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The dynamic behaviour of vortex cavitation on marine propellers may cause inboard
noise and vibration, but is not well understood. The main goal of the present study
is to experimentally analyse the dynamics of an isolated tip vortex cavity generated
at the tip of a wing of elliptical planform. Detailed high-speed video shadowgraphy
was used to determine the cavity deformations in combination with force and sound
measurements. The cavity deformations can be divided in different modes, each of
which show a distinct dispersion relation between frequency and wavenumber. The
dispersion relations show good agreement with an analytical formulation. Finally,
experimental support is given to the hypothesis that the resonance frequency of the
cavity volume variation is related to a zero group velocity.
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1. Introduction
Tip vortex cavitation is among the first forms of cavitation to appear on ship

propellers and is an important design consideration for ships that require low noise
and vibration levels. The vortex strength and thus the cavity thickness can be reduced
by unloading the blade tip at the cost of reduced propeller efficiency. Vortex cavitation
may cause broadband hull-pressure fluctuations that can lead to onboard noise and
vibrations.

The broadband character can be explained by the variability of the hull pressure
fluctuations between blade passages. The centre frequency of the broadband hump is
expected to be due to a tip vortex cavity resonance (Ræstad 1996; Bosschers 2007),
but this resonance behaviour is not understood. An example of a wing with a tip
vortex cavity is shown in figure 6. As early as 1880, a theoretical dispersion relation
was derived by Thomson (1880) that describes the dynamics of waves travelling on an
isolated tip vortex cavity. This was extended to include the effects of compressibility
and surface tension by Morozov (1974). A modification to the theory was proposed by
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Bosschers (2008, 2009) to account for a free stream axial velocity and viscous effects.
As the model for waves on a vortex cavity is neutrally stable there is no obvious
criterion at which resonance can be expected.

Experiments involving sound measurements of cavitating tip vortices of wings have
shown distinct tonal frequencies (Higuchi, Arndt & Rogers 1989; Astolfi et al. 1998).
Briançon-Marjollet & Merle (1997) measured the velocity distribution, the cavity
diameter and sound of a tip vortex cavity trailing from a wing. A correlation of
the sound measurements was made to the frequency of the centreline displacement
mode and the elliptic deformation mode in the limit of small wavenumbers as given
by Morozov (1974). However, as no high-speed video recordings were available the
sound could not directly be related to vortex cavity deformations.

The most detailed study to date is by Maines & Arndt (1997) who used high-speed
video recordings to investigate the relation between deformations of a tip vortex
cavity and a distinct frequency component in the measured sound. The resonance
frequencies obtained from sound measurements were related to a criterion with
zero phase velocity but the high-speed video data for this study was also not
sufficient to validate the analytic model used to explain the tip vortex cavity resonance
frequency. An alternative explanation was provided by Bosschers (2009) who related
the experimental data to the criterion of zero group velocity of the mode involving
cavity volume variations. A group-speed criterion was used by Keller & Escudier
(1980) to explain the occurrence and wavelengths of standing waves on a cavitating
vortex in a vortex tube.

This shows that there is a disagreement in the deformation mode which is thought
to be responsible for the vortex cavity resonance. The underlying theoretical dispersion
relation which is used to describe this criterion varies slightly between authors but
has never been validated. The main goal of the present paper is to provide an
understanding of the dynamics of waves on a tip vortex cavity by computing a
frequency–wavenumber diagram for different cavity deformation modes using detailed
high-speed video recordings. In this diagram, distinct features can be distinguished
with varying phase velocity and group velocity. Most of these features can be related
to the theoretical dispersion relation.

The high-speed video observations are made of a tip vortex cavity generated by a
stationary wing of elliptical planform in the Delft cavitation tunnel. To also be able
to study the criterion of cavity resonance, tests are performed on a wing similar in
geometry to the one used by Maines & Arndt (1997).

In the next section the analytical model for vortex cavity deformations is described.
Then, the details of the experimental set-up are given. The results are discussed to
gain an understanding of the dynamics of the vortex cavity. Based on the results
the validity of the analytical model is assessed and used to define the criterion for
a cavity resonance frequency. Finally, the differences in findings compared to the
previous studies (Higuchi et al. 1989; Maines & Arndt 1997; Astolfi et al. 1998) are
discussed.

2. Theoretical dispersion relation
The starting point for the derivation of the dispersion relation is the convected

Helmholtz equation for a disturbance velocity potential ϕ̃ (Howe 2003):

∇2ϕ̃ − 1
c2

(
∂

∂t
+U · ∇

)2

ϕ̃ = 0, (2.1)
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in which c corresponds to the speed of sound and U to the free stream velocity vector.
The free stream flow needs to be irrotational with a velocity magnitude much smaller
than the speed of sound. A cylindrical coordinate system (r, θ, x) will be adopted with
a harmonic variation of the disturbance potential given by:

ϕ̃ = φ(r)ei(kxx+nθ−ωt), (2.2)

in which φ(r) corresponds to a potential that is only a function of radius, kx
corresponds to the axial wavenumber, n is the azimuthal wavenumber (which must
be an integer) and ω the angular frequency. Using only the axial free stream velocity
component W in U leads to the equation

φ′′ + φ
′

r
+
[
−k2

x −
n2

r2
+ 1

c2
(ω−Wkx)

2
]
φ = 0, (2.3)

where a prime denotes a derivative with respect to the radius. When introducing the
projected acoustic wavenumber in the radial direction kr defined as

k2
r =

1
c2
(ω−Wkx)

2 − k2
x , (2.4)

and considering that the vortex is radiating sound away from the core of the vortex,
the solution for the disturbance potential is given by a Hankel function of the first
kind:

ϕ̃ = φ̂ H1
n(krr)ei(kxx+nθ−ωt), (2.5)

in which φ̂ is the amplitude of the disturbance potential.
The velocity components in U should include both the axial free stream velocity

and the azimuthal velocity due to the vortex, but the addition of an azimuthal velocity
leads to a Matthieu equation for which no analytical solution is available. For low
frequencies and the typical vortex strengths used here, the additional terms are small
for modes n= 1 and n= 2 as the velocity is divided by the speed of sound and are
here neglected. For the mode n= 0 no additional terms arise. The introduction of the
azimuthal velocity then gives an identical equation to (2.3).

The distortion of the cavitating vortex with average radius rc is described by a
number of modes characterised by kx, n, ω and amplitude r̂. For small amplitudes,
the local cavity radius η is given by

η= rc + r̃= rc + r̂ei(kxx+nθ−ωt). (2.6)

The mode n = 0 corresponds to a breathing mode and involves volume variations.
Mode n=1 corresponds to a serpentine mode, also called bending mode, helical mode
or displacement mode, as it is the only mode that leads to a displacement of the vortex
centreline. The mode n= 2 is the bell mode or double helix or fluted mode, and leads
to an elliptical shape of the vortex core. A visualisation of the modes is presented
in figure 1. The distortions are transversely propagating inertial waves and are often
referred to as Kelvin waves (Saffman 1995).

