
ing the same steps as for the result-obtaining method. Ad-
ditionally, at the call site of each method, the reference to
the (removed) result parameter is replaced with a reference
to the (newly introduced) task parameter.

4.1.4 Retaining original behavior
It is crucial that the refactored code has the same behav-

ior in terms of scheduling as the original code. With both
the Begin method and the TAP method, the asynchronous
operation is started. In the APM case, the callback is only
executed once the background operation is completed. With
async/await, the same happens-before relationship exists be-
tween the await expression and the statements that follow

the await of the Task returned by the TAP method. Because
the statements in callbacks are placed after the await ex-
pression that pauses execution until completion of the back-
ground operation, this timing behavior is preserved.

4.1.5 Implementation limitations
The set of candidates is restricted by tool limitations re-

lated to re-use of Begin or End methods. First, there should
not be other call graph paths leading from Begin method
call to the target End method, which means so much as that
the specific End method invocation must not be shared be-
tween multiple Begin invocations. Second, recursion in the
callback through another Begin call that references the same
callback again is not allowed (essentially, this is also sharing
of an End method call). Third, Asyncifier does not support
multiple End method invocations that correspond to a sin-
gle Begin method invocation, for example through the use of
branching. However, this case is very rare.

4.2 Corrector
We implemented another tool, Corrector, that detects

and corrects common misuses that we explained in RQ4.
Corrector gets the project file as an input and automat-
ically corrects the misuses if it finds any without user Al-
though this batch mode works to fix present misuses, it does
not prevent users to make mistakes. Hence, Corrector also
supports Quick Fix mode for Visual Studio. This mode
shows a small icon close to the location of the misuse and
offers a transformation to fix the problem, similar to the one
in Eclipse.

(1) Fire & Forget methods: There is no fix that can
be automated for this misuse. If fire & forget method is
converted to async Task method and is awaited in the caller,
it will change the semantics. Therefore, the developer’s un-
derstanding of code is required to fix these cases.

(2) Unnecessary async/await methods: Corrector
checks whether async method body has only one await key-
word and this await is used for a TAP method call that is the
last statement of the method. Corrector does not do this
for async void (fire&forget) methods; because if it removes
await from the last statement in async void methods, it will
silence the exception that can occur in that statement.
To fix these cases, Corrector removes the async from

the method identifiers and the await keyword from the TAP
method call. The method will return the Task that is the
result of TAP method call as shown in the examples of RQ4.

(3) Long-running operations under async methods:
To detect these operations, Corrector looks up symbols
of each method invocation in the bodies of async methods.
After getting symbol information, Corrector looks at the
other members of the containing class of that symbol to
check whether there is an asynchronous version. For in-
stance, if there is an x.Read() method invocation and x is
an instance of the Stream class, Corrector looks at the mem-
bers of the Stream class to see whether there is a ReadAsync
method that gets the same parameters and returns Task.
By dynamically checking the members, Corrector can also
find asynchronous versions not only in the .NET framework
but also in third-party libraries.

Corrector also maps corresponding blocking and non-
blocking methods which do not follow the Async suffix con-
vention (e.g. Thread.Sleep -> Task.Delay).

Corrector avoids introducing asynchronous operations of

8

A Study and Toolkit for Asynchronous Programming in C# SERG

8 TUD-SERG-2013-016

file IO operations in loops, as this could result in slower
performance than the synchronous version.
After finding the corresponding non-blocking operation,

Asyncifier simply replaces the invocation with the new op-
eration and makes it await’ed.

(4) Unnecessarily capturing context: Corrector
checks whether there is a statement that access a GUI el-
ement (read or write) in the call graph of async method.
It inspects every object’s symbol if the symbol is from
System.Windows or Microsoft.Phone namespaces. All GUI el-
ements are in these namespaces; but all constructs in these
namespaces are not GUI elements. It makes our analysis
conservative.
If Corrector does not find any GUI element ac-

cess after await points in async methods, it simply puts
ConfigureAwait(false) as following TAP calls. Even though
it is enough to put ConfigureAwait for one TAP call in the
async method, it is good practice to put it for every TAP
call in the async methods.

