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SHI’IHI’I‘&I’Y

Additive manufacturing and 3D printing are rapidly developing digital fabrication tech-
niques (Lu et al. 2015). After the first steps in printing of metals (Frazier 2014) and
plastics (Gibson et al. 2014) have been made, research from various groups around the
world is now also focusing on printing in concrete (Lim et al. 2012) and moving to larger
scales. Using this technique it will be possible to create customised concrete designs in
one go at low costs and high construction speeds. Additionally, this new technology will
provide opportunities to create more efficient structures. Structures can already be op-
timised in the early stages of the design for weight and structural performance, but the
resulting optimised structures are often difficult to manufacture due to their shape. Ad-
ditive manufacturing can be the key to make this possible without high costs for moulds
and labour.

This thesis will present a novel methodology to include material and manufacturing
constraints of 3D printed concrete in the optimisation process. The study examines the
possibility to optimise concrete structures in the design phase. In order to save material
and thus create more sustainable and more cost efficient structures, a topology optimi-
sation tool has been created specifically for 3D printed concrete. Traditional topology
optimisation methods consider isotropic and linear elastic material and will not neces-
sarily produce realisable and reliable optimised structures. In the algorithm presented
constraints of the printing process and material properties from physical testing of this
layered material are both considered in the optimisation. By adopting this methodology
more realistic and feasible optimal concrete structures can be designed.

The methodology is created from existing topology optimisation tools and improved
to conveniently change the design domain, boundary conditions and loads. Furthermore,
the existing tools are altered to create an algorithm that creates optimal designs for 3D
concrete additive manufacturing. In topology optimisation a design domain is divided
into elements. These elements are given a virtual density between zero (no material)
and one (material). The aim is to minimise a certain objective function with respect to
certain constraints. In most existing tools the total compliance is minimised (or stiffness
is maximised) for a certain volume constraint. For some elements the virtual densities are
steered towards material, for others to no material, which ultimately leads to an optimal
topology.

An important change made in the method is the modification of the material model.
By changing the compliance matrix the considered material is no longer isotropic. This
leads to different optimised designs for different Young’s moduli in different directions, as
is the case with concrete layered manufacturing.

In topology optimisation different filters can be applied to avoid numerical difficulties.
The robust filtering method is used in this research in order to obtain results that can



be printed. Due to this filter unprintable patterns and intermediate virtual densities are
eliminated from the design.

In addition to the robust filter an additive manufacturing filter is incorporated in
the method as well. This filter takes into account manufacturing constraints of the 3D
printing process. The filter assures that a certain maximum overhang of 45 degrees is not
exceeded. Because in some printing projects an overhang is not possible, a second filter
with an overhang of zero degrees is added to the method as well.

To fully employ the possibilities of topology optimisation it is possible to change the
objective and constraint functions of the optimisations. The standard objective to min-
imise the compliance can be changed to a volume minimisation. The volume constraint
can be adapted as well. Because the method of moving asymptotes is applied and used
as the solver it is even possible to use multiple constraints, for example a stiffness and
a strength constraint. The strength constraint is incorporated in the optimisation as a
global stress constraint. The von Mises stress criterion and the Drucker-Prager equivalent
stresses can both be used to find an optimal design that does not exceed certain stress
limits.

It can be concluded that by adapting all these changes to the standard topology op-
timisation methods, more realistic and feasible results can be created. Large amounts of
material can be saved by combining topology optimisation and additive manufacturing of
concrete. However, additional research is needed before this promising combination can
be used for actual manufacturing. More knowledge should be gained about the material
behaviour, for example the effects of the printing process on the strength and stiffness.
Another aspect that needs attention is the link between the optimised design and the
actual construction. Because the results of the optimisations are consisting out of solid
and void elements, an additional step needs to be made to create actual printing paths for
the 3D printer. Furthermore, the computational time needed to optimise large designs, or
designs with stress constraints, has to be reduced.
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Introduction

Architects and engineers have been designing challenging structures for ages. To predict
the behaviour of these structures before they were built, designers have created physi-
cal models to make simulations of this behaviour or they simply designed based on their
knowledge and experience from previous projects. Development of software and comput-
ers started in the late 20th century and created the possibility to easily design complex
geometrical structures on the computer. The translation from these designs to actual
structures however is still challenging, because not everything that can be designed, can
be constructed in an efficient way. Using 3D software such as Rhinoceros with Grasshop-
per developed by McNeel and Associates (2017) and Dynamo with Revit by Autodesk
(2018), every architect or structural engineer is now able to create buildings and compo-
nents in forms only limited by their imagination. In addition to the architectural design,
structural calculations can now be completed with software as well. An example of a struc-
tural analysis program is GSA by Oasys (2017). Despite all the positive improvements
the construction and manufacturing of the elements, for example double curved surfaces
or complex joints, is a part of the design process that still needs more attention. The
construction process is still material and labour-intensive and therefore costly.

In addition to the fact that designers and engineers can use the available techniques to
create aesthetically pleasing models, software can also be used to optimise the structures.
Structures can be optimised in many ways. One method is the topology optimisation
method (Bendsge and Sigmund 2003). This computational technique makes it possible
to distribute a limited amount of material in a design space. In this way connections,
building parts or even entire structures can be optimised. As a result of optimisation it
might be possible to save large amounts of material, resulting in more sustainable and
cheaper structures.

The resulting structures of topology optimisation are often geometrical complex struc-
tures and they are therefore difficult to manufacture or they need to be redesigned prior
to manufacturing (Atzeni and Salmi 2012). Additive manufacturing or 3D printing can
be the solution to actually construct the outcomes. Additive manufacturing or AM adds
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a certain material at the necessary positions in a design space, whereas current building
processes mainly remove material from the unnecessary positions, resulting in additional
waste and costs.

This research project will provide insight in the current topology optimisation methods,
the current concrete AM projects and the possibilities of combining these two processes
for the building industry.

1.1 Problem definition

Topology optimisation is a useful tool to design more efficient structures (Bendsge and
Sigmund 2003). Concrete Additive Manufacturing can help overcome technical difficulties
in manufacturing these special structures. By applying optimisation tools and additive
manufacturing, material can be saved. This can lead to the production of more sustainable
and cheaper structures. The problem in this approach can be formulated as:

Current topology optimisation methods assume isotropic material behaviour while in
reality printed concrete is not isotropic because of the layered built-up. Current optimisation
methods will therefore come up with incorrect optimised structures for printed concrete.
The correct material properties should be incorporated in the optimisation.

In addition to these material properties the manufacturing constraints can influence
the design as well:

Designs created by optimisation methods can be hard, expensive or sometimes even
impossible to manufacture. Manufacturing constraints should therefore be part of the
optimisation algorithm. If the difficulties in manufacturing are only considered after the
optimisation is performed, the structure needs to be adapted to a manufacturable design.
In this case the adapted design is mot an optimal structure any more. It might even be
infeasible to manufacture the structure.

1.2 Domain and scope

In this research different concrete AM projects and several topology optimisation meth-
ods will be explained. However, this study will mainly focus on the effects of changing
material properties and manufacturing constraints on the outcome of topology optimisa-
tion. Existing open source topology optimisation algorithms from amongst others Liu and
Tovar (2014) and Andreassen et al. (2011) will be studied, adapted, improved and used to
study the effects. Only simple rectangular (2D) and box shaped (3D) design spaces will
be investigated.

As stated in the problem definition the material considered is concrete or a concrete-like
mixture. Although the problem applies to other materials as well, this research will only
consider printed concrete. Combinations of materials, for example steel reinforcement bars
in the concrete, are not considered either.

Physical testing is outside the scope of this research. Only computer models will be
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created and verified using available literature.

1.3

Research question

The main research question of this thesis is formulated as:

1.4

What possibilities can concrete additive manufacturing provide in the design and

construction of topology optimised structures?

Research objectives

The following research objectives for this thesis arise from the described problem:

1.

1.5

To provide insight in the current state of concrete additive manufacturing and to
give an overview of the topology optimisation algorithms currently available.

To create a material model of the printed concrete, taking into account the different
properties in different directions.

To develop or adapt an algorithm that can be used to optimise a concrete structure
or structural component, considering the material model created and the limitations
of the concrete printer.

To design and optimise a concrete structure or component using the created algorithm.

Thesis outline

Concrete additive manufacturing

A clear overview is given in recent and current concrete additive manufacturing
projects all over the world. The most ground-breaking and promising projects will
be discussed briefly.

Structural and topology optimisation

In this part of the research a basic introduction is given in the field of optimisation.
Some general optimisation problems and methods will be covered, followed by several
structural optimisation procedures. The chapter will be concluded with the most
promising topology optimisation methods.

Development of an improved optimisation algorithm

An available standard topology optimisation method will be taken as starting point
for an improved algorithm. In this part of the report a work-flow is created to
easily create a design problem, solve that problem and visualise the results. The
optimisation algorithm will be adapted to come up with more realisable and reliable
designs. To make that possible, new filters, solvers, manufacturing constraints and
a new material model will be added to the algorithm.
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Implementation
In this chapter an overview of the utilisation of the method will be given. In a
step-by-step manner the work-flow is explained by schemes, figures and examples.

Results and verification

Results of the created algorithm will be presented in this part of the study. Some
parameters will be varied and the results of these variations will be compared and
evaluated. Different design problems (loads and boundary conditions) will be used
to clarify the effects.

Case Study

In this study a floor slab will be optimised using the created method. The results
will be compared with regular slabs. To verify the results the regular slabs will be
calculated using a plate theory as well.

Conclusions
In this part of the thesis the research question will be answered and some general
conclusions will be given.

Recommendations
Finally, the recommendations for further research will be made. This will conclude
the research.



Concrete Additive Manufacturing

Additive manufacturing, also referred to as 3D printing, is a rapidly developing process in
manufacturing, however it is not widespread adopted in the building industry at a large
scale yet. All over the world separate projects are being conducted regarding 3D printing
of concrete. From a company in China that is printing houses (Charron 2015) to a man
printing a castle in his own backyard (Rudenko 2016b). This chapter is a "state-of-the-
art” and will give an overview of this relatively new manufacturing process and the most
ground-breaking and promising projects.

2.1 3D printing process

The technology that physically builds up 3D models layer by layer is called additive man-
ufacturing or 3D printing. In standard terminology additive manufacturing is described
as: ”a process of joining materials to make objects from 3D model data, usually layer
upon layer, as opposed to subtractive manufacturing methodologies” (ASTM Interna-
tional 2013). The foundation of the 3D printing technique was built around thirty years
ago. Chuck Hull invented a solid free-form technique called stereo-lithography (Melchels
et al. 2010). It was patented as "a method and apparatus for making solid objects by suc-
cessively 'printing’ thin layers of the ultraviolet curable material one on top of the other”
(Hull 1986). He soon realized the method was not limited to ultraviolet curable material
and he adapted the definition of the patent to “any material capable of solidification or
capable of altering its physical state”. Many materials and processes were applied since
that period and lately research started focussing on concrete or concrete-like substances
as the printable material (Pegna 1997).

Additive manufacturing typically starts with an idea of the structure or product the
designer wants to manufacture. This idea is than transformed into a 3D computer model.
This model is subsequently being prepared for manufacturing. A machine or 3D printer
then creates the physical model layer by layer. The process is called additive because the
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machines add material at the locations determined by the 3D model.

2.1.1 Advantages of concrete additive manufacturing

This manufacturing technique has multiple important advantages over methods commonly
used in the building industry at the moment:

o Geometrical design freedom
In theory additive manufacturing provides designers with more geometrical freedom
to design models compared to existing manufacturing techniques, such as pouring
concrete in traditional moulds. The geometry can now be chosen in such a way that
the design is aesthetically pleasing, functional and optimised in terms of structural
behaviour.

e Fasy to design and create customised items
Another advantage of 3D printing is the possibility to easily fabricate customised
and non-repetitive elements. Computational modelling techniques can easily divide
a design in many customised unique elements or parts, however the manufacturing
of these items can be very expensive and time consuming, because of the unique
character of the elements. When constructing with a 3D concrete printer, tools and
moulds for each single element will not be needed anymore.

o Automated and efficient process

Using additive manufacturing in constructing concrete designs can be a large step
in the automation of the building industry. In product design and manufacturing
automation, the use of digital models and the help of robots, is current practice, how-
ever the building industry is conservative. Additive manufacturing can contribute
to the efficiency of the industry. For example, 3D concrete printers can print con-
crete throughout the day and night which can reduce construction time. Additive
manufacturing can also reduce the amount of errors during construction. Using this
technique only the preparation of the model has to be done manually, the machine
needs to be placed and the concrete printing material has to be transported to the
machine. More human interference is hardly needed, which results in less human
erTors.

o Sustainability
As mentioned above, material is added to a design space in this production method.
It is therefore possible to avoid an abundance of material in a structure. Only the
material that is actually needed can be placed. Besides, most past and present man-
ufacturing techniques such as milling, drilling and cutting typically remove material
where it is not needed. These subtractive processes cause more waste material and
additional work, which results in less sustainable results and higher costs.