The equations to find the dispersion relation are obtained by using a small
perturbation analysis for the kinematic and dynamic boundary conditions. The small
perturbation in cavity radius with amplitude r̃ will result in a perturbation velocity
given by the spatial derivative of the potential ϕ̃. The derivations by Thomson (1880)
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(a)

(b)

(c)

FIGURE 1. Main vortex cavity oscillation modes reproduced from Bosschers (2008). With
(a) monopole breathing n = 0 mode, (b) dipole serpentine n = 1 centreline displacement
mode and (c) quadrupole helical n= 2 mode.

and Morozov (1974) use a formulation for the azimuthal velocity V valid for potential
flow, but we show here that, at least for n = 0, the dispersion relation can also be
derived for a viscous vortex formulation. In both formulations a zero mean radial
velocity U and a constant mean axial velocity component W are used. The mean
velocities for potential flow in which a vortex with circulation Γ is present are then
given by

U = (U, V,W)=
(

0,
Γ

2πr
, W

)
. (2.7)

For viscous flow, the situation is more complicated. Neglecting the flow inside the
cavity, the azimuthal velocity in a viscous fluid has to satisfy a zero shear stress
boundary condition at the cavity interface, which leads to a different behaviour of
the velocity near the cavity interface when compared to the non-cavitating vortex as
shown in Bosschers (2015). However, this change in velocity leads to a small change
in pressure at the cavity radius from which it is concluded that a formulation for the
azimuthal velocity of a non-cavitating vortex can also be used to find the relation
between cavity size and pressure. We will use here the Burnham–Hallock model
(Burnham & Hallock 1982) due its simple formulation for the pressure variation. The
azimuthal velocity at radius r for a vortex with viscous core radius rv is given by

V = Γ

2π

r
r2
v + r2

. (2.8)

The kinematic boundary condition for f = r− η is given by

Df
Dt
= ∂f
∂t
+ (U +∇ϕ̃) · ∇f = 0. (2.9)

Only the linear terms of the perturbations in potential and cavity radius will be
retained, which implies that the equation contains only the perturbation velocity in
the radial direction and the derivative of the η perturbation in time, axial direction
and azimuthal direction:

φ̂ krH1′
n (krrc)−

(
−iω+Wikx + Vc

in
rc

)
r̂= 0, (2.10)
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where the prime again denotes the derivative to r and Vc is the mean azimuthal
velocity at the cavity interface r= rc.

The dynamic boundary condition states that the pressure at the cavity interface has
to be equal to the vapour pressure. For potential flow, the Bernoulli equation can be
used as done in Thomson (1880) and Morozov (1974). Here, we will start from the
radial momentum equation to investigate if a viscous vortex solution can be applied.
The radial momentum equation is given by

− 1
ρ

∂p
∂r
= ∂

∂t
∂ϕ̃

∂r
+ (U +∇ϕ̃) · ∇ ∂ϕ̃

∂r
−

(
V + ∂ϕ̃

r∂θ

)2

r
. (2.11)

If we take only the linear terms into account, the equation reads:

− 1
ρ

∂p
∂r
= ∂

∂t
∂ϕ̃

∂r
+W

∂

∂x
∂ϕ̃

∂r
+ V

∂

r∂θ
∂ϕ̃

∂r
− V2

r
− 2V

r
∂ϕ̃

r∂θ
. (2.12)

The first two terms on the right-hand side can be directly integrated. The third and
fifth terms on the right-hand side can only be integrated if a potential flow solution is
assumed for V , but these terms vanish for the mode n=0 as the azimuthal disturbance
velocity equals zero for this mode. The fourth term can be integrated using either (2.7)
or (2.8) for the azimuthal velocity. The integration for this fourth term using (2.8)
gives for the pressure in the liquid at the cavity interface r= η:

pv − pT + 1
2
ρ

(
Γ

2π

)2 1
(r2
v + η2)

= p∞, (2.13)

where pv corresponds to the vapour pressure, pT to the contribution of surface tension
and p∞ to the free stream pressure in absence of the vortex. Assuming a small
amplitude r̃ with respect to rc, the equation can be written as

pv − pT + 1
2
ρ

(
Γ

2π

)2 1
(r2
v + r2

c)
− ρ
(
Γ

2π

)2 r̃rc

(r2
v + r2

c)
2
= p∞. (2.14)

The contribution due to surface tension T at r= η is given by:

pT = T
(
∂2

∂x2
+ ∂2

∂r2
+ 1

r
∂

∂r
+ 1

r2

∂2

∂θ 2

)
(r− [rc + r̃])

= T
(

k2
x +

1
η2

n2

)
r̃+ T

1
η

= T
rc

[
1+ (n2 + k2

xr2
c − 1)

r̃
rc

]
, (2.15)

where again a linearisation has been applied for the perturbation of the cavity radius.
For the situation with zero perturbation, the difference in pressure between the free
stream and at the mean cavity radius due to the mean azimuthal velocity is

p∞ − pc = 1
2
ρ

(
Γ

2π

)2 1
(r2
v + r2

c)
, (2.16)
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with the pressure at the cavity interface given by

pv − T
rc
− pc = 0. (2.17)

The contribution of the term containing r̃ in (2.14), referred to as p̃c,4, with subscript
4 referring to the fourth term in (2.14), can be written as:

p̃c,4 = ρ
(
Γ

2π

)2 r̃rc

(r2
v + r2

c)
2
= ρV2

c
r̃
rc
. (2.18)

This relation between p̃c,4 and Vc derived for the Burnham–Hallock vortex model is
identical to that for a vortex in potential flow given by (2.7), and it will be assumed
in the following that this relation is generally valid and can also be used for viscous
vortex formulations different from the Burnham–Hallock model.

