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Chapter 1

Introduction

Near the end of the eighteenth century, the Italian astronomer Giuseppe Piazzi was

searching the night skies midway the orbits of Mars and Jupiter, the location where the

Titius-Bode law of planetary distances had predicted a planet would exist. On January 1,

1801, he had a stroke of luck and indeed observed an object in this region. Piazzi named the

object Ceres, after the Roman goddess of agriculture, but was surprised by its small diameter

of roughly 1,000 km; considerably smaller than the other planets known at the time. Ceres

was therefore classified as the first minor planet and in the following years three similar-sized

objects were discovered in the same region of our Solar System, and given the names Pallas,

Juno and Vesta. These four bodies would remain the only known minor planets during the

first half of the nineteenth century, until a large number of discoveries of much smaller objects

in similar orbits was made and astronomers realized an entire ’belt’ of such objects existed [1].

It was at this point that the German astronomer William Herschel, famous for his discov-

ery of the planet Neptune, proposed naming these objects asteroids after the Greek word

άστερoειδής (”asteroides”), meaning star-like, instead of using the term minor planet. The

number of asteroid discoveries has sky-rocketed ever since with most observations nowadays

being carried out by automated systems, a process which has resulted in over 200,000 cat-

egorized asteroids with large observed variations in composition, mass, and size, as shown

in Figure 1.1. These bodies are classified in a number of different categories depending on

their respective locations in the Solar system. The large number of asteroids contained in the

previously mentioned belt between the orbits of Mars and Jupiter are known as Main-Belt

Objects (MBOs). Many more inhabit zones beyond the orbit of Neptune and are hence named

Trans-Neptunian Objects (TNOs). Two classes with far fewer members are the Trojans, lo-

cated at Jupiter’s L4 and L5 Lagrange points and the Centaurs, which populate the area

between the orbits of Jupiter and Neptune. A fifth and final class constitutes the Near-Earth

Objects (NEOs), which closely approach the orbit of the Earth and represent interesting tar-

1



Chapter 1. Introduction 2

gets for space missions due to their relative ease of accessibility [2]. The asteroid distribution

of the inner Solar system is shown in Figure 1.2.

Figure 1.1: Relative sizes of asteroids imaged at high resolution [3].

These asteroids have become a core interest of the scientific and aerospace community ever

since the NEAR-Shoemaker mission, which explored asteroid 433 Eros in 2001 [4]. This in-

terest was furthered by the Hayabusa sample return mission that rendezvoused with asteroid

25143 Itokawa and returned small regolith samples to Earth in 2010 [5]. The results from

these missions have fundamentally changed our understanding of the origins and character-

istics of asteroid bodies. Despite these insights, many scientific questions still exist regard-

ing the strength, cohesion and seismic properties of asteroids, which can only be answered

through extensive analyses of asteroid (sub-)surfaces. Such analyses would revolutionize our

understanding of aggregate interaction in micro-gravity environments and the formation of

the early Solar system [6]. The acquisition of this information has been identified by NASA

as Key Strategic Knowledge Gaps and is regarded as crucial to all future exploration of as-

teroid bodies [7]. Furthermore, measurements of these characteristics are paramount to the

development of planetary defense strategies, which are required to guarantee the long-term

survival of human civilization [8]. Finally, asteroidal bodies contain vast supplies of rare

metals and water, and therefore represent possible sources of revenue and in-space refuelling
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options [7]. Although NASA’s OSIRIS-REx [9] and JAXA’s Hayabusa-2 [10] spacecraft are

set to continue exploring asteroids, both of these are ’mere’ sample return missions that do

not perform the previously mentioned (sub-)surface measurements. This is why scientists at

the Jet Propulsion Laboratory, the California Institute of Technology and the University of

Colorado at Boulder are proposing the Binary Asteroid in-situ Explorer (BASiX) mission.

This mission aims to investigate the binary asteroid system 1996 FG3 using an orbiter space-

craft which deploys several instrumentation packages to the asteroid surfaces. These packages

are designed as passive spherical pods that, among other hardware, contain explosive charges

which will allow for an evaluation of the seismic properties of the asteroid bodies [6].

Figure 1.2: Position of all numbered asteroids in the inner Solar system on January 1, 2014 [11].

Previous studies regarding the ballistic deployment of such passive lander pods to a binary

asteroid system have established release strategies and identified factors relevant to the mo-

tion of the pods [12–16]. These studies have taken into account both the orbital motion

of lander/rover packages and the contact interactions with the asteroid surface. They have



Chapter 1. Introduction 4

shown that the characteristics of deployment are significantly affected by a number of inter-

action parameters, as well as the navigation and control accuracies of the mothership. Our

research aims to verify these strategies and quantify the degree to which the aforementioned

parameters influence deployment. This is done through the development of a simulator pack-

age capable of accurately simulating the complex interactions between a lander pod and the

complex gravitational and surface environments present at both unitary and binary asteroid

systems. By selecting a realistic set of spacecraft and deployment parameters with associated

uncertainties, we will be able to simulate a high number of lander pod trajectories and analyze

their settling characteristics. This in turn will generate information about the sensitivity of

successful lander deployment to the release conditions and interaction parameters. The final

results of our work will aid mission designers in the planning of an asteroid lander mission and

will provide an answer to the research question ”can we investigate the surface, sub-surface,

and internal environment of asteroids?”.

This thesis report is structured as follows: in Chapter 2 we briefly review past, present and

future missions to asteroids that are relevant to our research. This allows us to establish

the goals of the thesis in Chapter 3. Next, Chapter 4 presents the techniques used to model

asteroid environments, with Chapter 5 discussing some of the geometry involved in the shape

modelling of asteroids. Chapter 6 provides an overview of the propagation technique used

and the general structure of our simulation algorithms. Significant attention is given to the

verification and validation of the applied gravity modelling in Chapter 7, and of contact inter-

actions in Chapter 8. The results produced with the finished simulation software are given in

Chapter 9 for unitary asteroid systems and in Chapter 10 for binary systems. Finally, Chapter

11 presents the conclusions of our research and Chapter 12 discusses some recommendations

for future work.
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Chapter 2

Missions to Small Bodies

The past decades have seen a number of different missions to asteroids and comets that

have resulted in our current understanding of the properties of these small bodies. In addition,

several agencies across the globe are planning future missions aimed at studying such bodies

in much further detail. The current chapter presents a brief overview of the characteristics of

past and current missions in Section 2.1 and of future missions in Section 2.2. The resulting

state-of-the-art will help justify the goals of the current research in the subsequent chapter.

2.1 Past and Current Missions

We now present a brief overview of missions that have flown in the past or are active at the

time of writing.

2.1.1 NEAR-Shoemaker

The NEAR-Shoemaker spacecraft, launched by NASA in 1996, was the first to perform an

extended proximity study of an asteroid. The spacecraft spent a full year orbiting asteroid

433 Eros, while collecting information on the body’s mass, structure, geology, composition,

and gravity using a wide range of scientific instruments [17]. The main result of the mission

was a high-resolution shape model of Eros along with a global mapping of the surface rock

and crater distribution. The 15-kilometer-wide asteroid was determined to have a nearly-

homogeneous mass of (6.690± 0.003)× 1015 kg and a bulk density of 2.67± 0.03 g/cm3 [18].

After completing all of its science goals, the spacecraft successfully descended and touched

down on the surface of Eros in a controlled manner [4]. High-resolution images captured

during final descent provided detailed information about local topography and formation

processes, see Figure 2.1 [19].

7
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5m

Figure 2.1: Last four images of NEAR-Shoemaker’s decent sequenc towards Eros [4].

2.1.2 Hayabusa

The Hayabusa (previously MUSES-C ) spacecraft was launched in 2003 by JAXA with the

main goal of performing sample return on the 500-meter-wide asteroid 25143 Itokawa. Upon

its arrival at Itokawa in 2007, the spacecraft performed extensive mapping of the global shape

and surface of the asteroid and provided new theories on the formation of the body. Hayabusa

measured Itokawa’s mass as (3.51± 0.01)× 1010 kg and its density as 1.9± 0.1 g/cm3 [20].

The imagery resulting from the mission remains the most detailed available of any asteroid to

date. Following this mapping, the spacecraft performed a descent and Touch-and-Go (TAG)

on Itokawa’s surface, during which it collected surface samples using its sampling horn. This

horn, shown in Figure 2.2, extends from the main spacecraft bus and is sensitive to excessive

velocities with respect to the asteroid surface. It was therefore paramount that the spacecraft

touched the surfaced with a controlled and minimal velocity. Due to the communication delay,

the spacecraft could not be controlled from ground and required extensive on-board autonomy

to indeed control and guide Hayabusa downwards of an altitude of 500 m. To provide the

spacecraft with independent navigation capabilities, it was fitted with several target markers

[21].
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Figure 2.2: The Hayabusa spacecraft [22]. Figure 2.3: Hayabusa target markers [22].

The spherical target markers were released by the spacecraft from an altitude of ±40 m with

a relative velocity of ±10 cm/s and used for accurate navigation once they settled on the sur-

face. Constructed as hard spherical shells filled with small balls, this marker design yielded

the lowest possible coefficient of restitution through internal energy dissipation, resulting in a

minimal settling time [23]. This was desired as the spacecraft had to maintain a hovering con-

dition while waiting for the target markers to settle, which requires continuous (and costly)

fuel expenditure. It is finally noted that the markers were covered with a highly reflective

material which increased their visibility when the spacecraft imagers used flash lamps. This

effect can be seen in Figure 2.3, where the target makers are shown with and without the

camera flash switched on.

Unfortunately, one of the target markers failed to reach Itokawa’s surface, and a malfunction-

ing caused the spacecraft to soft-impact on Itokawa’s surface. Despite these landing problems,

Hayabusa eventually managed to capture a tiny surface sample and successfully return it to

Earth [22]. It is finally noted that the spacecraft also carried and deployed the independent

small MINERVA rover, which never reached the surface due to an error in the deployment

phasing [24].

2.1.3 Rosetta

The Rosetta spacecraft was launched in early 2003 by ESA and arrived at comet 67P/Churyumov-

Gerasimenko in early August of 2014 [25]. In its mapping of the nucleus, Rosetta has produced

the first-ever high-resolution images of a comet, revealing its highly irregular shape, as shown

in Figure 2.4. The spacecraft will continue to obtain measurements of the comet’s coma as it

approaches the Sun and outgassing effects gradually become more noticeable. Furthermore,
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on 14 November 2014, Rosetta will deploy its Philae lander to the surface of 67P/CG from an

altitude of 22.5 km. The particular release conditions will be selected in a way such that the

unpowered lander package arrives at the surface with minimum velocity relative to the aster-

oid. Upon touching the surface, Philae will deploy several harpoons to anchor itself to the

surface. After this landing, the 100-kg lander will perform a variety of scientific measurements

of the comet (sub-)surface constituents [26, 27].

Figure 2.4: Comet 67P/Churyumov-Gerasimenko [27].

2.2 Future Missions

A number of missions planned or proposed for the future are discussed in the present section.

2.2.1 Hayabusa-2

The Hayabusa-2 sample return mission is the follow-up of the successful Japan Aerospace

Exploration Agency (JAXA) Hayabusa mission. It is set for launch in 2014 and will arrive

at its target, the 1-kilometer-wide carbonaceous asteroid 1999 JU3, in 2018. The scientific
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goals of Hayabusa-2 are highly similar to those of the original Hayabusa mission. Next to

performing ’regular’ sampling of the surface, the spacecraft will deploy an explosive impactor

to the surface and sample the resulting crater. The descent and TAG is again guided through

the use of target markers that are released from an altitude of ∼ 100 m [28]. Furthermore,

the spacecraft will deploy from that same altitude the rectangular MASCOT lander [29] and

three rectangular MINERVA hopping rovers [30], all of which are technology demonstration

craft.

2.2.2 OSIRIS-REx

The OSIRIS-REx mission has been selected by NASA as part of its New Frontiers Program

and will travel to the carbonaceous asteroid 1999 RQ36 to perform imaging and sample return.

The mission is planned to launch in 2016 and will spend roughly half a year in orbit about

its target, after which the spacecraft will perform a descent and TAG with sample collection

[9]. As the spacecraft does not release any landers or target markers as navigation aids,

it requires a highly accurate on-board Guidance, Navigation and Control (GNC) system.

The uncertainties in position and velocity of this system are detailed in [31] and provide

an excellent baseline design for GNC specifications to be used in the current research. The

uncertainties are shown in Table 2.1 for different values of the asteroid gravitational parameter

µ = GM .

2.2.3 AIDA

The Asteroid Impact & Deflection Assessment (AIDA) joint mission is currently being pro-

posed by both ESA and NASA and would target binary asteroid 65803 Didymos to demon-

strate the first ever planetary defense technique1, as well as characterize the characteristics of

the system. The proposal consists of two spacecraft that are designed and operated indepen-

dently of one another. The American Double Asteroid Redirection Test (DART) spacecraft

is a kinetic impactor that aims to demonstrate deflection of Didymos’ 150-meter-wide sec-

ondary body. Subsequent measurements of the orbit of the secondary will help establish

an understanding of the dynamics of asteroid deflection; knowledge that is indispensable in

1Even though Didymos is not an Earth-crossing asteroid.

Table 2.1: OSIRIS-REx 3σ Navigation Uncertainty [31].

Position Uncertainty [m] Velocity Uncertainty [mm/s]

Radial In-Track Cross-Track Radial In-Track Cross-Track

Low µ 1.040 2.750 0.718 0.133 0.060 0.049

Nominal µ 0.529 3.132 0.633 0.173 0.035 0.077

High µ 0.686 4.039 1.195 0.326 0.058 0.040
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designing actual planetary defense missions. Additionally, the European Asteroid Impact

Monitoring (AIM) orbiter will characterize the dynamical properties of the binary system,

as well as provide detailed observations of DART’s impact and the resulting crater, possibly

using a lander/rover package. If selected, the mission is set to launch in 2019 and reach

Didymos by 2022 [24, 32].

2.2.4 BASiX

The discovery-class Binary Asteroid in-situ Explorer (BASiX) mission is currently being pro-

posed to NASA and aims to actively probe the geophysics of a binary asteroid system in

a controlled and repeatable manner. Furthermore, it will make the first ever quantitative

measurements of the strength, seismic properties, and mass morphology of an asteroid sys-

tem. The target of the mission is the 1996 FG3 binary system, which is well characterized in

terms of size, spin , and orbit [6]. The two main scientific goals, which this mission has set

to accomplish, are:

• To understand the unique geomorphology, dynamics, and evolution of a binary near-

Earth asteroid; and

• To determine the strength, seismic, and space weathering properties of the surface and

sub-surface of a near-Earth asteroid.

The mission aims to achieve these goals through the deployment of instrumentation packages

to the surface(s) of the asteroid system. Rather than using complex and expensive controlled

landers, BASiX will deploy a number of low-cost, low-risk, passive, spherical lander pods that

descend to 1996 FG3 on a ballistic trajectory, after which they bounce, roll, and eventually

settle on the asteroid surface [6]. By carrying several of these pods and receiving their mea-

surements, the BASiX mothership will be capable of estimating the previously mentioned

fundamental properties at different locations along the asteroid surface. The lander pods

were designed by Ball Aerospace, an aerospace company based in Colorado, USA. The pod

hardware consists of low-cost imagers, accelerometers to detect impacts and seismic events,

and a charge of high energy explosive to perform cratering and seismic experiments. All

subsystems are contained within the spherical, orientation-independent structure. The base-

line pod design and initial prototype are shown in Figure 2.5. The complete pod package is

estimated to have a mass of less than 15 kg and a diameter of ±25 cm [33].

The detonation of a pod’s explosive charge will generate seismic waves, which can be detected

by the instruments of the other pods. By comparing the measured velocities of these waves

between all pods, one can obtain information about the internal composition of the asteroid

[2]. In addition, the orbiting mothership spacecraft will be able to observe the explosion

and resulting crater with high-resolution imagery. It is desirable for the pods to be deployed



Chapter 2. Missions to Small Bodies 13

to particular areas on the surface of an asteroid, to maximize the scientific return from

the seismic measurements. This underscores the need for pod deployment to be aimed at

specifically selected locations on the asteroid and justifies the study of lander deployment

that is the subject of this research. The design of the BASiX mission and spacecraft together

with its target binary system 1996 FG3 provide excellent inputs to construct realistic mission

scenarios for our research. The subsequent results may aid the BASiX mission designers in

selecting release conditions for the pods and increase the chances of mission success.

Figure 2.5: (top) Baseline design and (bottom) initial prototype of the BASiX lander pods [33].





Chapter 3

Thesis Goals

Asteroids are primitive bodies which contain massive amounts of information about the

early formation of our Solar system, may teach us invaluable lessons about planetary defense,

and contain significant economic potential. Past missions to these bodies have provided

us with basic insight of these factors, mostly through orbit-based observations. However,

far more scientific return is contained within the asteroid surface, sub-surface, and interior

structure; all of which remain mostly untouched to date. We can identify a clear scientific

gap and therefore set the main, high-level research question to be answered by our research

as:

Can we investigate the surface, sub-surface, and internal

environment of asteroids?

Although parts of this investigation can be performed using again aforementioned orbit-based

observations, far greater scientific return can be achieved through the application of surface-

based lander/rover packages. We remark that all missions mentioned in the previous chapter

already apply some form of landing on asteroids, either controlled or passive. In some cases

the entire spacecraft touches down on the body, while in others one or more packages are

deployed and used for navigational purposes and/or to independently carry out surface op-

erations. The landing strategies employed by these missions vary widely and at times fail to

deliver their payload to the target body surface, as seen, for example, in the case of Hayabusa’s

failed target marker and rover deployment. Due to this perceived difficulty in landing on a

small body, mission designers are often reluctant to include landers in their approach to com-

plete an asteroid mission’s primary objectives. In doing so, they miss out on the enormous

potential for scientific return that is contained by small body surfaces.

Fortunately, low-risk strategies for landing on both unitary and binary asteroid systems have

been developed in recent works [12–14, 34]. These strategies guarantee, to a certain extent, the

successful ballistic delivery of (spherical) landers to the surface of a target asteroid, following a

15
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release from the neighbourhood of equilibrium points of the target system’s amended potential

field. Although the general strategy has proven to be successful, characteristics of the resulting

trajectories such as topographical spread and deployment time are sensitive to a number

of interactions parameters, as well as the selected release conditions. To investigate the

respective effect of these factors, we will develop a software package to accurately simulate

lander trajectories and perform a sensitivity analysis. In doing so, we will be able to identify

requirements for the mothership spacecraft GNC necessary to guarantee successful lander

deployment. We therefore define the main research goal of this M.Sc. thesis, and break it

down into three, smaller sub-goals to structure the research effort, as:

Numerically investigate the characteristics of strategies to

ballistically deploy landers to the surfaces of asteroids.

1. Develop a robust software package that can simulate trajectories of passive, spherical

asteroid landers.

2. Apply this software package to perform a sensitivity analysis of both interaction and

deployment parameters on the resulting lander trajectories.

3. Use the results of this sensitivity analysis to provide recommendations on the lander

release conditions and related mothership GNC requirements.

The larger part of this research will be spent completing the first item, with significant

amounts of time dedicated to the verification and validation of the developed software package.

Only after the software has been designed and validated, can we proceed with producing the

simulations required to complete sub-goals two and three.
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Methods and Software
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Chapter 4

Modelling

The motion of a lander in the environment of an asteroid system is a direct result of the

forces and torques acting between that lander and its target. To be able to generate simula-

tions of such motion, it is therefore necessary that we accurately model this environment, as

is the focus of the present chapter. First, we present a number of reference frames in Section

4.1 that are applied in Section 4.2 to define the relevant state variables. Next, Section 4.3 dis-

cusses modelling of asteroid shapes and the associated gravity fields. The forces and torques

active during contact motion of a lander on the asteroid surface are discussed in Section 4.4,

and during collisions in Section 4.5. The applied stochastic rock model is presented in Section

4.6, and Section 4.7, finally, synthesizes this force model into the equations of motion used to

propagate lander motion in our simulation software.

4.1 Reference Frames

Any description of the motion of a spacecraft or lander operating in the neighbourhood of

an asteroid requires the definition of a reference frame with respect to which this motion

is expressed. A large number of reference frames exists, with each frame having specific

advantages relating to the simplicity of expressing particular forces or motions. The current

section provides an overview of the reference frames that are applied in our simulations

of asteroid landers, for respectively unitary and binary systems, and briefly discusses their

applications.

4.1.1 Unitary Sytems

A total of four distinct reference frames are applied in the simulation of landers operating in

a unitary asteroid system; they are listed below. The relative position, motion, and rotation

between the four frames is illustrated in Figure 4.1.

19
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1. The Solar Inertial Frame (SIF) is a pseudo-inertial reference frame with its origin at

the center of mass of the Sun and axis directions fixed with respect to a number of

extragalactic sources. This reference frame will be applied to express the motion of the

asteroid body around the Sun.

2. The Target Inertial Frame (TIF) is a pseudo-inertial reference frame with its origin at

the center of mass of the (unitary) asteroid body and the same axis directions as the

SIF. This frame moves relative to the SIF, following the Keplerian orbit of the asteroid.

The TIF is applied, in certain cases, to express the motion of the lander relative to the

asteroid.

3. The Rotating Body-1 Frame (RB1F) is a rotating, non-inertial reference frame with its

origin at the center of mass of the (unitary) asteroid body and axes fixed with respect

to that asteroid body. The RB1F therefore has the same origin as the TIF, but rotates

around the TIF with the same rotation rate as the asteroid. The RB1F is also applied,

in certain cases, to express the motion of the lander relative to the asteroid. It is finally

also used to express the rotation state of the (unitary) asteroid body.

4. The Spacecraft-Centered Frame (SCF) is a reference frame with its origin at the center

of mass of the lander and axis directions fixed wtih respect to the lander. The SCF is

applied to express the rotation state of the lander.

XTIF 

YTIF 

ZTIF /ZRB1F 

XRB1F 

YRB1F 

ωz 

YSIF 

XSIF 

ZSIF 

YSCF 

XSCF 

ZSCF 

Figure 4.1: Overview of applied reference frames in unitary asteroid systems. Photo source: JAXA.
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4.1.2 Binary Systems

Analogously, a total of five reference frames are applied in simulations of a lander operating

in a binary asteroid system, as listed below. The relative motion and rotation between the

five frames is illustrated in Figure 4.2.

1. The SIF is defined in the same manner as was done for unitary asteroid systems.

2. The TIF is a pseudo-inertial reference frame with its origin at the mutual center of mass

of the two asteroid bodies in the binary system and the same axis directions as the SIF.

This frame moves relative to the SIF, following the Keplerian orbit of the binary system.

The TIF is applied, in certain cases, to express the motion of the lander with respect

to the asteroid. It is furthermore applied to express the motion of both primary and

secondary asteroid bodies as a result of their mutual gravitational attraction.

3. The RB1F is defined in the same manner as was done for unitary asteroid systems.

The RB1F therefore follows the movement of the primary around the TIF and has the

same rotation rate as the primary. This frame is applied to express, in certain cases,

the motion of the lander with respect to the primary body. Finally, it is used to express

the rotation state of the latter.

4. The Rotating Body-2 Frame (RB2F) is defined in the same way as the RB1F, but

instead fixed to the secondary body. This frame is applied to express, in certain cases,

the motion of the lander with respect to the secondary body. Finally, it is used to

express the rotation state of the latter.

5. The SCF is defined in the same manner as was done for unitary asteroid systems.

YTIF 
 

XTIF 
 

ZTIF 
 

YSCF 

XSCF 

ZSCF 

YSIF 

XSIF 

ZSIF 

Figure 4.2: Overview of applied reference frames in binary asteroid systems. Photo source: NASA.
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4.2 State Variables

The reference frames defined above are applied to express the equations of motion of the

considered asteroid-lander simulations. The number of state variables propagated in these

simulations and their respective frames of expression are a function of the selected propagation

mode, as will be detailed here. In any case, we require knowledge of the position (X/Y/Z)

and velocity (Vx/Vy/Vz) of the lander as we desire to perform a study of this motion. Addi-

tionally, we know that contact interactions with between the lander and the asteroid surface

will also affect, and be affected by, the attitude of the lander. As a result, we also include the

quaternion1 attitude (q1/q2/q3/q4) and rotation rates (ωx/ωy/ωz) of the lander.