Additive manufacturing of concrete can thus potentially become a more sustainable,
cheaper, faster and easier manufacturing method with more design freedom and possi-
bilities than current construction methods. However, there are some disadvantages and
challenges that need attention.
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2.1.2 Challenges and disadvantages of concrete additive manufacturing

The innovative building concept of 3D printing might replace existing manufacturing meth-
ods in the future, however some challenges must be solved first.

e Scale of construction

3D printing of concrete is inspired by the already existing 3D printing process in
other materials. One of the most important differences and challenges is the size of
structures compared to the size of the small models printed before. Layer thicknesses
need to be significantly larger in order to print parts within a reasonable timespan.
Concrete layers can now be printed with a thickness of about 9 to 40 millimetres. A
9 millimetre thickness is already 100 times larger then some plastic layers currently
being used in small scale rapid prototyping (Kestelier 2011). Not only the material
should be able to handle the larger scale, but the printing machines should be larger
as well.

e Higher cost for large production runs
Because the technique is in development production is still very expensive. When
the methods and machines are fully developed and more experience is gained, the
production costs will presumably decrease. For larger production runs it will proba-
bly always be more cost efficient to use a mould, because of the advantages of mass
production.

e Production time

Additive manufacturing is a production method which builds up a structure layer
by layer. The velocity of the nozzle, the end part of the concrete printer, must have
a maximum value. If the nozzle moves too fast, not enough concrete is placed at
a certain position. Another aspect which is important considering the speed is the
hardening time of the concrete. The concrete should harden just enough before the
next layer is placed on top. If the time in between the placements is too long, the
concrete hardens too much and the layers will not work together properly. If the
time interval is too short, the concrete is still wet and will not support the next layer
in a proper way (Lim et al. 2009).

e Limited tensile strength

Additive manufacturing of concrete is using a single printing material: concrete or a
concrete-like mixture. For this reason no reinforcement can yet be applied using the
printer. Structural concrete always contains reinforcement bars, for resisting tensile
forces in the structure. Fibres can be added to the mixture to increase the strength,
however this will not be enough in most cases. It is also possible to place steel cables
in between the concrete layers. Before safe and real printed structures can be built
some kind of reinforcement, testing and verification is needed. Regulations regarding
this new manufacturing process should be created.

e Lower precision
Another result of the coarse layering process is a lower precision. Moulds can be very
expensive and labour-intensive, however they can help create more exact structures
than the 3D printing process. This aspect will certainly improve over the years.
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2.2 Recent 3D printing projects

After concrete additive manufacturing was first mentioned by Pegna (1997) several projects
started all over the world. The most ground-breaking and promising projects are briefly
described in this part of the chapter.

2.2.1 Contour Crafting

Contour Crafting (CC) is a 3D concrete printing technology, proposed by professor Behrokh
Khoshnevis of the University of Southern California. The first publications on this fabri-
cation technique are from the late nineties (Khoshnevis 1998).

Automation has grown in almost all production domains other than construction of
large civil structures and their sub-components. Aim of the CC project was to automate
the construction process as well, in order to improve the speed, labour efficiency, durability
and to lower the accident rate and the cost of construction (Khoshnevis 2004).

Figure 2.1: Contour Crafting by Behrokh Khoshnevis (contourcrafting.org 2014)

Khoshnevis used the idea of the already existing 3D printing or additive manufacturing
processes and scaled these processes up. Instead of plastic or steel, polymer, ceramic slurry,
cement and a variety of other materials and mixes are used to print large scale objects with
a smooth surface finish. The process is, similar to the original 3D printing process, based
on Layered Manufacturing (LM). The CC machines are equipped with two trowels which
act as solid planar surfaces. They constrain the extruded mix in vertical and horizontal
direction and can thus create exceptionally smooth and accurate surfaces on the object
being fabricated (Khoshnevis 2004).

During or after the extrusion of the concrete layers, other objects can be placed by
machines, such as reinforcement bars, plumbing pipes and mechanical installations. In
this way human interference is minimised even more.

The research also addresses the application of Contour Crafting in building habitats
on the Moon or even on other planets. CC can be used to create Lunar structures which
provide radiation protection. By applying the CC technique the shielding structures can
be built utilising in-situ resources in advance of a manned landing (Khoshnevis et al. 2005).
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Figure 2.2: Lunar Contour Crafting (contourcrafting.org 2014)

2.2.2 WinSun — Shanghai, China

Ma YiHe is the CEO of WinSun Decoration Design Engineering Co, founded in 2002. Ma
used a technique similar to Contour Crafting to actually build houses in printed concrete.
Building-parts are first printed and then assembled as prefabricated parts.

Ma claims to have created ten 3D printed houses within 24 hours (Griffiths 2014).
The company aims to build sustainable houses by printing in layers of construction waste,
industry waste or mining residual mixed with cement. The firm owns around a hundred
national patents of construction materials. By using their technique WinSun expects
not only to contribute to a sustainable future of the building industry, but they expect
construction companies to save up to 50% of their building costs as well.

Figure 2.3: 3D printed house by WinSun (yhbm.com 2013)

After the manufacturing of the printed houses, WinSun also built a 3D printed neo-
classic villa and a five-storey apartment building (Charron 2015), the world’s highest 3D
printed residential building. Their latest achievement is a printed Chinese courtyard, in-
spired by the ancient Suzhou gardens (Buren 2016). According to Dr. Khosnevis the
Chinese Ma YiHe is "faking” his projects (Krassenstein 2015). Ma YiHe initially wanted
to collaborate with Khosnevis, however after Khosnevis visited China and rejected the
collaboration Ma YiHe used the technology he was able to learn from him. The creators
of Contour Crafting state that: “They are not 3D printing homes or apartment buildings.
Instead they are printing small sections of walls, within their own facility using a very
expensive b-axis gantry system from Italy, which they then simply fit with a concrete
pump. The extremely heavy walls then need to be loaded onto a truck, transported to a

9
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building site, and then offloaded and constructed. According to both Dr. Zhang and Dr.
Khoshnevis, this technology, which does not have a single patent backing it, is neither ef-
ficient nor revolutionary, and instead is much more expensive and inefficient than current
manufacturing techniques” (Krassenstein 2015).

Figure 2.4: 3D printed apartment buildings by WinSun (yhbm.com 2014)

2.2.3 TotalKustom — Rudenko USA

Andrey Rudenko, an American contractor, started TotalKustom in Minnesota around
2012 to “develop robotic systems that will facilitate the construction of affordable, faster,
zero-energy, and smarter housing” (Rudenko 2016a). Rudenko wanted to create a light,
portable and stable printing machine. He started using plastics as material printed by a
relative small printer. Then he experimented with larger printers and he started using
variations of cement mixes. He claims that after all the testing and tuning of the printer
he now can print nearly perfect layers. In comparison with Contour Crafting these layers
are much smaller in height (5.0 mm) and width.

In 2014 he printed a concrete castle using mostly his own resources (Krassenstein
2014). He printed the castle in parts in his backyard and afterwards the turrets were
lifted and placed on top of the walls. This was a difficult task, so the aim for a next
project was to build a structure in one piece. Additionally, he did not want to interrupt
the printing process in a successive project. Whenever the printer works 24 hours a day,
the construction time decreases greatly.

Figure 2.5: 3D printed castle and villa by Andrey Rudenko (totalkustom.com 2012)

A year later he was asked to manufacture a villa for the Lewis Grand Hotel on the

10
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Philippines. Rudenko prepared his printer in Minnesota, brought it to the Philippines and
started printing with a different concrete mixture containing local materials. A component
of the mixture was sand with volcanic ash, which lead to satisfying results; the walls
became pretty strong and the bonding between the layers was good. The printed hotel
suite measures 10.5 by 12.5 meters with a height of 4.0 meters. It includes several rooms
and a 3D printed Jacuzzi (Buren 2015).

2.2.4 Concrete Printing (CP) at Loughborough University

At Loughborough University the development of 3D concrete printing started around 2007
(Buswell et al. 2007). Similar to Contour Crafting the idea was to scale up the already
known additive manufacturing technology. However, this project is mainly focussing on
construction-scale components and the properties of the printed concrete, rather than
focussing on the construction of complete buildings. Another difference is the accuracy of
the printer. The printer in Loughborough is much more precise than the coarse printer
used in Contour Crafting. The diameter of the used nozzles varies between 4 and 22 mm.
Because of this precision the printer can achieve a higher 3D freedom and is thus capable
of creating small voids in the structure. These voids can be created to save material or to
place the building services.

In 2010 a reinforced "Wonder Bench” which weighs about one tonne was printed by
their 3D printer (Lim et al. 2011). In 2011 a two square-meter curved panel was printed.
Right now the printer can produce components in a build volume of up to 2.0 m x 2.5 m
x 5.0 m (Corke 2010).

. - BN

Figure 2.6: Concrete Printing at Loughborough University (lboro.ac.uk 2011)

The materials used in the CP investigation are cement and gypsum based, because of
the common use of these materials in the building industry. The used material has an
approximate density of 2300 kg/m? and produces a high strength material which is more
than three times as strong in compression and in flexure as conventional cast construction
materials (Lim et al. 2011).

In 2014 Skanksa, a large Swedish construction and development company has signed
an agreement with the Loughborough University to develop, build and commercialise a
3D concrete printing robot (Knutt 2014).
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2.2.5 Eindhoven University of Technology

The goal of the research program at the University of Technology in Eindhoven, called
3D Concrete Printing (3DCP), is “to establish concrete printing as a viable new method
to manufacture concrete elements and buildings, and to fundamentally understand its
processes” (Salet 2016). The research group operates and develops its own 3D concrete
printer at the university. The printer consists of a four axis gantry robot which measures
9.0 m x 4.5 m x 3.0 m. The robot is linked with a mixing pump. The robot and the pump
are both controlled by a numerical controller.

Figure 2.7: 3DCP at the University of Technology Eindhoven (tue.nl 2016)

The printing process is very similar to Contour Crafting, however the focus in Eind-
hoven is on understanding and controlling the process and the material instead of building
real houses.

Figure 2.8: Different results of 3DCP (tue.nl 2016)

Nevertheless, together with the BAM Infra construction company they also printed a
bicycle bridge at the university. The bridge is reinforced, pre-stressed and built up with
about 800 layers of concrete. Using this technology the eight-metre bridge was created with
less material, less waste and less human interference than in the conventional technique
in which a mould is filled.

12
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Figure 2.9: 3D printed concrete bridge in Gemert (verkeerinbeeld.nl 2017)

2.2.6 D-Shape

Enrico Dini, the inventor of the D-Shape printer, is an Italian civil engineer. He developed
a 6.0 x 6.0 meter printer with about 300 small nozzles and a height of 3 meters. The printer
is just as the previously discussed machines printing per layer (Lim et al. 2012).

The difference between this method and the previous discussed processes is that D-
Shape solidifies sand, pre-mixed with a catalyst, by a chemical reaction between the sand
and an inorganic seawater and magnesium-based inorganic binder. In contrast to the other
projects, the printer does not contain a material extruder. After a 3D design has been
made in the computer, the design is sliced in 5 millimetre thick layers. After the CAD
process is completed the manufacturing starts. A sand bed is deposit on the building site.
The sand is spread and flattened, before the binder is applied to the sand. A new layer is
finished. This process repeats itself until the model is completed. Finally the supporting
powder bed is removed, some additional binder is applied where needed and the surface
is treated. Now the structure is finished. The final product is a mineral-like material
with a micro-crystalline structure. Compared to concrete, the structures created with the
D-Shape have a relative high tension resistance and contain no iron reinforcement (Colla
and Dini 2013).

Figure 2.10: 3D printer and a printed structure by Enrico Dini (d-shape.com 2012)

Dini first used epoxy as binding material, however changed that to the magnesium-
based one after experiencing problems. In the future, Dini aims to use the printer to
create full-scale buildings (Dini 2016).
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Similar to Behrokh Khoshnevis, the inventor of Contour Crafting, Enrico Dini is inves-
tigating a way to use his printing method on the moon. The program, called ”3D printing
building blocks for lunar habitation”, has the main objective to investigate whether 3D
printing of moon dust is a viable construction technology for possible future lunar coloni-
sation (Ceccanti et al. 2010).

2.2.7 WASP

Another Italian project, the World’s Advanced Saving Project, or WASP “was born with
the dream of printing houses with 100% natural materials or ‘zero-mile’ homes, using ma-
terials found on the surrounding area” (Langenberg 2015). The project started in 2012.
During the research a group of engineers and researchers concluded that printing entire
buildings does not make sense yet. Therefore the group focused on printing individual
structural units, especially structural beams. In the current construction process of con-
crete beams a large amount of COs is produced. A ton of cement generates about a ton of
carbon dioxide (Moretti 2015). To diminish the emission of CO2 during the manufacturing
of beams, the group designed a 3 meter long lightweight modular reinforced beam. The
designs they created, modelled with smart software, got rid of the redundant material. In
this way only half of the total amount of CO2 produced in regular manufacturing processes
is released into the atmosphere. The beam is build up from separately printed modules,
later connected to each other.
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Figure 2.11: 3D printed modulated concrete beam (wasproject.it 2015)

The research group created different 3D printers. The first printer was the Power WASP,
a fast 3D printer that mills wood and aluminium. It is possible to equip the Power WASP
with a syringe to print ceramic mixtures. The Power WASP was succeeded by the range
of DeltaWASP printers, which were small and larger printers with a high precision and
speed (Moretti 2016). The modular beam discussed before is created with a 4.5 m high
delta printer. The DeltaWASP printers are equipped with an extruder for printing ceramic
materials. In 2015 WASP created a 12 meter high delta 3D printer, the Big Delta. WASP
considers it important that their printers are portable and feature low energy consumption
(Thompson 2015).
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Figure 2.12: 3D printers created by WASP (wasproject.it)

2.2.8 CyBe Construction

CyBe Additive Industries is a company from The Netherlands, started in 2013 by Berry
Hendriks. He was inspired after a presentation of Behrokh Khoshnevis and wanted to
create his own concrete 3D printer. His goal was to “develop an industrial, mobile, and
modular 3D printer together with printable materials, like concrete” (Wheeler 2015). CyBe
is combining the original Contour Crafting technique with a special robot. This robot has
a range of 3.15 meter and can simply adjust the speed and the angle of extrusion. The
company also uses a special type of mortar, created by one of their partners which reaches
a bearable strength within minutes (Goehrke 2015).

CyBe collaborated with Heijmans to create and test useful construction elements. Re-
cently they created a 3D printed mould together. The concrete mould will be filled with
reinforcement and poured concrete, however the mould will not only function as temporary
support, it will remain a part of the structure as well (Hammer 2016).