The sum of all terms in (2.12) containing perturbations to the pressure should be
equal to zero, which gives

T
rc
(n2 + k2

xr2
c − 1)

r̃
rc
− ρV2

c
r̃
rc
+ iρ

(
kxW + Vcn

rc
−ω

)
ϕ̃ = 0. (2.19)

Combining the kinematic boundary condition (2.10) and the dynamic boundary
condition (2.19) leads to the dispersion relation:

ω1,2 =Wkx +Ω
[

n±
√
−krrcH1′

n (krrc)

H1
n(krrc)

Tω

]
, (2.20)

in which Ω = Vc/rc and Tω includes the contribution of the surface tension:

Tω =
√

1+ T
ρrcV2

c

(n2 + k2
xr2

c − 1). (2.21)

Each vibration mode contains two frequencies corresponding to the plus and minus
sign on the right-hand side of (2.20). This sign is also used in the following for
the identification of the mode. The contribution of the surface tension will not be
discussed further as its influence is very small for the case considered. As both
frequencies are real numbers the perturbations are neutrally stable. If the axial
velocity W is small with respect to the speed of sound, the criterion for a sound
wave to occur is that the radial wavenumber squared, defined by (2.4), is larger than
zero. This results in the condition ∣∣∣cp,x

c

∣∣∣= ∣∣∣∣ k
kx

∣∣∣∣> 1, (2.22)

where cp,x = ω/kx corresponds to the axial phase velocity and k corresponds to the
acoustic wavenumber in the fluid, k=ω/c.

For small axial phase velocities or low frequencies the radial wavenumber becomes
imaginary and the Hankel function reduces to a modified Bessel function of the
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FIGURE 2. Dispersion relation for the two ± branches of the three modes described by
(2.20). Condition; Ω = 2.0× 103 rad s−1, W = 6.3 m s−1 and rc = 2.3 mm.

second kind K. The wave in the radial direction now becomes an evanescent wave
as k2

r
∼=−k2

x . The dispersion relation for low frequencies is then given by

ω1,2 =Wkx +Ω
[

n±
√
−kxrcK1

n
′
(kxrc)

K1
n(kxrc)

]
, (2.23)

with the non-dimensional form given by

ω̄1,2 = ω1,2rc

W
= κ + Vc

W

n±
√
−κKn

′(κ)
Kn(κ)

 , (2.24)

in which a non-dimensional wavenumber κ= kxrc
∼= i krrc has been introduced. For low

frequencies and small axial velocities, the value of the radial wavenumber becomes
approximately equal to the axial wavenumber. An example of the dispersion relation
of (2.20) is given in figure 2.

In the present formulation only outgoing waves are considered while reflections
from, for instance, the wall of the test-section of the cavitation tunnel may also be
present. The potential at the tunnel walls can be computed from (2.5) while assuming
an evanescent wave. A typical value of the smallest relevant wavenumber on the tip
vortex cavity from figure 2 and as found in the experiment is kx= ikr=0.04 rad mm−1.
The walls of the tunnel used for the experiment are at a distance r= 0.15 m from the
tip vortex cavity. This results in a value of krr= 6 which shows that the influence of
the tunnel walls on the dispersion relation can be neglected.

The azimuthal velocity at the cavity interface can be derived from the pressure
difference. Neglecting surface tension, the formulation for the potential flow vortex
gives:

Vc

W
=
√

p∞ − pv
1
2ρW2 =

√
σ . (2.25)
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For a viscous flow vortex, the analytical formulation for the azimuthal velocity
distribution of a 2-D cavitating vortex is given in Bosschers (2015). The formulation
can be interpreted as a cavitating Lamb–Oseen vortex and reads:

V = Γ

2πr

{
1− β exp

[
−ζ (r

2 − r2
c)

r2
v

]}
, (2.26)

with β defined by

β = r2
v

r2
v + ζ r2

c

, (2.27)

and where ζ is a constant (ζ = 1.2564) defined such that the maximum azimuthal
velocity for a non-cavitating vortex occurs on the radius of the viscous core of the
non-cavitating vortex, rv.

The formulation has been derived using the appropriate jump relations for the
stresses at the cavity interface which gives a shear stress in the liquid at the cavity
interface that is approximately zero. The condition of zero shear stress results in
a small region of solid-body rotation near the cavity. The present formulation is
different from the Gaussian vortex formulations proposed by Choi & Ceccio (2007)
and Choi et al. (2009) who introduce an additional parameter that describes the
azimuthal velocity at the cavity interface. The formulation for the azimuthal velocity
of the cavitating vortex still needs to be validated by detailed flow field measurements.

The equation can be used to derive an analytical expression for the pressure, which
is a function of the same parameters. This formulation for the pressure at the cavity
radius replaces (2.25) and reads

σ = p∞ − pv
1
2ρW2

= Γ 2

2(πWrc)2



1
2
− βe−ζ r2

c/r
2
v + β

2

2
e−2ζ r2

c/r
2
v

+ βζ r2
c

r2
v

E1(ζ r2
c/r

2
v)

−β
2ζ r2

c

r2
v

E1(2ζ r2
c/r

2
v)


. (2.28)

with E1 the exponential integral. The azimuthal velocity at the cavity radius now
corresponds to

Vc = Γ

2πrc

{
ζ r2

c

r2
v + ζ r2

c

}
. (2.29)

This azimuthal velocity can be used in (2.20) and (2.23). It is recognised that the
disturbance in the flow due to the cavity deformations is given by a potential flow
solution, which is not consistent with the use of a viscous mean flow solution for
the kinematic and dynamic boundary conditions. However, as discussed before, the
contribution of the azimuthal velocity component to the free stream velocity U is
expected to lead to small changes to the disturbance potential, which suggests that the
use of a viscous vortex solution instead of a potential flow vortex solution will also
lead to small changes to the disturbance potential. The use of a viscous flow solution
for Vc in the kinematic and dynamic boundary condition leading to (2.20) and (2.23)
is only allowed for n= 0 and when the Burnham–Hallock vortex is used. Nevertheless,
we here assume that a generic viscous flow solution can be used for all values of n.

The azimuthal velocity of a non-cavitating and cavitating vortex is given in figure 3.
The potential flow formulation corresponds to (2.7) and the viscous flow formulation
corresponds to (2.26). The velocities are obtained using a single value of Γ and rv.



296 P. C. Pennings, J. Bosschers, J. Westerweel and T. J. C. van Terwisga

10

2

4

6

8

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

FIGURE 3. Velocity distribution of a potential flow vortex, Lamb–Oseen vortex and three
cavitating Lamb–Oseen vortices for Γ = 0.1 m2 s−1 and rv = 2 mm.

3. Experimental set-up
The experimental facility is the cavitation tunnel in the Laboratory for Ship

Hydrodynamics at Delft University of Technology. A detailed description of the
tunnel is given by Foeth (2008), while the recent modifications are described by
Zverkhovskyi (2014).