5. EVALUATION

5.1 Quantitative
To evaluate the usefulness of Asyncifier and Corrector

we answer the following questions by using our code corpus:
EQ1: Are they applicable?
We executed Asyncifier over our code corpus. After each

transformation, Asyncifier compiled the app in-memory and
checked whether compilation errors were introduced. 54%
of the 1245 APM instances adhere to the preconditions set
in section 4.1.2, which were all successfully refactored. By
manually checking 10% of all transformed instances, ran-
domly sampled, we verified that Asyncifier refactors APM
instances correctly. In the 46% of unsupported APM instances,
Asyncifier does not touch the original program.
The two main causes for unsuccessful refactorings are (1)

instances that do not adhere to preconditions, and (2) tool
limitations. The former consist mostly of instances that
can not be refactored because of fundamental limitations
of the algorithm. Examples are callback expressions that
reference a field delegate, or APM End methods that are
hidden behind interface implementations (both violations of
precondition P3). The latter consist of the examples given
in section 4.1.5.
We also applied Corrector to the full corpus. All in-

stances of type 2, 3, and 4 misuses were corrected automat-
ically.
EQ2: What is the impact of refactoring on code?

Asyncifier touches 28.9 lines on average per refactoring.
It shows that these refactorings need automation support
because they touch many lines of code.

Corrector touches one line per each misuse of type (3)
and (4) in Section 4.2. It touches 2 or 3 lines per each misuse
of type (2); 2.1 lines on average.
EQ3: Is the tool efficient?
For Asyncifier, the average time needed to refactor one

instance is 508ms rendering Asyncifier suitable for an in-
teractive refactoring mode in an IDE.
Because the detection and fixing of type (2) and (3) mis-

uses is straightforward, we did not measure the execution
time. However, detecting type (4) misuse is expensive, as
it requires inspection of the call graph of the async method.
We found that analyzing one async method for this misuse

takes on average 47ms. This shows that Corrector can be
used interactively in an IDE, even for type (4) misuse.

5.2 Qualitative evaluation
To further evaluate the usefulness in practice, we iden-

tified the 10 most recently updated apps that have APM
instances. We applied Asyncifier ourselves, and offered the
modifications to the original developers as a patch via a pull
request.1 9 out of 10 developers responded, and accepted
each one of our 28 refactorings.
We received very positive feedback on these pull requests.

One developer would like to have the tool available right
now: “I’ll look forward to the release of that refactoring tool,
it seems to be really useful.” [33] The developer of phonegui-
tartab [4] said that he had “been thinking about replacing all
asynchronous calls [with] new async/await style code”. This
illustrates the demand for tool support for the refactoring
from APM to async/await.
For Corrector, we selected the 10 most recently updated

apps for all type (2) and (3) misuses. We did not especially
select 10 apps for the type (4) misuse; but Corrector did fix
this misuse in the selected apps. In total, we selected 19 apps
because one app had both type (2) and (3). Developers of
18 apps replied and accepted our all patches, corresponding
to 149 instances of type (2), 38 instances of type (3), and
98 instances of type (4) misuses. In total 18 apps accepted
285 instances of Corrector transformation.
Response to the fixes that removed unnecessary

async/await keywords was similarly positive. One developer
pointed out that he missed several unnecessary async/await
instances that Corrector detected: “[...] I normally try
to take the same minimizing approach, though it seems I
missed these.” [32] The developer of SoftbuildData [6] ex-
perienced performance improvements after removing unnec-
essary async/await: “[...] performance has been improved
to 28 milliseconds from 49 milliseconds.” Again, these illus-
trate the need for tools that support the developer in finding
problems in the use of async/await.
Furthermore, the developer of the playerframework [5]

said that they missed the misuses because the particular
code was ported from old asynchronous idioms. It demon-
strates the need for Asyncifier as it can help a developer
to upgrade his or her code, without introducing incorrect
usage of async/await.