The motion of a lander in an asteroid system is a result of accelerations from the asteroid(s)

and perturbations from the Sun2. We therefore also require knowledge of the position and

orientation of the asteroid system relative to the Sun, and relative to itself in the case of a

binary system. For a unitary system, we therefore include the position, velocity, and orien-

tation of the asteroid relative to the Sun, and the rotation rates of the asteroid. For binary

systems, this is expanded to the position, velocty, orientation, and rotation of the two aster-

oid bodies relative to their mutual center of mass, as well as the position and velocity of this

center of mass relative to the Sun. By including all of these state variables, we can account

for any orientation of the lander and the asteroid system relative to one another and the Sun.

An overview of these state variables is shown in Table 4.1; we observe that there are a total

of 26 variables propagated for a unitary system, and a total of 45 variables for a binary system.

We have now selected the state variables for our simulations, but must still attribute ref-

erence frames with respect to which these variables are expressed. These particular frames

are a function of the selected mode of propagation of a given simulation. As shown in Table

4.1, we have defined two propagation modesfor unitary systems (identifier Uni) and three for

binary systems (identifier Bin). When propagating in mode Uni 0 or Bin 0, we ignore contact

interactions and propagate the position, velocity, and orientation of the lander spacecraft S/C

in the TIF. Modes Uni 1 and Bin 1 propagate the lander in the RB1F, and include contact

interactions with the primary body. Finally, mode Bin 2 propagates the lander in the RB2F

and includes contact with the secondary body. As unitary systems consist of only a single

body, no Uni 2 mode exists. It can be seen that the motion and attitude of the lander is al-

ways propagated in the frame of the body with which contact interactions are included, since

these interactions are given in the body-fixed frame of the surface target, see also Section 4.4.

1While other methods for expressing an object’s orientation are available, we choose the use quaternions

since they are free of singularities.
2Where perturbations from other Solar system bodies are ignored.
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Regardless of the selected propagation mode, the motion and attitude of a unitary asteroid

B1 is expressed in the SIF. For binary systems, the motion and attitude of the two bodies

B1 and B2 are expressed in the TIF, with the motion of the center of mass of the system T

expressed in the SIF. Finally, the rotation rates of any object are always expressed relative

to that system itself, independent of propagation mode.

Now that we have defined the relevant state variables along with their respective propagation

frames, it is possible to present a description of the applied modelling of forces and torques

present in an asteroid system, starting with shape and gravity modelling of asteroid bodies.

4.3 Asteroid Shape and Gravity

A number of different techniques for modelling the gravitational field of an asteroid are avail-

able. Two frequently-used models are ellipsoidal and the spherical harmonics models. Al-

though these models are very practical when simulating the motion of orbiting spacecraft,

they cannot be used within the circumscribing radius of a body due to convergence problems,

and as a result are unusable in the propagation of lander motion [35]. We therefore model

gravitational fields using the constant-density polyhedron model, which converges even on the

surface of an irregular body.

All asteroids in this research are therefore modelled using polyhedra. A polyhedron is defined

as a three-dimensional body consisting of a number of points known as vertices, which together

form a set of interconnected triangular facets. Polyhedral models for different asteroids are

available online as a set of vertex coordinates together with a listing of the three points each

facet consists of. These two lists also allow for the construction of a third list of the edges

contained by that polyhedron. Furthermore, one outward-pointing normal is defined for every

vertex, edge and facet, with respective notations NV , NE and NF . The numerical method

applied to obtain these outward-pointing normals will be discussed in detail in Section 5.1.

Finally, if we denote the number of facets, edges and vertices as respectively nF , nE and nV ,

we may apply the Descartes-Euler polyhedral formula, which states that [36]:

nV + nF − nE = 2 (4.1)

This formula can be used during the creation of the polyhedron edges to verify whether the

correct number of edges has been created. The geometry of an arbitrary polyhedron is shown

in Figure 4.3; the polyhedral model of binary asteroid system 1999 KW4 is shown in Figure

4.4. Please note that the primary and secondary body are not shown at correct relative

size and distance. The coloring of the asteroid facets is indicative of their local amended

geopotential; red indicates high potential, blue indicates low potential. Using the outward-

pointing facet normals, the dyad EEij of the edge connecting two facets Fijk and Fijl is given
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Table 4.1: Overview of state variables used in simulations.

Bin 0 Bin 1 Bin 2 Uni 0 Uni 1

S/C

X TIF RB1F RB2F TIF RB1F

Y TIF RB1F RB2F TIF RB1F

Z TIF RB1F RB2F TIF RB1F

Vx TIF RB1F RB2F TIF RB1F

Vy TIF RB1F RB2F TIF RB1F

Vz TIF RB1F RB2F TIF RB1F

q1 TIF RB1F RB2F TIF RB1F

q2 TIF RB1F RB2F TIF RB1F

q3 TIF RB1F RB2F TIF RB1F

q4 TIF RB1F RB2F TIF RB1F

ωx SCF SCF SCF SCF SCF

ωy SCF SCF SCF SCF SCF

ωz SCF SCF SCF SCF SCF

B1

X TIF TIF TIF SIF SIF

Y TIF TIF TIF SIF SIF

Z TIF TIF TIF SIF SIF

Vx TIF TIF TIF SIF SIF

Vy TIF TIF TIF SIF SIF

Vz TIF TIF TIF SIF SIF

q1 TIF TIF TIF SIF SIF

q2 TIF TIF TIF SIF SIF

q3 TIF TIF TIF SIF SIF

q4 TIF TIF TIF SIF SIF

ωx RB1F RB1F RB1F RB1F RB1F

ωy RB1F RB1F RB1F RB1F RB1F

ωz RB1F RB1F RB1F RB1F RB1F

B2

X TIF TIF TIF

Y TIF TIF TIF

Z TIF TIF TIF

Vx TIF TIF TIF

Vy TIF TIF TIF

Vz TIF TIF TIF

q1 TIF TIF TIF

q2 TIF TIF TIF

q3 TIF TIF TIF

q4 TIF TIF TIF

ωx RB2F RB2F RB2F

ωy RB2F RB2F RB2F

ωz RB2F RB2F RB2F

T

X SIF SIF SIF

Y SIF SIF SIF

Z SIF SIF SIF

Vx SIF SIF SIF

Vy SIF SIF SIF

Vz SIF SIF SIF
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by [35]:

EEij = NFijk
NEij + NFijl

NEji (4.2)

In this equation, NEij is the edge normal perpendicular to both the adjacent facet Fijk and

the edge Eij , pointing away from the center of that facet. Analogously, the dyad of a facet

Fijk is given by [35]:

FFijk
= NFijk

NFijk
(4.3)

All dyads are pre-computed prior to propagation as they are invariant in time; this decreases

the computation effort required in simulating lander motion. By applying again the same

geometry, it is possible to define the per-edge factor LEij of an arbitrary edge connecting

vertices Pi and Pj , using [35]:

LEij = ln

(
ri + rj + eij
ri + rj − eij

)
(4.4)

In this equation, ri = ‖ri‖ and rj = ‖rj‖ are the lengths of the vectors from these two

vertices to the field-point P at which the potential is being evaluated, and eij = ‖rj − ri‖ is

the length of said edge, the latter of which is also pre-computed. The per-face factor ωFijk
of

an arbitrary face connecting vertices Pi, Pj and Pk is defined through:

ωFijk
= 2 arctan

[
ri · (rj × rk)

rirjrk + ri(rj · rk) + rj(rk · ri) + rk(ri · rj)

]
(4.5)

We note that the per-face factor ωFijk
also expresses the signed solid angle covered by the

face under consideration [35]. Using the given expressions, the gravitational potential, gravi-

tational attraction and gravity-gradient matrix may be expressed in the asteroid-fixed frame

through, respectively [35]:

U =
1

2
Gρ
∑
∀Eij

rEij · EEij · rEij ·LEij −
1

2
Gρ

∑
∀Fijk

rFijk
· FFijk

· rFijk
·ωFijk

(4.6)

∇U = −Gρ
∑
∀Eij

EEij · rEij ·LEij +Gρ
∑
∀Fijk

FFijk
· rFijk

·ωFijk
(4.7)

∇∇U = Gρ
∑
∀Eij

EEij ·LEij −Gρ
∑
∀Fijk

FFijk
·ωFijk

(4.8)

In these equations, rEij and rFijk
are the vectors from the field point P to respectively any

vertex of edge Eij and facet Fijk. We note that the Laplacian3 of the gravity field can be

computed using [35]:

3The Laplacian operator ∇2U expresses the divergence of a function in Cartesian space.
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Figure 4.3: Example of polyhedron geometry.

∇2U = −Gρ
∑
∀Fijk

ωFijk
(4.9)

One may observe that this factor is included in the above polyhedron attraction Equations

4.6 through 4.8. It is mentioned in [35] that this Laplacian operator may be used to determine

whether a given field point is located inside or outside of the attracting body, by applying

the following criterion:

∇2U =

0 if P interior

−4πGρ if P exterior
(4.10)

Unfortunately, this criterion is only applicable if we are indeed checking for collisions between

a single field point and the asteroid surface. Even if we were to strongly simplify the model of

a lander, it would still consist of a large number of points. As the computation of the Lapla-

cian requires summation over all facets of the asteroid model, and high-resolution polyhedra

consist of over a hundred thousand facets, applying this criterion would be very computa-

tionally intensive. Instead, we will resort to a geometric detection of collisions between the

lander and an asteroid; this method is detailed will be Section 5.2.
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Gravity Linearization

We observe from Equation 4.7 that a computation of the gravitational attraction ∇U at some

field point P in the neighbourhood of an asteroid requires summation over all facets and

edges of that asteroid’s polyhedron model. As even low-resolution asteroid polyhedra consist

of several hundreds of facets, such a summation is computationally intensive. As our research

requires the simulation of a large number of lander trajectories, it is paramount that the sim-

ulations are carried out rapidly. Moreover, the time steps applied by our numerical integrator

during propagation of contact motion are small, such that the gravitational acceleration ex-

perienced by a lander is unlikely to vary considerably between consecutive integration steps.

We therefore apply linearization to the polyhedral gravity model presented above 4. Indeed,

Equation 4.8 provides an expression for the gravity-gradient matrix, which expresses the lo-

cal variation in gravitational attraction. Assuming that we have previously computed the

gravitational potential U0, the gravitational attraction ∇U0, and the gravity-gradient matrix

∇∇U0 at some reference state X0, the gravitational potential and attraction at a nearby state

X can be estimated, again in the asteroid-fixed frame, as respectively:

U = U0 + (X−X0)∇U0 + (X−X0)∇∇U0(X−X0) (4.11)

∇U = ∇U0 + (X−X0)∇∇U0 (4.12)

We note that Equations 4.11 and 4.12 provide approximations that are valid only in the

neighbourhood of the reference state X0. Linearization therefore requires the user to define

some limit ∆Xmax = (X −X0)max that specifies the maximum distance from the reference

state X0 within which linearization may be applied by the simulator. If X lies outside of this

range, the velocity V is used to predict a new reference state X1 at which the gravitational

field is evaluated and used in subsequent integration steps, until ∆Xmax is once again crossed,

as illustrated in Figure 4.5. This process is continually repeated by keeping track of the

most recent ’full’ polyhedron evaluation, and results in faster propagation of the equations of

motion, particularly during contact motion where small time steps are applied.

4.4 Contact Motion

Upon reaching the surface of its target asteroid, a lander will be subjected to a number

of contact forces and torques in addition to the force of gravity. In this section, the three

interactions that result in these forces and torques are presented. When taken together, these

elements capture the complex contact between a lander and the surface of an asteroid. We

note that all expressions in the present section are given with respect to the asteroid-fixed

4While we could use other, faster models to represent the asteroid gravity field, the reader is reminded that

these models do not converge inside of a body’s circumscribing radius.
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V 

X0 

X1 

Figure 4.5: Gravity linearization. The direction of motion is indicated by arrows.

reference frame (either RB1F or RB2F). Furthermore, we repeat that our lander models are

spherical.

4.4.1 Normal Force

In the propagation of lander contact motion, the normal force enforces the condition of non-

penetration, which ensures that the lander pod does not cross through the asteroid surface.

It acts, as its name already suggests, in the direction normal to the local surface plane. In the

case of the polyhedral asteroid model used in our simulations, this direction is, in fact, given

by the outward-pointing normal of the facet(s) the pod is in contact with. The magnitude of

the normal force FN may be expressed as [16]:

FN = −(Fe · ur)ur (4.13)

In this equation, Fe is the external force5 acting on the lander and ur is the unit vector from

the center of the lander pod to the surface contact point H. However, this equation is valid

only when the pod is in contact with a flat surface, such as the interior of a facet. As such,

Equation 4.13 is not valid when the pod reaches an edge or vertex of that facet, as in those

cases the vector ur is not constant. To account for these cases, it is necessary to include the

time derivative of ur, which directly relates to the angular velocity of the center of the pod

with respect to the facet as [16]:

θ̇ =

∣∣∣∣durdt
∣∣∣∣ (4.14)

5In our simulations, the external acceleration consists of gravitational and virtual accelerations; this is

discussed in more detail in Section 4.7.
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The value of the angular velocity θ̇ may be computed as [16]:

θ̇ =

∣∣∣∣durdt
∣∣∣∣ =


0 on face.

|V−(V · ê)ê|
r on edge.

|V|
r on vertex.

(4.15)

In these equations, ê is the unit vector of the edge under consideration, aligned from one

vertex to the other, and V is the velocity of the center of the pod with respect to the facet

under consideration. Using Equation 4.15, the normal force as given by Equation 4.13 may

be generalized to any contact situation as [16]:

FN =
(
mθ̇2R− Fe · ur

)
ur (4.16)

The geometry and force application of the flat and edge cases are shown in Figure 4.6. As

explained by Equation 4.15, the term mθ̇2R in Equation 4.16 is non-zero only when the pod

rolls off the edge or vertex of a facet. Indeed, this will decrease the magnitude of the normal

force and allow gravity to exert a net acceleration on the pod with respect to the plane of the

facet; the pod will move downward, analogous to the way a ball starts moving down as it is

rolling off the edge of a table.

Fe Fe̝  

Feǁ 

FN 

uR 

H 

V 

ω 

(a) Flat case.

Fe 

Fe̝  

Feǁ 

FN 

θ 

ω 

(b) Edge case.

Figure 4.6: Illustration of geometry and force application.

4.4.2 Coulomb Friction

The Coulomb friction force Ff is the force resisting the relative motion of two objects in

sliding contact and is the result of micro-imperfections. Its magnitude may be expressed for

our spherical landers as [16]:
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Ff =


0 for vH = 0 and aH = 0

−min (|maH | , |fFN |) aH
|aH | for vH = 0 and aH 6= 0

− |fFN | vH
|vH | for vH 6= 0

(4.17)

In this equation, vH and aH are respectively the velocity and acceleration of the contact

point H. Note that the friction force is zero when the pod is completely stationary; the other

two equations model static and dynamic friction. Furthermore, the expression for aH 6= 0 in

Equation 4.17 enforces a check such that the acceleration produced by friction on a lander

pod with zero velocity never exceeds the external acceleration; in other words, friction may

never accelerate the pod into motion from a resting condition.

The coefficient of friction f ≥ 0 is a measure of the magnitude of friction between the pod

and the asteroid surface and is dependent on the characteristics of the mutual contact. The

particular values of f applied in our simulations will be discussed further on. Although the

friction force effectively decelerates the pod as it moves across the surface of the asteroid, its

main contribution results from the related friction torque. Since Ff does not act at the center

of mass of the pod, but rather at the contact point H, it generates an associated torque Lf

[16]:

Lf = rur × Ff (4.18)

Through this torque, the friction force acts to bring the contact-point velocity (if any) to

zero. For a spherical pod, this does not imply the total velocity of the pod is zero, as vH = 0

when the rotation of the sphere matches its velocity and no slip occurs6. It is precisely this

torque that causes a ball, sliding across a surface, into a rolling motion where its velocity and

rotation are matched. The geometry involved in the computation of the Coulomb friction

force and torque are shown in Figure 4.7. We note that this figure illustrates the simplified

two-dimensional case; our equations are capable of handling the full, three-dimensional case

where the pod rotation and velocity may act in any arbitrary direction.

4.4.3 Rolling Resistance

The Coulomb friction force discussed above acts only when the contact point velocity vH

is non-zero. This means that a lander pod will not experience any deceleration when its

velocity vH and rotation ω are matched according to vH = ωr; the pod will continue rolling

indefinitely as there is no mechanism for further energy dissipation. Our intuition immediately

disagrees with this, as a rolling ball will eventually come to a full stop. Indeed, such a

mechanism exists and is enforced by rolling resistance, which generates, on a rolling object,

a torque Lrr with magnitude [16]:

6This is the case whenever V = ωR.
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Figure 4.7: Geometry and application of (left) Coulomb friction and (right) rolling resistance.

Lrr =


0 for ω = 0 and ω̇ = 0

−min
(∣∣Īω̇∣∣ , |rCrrFN |

)
Īω̇

|Īω̇| for ω = 0 and ω̇ 6= 0

− |rCrrFN | ω
|ω| for ω 6= 0

(4.19)

Note the similarity between the above equation and the expressions for the Coulomb friction

force, Equation 4.17. Indeed, where the magnitude of the friction force was governed by the

coefficient of friction f , that of the rolling resistance torque is governed by the coefficient of

rolling resistance Crr. Furthermore, the rolling resistance torque, too, displays both a static

and a dynamic behaviour relating to whether or not the pod is stationary. The particular

Crr value that will be chosen for our simulations is discussed further on. In addition to this

torque, rolling resistance also exerts a force on the center of mass of the rolling object, as

expressed by [16]:

Frr =


0 for v = 0 and v̇ = 0

−min
(
|mv̇| , mr

Ī
(ur × Lrr) · v̇

|v̇|

)
v̇
|v̇| for v = 0 and v̇ 6= 0

−mr
Ī

(
(ur × Lrr) · v

|v|

)
v
|v| for v 6= 0

(4.20)

This force serves to maintain the pod’s existing balance between velocity and rotation. Indeed,

if the pod is rolling without slip, this synchronization will be preserved after application of

the rolling resistance force and torque. Without the inclusion of the force Frr, there would

exist a coupling between the Coulomb friction and the rolling resistance. By modelling the

force as done here, one avoid this coupling and may study the effects of the two contact

effects independently. The geometry involved in the computation of the rolling resistance

force and torque are shown in Figure 4.7, where again the simplified, two-dimensional case
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is shown. This concludes our discussion of the three interactions present between a lander

and the asteroid surface. Each of these interactions produces a distinctly different effect on

the contact motion of a lander: the normal force enforces the condition of non-penetration

that prevents the lander from moving through the asteroid surface. The Coulomb friction

force and related torque force the pod’s velocity and rotation into a no-slip synchronization.

Finally, the rolling resistance torque and related force serve to reduce the velocity of the pod

whilst maintaining its slip state.

4.4.4 Regularization

We must make one final remark regarding the Coulomb friction and rolling resistance force

and torques. Following their previous definitions, these are discontinuous at vH = 0 and

ω = 0, respectively. This is problematic for a numerical integrator as it will create velocity

oscillations that can increase the system’s energy, or fail to detect a lander pod is coming to

a full stop. One solution technique, which is used in many contact dynamics codes, is the

regularization of these forces and torques, which is the process of making their expressions

continuous at zero. The regularized Coulomb friction force is given by [34]:

Ff =

f |FN | vH
|vmin| for |vH | < |vmin|

f |FN | for |vH | ≥ |vmin|
(4.21)

An illustration of this function’s behavior is shown in Figure 4.8. It can be seen that the

initial expression behaves as a dirac function at vH = 0, whereas the regularized expression

is continuous at first order. If now the value of vmin is set close to zero, the effect on the

sphere’s motion will be negligible over the span of an entire simulation, yet at the same time

the numerical instability is resolved [34]. A similar approach is applied to regularize the

rolling resistance; both will be applied in our simulations.

F	  

	  	  	  	  	  	  	  	  	  	  ini$al	  
	  	  	  	  	  	  	  	  	  	  regularized	  

VH	  

Figure 4.8: Illustration of regularization.
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4.5 Collisions

The two previous sections have discussed the modelling approaches applied in representing

gravitational and contact interactions. In addition to these two modes of continuous motion,

the current section focuses on the intermediate case of collisions/impacts with the asteroid

surface, which effectively link two separate orbital arcs.

Collisions are handled through the instantaneous transfer of impulses, which change the ve-

locity and rotation of the lander pod over an infinitesimally small amount of time. The main

impulse acts on the pod’s normal velocity relative to the surface it is colliding with. The

magnitude of this impulse is determined by the coefficient of restitution e, which relates the

inbound normal velocity V0⊥ to the outbound normal velocity V1⊥ through [37]:

e =
V1⊥
V0⊥

(4.22)

The magnitude of the coefficient of restitution expresses the elasticity of the collision and has

values in the range 0 ≤ e ≤ 1. The case e = 0 corresponds to a collision which dissipates

all normal velocity, while e = 1 represents a perfectly elastic collision [38]. The value of e

that will be used in the simulations of this research will be discussed further on. The normal

velocity impulse resulting from a collision may be computed using [34]:

JFn = V1⊥ −V0⊥ = −m(1 + e)V0⊥ (4.23)

Analogously, the force and torque impulses generated by the Coulomb friction force during

the instantaneous collision are given by respectively [34]:

JFf
=


0 for VH‖ = 0

−min

 |mVH‖|∣∣∣∣ur×
(
I3,3+mr2

Ī

)(
ur×

VH‖
|VH‖|

)∣∣∣∣ , |JFN
|

 VH‖
|VH‖|

for VH‖ 6= 0
(4.24)

JLf
= rur × JFf

(4.25)

Finally, also rolling resistance produces a torque and force impulse during a collision; these

are given by respectively 4.26 and 4.27 [16]:

JLrr =

0 for ω = 0

−min
(
|Īω|, |rCrrJFN

|
)
Īω
|Īω| for ω 6= 0

(4.26)

JFrr =

0 for V ‖ = 0

−min
(
|mV‖|, mrĪ

(
(ur × JLrr) · V‖

|V‖|

))
V‖
|V‖|

for V ‖ 6= 0
(4.27)
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We stress that the impulse equations shown do not depend on the derivatives of the velocity

or rotation. This is to be expected, as impulses act over an infinitesimally small interval of

time.

Infinite Collision Modelling

If the coefficient of restitution e 6= 0, then the outbound normal velocity after a bounce will

only asymptotically approach, but never actually reach zero, following Equation 4.22. Im-

plementing a collision this way would result in an infinite number of bounces occurring in a

finite time, as shown in Figure 4.9. Although there will be a set time at which a bouncing

pod transitions from free-flying to rolling contact, the integrator will never reach this as the

time step will be forced to zero. This issue is analogous to Zeno’s paradox of Achilles and

the tortoise. One possible solution to this problem is to define a certain V⊥min close to, but

larger than zero. When the pod’s normal velocity becomes lower than this limit, it is set to

zero and contact motion is started. However, when it is assumed that e is independent of the

normal velocity, it is possible to solve for the effect of the infinity of bounces.

Applying Equation 4.22, we can express the normal velocity after the n-th bounce as Vn⊥ =

enV0⊥. Using this expression, it is possible to substitute the infinite number of bounces with

a single, virtual bounce which reaches the same final point and time as the infinite series of

bounces. This requires modifying the incoming normal velocity to V0⊥ to the virtual incoming

velocity V∞⊥ [34]:

V∞⊥ =
e

1− e
V0⊥ (4.28)

Whenever a collision has been handled and the pod’s normal velocity is found to be smaller

than V⊥min, the remaining infinite series of bounces with negligible V⊥ is replaced by single

bounce with V∞⊥, with contact motion starting at the end of this bounce. This principle is

illustrated for clarity in Figure 4.9. If V⊥min is kept small enough7, the effect of this strategy

on the pod trajectory is negligible [34]. This approach will therefore be applied in the handling

of collisions during the simulations of this research.