The maximum free stream tunnel velocity U∞ is 7 m s−1, which is approximately
the velocity used in the results presented here. The cross section is 0.30× 0.30 m2 at
the inlet, but changes downstream in vertical direction to 0.30× 0.32 m2 at the outlet
to compensate for boundary layer growth, so that there is no streamwise pressure
gradient in the test section. A sketch of the set-up is given in figure 4. The coordinate
system with the wing tip at the origin is defined with x pointing in the streamwise
direction. The top plane (xz) includes the elliptic wing planform with z in the spanwise
direction, positive from root to tip. Illumination in the side plane (xy) is partly blocked
by the wing mount in the tunnel. The lift direction y is vertically downward.

Tip vortex cavitation is generated by a half-model wing of elliptic planform with
an aspect ratio of 3 and a NACA 662–415 cross section with a= 0.8 mean line. The
trailing edge was truncated at a thickness of 0.3 mm due to manufacturing limitations.
The chord length after truncation is 0.1256 m. The wing has a half span of 0.150 m,
so that the tip is positioned in the centre of the test section. The wing is mounted
with the spanwise direction horizontally, with the suction side pointed downward, on
the side window of the test section on a disk containing a six-component force/torque
sensor (ATI SI-330-30).

The water temperature is measured with a PT-100 sensor placed in a quiescent
corner outside the main flow downstream of the test section. A digital pressure
transmitter (Keller PAA 33X) mounted in the throat of the contraction upstream of
the test section gives the absolute pressure near the wing at a data acquisition rate
of 10 Hz. The free stream tunnel velocity is determined from the pressure drop over
the contraction measured with a differential pressure sensor (Validyne DP 15) with
a number 36 membrane. Both the values of the absolute pressure sensor and the
velocity based on the pressure drop are corrected with a reference measurement using
a pitot tube, in an empty test section at the location of the wing.

The dissolved oxygen concentration (DO) was used as a measure of the amount
of dissolved gas in the water. A fluorescence-based optical sensor (RDO Pro) was
placed in a sample of water taken from the tunnel at the start and end of each
day. The typical accuracy of the sensor is 0.1 mg l−1, but due to fluctuations in
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FIGURE 4. Experimental configuration (not to scale) in the cavitation tunnel with tip
vortex cavity A, hydrophone B, disk C holding elliptic planform wing D and high-speed
cameras E: (a) top view, (b) side view.

concentration in the tunnel, 0.5 mg l−1 is the smallest practical division. As only
dissolved oxygen is measured this is taken as a representative indicator for the total
amount of dissolved gas.

A hydrophone (Brüel & Kjær type 8103) and a measurement amplifier (Brüel &
Kjær type 2606) were used to measure the radiated sound. The hydrophone was inside
a water-filled cup mounted on the window opposite the wing at the vertical position of
the tip and the streamwise position of the trailing edge. All sensors were sampled at a
rate of 40 kHz which is well above the 1.5 kHz upper limit of the relevant frequency
range.

Two high-speed cameras (LaVision Imager Pro HS) in combination with two
backlight LED panels gave a shadowgraphy image of the tip vortex cavity at
5 × 103 f.p.s. The total recording time, limited by the camera memory, was six
seconds. The top view xz-plane camera is equipped with a Nikon AF Nikkor 35 mm
objective at a f -stop value of 2 with an approximate object focal-plane distance of
0.50 m. The disk holding the wing blocks part of the field of view of the side view
xy-plane camera. Consequently a 55 mm Micro-Nikkor set to f -stop of 2.8 is used
at a object focal-plane distance of 0.57 m.

Edge detection of the tip vortex cavity is based on gradients in light intensity in the
image. A Canny (1986) edge detection method was used with a relative gray value
intensity threshold of 0.1 and a filter size of 1.0. Units and detailed description of
these parameters can be found in Canny (1986). In the xz-plane the tip of the wing is
in the field of view and is used to define the origin. As contrast is needed to detect
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the cavity edge the detected range is between x/c0= 0.19 to x/c0= 2.48 downstream
of the tip resulting in an equivalent pixel size of 0.16 mm in the object domain. The
edge of the disk holding the wing in the xy-plane is taken as y= 0. The cavity extent
is between x/c0= 1.12 and x/c0= 2.60 downstream of the tip with an equivalent pixel
size of 0.10 mm in the object domain. The overlap area between both views where
3-D diameter and location information is available spans 1.35 c0.

The pixelization of the diameter and location data are removed by using a fourth
order Chebyshev type II low-pass filter. The cut-off frequency was set to half the
Nyquist frequency in both cases. The spatial Nyquist frequency is 20 rad mm−1 in
the xz-plane and 32 rad mm−1 in the xy-plane. The low-pass filters were applied in
forward and reverse direction to prevent phase shift and to double the effective filter
order.

4. Results
The results are presented as follows. First the sensitivity of the mean cavity

diameter to dissolved gas and free stream velocity fluctuations is discussed. Second,
an overview is given of diameter oscillations in the time domain combined with a
description of the stationary cavity geometry. Third, a frequency–wavenumber diagram
is generated to validate the analytical model for the dispersion relation. Fourth, a
comparison is made between sound, wing forces and cavity oscillations. Finally, the
frequency of the peak in the cavity diameter spectrum is compared to the frequency
of the zero group velocity criterion that can be derived from the analytical dispersion
relation and a comparison is made to the data of the ‘singing’ vortex as given in
Maines & Arndt (1997).

4.1. Dissolved oxygen concentration
In the dispersion relation for the vortex cavity the pressure inside the cavity is
assumed to be equal to the vapour pressure. Preparations for the test conditions
where a steady tip vortex cavity is present can take typically 5 min or more
during which the tunnel is in operation. Therefore there is sufficient opportunity
for dissolved non-condensable gas to diffuse into the cavity. Figure 5 is the result
of a sensitivity study to show the importance of a low dissolved gas concentration
to obtain reproducible results. For concentrations below 3.8 mg l−1, the results show
acceptably similar values for cavitation numbers above 1.3.

For a cavitation number of 1.1 the standard deviation in core diameter for
concentrations of 3.2–3.8 mg l−1 is larger than for lower concentrations. The general
increase in standard deviation is due to the change of the cavity from a cylindrical
shape into a twisted ribbon-like cavity shape as shown in figure 6. At concentrations
above 4.0 mg l−1 an increase in standard deviation is found for cavitation numbers
below 2.2.

The results based on a potential flow vortex give an upper limit to the cavity size as
this vortex provides an overestimation of the azimuthal velocity, resulting in a lower
pressure and thus a larger cavity. The cavitating Lamb–Oseen model takes the viscous
core into account, which reduces the azimuthal velocity and gives a smaller estimate
for the diameter, which compares reasonably with the spread in the experimental data.

