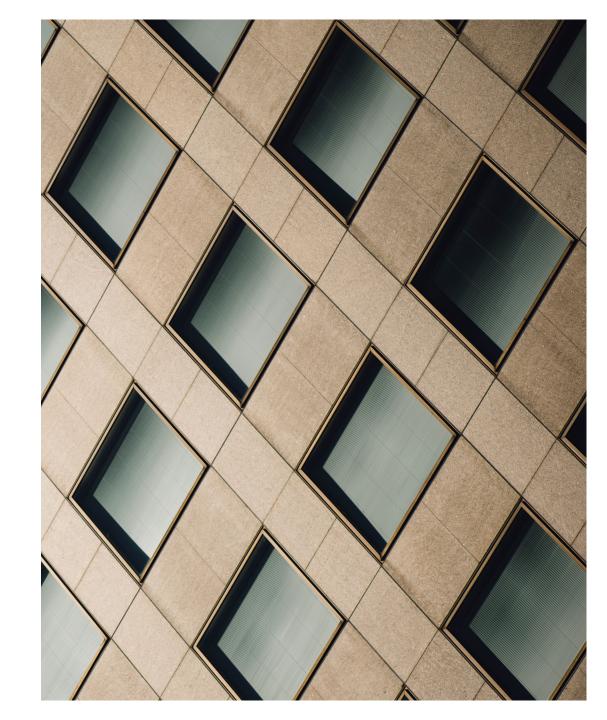
Digital Twin as Circularity Enabler of Façades in Maintenance

A Research into How A Digital Twin Can Facilitate the Circularity


Maintenance of Façades

Content

- > Introduction
- > Research Methods
- > Findings
- ➤ Conclusions and Recommendations
- Discussion

Part 1

Introduction

Introduction

- Design phase, construction phase and maintenance phase
- 75-80% of the total costs occur during maintenance
- Complex: Maintenance deals with a variety of people and information
- Maintenance affects:
 - Real estate value
 - Building safety
 - Sustainability: Building lifespan

Research Methods

Findings

Conclusion

Discussion

Introduction

- Design phase, construction phase and maintenance phase
- 75-80% of the total costs occur during maintenance
- Complex: Maintenance deals with a variety of people and information
- Maintenance affects:
 - Real estate value
 - Building safety
 - Sustainability: Building lifespan

Research Methods

Findings

Conclusion

Discussion

Linear Economy

Introduction

Research Methods

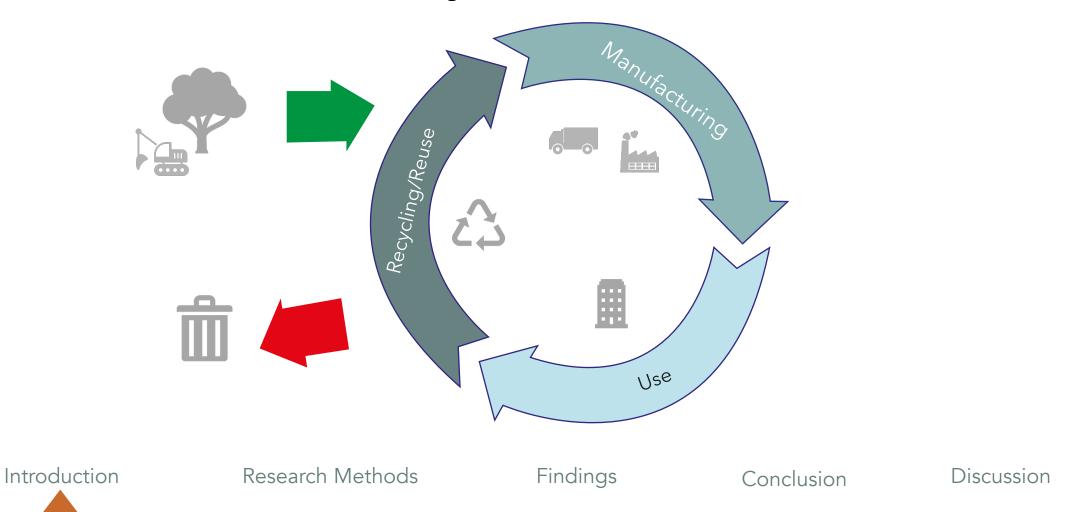
Findings

Conclusion

Discussion

Linear Economy

- 50% of all energy use
- 40% of all greenhouse gas emissions
- 50% of the materials going into the economy
- 30% of all water use