4.6 Rock Interaction

By including both collisions with the asteroid shape model and rolling resistance, our software

is capable of capturing interactions between the lander and asteroid surface features that are

either very large or very small. Indeed, the polyhedron model contains hills and craters, while

rolling resistance effectively models the surface’s granular structure. To achieve a complete

representation, it finally is necessary to also include features of intermediate sizes, between

7On the order of a few mm/s.
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Figure 4.9: Illustration of infinite and virtual bounces.

roughly a few meters and a few centimeters. We denote these features as rocks.

A fully realistic modelling of the interactions between a lander and asteroid rocks would pop-

ulate the polyhedron shape with rocks of different sizes at the proper densities that have

been observed by spacecraft in the past (mostly Hayabusa [39]). However, doing so is al-

gorithmically complicated and requires a thorough understanding of procedural topography

generation. Instead, we have chosen to implement a much simpler stochastic model of the

rock distributions, as taken from [16]. This model distinguishes between impact collisions

and rolling collisions. The former are taken into account during impacts of the lander on

the asteroid surface, as discussed in Section 4.5, and imposes a statistical variation on the

normal surface direction used during computation of the impact. In this way, it is possible to

represent how rocks on the asteroid surface effectively ’destroy’ the planarity of the polyhe-

dron facets. Secondly, rolling collisions are implemented from the same model using the mean

free path of the lander. When the lander starts contact motion on the asteroid surface, the

software determines the distance to be covered to the next rolling collision. Once the lander

has covered this distance, the software uses the stochastic model to compute the impact point

of the rock on the surface on the lander pod. The collision is then carried out; the pod may

be flung into the air because of this collision.

The applied stochastic model is based on the rock distribution observed on the surface of

asteroid 25143 Itokawa by the Hayabusa spacecraft [39] and captures the particular effect

these rocks have on the collisions with the surface. In that study, the authors measured the

mean horizontal dimension of all rocks and boulders on Itokawa’s surface, and converted these

results into a cumulative boulder size per unit surface area distribution. This distribution

may be represented through a power law, for which case the power index is equal to 3.1± 0.1

for the entire surface of Itokawa, for boulder sizes between 5 m and 20 m in diameter. This
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power-law distribution is also shown in Figure 4.10. With both these types of collisions

included, our asteroid model captures all interactions between the surface and the lander,

and we may proceed to construct the final equations of motion that are propagated by the

simulation software.

Figure 4.10: Cumulative boulder size distribution per unit area on the entire surface of Itokawa [39].

4.7 Equations of Motion

By combining the forces and torques listed in the previous sections, we are able to fully

simulate the motion of a lander in the asteroid neighborhood, by propagating the respective

equations of motion. We now present these equations of motion for simulations in both unitary

and binary asteroid systems, and for all modes of propagation that were shown earlier in Table

4.1.

4.7.1 Unitary Systems

We distinguish between propagation of the target unitary asteroid (state variables 14:26) and

of the lander spacecraft (state variables 1:13).

Target

As mentioned in Table 4.1, the position and velocity of the target unitary asteroid body is

always propagated in the SIF. These values are of importance when additional perturbations

such as solar-radiation pressure or third-body attraction need to be included. However, the
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magnitude of these forces is negligible for the duration of lander deployment. As such, prop-

agating the asteroid’s position and velocity would be a computational waste and is therefore

not performed, meaning that RB1,SIF = VB1,SIF = 0. It is noted that place-holders for this

position and velocity have been added to the state, as the inclusion of the aforementioned

forces is not unforeseeable in the future of this research. We do propagate the orientation of

the unitary asteroid body, as it rotates with respect to the TIF. This rotation is expressed

through quaternions, which are propagated using:

q̇ =
1

2
B

[
0

ω

]
=

1

2


q1 −q2 −q3 −q4

q2 q1 −q4 q3

q3 q4 q1 −q2

q4 −q3 q2 q1




0

ωx

ωy

ωz

 =
1

2


−q2 −q3 −q4

q1 −q4 q3

q4 q1 −q2

−q3 q2 q1


ωxωy
ωz

 (4.29)

Finally, we assume that the target asteroid body is in uniform rotation; or ω̇B1,RB1F = 0.

Spacecraft (Flying)

The situation is slightly more complicated for the spacecraft/lander, we can see from Table

4.1 that its state is propagated in either TIF or RB1F, depending on the selected mode of

propagation. When the spacecraft state is propagated using mode Uni 0 in the TIF, its

position and velocity are propagated using:

ṘSC,TIF = VSC,TIF (4.30)

V̇SC,TIF = CB1,TIF ·

δU
(
CT

B1,TIF · RSC,TIF

)
δRSC,TIF

 (4.31)

In the latter equation, CB1,TIF is the Direction Cosine Matrix (DCM) expressing the orien-

tation of body B1 relative to the TIF, which can be computed from its quaternions using:

C[q] =

q
2
1 + q2

2 − q2
3 − q2

4 2(q2q3 + q1q4) 2(q2q4 − q1q3)

2(q2q3 − q1q4) q2
1 − q2

2 + q2
3 − q2

4 2(q3q4 + q1q2)

2(q2q4 + q1q3) 2(q3q4 − q1q2) q2
1 − q2

2 − q2
3 + q2

4

 (4.32)

The part of Equation 4.31 between brackets expresses the gravitational acceleration of the

spacecraft due to the presence of the asteroid body B1, evaluated using the constant density

polyhedron at position CT
B1,TIF · RSC,TIF, which is the spacecraft position in the RB1F. The

orientation qSC,TIF of the spacecraft is propagated using Equation 4.29; the rotation ωSC,SCF

is invariable in the TIF when the spacecraft is not in contact with the asteroid surface (this

case will be discussed further on).
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When instead using mode Uni 1, the spacecraft state is propagated in the RB1F8. As this is a

rotating and therefore non-inertial reference frame, we must include the proper virtual accel-

erations in our equations of motion. The spacecraft position and velocity are then propagated

using:

ṘSC,RB1F = VSC,RB1F (4.33)

V̇SC,RB1F =

[
δU (RSC,RB1F)

δRSC,RB1F

]
− ω2

B1,RB1F ×RSC,RB1F − 2ωB1,RB1F ×VSC,RB1F (4.34)

In the latter equation, ω2
B1,RB1F ×RSC,RB1F is the centrifugal acceleration and 2ωB1,RB1F ×

VSC,RB1F is the Coriolis acceleration resulting from our use of the rotating RB1F. It is noted

that this equation does not include the DCM that was used when propagating in Uni 0. This

makes sense; since the motion of the spacecraft is propagated in the RB1F, we no longer need

to carry out the transformation from TIF to RB1F. The orientation of the spacecraft is again

propagated using Equation 4.29.

Spacecraft (Contact)

The equations of motion given above are valid under the assumption that no interaction with

the asteroid surface occurs. When the spacecraft/lander does indeed perform contact motion

on the asteroid (possible only in Uni 1 ), we must include the surface forces and torques

discussed in Section 4.4. The spacecraft velocity will be propagated as:

V̇SC,RB1F = ae,RB1F +
1

m
(NRB1F + Ff,RB1F + Frr,RB1F) (4.35)

Additionally, the rotation of the spacecraft is propagated using:

ω̇SC,SCF =
1

ISCF
(Lf,SCF + Lrr,SCF) (4.36)

In these equations, N is the normal force, and the subscripts f and rr refer to respectively

friction and rolling resistance, following their definitions from Section 4.4. Furthermore, ae is

the external acceleration produced by gravity. As an overview, Table 4.2 lists the respective

equations used to propagate the state for the mentioned propagation modes in the unitary

case.

4.7.2 Binary System

We separate between propagation of the two asteroid bodies of the target binary system (state

variables 14:45) and of the lander spacecraft (state variables 1:13).

8While we could also propagate the spacecraft state in the TIF, and perform the proper coordinate trans-

forms into the RB1F, we have chosen for consistency to propagate the state in the frames that we are interested

in.
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Table 4.2: Overview of equations of motion for unitary systems.

Uni 0 Uni 1

Orbiting Contact

S/C

Ṙ Eq. 4.30 Eq. 4.33 Eq. 4.33

V̇ Eq. 4.31 Eq. 4.34 Eq. 4.35

q̇ Eq. 4.29 Eq. 4.29 Eq. 4.29

ω̇ 0 0 Eq. 4.36

B1

Ṙ 0 0 0

V̇ 0 0 0

q̇ Eq. 4.29 Eq. 4.29 Eq. 4.29

ω̇ 0 0 0

Target

Following the same reasoning made in the above, the motion of the target binary asteroid

system as a whole about the Sun is not taken into account at this point, therefore ṘT =

V̇T = 0. We do however propagate the motion of the two asteroid bodies relative to their

mutual center of mass. As shown in Table 4.1, this propagation is carried out in the TIF,

regardless of the selected propagation mode. We assume this motion may be modelled using

point-mass attraction, leading to the following equations of motion:ṘB1 = VB1

ṘB2 = VB2

(4.37)

V̇B1 = −µB2

R3
12

R12

V̇B2 = −µB1

R3
21

R21

(4.38)

In these equations, µi = GMi is the gravitational parameter of body i and Rij is the position

vector from body i to body j. The orientation of both bodies is propagated using again

Equation 4.29. Finally, we assume that their rotation is torque-free, and therefore that

ω̇B1 = ω̇B2 = 0.

Spacecraft (Orbiting)

The equations of motions for a spacecraft/lander in the binary case differ depending on the

selected mode of propagation, as was also the case for unitary systems. When selecting Bin

0, the motion of the spacecraft is propagated in the TIF as:

ṘSC,TIF = V̇SC,TIF (4.39)
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V̇SC,TIF = CTIF,B1 ·
[
δU (RSC,RB1F)

RSC,RB1F

]
+ CTIF,B2 ·

[
δU (RSC,RB2F)

RSC,RB2F

]
(4.40)

In the latter equation, CTIF,Bi are the transformation matrices expressing the transformation

from the asteroid body-frames to the inertial frame, as given by Equation 4.32. Furthermore,

the terms between brackets express the gravitational attraction of the two asteroid bodies,

computed using their respective polyhedron model in the respective body-fixed frames RB1F

and RB2F,as: RSC,RB1F = CB1,TIF · (RSC,TIF −RB1,TIF)

RSC,RB2F = CB2,TIF · (RSC,TIF −RB2,TIF)
(4.41)

The spacecraft orientation is again propagated using Equation 4.29, and its rotation is con-

stant such that ω̇SC,SCF = 0.

When using mode Bin 1 and propagating the spacecraft in the RB1F, we must again include

the proper virtual accelerations. In this case, the spacecraft motion is propagated as:

ṘSC,RB1F = V̇SC,RB1F (4.42)

V̇SC,RB1F =
δU(RSC,RB1F)

δRSC,RB1F
+ CB1,TIF ·

(
CTIF,B2 ·

δU(RSC,RB2F)

δRSC,RB2F

)
− ω2

B1,RB1F ×RSC,RB1F − 2ωB1,RB1F ×VSC,RB1F (4.43)

In this equation, the position RSC,RB2F is given by:

RSC,RB2F = CB2,TIF · [CTIF,B1 · RSC,RB1F + RB1,TIF −RB2,TIF] (4.44)

The orientation of the spacecraft is again propagated using Equation 4.29; its rotation requires

the inclusion of additional terms due to the reference frame selection and is propagated as:

ω̇SC,SCF = − (CSC,TIF ·ωB1,SIF)× ωSC,SCF (4.45)

Finally, when propagating in mode Bin 2, the equations change to:

ṘSC,RB2F = V̇SC,RB2F (4.46)

V̇SC,RB2F =
δU(RSC,RB2F)

δRSC,RB2F
+ CB2,TIF ·

(
CTIF,B1 ·

δU(RSC,RB1F)

δRSC,RB1F

)
− ω2

B2,RB2F ×RSC,RB2F − 2ωB2,RB2F ×VSC,RB2F (4.47)
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ω̇SC,SCF = − (CSC,TIF ·ωB2,SIF)× ωSC,SCF (4.48)

In these equations, the position RSC,RB1F is given by:

RSC,RB1F = CB1,TIF · [CTIF,B2 · RSC,RB2F + RB2,TIF −RB1,TIF] (4.49)

Spacecraft (Contact)

Finally, when the spacecraft/lander performs contact motion on either of the asteroid bodies

(possible only in modes Bin 1 and Bin 2 ), we must again include the surface forces and

torques, as given by Equations 4.35 and 4.36. In this case, the external acceleration aE is

given by either Equation 4.43 or 4.47. As a final overview, Table 4.3 lists the respective

equations used to propagate the state for the mentioned propagation modes in the binary

case.

Table 4.3: Overview of equations of motion for binary systems.

Bin 0 Bin 1 Bin 2

Orbiting Contact Orbiting Contact

S/C

Ṙ Eq. 4.39 Eq. 4.42 Eq. 4.42 Eq. 4.46 Eq. 4.46

V̇ Eq. 4.40 Eq. 4.43 Eq. 4.35 Eq. 4.47 Eq. 4.35

q̇ Eq. 4.29 Eq. 4.29 Eq. 4.29 Eq. 4.29 Eq. 4.29

ω̇ 0 Eq. 4.45 Eq. 4.36 Eq. 4.48 Eq. 4.36

B1

Ṙ Eq. 4.37 Eq. 4.37 Eq. 4.37 Eq. 4.37 Eq. 4.37

V̇ Eq. 4.38 Eq. 4.38 Eq. 4.38 Eq. 4.38 Eq. 4.38

q̇ Eq. 4.29 Eq. 4.29 Eq. 4.29 Eq. 4.29 Eq. 4.29

ω̇ 0 0 0 0 0

B2

Ṙ Eq. 4.37 Eq. 4.37 Eq. 4.37 Eq. 4.37 Eq. 4.37

V̇ Eq. 4.38 Eq. 4.38 Eq. 4.38 Eq. 4.38 Eq. 4.38

q̇ Eq. 4.29 Eq. 4.29 Eq. 4.29 Eq. 4.29 Eq. 4.29

ω̇ 0 0 0 0 0

T
Ṙ 0 0 0 0 0

V̇ 0 0 0 0 0
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Geometry

The polyhedron model used for the shape and gravity modelling of asteroids in our

software is capable of capturing complex shapes, yet remains in essence a geometrically simple

model consisting only of a collection of tetrahedra. This enables us to apply a number of

geometrical principles that assist in constructing and structuring the polyhedron model to

our specific needs. These are the focus of the current chapter. We first discuss our method for

computing outward-pointing normals in Section 5.1, followed by the theory used to perform

distance computation relative to an arbitrary polyhedron in Section 5.2. Finally, we present a

technique for generating an asteroid atlas, which breaks down a large polyhedron into smaller,

more tractable local worlds in Section 5.3.

5.1 Normal Construction

As mentioned in Section 4.3, one outward-pointing normal can be defined for each facet, edge

and vertex; these normals are used in the detection of collisions between a lander and the

polyhedral asteroid model. The basic computation of the normal to a plane is simple: given

two non-parallel unit vectors û and v̂ that lie in some plane, the normal vector to that plane

can be computed by taking the cross product of these unit vectors, as [40]:

N = û× v̂ (5.1)

For the case of a triangular facet consisting of points P1, P2 and P3, we simply use two of

the unit edge vectors of that facet as û and v̂, see Figure 5.1, and compute the facet normal

by applying Equation 5.1. However, collision detection requires the normals of the asteroid

model to be locally pointing outwards relative to the asteroid surface. Unfortunately, the

direction of a normal computed by Equation 5.1 is dependent on the orientation of u and v

and not known a-priori [40].

43
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Figure 5.1: Geometry of a facet and its normal.
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Figure 5.2: Crossing-number algorithm.

The direction of a given normal can be determined by making use of the crossing-number

algorithm [36]. The working principle of this algorithm is as follows: given that some point

O is known to be located inside a closed volume, it is possible to determine whether a second

point P lies inside or outside that same volume, by counting the number of crossings between

the ray OP and the boundary of that volume. If the number of crossings is odd, point P lies

outside the volume; if it is even1, P lies inside the volume [36]. This principle is illustrated in

Figure 5.2, where point O is indeed located inside the arbitrary volume. The rays that con-

nect points P1 through P4 with point O are traced, and their intersections with the volume

boundary marked with red crosses. Rays OP1 and OP2 cross the boundary an odd number

of times, points P1 and P2 are therefore located outside the volume. On the other hand, rays

OP3 and OP4 cross the boundary an even number of times, points P3 and P4 are therefore

located inside the volume.

If point P is the midpoint of some facet F , we can therefore determine the correct direction

of the normal of that facet by counting the intersections between the ray OP and all other

facets Q of the asteroid model. In this, it is assumed that point O = [0, 0, 0] is the origin

of the axis system with respect to which the asteroid polyhedron model is defined, and that

this point lies inside the asteroid. The intersection between a ray OP and a facet Q can be

computed using basic geometry, as detailed in the following and illustrated using Figure 5.3.

In this figure, point P is the center of facet P. The intersection Pk of ray OP with the plane

of facet Q can be computed as [40]:

Pk = tP with t =
Qn · NQ

P · NQ
(5.2)

In this equation, NQ is the normal2 of facet Q, and Qn is any of the three vertices of facet Q.

1The reader is reminded that zero is an even number.
2The direction of NQ does not matter for this computation.
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Figure 5.3: Geometry of ray-facet intersection.

If 0 < t < 1, the intersection Pk lies between points O and P and is therefore a candidate for

possible intersection between ray OP and facet Q. To verify that point Pk indeed lies within

facet Q, and not outside as is the case for point R, we must perform an additional test. If ui

are the vectors connecting the vertices of facet Q with the intersection point Pk, we compute

three cross-products vi: 
v1 = u3 × u1

v2 = u1 × u2

v3 = u2 × u3

(5.3)

If point Pk does indeed lie inside facet Q, the angles subtended by consecutive rotations over

ui will cover a total angle of 360◦, as can be seen on the right side of Figure 5.3 for point S.

Considering on the other hand point R, these angles add to a total of 0◦. Point R therefore

lies outside of facet Q. This rule can be expressed geometrically through the computation of

the dot products: a1 = v1 · v2

a2 = v2 · v3

(5.4)

If both a1 and a2 are positive, the rotations over successive ui are performed in the same di-

rection. Therefore, any point Pk for which both a1 > 0 and a2 > 0 lies inside facet Q. Using

this rule, it is possible to compute the number of facets which the ray OP intersects. By then

applying the crossing-number rule, we can determine which side of each facet lies on the out-
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side of the asteroid polyhedron model, and the respective outward-pointing normal directions.

As each edge is contained by two facets, we can compute the outward-pointing normal of

an edge by taking the average of the normals of the two facets of which that edge is part.

Analogously, the normal of a vertex is computed through the average of the normals of the

edges that vertex is contained by.

5.2 Distance Computations

Once the outward-pointing normals have been computed using the strategy outlined above,

it is possible to determine which point H along the asteroid surface is closest to some field-

point P. As this H may be located on either a facet, edge or vertex feature of the polyhedron

model, it is necessary that we check the distance from P to all of the features in the considered

world3. This section presents the geometry that is used in determining the distance between

a given point and one of three surface features.

5.2.1 Distance to a Facet

Given a facet F consisting of vertices P1, P2 and P3 with an outward-pointing normal N,

the projection of a point P on the plane of facet F can be computed as:

H = P− dN with d = (P−P1) · N (5.5)

Given that the facet normal N is defined as outward-pointing, the computed distance d from

P to H is the signed distance; if d is positive, point P is located outside the asteroid model.

However, this distance computation is only valid if point P is located above facet F . This

statement is equivalent to requiring the projection H to be located inside facet F . We can

evaluate this criterion using the approach outlined in the previous section, by computing the

cross products of Equation 5.3, where ui are the vectors connecting the vertices Pi with the

projection point H. If the dot products a1 and a2 as given by Equation 5.4 are both positive,

it is concluded that point P is indeed located above facet F ; the computed distance d is valid.

If either or both of the dot products are negative, P is not located above F ; the distance is

then set to d = NaN. The geometry of this point-to-facet distance is illustrated in Figure 5.4.

5.2.2 Distance to an Edge

To compute the distance of a point P to a given edge E consisting of vertices P1 and P2, we

first determine the projection H of P onto E as:

3This can either be the entire asteroid model, or a local world as created by the atlas routine (see 5.3).
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Figure 5.4: Point-to-facet distance geometry.
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Figure 5.5: Point-to-edge distance geometry.

H = tP1P2 + P1 with t =
P1P2 · P1P

P1P2 · P1P2
(5.6)

If 0 < t < 1, then H is located between points P1 and P2, and the distance of P to edge E
can be computed as:

d =
√

PH · PH (5.7)

If, however, t lies outside of its accepted range, the distance is set to d = NaN. We finally

note that the distance d computed using Equation 5.7 is an unsigned distance, and we must

check the position of point P with respect to the outward-pointing normal N of edge E . Point

P is located outside the asteroid model if and only if:

PH · N < 0 (5.8)

In words, this criterion states that the direction of the vector connecting P with its projection

H onto the edge E must point in a direction opposite to that of the edge normal N. The

geometry of this point-to-edge distance is illustrated in Figure 5.5.

5.2.3 Distance to a Vertex

Finally, the distance between a point P and a vertex P1 can be computed as:

d =
√

PP1 · PP1 (5.9)

Analogous to the point-to-edge distance, the distance expressed by Equation 5.9 is unsigned.

Given the outward-pointing vertex normal N, point P is located outside the asteroid model

if and only if:
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PP1 · N < 0 (5.10)

The geometry of this point-to-vertex distance is illustrated in Figure 5.6. Using the given

equations, it is possible to compute for any given point P, the signed distance d to the closest

point H along the asteroid surface. This finally allows for an effective method of detecting

intersections between a lander and that surface, by checking when (d − R) changes signs,

where R is the radius of the lander pod.

N 
P1 

P3 

P2 

P 

Figure 5.6: Point-to-vertex distance geometry.

5.3 Atlas

The impact detection method discussed in the above is highly effective and capable of han-

dling collisions of a lander pod on a polyhedral asteroid model. However, if applied to the full

asteroid model, we run into computation-time issues as high-resolution asteroid polyhedra

frequently consist of over a hundred thousand surface features. Computing the distance to

each of these features at every time step is extremely computationally intensive. Fortunately,

a work-around to this issue can be constructed by applying additional geometry. It is easy to

see that one need only check for collisions between the lander and the nearest features of the

asteroid polyhedron, rather than the full model.

This principle is applied in the construction of an atlas, which consists of a number of much

smaller local worlds that each cover a particular sector of the global world. During propaga-

tion of the lander’s motion, the collision detection checks for collisions only with the features

of this local world, thereby significantly reducing the time needed to perform a collision check.

The construction of this asteroid atlas and the strategy for selecting the correct local world
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is discussed in the present section.

The construction of atlases is based on the application of spherical coordinates, in analogue

to the latitude-longitude system applied on Earth to provide coordinates for a given point

on the surface. The global asteroid model is subdivided into a number of local world ’cells’

that each cover a user-specified range of latitudes and longitudes; nine such cells are shown

in Figure 5.7. All facets of which at least one vertex is contained by some local world cell

are included in that cell’s respective local world, with an applied additional user-specified

margin. This margin is shown as a dotted rectangle for the center world in Figure 5.7 and

accounts for the size of the lander to prevent failure of collision detection in certain cases. The

facets that are part of the center local world are colored for illustrative purposes in Figure 5.7.

	  	  

λ	  

φ	  

Figure 5.7: Atlas geometry.