In the current experiment, the drive system of the cavitation tunnel was run at
a constant rotation rate of 700 revolutions min−1. Because of an unidentified flow
instability in the tunnel, there are large-scale non-periodic velocity excursions as high
as 10 % of the mean. Within the six-second measurement time used, the standard
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FIGURE 5. Mean cavity diameter in the xz-plane as a function of the cavitation number
for a lift coefficient of CL = 0.58 and a Reynolds number based on the wing-root chord
of Re = 9 × 105. Data points are grouped according to dissolved oxygen concentration.
The vertical error bars are the streamwise variation of the time-averaged cavity diameter,
which is an indication of the size of the stationary wave amplitude as seen in figure 6.
The horizontal error bars denote the variation in cavitation number. The model vortex lines
represent the result of (2.25) for a potential flow vortex and (2.28) for a cavitating Lamb–
Oseen vortex using Γ = 0.10 m2 s−1 and rv = 1.7 mm.

(a)

(b)

(c)

FIGURE 6. Combination of vortex cavity images in xz-plane on top and xy-plane on the
bottom of each image. Flow is from left to right with the elliptical black object the
pressure side of the wing. (a) Conditions; CL = 0.58, σ = 0.87, Re= 9.1× 105 and DO=
2.7 mg l−1. (b) Conditions; CL = 0.58, σ = 1.55, Re = 9.1 × 105 and DO = 4.4 mg l−1.
(c) Conditions; CL = 0.46, σ = 1.07, Re= 8.9× 105 and DO= 2.7 mg l−1.
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deviation of the velocity in each measurement remained below 5 % with a typical
value of 2.5 %. As the fluctuations are not periodic, the time for the flow to meet
this condition can vary between measurements. A period with low standard deviation
was selected by monitoring the tunnel velocity in real time. The consequence of this
approach is a difference between measurements in the time for which the cavity is
exposed to over-saturated water.

Long exposure times of the tip vortex cavity to over-saturated water and excursions
to lower pressures due to higher free stream velocities promote diffusion of gas into
the cavity. This increases the mean cavity diameter and promotes the appearance of
a stationary wave for higher cavitation numbers. This is expected to be the cause for
the decrease in cavity diameter between σ = 1.6 and σ = 1.4 for dissolved oxygen
concentrations above 4.0 mg l−1 as seen in figure 5.

4.2. Cavity dynamics in time and frequency domain
For the detailed evaluation of the cavity dynamics a single condition is selected
corresponding to figure 6(b). Out of seven cases with significant volume variations,
this case shows the largest indication for a cavity eigenfrequency. In this case the
dissolved gas in the water is highly over-saturated. For later comparison, the condition
of figure 6(c) is used. This is at the minimum dissolved gas concentration possible
in the cavitation tunnel.

The temporal cavity diameter oscillations are expected to be a combination of the
n=0± and n=2± modes as presented in figure 1. As two separate views are available,
the identification has to be made by combining both views. Figure 7 shows a colour
coded tip vortex cavity diameter for the xz-plane in the top figure and xy-plane in the
bottom figure over a time span of 0.2 s.

As is already evident from figure 6(b), both views in figure 7 show stationary wave
patterns for the two cameras with 180◦ phase difference. This could be interpreted as
a cavity with an elliptical shape with the axes rotating in the downstream direction.
From a single view this shape is similar to a standing wave, but as the frequency
of oscillation is zero it is actually a stationary wave. To guide the eye a black line
is drawn with a slope corresponding to a velocity 19 % higher than the free stream
velocity U∞. This value results from the analysis of figure 10(a). The peak values
of diameter seem to be convected with a velocity close to this value. The increase
in axial velocity with respect to the free stream velocity near the core is due to the
favorable pressure gradient generated by the roll-up of the wing vorticity increasing
tip vortex circulation. High CL and small rc values give increased axial velocities.

The graphs on the right of figure 7 are averages over the whole spatial domain
and present the variation of the spatial mean diameter in time. The general trend over
0.2 s shows that there are low-frequency changes in mean diameter that might be due
to changes in free stream velocity, which are of the same time scale. The phase angle
between the two planes of the averaged cavity diameter in space is approximately
zero.

The dominant stationary wave pattern present on the cavity has a direct relation
with the diameter. The values for the maximum cavity diameter and the stationary
wavelength are compared in figure 8 with data of Maines & Arndt (1997). In this
figure the filled symbols are the current results using the maximum of the time
averaged cavity diameter. The general trend is the same for both studies.

A frequency analysis of the diameter variations in time as seen in the xz-plane
was performed and the results are presented in figure 9 as a function of streamwise
distance. As mentioned before this case was specifically selected due to the presence
of a tonal frequency component at 170 Hz, which can clearly be detected in the graph.
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FIGURE 7. Variation of cavity diameter in time and space in the xz-plane on (a) and
xy-plane on (c), black line indicates convection at 1.19 U∞. The graph in (b) is the time
averaged diameter with the blue line corresponding to the xz-plane and the red line to the
xy-plane. The graphs on the right are the spatial averages. Conditions of figure 6(b).
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FIGURE 8. Comparison of the wavelength of the stationary cavity shape with maximum
cavity diameter, data from Maines & Arndt (1997) at SAFL and Obernach is presented
by open symbols and of the present study by filled symbols.
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FIGURE 9. Amplitude spectrum of cavity diameter variations. Conditions of figure 6(b).
The horizontal line corresponds to a high amplitude narrow band frequency component at
170 Hz.

The variation of the diameter amplitude in streamwise direction is smallest close to
the tip. Further downstream, the amplitude of the fluctuations increases over a broad
frequency range between 0 and 200 Hz. At very low frequencies the contribution of
the stationary cavity shape is very large as indicated by the red patches.

4.3. Cavity dynamics in wavenumber–frequency domain
Information about the three wave modes comes from the relation between the
wavenumber and the frequency of the oscillation which can be obtained from a
2-D fast Fourier transform (FFT) of the high-speed video observations. The n = 0
and n = 2 modes are related to diameter variations while the n = 1 mode is based
on motion of the centreline. The n = 0 and n = 2 modes can be distinguished by
the phase difference of the observations in the xz-plane and the observations in the
xy-plane, corresponding to 0◦ and 180◦, respectively. The diameter data from the
xz-plane is analysed as it captures the largest streamwise variation, hence it provides
the highest resolution in wavenumber. The result is given in figure 10(a).