Figure 2.13: 3D printed concrete moulds (cybe.eu 2016)

2.2.9 TAAC Minibuilders and Large Scale 3D Printing

The IAAC, or Institute for Advanced Architecture of Catalonia uses a very different ap-
proach. Most 3D concrete printers are large and the products they create are smaller. An
issue in this approach is the fact that the size of the used printer should always exceed the
size of the structure, which can lead to huge printers. The TAAC uses small mobile robots
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to print large structures. In the process they make use of three different small robots, the
“builderbots”. The largest of the three only measures about 42 ¢m. Next to the three
small robots there is a “Supplier Robot”, which provides the liquid building material to
the smaller robots (Joki¢ and Novikov 2016).

Figure 2.14: IAAC 7Builderbots” (robots.iaac.net 2014)

The first small robot is the “Foundation Robot” which constructs the first 15 c¢m of the
structure. This first robot follows a path on the floor using ultra red sensors on the front.
The nozzle of the concrete extruder is fixed on the side of the robot. With a mechanism
the second robot clamps on the layers printed by the first robot and subsequently prints
the next layers on top of the first layers. This second robot, referred to as the “Clamp
Robot” can print under a small angle, resulting in slightly curved outer surfaces. The
third and last robot, the “Vacuum Robot”, can print perpendicular to the already printed
layers. The robot contains a suction cup at the bottom to stick to the structure. This
printer can print on the surface of the wall following a free-form curve.

Figure 2.15: Foundation, Clamp and Vacuum Robot (robots.iaac.net 2014)

Another project of the IAAC, in order to bring additive manufacturing to the architec-
tural scale, is the manufacturing of a 3D printed concrete bridge. The created bridge has
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a length of 12 meters and a width of 1.75 meters and was printed with micro-reinforced
concrete. The form was created using parametric design. In the design the structural
performance was maximised and the amount of waste was minimised.

DESIGN DEVELOPVENT PROCESS DIAGRAM

Figure 2.16: 3D Printed Concrete Bridge (Joki¢ and Novikov 2017)

2.2.10 MIT

The Mediated Matter Group, directed by architect, designer and assistant professor of
media arts and sciences at the MIT Media Lab, Neri Oxman, focuses on Nature-inspired
Designs and Design-inspired Nature (Oxman 2012). One of their projects is focussing on
the density of concrete. The comparison is made between a natural structure, a human
bone, and a structural element. The density of bones naturally varies from place to place.
Where needed the density is higher. The Mediated Matter Group tried to apply the same
approach to structural elements. By controlling the density spatially, by means of 3D
printing of different density gradients, materials can be used more efficiently and thus it
is possible to create lighter and stronger structures (Oxman et al. 2014).

Figure 2.17: Concrete with varying densities (Oxman et al. 2014)

The Mediated Matter Group does not only create biological digital designs, however
focusses on fabrication as well. An example is the Print-in-Place technology. In this process
a form-work made of fast-curing polyurethane foam is robotically 3D printed. After casting
the concrete the foam is not removed, however it functions as a good thermal insulation
material.

Another interesting MIT project is the development of a solar powered robotic system
that can print the basic structure of a building, the Digital Construction Platform. The
system consists of a vehicle with a large, industrial robotic arm attached to it. On the
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end of this arm a smaller robot is mounted which is more precise. Using this system it is
possible to print structures in a much larger manufacturing space than other 3D printers.
In most other cases this space is limited by the size of the printer.

Figure 2.18: Digital Construction Platform (Ozman 2016)

An advantage of the smaller robot arm at the end is that it can be equipped with
different nozzles. For example, nozzles used for pouring concrete, as well as for spraying
(insulation) material. As a proof of concept, the researchers at MIT printed the basic
structure of the walls of a dome with a height of about 3.7 meters and a width of about
15 meters. The prototype was created in less than 14 hours.

2.2.11 Apis Cor

The last interesting project that is discussed in this chapter is the work of a Russian
company called Apis Cor (Sakin and Kiroglu 2017). This company printed a concrete
house in Moscow with an area of just under 40 m?. The techniques are similar to the
previously discussed extrusion printers. However, the special aspects of this project were
the costs and the construction time. The costs of this house were only 10,000 dollars and
it was built in under 24 hours. The structure was printed on site with only a mobile
concrete 3D printer. This demonstrates the huge potential of 3D printing of concrete.

Figure 2.19: Printed house by Apis Cor (Sakin and Kiroglu 2017)
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Structural and topology optimisation

Traditionally structural design is focussing on creating structures which are safe in terms
of strength, stiffness and stability. In structural mechanics books from amongst others
Carpinteri (2013) and Al Nageim (2003) guidelines can be found on how to ensure this
safety. Over the years many structures were over-dimensioned to ensure the safety or
because proper manufacturing of different shapes was too difficult or too expensive. Now
that scientists and engineers are all aware of the environmental impact of the building in-
dustry and now that new manufacturing techniques are being developed, engineers should
not only consider strength, stiffness and stability anymore. They should aim to meet the
structural regulations with as little material as possible. By changing design variables it
is possible to minimise the amount of material used to manufacture a structure. This
process is a form of optimisation.

In this chapter a brief introduction is given in the field of optimisation in general and in
current structural optimisation techniques. This part of the research is concluded with a
more in depth explanation of several topology optimisation methods, especially focussing
on the SIMP-method (Bendsge and Sigmund 2003).

3.1 Basics of optimisation in general

Optimisation can be defined as the process of searching for the minimum (or maximum)
value of a set of criteria, defined by an object function, within a given set of boundaries,
often defined by parameters or variables. In the context of a structure subject to multiple
loads and support conditions the optimal shape is that which best satisfies the constraints,
with the degree of satisfaction not necessarily the same for all the constraints (Coenders
2008).
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Basics of optimisation in general

The general form of an optimisation problem is:

minimise F(z); reR"
such that ¢g; <0; t=1,..,p
hj =0; 1=1,...,¢q
(3.1)
fi(z)

where F(x) =

where F(z) is the objective function, g; are the inequality constraint functions, h; are
the equality restriction functions, f;(x) is the i-th object function and z is a vector of
design variables or parameters. These parameters can be bounded by box constraints, for
instance Tyin < T; < Tmaee. This is an example of a ”variable bound problem”. The so
called "search space” is the space spanned by these variables. The "feasible domain” is
the part of the search space where all the constraints are satisfied as well.

Optimisation problems can be solved using different methods. Some of these methods
are approximation methods, others are optimisation methods. Approximation methods
try to 'learn’ the objective function and find an optimum of that obtained function. In
optimisation methods the algorithm tries to optimise the objective function by searching
in the search space spanned by the possible variables, boundaries and constraints.

In optimisation methods discrete and continuous design variables are possible. Numer-
ical methods often use a discrete definition of the variables, hence discrete optimisation.
When continuous objective, restriction and other functions are assumed the methods are
mostly analytical and called continuous.

An important challenge of optimisation methods is the problem of local optima of the
objective function. Most functions have multiple local optima, in which the derivative
is zero. These positions are tops or bottoms, however not necessarily the highest top or
lowest bottom. Many methods get stuck in local optima and will therefore never find the
real optimum or global optimum.

global maximum

local maximum

N
_ > |

local minimum

global minimum

Figure 3.1: Local and global optima

Multi-objective or multi-criteria optimisation is possible as well. This class of optimisa-
tions is characterised by multiple objective functions. The problem is how to define such a
problem that these objectives can be optimised. An example of this class is weighted sum-
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mation of the objective functions. The outcome of the optimisation is strongly depending
on the chosen preferences of the designer.

3.2 Structural optimisation

Structural optimisation deals with the optimisation of structures. Often mathematical
problems and methods can be used to describe and solve structural engineering problems.
Different structural optimisation methods have been developed over the years. Structural
optimisation is basically the application of optimisation techniques on structures.

Aim of structural optimisation is to minimise or maximise a certain physical property.
The property can be load dependent, like the stress in or the deflection of a structure.
The optimised property can also be load independent, like the volume or the weight of the
structure.

“Structural optimisation seeks to achieve the best performance for a structure while
satisfying various constraints such as a given amount of material.” (Huang and Xie 2010)
Below a short overview is listed of the most important methods.

Optimisation Methods

(Section) Size Shape Topology

Optimisation Optimisation Optimisation

Evolutionary Density Boundary-based
methods methods methods

Figure 3.2: Structural optimisation scheme

3.2.1 (Section) Size optimisation

To optimise a certain structure the material in a section is one of the most significant
variables. For example, concrete is very effective in compression. Steel on the other hand
is preferred for structural parts loaded in tension. Combinations of materials are possible
as well; a variable can be the distribution of the reinforcement bars or the layer sequence
in composite materials.

Size optimisation is the investigation of the best sizes for a cross-section (Christensen
and Klarbring 2008). Nowadays a structural system and the matching cross-sectional sizes
are mostly chosen following rules of thumb. Afterwards checks are performed to ensure
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the safety of the structure. If the structure is over-dimensioned the sizes of cross-sections
are reduced to obtain an improved design. By using software different properties of the
cross-section (e.g. width or height) can also be varied to find a structure with a minimum
weight, while fulfilling constraints like the maximum stress or displacement at certain
points.

3.2.2 Shape optimisation

A different way of optimising a structure in order to reduce material is shape optimisation
(Christensen and Klarbring 2008). In shape optimisation the overall shape of the struc-
ture, including possible voids, is considered and improved to obtain a structure with a
uniform stress distribution. By altering the shape of the structure stress concentrations
are minimised or even avoided. The topology of the structure remains constant in this
form of optimisation, however the geometry and consequently the load carrying behaviour
change completely.

Figure 3.3: Size, shape and topology optimisation (Bendsge and Sigmund 2003)

3.2.3 Topology optimisation

Neither the shape, nor the size are predefined in topology optimisation (Christensen and
Klarbring 2008). In this optimisation method only a design space, boundary conditions
and the acting external loads are predefined. The optimisation distributes material in
the design space on the necessary positions in the most efficient way. It is technically
challenging, however economically rewarding. Rather than limiting the changes to the
sizes of structural components, topology optimisation provides much more freedom and
allows the designer to create totally novel and highly efficient conceptual designs (Huang
and Xie 2010).

3.3 Topology optimisation methods

A topology optimisation problem has the objective to find an optimal distribution of
material in a prescribed design domain. Most topology optimisation methods divide that
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design domain into a large amount of elements. This process is called the discretisation
of the design space. In the optimisation these elements are steered towards material or
no material. The final result is therefore a layout consisting of solids and voids. The
optimisation problem is a binary problem.

In most cases the compliance, the work done by external forces, is minimised for a
certain volume or mass fraction of the initial design domain. In other cases the volume
or mass of a structure, subjected to stiffness or strength constraints, is minimised. Many
researchers looked into these problems and developed methods to determine the layout of
optimised structures.

The main topology optimisation methods are grouped in three sorts of methods: evo-
lutionary methods, density methods and boundary-based methods.

3.3.1 Evolutionary methods

In evolutionary methods the binary problem is solved by generating an initial design.
Then a certain value is evaluated for every element, for example the stress in an element.
After this evaluation some elements are removed from, or added to the structure. This
process is then repeated to obtain an optimal design. Different evolutionary methods are
discussed below.

3.3.1.1 ESO method

The ESO method or Evolutionary Structural Optimisation method was first proposed by
Xie and Steven (1993) and has since been continuously developed to solve a wide range of
topology optimisation problems as mentioned by Xie and Steven (1997).

ESO is based on the simple concept of gradually removing inefficient material from a
structure. Through this process, the resulting structure will evolve towards an optimal
shape and topology. Theoretically, it is not guaranteed that such an evolutionary process
would always produce the best solution, because it is possible that elements are removed
in early iterations which are required in a later stage of the optimisation to be part of
the optimal design. However, the ESO technique provides a useful tool for engineers and
architects who are interested in exploring structurally efficient forms and shapes during
the conceptual design stage of a project (Huang and Xie 2010).

3.3.1.1.1 ESO based on stress levels

In this method (Huang and Xie 2010) a design space is subdivided into small elements.
By conducting a finite element analysis the stress level in each element is determined. If
the stress level in multiple elements is low, the material is not used in an efficient manner.
In the ideal situation the stress level in all the elements is around the same level. This
level should not be too small, to avoid unnecessary material, however it should not exceed
the strength of the used material either. The ESO method compares, for example, the
von Mises stress level in a particular element o2 with the maximum allowed von Mises

stress of the structure o7 . After each finite element analysis or FEA, elements which
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satisfy the following condition are removed from the design space.

% __ - RR (3.2)

where RR; is the rejection ratio. This cycle of analysis and removal of elements is re-
peated until no more elements satisfy the condition: a steady state is reached. Now an
evolutionary rate, ER, is added to the RR.

RRii1 = RR; + ER (3.3)

The evolutionary process continues until there are no elements in the structure containing
a stress level below a desired level. A desired (local) optimum is reached.

3.3.1.1.2 ESO for stiffness or displacement optimisation

A structure can be optimised for stiffness as well. In the ESO method commonly the mean
compliance C, the inverse of the overall stiffness of a structure, is considered (Huang and
Xie 2010). The optimisation problem can be stated as:

minimise C
N
s.t. vV — Z Viz; = 0; (3.4)
i=1
z,; =0 or x;=1

Where V; is the volume of an individual element and V* the prescribed total structural
volume. N is the total number of elements in the system. The binary design variable z;
indicates whether an element is absent (0) or present (1).