Research Methods

Findings

Conclusion

Discussion

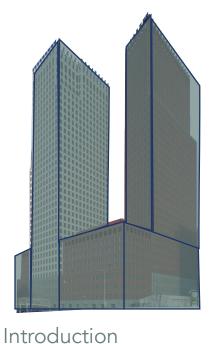
Circular Economy

In the **built environment**, the circular economy can be implemented on several levels:

- Site
- Structure
- Skin
- Services
- Space plan
- Stuff

(Brand, 1994)

Introduction


Research Methods

Findings

Conclusion

Discussion

In the **built environment**, the circular economy can be implemented on several levels:

- Site
- Structure
- Skin
- Services
- Space plan
- Stuff

(Brand, 1994)

Research Methods

Findings

Conclusion

Discussion

Circular skin or façades can stimulate the energy efficiency of a building in its use phase.

Also, it stimulates **resource efficiency** during construction, as less materials are necessary for production.

Circular façades are able to make an significant impact in both building phases

Introduction

Research Methods

Findings

Conclusion

Discussion

11

Adoption of circular façades in practice is infancy, why?

1) Low chance for reusability at end-of-life

2) Project complexity in circular projects due to a lack of information on condition quality

Introduction Research Methods Findings Conclusion Discussion

1) Low Chance for Reusability

Maintenance:

A façade is generally designed and **maintainted** for a lifetime of **30-50 years**

The façades' quality is **exposed the most** to external hazards

Practical:

Material choice and demountability

Introduction

Research Methods

Findings

Conclusion

Discussion

13

²5 | 6 July 2020

2) Project Complexity

During maintenance:

In- and outflow of large amount of data

- Components
- Technical specifications
 - Connections

is in need of management, digitization and automization

Poor tracking of condition quality

Introduction

Research Methods

Findings

Conclusion

Discussion

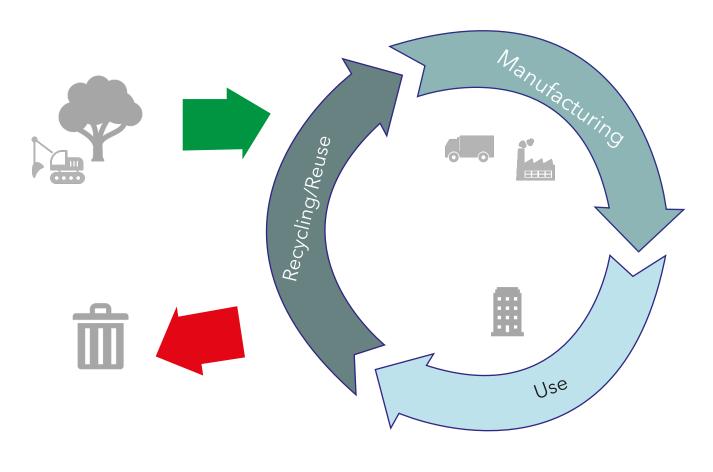
14

5 | 6 July 2020

Problem Statement

The problem is that the development of circular façades is still **infancy.**

The condition quality at end-of-life is low or uncertain. Due to errors in a **maintenance system** by **poor keeping track** of information.


Introduction

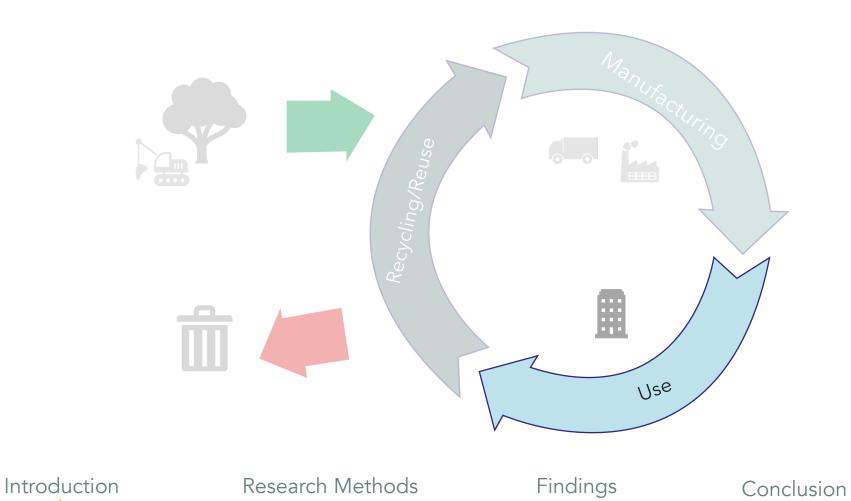
Research Methods

Findings

Conclusion

Discussion

Introduction


Research Methods

Findings

Conclusion

Discussion

²5 | 6 July 2020

P5 | 6 July 2020 17

Discussion

What is **necessary** to stimulate façade circularity?