Features in the amplitude spectrum and phase spectrum of figure 10 can be
understood using the observations of the previous figures. The amplitude of the
background disturbance is around 10−5 mm while the significant features have an
amplitude of 10−2 mm. The main feature can be represented by a straight line
indicated by the dashed line and cannot directly be related to the dispersion relation
of (2.20). The slope of the line is the group velocity ∂ω/∂kx. In this case the group
velocity is constant and is 19 % faster than the free stream velocity as also observed
in figure 7. This can be interpreted as small perturbations present on the cavity
which are directly related to disturbances in the free stream. These disturbances are
not included in the theoretical model. The faint lines with equal slope are harmonics
of this contribution and are the result of the FFT of a signal that is not perfectly
sinusoidal. Another notable feature of the line is the location where it crosses the zero
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FIGURE 10. Wavenumber–frequency amplitude (a) and phase spectrum (b) at the
condition of figure 6(b). Included are the lines for the breathing n= 0± and helical n= 2−
modes and a line for constant group velocity that is 19 % larger than the tunnel free
stream velocity. Derived quantities; Ω = 2.0 × 103 rad s−1, rc = 2.3 mm, rv = 1.9 mm
and Γ = 0.10 m2 s−1.

frequency axis, at approximately 0.2 rad mm−1. This corresponds to the dominant
stationary wave pattern seen in figure 7 and is used for figure 8.

Two other features that are high in amplitude do not correspond to free stream
convection. To understand these contributions the lines of the n= 0− and the n= 2−

modes of the dispersion relation of (2.20) are matched to the features to obtain the
core angular velocity Ω using the mean value for rc. The positive counterparts of
these modes, which can be seen in figure 2, are only shown when present inside
the wavenumber–frequency range of the experimental results. The n = 2+ mode is
therefore not considered at all. From the values of Ω at different cavitation numbers,
the local tip vortex circulation and viscous core size can be obtained using a least-
squares fit using (2.29). The results are given in the captions and the validity of these
numbers will be discussed later.
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FIGURE 11. Wavenumber–frequency amplitude of centreline fluctuations at the condition
of figure 6(b) on (a) and at the condition of figure 6(c) on (b). Included are the lines for
the serpentine n= 1± and a line for constant group velocity that is 14 % and 12 % larger
than the tunnel free stream velocity.

The n = 0− mode follows the feature that crosses the zero-frequency line at the
wavenumber of 0.4 rad mm−1. The dash-dotted line is the n = 2− mode, which is
the second to top feature. These modes can be distinguished by the phase difference
in diameter between the xz-plane and the xy-plane. The data on the xz-plane is
interpolated onto the xy-plane in the area of overlap. The phase difference in the
frequency domain between these planes is presented in figure 10(b).

Here the same features as in figure 10(a) can be identified. The convection
contribution has a clear 180◦ phase difference that can be related to the stationary
wave geometry of figure 7. Any other waves superimposed on this do not have high
enough amplitude to offset this basis. The harmonics in figure 10(a) of this line are
present at zero phase difference. These features, with a slope equal to the convection
line, are thus clearly disturbances related to the free stream flow.

The feature below this line has a clear zero degree phase difference, which supports
that this is the n = 0− volume variation mode. The other feature, which has a 180◦
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phase difference, was matched to the n = 2− mode confirming the effect of the
rotation of an ellipsoidal cross section. The n = 0+ mode cannot be identified in
either figure 10(a) or 10(b). This could be due to a group velocity that is higher than
all other modes and little energy transfer takes place with other modes.

The displacement mode n = 1 is evaluated by analysis of the cavity centreline
fluctuations. The result is presented in figure 11(a). Here the contributions of
convection and its harmonics are dominant. The dashed line has a 14 % larger
velocity than the free stream velocity. The uncertainty of estimation of the slope of
the convection line is typically ±1 %. The high amplitudes near the origin are mainly
due to the mean curved trajectory of the centreline in the streamwise direction. The
line originating from here with a smaller slope than the convection line is matched
to the n = 1− line with the same value for Ω as figure 10(a). The n = 1+ mode is
not observed in the fluctuations of the centreline.

To determine whether the theoretical dispersion relation is able to predict differences
in experimental conditions a comparison to a case with values at the conditions of
figure 6(c) is made. This results in a smaller cavity diameter and different cavity
dynamics. The identification of the data and the plotted lines in figure 12 is similar
to figure 10.

The difference in the value for the convection velocity is related to the local
streamwise velocity near the vortex cavity. For a case without cavitation the axial
flow in the centre of a vortex core is higher than the free stream (Arndt & Keller
1992). The axial velocity decreases away from the vortex core to the undisturbed
free stream value. This results in a higher local axial velocity for a smaller diameter
vortex cavity in comparison to a larger diameter vortex cavity and thus a higher
convection velocity.

As the stationary wave pattern has a higher wavenumber due to a smaller cavity
diameter and thus a higher azimuthal velocity, the zero frequency crossing of the
dashed line is around 0.30 rad mm−1. The slope in this case is 12 % higher than the
free stream velocity. The theoretical dispersion relation is well able to account for the
differences in experimental conditions as seen from the match between the lines and
features in the spectrum. The n= 0+ mode is only observed in the phase difference
of figure 12(b).

The convection of the centreline disturbances with the free stream velocity is faint
in figure 11(b) and slower than the convection in figure 12(a). The amplitude around
the origin is more pronounced than in figure 11(a). The amplitude of these centreline
waves is small and thus difficult to analyse in the time domain. The fluctuations of
the free stream tunnel velocity occurs typically with a 5 s period which is far beyond
the time scale used in the present analysis.

The value for the cavity angular velocity that was obtained from the fit of the
dispersion relation of (2.20) to the experimental data depends on the value for the
axial velocity. The dispersion relations shown in figures 10(a) and 12(a) are obtained
by using the undisturbed free stream velocity but the influence of other choices has
also been investigated. Main conclusions from this sensitivity study are that the best
fit for n= 2− mode is obtained using the undisturbed free stream velocity while the
best fit for n= 0− mode is obtained using the fitted value for the convection velocity.
This results in a lower and upper estimate for the cavity angular velocity shown in
figure 13, which differ by approximately 10 %. Both fits give a better agreement than
the fits shown in figures 10(a) and 12(a).

This procedure was followed for 12 and 4 measurements at CL = 0.58 and 0.67
respectively, while varying the cavitation number, resulting in a range of cavity radii.



306 P. C. Pennings, J. Bosschers, J. Westerweel and T. J. C. van Terwisga

1.0

1.2

0

0.2

0.4

0.6

0.8

–0.8

–0.6

–0.4

–0.2

1.0

1.2

0

0.2

0.4

0.6

0.8

–0.8

–0.6

–0.4

–0.2

 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0

45

90

135

180

–5

–6

–4

–3

–2

Diameter
fluctuations

xz-plane
(log10(mm))

Diameter
phase

difference
(deg.)