6. DISCUSSION
6.1 Implications
Our study has practical implications for developers, re-

searchers, and language and library designers.
Developers learn a new programming construct through

both positive and negative examples. Robillard and De-
Line [35] study what makes large APIs hard to learn and
conclude that one of the important factors is the lack of
usage examples. We provide hundreds of real-world ex-
amples of all asynchronous idioms on http://LearnAsync.
net/. Because developers might need to inspect the whole
source file or project to understand the example, we also link
to highlighted source files on GitHub [39]. We also provide
negative examples anonymously, without giving app names.
Language and library designers can learn which constructs

and idioms are embraced by developers, and which ones are
1All patches can be found on our web site

9

SERG A Study and Toolkit for Asynchronous Programming in C#

TUD-SERG-2013-016 9

tedious to use or error-prone. Because some other major lan-
guages have plans to introduce similar constructs for asyn-
chronous programming, this first study can guide them to
an improved design of similar language constructs for their
languages. For instance, capturing the context might not
be the default: developers are very likely to forget to use
ConfigureAwait(false).
Tool vendors can take advantage of our findings on

async/await misuse. IDEs such as Visual Studio should have
built-in quick fixes (similar to ours) to prevent users from
introducing misuse. For instance, if developers introduce a
fire & forget method, the IDE should give a warning unless
the method is the top level event handler.
Researchers in the refactoring community can use our

findings to target future research. For example, as we see
from Table 1, the usage of Task jumped to 8% from 1% in
WP8. This calls for work on a tool that converts old asyn-
chronous idioms of CPU-bound computations (e.g. Thread)
to new idioms (e.g. Task).

6.2 Threats to Validity
Internal: Is there something inherent to how we collect

and analyze the usage that could skew the accuracy of our
results? First, the study is only focusing on static usage of
asynchronous constructs, but one use of a construct (i.e., a
call site) could correspond to a large percentage of execution
time, making it a very asynchronous program. Likewise,
the opposite could be true. However, we are interested in
the developer’s view of writing, understanding, maintaining,
evolving the code, not on the performance tools’ view of the
code (i.e., how much of the total running time is spent in
asynchronous code). For our purposes, static analysis is
much more appropriate.

External: Are the results representative? First, despite
the fact that our corpus contains only open source apps, the
1378 apps span a wide domain, from games, social network-
ing, and office productivity to image processing and third
party libraries. They are developed by different teams with
3376 contributors from a large and varied community. Our
code corpus contains all windows phone apps from GitHub
and Codeplex without doing any random sampling or selec-
tion. While we answer our research questions for the Win-
dows Phone ecosystem, we expect they can cross the bound-
ary from mobile to any platform written in C# (e.g. desk-
top, web). Asynchronous programming is similar on those
platforms: developers have access to the same async/await
language constructs, and similar APIs.

Reliability: Are our empirical study and evaluation reli-
able? A detailed description of our results with fine-grained
reports are available online.
Because we used an internal version of Microsoft’s Roslyn,

we had to sign an NDA, which prohibits us from releasing
the binaries of any tool using it (AsyncAnalyzer, Asynci-
fier, and Corrector). We will be able to publish the tools
based on a public release that we expect by late Fall ’13.

6.3 Future Work
Our study was limited to apps targeting the Windows

Phone platform. However, we believe that the tools can
also be used for apps targeting other C# platforms, such
as desktop, web (ASP.NET) and console apps. Future work
would entail a study of asynchronous programming on those
platforms similar to the one presented in this paper.

The refactoring tool that replaces APM instances with
async/await-based code has several limitations, as mentioned
in section 4.1.5. We plan to remove those limitations, and
we expect to be able to show that the success rate of the
refactoring tool will increase to 65%.
As soon as there is a publicly available version of Roslyn,

we plan to update and release all the now-unreleased tools.

7. RELATED WORK
Empirical Studies: There are several empirical studies
[9, 20, 26, 29] on the usage of libraries or programing lan-
guage constructs. To the best of our knowledge, there is no
empirical study on asynchronous constructs and language
constructs for asynchronous programming.
We have previously conducted an empirical study [28] on

how developers from thousands of open source projects use
Microsoft’s Parallel Libraries. There is a small intersection
between asynchronous and parallel libraries: only Thread,
Task, and ThreadPool constructs. In this paper, we stud-
ied these three constructs as 3 of 5 different approaches for
asynchronous CPU-bound computations.
Refactoring Tools:, Traditionally, refactoring tools have
been used to improve the design of sequential programs.
There are a few refactoring tools that specifically target con-
currency. We have used refactoring [13,14] to retrofit paral-
lelism into sequential applications via concurrent libraries.
In the same spirit, Wloka et al. present a refactoring for
replacing global state with thread local state [40]. Schafer
et al. present Relocker [36], a refactoring tool that lets pro-
grammers replace usages of Java built-in locks with more
flexible locks. Gyori et al. present Lambdaficator [21], that
refactors existing Java code to use lambda expressions to
enable parallelism.
To the best of our knowledge, there is no refactoring tool

that specifically targets asynchronous programming. In in-
dustry, ReSharper is a well-known refactoring tool, but it
does not support async/await-specific refactorings [34]. Our
refactoring helps developer design responsive apps, which is
the area never explored so far [12].