Unfortunately, the application of the ’classical’ latitude and longitude4 for local world con-

struction has some problems. All local worlds near the equator cover more or less the same

area, but those near the poles are strongly distorted. This effect is perhaps clearest when

reviewing Figure 5.8a and comparing the relative sizes of the squares near the equator to

those close to the poles. We are therefore unable to use this classical atlas-division method

near the poles. Fortunately, a relatively easy solution to this issue is provided through the

4The classical latitude and longitude are defined using the equatorial plane and prime meridian.
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construction of a secondary atlas that uses not latitude-longitude coordinates defined with

respect to the equatorial plane, but rather with respect to the plane defined by the prime

meridian. By combining the original Z-atlas and this secondary X-atlas, and having both

span from latitude -45◦ to latitude 45◦ with an additional margin, we are able to cover the

entire asteroidal sphere with a grid of local worlds that are roughly the same size, indepen-

dent of their location. The coverage of both these atlases is shown on the terrestrial sphere

in Figure 5.8 and on a projected map in Figure 5.9.

(a) Z-Atlas. (b) X-Atlas.

Figure 5.8: Illustration of applied atlas graticules.

During propagation of the lander motion, the algorithm will update the active local world at

each time step, by computing the latitude and longitude of the lander at that time step and

selecting the corresponding local world, by computing its latitude and longitude as:

Z :


Rz =

√
x2 + y2

φz = arctan (z/Rz)

λz = mod [arctan (y/x), 2π]

X :


Rx =

√
y2 + z2

φx = arctan (x/Rx)

λx = mod [arctan (z/y), 2π]

(5.11)

An interesting observation can be made with respect to the selection of active local worlds

during orbiting arcs of the lander pods, when a pod is far away from the asteroid. Indeed, it is

possible for the algorithm to select an ’active’ world that corresponds to the latitude-longitude

of the lander, yet does not contain those asteroid surface features that are geometrically

nearest to the lander; a direct result of the application of spherical coordinates on strongly

non-spherical asteroid bodies. While this may seem problematic at first, it does not pose any

issues to the detection of collisions as the correct world will eventually be selected as the pod

approaches the surface. This is illustrated in Figure 5.10, where the initial world selection is

off, but gets corrected as the pod approaches the asteroid.
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(a) Z-Atlas. (b) X-Atlas.

Figure 5.9: Illustration of applied atlas coverages.

Figure 5.10: Local world selection.





Chapter 6

Propagator

The motion of a lander in orbit around and on the surface of an asteroid is the direct

result of the gravitational and contact interactions between the asteroid and the lander.

Unfortunately, no analytical solution of such motion exists due to the inherent complexity of

the relevant equations of motion. We must therefore resort to numerical integration of the

latter to be able to construct lander trajectories. The current chapter details the principles

behind the numerical integration routine applied by our simulation software in Section 6.1,

along with its time-step variability characteristics. In addition to simulating arcs of smooth

lander motion, our integrator is also capable of detecting and handling events, which interrupt

the continuity of the lander trajectories and are discussed in Section 6.2. Finally, the numerical

implementation of all integrator modules is shown in a coherent structure in Section 6.3.

6.1 Integrator

The numerical integrator that is at the core of our software applies a Runge-Kutta (RK)

method, named after the German mathematicians Carl Runge and Wilhem Kutta who orig-

inally developed the technique. This integration method was selected for its high accuracy

at low computational cost. The RK methods are based on an application of the Euler step,

which approximates the state vector Ẋ of a system at some time t0 + h using a first-order

Taylor expansion starting from the initial conditions Ẋ0 = Ẋ(t0), as [41]:

X(t0 + h) ≈ X0 + hẊ0 ≈ X0 + hf(t0,X0) ≈ X0 + hφ (6.1)

In these equations, h is the step size and φ is the increment function, which describes the

variation of the differential equations that govern the system. Although a variety of RK

methods exist, all of them share a common structure where, in an s-stage RK integrator, s

function evaluations of the factor ki are applied, following [41]:

53



Chapter 6. Propagator 54

ki =

f(t0 + c1h,X0) for i = 1

f(t0 + cih,X0 + h
∑i−1

j=1 aijkj) for i = 2 : s
(6.2)

The ki factors are applied to form the increment function φ, defined as [41]:

φ =

s∑
i=1

biki (6.3)

This in turn allows for the state at epoch (t0 + h) to be estimated as [41]:

η(t0 + h) = X0 + hφ (6.4)

By repeating this procedure until the desired final integration epoch is reached, it is possible

to simulate the motion of an asteroid lander that is the solution of the governing differential

equations.

Coefficients

The particular RK method applied in our software is the RK5(4) method, which is frequently

used as default differential equation solver [42] and performs better than higher-order meth-

ods for the relatively small time steps used during our contact motion simulations. This

method applies a fifth-order approximation for the main differential equation integration and

a fourth-order approximation for the local truncation error estimation. The coefficients for

this method1 have been developed by [43] and are shown in Table 6.1. By implementing these

coefficients into the numerical integration scheme presented above, our integrator is capable

of propagating the governing differential equations of asteroid lander motion and produce

simulated trajectories.

6.1.1 Time-Step Variability

In our discussion of the state approximation η, we have mentioned the application of the

time step h, but did not expand on the particular values that should be used. A good initial

step size for the simulation of orbits is 1/100th of the object’s orbital period [41], yet is by no

means an optimal value to use throughout an entire simulation. Indeed, the inherent error

associated with the state approximation provided by a numerical integrator strongly depends

on the applied step size. As this error often varies throughout an integration, it is generally

desirable to adjust the applied step size h as the integration progresses. By applying two

methods of successive order based on the same set of functions evaluations, we may obtain

an estimate of the local truncation error, which can be used for an efficient step size control.

1More specifically, these coefficients belong to the RK5(4)7M method, which was shown by [43] to be the

most accurate RK5(4) implementation.
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Table 6.1: RK5(4) coefficients [43].

ci ai,j

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561 −25360

2187
64448
6561 −212

729

1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 −2187

6784
11
84

bi
5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

b̂i
35
384 0 500

1113
125
192 −2187

6784
11
84 0

Such an embedded method of s stages yields two independent approximations, of respectively

orders p and p+ 1 [41]:

η(t0 + h) = X0 + h
s∑
i=1

biki (6.5a)

η̂(t0 + h) = X0 + h
s∑
i=1

b̂iki (6.5b)

Using these approximations, the local truncation error e can be estimated as [41]:

e(h) ≈ |η̂ − η| (6.6)

If the error estimate provided by Equation 6.6 is larger than some tolerance ε, the step should

be repeated with a smaller step size. This new step size h∗ may be computed using [41]:

h∗ ≈ p+1

√
e

|η̂ − η|
h (6.7)

In practice, about 0.9 times this maximum time step is applied for safety reasons to avoid a

second step with unacceptable error estimate [41].

The time step modification used in our simulation software expands on the scheme of [41] that

was presented above. As mentioned, the original scheme adjusts the step size and recomputes

the respective integration step whenever the error estimate e > ε. Although this approach

ensures the integration error never exceeds the user-defined upper bound, it does not provide

any control over lower values of h. One realizes that an integration step carried out with very

small h yields a very small error estimate; that step is therefore perfectly acceptable. How-

ever, running a state propagation with small h will require considerably longer computation
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times than a propagation where h is sufficient to guarantee that the error is only just smaller

than ε. Our step size control therefore also applies a lower bound on the error ratio (e/ε).

This practice results in a scheme that adjusts the step size such that the associated truncation

error lies between two user-specified values (e/ε)min and (e/ε)max. Whenever the error exceed

the (e/ε)max value, the step size should be adjusted and the integration step recomputed.

Whenever the error is smaller than (e/ε)min, the step size should simply be adjusted for the

next step; recomputing is not necessary as the error ratio itself is perfectly acceptable from

an accuracy perspective. It is finally noted that if the (e/ε)max ratio is set to exactly 1, it

may occur that the error of some time step is still acceptable, but that the next step exceeds

(e/ε)max and requires that step to be recomputed. It is therefore desirable to carry out the

time step modification even when (e/ε)max reaches some value slightly smaller than 1; the

integration step computed will still be acceptable but we avoid having to recompute the next

step, as the integrator essentially anticipated that the error ratio would be exceeded if the

time step was not adjusted. This scheme is illustrated in Figure 6.1.

(e/ε) 

1 

0 

(e/ε)max 

(e/ε)min 

Adjust h and recompute step 
Adjust h and proceed to next step 
Proceed to next step 

Figure 6.1: Applied step adjustment scheme.

6.1.2 Constraint Application

In addition to verifying that the estimated error on the propagated state is not exceeded, our

integrator is also capable of enforcing certain user-specified constraints on both the state and

the time step. After each newly propagated step, the integrator will check for violation of the

state constraints. If such violation is detected, consider for example the crossing of the Sphere

of Influence (SOI) of the asteroid system, the state is modified according to that constraint’s

respective constraint function. In the case of an SOI crossing, this function might adjust the

lander velocity such that the SOI crossing does not occur, or even terminate the simulation

altogether.
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Secondly, whenever the time step h is adjusted, the integrator will check whether this new

value of h lies between the user-specified minimum and maximum time step value, i.e. that

hmin < h < hmax. If the time step indeed exceeds these limits, it will be adjusted prior to

carrying out any successive integration steps.

6.2 Event Capability

The numerical scheme presented above is highly capable of propagating continuous arcs of

lander motion. Unfortunately, the full motion of a passive asteroid lander is far from contin-

uous but instead interspersed with collisions and other instantaneous interactions with the

asteroid. The numerical integration scheme was therefore expanded to be able to handle such

instantaneous events; this event capability is discussed in the current section.

First and foremost, the integrator is able to detect the occurrence of events through the use

of event filler functions. These are functions that take the state of the system as input and

return either -1 or 1, values which indicate whether an event has indeed occurred. In the

case of collision detection with the asteroid model, the event filler checks the value of (d−R),

where d is the minimum distance from the center of the lander pod to the asteroid and R the

radius of the pod. As a collision occurs whenever (d − R) = 0, the collision event filler will

return:

1 if (d−R) > 0

−1 if (d−R) < 0
(6.8)

By checking after each integration step the value returned by the event filler and comparing

it with that of the previous step, the integrator is able to detect if an event has occurred

between two successive steps. As this detection does not directly provide information on the

exact epoch of the event, the integrator will converge on that epoch upon event detection.

This convergence is achieved using the mid-point or bisection algorithm.

To illustrate the working principles of this algorithm, consider that a sign change in the

(d − R) event filler is detected between epochs t0 and t1. Upon detection of the event, the

integrator will compute the state and corresponding event filler at the intermediate epoch

tm = 1
2(t0 + t1) and compare the sign of the event filler at tm with that at t0 and t1. If

the sign change is found to occur in the interval [t0 → tm], the state at t1 is replaced by

that at tm. If, on the other hand, the sign change occurs in [tm → t1], the state at t0 is

replaced by tm. The halving of the time interval between the two considered states continues

until ∆t = t1 − t0 reaches some user-specified lower bound. This algorithm is illustrated in

Figure 6.2. It is noted that when computing the mid-point tm, one must make sure to only
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propagate forwards from t0 and never propagate backwards from t1, as the latter would re-

sult in a significant error build-up if a high number of collisions are being resolved sequentially.

(d-R) 

t 

t0 

t1 

tm1 

tm2 

tm3 

te 0 

Figure 6.2: Mid-point algorithm used for event convergence.

Each event comes with a user-specified side property, which dictates whether the converged

state instantaneously before or after the event epoch should be returned by the convergence

algorithm. When considering the detection of a collision, we want the state instantaneously

before the event epoch to be returned, as using the after state would result in the lander

having physically crossed through the asteroid surface before the actual collision is handled.

Once the algorithm has converged on the epoch of the event and constructed the correspond-

ing state, the latter is modified by the event’s respective special function. In the case of a

collision, the velocity of the lander will be adjusted in accordance with the equations pre-

sented in Section 4.5. After handling the event, the integrator will resume propagation of the

state until another event is detected.

This event detection scheme is capable of detecting multiple events between two successive

integration steps, and will in that case converge on all detected events and determine their

individual event epochs. Once these epochs have been obtained, the software will handle only

that event which occurs first and then proceed with state propagation until another event is

detected. It is finally noted that after event handling, the aforementioned constraint check is

again performed and handled if necessary. This abstract propagation algorithm is visualized

in Figure 6.3.



Chapter 6. Propagator 59

Initial	  State	  

RK5(4)	  Step	  

Constraint	  
Check	  

Event	  
Check	  

Constraint	  
Function	  

Special	  
Function	  

Constraint	  
Function	  

Constraint	  
Check	  

Terminate	  
Propagation	  

Figure 6.3: Algorithm structure of event-based propagator.

6.3 Algorithm Structure

The algorithm structure discussed in the above can be applied to the event-based propagation

of any set of equations of motion. We now expand on that discussion and apply it to our

problem of lander motion in the asteroid environment. In this description, we follow the ’full’

algorithm structure as depicted by the flowchart shown in Figure 6.4.

The simulation of a lander trajectory starts from a construction of the initial state variables,

as listed in Table 4.1, in function of the specified mode of propagation. Simulations are ini-

tiated with the lander ’flying’ in the neighbourhood of the asteroid, i.e. without any contact

present. This orbiting motion is propagated until a collision with the target asteroid body

is detected, assuming propagation does not take place in mode 0, which ignores all contact

interactions. After carrying out the collision, the software checks the value of the normal ve-

locity V⊥ of the lander relative to the surface feature it collided with. If this velocity is higher

than some set limit, in our simulations V⊥,min = 10−5 m/s, the ’flying’ motion is continued. If

V⊥ < V⊥,min, the normal velocity is set to zero and ’rolling’ contact motion is initiated on the

collision feature. This ’rolling’ motion continues until either of the following three events are

detected: the lander exits the contact feature, the lander collides with an additional feature,

or the lander comes to a full stop.

The first event, the feature exit, is detected by monitoring the value of the normal force ex-

erted by the contact feature during ’rolling’ motion. When this normal force becomes smaller
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than zero, an exit is detected. If any of the surrounding surface features are found to produce

a positive normal force, contact motion will be continued on the latter feature. This occurs,

for example, when the lander rolls off one facet and onto a second facet. If no surrounding

features produce a positive normal force, the lander will be returned to ’flying’ motion and

continue ballistic motion until it once again impacts the asteroid.

The second event, a rolling collision, is detected in the same way as collisions during ’flying’

motion. Upon handling the collision, our software checks again the normal velocity relative

to both the initial contact feature and the feature with which the lander collided. Depending

on which of the features provide a positive normal force, the lander either continues contact

motion on one or both of the features, or is returned to ’flying’ motion.

Finally, the software will terminate the simulation when it detects both the lander velocity

and rotation to be smaller than some set limits Vend and ωend. When these two conditions

are met, the software also checks the slope of the contact feature with respect to the local

gravitational acceleration and ensures its value is below some set limit. The latter check is

performed to verify the lander was not rolling upwards on a facet, a case in which both its

velocity and rotation would be zero at some point, but would accelerate again as the lander

starts rolling downwards again on that slope.
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Chapter 7

Gravity

The complex gravitational fields of asteroids are modelled in our software using the

constant density polyhedron model, which was presented in Section 4.3. The implementation

of this model requires proper verification and validation, to ensure that our computations

indeed yield the correct gravitational accelerations, in particular since we have modified this

model in certain ways to suit our purposes. The current chapter presents the tests performed

to indeed perform Verification and Validation (V&V) of this model. We first evaluate the

original polyhedron model in Section 7.1, after which our linearization strategy is put to the

test in Section 7.2. Next, we review the effect of the choice in model resolution in Section

7.3. Finally, in Section 7.4 we verify that trajectories are propagated correctly in the different

available propagation.

7.1 Polyhedron Model

The amended potential Ω(X) of an asteroid body is defined as the sum of the gravitational

and centrifugal potential [14]:

Ω(X) = U(X)− 1

2
ω2(x2 + y2) (7.1)

Where U(X) is the gravitational potential at position X, and ω is the uniform rotation rate

of the asteroid body around its z-axis. As amended potential maps are available in literature

for a number of asteroids, they provide excellent validation points for the polyhedron model,

when we use it to compute the potential U(X) in the above equation. Indeed, we apply this

approach to asteroid 25143 Itokawa, where we have used a density of σ = 1.98 kg/m3 and

a rotation period of P = 12.312 hr, resulting in a rotation rate of ω = 1.4176 × 10−4 rad/s.

These are the same values as applied in [44], though unfortunately those authors’ polyhe-

dron model is not publicly available. Instead, we apply the model by [16] which consists of

a similar number of facets, on the order of 13,000. The resulting amended potential field of

65
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Itokawa is shown in Figure 7.1, where the ridge line1 and equilibrium points of the field are

marked respectively with a dashed line and stars. The colors red and blue are used to indicate

respectively areas of high and low amended potential. We compare this with Figure 7.2 as

taken from [16], which presents the same parameters.

We observe that Figures 7.1 and 7.2 are extremely similar, providing an initial confirmation

that our computations are correct. Additionally, we have determined the locations of the

equilibrium points of Itokawa’s amended potential and compared them with those mentioned

in [44]; both sets of values are included in Table 7.1. Furthermore, Figure 7.3 visualizes

the locations of the equilibrium points as computed and as taken from [44] with black and

red crosses respectively. We can see from both Table 7.2 and Figure 7.3 that although our

computed equilibrium points are located close to those presented in [44], their locations do not

completely match. This difference is explained through the fact that we have used a different

polyhedron model than the authors of [44]. Furthermore, the amended potential field near

these equilibria is extremely flat in the x-direction for maxima and in the y-direction for saddle

points; these directions are therefore highly sensitive to small variations in the polyhedron

model. We indeed observe that the differences in equilibrium locations are mainly in x-

direction for the maxima and in y-direction for the saddle points. Finally, it is likely that the

authors of [44] have used a slightly different x- and y-axes. A confirmation of this fact is visible

in Figure 7.3, where the offset in equilibrium point location occurs in the same direction for

all equilibria. The z-axis of both our model and that of [44] is the same, however, and aligned

with Itokawa’s axis of uniform rotation. This is confirmed through the fact that the difference

in equilibrium point z-position is very small, as shown in Table 7.1. We conclude from this

that our implementation of the polyhedral gravity model has been validated to work correctly.

7.2 Linearization

The applied gravity field linearization discussed in Section 4.3 results in strongly reduced

propagation times, in particular when the lander is performing contact motion and the ap-

1For a detailed definition of the ridge line, the reader is referred to [16].

Table 7.1: Itokawa equilibrium point locations.

Computed Literature Difference

Type x [m] y[m] z[m] x[m] y[m] z[m] ∆x [m] ∆y [m] ∆z [m]

Max 57.8 464.7 2.0 32.5 469.2 1.9 25.3 -4.5 0.7

Saddle -509.7 38.5 -4.7 -512.1 23.1 -4.3 2.4 15.4 -0.4

Max 13.8 -471.0 1.3 34.1 -471.9 1.5 -20.3 0.9 -0.2

Saddle 519.7 -5.3 -8.4 520.5 17.3 -8.4 -0.8 -22.6 0.0
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Figure 7.1: Itokawa amended potential field with equilibrium points.

Figure 7.2: Itokawa amended potential field with equilibrium points [16].



Chapter 7. Gravity 68

−600
−400

−200
0

200
400

600

−600

−400

−200

0

200

400

600
−600

−400

−200

0

200

400

600

x [m]
y [m]

z 
[m

]

Figure 7.3: Comparison of equilibrium points of Itokawa.

plied time step is small. However, there is an error associated to this linearization that grows

when moving further away from the applied reference state. It is therefore important that the

particular value of ∆Xmax used during propagation is selected such that the produced error

is of an acceptable magnitude. For this purpose, we have computed the gravitational accel-

eration at a set of collinear points for both asteroids 25143 Itokawa and 1999 KW4 Alpha, at

different values of ∆Xmax. To present a meaningful comparison between both bodies, these

values have been chosen as a ratio of the mean volumetric radii2 RV of both bodies.

The results of these tests are shown in Table 7.2 and visualized in Figure 7.4. For Itokawa, the

field points tested ranged from [0,200,0] m to [0,210,0] m in steps of 0.02 m; for KW4 Alpha,

the field points tested ranged from [0,1000,0] m to [0,1040,0] m in steps of 0.1 m. We can see

from Table 7.2 that indeed the inherent error of the gravity field linearization is a function of

∆Xmax; the larger this value, the larger the error. Furthermore, the error magnitude of both

systems as a function of ∆Xmax is very similar. This table may be used to provide control

2The mean volumetric radius is the radius of a sphere with the same volume as the body under consideration.
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over the expected error in the gravitational acceleration; a value of ∆Xmax/RV = 1/100 is a

good default value to use. It is noted that during the propagation of free-flying motion, the

applied time step is generally such that ∆Xmax is exceeded at each step; the gravitational

acceleration is therefore fully recomputed at each integration step. Furthermore, the applied

assumptions of the contact motion model produce an error that is far greater than what is

produced by most ∆Xmax values. We therefore argue that if computational speed is an ab-

solute must, even ∆Xmax/RV values up to 1/25 are acceptable.

Finally, we consider Figure 7.4 which visualizes for Itokawa the relative error in acceleration

for some of the values of ∆Xmax when moving from [0,200,0] to [0,210,0]. We observe that the

error grows for all ∆Xmax as we move away from the initial state, due to the application of

linearization. Furthermore, we observe that the error curve is tangent to zero near the applied

reference state; this is expected as linearization is near-exact when being applied very close

to the reference state. Upon reaching ∆Xmax, the error is seen to suddenly drop as a new

reference state X1 is computed at a distance slightly smaller3 than ∆Xmax along the velocity

direction. When continuing to move outwards, the error is seen to decrease again as the new

reference state is approached. From all this we conclude that the gravity linearization indeed

works correctly.

7.3 Model Resolution

The contact interactions between a lander and the asteroid surface is modelled in our software

using high-resolution polyhedral models. The use of such computationally intensive models

is possible in that case due to the subdivision of the global model into smaller, local worlds as

discussed in Section 5.3. Unfortunately, this approach cannot be applied to the computation

of an asteroid’s gravity field using this model, as using the full-resolution model would ex-

3This is done to avoid numerical instabilities.

Table 7.2: Linearization.

Itokawa (RV = 62.393 m) KW4 Alpha (RV = 253.360 m)
∆Xmax
RV

[-] ∆Xmax [m]
(
g
g0

)
max

[-] ∆Xmax [m]
(
g
g0

)
max

[-]

1/200 0.312 3.7254×10−6 1.267 5.4177×10−6

1/100 0.624 1.5592×10−5 2.534 2.3089×10−5

1/75 0.832 2.7246×10−5 3.378 4.2319×10−5

1/50 1.248 6.2170×10−5 5.067 9.4947×10−5

1/25 2.496 2.4711×10−4 10.134 3.7658×10−4

1/10 6.239 1.5252×10−3 25.336 2.3096×10−3
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plode the total time required to propagate even a single simulation. Instead, we use simplified

models of lower resolutions to reduce the computation effort of evaluating the gravitational

model. These simplified models are constructed from an asteroid’s full-resolution model, by

reducing the total number of vertices of the model. As a result, the simplified models ’average’

the shape of their respective full model.

Due to this shape averaging, the volume of a simplified model differs from that of the original,

full-resolution model. To ensure coherence between the original and simplified models of an

asteroid, the density σ of any model is computed using the mass of that asteroid, and the

volume contained by the considered polyhedron model. The computed mass m = σV and

equivalent point-mass acceleration g = Gm/r will therefore always be the same, regardless

of the resolution of the applied model. Additionally, the coordinates of the simplified models

are shifted such that the center of mass of the polyhedron coincides with the origin of the

applied coordinate system.

By constructing simplified models using this strategy, they provide the best possible approx-

imation of the full-resolution gravity model, using a reduced number of polyhedron vertices.

Nevertheless, an inherent error is introduced. To obtain an estimate of the magnitude of this

error, we evaluate the gravitational attraction at a number of field points near asteroid 25143

Itokawa, for models of different resolution. The applied models and their relevant parameters

are shown in Table 7.3; a visual comparison of their resolutions is shown in Figure 7.5. It

can be seen from Table 7.3 that models with a lower resolution have a higher density, this

is consistent with their decrease in volume and the requirement of constant total mass. The

coordinates of the tested field points are listed in Table 7.4; the norms of the differences in

gravitational attraction between the simplified and full models are shown in Table 7.5, for all

field points.