The mean compliance can be defined by the total strain energy of the structure or the
external work done by applied loads as:

_ 1.7
C=fTu (3.5)

where f is the external force vector and w is the displacement vector. In FEA, the static
equilibrium equation of a structure is expressed as:

Ku=f (3.6)

where K is the global stiffness matrix. When the ith element is removed from the structure,
the stiffness matrix will change by:

AK = K* - K = — K, (3.7)

where K* is the stiffness matrix of the resulting structure after the element is removed
and K is the stiffness matrix of the ith element. It is assumed that the removal of the
element has no effect on the applied load f. By varying both sides of Equation (3.6) the
change of the displacement vector is obtained as:

Au=—-K 'AKu (3.8)
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From Equations (3.5) and (3.8) we obtain:

1 1 1
AC = ffAau = -5 fTK'AKu = iu? Kiu; (3.9)
where u; is the displacement vector of the ith element. The so called sensitivity number

for the mean compliance can thus be defined as:
e

1
af = iu;rKlul (3.10)
The above equation implies that the increase in the mean compliance as a result of the
removal of an element is equal to its strain energy. To minimise the mean compliance,
which is equivalent to maximising the stiffness, through the removal of elements, it is clear
that the most effective way to do that is to eliminate the elements which have the lowest

values of «; so that the increase in C' will be minimal.

The number of elements to be removed is determined by the element removal ratio
(ERR) which is defined as the ratio of the number of elements removed at each iteration
to the total number of elements in the initial or the current FEA model (Huang and Xie
2010).

Similar to the ESO based on stress levels this method starts with a division of the
design space using a fine mesh of finite elements. Then the FEA is carried out for the
structure. The sensitivity numbers are calculated using Equation (3.10) and subsequently
a number of elements, with the lowest sensitivity numbers, according to a predefined
ERR, are removed. The FEA and the removal of the elements is repeated until the mean
compliance, or the maximum displacement, of the structure reaches a prescribed limit.

An important advantage of the ESO method is its simplicity. It can be easily un-
derstood by the users and easily linked to existing finite element analysis software. The
algorithm applies to both 2D and 3D problems equally. Another positive aspect of the
method is the speed. The elements that are removed in an iteration can be ignored in
further steps. This will lead to a smaller number of equations and thus a significant re-
duction in computation time every iteration. The removal of elements in an early stage
can also be a disadvantage. As stated before, some elements might seem unnecessary in
early iterations, however they might be a part of the optimal design in the end. The ESO
method is not able to recover elements. This is why the ESO method will improve the
design in most cases, however it may not result in the absolute optimum.

The ESO method was a concept for further research. Numerical problems in topology
optimisation, such as existence of solution, checker-board, mesh-dependency and local op-
timum, etc. were neglected. To overcome the deficiencies of the ESO method an improved
algorithm has been developed: the BESO method.

3.3.1.2 BESO method

The BESO method or bi-directional evolutionary structural optimisation method is an
extension of the ESO method and now allows material to be removed and added simul-
taneously. The first research in the BESO method was conducted by Yang et al. (1999)
for stiffness optimisation. In their study, the sensitivity numbers of the void elements are
estimated through a linear extrapolation of the displacement field after the finite element
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analysis. Then, the solid elements with the lowest sensitivity numbers are removed from
the structure, and the void elements with the highest sensitivity numbers are changed
into solid elements. The numbers of removed and added elements in each iteration are
determined by two unrelated parameters: the rejection ratio (RR) and the inclusion ratio
(IR) respectively (Huang and Xie 2010).

Disadvantage of this method is the fact that the ratios have to be chosen carefully to
actually reach an optimal solution (Rozvany 2009). Another problem of the early versions
of BESO is that the computational efficiency is quite low because of the large number of
iterations usually involved, compared to the previously described ESO method.

3.3.1.2.1 BESO method based on stress levels

The concept of BESO is applied on "full stress designs” by using the von Mises criterion
Querin et al. (2000). The elements with the highest von Mises stress are switched on
(solid) and the elements with a stress below a certain value are removed (void). The
number of elements that will be removed or added in a next iteration is depending on the
rejection or inclusion ratio again.

3.3.1.2.2 BESO method for stiffness optimisation

Huang and Xie (2010) presented a BESO algorithm for stiffness optimisation which ad-
dresses many issues related to topology optimisation of continuum structures such as a
proper statement of the optimisation problem, checker-board pattern, mesh-dependency
and convergence of solution.

Topology optimisation is often aimed at searching for the stiffest structure given a
certain volume. The optimisation problem is again stated as:

1
minimise C = §fTu;
N
s.t. V- Z Vix; = 0; (3.11)
i=1

;=0 or x;=1

where f and w are the applied external forces and displacement vectors respectively
and C is the mean compliance. V; is the volume of an individual element and V* the
prescribed total structural volume. N is the total number of elements in the system. The
binary design variable z; indicates the absence (0) or presence (1) of an element.

When an element is removed from the structure, the mean compliance changes. This
change is called the sensitivity number in the BESO method:

1
Oée = ACZ = iuzTKlul (3.12)

(2

where u; is the nodal displacement vector of the ¢th element, K; is the elemental stiffness
matrix.
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By deleting elements based on the original sensitivity numbers a checker-board pattern
can originate. Structures with a pattern like this cannot be easily manufactured.

Figure 3.4: Typical checker-board pattern in the ESO method (Bendsge and Sigmund 2003)

To avoid this pattern a smoothing algorithm is created. A different problem that can
occur is called the mesh-dependency problem. This term refers to the problem of obtaining
different topologies when using different finite element meshes. To avoid both mentioned
problems a filter scheme for the BESO method is developed (Bendsge and Sigmund 2003).

Before applying this filter scheme, nodal sensitivity numbers without any physical
meaning on their own are defined by averaging the elemental sensitivity numbers

M
of = Z w;f (3.13)
i=1

where M represents the total number of elements connected to the jth node, w; is the
weight factor of the ith element and Zf‘i Jw; = 1.

1 Tij

Y
. Tij
=1

(3.14)

where r;; is the distance between the centre of the ith element and the jth node. So the
elemental sensitivity number has a larger effect on the nodal sensitivity number when it
is closer to the node.

The next step is to calculate the improved sensitivity number of the ith element

K
w(mj)oz?

<.

(3.15)

Q; =

w(riz)
1

J

where K is the total number of nodes in the sub-domain €; and w(r;;) is the linear weight
factor defined as
w(rij) = rmin — 15 (1 =1,2,..., K) (3.16)
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Figure 3.5: The nodes in the circular domain ; are used in the filter scheme for the ith element
(Huang and Xie 2010)

In some situations the objective function may not be convergent. For that reason a
simple averaging scheme is applied to stabilize the evolutionary process. Huang and Xie
(2007) found that averaging the sensitivity number with its historical information is an
effective way to solve this problem.

o= (3.17)
where k is the current iteration number. Now af = «; and can be used for the next
iteration. In that way the updated sensitivity number includes the whole history of the
sensitivity information in the previous iterations.

Before every new iteration a target volume for the next step Vi1 needs to be calculated.
The evolution of the volume can be described as

Vigr =Ve(1+ ER) (k=1,2,3,...) (3.18)

where ER is the evolutionary volume ratio. When the volume reaches its constraint or
Viki1 = V* the volume will not change any more for the remaining iterations.

Now the sensitivity numbers of all the elements in the design space are determined
according to the formulas described. The elements with a sensitivity number lower than
afi’;l will be removed and void elements with a sensitivity number higher than affé g Will be
added. o, is always smaller than or equal to o', The exact values of o/, and ol can
be determined following the next three steps (Huang and Xie 2010).

1. Start with ozgfid = O‘géz = oyp. In this way oy, can be determined by Vjyi. For
example, there are 1000 elements in the design domain and a; > as... > aiggo and
if V41 corresponds to a design with 725 solid elements then oy, = a7os.

2. Determine AR, the volume additional ratio, which is the number of added elements
divided by the total number of elements in the design domain. If AR is larger than
the maximum volume ratio AR ,qz, aﬁl’;l and ata’éd need to be redetermined in the
next step. If that ratio is smaller than AR,,.:, step 3 is not needed anymore.

3. Calculate afj&d by sorting the sensitivity number of void elements. The number of
elements that will become solid equals AR,,q, times the total amount of elements
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3.3. Topology optimisation methods

in the design domain. The sensitivity number of the element ranked just below the
last added element is the new afj&d. The value of afjél should be chosen in a way

that the removed volume equals (Vi — Vi1 + Vadded elements) -

The iterations consisting of the finite elements analysis and the removal and addition
of elements will continue until both the volume constraint V* as well as the convergence
criterion (defined in terms of change in the objective function) are satisfied.

N N
> Cr—it1— 2 Chon-it1
error = 1=1 =1 <7 (3.19)

N
Cr—it1
=1

7

where k is the current iteration number, 7 is the allowable convergence tolerance and N
is an integer that determines the length of the last iterations considered. N = 5 means
that the change should be small enough over the last 10 iterations (Huang and Xie 2007).

An overview of the BESO method is visualised in a flowchart in Figure 3.6.

Define design domain,
loads, boundary conditions
and FE mesh

Define BESO parameters:
V*, ER and ARmax

Carryout FEA and calculate
elemental sensitivity
numbers

Calculate nodal sensitivity
numbers

Filtering sensitivity
numbers

Averaging sensitivity
numbers

Calculate the target volume
for the next design

Constructa new design

Volume
constraint
satisfied?

Converged?

Final Solution

Figure 3.6: Flowchart of the BESO method by Huang and Xie (2010)
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3.3.2 Density methods

In density methods the binary conditions are relaxed. The material densities can now have
intermediate values between 0 and 1. The resulting structures can thus contain elements
with intermediate densities. In some methods, for example the homogenisation method,
these elements are part of the final structures, while in other methods a penalisation
procedure is applied to avoid these intermediate densities. The latter is the case in the
SIMP method.

3.3.2.1 Homogenisation method

The homogenisation method (Bendsge and Kikuchi 1988) starts with the discretisation of
the design space. All the elements are given a density factor between 0 (void element)
and 1 (solid element) corresponding to a certain micro-structure. The homogenisation
method creates a continuum problem, which means that not only values of 0 or 1 are
possible, but intermediate values as well. In practice this means that porous elements or
micro-perforated composites can be part of the optimal structure. The method can be
described as micro-structure sizing.

Large Scale Small Scale

homog. voided
material material

Figure 3.7: Homogenisation method (Belblidia and Bulman 2002)

In this method a material model with micro-scale voids is introduced and the optimi-
sation problem is defined by seeking the optimal porosity of such a porous medium using
one of the optimality criteria. The porosity is varied throughout the structure to obtain a
more optimal structure. A disadvantage of the method is the fact that it often produces
designs with infinitesimal pores in the material that make the structure difficult or non
manufacturable.

3.3.2.2 SIMP method

The SIMP, or Solid Isotropic Material with Penalisation method is the most commonly
used approach to solve the topology optimisation problem. The objective of the mini-
mum compliance problem is to minimise the deformation of the structure subjected to

30



3.3. Topology optimisation methods

certain loads and boundary conditions. A global measure for the deformation is the total
compliance (c¢) of the structure, defined by:

c(z) = fTu(z) (3.20)

Where f is the vector of external nodal forces and u(x) is the vector containing the nodal
displacements. The compliance should be minimised for a certain prescribed volume (V*).
Now the problem can be presented as:

minimise c¢= flu
N

s.t. VE =) Viz; =0 (3.21)
i=1

0<Tmin <x; <1

An important difference with the evolutionary methods is that the variable z; can
now vary between a very small value x,,;, and 1. In the ESO and BESO method z;
was either 0 or 1. To steer solutions to void or solid designs the SIMP method uses
a material interpolation scheme with penalisation. In the standard SIMP method the
Young’s modulus of intermediate elements is interpolated as a function of the element
density using;:

E(z;) = Egz¥ (3.22)
in which Ej is the Young’s modulus of the solid material and p is the penalty exponent.
To obtain void or solid designs normally p > 3 is used in the SIMP method. Important to

notice is that the elements are not removed, however the virtual density and the stiffness
of the void-like elements is changed into a very small value.

The global stiffness matrix can be expressed by:

K=> afK} (3.23)

where K? is the elemental stiffness matrix of a solid element.

Similar to the BESO method a sensitivity number is calculated for the elements in the
design space (Huang and Xie 2010).

(50 —1

o —pal "l KDu; (3.24)
The problem can be solved in different ways. One sort of method is the Optimality Criteria
(OC) method. A standard OC updating scheme for the design variables by Bendsge and
Sigmund (2003) can be formulated as:

max(Tmin, xf —m) if me? < max(Tmin, xf —m)
2t = S min(1, 28 +m) if min(1,2F +m) < 2B} (3.25)

z¥B] otherwise

where :cf is the value of the design variable at iteration k, m is the positive move-limit,
n is a numerical damping coefficient (typically equal to 0.5) and B; is found from the
optimality condition as

B; = A pa Ml KD, (3.26)

i
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3.3. Topology optimisation methods

where ) is a Lagrangian multiplier that can be determined using a bisection method or a
Newton method (Bendsge and Sigmund 2003).

To ensure that the optimal design is mesh-independent and checker-board-free the
following sensitivity filter scheme is introduced by Sigmund and Petersson (1998).

o1 -
ow; T Zj:l Hij (5333'

where N is the total number of elements in the mesh and H;; is the mesh-independent
weight factor defined as

Hij = Tmin — Tij, {Z eEN ‘ Tij < Tmin} (328)

where r;; is the distance between the centres of element ¢ and j. The weight factor H;; is
zero outside the circular filter area shown in Figure 3.5.

An overview of the SIMP method is visualised in a flowchart in Figure 3.8. An algorithm
using the SIMP method and a more in-depth explanation of the method is provided in the
next chapter.

Define design domain,
loads, boundary conditions
and FE mesh

Define SIMP parameters:
V*, p and Rmin

Density initialisation
Finite Element Analysis
Sensitivity Analysis
Filtering sensitivities

Density updating

Converged?