8. CONCLUSION
Because responsiveness is very important on mobile de-

vices, asynchronous programming is already a first-class cit-
izen in modern programming environments. However, the
empirical research community and tool vendors have not yet
similarly embraced it.
Our large-scale empirical study of Windows Phone apps

provides insight into how developers use asynchronous pro-
gramming. We have discovered that developers make many
mistakes when manually introducing asynchronous program-
ming based on the modern C# language features async/await.
We provide a toolkit to support developers in preventing
and curing these mistakes. Our toolkit (1) safely refactors
legacy callback-based asynchronous code to async/await, (2)
detects and fixes existing errors, and (3) prevents introduc-
tion of new errors. Evaluation of the toolkit shows that it
is highly applicable, and developers already find the trans-
formations very useful and are looking forward to using our
toolkit.
We hope that our study motivates other follow-up stud-

ies to fully understand the state of the art in asynchronous
programming.

10

A Study and Toolkit for Asynchronous Programming in C# SERG

10 TUD-SERG-2013-016

9. REFERENCES
[1] J. Albahari and B. Albahari. CSharp 5.0 in a Nutshell:

The Definitive Reference. O’Reilly Media, 2012.
[2] Adsclient App. August’13,

https://github.com/roelandmoors/adsclient.
[3] Cimbalino-Phone-Toolkit App. August’13, https:

//github.com/Cimbalino/Cimbalino-Phone-Toolkit.
[4] Phoneguitartab App. August’13,

http://phoneguitartab.codeplex.com/.
[5] Playerframework App. August’13,

http://playerframework.codeplex.com/.
[6] Softbuild.Data App. August’13,

https://github.com/CH3COOH/Softbuild.Data.
[7] Scala Async. August’13, http:

//docs.scala-lang.org/sips/pending/async.html.
[8] Gavin Bierman, Claudio Russo, Geoffrey Mainland,

Erik Meijer, and Mads Torgersen. Pause n Play:
Formalizing Asynchronous CSharp. In James Noble,
editor, ECOOP 2012 Object-Oriented Programming
SE - 12, volume 7313 of Lecture Notes in Computer
Science, pages 233–257. Springer Berlin Heidelberg,
2012.

[9] Oscar Callaú, Romain Robbes, Éric Tanter, and David
Röthlisberger. How developers use the dynamic
features of programming languages. In Proceeding of
the 8th working conference on Mining software
repositories - MSR ’11, page 23, New York, New York,
USA, May 2011. ACM Press.

[10] WPCollector Source Code. August’13,
https://github.com/semihokur/wpcollector.

[11] CodePlex. August’13, http://codeplex.com.
[12] Danny Dig. A Refactoring Approach to Parallelism.

IEEE Software, 28(1):17–22, January 2011.
[13] Danny Dig, John Marrero, and Michael D. Ernst.

Refactoring sequential Java code for concurrency via
concurrent libraries. In 2009 IEEE 31st International
Conference on Software Engineering, pages 397–407.
IEEE, May 2009.

[14] Danny Dig, Mihai Tarce, Cosmin Radoi, Marius
Minea, and Ralph Johnson. Relooper. In Proceeding of
the 24th ACM SIGPLAN conference companion on
Object oriented programming systems languages and
applications - OOPSLA ’09, page 793, New York, New
York, USA, October 2009. ACM Press.

[15] Indulged flickr App. August’13,
https://github.com/powerytg/indulged-flickr.

[16] Windows Forms. August’13, http://msdn.microsoft.
com/en-us/library/dd30h2yb.aspx.

[17] Windows Presentation Foundation. August’13,
http://msdn.microsoft.com/en-us/library/
ms754130.aspx.