1) As the façade is exposed the most to phycisal wear. Systematic **maintenance** is key in this situation.

2) **Digitization of** information on condition

Research Methods

Findings

Conclusion

Discussion

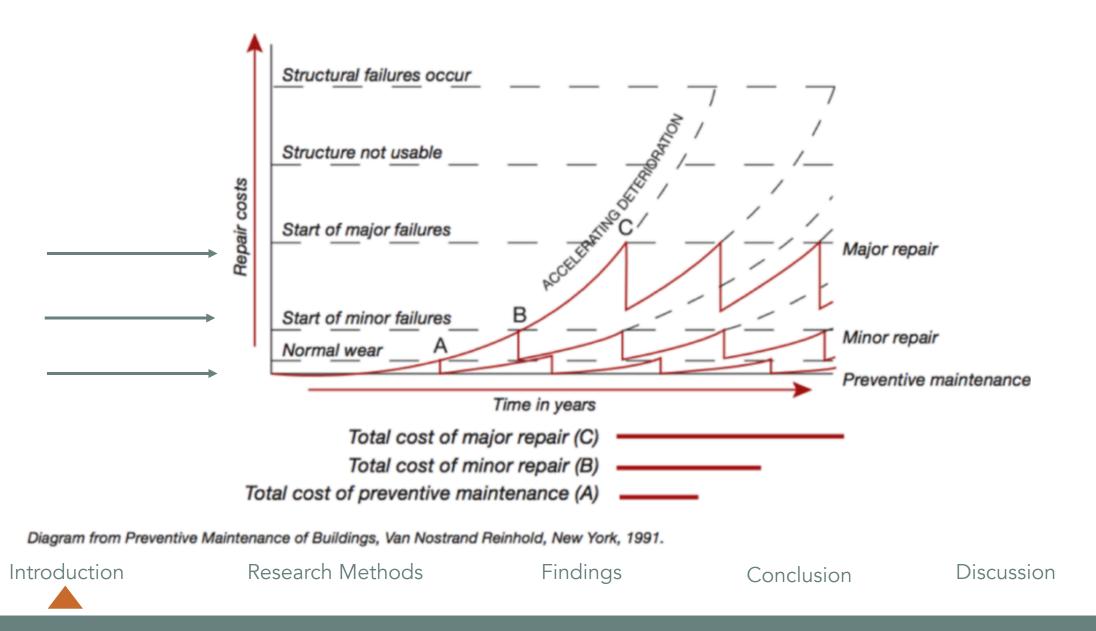
²5 | 6 July 2020 18

1) Circular maintenance

System which aims to extend the elements' lifecycle

By **timely** maintenance, repair and restoration, large renovations and restorations are **prevented**