We observe from Table 7.5 that the error in gravitational attraction ei increases when the

total number of facets is reduced. This is to be expected; when we decrease the number of

Table 7.3: Overview of tested polyhedron models Mi of 25143 Itokawa.

Model NV NF V [107 m3] σ [kg/m3] Surf. err. [%]

Full 98,306 196,608 1.7968 1,953.44

M4 2,562 5,120 1.7539 2,001.32 0.97

M3 642 1,280 1.7255 2,034.10 1.65

M2 162 320 1.5913 2,205.75 8.89

M1 42 80 1.2678 2,768.55 24.40

M0 12 20 0.7539 4,655.78 57.26
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Table 7.4: Coordinates of tested field points.

Point # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x [m] 300 350 400 450 500 0 0 0 0 0 0 0 0 0 0

y [m] 0 0 0 0 0 -150 -200 -250 -300 -350 0 0 0 0 0

z [m] 0 0 0 0 0 0 0 0 0 0 -100 -150 -200 -250 -300

Table 7.5: Analysis of results of polyhedron gravity-model verification.

Point # e4 [%] e3 [%] e2 [%] e1 [%] e0 [%]

NF 5,120 1,280 320 80 20

P1 0.54 0.91 5.55 17.65 52.58

P2 0.12 1.34 5.65 23.15 39.22

P3 0.10 1.20 5.07 18.14 29.51

P4 0.18 1.04 4.24 14.16 22.82

P5 0.20 0.88 3.52 11.26 18.11

P6 0.37 0.28 6.16 16.27 22.89

P7 0.61 0.77 4.82 13.02 21.86

P8 0.49 0.69 3.75 10.24 17.59

P9 0.39 0.59 2.98 8.14 13.96

P10 0.31 0.50 2.39 6.56 11.16

P11 1.99 3.78 15.28 39.27 96.31

P12 1.55 3.00 11.48 32.02 63.75

P13 1.18 2.36 8.70 23.33 41.40

P14 0.88 1.82 6.55 17.19 28.73

P15 0.65 1.40 4.97 12.91 20.90
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(a) M0 (b) M1 (c) M2

(d) M3 (e) M4 (f) MFull

Figure 7.5: Overview of different model resultions of 25143 Itokawa.

facets, we decrease the capability of the polyhedron model to capture small gravity variations.

Furthermore, the error is seen to decrease as we move away from the asteroid surface. This

fact also agrees with our expectations; with increasing distance from the surface, the gravity

field will approach that of a point mass and lose its sensitivity to local mass variations. We

observe that the error for points along the z-axis is about 2.5 times as high as that encoun-

tered along the x- and y-axes. The cause of this fact, which is visible in all model resolutions,

remains unknown.

We conclude from Table 7.5 that models M0 and M1 are completely unusable due to their

large error; this could be expected when reviewing the shape models in Figure 7.5. Indeed,

models M0 and M1 lack the resolution to even capture Itokawa’s irregular shape to a limited

degree. Model M2 does a far better job, with an error of ∼ 7% near the surface, using a ’mere’

320 facets - yielding appreciably fast simulations on the order of 10 seconds computation time.

While models M3 and M4 further reduce the error in gravitational acceleration to less than

1%, they consist of a large number of facets and therefore require significant CPU time to be

evaluated. Therefore, we have chosen to restrict our simulation to using the M2 model, despite

its slightly larger-than-desired error. This will ensure our simulations can be run in acceptable

time spans. It is also argued that the polyhedron model itself is inherently erroneous as its

assumption of constant density fails to capture local mass variations in the asteroid body;

further justifying the acceptability of the M2 model’s error. Nevertheless, improvements of

the applied gravity modelling will be given significant attention in the recommendations for

future work presented in Chapter 11.
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7.4 Propagation Mode

For the final step in the V&V of the applied gravity field modelling, we switch our atten-

tion to the selected mode of propagation. As discussed in Section 4.7, the state variables

will be propagated in different reference frames, depending on the selected mode. To verify

whether propagation is carried out correctly regardless of the mode, we compare the results

for simulations of the same orbit propagated in all modes. This was done for Itokawa in

respectively modes Uni 0 and Uni 1, where the initial conditions were selected to resemble

a circular orbit the asteroid, and converted into the proper reference frames. This resulted

in two representations of the same lander trajectory, in respectively the TIF and the RB1F.

To verify whether these trajectories indeed coincide, we have respectively converted each to

the other, leading to a total of 4 trajectories; these are shown in Figure 7.7. For clarification,

’TIF→TIF’ is the trajectory propagated in the TIF, shown in the TIF. On the other hand,

’TIF→RB1F’ is the same trajectory but converted into the RB1F.

We observe that both sets of trajectories indeed seem to coincide; for a more detailed analysis

we have computed the difference in position between the trajectory propagated in the TIF,

and the trajectory propagated in the RB1F converted to the TIF. These differences are shown

in Figure 7.6. We can see from this graph that the differences between both trajectories are

indeed minimal and do not exceed 10−5 m within our 70-hour mission time, and are limited

to far lower values during the first 15 hours of the simulation. Though this shows the error

does grow in time and limits the accuracy of our simulations over an extended period of time,

we are not interested in simulations that last over 15 hours as any realistic lander hardware

will be restricted in battery life. We therefore conclude that propagation is handled correctly

in all frames for unitary systems.

This comparison was repeated for an orbit around 1999 KW4 Alpha, propagated in modes

Bin 0, Bin 1, and Bin 2. The resulting trajectories are converted into all three frames and

shown in Figure 7.8; they again seem to be consistent. For a more detailed analysis, Figure

7.9 shows the differences in lander position for the trajectories in the RB1F. We can see

that the maximum error encountered in the 70-hour propagation time is about 10−1 m, four

orders of magnitude larger than the maximum error encountered during the unitary-body

simulations. While this is a considerable error, when restricting ourselves to the first 15 hours

of propagation, the maximum error is of the acceptable order of 10−4 m. We therefore conclude

that also the propagation of lander motion in a binary system is carried out correctly in all

reference frames. The exact source of these seemingly regular oscillations remains unknown.
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Figure 7.6: Difference of results from propagation in Uni 0 and Uni 1 around Itokawa.

−1000
−500

0
500

1000

−1000
−500

0
500

1000
−10

−5

0

5

10

x [m]

TIF−>TIF

y [m]

z 
[m

]

−1000
−500

0
500

1000

−2000
−1000

0
1000

2000
−10

−5

0

5

10

x [m]

TIF−>RB1F

y [m]

z 
[m

]

−1000
−500

0
500

1000

−1000
−500

0
500

1000
−10

−5

0

5

10

x [m]

RB1F−>TIF

y [m]

z 
[m

]

−1000
−500

0
500

1000

−2000
−1000

0
1000

2000
−10

−5

0

5

10

x [m]

RB1F−>RB1F

y [m]

z 
[m

]

Figure 7.7: Transformed results from propagation in Uni 0 and Uni 1 around Itokawa.
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Chapter 8

Contact Motion

Analagous to the verification and validation that was performed for our gravity mod-

elling in Chapter 7, the present chapter is focused on detailing the steps taken in the V&V

of the contact motion modules. We first set out a basic environment in Section 8.1, and then

use this in Section 8.2 to verify our implementations of impacts, and in Section 8.3 to verify

rolling motion. Finally, we provide simulations with a number of more complex surfaces to

extend our V&V to these situations.

8.1 World Set-Up

Performing verification of contact motion directly on a full asteroid model is difficult due to

the variability in local slope and gravity of the polyhedron model, as discussed in Section 4.3.

Instead, a unit test is performed using a perfectly flat world with a uniform gravity field. This

world is implemented into the lander simulator software as a collection of parallel facets which

together form a square with side 160 meters. The center of this square coincides with the

origin of the applied axis system; the surface of the square lies in the xy-plane with coordinate

z=0. A visualization of this surface may be seen in Figure 8.1. Imposed on this flat world

is a uniform gravity field, which provides a constant and position-independent acceleration

in the negative z-direction. The potential energy of a particle in such a gravity field may be

expressed as:

Epot = −gz (8.1)

In this equation, z is the distance of the particle along the z-axis, defined with respect to the

flat surface and g is the (constant) gravitational acceleration. We note that this acceleration

is defined along the positive z-axis, and that therefore g < 0.

79
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Figure 8.1: Flat world used for validation of contact motion.

8.2 Collisions

As a first unit test, we consider the bouncing motion of a ball along the x-axis of the flat

world shown in Figure 8.1. For this case, all motion along the y-axis may be disregarded as

y = ẏ = ÿ = 0. The forces and torques acting on the pod in this set-up are shown in Figure

8.2; these are the same surface interactions discussed in Section 4.5.

8.2.1 Analytical Results

Assuming the ball is released with some initial conditions [x0,ẋ0,z0,ż0], it will descend towards

the surface along a parabola in the xz-plane as a result of the uniform gravitational accel-

eration. The motion of the ball during this ballistic flight can be described by the free-fall

equations as:

Free fall:

x(t) = x0 + ẋt

z(t) = z0 + ż0t+ 1
2gt

2
(8.2)

By setting z(t1) = r, where r is the radius of the ball, it is possible to compute the time of

first impact of the ball with flat surface as:
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Figure 8.2: Contact forces and torques acting on the ball during surface contact.

t1 =
−ż0 −

√
ż2

0 − 2g(y0 − r)
g

(8.3)

The corresponding x-position at this first impact can be computed as:

x1 = x0 + ẋ0t1 (8.4)

Upon impacting the flat surface, the ball will experience an instantaneous change in velocity

and rotation rate as a result of the normal, friction and rolling resistance forces and torques

that produce impulses during the bounce. For the uni-axial unit test applied here, the normal

velocity impulse may be computed in function of the ball’s coefficient of restitution e as (see

also Section 4.5):

JN = −(1 + e)ż (8.5)

The normal velocity before and after the first impact are related through this normal impulse

as:

ż1+ = ż1− + JN (8.6)

In this equation, the indices - and + refer to the state of the ball before and after the impact,

respectively. The associated friction force impulse was presented in Section 4.5 and reduces

for this uni-axial case to:
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JF = −min

(
fJN ,

ẋ+ ωr

1 + r2Ī−1

)
(8.7)

Note how the negative sign in Equation 8.7 indicates that the force opposes the velocity of

the ball, as also shown in Figure 8.2. The associated friction-torque impulse can be computed

as:

TF = −rJF (8.8)

This impulse acts in the positive rotation direction, see again Figure 8.2. The velocity of the

ball parallel to the flat surface, as well as its rotation, can therefore be calculated instanta-

neously after the collision as: ẋ1f = ẋ1− + JF

ω1f = ω1− + Ī−1TF
(8.9)

In this equation, Ī = 2
5r

2 is the mass-normalized inertia of the ball. In addition to the normal

and friction impulses discussed above, the ball also experiences a torque and related force

impulse generated by rolling resistance. The torque impulse resulting from this interaction

was presented in Section 4.5 and reduces for the unit test to:

Trr = −min
(
CrrrJω1f , Īω

)
(8.10)

This torque is applied on the ball together with the associated rolling resistance force, given

for this case by:

Jrr = Ī−1rTrr (8.11)

By applying these rolling resistance impulses, the final velocity and rotation of the ball at an

epoch instantaneously after the impact may be computed as:ż1+ = ż1f + Jrr

ω1+ = ω1f + Ī−1Trr
(8.12)

Using these equations, the post-impact state of the ball is computed, after which it will

describe a second parabolic arc of ballistic motion under influence of the uniform gravitational

attraction. The time to this second, and any subsequent impacts, can be computed by

applying again the free-fall equations as:

ti = ti−1 −
2żi+
g

(8.13)

The x-position of the ball at the time of these respective impacts is expressed as:
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xi = xi−1 + ẋ(i−1)(ti − ti−1) (8.14)

By repeatedly applying these equations, the effects of the infinite bounces resulting from

e 6= 1 can be computed. As this process would require an infinite number of computations, in

practice some velocity żmin is specified by the user. When the velocity ż of the ball reaches

below this minimum velocity as a result of some n-th bounce, this vertical velocity will be

set to zero, i.e. ż = 0. However, as it has been implicitly assumed that the coefficient of

restitution e is independent of the state of the ball, it is possible to solve for the effect of the

remaining infinite number of bounces that occur over a finite time span after ż < żmin. This

is done by applying one final bounce immediately after the bounce that resulted in ż < żmin,

with a (virtual) incoming velocity as defined in Section 4.5 as:

ż∞− = − 1

1− e
ż1+ (8.15)

If the vertical velocity of the ball is set to ż = 0 after carrying out this final bounce, the

state of the ball will match the state of a ball for which the full infinite series of bounces was

carried out, as discussed in Section 4.5.

8.2.2 Numerical Simulations

By comparing results from numerical simulations with solutions to the aforementioned analyt-

ical approach, it is possible to verify and validate the correct workings of the collision handling

software. This validation is discussed here in separate steps, so as to analyse the effect of the

collisions themselves, of different żmin values, and of the application of the virtual bounce.

Table 8.1 lists the initial conditions and system parameters that were applied to both the

analytical and numerical model, for the flat world with uniform gravity discussed in Section

8.1. Please note that these parameters were selected such that the ball does not interact with

more than a single facet; extended motion that spans multiple facets will be discussed further

on in this chapter. It is also noted that the magnitude of the ball’s velocity and of the gravita-

tional acceleration are representative of those encountered in the typical asteroid environment.

The time and resulting state of the first three impacts were computed using both the analyti-

cal and numerical models. Both these sets of results are shown with their absolute differences

in Table 8.2, where digits differing between the two solutions are marked in bold type. It is

noted that the numerical results were obtained using a relative tolerance of 10−9 with a time

convergence precision of 10−7 s. Furthermore, the values were recorded using Matlab’s long

precision format. Also, note that the coordinate z is equal to r = 0.05 m for all impacts.

Table 8.2 shows a clear consistency between the analytical and numerical solutions; indeed,

the observed differences are extremely small and do not exceed order 10−8 over the three
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Table 8.1: Initial conditions for flat world simulations.

Parameter Value

x0 -80 m

z0 20 m

ẋ0 0.01 m/s

ż0 -0.023 m/s

ω0 0 rad/s

g −10−4 m/s2

e 0.5

f 0.6

Crr 0.04

r 0.05 m

Table 8.2: Comparison of initial collision results.

Analytical Numerical Difference

1st Impact

t [s] 442.235077930332 442.235077917576 1.2756×10−08

x [m] -75.5776492206967 -75.5776492208242 1.2750×10−10

ẋ [m/s] 0.005702353404435 0.005702353435642 3.1207×10−11

ż [m/s] 0.033611753896517 0.033611753895879 6.3800×10−13

ω [rad/s] 0.1140470680887 0.1140470667568 1.3319×10−09

2nd Impact

t [s] 1114.47015586066 1114.47015581026 5.0400×10−08

x [m] -71.74432723548 -71.74432721484 2.0637×10−08

ẋ [m/s] 0.005127355106653 0.00512735513979 3.3137×10−11

ż [m/s] 0.016805876948258 0.016805876946695 1.5630×10−12

ω [rad/s] 0.1025471021330 0.102547099321852 2.8112×10−09

3rd Impact

t [s] 1450.58769482583 1450.58769481677 9.0602×10−09

x [m] -70.0209332556314 -70.0209332236449 3.1987×10−08

ẋ [m/s] 0.004868846009675 0.004868846004662 5.0130×10−12

ż [m/s] 0.008402938474129 0.008402938476978 2.8490×10−12

ω [rad/s] 0.097376920193505 0.0973769191705 1.0230×10−09
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initial impacts. It is concluded from this comparison that the numerical simulations of these

first impacts work correctly.

As next verification and validation step, not the initial but rather the final impact is consid-

ered. For now, both the analytical and numerical models iterate bouncing until the normal

velocity reaches below some specified limit ż < żmin. Indeed, the virtual bounce described

by Equation 8.15 will be considered further on in this chapter, but is at present ignored.

This approach allows for a clear analysis of the workings of the virtual bounce. Table 8.3

displays, for various values of żmin, the time and state of the ball after its respective final

collision. The results were obtained using again the initial conditions listed in Table 8.1 and

the aforementioned numerical accuracies.

Table 8.3 shows how the state of the ball and the final impact time converge towards some

particular value as more and more collisions are taken into account with decreasing żmin. The

observed differences between the analytical and numerical models are again small, with the

largest differences on the order of 10−6. This proves that the numerical simulations correctly

propagate impacts between the ball and the flat surface, down to any value of żmin.

As final unit test of the collision modelling, the full impact model including the virtual bounce

is considered, by applying once more the initial conditions of Table 8.1 to both analytical and

numerical models. The results of this comparison are shown in Table 8.4, note how only the

horizontal velocity ẋ and rotation ω of the ball are shown, as all other values are equal to

those shown in Table 8.3. Again, the numerical results are seen to be in agreement with the

analytical solution, thereby proving that the former method was correctly implemented.

One final result set is now presented, to verify that the virtual bounce achieves the desired

effect of representing the infinity of bounces. To this end, the numerical simulation results

for different values of żmin are shown in Table 8.5, for both models with and without virtual

bounce. Assuming that the simulation without virtual bounce at the lowest value of żmin

approaches the true solution to an acceptable degree, it is possible to use this particular so-

lution to verify the accuracy of the other numerical solutions. As such, Table 8.5 shows the

difference of the tested numerical model variations with respect to the ’true’ solution.

Table 8.5 clearly shows that a certain error remains when the virtual bounce is not taken

into account, although it decreases with decreasing żmin and has a negligible magnitude even

for the largest tested value of żmin. When applying the virtual bounce, the error is further

reduced by three orders of magnitude to completely negligible values on the order of 10−10.

From this it is argued that the virtual bounce indeed successfully captures the infinite series

of bouncing in a finite number of computations.
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Table 8.3: Comparison of final collision results without virtual bounce.

Analytical Numerical Difference

Final impact for żmin = 10−3 m/s (nimp = 7)

t [s] 1765.69788760567 1765.69788789057 2.8490×10−07

x [m] -68.5091495515302 -68.5091495214147 3.0116×10−08

ẋ [m/s] 0.00464207845406 0.004642078436315 1.7745×10−11

ż [m/s] 5.2518365463×10−4 5.2518365717×10−4 2.5395×10−12

ω [rad/s] 0.092841569081201 0.092841568719567 3.6163×10−10

Final impact for żmin = 10−5 m/s (nimp = 13)

t [s] 1786.37699400685 1786.37699483725 8.3040×10−07

x [m] -68.4132531541307 -68.4132531218547 3.2276×10−08

ẋ [m/s] 0.00462769399445 0.00462769397614 1.8302×10−11

ż [m/s] 8.2059946036×10−6 8.2059998934×10−6 5.2898×10−12

ω [rad/s] 0.092553879889002 0.092553879521748 3.6725×10−10

Final impact for żmin = 10−7 m/s (nimp = 20)

t [s] 1786.70266941768 1786.7026711913 1.7736×10−06

x [m] -68.4117460523361 -68.4117460157014 3.6635×10−08

ẋ [m/s] 0.004627467929181 0.004627467910027 1.9154×10−11

ż [m/s] 6.4109332840×10−8 6.4110548079×10−8 1.2152×10−12

ω [rad/s] 0.092549358583619 0.092549358200528 3.8309×10−10

Final impact for żmin = 10−9 m/s (nimp = 27)

t [s] 1786.70521375683 1786.70521620551 2.4487×10−06

x [m] -68.4117342784898 -68.4117342387312 3.9759×10−08

ẋ [m/s] 0.004627466163104 0.004627466143301 1.9803×10−11

ż [m/s] 5.008541628×10−10 5.046215238×10−10 3.7674×10−12

ω [rad/s] 0.09254932326208 0.092549322866029 3.9605×10−10

Table 8.4: Comparison of final collision results with virtual bounce.

Analytical Numerical Difference

Final impact for żmin = 10−3 m/s (ncoll = 8)

ẋ [m/s] 0.004627450791694 0.004627450773933 1.7761×10−11

ω [rad/s] 0.09254901583388 0.09254901547196 3.6193×10−10

Final impact for żmin = 10−5 m/s (ncoll = 14)

ẋ [m/s] 0.00462746614545 0.00462746612701 1.8448×10−11

ω [rad/s] 0.092549322909169 0.092549322538995 3.7017×10−10

Final impact for żmin = 10−7 m/s (ncoll = 21)

ẋ [m/s] 0.00462746614919 0.00462746613001 1.9188×10−11

ω [rad/s] 0.092549322983953 0.092549322600187 3.8377×10−10

Final impact for żmin = 10−9 m/s (ncoll = 28)

ẋ [m/s] 0.004627466149198 0.004627466129291 1.9907×10−11

ω [rad/s] 0.092549322983957 0.092549322585815 3.9814×10−10



Chapter 8. Contact Motion 87

Table 8.5: Comparison of numerical final collision results with and without virtual bounce.

Without V∞ With V∞ ∆True−Without ∆True−With

Final impact for żmin = 10−3 m/s

ẋ [m/s] 0.004642078436315 0.004627450773933 1.4612×10−05 1.5369×10−08

ω [rad/s] 0.092841568719567 0.09254901547196 2.9225×10−04 3.0739×10−07

Final impact for żmin = 10−5 m/s

ẋ [m/s] 0.004627693976148 0.00462746612701 2.2783×10−07 1.6291×10−11

ω [rad/s] 0.092553879521748 0.092549322538995 4.5567×10−06 3.2703×10−10

Final impact for żmin = 10−7 m/s

ẋ [m/s] 0.004627467910027 0.00462746613001 1.7667×10−09 1.3291×10−11

ω [rad/s] 0.092549358200528 0.092549322600187 3.5334×10−08 2.6584×10−10

(True) Final impact for żmin = 10−9 m/s

ẋ [m/s] 0.004627466143301 0.004627466129291 ø 1.4010×10−11

ω [rad/s] 0.092549322866029 0.092549322585815 ø 2.8021×10−10

One also realizes from Table 8.5 that a regularization velocity of żmin = 10−5 m/s is sufficient

to obtain the highest accuracy possible. Indeed, further lowering this velocity would result

in a far larger number of bounces to be taken into account (as shown in Table 8.3), yet fail

to reduce the error below 10−10. As such, the regularization velocity of żmin = 10−5 m/s will

be applied in any future simulations of this research. This concludes the full verification and

validation of the collision handling software, which has been proven to work correctly and as

designed.

8.3 Rolling

Upon completing the infinite series of impacts discussed in the previous section, the ball will

transition into a regime of rolling motion where instead of experiencing impulsive forces and

torques, it will be continuously at bay of these contact interactions.

Indeed, the normal, friction and rolling resistance forces and torques shown in Figure 8.2 act

on the system at all times, and the ball no longer demonstrates any vertical motion with

respect to the flat surface. The verification and validation of this rolling motion is the subject

of the present section, and will be detailed in a manner similar to that of the previous section.