(a)

(b)

FIGURE 12. Wavenumber–frequency amplitude (a) and phase spectrum (b) at the
condition of figure 6(c). Included are the lines for the breathing n= 0± and helical n= 2−
modes and a line for constant group velocity that is 21 % larger than the tunnel free stream
velocity. Derived quantities: Ω = 3.6× 103 rad s−1, rc = 1.1 mm.

The cavitating Lamb–Oseen vortex model of (2.29) was then used to find the values
for the vortex circulation and viscous core size. The local tip vortex circulation can be
related to the wing root circulation Γ0 = c0CLU∞/2 that can be analytically obtained
for a wing with elliptic loading distribution. The wing lift coefficient is defined as
CL = L/(ρU2

∞S)/2, where L is the lift force, with wing surface area S = 1.465 ×
10−2 m2. The viscous core size can be related to an equivalent turbulent boundary
layer thickness δ of a flat plate with a length equal to the chord of the wing root
c0. Here, δ = 0.37c0Re−0.2

c0
is used, similar to Astolfi, Fruman & Billard (1999). The

Reynolds number Re = U∞c0/ν is based on the wing root chord c0 and kinematic
viscosity ν. The values for Γ/Γ0 and rv/δ for each CL are given in table 1. The final
comparison of the experimental data and the data of the model using the values of
table 1 is shown in figure 13. For the determination of these two parameters only the
azimuthal velocity of the Lamb–Oseen vortex has been considered. No assumption is
made based on the pressure inside the cavity.



Dynamics of isolated vortex cavitation 307

1.0 1.5 2.0 2.5 3.0

5.0

2.0

3.0

4.0

FIGURE 13. Comparison between values of Ω obtained from matching the dispersion
relation of (2.20) to the experimental data and the model value lines using (2.29). Bars
represent the range between the lower and upper estimate of Ω . Conditions; CL =
0.67, rv = 1.7–1.8 mm, Γ = 0.12–0.13 m2 s−1 and CL = 0.58, rv = 1.7 mm, Γ =
0.10–0.11 m2 s−1.

CL 0.58 0.67
Γ/Γ0 0.44–0.47 0.47–0.49
rv/δ 0.58–0.56 0.61–0.58

TABLE 1. Derived tip vortex characteristics based on matching of dispersion relation of
(2.20) to the experimental data in figures 10(a)–12(b). The left and right value correspond
to the lower and upper estimate of Ω respectively.

Astolfi et al. (1999) found values of Γ/Γ0 = 0.5–0.6 and rv/δ = 0.8–1.0 at one
chord length downstream of the tip on comparable elliptic planform wings with NACA
16020 and NACA 0020 airfoil sections. The values for Γ/Γ0 are very close to the
expected range and those for rv/δ are slightly lower. The latter could be due to the
smaller airfoil thickness to chord ratio and the large laminar boundary layer extent for
which the presently used NACA 662–415 airfoil section was designed.

4.4. Sound measurements
Ten cases showed an indication of the presence of an eigenfrequency in the cavity
diameter variations. During the experiments no ‘singing’ vortex could be heard, in
contrast to experiments by others (Higuchi et al. 1989; Briançon-Marjollet & Merle
1997; Maines & Arndt 1997; Astolfi et al. 1998). The sound spectrum is presented
in figure 14 where a comparison is made with the spectrum of forces tangential and
normal to the chord line, the cavity diameter and centreline fluctuations.

The 170 Hz peak in the cavity-diameter spectrum does not correspond to any peaks
in the spectrum of the sound or force signals. From the bottom graph in figure 14
it is clear that the 170 Hz frequency component is not present in the centreline
fluctuations.

The peaks in the spectrum at 220 Hz for the tangential force and at 150 Hz for
the normal force are the first two wing eigenfrequencies as determined by applying
an impulse load to the wing (under water at rest). This was done approximately 25
times to obtain reliable estimates of the eigenfrequencies.
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FIGURE 14. Listed from top to bottom a comparison between power density spectra
of the sound signal, the force tangential to the wing chord, the force normal to the
wing chord, cavity diameter fluctuations and cavity centreline fluctuations. Reference
value is 10−12 Pa2 Hz−1, 10−12 N2 Hz−1 and 10−12 mm2 Hz−1 respectively. Condition of
figure 6(b).

Several other peaks in the spectra are attributed to the experimental set-up. At
47 Hz the first blade rate harmonic of the four bladed tunnel drive impeller arises
with a second harmonic at 94 Hz that are picked up in the sound spectrum, by the
force sensor on the wing and by the cavity centreline. At 50 Hz electronic noise
from the power supply is picked up. At 300 Hz a more broadband signal caused
by cavitation of the tunnel drive impeller is observed. The sound measured in the
tunnel without the hydrofoil increases by approximately 30 dB around 300 Hz when
increasing the tunnel drive rotation rate from 400 to 700 revolutions min−1. The
sound can be identified as cavitation noise by listening at a position close to the
tunnel impeller.

The high-amplitude narrow-band frequency component of the cavity diameter
fluctuations could not be related to any part of the experimental set-up. It also
changes in frequency with cavity size and vortex strength. It is thus likely that it is
the cavity resonance frequency for volume variations that is not sufficiently excited
to be detected by the hydrophone with the present tunnel background noise.
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4.5. Cavity resonance frequency
Maines & Arndt (1997) described that the frequency of a ‘singing’ vortex correlated
well with the fluctuations in length of a small cavity sheet but only when the
vortex cavity was connected to the tip of the wing. In the current study, the tip
vortex cavity was always connected to the wing but was very stable and showed no
periodic oscillation to a casual observer. Although no tip instability and no ‘singing’
vortex sound was observed, figure 14 does show a strong narrow-band component in
diameter variations.

The current hypothesis is that a tip vortex cavity has a certain resonance frequency.
It can be excited by forcing of deformations with a matching frequency and
wavelength resulting in audible sound emission. For the forcing to have a matching
characteristic frequency some feedback mechanism should be present. The oscillations
of the sheet cavity at the tip generates waves on the vortex cavity that in turn impose
the frequency of oscillation on the sheet. This condition requires waves to travel
upstream, thus having a negative phase velocity ω/k.

For a strong cavity-wave amplification to occur, wave energy should be contained in
space. In the dispersion relation of the n= 0− mode there exists a criterion at which
the velocity of wave energy is zero. This criterion can be identified best in figure 12(a)
where the slope of this line becomes zero. At this criterion the frequency is negative,
thus resulting in a negative phase velocity. The convection line intersects the n= 0−

line at this criterion. The convection velocity is always positive and is thus a potential
source for wave energy to be transferred to the n= 0− mode.