Aiming to prepare a façade for a second life


Introduction

Research Methods

Findings

Conclusion

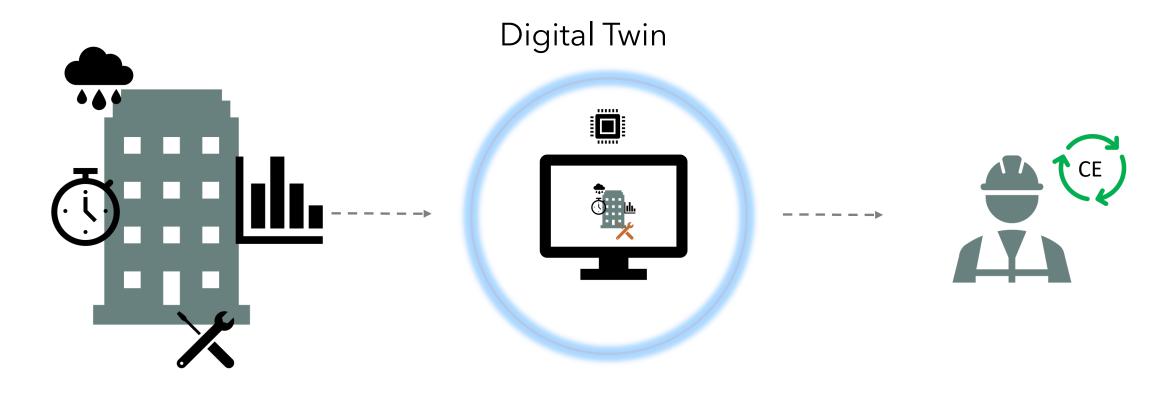
Discussion

2) Digitization of Information

BIM model

Introduction

Research Methods


Findings

Conclusion

Discussion

²⁵ | 6 July 2020 21

2) Digitization of Information

Introduction

Research Methods

Findings

Conclusion

Discussion

22

5 | 6 July 2020

Digital twin

Virtual replica of the physical object

Consisting of real-time condition data measured by sensors

Data is collected in the cloud **and transformed into readable data,** to derive a **living simulation** of the physical object

Data analysis updates traditional maintenance plans and optimizes the **operation** of the object

Introduction

Research Methods

Findings

Conclusion

Discussion

Scope

- Use phase
- Building owner
- Maintenance process
 - Condition quality
 - Digital twin

Introduction

Research Methods

Findings

Conclusion

Discussion

Main Question

How to facilitate **façade circularity** in **maintenance** using a Digital Twin?

Introduction

Research Methods

Findings

Conclusion

Discussion

Desired future

1. What are current goals of buildings owners with respect to circular maintenance and condition of facades?

Introduction

Research Methods

Findings

Conclusion

Discussion

Existing situation

- 2. Which data is available on a facade's composition?
- 3. What is the current state of information management concerning façades?
- 4. Which data is available and necessary to map the condition of façades?

Introduction Research Methods Findings Conclusion Discussion

Recommended additions

5. How to translate the minimum required data into a Digital Twin

Introduction

Research Methods

Findings

Conclusion

Discussion

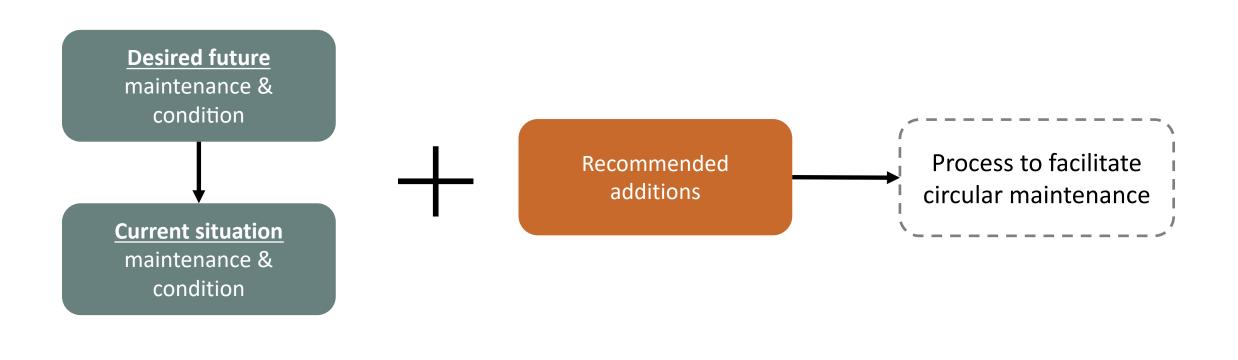
Process to achieve circular maintenance

6. How can the Digital Twin assist the circular maintenance management of the façade?

Introduction

Research Methods

Findings


Conclusion

Discussion

29

²5 | 6 July 2020

Research Structure

Introduction Research Methods Findings Conclusion Discussion

Research Aims

- Informing building owners on how they can address façade circularity
 - Stimulating efficiency in maintenance

Research Methods

Findings

Conclusion

Discussion

Background Information

Existing situation

Research Methods

Findings

Conclusion

Discussion

Literature **Study**

- Started with collecting sufficient information on building elements' performance
 - Technical information
 - The most renowned anomalies and threats

Supplement this with detailed inspections

33 6 July 2020

Literature Study

Maintenance issues

Maintenance is performed based on standard degradation models

- Physical intervention and poor information capture
- BIM lacks a real time view on the buildings' condition

Introduction

Research Methods

Findings

Conclusion

Discussion

34

Literature Study

Necessary to

- Bridge the gap between operations and data
- Digital measures require management