8.3.1 Analytical Results

In accordance with their definition in Section 4.4, the friction force and related torque act on

the ball only when the velocity of its contact point on the flat surface VH = ẋ−ωr 6= 0. This

condition holds whenever the ball’s velocity and rotation are not synchronized, or ẋ 6= ωr

at some t0. Indeed, as discussed in Section 4.4, the friction force and torque serve to drive
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the ball into this synchronization at ts. Applying their definition as given in Section 4.4, the

change in velocity and rotation of the ball as a result of the friction force and torque may be

given as:

Friction ⇒ ∀t < ts :

ẍ = −fg

ω̇ = −5fg
2r

∀t > ts :

ẍ = 0

ω̇ = 0
(8.16)

Analogously, the change in velocity and rotation rate resulting from the rolling resistance

force and torque may be determined by:

Rolling resistance ⇒

ẍ = −5Crrg
2

ω̇ = −5Crrg
2r

(8.17)

These accelerations acts during the ball’s entire motion. Assuming now that the velocity and

rotation of the ball are indeed not synchronized at some time t0 = 0, they may be computed

as a function of time by:

∀t < ts :

ẋ(t) = ẋ0 + ẍt

ω(t) = ω0 + ω̇t
(8.18)

It is now possible to compute the synchronization time ts by setting ẋ(ts) = ω(ts)r and

substituting Equations 8.16 through 8.18. The time ts is then obtained as:

ts =
−2(ẋ0 − ω0r)

7fg
(8.19)

Furthermore, the position and velocity of the ball in [t0, ts] are described by the following

equations of motion:

∀t < ts :

x(t) = x0 + ẋ0t+ 1
2g(f + 5

2Crr)t
2

ω(t) = ω0 + 5
2gr(Crr − f)t

(8.20)

Once this synchronization has occurred, the velocity of the contact point VH = 0, and friction

will no longer act on the ball. The subsequent motion is therefore influenced only by rolling

resistance. The velocity and rotation of the ball in this regime may be described, applying

Equations 8.17, as: ẍ = 5
2gCrr

ω̇ = 5gCrr

2r

(8.21)

Assuming now that the initial velocity and rotation rate of the ball have some non-zero value

at time ts, it is possible to calculate the stopping time tend of the ball using Equation 8.18 by

setting ẋ(tend) = 0, as:
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tend = − 2ẋ0

5gcrr
+ ts (8.22)

Finally, the position and rotation of the ball in the regime [ts, tend], governed purely by rolling

resistance, may be described by the following equations of motion:x(t) = x0 + ẋ0 + 5
4gCrrt

2

ω(t) = ω0 + 5gCrr

2r t
(8.23)

8.3.2 Numerical Simulations

By using the aforementioned equations, it is now possible to construct analytical solutions to

the uni-axial rolling motion of a ball on a flat surface in a uniform gravity field. By compar-

ing these solutions with results from the numerical simulations, it is possible to verify and

validate that part of the software that handles such contact motion. As primary test, the

ball is released from the same initial position and velocity used in the previous section, as

shown in Table 8.1. However, the coefficient of restitution e is set to zero, and all effects

from friction and rolling resistance are ignored during bouncing motion. As a result, the

ball will dissipate all of its normal velocity ż on first impact, and immediately start contact

motion. Furthermore, since f = Crr = 0 during that bounce, the rotation of the ball will

remain unaffected by the impact and be equal to zero when contact motion is initiated. Ap-

plying this (physically unrealistic1) approach allows for a clear verification and validation of

the regime of contact motion where friction drives the ball’s velocity and rotation rate into

synchronization and, subsequently, of the regime where rolling resistance draws both to zero.

Table 8.6 contains results from both analytical numerical models obtained for different values

of the regularization velocity, together with the difference between these numerical cases and

the analytical solution. This table shows how the numerical results are in agreement with the

analytical solution, and converge more closely as the regularization velocity is decreased. This

proves that the software correctly simulates the ball’s rolling motion, although the inherent

error is larger than was the case for the bouncing motion. This is expected, as the analytical

model does not require the application of regularization velocities, which are unrepresentative

of true physical phenomena. Nevertheless, the implied position error is of order 10−5 m for

the previously selected regularization velocity of żmin = 10−5 m/s, which is of the acceptable

sub-millimeter order.

Finally, the full motion with all contact forces and torques active during contact motion is in-

vestigated, again for different values of the regularization velocities. Analytical and numerical

results for this situation are shown in Table 8.7. It is once more observed that the numerical

1In reality, friction draws the ball’s velocity and rotation into synchronization during the bounces, yielding

that ts = 0.



Chapter 8. Contact Motion 90

T
a
b

le
8
.6

:
C

om
p

ar
is

on
o
f

tr
a
je

ct
o
ry

re
su

lt
s

w
it

h
in

eff
ec

ti
ve
e/
C

r
r
/f

d
u

ri
n

g
b

o
u

n
ci

n
g
.

A
n
a
ly

ti
ca

l
N

u
m

er
ic

a
l

D
iff

er
en

ce
N

u
m

er
ic

a
l

D
iff

er
en

ce
N

u
m

er
ic

a
l

D
iff

er
en

ce

V
r
e
g

=
1
0
−

4
m

/
s

V
r
e
g

=
1
0
−

5
m

/
s

V
r
e
g

=
1
0
−

6
m

/
s

t f
[s

]
4
4
2
.2

3
5
0
7
7
9
3
0
3
3
2

4
4
2
.2

3
5
0
7
7
9
1
7
5
7
5

1
.2

7
5
7
×

1
0
−

0
8

4
4
2
.2

3
5
0
7
7
9
1
7
5
7
5

1
.2

7
5
7
×

1
0
−

0
8

4
4
2
.2

3
5
0
7
7
9
1
7
5
7
5

1
.2

7
5
7
×

1
0
−

0
8

x
f

[m
]

-7
5
.5

7
7
6
4
9
2
2
0
6
9
6
6

-7
5
.5

7
7
6
4
9
2
2
0
8
2
4
2

1
.2

7
6
0
×

1
0
−

1
0

-7
5
.5

7
7
6
4
9
2
2
0
8
2
4
2

1
.2

7
6
0
×

1
0
−

1
0

-7
5
.5

7
7
6
4
9
2
2
0
8
2
4
2

1
.2

7
6
0
×

1
0
−

1
0

t s
[s

]
4
8
9
.8

5
4
1
2
5
5
4
9
3
8

4
9
0
.6
0
0
7
4
5
8
7
6
3
1
2

7
.4

6
6
2
×

1
0
−

0
1

4
8
9
.9
3
4
1
0
4
3
5
4
9
3
8

7
.9

9
7
9
×

1
0
−

0
2

4
8
9
.8
6
3
4
3
6
1
4
1
6
8
3

9
.3

1
0
6
×

1
0
−

0
3

x
s

[m
]

-7
5
.1

8
0
8
2
3
8
2
3
8
7
1
2

-7
5
.1
7
5
8
3
5
1
5
8
3
0
3
3

4
.9

8
8
7
×

1
0
−

0
3

-7
5
.1

8
0
2
8
9
7
5
0
3
9
2
6

5
.3

4
0
7
×

1
0
−

0
4

-7
5
.1

8
0
7
6
1
6
6
6
5
0
9
2

6
.2

1
5
7
×

1
0
−

0
5

ẋ
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results are in agreement with the analytical solution, and again have a negligible position

error of 10−8 for the selected regularization velocity. Although the time error is roughly 0.3

seconds, it is argued that this error, too, is negligible considering the total simulation time of

approximately 2500 seconds. As such, the numerical implementation of contact motion has

been verified and validated and can be used to produce high-fidelity simulations.

8.3.3 Extended Flat-World Motion

The simulations considered in the previous sections were performed at relatively low veloci-

ties, for which the motion of the ball does not extend beyond a single facet. To verify that the

software is indeed capable of carrying out motion spanning multiple facets, a visual analysis

is performed for ball motion on the flat world at higher velocities. Analogous to the strat-

egy employed in the previous section, the effects of friction and rolling resistance during the

bounce are ignored, so as to be able to distinguish the effects from both forces during rolling

motion. The applied initial conditions and parameters are shown in Table 8.8.

The resulting numerically simulated motion for these initial conditions is shown in Figure

8.3a; it is noted that the ball comes to a stop at approximately 3,060 seconds at position

[68.7693, 31.2616, 0.0500] m. The altitude of the ball, corresponding to its z-coordinate, is

shown in Figure 8.3b. These two figures clearly show how the ball reaches a lower maximum

altitude after each successive bounce, until it is forced in contact motion where its altitude

remains constant and equal to r = 0.05 m.

Figures 8.3c and 8.3d show the velocity of the ball and of the contact point between the

ball and the flat surface, respectively. Inspecting the ball’s velocity, the effects of the suc-

cessive impacts and intermediate parabolic arcs are clearly observed. The linear velocity

behavior between approximately 1,900 and 2,200 seconds corresponds to the regime of con-

tact motion where the velocity is reduced and transferred into rotation, until the two reach

synchronization. Once this occurs, the linear slope of the velocity changes as rolling resistance

becomes the only force acting on velocity, and eventually drives the ball’s velocity to zero.

This matches the observed behavior of the contact point velocity, which is drawn to zero by

friction, and maintains that value throughout the rolling resistance-dominated regime. For

clarity, the three successive flying/friction/rolling resistance regimes are marked by respec-

tively blue, yellow and red backgrounds in both figures. Complementary to these velocity

plots is the time history of the ball’s rotation, as shown in Figure 8.4a. In this figure, the

effects of friction and rolling resistance are clearly distinguishable in the respective increase

and decrease of the rotation.

To further analyze the motion of the ball, several of energy plots have also been constructed.
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Table 8.8: Initial conditions for extended flat world simulations.

Parameter Value

x0 -50 m

y0 -40 m

z0 40 m

ẋ0 0.05 m/s

ẏ0 0.03 m/s

ż0 -0.07 m/s

ω0 0 rad/s

g −10−4 m/s2

e 0.4

f 0.8

Crr 0.15

r 0.05 m

Figure 8.4b shows the variation of the total energy of the ball, where the successive colli-

sions produce the expected instantaneous drops in energy. Furthermore, one also observes

the predicted drop in total energy in the yellow, friction-dominated regime resulting from the

imperfect conversion from kinetic to rotational energy. Finally, the purple, rolling resistance

regime illustrates how the rolling resistance force and torque reduce the total energy of the

system until the ball comes to a full stop with zero rotation.

The total energy of the ball may be separated into potential, kinetic and rotational energy,

as plotted respectively by Figures 8.4c, 8.4d and 8.4e. These figures, too, match the ball’s

expected and observed behavior. The potential energy fluctuates during the bouncing motion,

and remains constant during rolling. The kinetic energy displays similar fluctuations between

collisions, and instantaneous jumps at the collision epochs, which match the velocity jumps

shown in Figure 8.3c. The energy dissipation during the friction and rolling resistance regimes

is also visible. The rotational energy is zero until contact motion starts, as expected since

neither friction nor rolling resistance effects are currently taken into account during bouncing.

Once contact motion is initiated, the rotational energy is first seen to increase and then

decrease, matching the observed variation in rotation shown in Figure 8.4a. Finally, Figure

8.4f plots all of these energies versus their final value, which visualizes the expected energy

exchanges during bouncing and rolling motion. It can be seen from these figures that the

software is indeed capable of handling the transfer of the ball between adjacent facets of the

flat world.
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Figure 8.3: Results for extended-flat world motion.

8.4 Motion on Relief Worlds

The previous sections have considered the motion of a lander pod on a perfectly flat world.

We now expand our V&V to worlds that are topographically more irregular to analyze our

software’s handling of those more complex situations.

8.4.1 Table World

As primary ’relief’ world, consider the collection of facets shown in Figure 8.5. This world

is similar in size to the flat world used in the previous sections, but features a vertical drop

along the y-axis of roughly 16 meters near x = −10 m. We call this world the table world.
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Figure 8.4: Continued results for extended-flat world motion.
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Figure 8.5: Table world used in contact motion V&V.

Motion on an Edge

Prior to reviewing global motion on this table world, a particular and unique validation point

may be constructed for the case where the ball slowly rolls off the ’cliff’. In this case, it is

assumed that the ball has zero velocity V and rotation ω when it is directly above the ledge,

represented by situation ’0’ in Figure 8.6. If the ball is then given an infinitesimally small

velocity, it will move towards the vertical drop and start to be pulled down by gravity. The

ball then rolls on the edge between the horizontal and vertical facet, as shown by situation

’1’, until separation occurs at some angle θesc, see situation ’2’. If the coefficient of friction

f between the ball and the edge is sufficiently high to guarantee continuous synchronization

of velocity and rotation, it is possible to derive an analytical expression for this θesc. Using

the principle of conservation of energy, it is possible to equate the total energy of the ball at

situations ’0’ and ’1’ as2:

Epot,0 = Epot,1 + Ekin,1 + Erot,1 ⇔ gr = gr cos θ +
1

2
V 2 +

1

2
Īω2 (8.24)

If f is indeed sufficiently high to guarantee synchronization between the ball’s velocity and

rotation, they will be related to reach other through:

V = ωr (8.25)

2Both kinetic and rotational energy are zero in situation ’0’ as the ball does not possess any velocity or

rotation.
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Figure 8.7: Simulated motion of a ball rolling off a vertical edge.
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Furthermore, as presented in Section 4.4, the acceleration produced by the normal force on a

ball rolling on an edge is given by:

N = θ̇r2 − g cos θ (8.26)

The ball will exit the edge and continue contact-less ballistic flight as soon as the normal

force N = 0, which can be stated using Equation 8.26 as:

θ̇2r = g cos θ (8.27)

One realizes from Figure 8.6 that θ̇ = ω, allowing for Equation 8.27 to be rewritten as:

ω2r = g cos θ (8.28)

It is now possible to obtain an expression for the release angle θesc by substituting Equations

8.25 and 8.28 into Equation 8.24 and rewriting the result as:

cos (θesc) =
2

3 + j
(8.29)

In this equation, the massless inertia Ī = jr2 of the ball was substituted, with j = 2/5 for a

ball with homogeneous mass distribution. By applying the arccosine, the angle θ can finally

be computed as:

θesc ' 53.968◦ (8.30)

It is therefore concluded that when a ball is pushed over an edge with infinitesimal initial

velocity, and if friction is sufficiently high, it will leave the edge and continue to move away

when the angle between the local normal direction and the center of the ball exceeds an angle

of ∼ 54◦. By numerically simulating this case using the developed software, it is possible to

validate the software’s correct handling of motion along an edge.

To indeed simulate this case, the ball was placed directly above the edge and given a velocity

of 10−4 m/s toward the drop. The resulting trajectory is shown, in the XZ-plane of the table

world, in Figure 8.7. In this figure, the position at which the ball ceases contact with the

edge is marked by a star and has XZ-coordinates [−11.0703, 16.6961] m. The angle θ of this

point with respect to the vertical, as defined in Figure 8.6, was computed as θ = 54.4166◦,

where a friction coefficient of f = 50 was applied3. The small remaining difference of ∼ 0.4◦

is attributed to the application of regularization applied to the small velocities involved in

this situation; it is therefore concluded that the software correctly handles the motion of a

ball rolling off a vertical edge.

3Although the theory outlined above applied infinite friction, using a very large friction coefficient would

lead to numerical instabilities.
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Global Motion

As mentioned at the start of this section, the example of a ball rolling off a vertical edge covers

but a small portion of the total table world. Indeed, it is interesting to simulate bouncing and

rolling motion across the entirety of this world, as was performed using the initial conditions

and parameters shown in Table 8.9. Please note that all contact interactions are set to active

during this simulation. The resulting trajectory is shown in Figure 8.8a. It can be seen from

this figure that the ball first bounces on the ’upper’ part of the world and eventually transi-

tions into a rolling motion on this same surface. It then rolls off the vertical drop and bounces

on the ’lower’ part of the world, after which it briefly rolls on this surface and finally comes

to a full stop. To illustrate this motion more clearly, Figure 8.8b shows the time history of

the z-coordinate4, where the bouncing and rolling segments are marked by respectively blue

and red backgrounds.

The dichotomy between bouncing and rolling regimes is also clearly visible from Figure 8.8c,

where the velocity of the ball is seen to fluctuate and instantaneously decrease during the

former, and gets drawn to zero during the latter. The effects of friction are clearly visible in

Figure 8.8d, which shows the contact point velocity as varying during bouncing motion and

as constant zero during rolling motion, confirming the expected synchronization between the

ball’s velocity and rotation rate. Complementary to the velocity plots, Figure ?? illustrates

the variation of the ball’s rotation rate. This figure matches the change in velocity resulting

from friction during rolling motion; one also observes the expected constant behavior during

ballistic arcs, with instantaneous changes in rotation at every surface impact.

Table 8.9: Initial conditions for table world simulations.

Parameter Value

x0 -75.215 m

y0 17.659 m

z0 50.658 m

ẋ0 0.0372 m/s

ẏ0 -0.0156 m/s

ż0 -0.0213 m/s

ω0 0 rad/s

g −10−4 m/s2

e 0.55

f 0.85

Crr 0.045

r 0.05 m

Reviewing the time history of the total energy of the ball as shown in Figure 8.8f, it displays

instantaneous changes at every impact and remains constant during the intermediate ballistic

4For this world, the z-coordinate of the ball is equal to its altitude with respect to the ’lower’ surface.
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Figure 8.8: Results for table world motion.
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arcs. This behavior was anticipated, as was the decrease in total energy during rolling motion.

Finally, the variations in potential, kinetic and rotational energy of the ball as shown in

Figures 8.9a, 8.9b and 8.9c match the observed state of the ball and, too, show their respective

expected variations with Figure 8.9d clearly expressing the energy exchanges that occur over

the entire motion of the ball. It is concluded that the global motion of the ball on the table

world is carried out correctly by the software.
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Figure 8.9: Continued results for table world motion.

Impacting a Wall

A final V&V case occurs when the ball approaches the vertical wall along a rolling motion

on the ’lower’ surface, and subsequently impacts it. This situation is illustrated in Figure

8.10, where the ball is seen to roll towards the vertical wall on the right and impact it with a

velocity V0 and rotation ω0. As a result of the normal, friction and rolling resistance impulses,
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the ball will convert some of its rotation into vertical velocity. Rather than bouncing back

horizontally, it will therefore be thrown into the air and move away from the wall on a ballistic

trajectory, eventually re-impacting the horizontal surface.

V 
V0 

V1 ω 

ω2 

Fg 

N 

ω1 

ω 

V 

h m
ax

 

Figure 8.10: Illustration of a pod impacting a wall.

Not only can this particular case be simulated to visually verify whether it is carried out

correctly, but it is also possible to construct an analytical solution to this motion, using the

approach outlined in Section 8.2.1. To perform this verification and validation, a simulation

is launched with initial conditions that have the ball impact the vertical wall during rolling

motion. The applied initial conditions and parameters are shown in Table 8.10. An overview

of the simulated motion is shown in Figure 8.11. One observes the ball bouncing on the

’lower’ surface and transitioning into a rolling motion which impacts the vertical wall. Since

the recoil motion is virtually impossible to distinguish at this scale, Figure 8.12 presents a

detail of the motion in the immediate neighbourhood of the wall. Please note that the axes

of this figure are shown such that the direction of motion of the ball corresponds with that

illustrated in Figure 8.10.

The state of the ball just before the collision was retrieved from the simulated trajectory

and entered into the analytical model. The resulting analytical post-impact state is shown in

Table 8.11, together with the analytically computed maximum altitude hmax which the ball

will reach along its first ballistic arc after the collision. This table also shows the same results

as produced by the numerical simulation, allowing for the final verification and validation.
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Table 8.10: Initial conditions for wall impact simulation.

Parameter Value

x0 75.0 m

y0 17.659 m

z0 15.0 m

ẋ0 -0.0572 m/s

ẏ0 0 m/s

ż0 -0.0113 m/s

ω0 0 rad/s

g −10−4 m/s2

e 0.55

f 0.85

Crr 0.045

r 0.05 m

−100
−50

0
50

100 −100

−50

0

50

100
0

20

40

60

80

100

y [m]
x [m]

z 
[m

]

Figure 8.11: Simulated trajectory of a pod impacting a vertical wall.
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Figure 8.12: Detail of simulated trajectory of a pod impacting a vertical wall.

Table 8.11: Comparison of wall impact results.

Analytical Numerical Difference

ẋ [m/s] 0.008264117241481 0.008264117241572 9.2001×10−14

ż [m/s] 0.004068083589284 0.00468083564989 6.1275×10−04

ω [rad/s] -0.08136167178569 -0.081361670295539 1.4902×10−09

hmax [m] 0.132746520447009 0.132746515487654 4.9594×10−09

The simulated trajectory shown in Figure 8.12 matches the expected trajectory presented by

Figure 8.10, where the ball’s trajectory towards the wall is plotted in red, and the trajectory

away from the wall is shown in blue. Indeed, the numerically simulated post-impact state of

the ball matches the analytical solution, as can be read from Table 8.11. All cases of motion

tested for the table world have shown the expected behavior; furthermore, the simulated

motions correspond to the analytical solutions with only a negligible error remaining. It

is therefore concluded that the software correctly handles all motion on the table world,

justifying the continuation of contact motion validation on more complicated worlds that

involve multi-contact situations.

8.4.2 Gutter World

To allow for V&V of such multi-contact cases, we have constructed the gutter world illus-

trated in Figure 8.13a, where the coloring of the facets is indicative of their vertical slope.

The world features a gutter with both an inclined and a flat section, on which a pod may

exhibit rolling motion while in contact with multiple facets. Analytical validation such mo-

tion is not possible, and we are therefore restricted to visual inspection of the trajectories

and energy variations of the numerical simulations. We consider first the situation where

the ball is released with a certain velocity above the inclined part of the gutter, resulting in

the trajectory visible in Figure 8.13a. The initial conditions and parameters applied in this
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simulation are shown in Table 8.12. We observe the ball bouncing on the inclined surface and

quickly transitioning into rolling motion, where gravity draws it onto the flat section of the

gutter. There, the pod exhibits an oscillatory motion as its combined velocity and rotation

alternatively make it roll and bounce on both sides of the gutter. The ball eventually comes

to a stop after the aggregate of collisions and rolling resistance has removed all of its energy;

the time history of the ball’s energy exchange can be seen in Figure 8.14a.

A second trajectory is shown in Figure 8.13b, where the ball is released directly above the

gutter, and displays the expected multi-contact motion as it rolls along the gutter, in contact

with both sides. It eventually comes to a full stop while still touching two facets. The time

history of the energy of this trajectory is also shown in Figure 8.14b. Again, the ball displays

the expected motion, where we also observe that the transfer of the ball between neighbouring

facets is handled correctly during multi-contact motion. It is noted that the pod had no initial

rotation in either of the two simulations.

8.4.3 Pit World

Another investigation of multi-contact motion is performed on what we call the pit world,

as shown in Figure 8.15a. The coloring of the facets is again representative of their vertical

slope. This world features a center pit surrounded by tall peaks which force the ball to move

into the pit, and allows us to verify that the ball correctly dissipates its energy and eventually

comes to a stop at the bottom of the pit, in contact with three surface features.

Two trajectories on this world are presented, the first is shown in Figure 8.15a and is seen

to bounce around the pit before coming to a stop at its bottom. The second trajectory,

shown in Figure 8.15b is released more directly towards the center of the pit, and displays an

oscillatory motion where it hops back and forth between two sets of facets. This trajectory,

Table 8.12: Initial conditions for gutter world simulations.

Parameter Gutter 1 Gutter 2

x0 -2.22 m 0.001 m

y0 7.8 m 5.356 m

z0 4.07 m 1.892 m

ẋ0 -0.01 m/s 0 m/s

ẏ0 0 m/s 0 m/s

ż0 −10−6 m/s −10−6 m/s

g −10−4 m/s2 −10−4 m/s2

e 0.55 0.55

f 0.85 0.85

Crr 0.045 0.045

r 0.05 m 0.05 m
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(b) Simulation 2.

Figure 8.13: Trajectories of gutter world simulations.
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Figure 8.14: Energy comparison of gutter world simulations.

too, eventually stops in the bottom of the pit. The energy exchanges of both simulations are

shown in Figures 8.16a and 8.16b, respectively. The initial conditions and parameters applied

in the simulations are included in Table 8.12.

8.4.4 Spike World

The final test for the contact motion module consists of simulations on the spike world, which

is shown in Figure 8.18. This world is based on the flat world discussed in Section 8.1, but has

random variations imposed on the z-coordinate of all but the outer points. This results in the

highly irregular surface shown, and is an appreciable substitute for the types of topography

encountered on an asteroid. A total of four simulated trajectories are shown, in Figures 8.18

through 8.20. The initial conditions and parameters for these simulations are included in
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Table 8.12. All four simulations display the expected behavior, where the ball bounces and

rolls around the world in a very random fashion, eventually coming to a stop in some lower

region of the spike world. Not only do these simulations prove that the contact module works

correctly and is capable of handling complex, multi-contact situations, but it also allows

us to draw an important conclusion on the motion of a pod on irregular (asteroid) surfaces.

Indeed, although all four trajectories occur on the same surface, they cover distinctly different

distances over the spike world; as is especially visible when comparing Figures ?? and 8.20.