[18] Gartner. August’13,
http://www.gartner.com/newsroom/id/2153215.

[19] Github. August’13, https://github.com.
[20] Mark Grechanik, Collin McMillan, Luca DeFerrari,

Marco Comi, Stefano Crespi, Denys Poshyvanyk,
Chen Fu, Qing Xie, and Carlo Ghezzi. An empirical
investigation into a large-scale Java open source code
repository. In Proceedings of the 2010 ACM-IEEE
International Symposium on Empirical Software
Engineering and Measurement - ESEM ’10, page 1,

New York, New York, USA, September 2010. ACM
Press.

[21] Alex Gyori, Lyle Franklin, Danny Dig, and Jan
Lahoda. Crossing the gap from imperative to
functional programming through refactoring. In
Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering - ESEC/FSE
2013, page 543, New York, New York, USA, August
2013. ACM Press.

[22] Best Practices in Asynchronous Programming.
August’13, http://msdn.microsoft.com/en-us/
magazine/jj991977.aspx.

[23] iRacerMotionControl App. August’13, https:
//github.com/lanceseidman/iRacer_MotionControl.

[24] Oracle JavaAWT. August’13,
http://docs.oracle.com/javase/7/docs/api/java/
awt/package-summary.html.

[25] Oracle JavaSwing. August’13, http://docs.oracle.
com/javase/7/docs/technotes/guides/swing/.

[26] Siim Karus and Harald Gall. A study of language
usage evolution in open source software. In Proceeding
of the 8th working conference on Mining software
repositories - MSR ’11, page 13, New York, New York,
USA, May 2011. ACM Press.

[27] Survival of the Forgest. August’13, http://redmonk.
com/sogrady/2011/06/02/blackduck-webinar/.

[28] Semih Okur and Danny Dig. How do developers use
parallel libraries? In Proceedings of the ACM
SIGSOFT 20th International Symposium on the
Foundations of Software Engineering - FSE ’12,
page 1, New York, New York, USA, November 2012.
ACM Press.

[29] Chris Parnin, Christian Bird, and Emerson
Murphy-Hill. Adoption and use of Java generics.
Empirical Software Engineering, December 2012.

[30] Microsoft Asynchronous Programming Patterns.
August’13, http://msdn.microsoft.com/en-us/
library/jj152938.aspx.

[31] The Roslyn Project. August’13,
http://msdn.microsoft.com/en-us/hh500769.

[32] Cimbalino Pull Request. August’13, https://github.
com/Cimbalino/Cimbalino-Phone-Toolkit/pull/21.

[33] OCell Pull Request. August’13,
https://github.com/gjulianm/Ocell/pull/27.

[34] ReSharper. August’13,
http://www.jetbrains.com/resharper/.

[35] Martin P. Robillard and Robert DeLine. A field study
of API learning obstacles. Empirical Software
Engineering, 16(6):703–732, December 2010.

[36] Max Schäfer, Manu Sridharan, Julian Dolby, and
Frank Tip. Refactoring Java programs for flexible
locking. In Proceeding of the 33rd international
conference on Software engineering - ICSE ’11,
page 71, New York, New York, USA, May 2011. ACM
Press.

[37] Windows Store. August’13,
http://www.windowsphone.com/en-us/store.

[38] Don Syme, Tomas Petricek, and Dmitry Lomov. The
F# asynchronous programming model. In Proceedings
of the 13th international conference on Practical

11

SERG A Study and Toolkit for Asynchronous Programming in C#

TUD-SERG-2013-016 11

aspects of declarative languages, PADL’11, pages
175–189, Berlin, Heidelberg, 2011. Springer-Verlag.

[39] Our Companion Website. August’13,
http://learnasync.net.

[40] Jan Wloka, Manu Sridharan, and Frank Tip.
Refactoring for reentrancy. In Proceedings of the 7th
joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on
The foundations of software engineering on European
software engineering conference and foundations of
software engineering symposium - E, page 173, New
York, New York, USA, August 2009. ACM Press.

12

A Study and Toolkit for Asynchronous Programming in C# SERG

12 TUD-SERG-2013-016

TUD-SERG-2013-016
ISSN 1872-5392 SERG