Research Methods

Findings

Conclusion

Discussion

Main topics

- Façade condition
- Maintenance process
- Information capture

Introduction

Research Methods

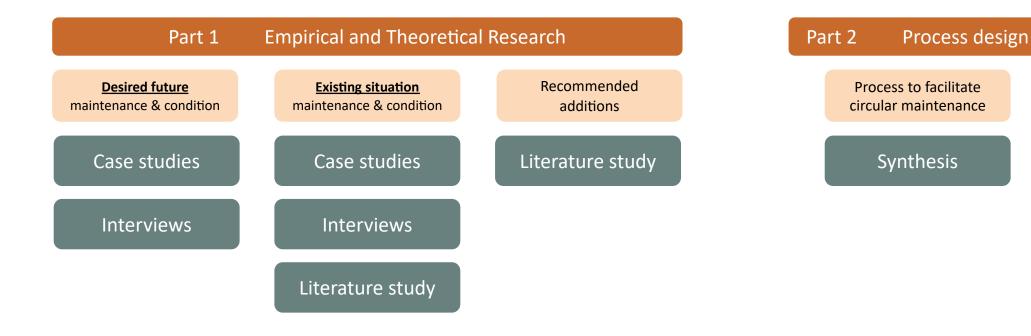
Findings

Conclusion

Discussion

Part 2

Research Methods


Research Focus

• Investigating a management issue

 Taking the existing situation and designing an additional dimension to it.

Introduction Research Methods Findings Conclusion Discussion

Research Design

Introduction Research Methods Findings Conclusion Discussion

Empirical research

Introduction Research Methods Findings Conclusion Discussion

Explored Case Studies

Introduction

Research Methods

Findings

Conclusion

Discussion

41

P5 | 6 July 2020

Case study and semi structured interviews goals

- To understand the existing maintenance process
- To derive **issues** in the existing maintenance process
- To discover the existing situation and goals in façade condition
 - To discover the situation and issues in information capture

Introduction Research Methods Findings Conclusion Discussion

Description Case Study 1

JuBi towers

- Office building
- Delivered in 2012
- 147 meters
- 130.000 square meters
- 4000 workspaces
- Description façade

Introduction

Research Methods

Findings

Conclusion

Discussion

²5 | 6 July 2020 43

Maintenance process

Information capture

Desired future

- Maintenance free façade
- Compliance with building law
- Provide comfort for building activity

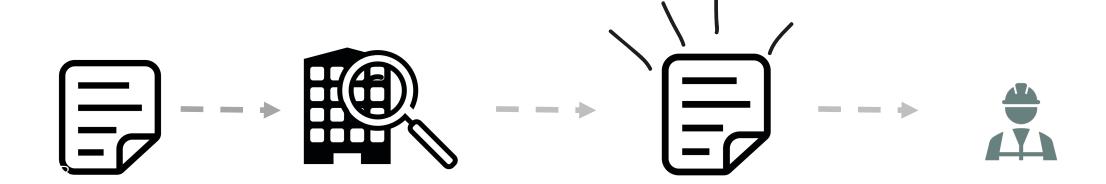
Introduction Research Methods Findings Conclusion Discussion

Maintenance process

Information capture

Existing situation

Sustainable materials, however:


- Crumbling bricks
 - Cracks

Causing safety issues

Introduction Research Methods Findings Conclusion Discussion

Maintenance process Information capture

Existing situation

Introduction

Research Methods

Findings

Conclusion

Discussion

6 July 2020 46

Maintenance process

Information capture

Barriers

- Large façade
- Visual inspections
- Inspections are based on **standard models**
 - Issues in capturing defect
 - Overlooking defects

Introduction

Research Methods

Findings

Conclusion

Discussion

47

²5 | 6 July 2020

Maintenance process

Information capture

Existing situation

- Inspections are implemented in computer system
- **Technical specifications** are implemented in computer system
 - High quality BIM

Introduction Research Methods Findings Conclusion Discussion

Maintenance process

Information capture

Barriers

- Unclear description of defects in inspection reports
 - Not a clear image of total defects
- Human error in signing-out defects in computer system

Introduction Research Methods Findings Conclusion Discussion

Case 2 & 3

50

Introduction Research Methods Findings Conclusion Discussion

P5 | 6 July 2020

Theoretical Research

Introduction Research Methods Findings Conclusion Discussion

Goal

• To derive a suitable **technological alternative** to current inspection method