Final Solution

Figure 3.8: Flowchart of the SIMP method
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3.3.3 Boundary-based methods

Similar to the evolutionary methods the boundary-based methods solve the binary problem
without relaxation of the density. The boundary-based methods are not gradient based,
in contrast to the density methods, so the elements are either void or solids and so the
boundaries of the final result are clear. In this kind of methods the design variables
directly control the exterior and interior boundary shapes of the structure. An example of
a boundary-based method with the capability of handling topology changes is the level-set
method.

3.3.3.1 Level-set method

In shape optimisation the shape of the structure and thus the voids can be adapted to
obtain a better design, however the topology remains constant. The level-set method, a
method to track interfaces and shapes, is used for a different kind of shape optimisation.
In this method, originally developed by Osher and Sethian (1988), the topology can be
changed. Lines and surfaces can merge, split, appear or disappear to form a new topology.
The movements of these boundaries are depending on the stress in or the stiffness of the
structure. The level-set method is a non-gradient method and therefore only has two
values for the densities, 0 (void) and 1 (solid). This results in clear boundaries.

o O O O 0O 0 00 O
o O O O 0000
(a-1) (c-1)
X0, 538
(a-2) (C 2)
(a-3)
(a-4) (c-4)

Figure 3.9: Topology optimisation using the level-set method (Wang et al. 2003)

Predefined boundaries can split into pieces to form multiple boundaries, however it is
also possible for boundaries to come together to make a single boundary. The method is
referred to as ”a steepest descent method by combining the shape sensitivity analysis with
the Hamilton-Jacobi equation for moving the level-set function, for doing topology design
of structures” (Huang and Xie 2010).

Similar to other topology optimisation methods the level-set method aims to find the
optimal material distribution €2,,,: in a design domain 2. The domain and the structural
boundary can be described by the function ¢(x), the level set function. The aim is to find
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3.3. Topology optimisation methods

the optimal boundary I' of a distribution £2,,,4¢-

d(x) >0 Vx € Qnat
P(x) <0 Vx €\ DUnat
Pp(x)=0 vxel

Figure 3.10: Level-set (Verbart et al. 2012)

The level-set method is a promising optimisation method, however it has not reached
the stage of regular industrial applications yet (Rozvany 2009).
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Development of an improved optimisation
algorithm

In the previous chapter multiple topology optimisation methods are discussed. The meth-
ods described are implemented in multiple software packages which are commercially avail-
able. Examples are ANSYS, Autodesk Fusion and Solidworks. Most packages are user-
friendly, however they are expensive and the exact codes are not visible and adaptable to
individuals. To see the actual code, to change the material model or to add constraints
an open-source algorithm is needed.

Two interesting and available algorithms are the 2D TopOpt algorithm by Andreassen
et al. (2011) and the Top3D algorithm by Liu and Tovar (2014). Both scripts are written
in MATLAB by MathWorks (2010) and thus readable and adaptable for students with a
MATLAB license. Unfortunately, a MATLAB licence needs to be purchased to work with
the code if your not connected to a university.

The mentioned algorithms are all based on the SIMP method which is briefly described
before and more profound by Bendsge and Sigmund (2003). From the mentioned topology
optimisation methods in the previous chapter two are used frequently: the BESO method
and the SIMP method. The SIMP method is probably chosen by the researchers because
the SIMP method with continuous design variables guarantee that its solution is at least
a local optimum (Huang and Xie 2010).

Hard-kill ESO/BESO methods can come up with highly inefficient local optima because
these evolutionary methods use the gradient information in the sensitivities to formulate
discrete decisions. In that way far less efficient structures can be created by removing the
wrong elements.
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LLLLLYLLLLLLS

LLLLLYLLLLLLS

LLLLLYLLLLLLS

Figure 4.1: A design domain with forces and boundary conditions (top), the initial coarse mesh
(middle) and a highly inefficient local optimum (bottom) (Zhou and Rozvany 2001)

As illustrated in Figure 4.1 the initial design can change in a cantilever beam by
removing the wrong elements. In that case the compliance will be much higher than with
the vertical tie included in the design. This problem can occur when applying the SIMP
method as well, however the BESO method will not recover the removed elements in a
next iteration. It will add elements in the region with the highest strain energy density,
which is at the left-bottom of the cantilever.

In this chapter a modified SIMP method is described more precisely and a work-flow
is created for topology optimisation for concrete additive manufacturing using Rhino/-
Grasshopper to model the problem and visualise the outcome. The latest Python version
(3.6.5) is used to perform the optimisation. First the problem will be defined, then a
material model will be created and explained that can be used to model 3D printed con-
crete. Different filters are explained that resolve numerical difficulties and assure a void
and solid outcome. Additionally a filter is explained that takes into account some con-
straints of the additive manufacturing process. Finally, the FEA is briefly discussed, the
sensitivity analysis is explained and the solvers are discussed.

4.1 Definition of the problem

In this section the problem is defined. A designer usually starts with a space in which a
structure will arise, the external loads are given by the Eurocodes, depending on the future
function of the structure and finally the designer chooses where and how the structure or
the structural part will be attached to other elements or to the foundation.

4.1.1 Design domain, boundary conditions and loads

Topology optimisation typically starts with the description of the design domain. This
design domain is a 2D or 3D space in which the final design will be formed. This space is
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4.1. Definition of the problem

divided into small parts, the elements. In this research simple square (2D) or box-shaped
(3D) elements with predefined dimensions are stacked together to obtain a design domain.

A nelx g ¥

nely

| . nely

Figure 4.2: 2D and 3D design space

The created 2D elements are so called 4 node quadrilateral elements and the 3D ele-
ments are 8 node hexahedrons.

x

Figure 4.3: Used elements in 2D (4 node quadrilateral element) and 3D (8 node hexahedron)

The corner nodes contain several degrees of freedom. In 2D the nodes can shift in
both x- and y-direction. In 3D the points contain an additional degree of freedom in
the z-direction. In the algorithm the elements, the nodes and the degrees of freedom are
numbered. The elements and nodes are numbered from top-to-bottom, from left-to-right
and from back-to-front. The numbers of the degrees of freedom in 3D are obtained by:
x-degree of freedom = 3N, y-degree of freedom = 3N+1 and z-degree of freedom = 3N+2.
In 2D this is: x-degree of freedom = 2N and y-degree of freedom = 2N+1.

By constraining certain degrees of freedom the boundary conditions can be assigned.
It is possible to select any node and to fix it in whatever direction needed.
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A&

u x % X% —A ‘Zy A

Figure 4.4: Boundary conditions in 2D and 3D

AVAVA VA VA VAV

In a similar manner the external forces can be assigned to the created grid. In the
algorithm the magnitude of the force and the direction can be described. The external
forces are now assigned to the selected nodes. To make sure the resulting structure is safe,
the magnitudes that are assigned here are the load values for a certain structural function
multiplied by the factors of safety.

N |
>

Figure 4.5: Assignment of the external forces in 2D and 3D

It is possible to consider self-weight of the elements in the optimisation as well. In that
case the nodal force vector F' will contain an additional part:

F =Fo+ Fsp (4.1)
where the self-weight part of the force per element is:
Fow = VepegF = VepoigF (4.2)

where V. is the elemental volume, p. the real density of the element, g is the gravity
acceleration and pg is the density of the used material. & is the vector with filtered design
variables and F' divides the elemental force in y-direction over the 4 nodes in 2D problems
and in z-direction over 8 nodes in 3D problems. A part of F' is now depending on the
design variable, which is important for the calculation of the sensitivities later on.
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4.1.2 Objective functions

Now that the design domain, loads and boundary conditions are known, the objective
of the optimisation needs to be determined. The objective function is the function that
will be minimised. Topology optimisation can be used to find optimal solutions using
different objective functions. As mentioned before the standard SIMP method minimises
the compliance to obtain a structure which is as stiff as possible for a certain part of the
initial volume. In this research an additional objective, the minimisation of the volume or
mass, is an option as well.

4.1.2.1 Minimise compliance

A measurement of the overall stiffness of the structure is the compliance ¢, the inverse
of the stiffness. This value needs to be minimised by the algorithm in order to obtain a
structure which is as stiff as possible. The objective is described as:

minimise (&) = FLU(&) (4.3)

where F' is the load vector and U(Z) is the vector with nodal displacements.

4.1.2.2 Minimise volume

Rather than obtaining a maximum stiffness for a certain volume percentage, designers,
architects and engineers are more interested in minimising the amount of material neces-
sary without exceeding the limitations of the used material. The objective, the volume
fraction, is described as:

1 &
minimise v(&) = - Zﬁ:vi (4.4)
€ n=1

where v(Z) is the fraction of the initial design domain, n. the number of design variables,
Z is the vector with filtered design variables and v; is the volume of an element.

4.1.3 Constraint functions

In optimisation problems the objective is always subjected to a constraint function. Other-
wise the optimisation would result in trivial outcomes. For example, in case of compliance
minimisation the final result would be a completely solid design space. After all, that
would result in the stiffest structure. It is possible to limit the material use, by means
of a volume constraint, however it is possible to set up constraints for the strength and
stiffness as well.

4.1.3.1 Volume constraint

In standard compliance minimisation usually the volume is limited. Only a certain per-
centage of the initial design area or volume can be used to create a structure. The volume
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constraint is connected to the mass by the well known formula:
m = pV (4.5)

where m is the mass in kg, p the density of the used material in kg/m?3 and V the volume
in m3. For that reason a volume constraint can be easily linked to a mass constraint. The
volume constraint that is used in this research is:

Ne
s.t. Zivi < Viim = ViimMe (4.6)

n=1

where Z is the vector with design variables, vy;,, is the prescribed volume limit, v; is the
volume of an element and n. is the number of considered elements. Rearranging the
formula gives the final volume constraint:

Ne Ao
ot gy = 2=l g (4.7)

4.1.3.2 Compliance constraint

A different constraint that can be applied is the compliance constraint. When applying
this constraint the overall stiffness of the structure is bounded by a certain limit value for
the compliance, cj,. The maximum deformation can be limited by this constraint. The
stiffness or compliance constraint is simply described as:

st o(2) < cim (4.8)

where ¢(%) is the compliance of the structure and ¢, is the maximum allowable value for
the compliance. Rearranging these values gives:

st ge= “®) < (4.9)

4.1.3.3 Stress constraint

The third type of constraint that can be implemented to the optimisation problem is a
stress limit. To obtain a result that contains a certain strength it is possible to limit the
maximum stress in the final design:

s.it. o(z) < opm (4.10)

where o(Z) is a certain considered stress in the final structure and oy;,, is the strength of
the material.

4.1.3.3.1 Introduction in stress-constraint topology optimisation

Many researchers worked on an approach with stress constraints in the last decades and
many researchers are working on it at the moment. A straightforward approach is to
calculate the stresses at given points in the design space and constrain these values. If the
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stress in for example an element is higher than the prescribed limit, more material or a
different distribution of the material is needed. For example, Duysinx and Bendsge (1998),
Pereira et al. (2004) and Yang and Chen (1996) applied this so called local constraint
approach in their works.

A different notation of the stress constraint in Equation 4.10 is:

( 7 —1)§:§0 (4.11)

Olim

where o is the considered stress value and oy, is the maximum allowable stress. This
formula was used as a local stress constraint considered at the centre of the finite elements.

When in this approach the relative density goes towards zero, the so called singularity
phenomenon can occur. This phenomenon was already encountered in truss optimisa-
tion, stated in the early works of Sved and Ginos (1968). They found that when the
bar area goes to zero, the stress constraints are violated. The considered bar could thus
not be removed. A similar problem occurs when design variables (virtual densities) of
the considered elements in topology optimisation go to zero. The stresses become really
high, while they should actually go to zero, because the elements are removed from the
structure. This phenomenon is discussed by many researchers, such as Kirsch (1990), Guo
et al. (2001) and Rozvany and Birker (1994). One approach to tackle this problem is
the e-relazation suggested by Cheng and Guo (1997). They suggested to relax the stress
constraint by an expression. The € starts at a certain positive value and this value of
the relaxation is gradually reduced, which leaves the original stress constraint in the end.
Duysinx and Bendsge (1998) used this approach in stress constraint topology optimisation
and defined the relaxation as:

( 7 —1>i’§€ (4.12)

Olim

A different approach to overcome the difficulty of singularity is the gp-relazation (Bruggi
2008). The relaxed stress vector & in this approach is given by:

(o)

A Y

o= where, q € (0,p) (4.13)
In this equation ¢ is the relaxation exponent. The relaxation increases for lower values of
q. The considered macroscopic stress (o) is calculated using the equation:

(o) = Cee = 2PCpe (4.14)

where C, is the constitutive or elasticity matrix and € is the strain. Combining these
equations gives:
o =29, where, og= Cpe (4.15)

where oy is the stress vector and Cy is the constitutive or elasticity matrix for solid

elements.

—-1<0 4.16
Olim ( )

According to Verbart et al. (2011) the design space is highly non-convex and therefore it
may be difficult to find an optimal solution. Equation 4.16 holds for every element in the
design.
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When the design domain is large and consist of many elements, many constraint equa-
tions need to be considered. This is a great disadvantage of the local approach. Duysinx
and Bendsge (1998) also concluded that more efficient methods are required to reduce the
high computational cost of of this large-scale optimisation problem.

Duysinx and Sigmund (1998) came up with an idea to bundle all the local stresses in
a single global constraint to reduce the computational time. The challenge hereby is to
find a function ¢“ that represents all the local constraints in a proper way. Well known
aggregation functions from the literature are the Kreisselmeier-Steinhauser (KS) and the
P-norm and P-mean functions. These functions consider a number of stress evaluation
points, n,. In this research the stress is evaluated in every element, so n, = n.. An impor-
tant property of both functions is the fact that they are, in contrast to min/max-operators,
differentiable. Gradient information is necessary to solve the optimisation problem.