The cavity-diameter spectrum of figure 14 shows that a narrow-band peak is present
with a centre frequency of approximately 170 Hz that coincides precisely with the
zero group velocity criterion in figure 10(a). The centre frequency of the peak in
the diameter spectrum is determined for 10 conditions varying in cavitation number
and lift coefficient. The result for CL = 0.58 is plotted in figure 15 together with
‘singing’ vortex data from Maines & Arndt (1997), which were obtained using sound
measurements. The lines are based on the dispersion relation model of (2.20) using
a potential-flow vortex and the Lamb–Oseen vortex to relate the cavity radius to the
cavitation number, similar to Bosschers (2009). The effect of these two models on the
relation between the cavitation number and cavity radius was also shown in figure 5.

The potential flow vortex model is acceptable for large cavities, but for small
cavities it is essential to include the effect of viscosity for a correct description of
the cavity eigenfrequency. This is the main reason why the filled data points do
not overlap with the ‘singing’ vortex cases represented by the open symbols. The
Reynolds number Re is lower in the present study than the Obernach cases and for an
equal Re the wing root chord in the present study is larger than the SAFL cases. Both
result in lower cavity rotational frequency Ω giving a lower cavity eigenfrequency.
The model lines for the present study cases are based on the values in table 1. For
the Obernach cases an estimate of Γ was made using the same ratio for Γ/Γ0 as
found in the present study. The value for the viscous core size was estimated based
on the best description of the ‘singing’ vortex frequencies.

Although the description of Ω by the cavitating Lamb–Oseen model is reasonable,
as shown in figure 13, there is still an overestimation of the cavity radius with respect
to cavitation number as seen in figure 5. The correct modelling of the velocity field
around a tip vortex cavity and estimation of the cavity size require improvement which
is outside the scope of this paper.
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√
σ between the

data from Maines & Arndt (1997) at SAFL and Obernach in the open symbols and
the current results in the filled symbols. The lines are based on the zero group velocity
criterion of the n = 0− mode of (2.20) using either the potential flow vortex or the
cavitating Lamb–Oseen vortex. Model quantities Obernach data; rv = 1.2 mm and Γ =
0.20 m2 s−1. Model quantities present study; rv = 1.7 mm and Γ = 0.10 m2 s−1. For
consistency with the dimensionless frequency the results of the lower estimate of Ω in
table 1 are used for the model lines.

5. Discussion

The wing geometry used in the study by Maines & Arndt (1997) was used here to
study tonal sound emission. As no ‘singing’ vortex was observed four possible causes
were identified that differ between the experiments; dissolved gas, viscous effects on
the vortex, wing trailing edge geometry and the boundary layer state.

As mentioned in § 4.1 the dissolved gas concentration can affect the mean
cavity diameter, which in turn changes the parameters for the cavity deformation
dynamics. Unfortunately for some of the experiments a sufficiently low dissolved gas
concentration is not possible which implies that a single cavitation number may give
different mean cavity diameters as seen in figure 5. The in-gassing only results in a
altered pressure difference over the interface thus a bigger cavity and lower angular
velocity. This effect is similar to decreasing the free stream pressure or cavitation
number of which the influence has been investigated. Because the only relevant vortex
parameters in the dispersion relation are the cavity diameter and the cavity angular
velocity, the dissolved gas content is not considered to as a plausible cause for the
absence of ‘singing’.

The experiments in the present study were comparable in size to the Obernach
tunnel and in Reynolds number to the experiments in the SAFL tunnel (Maines &
Arndt 1997). The consequence of a lower maximum free stream velocity in the Delft
facility is that the tunnel free stream pressure needs to be lowered to obtain an equal
cavitation number. Without a dedicated degassing system the gas saturation in the
water is higher in the present study. A comparison at equal Reynolds number can
only be made between cases with different wing size. The larger wing chord and lower
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velocity in the present study both contribute to a lower cavity angular velocity, thereby
lowering the cavity resonance frequency.

Both the effect of a larger cavity due to gas diffusion into the cavity and the
increase of the viscous vortex core can influence the characteristic frequency of the
vortex cavity and the sheet cavity at the tip. A repeat test was performed in a different
facility to investigate the potential discrepancies. The wing geometry is identical to
the one used here but scaled-down to a 0.1125 m span. This was performed at
China Ship Scientific Research Center in Wuxi. Only sound measurements and
high-speed video observations were performed to be able to identify a ‘singing’
vortex. After a thorough tunnel degassing procedure without accurate measurement of
the dissolved gases, for CL= 0.4–0.6, Re= 0.6× 106–1.5× 106 and σ = 0.40–2.60 no
sound originating from a ‘singing’ vortex was observed. So both the dissolved gas
concentration and Reynolds number are not considered as the cause for the absence
of a ‘singing’ vortex.

In an early stage of the current experiment a choice was made for the truncation of
the trailing edge based on all available information. Unfortunately, the original wing
could not be retrieved from the facility in Obernach where part of the experiments of
Arndt & Keller (1992) and Maines & Arndt (1997) were performed. The blunt trailing
edge with square corners on the current wing is expected to completely eliminate any
flow instability near the tip and is thus considered responsible for the absence of a
‘singing’ vortex in the present experiments. Another potential cause for elimination of
the flow instability is the boundary layer state close to the tip. This could be due to
the absence of a laminar separation bubble possibly eliminated by surface-roughness
induced transition to turbulence.

6. Conclusions

Study of a tip vortex cavity generated by a wing of elliptic planform has provided
a fundamental understanding of the cavity interface dynamics. High-speed video
recordings from two directions have been used to compute wave number–frequency
spectra that clearly show different modes of the cavity diameter and centreline
deformations. An analytical model for the dispersion relation of disturbances on
an infinite cavitating vortex (Thomson 1880; Bosschers 2008) is matched to the
experimental data using values for vortex parameters that are similar to the values
found by Astolfi et al. (1999). The model describes the relation between wavenumber
and frequency over the entire range of experimental data very well. However, not
all features in the experimental data are part of the theoretical model such as the
stationary ellipsoidal shape of the cross section and the convection of propagations at
constant group velocity just above the tunnel free stream velocity.

In all cases with sufficient cavity size, 10 cases were found with a dominant
oscillation frequency of the cavity diameter. The value of these frequencies coincides
with the location in the dispersion diagram at which the group velocity of the n= 0−

mode is zero. This group velocity criterion also gives a good estimate for the ‘singing’
vortex frequencies found by Maines & Arndt (1997) for a wing of identical planform
and cross section. Despite the presence of a dominant oscillation frequency in the
diameter spectra, no cavity sound production was measured under any of the present
experimental conditions. It is concluded that a ‘singing’ vortex does not occur when
there is no strong excitation by a flow instability on the wing tip interacting with a
vapour cavity.
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