• Determine the **influence** on the existing maintenance process

Introduction Research Methods Findings Conclusion Discussion

Definition sensors

- Sensors consist of a **sending** and **receiving** element
- Measure parameters like vibration, water, temperature
- Combination of sensors can derive several insights
- Can provide evidence for defect characteristics

Introduction Research Methods Findings Conclusion Discussion

Recommended Additions Case 1

	Main building defects	Detection technology	Advantages	Challenges	Circularity
Existing situation	1) Crumbling bricks 2) Cracks	•	Clear and tangible method	Subject to errors	Maintenance when planned
Recommended additions		1) Infrared thermography2) Piezo-electric sensors	 Quick detection Sensitive, location accurate 	- Complex method -Sensors also need maintenance -Circularity effects	Can provide maintenance when necessary
Introduction	Research Methods		Findings	Conclusion	Discussion

Part 3

Findings

- Compared to realtime inspections, planned inspections leave room for deterioration

Real time inspections...

- ..Can provide evidence on defects characteristics
- ..Can provide data for predictive maintenance

Introduction Research Methods

Conclusion

Discussion

57

²5 | 6 July 2020

- To increase the value and utility of the data, it needs to have a clear purpose

This means:

- Parameters need to be carefully chosen

58

- Sensors need to be chosen carefully

Introduction Research Methods Findings Conclusion Discussion

P5 | 6 July 2020

Decrease human intervention where possible

- Human error is the contaminator of the computer system
- Human inspection can lead to lenghty procedures
- However, human intervention is necessary to analyse and anticipate situations

Introduction Research Methods Findings Conclusion Discussion

6 July 2020 59

Several new tasks need to be clearly allocated

- Data needs to be **connected** to BIM
- Sensor data needs to be stored
- Sensor data needs to be analyzed
- Feedback to the system after repair

Introduction

Research Methods

Conclusion

Discussion

60

²5 | 6 July 2020

- Actors should **understand** the measurements
- All actors involved with maintenance should understand the process to provide input

Introduction Research Methods

Conclusion

Discussion

61

5 | 6 July 2020

- Circular maintenance can only succeed if the process is well-prepared upfront
- **Demountable** façade
- Sustainable materials
- Detailed information must be requested on maintenance needs, degradation time

Research Methods Findings Discussion Conclusion

62 6 July 2020

Validation

Usability

- Process needs to be guided to avoid pitfalls
- Attract the right people
- Create new departments for data

Phasing

- New buildings rather than existing buildings
- Start with a single building rather than the entire portfolio
- Start with preparing for **future** implementation

Introduction Research Methods Findings Conclusion Discussion

Part 4

Conclusion and Recommendations

Sub conclusion & synthesis

Introduction Research Methods Findings Conclusion Discussion

Sub-Conclusion & Synthesis

How can the Digital Twin assist the circular maintenance management of the façade?

Introduction

Research Methods

Findings

Discussion

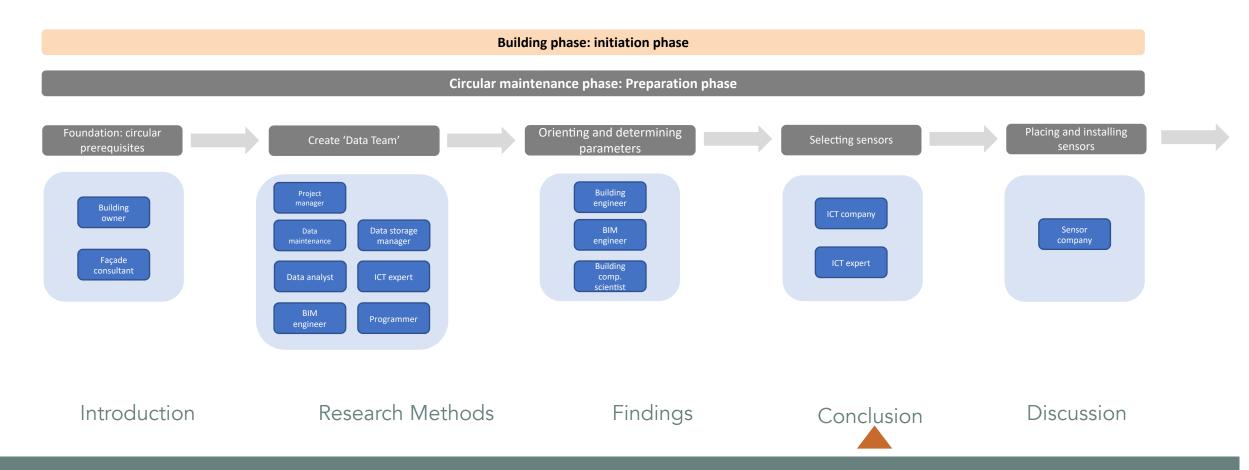
Sub-Conclusion & Synthesis

Barriers to circular maintenance process

- Defects are subject to interpretation
- Overlooking defects
- Maintenance based on standard models
- Human error in the maintenance system