The Kreisselmeier-Steinhauser (KS) function approximates the maximum stress by
giving a lower and and upper bound:

1 1 & . 1 Mo
l Po P
OKs = pln <n Z“ ¢ ) < otim < p 1o (Zﬂ e ) = 0)l% (4.17)

In this research the P-norm function is used as the global measure of the stress. This
aggregation function is an upper bound on the largest stress in a structure and is defined
by:

opN = (i(f})P> P > Olim (4.18)

=1

P-mean is an underestimation of the maximum stress and therefore a lower bound:
1 \P
opM = EZ(U) < Olim (419)

For both the KS function as well as the P-norm and the P-mean functions it holds that
the higher P, the closer the real maximum value is approached. However, the higher this
aggregation factor, the higher the non-linearity of the functions. In research papers from
Kiyono et al. (2016), Le et al. (2010) and Holmberg et al. (2013) values of P between 6
and 30 are used.

The global stress measure opy lacks physical meaning and to actually use it as a stress
constraint Le et al. (2010) proposed a normalised global stress measure. The global stress
measure is scaled by a factor ¢,orm, which is calculated using information from previous
iterations.

k—1

g _
Omaz = CnormOPN, where, warm =% ZLLUIC + (1 — Oék> k1 (420)
9pN
where 0 < o < 1 controls the variation between the factor ¢* and that factor in the

norm
previous iteration (o =1). k is the iteration number.

Duysinx and Sigmund (1998), Pereira et al. (2004), Fancello Ancello and Pereira (2003)
and many others all came up with different versions of global constraint functions. These
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functions lower the computational costs, however with the use of global constraints the
local stress control is lost, which can lead to final designs that are still not acceptable. To
gain more local control and to keep the computational costs low a clustered approach is
proposed in which several stress evaluation points are grouped. Paris et al. (2010) came up
with the so called block aggregation and Le et al. (2010) defined a regional stress measure.
This clustering is not implemented in the research so far.

The constraints that are adopted in the code are listed en explained below.

4.1.3.3.2 Von Mises yield criterion

The most commonly used stress criterion is the von Mises stress. It can be used to
constrain the results in a way that the yield stress is not exceeded in any element of the
structure.

Figure 4.6: 3D and 2D representation of the Von Mises stress criterion

In 2D optimisation problems the von Mises stress can be calculated using:

ToM = \/ G2, + G2, + 352, — Guulyy

(4.21)
=+/6TVspo
where the relaxed stress tensor is defined as:
&xx
5= |5y (4.22)
Ty
and the middle matrix Vop is given by:
1 -1 0
Vop= |- 1 0 (4.23)
0 3

In 3D problems the stress tensor contains six values and therefore the calculations are
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changed to:
- 1. . . . - - - ~ ~
OvM = \/2[(%3[: = Oyy)? + (Gyy = 022)% + (022 — 02a)?] + 3(72, + 7L +72,) (4.24)
=\ dT'Vspo
where the relaxed stress tensor is defined as:
5T
nyy
~ 02z
o= |. 4.25
(4.25)
%ZJT
_%xy_
and the middle matrix V3p is given by:
_ 1 1 -
1 -3 —=5 000
—% 1 -% 000
1
- —= 1 0 00
_ 2 2
Vio=1¢0" 0 0 300 (4.26)
0 0 0 0 3 0
| 0 0 0 0 0 3

By using the gp-relaxation approach to avoid singularity and applying the normalised
P-norm function to keep the computational time within reasonable limits the first stress

constraint is given as:

C g
st gen = %PN” ~1<0 (4.27)
VM im

where

o=

PNy = (i(%M)P) (4.28)

i=1

4.1.3.3.3 Drucker-Prager yield criterion

In this research the focus is on optimising 3D printed concrete. Because the material is
printed in layers and due to the bad performance of concrete in tension the von Mises stress
is not a realistic stress criterion for the chosen material and manufacturing procedure.
Some researchers, such as Cai (2011) tried to incorporate this unequal behaviour in tension
and compression through adapting a non-linear constitutive law for the material. Others
like Bruggi and Duysinx (2013) worked on a stress-based approach considering unilateral
material.

According to them the Drucker-Prager yield criterion is a smooth strength criterion
that is more suited to the used material, than the von Mises criterion. The material
considered contains different strengths in tension and in compression, respectively or; and
o0rc- The uni-axial asymmetry ratio s is defined as:

OLc
oLt

S =

(4.29)
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From this formula follows that for a high value of s no-tension material is favoured and
for a low value of s no-compression material is preferred. In their research Drucker and
Prager (1952) describe that the stress tensor o is part of the feasible domain if the following
equation holds for every element:

o = Qd.p.\/ 3Jop + Bd.p.Jl <1 (4.30)
where n
OLc T OLt OLc — OLt
qdp. = ——, G//’Ld Bd. = 431
P 20140 P 20040 ( )

where Jq is the first stress invariant of ¢ and Jop the second invariant of its deviatoric
part (Bruggi and Duysinx 2013). Assuming plane stress conditions the following holds for

those values in 2D:
J1 =04z +0yy

4.32)
2 2 2 (
3Jop = 05, + Oy + 305, — Tua0yy

[op) r

—OLc oLt
(251
Mohr-Coulomb
Drucker-Prager
Figure 4.7: 2D representation of the Drucker-Prager stress criterion
In 3D the values are calculated using;:
J1 =04 + Oyy + 02z
(4.33)

1
3Jop = 5[(%1 —0yy)? + (Oyy — 022) + (02 — 002)’] + 3(72, + 7o + T2)

According to Duysinx et al. (2008) it is possible to rewrite the terms above and the
equivalent stress in terms of a “hydrostatic stress matrix” HY and a "von Mises stress
matrix” MY,

Jy =P HU

4.34
3Jop = #2PUT MOU (4:34)

the equivalent stress referring to the macroscopic stress of the elements is now described
as:

1 -1
(c°1) =aP <SJ; VUTMOU + 2 H0U>

2 2 (4.35)

— #P5cd

To use this stress failure criterion as a constraint in the topology optimisation problems,
the relaxed stress 6¢¢ is determined:
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4.1. Definition of the problem

o€
o = < - ) =P g% (4.36)

14
In this case the P-norm aggregation is used as well for computational efficiency. The
second stress constraint, which takes into account the stress in different directions is given

as:

g
St geo = — N1 _1<0 (4.37)
oLt

where

=

o, = (i(aeqf) (1.38)

i=1

4.1.3.3.4 Defined problems

In the previous sections the most important objectives and constraints are defined and
explained. However, some combinations of those objectives and constraints are senseless.
Below the six most common problems are defined.

Problem A: Compliance minimisation subjected to a volume constraint

minimise c(&) = FLU(&)

Ne
s.t. Gy = Lot ® 1<0 (4.39)

ViimMe o
0 <Tmin <x; <1

Problem B: Volume minimisation subjected to a compliance constraint

1 &
minimise v(T) = — ch
n
“n=1 (4.40)
s.t. c(2) < Clim

0<Tmin <wx; <1
Problem C: Volume minimisation subjected to a von Mises stress constraint

Ne
o N 1 .
minimaise U(x):—g z
Ne
n=1

(4.41)

c OPN
s.t. gs,1=w—1§0
O-leim

0 <Zmin <w; <1
Problem D: Volume minimisation subjected to a Drucker-Prager stress constraint

1 &
minimise v(%) = — Z:ﬁ
ne
n=1
_— (4.42)

s.t. gsp=——1<0
oLt

0<Zmin <x; <1
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4.2. Density method and filtering of densities

Problem E: Volume minimisation subjected to a compliance and a von Mises stress
constraint

Ne
L N 1 .
minimise v(a:):—g z
Ne
n=1

s.t. c(?) < clim (4.43)
o1 = CnormOPNuy 4 <0
O-'UMlim

0<Tmin <x; <1

Problem F: Volume minimisation subjected to a compliance and a Drucker-Prager
stress constraint

Ne
L N 1 .
minimise v(w):—E z
Ne
n=1

s.t. () < Clim (4.44)
o
sz = TPNea 9 <
OLt

0 < Zmin <x; <1

4.2 Density method and filtering of densities

The SIMP method is a density based method. In this section the method will be explained
in more depth and the filters used to obtain manufacturable structures are discussed.

4.2.1 Density based method

As a starting point for the optimisation the previously created elements are all assigned
an arbitrary virtual density = of for example 0.5. The binary problem (0 or 1) is relaxed
in this method by using a continuous density value between the two values. This method
does not make use of different microstructures, in contrast to the homogenisation method,
however a power law interpolation function between void and solid is used to determine
the mechanical properties of the material element. Intermediate densities are penalised by
the power law towards a void or a solid, which will lead to a final solution with elements
with or without material.

The SIMP method is based on a relation between the virtual elemental density and the
element Young’s modulus F; given by:

E; = Ei(z;) = 2 Ey (4.45)

where Fj is the elastic modulus of the solid material and p is the penalisation power, which
is larger than one. However, in this research a modified SIMP approach is used where:

E; = Ei(x;) = Enin + 27 (Ey — Emn) (4.46)

In both equations the elemental density x; can vary between 0 and 1. In Equation 4.46
the elastic modulus of the void material, E,;y,, is a little larger than 0 to avoid singularity
of the finite element stiffness matrix (Liu and Tovar 2014).
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Figure 4.8: SIMP relation between x and E(x)

This modified elastic modulus has a number of advantages over the original Young’s
modulus. One of the advantages is the independency between the minimum value of the
material’s elastic modulus and the penalisation power (Sigmund 2007).

Despite the use of this modified SIMP method the optimisation can still encounter nu-
merical difficulties. To avoid difficulties like mesh-dependency, checker-board patterns and
local minima (Bendsge and Sigmund 2003) different regularisation or filter techniques have
been proposed. A filtered density Z; is computed by different regularisation techniques.

ZSZSZSZ

Figure 4.9: Checkerboard patterns can be diminished or eliminated by filtering the virtual densities

After this filtering process the filtered density &; is incorporated in the topology opti-
misation as:
E;, = Ez(i'z) = FEnin + i’f(Eo — Emm) (4.47)
The filters considered in this research are the density filter, the sensitivity filter, the volume
preserving Heaviside filter and the robust filter.
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4.2. Density method and filtering of densities

4.2.2 Density filter

One method to avoid numerical difficulties is the use of density filters (Bruns and Tor-
torelli 2001). A density filter proposed is defined as:

e, Hijvjx;
> jen; Hijvj
in which N; is the neighbourhood of the element i with volume v;. H;; is the so called

weight factor:
Hij =R-— dist(i,j) (4.49)

and
N; ={j : dist(i,j) < R} (4.50)

where dist(i, j) is the distance between the center of element 7 and the center of element
j and R is the filter size defined by the user. The formulas show that elements close to
the considered element 4 contribute more to the filtered density of element ¢ than the the
elements further away. Elements outside the neighbourhood do not contribute at all.

x x x x x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x
v x x x x x x x x x x

Figure 4.10: Neighbourhood of the ith element in 2D and 3D

In 2D H;; can be further specified as:

0
H;; = max 4.51
’ {R—\/(wi—%)“r(yi—yj)Q} (450
In 3D H;j is given by:
H--—max{ 0 } (4.52)
Y R— /(i —2)? + (yi — y;)? + (21 — 25)? '

The design variables (x) are updated during the search for the minimum value of the
objective function f. The sensitivity of the objective function to the design variables is
needed and not just the sensitivity to the physical densities (Z). The right value for the
sensitivity can be found by using the chain rule:

af 9%, Of | _
ox; Z {81’Z3_501}_ Z

JEN; JEN;

_ Hy ﬁ} 4.53
{ZjeNiHijajj (4.53)
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4.2. Density method and filtering of densities

4.2.3 Sensitivity filter

Sensitivity filtering is a different filtering method that was introduced by Sigmund (1997)
to avoid numerical instabilities. He replaced the real sensitivities with filtered sensitivities
in every iteration to achieve that goal. The form of the sensitivity filter is:

—

Ox; max (Y, i) Yojen, Hij 0z '

where v = 1073 is a small number to avoid division by zero. The design variables are not
filtered in this method.

4.2.4 Heaviside filter

Another filter that can be used is the Heaviside filter proposed by Guest et al. (2004) and
Sigmund (2007). This filter is able to achieve a minimum length scale in the optimised
design and can steer the design towards a black and white (solid and void) solution. To
judge if a design is a black and white design the measure of non-discreteness is given by:

e ( L JEe(1 — Ze)
My =Y 020 - 100% (4.55)
i=1 ¢

where f is the design volume fraction. 0% means that the design is fully discrete and thus
only black and white elements exist. 100% means a fully homogeneous distribution.

The Heaviside function proposed is the continuous function:
Ti=1—e P 4 ge7F (4.56)

where S doubles every 50 iterations. The factor starts as f = 1 and stops increasing
when 8 = 512. It starts with a low value to avoid local optima, since small changes in x
result in strong changes in the projected densities for higher values of 3. Because of the
sudden change in 8 every 50 iterations there is a discontinuity in the convergence. Grey
elements are suddenly steered towards black elements, which leads to changes in objective
and constraint functions.

In a similar way as with density filtering the derivative with respect to the design
variables need to be determined. This can be done by applying the chain rule twice:

of@) _ 3 {8f(i') 0z 3@} (4.57)

JEN;

where the last term is given in Subsection 4.2.2 and the second term by:

: — ﬁeiﬁii + eiﬁ (458)

4.2.5 Robust filter

Another projection filter that can be used is the robust approach proposed by Wang
et al. (2011). The Heaviside step function compares the filtered design variables & with a
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4.3. Material model and Finite Element Analysis

threshold value . If the densities are lower than this value, they are projected to 0. On
the other hand, if they are larger than ny they are projected to 1.