This property of pod motion on irregular surface will be strongly reflected in trajectories

simulated over a global asteroid model in the subsequent chapters. For now, it is concluded

that the contact motion module has been fully verified and validated.
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Figure 8.15: Trajectories of pit world simulations.
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Figure 8.16: Energy comparison of pit world simulations.
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Figure 8.17: Simulated trajectory 1 on spike world.
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Figure 8.18: Simulated trajectory 2 on spike world.
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Figure 8.19: Simulated trajectory 3 on spike world.
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Figure 8.20: Simulated trajectory 4 on spike world.



Part IV

Simulation and Results

109





Chapter 9

Unitary Systems

With the simulation software that was developed and discussed in the preceding chap-

ters, we are now able to generate high numbers of asteroid lander trajectories. This allows

us to produce the results necessary to achieve the thesis goals set in Chapter 3. For now,

we restrict ourselves to landing on a unitary asteroid body; deployment to binary systems

will be treated in the subsequent chapter. Section 9.1 discusses the selected unitary target

and the strategy applied to deploy our landers; special attention is also given to the fictitious

mission scenario and hardware that is simulated. Section 9.2 presents our results for nominal

deployment, which provides a general assessment of the employed landing strategy. As shown

in the previous chapters, deployment is sensitive to a number of parameters; we also inves-

tigate the effect of varying these parameters on the lander trajectories. Section 9.3 analyzes

the effect of rocks and boulders on the asteroid surface, Section 9.4 discusses variations in the

surface interaction coefficients, and Section 9.5 finally studies the effects of the mothership

GNC accuracies.

9.1 Mission Scenario

The polyhedron shape models applied in our simulations are available online for a number of

asteroids [45]. Most models have been constructed using ground-based observations and are

of low-to-medium resolution. Only those asteroids visited by spacecraft have high-resolution

shape models available. As it is unlikely for any of these bodies to be visited again, it

is tempting to investigate deployment to one of the former asteroids. However, any results

produced for such cases would be of questionable scientific accuracy due to the inherent errors

present in the gravitational and contact interactions with such (relatively) low resolution

models. As discussed in Section 2.1.2, asteroid 25143 Itokawa was visited by the Japanese

Hayabusa spacecraft in 2007; a mission that resulted in Itokawa’s 200,000-facet polyhedron

model being the highest resolution currently available for any asteroid. We have therefore

111
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selected this body as the target for our simulations of deployment to a unitary system.

Target

The general shape of 25143 Itokawa has frequently been described as resembling that of a

sea otter [20]. The asteroid consists of two main parts; the smaller is referred to as the head,

the larger is called the body. Both parts are connected to each other through the neck ; an

overview of this geometry is shown in Figure 9.1. The major axes of the asteroid have lengths

of respectively 535± 1 m, 194± 1 m and 209± 1 m. The mass and mean volumetric density

of Itokawa are respectively 3.51 ± 0.105 × 1010 kg and 1.90 ± 0.13 g/cm3. The asteroid is in

uniform rotation with a period of 12.1324 ± 0.0001 hr; other relevant parameters may also

be found in [20]. In our simulations, we will make use of Itokawa’s full-resolution polyhedron

model for contact interactions, but apply the simplified 320-facet model for gravity modelling,

as discussed in Section 7.3.

Figure 9.1: Asteroid 25143 Itokawa [46].
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Deployment Strategy

The strategy we apply to release and deploy landers to Itokawa (or any given unitary body)

is taken from [16] and is based on the structure of the asteroid’s amended potential field. We

have shown this field together with its four equilibrium points in Section 7.1. More specif-

ically, the strategy makes use of the energy characteristics of this potential field. It is easy

to see that we wish to release landers from their mothership with the lowest specific energy

possible, as this implies there is less energy to be damped before the lander comes to a full

stop on the asteroid surface. Following this principle, it is desirable to release the landers

as close to the asteroid as possible, with the lowest possible relative velocity with respect to

the surface. However, this contradicts the preference from mission designers to stray from

close approaches with the asteroid surface. This is because, when moving very close to the

surface, any component failures or large GNC inaccuracies could potentially result in a ’crash’.

The strategy discussed in [16] uses an optimum between these two contradictory requirements,

and deploys landers from the neighbourhood of the lowest energy (saddle) equilibrium point

of the amended potential field. In this strategy, the mothership is set on a hyperbolic1 escape

trajectory that passes by the equilibrium. By ’ejecting’ the lander in the vicinity of this

point with a specific velocity, it will be set on a trajectory along the unstable manifold of the

equilibrium point, assuming that the lander’s total initial velocity is low. This manifold then

guides the lander toward the asteroid surface, after which the first and subsequent impacts

dissipate energy until the lander has come to a complete stop. Meanwhile, the mothership’s

trajectory safely guides it away from the asteroid surface.

This strategy can be modified to mission designers’ wishes: when moving the point of release

further away from the asteroid surface (along the axis of the lowest-energy equilibrium point),

the mothership safety will increase but the probability of successful lander deployment will

diminish. Analogously, when we move the release point closer to the surface, the chances of

successful landing will increase at the cost of decreasing the safety of the mothership. The

particular effects of moving the release point will be analyzed in Section 9.5; for nominal de-

ployment we release the lander exactly from the lowest-energy equilibrium point - for Itokawa

this is the saddle point at [520,−5] m in the RB1F.

Lander Hardware and Surface Parameters

The lander hardware parameters used in our simulations mimic those of the BASiX mission

discussed in Section 2.2.4, simply because it is the only (proposed) mission to indeed apply

passive, spherical lander packages. These landers have a radius of R = 0.125 m and a mass of

1Although the geometric shape of the mothership orbit is not exactly a hyperbola, we use the term here to

refer to an orbit that will escape the asteroid’s neighbourhood.
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m = 10 kg2. Related to this choice of lander hardware are also the parameters that govern the

interactions between the pod and the asteroid surface, which are properties of the material

and structure of the lander.

The magnitude of the coefficient of restitution e, which governs collisions, is dependent on

the elasticity of the impacting objects. Using telemetry data from Hayabusa’s touchdown,

[5] was able to estimate the value of e of the spacecraft bouncing on the surface of Itokawa

as e ≈ 0.84 for an impact speed of 6.7 cm/s. This value is considerably larger than that

measured for microgravity impacts in dust with velocities of 1-100 cm/s, where the value of

e ≈ 0.01 was obtained [47]. A third relevant measure is provided by [48], where the coefficient

of restitution of ∼10-meter sized boulders rebounding at ∼5 m/s on the surface of Eros was

estimated at e ≈ 0.10. Furthermore, [15] and [34] used values of respectively e = 0.50 and

e = 0.65 in simulations of landers on the surface of an asteroid. We select the average value

of e = 0.65 as nominal, and will investigate the effect of changing this coefficient in Section 9.4.

The coefficient of friction f , which determines the magnitude of the Coulomb friction force

and torque, remains to date unknown for the motion of an object on the regolith surface of

an asteroid. In [15], a value of f = 0.5 was used. [34] applied a friction coefficient of f = 1.0

but stated that the particular value of f does not affect the surface motion of a spherical pod

on an asteroid, as long as it is not too low (f < 0.2). We select the average of the two values

encountered in literature, f = 0.75, as nominal value and study the effect of changing the

parameter in Section 9.4.

The coefficient of rolling resistance Crr of a spherical object rolling on a granular surface

surface remained unknown until recent experimental internship work by the author of the

current thesis. In this (unpublished) work, we have measured Crr of a ball with radius R ≈
0.11 m to be 0.035 [49]. As the experiments performed in this work were aimed particularly

at producing results that can be used in asteroid pod simulations, this value is selected as

nominal. We will again vary the magnitude of the coefficient in Section 9.4.

Mothership GNC

Finally, we also require some parameters that that describe the mothership GNC capabilities.

The inaccuracies present in this systems will affect the release position and velocity of the

landers and, as discussed before, influence the maximum allowable distance from the asteroid

surface to ensure successful deployment. The two relevant parameters here are the 3σ-errors

on the release position and velocity; we assume for simplicity that these errors are equal in

all directions. In Section 2.2.2, the norm of the expected accuracies for the OSIRIS-REx

2The initial BASiX pod design states that the pod mass will be less than 15 kg.
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spacecraft have been given as 3σpos = 3.25 m and 3σvel = 0.20 mm/s. On the other hand,

[16] uses the values 3σpos = 60 m and 3σvel = 30 mm/s; more than an order of magnitude

in difference, though they state that these are very conservative. For our nominal simulation

parameters, we select intermediate values of 3σpos = 10 m and 3σvel = 10 mm/s. Finally,

we also select a nominal release position and velocity. As discussed before, we will nominally

release the landers from the lowest-energy saddle equilibrium point at Xrel = [520,−5, 0] m;

as nominal release velocity we select the velocity of Vrel = 3 cm/s that is used in [16]. This

release velocity is directed along the negative x-axis of the RB1F. These parameters will be

varied in Section 9.5 and their effects on the resulting lander deployment investigated. An

overview of all parameter values mentioned in the above is shown in Table 9.1.

Table 9.1: Nominal Deployment Parameters.

Parameter Value

m 10 kg

R 0.125 m

e 0.65

f 0.75

Crr 0.035

Xrel [520,-5,0] m

3σpos 10 m

Vrel 3 cm/s

3σvel 1 cm/s

9.2 Results for Nominal Deployment

Using the parameters mentioned in Table 9.1, we have produced a batch of 100 lander de-

ployment simulations on asteroid Itokawa. As an overview, the first 10 trajectories are shown

in full in Figure 9.2a. Additionally, Figure 9.2b visualizes the initial, first impact, and final

stop positions of all trajectories in the batch. Finally, Figures 9.2c and Figures 9.2d provide a

histogram-overview of respectively the time-to-first-impact and time-to-full-stop. It is noted

that the velocity uncertainty acts only on the magnitude, and not direction, of the simulations

presented in Sections 9.2 through 9.4. The full, three-dimensional uncertainty will be applied

in Section 9.5.

Reviewing these results, we can see that the applied deployment strategy is indeed successful;

the lander pod reaches the asteroid surface in all of the 100 simulated cases. We observe

from Figure 9.2b a high degree of consistency in the lander’s point of first impact (indicated

by a blue cross). This result was expected, since all simulations are initiated in the close
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(a) Overview of 10 trajectories.

(b) Initial, first impact and final stop locations.
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Figure 9.2: Results for nominal deployment to Itokawa.
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neighbourhood of the equilibrium point. A similar consistency is seen in the time to first

impact. Reviewing the location of final stop for all simulations, a much higher degree of

randomness is observed. This randomness is due to both local variations in the slope of the

asteroid and the effect of the rocks and boulders on the asteroid surface. As a result of these,

two lander pods with very similar release conditions may be subjected to completely different

impulses and end up at opposite ends of the asteroid. We do observe that most trajectories

terminate in an area of low amended potential; consistent with the fact that a ball is more

likely to come to rest at the bottom of a hill than on its top. Finally, we note that the

mean time-to-full-stop µtstop = 5.45 hr with a standard deviation of σtstop = 1.19 hr. These

numbers are also repeated in Table 9.2. A clear conclusion with regard to mission design can

be drawn from these statistics: any lander deployed to Itokawa using the strategy outlined

above requires roughly 9 hours of battery life to guarantee 3σ certainty that the lander will not

run out of power before settling on the surface. This minimum battery life is complementary

to the power requirements for surface operations once this settling has occurred.

9.3 Effect of Rocks

The stochastic model used to ’populate’ the asteroid surface with rocks and boulders was dis-

cussed in Section 4.6, where it was argued that this model captures the medium-sized surface

features. We now investigate whether it is indeed important to include these rocks in our

asteroid models, by excluding the model from our simulations and comparing the resulting

trajectory characteristics with the nominal results obtained in the previous section. We re-

call from Section 4.6 that the rock model manifests itself through both a randomization of

impacts, and through the occurrence of rolling collisions when the lander performs contact

motion on the asteroid surface. We study both effects by alternately excluding them from

our simulations.

Therefore, we have first produced a batch of 100 simulations where the effect of impact col-

lisions is not taken into account. The randomization of these collisions is therefore removed,

and the outgoing velocity is purely a result of the geometry of the facet a pod collides with.

Again, we show the first 10 trajectories in Figure 9.3a and the interesting points for all tra-

jectories in Figure 9.3b. The distribution of first impact and final stop times are shown in

Figures 9.3c and 9.3d. Analogously, we have produced a batch of simulations where impact

collisions are active, but rolling collisions are not included. The results from these simula-

tions are shown in Figures 9.4a through 9.4d. It is noted that in both batches, the nominal

deployment parameters shown in Table 9.1 were again used.

Reviewing these results with comparison to the nominal deployment discussed in Section 9.2,

we can make some interesting observations. When excluding rocks during impact collisions,
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Table 9.2: Statistics of time to full stop for all unitary simulation batches.

Setting µtstop [hr] σtstop [hr] |µ−µnom|
σnom

[%] |µ−µnom|
µ [%]

Nominal 5.45 1.19

No impact coll. 6.19 1.00 +62.80 +12.03

No rolling coll. 5.36 1.00 -7.82 -1.73

e = 0.50 4.68 1.10 -64.53 -16.35

e = 0.80 7.43 1.48 +167.08 +26.68

f = 1.00 5.37 1.03 -6.74 -1.49

f = 0.50 5.41 1.10 -3.30 -0.72

Crr = 0.045 5.16 0.86 -24.40 -5.61

Crr = 0.025 6.05 1.53 +50.85 +9.97

there is far less randomness in the resulting lander trajectories; their final positions are more

clustered together. This result makes sense: when rocks are ignored during impact collisions,

it is purely the shape of the polyhedron model that governs the lander-asteroid collisions.

As local slope variations of the ’pristine’ model are small compared to those of the model

populated with rocks, the lander trajectories show a smaller degree of dispersion. Finally, we

read from Table 9.2 that simulations without impact collisions last 0.63 standard deviations

longer. This fact, too, can be explained through the shape of the ’pristine’ asteroid model.

Successive collisions of a lander with this model are unlikely to show large variations in the

direction of the normal; otherwise stated, the lander’s velocity will mostly be damped in a

single direction by collisions, and a significant amount remains to be dissipated in contact

motion. When rocks are included during impact collisions, these rocks will induce variations

in the normal direction and damp velocity in all directions. As a result, there remains less

energy to be damped during contact motion, and the lander will stop sooner. We conclude

that it is important to take into the effect of rocks on the asteroid surface during collisions,

both from a dispersion and a landing-duration point of view.

Switching our attention to the simulations without rolling collisions, we observe no notable

effect on the lander dispersion over the asteroid surface, nor on the time to full stop. Indeed,

the contribution of rolling collisions may be ignored without compromising the accuracy of

our results. This fact can be explained as follows: most energy dissipation takes place during

’flying’ collisions, by the time the lander starts contact motion its surface velocity will therefore

be low. Although rolling collisions may significantly alter the direction of this velocity, the

global effect on the trajectory is not discernible as the lander no longer has the capability of

covering a substantial distance along the surface.
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(a) Overview of 10 trajectories.

(b) Initial, first impact and final stop locations.
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Figure 9.3: Results for deployment to Itokawa, no rocks during impact collisions.
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(a) Overview of 10 trajectories.

(b) Initial, first impact and final stop locations.
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Figure 9.4: Results for deployment to Itokawa, no rolling collisions.
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9.4 Effect of Interaction Coefficients

In Section 9.1, we have selected nominal values for the three coefficients e, f and Crr that

govern the contact interactions between a lander and the asteroid surface. We now investigate

the effect of varying the magnitude of these coefficients on the resulting lander trajectories.

For each of the three coefficients, we have produced one batch of 100 simulations with a

higher coefficient value, and one batch with a lower value; the exact numbers used are shown

in Table 9.3. The considered coefficient is the only parameter varied during these batches; all

other parameters are set to their nominal values as shown in Table 9.1.

Table 9.3: Overview of tested values in interaction coefficient variation.

Low Nominal High

e 0.50 0.65 0.80

f 0.50 0.75 1.00

Crr 0.025 0.035 0.045

Coefficient of Restitution

The results of the simulations with e = 0.80 are included in Table 9.2. Although we do not

show figures of the deployment, when comparing the results with the nominal case where

e = 0.65, we see a clear effect of e on the lander trajectories. The higher the coefficient of

restitution, the larger the dispersion in trajectories across the surface. This result is intuitive:

the higher e, the lower the energy dissipation per collision, the more collisions will take place

before the lander comes to a full stop. As there are more collisions, there is more opportunity

for rocks on the surface to disperse the lander trajectories. This is also reflected in the mean

time-to-full-stop values shown in Table 9.2; the higher e, the longer it takes the pods to come

to a full stop. We have further visualized this in Figure 9.5 which plots the time to final stop,

with error bars, versus the coefficient of restitution. It is clear that the particular value of e

has a very important effect on the trajectory of a lander.

Coefficient of Friction

In addition to the nominal case, we ran batches with a friction coefficient of f = 1.00 and

f = 0.50; the results are again included in Table 9.2. When comparing the the statistics of

the time-to-full-stop, we notice no notable difference. Indeed, it seems the particular value

of the coefficient of friction does not impact the trajectories. This result shows that the

synchronization between spin and rotation when contact motion starts happens so quickly

that the particular value of f does not affect the motion of the lander. It is critical to include

Coulomb friction in our simulations, but we can freely choose the value of f .
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Figure 9.5: Time to final stop versus coefficient of restitution for landing on Itokawa.

Coefficient of Rolling Resistance

Finally, we have examined the effect of varying the value of the coefficient of rolling resistance

Crr. Upon reviewing the results in Table 9.2, we note a clear effect of Crr on the trajectory

and time to stop. Although not as strong an impact as the coefficient of restitution, it is

clear that the higher Crr, the shorter the trajectory. This agrees with the acting principles

of the rolling resistance force and torque, as a higher Crr implies faster dissipation of energy.

We can see this effect when looking at the trajectory dispersion as well; when Crr is low-

ered we observe a slightly higher degree of dispersion, as contact motion lasts longer and the

landers have more chance to spread across the surface. Applying a realistic value of Crr is

thus relatively important, though definitely not as important as having the correct value for e.

The variation of interaction parameters presented in this section is useful in obtaining an

estimate of the sensitivity of deployment to uncertainties in our knowledge of the ’true’

interaction parameter values.

9.5 Effect of Deployment Parameters

We now switch our attention to the deployment parameters. As discussed in Section 9.1, the

safety of the mothership and the success of deployment are contradictory requirements when

selecting the particular deployment parameters for a mission. By investigating the individual

effect of the release position, velocity, and the related uncertainties, it will be possible to

establish GNC requirements and quantify the relation between safety and deployment success.
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For the simulations in this section, we apply again the nominal deployment parameters shown

in Table 9.1. The only difference is that the release velocity uncertainty no longer only acts

along the direction of release, but rather in all three dimensions. Therefore we have first

produced a new 100-simulation ’nominal’ batch, with this new velocity uncertainty. The

results from this updated nominal batch are shown in Figures 9.6a through 9.6d. We note

how the spread of first impact locations is different than those observed in Figure 9.2b; this

is due to the velocity uncertainty being applied in all three directions in the present case.

Effect of Position

As the equilibrium point from which landers are released lies very close to the x-axis of the

applied reference system, we will investigate the effect of changing the lander release position

simply by shifting the release point along the x-axis. An overview of the coordinates of the

tested release points is shown in Table 9.4, together with the respective distance from the

asteroid surface of these points. This table also shows the percentage of trajectories that

successfully reached the surface within a time span of ∼ 16 hours. Trajectories that do not

reach the asteroid and/or come to a full stop within this time span are considered to be failed

deployments, as the real landers are likely to be limited in power supply. We also show the

locations of these release points relative to the asteroid in Figure 9.7; the nominal release

position is marked in red.

Table 9.4: Statistics of release position variation at Itokawa.

Towards surface Nominal Away from surface

x [m] 445 470 495 520 545 570 595

y [m] -5 -5 -5 -5 -5 -5 -5

z [m] 0 0 0 0 0 0 0

d [m] 155 180 205 230 255 280 305

Success [%] 100 100 100 100 100 37 51

µtstop [hr] 4.62 4.81 5.35 5.54 5.85 8.78 14.25

σtstop [hr] 1.09 1.29 1.53 1.16 1.31 5.17 4.35
|µ−µnom|
σnom

[%] -79.26 -62.53 -16.08 +27.00 +280.05 +752.59
|µ−µnom|

µ [%] -16.56 -13.07 -3.36 +5.64 +58.53 +157.28

We can see from Table 9.4 that all landings are successful when launched from the equilibrium

point or closer to the asteroid surface. Also all releases from x = 545 m, 25 m from the

equilibrium point in the direction away from the asteroid surface, are successful. However,

when moving any further from the asteroid, over half of landings fail, with the landers either

not reaching the surface and flying off into orbit, or taking too long to come to a full stop

(possibly after multiple orbits). An example of a simulation that failed to reach the surface
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(a) Overview of 10 trajectories.

(b) Initial, first impact and final stop locations.
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Figure 9.6: Results for nominal deployment to Itokawa with velocity uncertainty acting in all three

directions.
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Figure 9.7: Overview of tested release points for deployment to Itokawa.

is shown in Figure 9.8. We conclude that it is inadvisable to move the release point more

than 5% away from the equilibrium point, relative to its distance to the center of mass of

the asteroid body. Furthermore, we can see a clear relation between the distance from the

surface and the time to full stop; which is also visualized in Figure 9.9. The relative change

in mean time-to-full-stop is about equal to the relative change in release position, relative to

the location of the equilibrium point. Finally, we observe that the lander pods scatter less

when released closer to Itokawa’s surface - an intuitive result, since landers released from a

higher altitude have more energy, and therefore more potential to move across the asteroid

surface, both before and after the first impact. One final remark is that the earlier state

5%-limit relates not only to the selected release position, but also to the inaccuracy of the

equilibrium point location. When moving the release point closer to the asteroid surface, we

essentially account for errors in the applied gravity field modelling and ensure deployment

remains successful.

Effect of Position Uncertainty

To investigate the effect of the uncertainty in the position of the mothership at the moment

of release, we perform simulations with different values of 3σpos. The values tested are shown

in Table 9.5. Again, this table also includes the success rate of deployment and statistics of

the time-to-full-stop. We can see that the mean time-to-full-stop does not notably change;

this confirms our expectations as the mean position of release remains the same for all five

cases tested, despite the different 3σpos. Furthermore, we note that only the worst-case

uncertainty leads to failed landings, and this only in one simulation. This is in agreement

with the previous results where the release position was varied. There, we concluded that the

release position should not be moved more than 5% behind the saddle equilibrium point, or 25
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Figure 9.8: Example of a failed landing at Itokawa, release from x=595 m.
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Figure 9.9: Time-to-full-stop versus release position for successful deployments at Itokawa.

meters in absolute distance. As all but the worst position uncertainty case have a 3σpos which

guarantees the simulations are initiated within this limit, their deployments are successful.

However, when deploying from the equilibrium point with a position uncertainty of 3σpos = 90

m, the release point will in some cases be located outside of the 5% limit, leading to a risk of

failed landings. We therefore extend the conclusion of the previous section and state that the

release position combined with its uncertainty should guarantee that the lander is released

within 5% from the lowest energy equilibrium point. Stated differently, if the release position

is moved closer to the asteroid surface, the position required position accuracy can be relaxed

- and vice versa.
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Table 9.5: Uncertainties tested in variation of release position uncertainty.

Better Nominal Worse

3σpos [m] 1.0 3.0 10.0 30.0 90.0

Success [%] 100 100 100 100 99

µtstop [hr] 5.36 5.52 5.54 5.56 5.57

σtstop [hr] 1.00 1.03 1.16 1.18 1.57
|µ−µnom|
σnom

[%] -15.31 -1.51 +2.23 +2.78
|µ−µnom|

µ [%] -3.31 -0.32 +0.46 +0.58

Effect of Velocity

We now switch our attention to studying the effects of the lander release velocity, by again

setting the nominal deployment parameters of Table 9.1 but varying the magnitude of the

release velocity. We recall that the nominal release velocity is 3 cm/s, with an uncertainty of

3σvel = 1 cm/s, applied in all directions. The magnitude is varied between 1 cm/s and 5 cm/s,

noting that the circular orbital velocity3 at the equilibrium point is equal to Vc ≈ 6.7 cm/s.