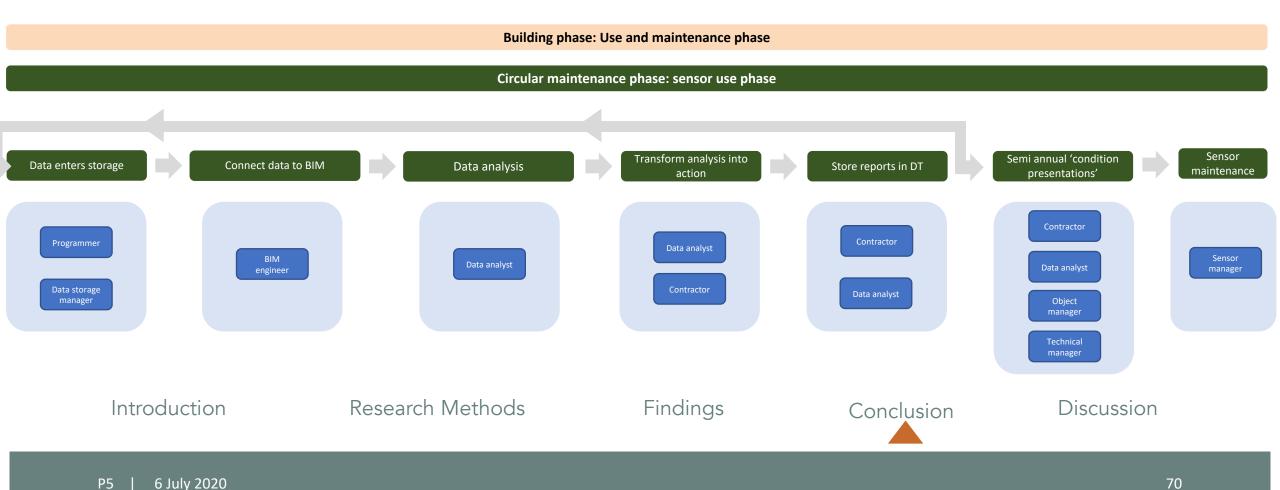
Introduction Research Methods Findings Conclusion Discussion

Sub-Conclusion & Synthesis


How can the DT facilitate this?

- By providing strong evidence on defect characteristics
- By exposing all defects on the façade
- Providing the chance to discover connections between defects
- Real-time updates pursues maintenance when necessary and pursues preventive maintenance

Introduction Research Methods Findings Conclusion Discussion


Conclusion and Recommendations

How to facilitate façade circularity in maintenance using a Digital Twin?

²5 | 6 July 2020 69

Conclusion and Recommendations

Recommendations

- Bring in a manager to guide the process
- Retain knowledgeable people
- Emphasize the value for the users
- Implementation in **new** buildings
- Consider interchangeability of sensors
 - Sensor and software innovations
 - Broken sensors
- Consider circularity of the sensors

Introduction

Research Methods

Findings

Conclusion

Discussion

Effect?

• Increased lifesecurity of façade elements

- Less pressure on the ecosystem
 - Resource efficiency
 - Energy efficiency
- Effective maintenance logistics

Introduction Research Methods Findings Discussion Conclusion

72 6 July 2020

Part 5

Discussion

Discussion

Limitations

- Case studies with limited sustainability characteristics
 - Maintenance process of a single organisation
 - Sensor literature review

Introduction Research Methods

Findings Conclusion Discussion

74 6 July 2020

Discussion

Future research

- Specific building type, building part or building size
 - Influence on the construction sector
 - Sensor circularity platform

Introduction Research Methods

Findings Conclusion Discussion

6 July 2020 75

Questions?

Brand, S. (1994). How Buildings learn. What happens after they're built. 2nd Ed. London, UK: Phoenix Illustrated.

Introduction Research Methods Findings Conclusion Discussion