The robust filter is a similar filter and is defined by:

__ tanh(Bn) + tanh(B(Z; — n))
tanh(8n) + tanh(B(1 —n))

1
and 1= 3 (4.59)

where 7 can have values between 0 and 1. In this approach three different density vectors
will be calculated: a dilated (0 < ng < 0.5), an intermediate (7, = 0.5) and an eroded
(0.5 < ne < 1.0) design. For compliance minimisation the eroded design is the design with
the worst compliance and is therefore the only design to consider.

The earlier mentioned measure of non-discreteness tends to go to zero using this filter.
In for example compliance minimisation the compliance is calculated with the eroded
design and the volume constraint with the nominal or intermediate design. Grey elements,
which lead to an additional volume, will not contribute to the compliance and are therefore
removed from the optimal solution.

Similar to the Heaviside filter the factor § is doubled every 50 iterations until a value
of = 512 is reached. And filtering of the sensitivities is done by applying the chain rule

twice as well: 1) Of(z) 07; D3
z) T)O0T; 0T
o0x; N Z { ox; 0T; 89@1} (4.60)

where the middle term is different from the Heaviside projection filter and described as:

0z; _  B(sech(B(zi —n)))?
0x;  tanh(Bn) + tanh(B(1 —n))

(4.61)

4.3 Material model and Finite Element Analysis

In order to design an optimal structure in printed concrete the actual properties should
be included in the optimisation. The used material in traditional optimisation methods is
linear elastic and isotropic. For this kind of material the physical properties are same in
all possible directions. Printed concrete behaves in a different way.

4.3.1 Material behaviour of printed concrete

Recent material tests at the Eindhoven University of Technology (Doomen (2016) and
Slager (2017)) and other projects (Nerella and Mechtcherine 2016) show that the behaviour
of printed concrete is depending on a lot of variables.

Probably the most important factor is the composition of the used material. A cement-
like mixture is used in Eindhoven at the moment. The chosen mixture needs to be workable
for a reasonable amount of time. The material needs to be transported from the location
where the mixture is made, through the hoses of the printer, towards the desired position.
The different layers on top of each other or next to each other should connect in a proper
way to ensure a certain strength and stiffness, which is another reason for the mixture
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4.3. Material model and Finite Element Analysis

not to dry too fast. However, the mixture should not be too wet for a long time either,
because a minimum strength is needed to support the next layers. These factors cause
challenges in determining the composition of the used mixture.

The strength and stiffness of printed concrete is not merely depending on the composi-
tion of the material. The print shape, print speed, pump pressure, temperature and other
environmental conditions are aspects which influence the material behaviour as well. For
this research the assumption is made that the aspects mentioned above are not varied
during the printing process. In reality it is hard to achieve such an optimal and constant
material.

Additive manufacturing of concrete is a layer-based process in which the layers can be
placed next to each other and on top of each other. The direction of printing can be varied
in the horizontal plane as well. The mechanical properties of structures created with this
process are dependent on the print direction.

Recent tests (Doomen (2016) and Slager (2017)) on printed layers on top of each other
show that the behaviour of printed concrete is considerably different than the behaviour of
isotropic materials. In Eindhoven both compressive and tensile tests have been performed.

Figure 4.11: Tensile tests in x,y and z-direction performed at the TUe

The results from the tests (Doomen 2016) are listed in the tables below.

Compressive strength (N/mm?) Tensile strength (N/mm?)

fc,x = 2543 ft,x = 1.69
foy = 19.73 fiy = 1.59
fc,z = 22.20 fnz = 1.00

Table 4.1: Strengths in different directions (Doomen 2016)

These results are matching the results in the research done by Slager (2017), which
gives a minimum tensile strength of 1.08 N/mm? and a minimum compressive strength of
23.16 N/mm?. In this research the lowest values are chosen for safety reasons: f; = 1.00
N/mm? and f. = 19.73 N/mm?

The tests performed so far were focussed on determining the maximum stresses in the
material. In addition values were measured and determined for the Young’s moduli and
the Poisson’s ratios. However, the test set-up and the measuring equipment in the first
research (Doomen 2016) were not chosen to determine these values. For that reason the
values below should not be considered completely accurate.
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4.3. Material model and Finite Element Analysis

Young’s modulus (N/mm?)  Poisson’s ratio (—)

E.= 4500 E;, = 27715 | v, = 0.12
Et,y = 30376 Viy = 0.14
Ei.= 19596 | v, = 0.11

Table 4.2: Young’s moduli en Poisson’s ratios in different directions (Doomen 2016)

After Doomen (2016), Slager (2017) came up with more reliable results for the Young’s
modulus. A value of 17336 N/mm? in compression and 11103 N/mm? in tension result
from this research. Again it is noted that the results are not exact, due to the set-up of
the equipment.

To make safe designs or to use the known material properties in analysis or optimisa-
tions, further research is desirable. The Young’s moduli and Poisson’s ratios should be
measured in a more precise way. Another test that has to be performed is a shear test to
determine the shear moduli in the different directions.

To design a concrete printed structure using topology optimisation the different prop-
erties in the different directions must be taken into account. The tests that are performed
so far indicate a clear difference in strength en stiffness in the x- and y-direction in com-
parison to the z-direction. The material is much weaker in this latter direction.

!

Figure 4.12: Different properties in two directions (two strong directions and one weak direction)

Considering these tests only it can be concluded that the used specimens behave in an
orthotropic manner. However, in real designs multiple layers of the concrete-like mixture
are printed next to each other as well. Hence, there is a vertical interface between the
layers as well. The strength and stiffness in this direction depends on the interval time
between the production of the layers and the horizontal distance between the layers.
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v 7

Figure 4.13: An additional (vertical) interface, hence different properties in three directions

At this moment no specimens have been tested with multiple layers next to each other.
This will be a difficult task because of the many factors that can influence the result.
If the circumstances are ideal and the layers are slightly overlapping, it can be assumed
that the strength and stiffness in this y-direction equal those in x-direction. In that
case an transverse isotropic material behaviour is assumed. This assumption needs to
be incorporated into the algorithm, because this behaviour leads to dissimilar stiffness
behaviour in different directions.

A 4

Figure 4.14: The real layers (left) and the transverse isotropic simplification (right)

4.3.2 Standard material model in topology optimisation

After the initial design is described in topology optimisation a finite element analysis is
done to calculate the displacements of the nodes.

The isotropic material behaviour of standard topology optimisation algorithms can be
found in the stiffness matrix. The nodal displacement vector U(Z) can be obtained by
solving the equilibrium equation:

K@)U(z)=F (4.62)
F is the load vector which is assigned and K (z) is the global stiffness matrix.

The global stiffness matrix is obtained by an assembly of the elemental stiffness ma-
trices. These elemental stiffness matrices are volume (3D) or surface (2D) integrals of the
elements constitutive matrix C;(z;) an the strain-displacement matrix B.
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4.3. Material model and Finite Element Analysis

The constitutive matrix or stiffness matrix C;(z) describes the relation between the
stresses and the strains according to:

o= Ci(z)e (4.63)

The constitutive matrix or stiffness matrix of an isotropic element is interpolated in the
modified SIMP method through:

Ci(#) = Ei(2;)C? (4.64)

the term C? in this equation is the constitutive matrix for unit Young’s modulus and in
3D described as:

1—v v v 0 0 0
v 1—v v 0 0 0
o0 _ 1 v v 1—v 0 0 0
o (l+v)(1-2v) | O 0 0 (1-2v)/2 0 0
0 0 0 0 (1-2v)/2 0
| 0 0 0 0 0 (1—-2v)/2]
(4.65)
In this relation v is the Poisson’s ratio of the isotropic material.
For 2D topology optimisation a simplified matrix can be used:
1—1V2 1—Vy2 0
=l L o (4.66)
0 _1

2(1+v)

Now the elemental stiffness matrix can be calculated. In 3D this matrix is the volume
integral of the constitutive matrix and the strain-displacement matrix in the form of:

1 1 1
ki(i;) = / BTCy(#;)B dV = /_ : /_ : /_ : BTCi(2;)B det[J] d&idéydes  (4.67)

Where &1, & and &3 are the so called natural coordinates as indicated in Figure 4.15 and
J is the Jacobian matrix.

N, N,
|
N, I N,
1
I &y G2
P
Pl
N,! N,
)_ _____ —
Ve
N7 N,

Figure 4.15: Hexahedron with eight nodes and the natural coordinates

The local hexahedron coordinates of the corners are listed in Table 4.3.
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Node || & | & | &
1 -1 -1 +1
2 +1 | -1 +1
3 +1 | +1 | +1
4 -1 +1 | +1
5 -1 -1 -1
6 +1 -1 |-1
7 +1 | +1]-1
8 -1 +1 -1

Table 4.3: The conventions for node numbering of the eight-node hexahedral element

The strain-displacement matrix B indicates the relation between strains and displace-
ments as in: € = Bu. For an eight-node hexahedral element the strain-displacement matrix
B is given by:

M on(&e) Ong(&e) 7
o 0(5) . E O(E)
n e mn, e
’ 81752 9 O(f ) ’ 57&2 Ong(€e)
0 0 el .. 0 0 fq Se
_ Bl 0¢:-
B=lome ome) Ong€)  Ongle) ) (4.68)
082 061 062 061
0 oni(€e) Ini(ée) 0 Ong(€e)  Ing(ée)
0€3 &y 03 062
oni (&) 0 oni (&) Ong(&e) 0 Ing(&e)
L 0&s3 961 &3 o0&

In which e = 1,...,3 and ¢ = 1, ...,8. The shape functions n, for these sort of elements
in a natural coordinate system &, are as follows:

(

(

(
ng(&e) = 2 E (4.69)

(

(

(

e e N e R N NN
—_
Iy
N

S N N e N N N

The elemental stiffness matrix in 2D is the surface integral of the constitutive matrix
and the strain-displacement matrix in the form of:

1 1
ki(2:) = /A BTCi(2;)B dA = / j / : BTCi(2;)B det[J] d&idés (4.70)

Where & and & are the natural coordinates as indicated in Figure 4.16 and J is the
Jacobian matrix.
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N, N,

N, N,

Figure 4.16: Quadrilateral element with four nodes and the natural coordinates

The local coordinates of the corners are listed in Table 4.4.

Node || & | &
1 -1 -1
2 +1 -1
3 +1 | +1
4 -1 +1

Table 4.4: The conventions for node numbering of the four-node quadrilateral element

The strain-displacement matrix B indicates the relation between strains and displace-
ments as in: € = Bu. For a four-node quadrilateral element the strain-displacement matrix
B is given by:

Oni(&e) 0 Ong(&e) 0
o8, 9%
B = 0 Oni(€e) 0 Ong(&e) (4 71)
o6 o6, :
Oni(€e)  Oni(&e) Ong(€e)  Ing(&e)
082 01 02 061

In which e = 1,2 and ¢ = 1, ..., 4. The shape functions n, for these sort of elements in
a natural coordinate system &, are as follows:

El —flggl —523
1 a+ea)a-—¢
(1—=&)(1+ &)

By making use of the modified SIMP method the element stiffness matrix can be
interpolated from void to solid as:

ki(#:) = Bi(&i)ky (4.73)

where the unit constitutive matrix is used to calculate the constant matrix (3D):

+1 41 p+1
K0 = / / / BTCOB det[J] dédéades (4.74)
-1 —1 —1

And for 2D problems:
+1 pt1
KQ = / / BTCOB det[J] d¢ides (4.75)
—1 —1
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Using the global versions of the elemental stiffness matrices (K; and K ZO) it is possible
to calculate K (&) using:

n n
K(#) =) Ki(@)=>_ Ei(&:)K} (4.76)
i=1 i=1
In combination with Equation 4.46 this can be rewritten as:
n
i=1

Now the displacements of the nodes can be calculated using the equilibrium in Equation
4.62. In a different form this holds:

U(z) = K(&)'F (4.78)

4.3.3 Transverse isotropic material model for topology optimisation

To apply the assumption that the material is not isotropic to the optimisation algorithm
the stiffness matrices need to be adapted. In case of anisotropic, orthotropic or trans-
verse isotropic material behaviour different element stiffness matrices need to be created.
All elements will be transverse isotropic elastic in the modified method. In 2D there is
only a difference in stiffness in the x- and y-direction, so the material can be considered
orthotropic. The Solid Orthotropic Material with Penalisation (SOMP) method (Alamo
and da Silva 2012) can be implemented.

4.3.3.1 2D material model

The matrix CZQ is the stiffness matrix for unit Young’s modulus or elasticity matrix derived
from Hooke’s Law and can be obtained by taking the inverse of the compliance matrix 5,
which is described in the following equation:

e=So (4.79)

For the determination of the exact matrix S five elastic engineering constants have to
be known: the two Young’s modulii, the two Poisson’s ratios and the shear modulus G,:

€ % _ZJ/ELI 0 o
Trr l/i;y 1 Y rr
Vay 0 oo | Lowy
where y y
yx zy
== = == 4.81
=t (451)

As stated above the stiffness matrix CZQ is found from the inverse of the compliance
matrix (CY = S~1) and the following holds:

o= Ce (4.82)
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Again in terms of the five engineering constants:

Ey Vay By
Oxx 1—1/96%}%% 1—Vaylyax (S
v
o yz o Y € 4.83
vy 1—vgyvya 1—vgyvya 0 vy ( )
Oxy 0 0 Gay| Loy

The strongest and stiffest direction of printing is the z-direction and so E, is inserted
as 1.0. If the Young’s modulus in the y-direction is two times smaller than in x-direction,
E, = 0.5. So the Young’s modulus in y-direction is always a factor of F,. The real value
of the elastic modulus of the concrete is assigned at the interpolation between void and
solid.

The strain-displacement matrix B indicates the relation between strains and displace-
ments as in: € = Bu. For a four-node quadrilateral element the strain-displacement matrix
B is given before.