The success rate and time-to-full-stop statistics are shown in Table 9.6. Interestingly, only the

lowest release velocity of Vrel = 1 cm/s leads to failed deployments - all other deployments are

completely successful. We can also see from this table that the time-to-full-stop is reduced

when the release velocity is increased, as visualized by Figure 9.10. This result is somewhat

counter-intuitive, as a higher release velocity implies the lander has more energy that needs

to be dissipated. This does imply the lander reaches first impact quicker than in the nominal

release. We conclude that the energy dissipation during first impact is very determinant of the

time-to-full-stop, and is large enough to negate the increase in energy resulting from a higher

release velocity. Instead, the time-to-first-impact seems to strongly influence the time-to-full-

stop, though the latter is only reduced by about 10% for the highest Vrel tested. It would be

worthwhile for future research to investigate whether high-energy deployments with Vrel > Vc,

or perhaps even Vrel > Vesc where, for Itokawa, Vesc = 9.5 cm/s is the escape velocity4 at the

equilibrium point, can further reduce the time-to-full-stop, without compromising deployment

success.

Effect of Velocity Error

Finally, we concern ourselves with the effects of varying the uncertainty on the release veloc-

ity. Recalling that the nominal uncertainty was 3σvel = 1.0 cm/s, we vary the uncertainty

between 0.1 cm/s and 5.0 cm/s. The familiar parameters are shown in Table 9.7. There, it

can be seen that deployment is always successful for uncertainty lower than or equal to that of

3Defined as Vc =
√
µ/r.

4Defined as Vesc =
√

2µ/r.



Chapter 9. Unitary Systems 128

Table 9.6: Values tested in variation of release velocity.

Lower Nominal Higher

Vrel [cm/s] 1.0 2.0 3.0 4.0 5.0

Success [%] 63 100 100 100 100

µtstop [hr] 10.67 5.71 5.54 5.34 4.97

σtstop [hr] 2.84 1.19 1.16 1.27 1.44
|µ−µnom|
σnom

[%] +443.71 +15.24 -17.45 -49.28
|µ−µnom|

µ [%] +92.73 +3.19 -3.65 -10.30
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Figure 9.10: Time to full stop versus release velocity for successful deployments at Itokawa.

nominal deployment. However, when increasing the velocity uncertainty beyond the nominal

case, we see some deployment failures occurring; an effect which grows worse as the uncer-

tainty is increased. When recalling that the nominal release velocity for our deployments is

Vrel = 3 cm/s, this result makes sense. For a lander to reach the surface of the asteroid, it is

obviously necessary that its velocity at release be directed towards the asteroid surface. When

the velocity uncertainty 3σvel is increased beyond the magnitude of the release velocity Vrel,

it is no longer guaranteed that the velocity indeed has this direction, leading to deployments

which fail to reach the surface. We therefore state, analogously to as was done for the release

position and uncertainty, that the release velocity should be set such that, combined with

its uncertainty, the velocity is guaranteed to be directed towards the asteroid surface. The

particular magnitude selected will affect the time-to-full-stop.

This concludes our investigation of the effects of varying the deployment parameters, and of
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deployment to unitary asteroid systems. We will now extend our results through the analysis

of lander deployment to binary systems.

Table 9.7: Uncertainties tested in variation of release velocity uncertainty.

Better Nominal Worse

3σvel [cm/s] 0.1 0.3 1.0 3.0 5.0

Success [%] 100 100 100 92 86

µtstop [hr] 5.51 5.43 5.54 6.22 5.85

σtstop [hr] 1.20 0.99 1.16 2.53 2.02
|µ−µnom|
σnom

[%] -2.64 -9.03 +58.83 +27.24
|µ−µnom|

µ [%] -0.55 -1.89 +12.29 +5.69





Chapter 10

Binary Systems

Binary asteroid systems present a dynamical environment that is quite different from

that of a unitary body, due to the relative motion of the primary and secondary around their

common center of mass; it is therefore important to study deployment to binary systems

separately, as is the focus of the present chapter. We first discuss the target asteroid system

selected for our simulations and the applied release strategy in Section 10.1. Next, we present

the results for deployment to a secondary body in Section 10.2, and for deployment to a

primary body in Section 10.3. As the effects of varying the interaction parameters and rock

model have already been investigated in the preceding chapter, we will focus only on changes

in the lander release conditions.

10.1 Mission Scenario

Both the AIDA and BASiX missions plan to visit a binary asteroid system to obtain scientific

measurements, as presented in Section 2.2. Their respective targets are the 65803 Didymos

and 1996 FG3 systems. It is argued that an investigation of lander deployment to these sys-

tems would be highly interesting, as the results could be applied in the design and planning

of these missions. Unfortunately, no high-resolution shape models are currently available for

either system; any results produced with simulations are therefore of little scientific value. In

fact, the only binary asteroid system to have been imaged at sufficiently high resolution is the

1999 KW4 system, as illustrated earlier in Figure 4.4. Fortunately, this system is thought to

be representative of the general binary asteroid population, with its tidally locked secondary

body and near-spherical primary body with distinct equatorial ridge. We have therefore se-

lected the 1999 KW4 system as target for our investigation of lander deployment to a binary

asteroid. The relevant parameters of this system are shown in Table 10.1.

Our nominal strategy for deployment to a unitary asteroid was to release landers from the

131
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Table 10.1: Relevant parameters of the 1999 KW4 binary asteroid system [50].

Parameter Symbol Value

Primary

Largest axis x1 1, 532± 3% m

Intermediate axis y1 1, 495± 3% m

Shortest axis z1 1, 347± 3% m

Mass m1 2.353± 0.1× 1012 kg

Density ρ1 1.97± 0.24 g/cm3

Rotation period T1 2.765± 0.0003 hr

Secondary

Largest axis x2 571± 6% m

Intermediate axis y2 463± 6% m

Shortest axis z2 349± 6% m

Mass m2 0.135± 0.024× 1012 kg

Density ρ2 2.81± 0.63 g/cm3

Rotation period T2 17.4223 hr

Mutual orbit

Semi-major axis a 2, 548± 15 m

Mass fraction m 0.0543

Period T 17.42± 0.036 hr

neighbourhood of the lowest-energy saddle equilibrium point of the body’s amended poten-

tial field. A similar strategy can be applied for landing on a binary system [12], however, in

that case we must take into account the dynamics of the system as a whole, and not merely

of the single target body. If we assume both primary and secondary to orbit their mutual

center of mass in circular orbits, simplify the shape of the primary to a sphere and the shape

of the secondary to an ellipsoid tidally locked to the primary, we successfully reduce the

complex dynamical environment to that of the well-studied Circular Restricted Three-Body

Problem (CR3BP) [51]. This system can be shown to have a total of five equilibrium points

where the acceleration on a third particle, when expressed in a reference frame fixed to both

bodies and centered at the mutual center of mass, is zero. The locations of these points, more

frequently known as Lagrange libration points [51], are visualized for the 1999 KW4 system

in Figure 10.1. Their locations are listed in Table 10.2, with respect to the center of mass of

the system, of Alpha, and of Beta.

The CR3BP has been widely treated in literature; it can be shown that the three collinear

equilibrium points L1, L2 and L3 are unstable, while the equilateral L4 and L5 points are

stable [51]. Indeed, when releasing a lander in the neighbourhood of one of the former points,

it will move away from the respective equilibrium following its unstable manifold [12]. We

recognize the similarity between this release and that discussed for a unitary body in Section

9.1. The characteristics of trajectories emanating from the unstable equilibrium points at a

binary system were investigated by [12], where the orbit periapses were projected to verify
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whether impacts with the asteroid bodies indeed take place - a clear necessary condition for

successful deployment. It was shown that, due to the typical shape of most binary systems,

deployment to the secondary body is always possible from L1 and very often from L2. However,

due to the structure of the CR3BP and typical size of the primary, it is generally impossible

to reach the primary from L3 and only rarely from L1 [12]. These deployment failures are a

result of the size and rotation rate of most primaries, as their equators rotate at near-orbital

velocities. Indeed, using the values of Table 10.1 we compute the ’circular’ orbital velocity

at the equator as Vc =
√
µ/R = 0.464 m/s, while at that location the surface rotates at a

velocity of Vs = ωR = 0.460 m/s. We will test deployment from all three collinear Lagrange

points for the 1999 KW4 system using our simulation software and verify the above statements

about deployment success and failure.

Figure 10.1: Zero-velocity curves and equilibrium points of the 1999 KW4 system [12].
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Table 10.2: Equilibrium point locations of the 1999 KW4 system [15].

xcom [m] y [m] Stable? xα [m] xβ [m]

L1 1,777 0 No 1,915 -633

L2 3,140 0 No 3,278 730

L3 -2,594 0 No -2,456 -5,004

L4 1,132 -2,195 Yes 1,270 -1,278

L5 1,132 2,195 Yes 1,270 -1,278

10.2 Deployment to Beta

During our discussion of deployment to unitary systems, we have investigated the effects of the

stochastic rock model and of variations of the interaction parameters on the resulting lander

trajectories. We therefore refrain from repeating this in our simulations of binary systems,

and instead focus solely on the effects of varying the lander release conditions. We stress that

all interaction parameters and mission hardware are kept at their nominal values throughout

all subsequent simulations; the reader is again referred to Table 9.1 for an overview of the

particular values. We now focus first on deployment to Beta, the secondary of 1999 KW4, as

we expect this to be more successful than deployment to the primary.

10.2.1 Deployment from L1

We have produced batches of 100 simulations for a number of release positions. The nominal

deployment is initiated from the L1 equilibrium point, for all other batches we have shifted

the release position either towards or away from the asteroid surface. The exact coordinates

of these points, as well as their respective distance from the asteroid surface, are included in

Table 10.3. These points are also visualized in Figure 10.3.

The typical results for the nominal deployment case are shown in Figures 10.2a through 10.2d.

We can see that, nominally, deployment to Beta from L1 is always successful. When moving

the release position closer to Beta’s surface, we see the expected decrease in time-to-full-stop

while all simulations are again successful. Furthermore, when moving the release point away

from the surface 25 m, deployment is still successful. However, when moving beyond this

position, deployments start to fail. The result here is the same as that for unitary systems;

the release position should not be moved farther than 5% from the equilibrium point in the

direction away from the surface. We also again observe that mission designers are offered a

clear trade-off between the time-to-full-stop and the distance to which the mothership has to

approach the asteroid surface to release the lander. We confirm the statement made previously

that deployment from the L1 equilibrium point to Beta is indeed possible. However, we must

make an important remark: the L1 point is located between the primary and the secondary.
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(a) Overview of 10 trajectories.

(b) Initial, first impact and final stop locations.
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Figure 10.2: Results for nominal deployment to 1999 KW4 Beta from L1.
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This makes it naturally unattractive, from a safety point of view, as the mothership has to

make the relatively dangerous manoeuvre of entering between the two bodies.

Table 10.3: Statistics of release position variation at 1999 KW4, deployment from L1.

Away from surface Nominal Towards surface

x [m] -705 -680 -655 -630 -605 -580 -555

y [m] 0 0 0 0 0 0 0

z [m] 0 0 0 0 0 0 0

d [m] 470 445 420 395 370 345 320

Success [%] 0 85 100 100 100 100 100

µtstop [hr] 16.15 5.32 3.91 3.39 3.07 2.97 2.66

σtstop [hr] 3.74 2.19 0.55 0.52 0.46 0.43 0.50
|µ−µnom|
σnom

[%] +2,461.77 +372.40 +100.85 -63.00 -82.35 -140.79
|µ−µnom|

µ [%] +376.06 +56.89 +15.41 -9.62 -12.58 -21.51
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Figure 10.3: Release points tested for deployment to 1999 KW4 Beta.

10.2.2 Deployment from L2

Deployment to Beta from L2 is investigated in the same way, where we use the parameters

listed in Table 9.1 and produce batches of 100 simulations where we vary the release position.

The tested points are listed in Table 10.4, and also shown visually in Figure 10.3. The results

for nominal deployment are included in Figures 10.4a through 10.4d.

We observe that deployment from L2 are highly similar to deployment from L1. Nominal

deployment is entirely successful, as is release from any point closer to the surface of Beta.

A clear relationship between the distance from the surface and the mean time-to-full-stop is

again present. We remark that nominal deployment from L2 takes about 45 minutes longer
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(a) Overview of 10 trajectories.

(b) Initial, first impact and final stop locations.
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Figure 10.4: Results for nominal deployment to 1999 KW4 Beta from L2.
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than deployment from L1, but is still well within acceptable bounds from a power perspective.

We do note that, when deploying from L2, it is possible to move farther away from the asteroid

surface and still have successful deployments, compared to deployment from L1. This fact,

combined with the knowledge that L2 lies outside of the binary system, makes the latter

far more attractive for lander deployments than L1, despite the fact that deployment takes

slightly longer. We conclude that deployment to Beta is indeed possible from both L1 and

L2, though because of mothership safety considerations it is more attractive to deploy from

L2.

Table 10.4: Statistics of release position variation at 1999 KW4, deployment from L2.

Away from surface Nominal Towards surface

x [m] 830 805 780 755 730 705 680 655

y [m] 0 0 0 0 0 0 0 0

z [m] 0 0 0 0 0 0 0 0

d [m] 550 525 500 475 450 425 400 375

Success [%] 82 98 100 100 100 100 100 100

µtstop [hr] 7.07 5.71 5.08 4.52 4.15 3.80 3.57 3.46

σtstop [hr] 1.35 0.78 0.68 0.59 0.61 0.55 0.57 0.45
|µ−µnom|
σnom

[%] +216.53 +201.43 +137.07 +61.82 -64.64 -101.79 -153.67
|µ−µnom|

µ [%] +41.31 +27.34 +18.36 +8.06 -9.35 -16.39 -19.81

10.3 Deployment to Alpha

Finally, we investigate the deployment of landers to Alpha, the primary body of the 1999

KW4 binary asteroid system. We apply once more the nominal release parameters shown in

Table 9.1 and first investigate deployment to Alpha from L3.

Deployment from L3

After initiating simulations with landers beings released using nominal conditions from L3,

it immediately became clear that this deployment is problematic. For reference, we show

a single trajectory as an example in Figure 10.5. We can see that the lander continues to

orbit the asteroid, and does not even closely approach the surface. This is consistent with

the analysis of [12], who predicted that ballistic landing on Alpha from either equilibrium

points as impossible. Indeed, we see that the unstable manifold departing from L3 is very

weak and fails to deliver the lander to the asteroid surface. It is clear that deployment along

the manifold is not possible for deployment to Alpha from L3. As an alternative strategy,

we perform simulations where the lander is still released from the L3 equilibrium point, but
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instead with a much higher release velocity. In this case, the lander will no longer follow the

unstable manifold, which is a solution of the linearized system, and only manifests itself when

the initial velocity at the equilibrium point is low, but instead fly a more ’direct’ ballistic arc.

A resulting trajectory is shown in Figure 10.6, where an initial velocity of Vrel = 10 m/s

was used. As can be seen from this figure, this trajectory does indeed reach the surface of

Alpha. However, the velocity of the lander is still very high after impacting the surface, it

therefore fails to remain bound to the surface and instead escapes the asteroid. We argue that

the magnitude of this rebound velocity is a result of the coefficient of restitution e, and that

lowering its magnitude might result in successful capture. After testing a number of initial

conditions, it was found that a release velocity of at least ∼ 5 m/s for the lander to reach the

surface, which in turn requires a coefficient of restitution as low as e = 0.1 to ensure capture.

Recalling the discussion made in Section 9.1 about feasible values of e, we realize that e = 0.1

is unrealistic. Indeed, any value lower than e ∼ 0.4 is highly unlikely.

We conclude that ballistic delivery of a passive device from L3 to Alpha is not possible.

However, is is possible to release a lander with propulsive capabilities on a fast, ballistic

trajectory from the equilibrium point to deliver it to the surface. The lander may then fire

its thrusters or use some form of attachment device1 to kill its remaining velocity.

Deployment from L1

Finally, when investigating deployment to Alpha from L1, we see the same results as for

deployment from L3; the unstable manifold proves to be too weak to deliver the landers to the

surface when released with nominal conditions. Ballistic deployment to Alpha is impossible

from either equilibrium point; this is consistent with the analysis made in [12].

1For example, consider the harpoons which Rosetta’s Philae lander will use at comet 67P/CG, as discussed

in Section 2.1.
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Figure 10.5: Example of failed deployment to 1999 KW4 Alpha after release from L3.

Figure 10.6: Example of failed deployment to 1999 KW4 Alpha after ’fast’ release from L3.



Part V

Conclusions and Recommendations
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Conclusions

We have investigated the ballistic deployment of passive, spherical landers to unitary

and binary asteroids as a means of establishing scientific instruments on the surfaces of these

bodies. A software package was developed to numerically simulate the motion of such lan-

ders in the asteroid environment. The complex gravity fields of the irregular asteroid bodies

were modelled using constant-density polyhedra, which represents the shape of an asteroid

with triangular facets. Additionally, surface interactions between landers and the asteroid

surface were implemented through an inclusion of the normal, Coulomb friction and rolling

resistance forces and torques. The presence of rocks on the surface was accounted for using a

stochastic model which mimics the topography observed on asteroid Itokawa by the Hayabusa

spacecraft. This rock model affects lander motion both during impacts with the surface, and

during contact motion on the surface. By including all of the above elements, our software

captures all interactions present between a lander and an arbitrary asteroid body. Exten-

sive verification and validation was performed to ensure the correct workings of all software

modules. A large number of trajectories for both unitary and binary systems were simulated,

and we have subsequently investigated the sensitivity of deployment to a number of relevant

mission parameters. In these simulations, we have used lander hardware from the proposed

BASiX mission, for which a prototype passive spherical lander has already been designed.

The deployment of landers to a unitary system was investigated using asteroid 25143 Itokawa

as target body. A nominal deployment scenario was constructed from literature, in which

landers are released from their mothership in the neighborhood of the lowest-energy saddle

equilibrium point of an asteroid’s amended potential field. At Itokawa, this point is located

roughly 230 meters above the surface. Following a low-velocity release from such a point, a

lander will follow the unstable manifold emanating from the equilibrium and reach the aster-

oid surface. Through the simulation of a large number of trajectories, this strategy was proven

to be successful in delivering landers to Itokawa’s surface, where the mean time-to-full-stop

143
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was roughly 5.5 hrs with a standard deviation of 1.2 hrs. The dispersion of landers across

the surface is very wide and mostly unpredictable, though they are generally seen to settle

in zones of low amended geopotential. An investigation of the effects of rocks on Itokawa’s

surface revealed that their inclusion is important during impacts with the asteroid model,

but may be ignored without loss of accuracy during contact motion. Additional simulations

revealed the influence of the three parameters which govern the interactions between a lander

and the asteroid surface. It was shown that the coefficient of restitution e is by far the most

governing of all three, and strongly affects both the lander dispersion and time-to-full-stop.

Secondly, varying the coefficient of friction f has no discernible effect on lander motion. Fi-

nally, the coefficient of rolling resistance Crr plays a role in determining the time-to-full-stop,

though its effect is only a third of that of the coefficient of restitution.

Additionally, we have performed simulations to investigate the effects of the release position,

velocity, and their respective uncertainties. It was shown that landers should be released no

further than 5% away from the equilibrium point, in the direction away from the asteroid sur-

face, to guarantee successful deployment. In this one must take into account the uncertainty

on the position, as well as errors in the modelled gravity field. When moving the release

position closer to the asteroid surface, the relative decrease in time-to-full-stop is about equal

to the relative decrease in distance to the asteroid. Furthermore, it was shown that the release

velocity and associated uncertainty should be such that the initial velocity of the lander is

guaranteed to be directed towards the asteroid surface. The time-to-full-stop was seen to

decrease with an increasing release velocity, though we considered only values lower than the

local circular orbital velocity.

For binary systems, we have investigated deployment to the 1999 KW4 system. The system’s

rotating reference frame has a total of five equilibrium points, of which the three collinear

points are unstable and provide excellent positions for the ballistic release of landers. Deploy-

ment to Beta, the system’s secondary body, was shown to be feasible from both the L1 and L2

equilibria, with deployment again fully successful up to a relative distance of 5% behind the

equilibria. The mean time-to-full-stop was obtained as 3.40 hrs for deployment from L1 and

4.15 hrs for deployment from L2. However, due to the L1 equilibrium being located between

the primary and secondary, this point is less attractive for release as it requires the moth-

ership to perform the relatively dangerous manoeuvre of moving between the two asteroid

bodies. In contrast, ballistic deployment to Alpha was shown to be impossible from both L1

and L3. The unstable manifolds emanating from these equilibria proved to be too weak to

deliver landers to the surface. While the landers can be released with a higher velocity to

ensure impact with the surface, they then fail to remain bound to the asteroid body after the

first rebound. The near-orbital velocity at which Alpha’s surface rotates prevents successful

deployment.
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It is concluded that passive, spherical landers provide a low-risk, low-cost way of deploying

scientific instruments to the surface of an asteroid, following ballistic release from the neigh-

borhood of the lowest-energy saddle equilibrium point of an asteroid’s dynamical system.

This strategy poses little to no risk to the mothership spacecraft and allows mission designers

to trade off the lander release altitude with the time it takes the landers to come to a full stop.

Missions which require successful asteroid lander deployment, such as for example BASiX,

are thus proven to be fully feasible.





Chapter 12

Recommendations for Future Work

Having concluded the results of this thesis, we finally state a number of recommenda-

tions for future work regarding our research, as listed below. These points will be treated by

the author during a PhD following the completion of the current work.

• As discussed in Section 7.3, we have sacrificed some accuracy during gravity field in

favour of computation speed by using simplified, 320-facet polyhedra to model asteroid

gravity fields. Although this works well for our purposes, the inherent error reaches

a maximum of about 7%, which is considerably higher than the magnitudes we have

accepted in other modelling sections. The overall accuracy of simulations can be in-

creased by sufficiently reducing this gravity modelling error. One possible solution is to

pre-compute the gravity field,if this proves to be feasible from a memory-allocation per-

spective. Otherwise, a reduction in computation time elsewhere might justify switching

to a higher-resolution gravity field.

• The rocks and boulders on asteroid surfaces are implemented in our work using a

stochastic model, as presented in Section 4.6, due to its simplicity and computation

speed. However, this model does not allow for easy variations in the density and sizes

of rocks encountered, and is restricted to observations made at asteroid Itokawa. Fur-

thermore, two separate simulations will encounter rocks in different locations, and it is

not possible for a lander to impact the same rock twice during a simulation. By replac-

ing the stochastic model with one that populates the polyhedron model with rocks and

stores them in memory, we remove these limitations. It will then be possible to compare

the stochastic model with the ’full’ model; if both models produce the same results it

may be desirable to continue using the stochastic model due to its computation speed.

• The current software models landers as spheres. Although directly applicable to the

BASiX mission, many others envisage non-spherically shaped landers. By modifying

the software to handle arbitrary lander shapes, we will be able to investigate deployment
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of such landers on asteroid bodies. One obvious way of modelling these lander shapes

would be to also use polyhedra.

• The interaction parameters e, f and Crr are currently constant across the entire as-

teroid surface. However, we can imagine certain local areas on an asteroid to be of

slightly different composition with, for example, a lower coefficient of restitution. Such

a dichotomy is clearly visible on asteroid Itokawa, which has two zones of very low grain

size and without boulders. Instead of setting these parameters as constant, they should

be set as a function of the location on the asteroid, possibly through a modifier that is

imposed on the nominally set value.

• Our simulations have shown that the time-to-full-stop of a lander deployed to an asteroid

decreases as the release velocity is increased. However, during our sensitivity analysis

we have restricted ourselves to velocities below the local circular orbital velocity. It may

be worthwhile to investigate high-energy deployments where landers are released with

much higher velocities, as this could lead to shorter deployment times.
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