Now the elemental stiffness matrix can be calculated. In 2D this matrix is the surface
integral of the constitutive matrix and the strain-displacement matrix in the form of:

1 1
ki(2;) = /A BTCi(#;)B dA = /_ : /_ : BT C;i(2;)B det[J] d& dé; (4.84)

Where & and & are the natural coordinates as indicated in Figure 4.16 and J is the
Jacobian matrix.

By making use of the modified SOMP method the element stiffness matrix can be
interpolated from void to solid as:

ki(#:) = Ei(&i)ky (4.85)

where the unit constitutive matrix is used to calculate the constant matrix:

+1 +1
K? = / / BTCOB det[J] d¢ides (4.86)
-1 —1

4.3.3.2 3D material model

In 3D a similar approach is followed. However, now the elemental stiffness matrix &Y can
be defined as:

7

KO = / BTCYB av (4.87)

e

where B is the strain-displacement matrix and the integration is performed over element
volume V.. In case eight-node hexahedrons are used with natural coordinates &1, £ and
&3 Equation 4.87 becomes:

1 41l
K~ / / / BTCYB detlJ] déidéades (4.88)
1 Jo1 Ja

For an eight-node hexahedral element the strain-displacement matrix B is given before.
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CZQ is the constitutive matrix or, in this case, the 3D elasticity matrix derived from
Hooke’s Law and can be obtained by taking the inverse of the compliance matrix S.

For the determination of the exact matrix nine elastic engineering constants have to be
known: the three Young’s modulii, the three Poisson’s ratios and the three shear modulii:

1 Vyax Vzx - -
[€xa | @ _ELE L, 0 0 0 Ozx
_ Vay 1 _Vay 0 0 0
€yy Ey Ey E, Oyy
_Vez __Pyz 1 0 0 0
co| — | 7B "B E 0z (4.89)
Yyz 0 0 0 ci, 0 0| |0y
Yz 0 0 0 0 & 0] |%=
Yy | 0 0 0 0 oo | e
where
Pyz _ Vay Vex _ Vzz Vay _ Vye (4.90)
Ey Ez ’ Ez Ex ’ ECC Ey

As stated above the stiffness matrix C? is found from the inverse of the compliance
matrix (CY = S71) and the following holds for orthotropic material:

o=C% (4.91)
Again in terms of the nine engineering constants:
- - r ]-_Vszzy Vya+VzaVyz Veax+Vyalzy 0 0 O 7 -~ -
Ozzx E,E.A EyE.A E,E.A €Exx
2 Va:y'?‘”rz”zy 1—vypVss sz-ly—szsz O 0 O €
vy EjEmA EfrE‘”A 1EZEJ;A vy
o VgzTVxyVyz VyzTVxzVyx —VzylVyz €
=2 E.EyA BBy A E.EyA 0 0 0 = (4.92)
Ty 0 0 0 Gy 0 0| |7
Ozx 0 0 0 0 G,z O Vex
Ozyl | 0 0 0 0 0 Ggy) Loyl
where
A= 1-— VeyVyz — VyzVzy — VegVez — 2Va:yVszzz (4 93)

E.E,E,

In case of orthotropic material behaviour typically one strong axis is defined and two

weaker axes. In case the horizontal layers work well together, as assumed, the material
contains two strong axes (x- and y-axis) and one weak axis (z-axis). The material behaves
in a transverse isotropic manner. In that case only five engineering constraints have to
be known. The Young’s modulus and Poisson’s ratio in the x-y symmetry plane, E, and
Vp, the Young’s modulus and Poison’s ratio in the z-direction, F,. and v, and the shear
modulus in z-direction Gp,.

The following now holds for transverse isotropic material:

-1 Vp Vzp
[€a | _El’,;p fp _ VEZ‘; 8 8 8 (022 |
€yy A Ex 0 0 0 Tyy
(P _ Ep Ep E. . Ozz (494)
Vyz 0 0 0 Co 0 0 Oy
Vzx 0 0 0 0 Glzp 0 Oy
[Vy ] 0 0 0O 0 0 2“;:“ [Ty
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4.3. Material model and Finite Element Analysis

where y y
pz zp
= === 4.95
E, E.’ ( )
By taking the inverse of this compliance matrix the stiffness matrix is obtained, which can
be used in the calculation of de elemental stiffness matrix.

It is important to note that the values for the engineering constants are simply pa-
rameters in the algorithm and they can be adapted at any moment. For example, when
new research is done in determining these values. Another important aspect is that elastic
properties and material orientation are now determined and will not change during the
optimisation. The constitutive matrix CY is constant during the optimisation as well.
It is only multiplied and thus scaled by the elemental density in the calculation of the
compliance.

4.3.3.3 Orthogonal orientation and the orientation of the baseplate

For materials with different material properties in different directions it is important to
take into account the print direction and the orientation of the baseplate. Structures can
simply be printed from bottom-to-top, however it is also possible to print the design in a
different way and rotate it afterwards, if that results in a stiffer or stronger structure, or
if material can be saved by rotating the baseplate and print direction.

In both 2D and 3D the direction of the printing path can be adapted in order to find
a preferred angle 6. This orientation can possibly become a parameter in the topology
optimisation in the future. In this research the angle can be changed, however is not a
parameter that is optimised.

Figure 4.17: Different directions of the orthogonal orientation (Left: no rotation, center: 90 degrees
rotation around z-axis, right: 90 degrees rotation around x-axis))

4.3.3.3.1 2D orientation and rotation

In the algorithm for 2D problems the regular orthotropic constitutive or stiffness matrix
can be rotated around the z-axis to change the baseplate. The standard baseplate is the
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4.3. Material model and Finite Element Analysis

bottom of the design space, where y = 0. The standard matrix is defined as:

Ey Vey Ey
1;VCE.%V.IJI 1—vgyvys
Co=les i O (4.96)
0 0 Gy
The rotated matrix Cy is defined as:
Cy = (a)Cr(e)" (4.97)

where rotation matrix («) is defined as:

cos@ —sinf 0
(o) =R, = |sinf cosf 0O (4.98)
0 0 1

In this research the baseplates are limited to the four sides of the design space:

Baseplate ‘ ‘ 0

South 0
East 90
North 180
West 270

Table 4.5: Definition of baseplate angles

The baseplates usually can take every value of 6 between 0 and 360, however the
baseplate will also be of influence on the printing constraints explained in Section 4.5, so
in this research the choice is limited to four values.

4.3.3.3.2 3D orientation and rotation

In 3D the stiffness matrix C7 can be rotated as well. In that case the standard reference
plane or baseplate is the plane in which z = 0. This plane can be rotated around the
x-axis with a rotation #; and around the y-axis with a rotation #2. The normal to this
plane is the z-axis, which is the axis that is rotated.

The rotation matrix for a rotation around the x-axis is described as:

1 0 0
R,= 10 cosf; —sinb; (4.99)
0 sinf; cost

for the y-axis this matrix is:
cosfy 0 sinfy

R, = 0 1 0 (4.100)
—sinfy 0 cosfy
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The rotation matrix for the transformation is:

cosfy sinfysinfy cosbisin by
R=R,R, = 0 cos 01 —sin 6, (4.101)
—sinfy sinfqcosfy cos by cos by

According to Newnham (2005) the coordinate transformation matrix («) can be created
from the matrix R. The components a;; are the components from the matrix R.

-2 2 2
aél a%Q a%3 2a12a13 2a11a13 2a11a12
a%1 G%Z a%g 2a22a23 2a21a23 2a21a22
(@) = az azp asy 2az2a33 2az1a33 2az1a32

a1a31 22032 a23a33 (G22a33 + agzasze) (aziass + azzasi) (agasz; + aziasz)
aziall as2a12 assais (a12a33 + a13a32) (a13a31 + a11a33) (a11a32 + (112(131)
lai1a21  ai2a22  aizaszy  (ai2a23 + a13az2) (aizagr + aiiass) (ariaze + aizagn) |

(4.102)
filling in the values from matrix R this leads to:
cos2 09 sin? 0 sin? 0, cos? 0 sin? 0, sin 264 sin? 6, cos 61 sin 205 sin 01 sin 262
0 cos? 6, sin2 6, —sin 26, 0 0
(a) = sin? 05 sin? 0 cos? 0, cos? 01 cos? 62 sin 2601 cos? 62 —cosf1sin202  —0.5sin 0 sin 265
- 0 0.5sin2601 cosf2  —0.5sin 264 cos O cos 2601 cos 05 sin 01 sin 02 — cos 01 sin 62
—0.5s8in202 0.5sin20;sin202  0.5cos? 01 sin205  0.5sin 264 sin 20 cos 61 cos 202 sin 01 cos 209
0 0.5 sin 261 sin 62 —0.55sin 264 sin 05 cos 2601 sin 05 — sin 01 cos 62 cos 01 cos Oy
(4.103)

To obtain the rotated stiffness matrix Cy the transformation matrix () and the original
matrix C are used to compile:

Cy = ()C1(a)T (4.104)

The baseplates and matching angles 61 and 0y defined in this research are listed in
Table 4.6.

Baseplate H 01 ‘ 0o

Bottom 0 |0
Top 0 |0
Left 90 | O
Right 90 | O
Front 0 90
Back 0 |90

Table 4.6: Definition of baseplate angles in 3D

4.4 Sensitivity analysis and filtering

After the displacements are calculated in the FEA, the values for the objective function
and the constraints are determined according to Section 4.1.2 and Section 4.1.3. Before
the optimisation can start to find a new design (a new set of x) the next step in topology
optimisation is to obtain the sensitivities of the objective function and the sensitivities
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of the constraint functions. This gradient information is needed to steer the final design
towards an optimum. The derivatives of the structural responses with respect to the design
variables x are determined in this section.

As mentioned before the sensitivities for a density filter can be calculated by:

of(x) df 0%;
oy = > {%&;} (4.105)

JEN;

in case of a sensitivity filter:

Ox;  max(y,2:) Y en, Hij Oz .

and in case of a Heaviside filter or a robust filter by:

@) _ 5~ {W‘%i ‘95’1} (4.107)

o0x; 0x; 0%; 0x;
3 ]EN@ K3 3 7

the unknown term (in blue) in these expressions is derived in this section of the research
and is below denoted as:
of

0z;

(4.108)

4.4.1 Sensitivity analysis of the objective functions

The sensitivities of the two introduced objective functions fy are derived below.

4.4.1.1 Compliance objective

In case the objective is to minimise the compliance fy = c(2) = FTU(2).

We assume the design variable x; is continuously changing between 0 and 1. The
sensitivity of the objective function with respect to the change in filtered design variable
is:

0c() B OFT
ox; iy

AU ()
9%

U(z) + FT (4.109)

To determine the sensitivity of the displacement vector we need to know the unknown

factor agéf) first. To solve this problem a vector of Lagrangian multiplier A in an extra

term AT (F — K(%)U(%)) is introduced (Huang and Xie 2010). This term is added to the
objective function.

c(@) = FTU (&) + N[(F — K(2)U(2)) (4.110)

This can be done, because regardless of the value of A the extra term will always be zero
(F=K(z)U(z) so F — K(z)U(z) =0) . Now the sensitivity of the modified function is:

- T - T
0c®) _ OF gy 4 prOU@) LN p ey
OF 0K (%), ,. OU(%) ’
T [R— [R—
+ A (6@ 0%, U(z) — K(z) 0%, )
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In this equation F' — K (2)U(Z) equals 0 as stated above, so that term can be deleted.
g—g equals zero as well, because the variation of the element density has no effect on the

load vector if self-weight is not considered. So the new formula is:

()
i,

(&) 7 OK (%)

(T T (a
= (7 = A K(7)) 02, 02,

U(#) (4.112)

To eliminate the unknown 8%@ from the equation, a value for A needs to be chosen so

that:

FT - \TK(z)=0 (4.113)
according to the equilibrium in Equation 4.62 it holds that: A = U(%)

Substituting this value into the latest formula for the sensitivity of the objection func-
tion gives:

de(#) 10K (7)

=-U(z Uz 4.114
oo = U@ U @) (1114)
The derivative of K with respect to x; is:
0K (&) o) z“: ) 0
= = 5= [Emm + xf(EO - Emm)]Kz
8.%‘ 8952- i—1
= pil " (Eo — Emin)K? (4.115)

The final compliance sensitivity function is given by:

de()
oz;

= U (@) [p#} ™ (B — Bmin) K{1U(2)
= —p(Eo — Epmin)2" U (@) KU (2) (4.116)

If self-weight is considered an additional term is added to this derivative, since a part
of F' is not independent from &, according to:

Fow = VepegF = Vopoi I’ (4.117)

If the same approach is used as above Equation 4.114 changes to:

dc(d)  dFa(d). . )
55, — @ 2U(z) — U(z)

T IK(Z)
0;

U(2) (4.118)

In that way the compliance sensitivity considering self-weight is given by:

0c()
0Z;

= 2VopoFU (&) — p(Eo — Epin)#? U (2)T KU (2) (4.119)

The sensitivity can now have values higher than zero, because of the additional self-weight
part. A non-monotonous solver is advised when using this derivative to avoid oscillating
behaviour. Without the self-weight addition this is not needed, because the compliance
sensitivity will always be negative.
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4.4.1.2 Volume objective

In case the objective is to minimise the volume the objective function is:
fo=v(@)=— ) v (4.120)

The sensitivity of the volume objective is calculated by:

ov(z) v
= — 4.121
6501- Ne ( )

4.4.2 Sensitivity analysis of the constraint functions

Not just the sensitivities of the objective function are needed as inputs for the optimisation
solvers, the derivatives of the constraint functions need to be determined as well.

4.4.2.1 Volume constraint

The volume constraint is described as:

Ne ..
— M -1 (4.122)

The derivative of this volume constraint with respect to the filtered design variable x;

is: .
990(2) _ _ v (4.123)

0z; ViimMe

4.4.2.2 Compliance constraint

In order to adapt a stiffness constraint, the derivative of the following function needs to
be determined:

9e = @ —1 (4.124)

Clim
The sensitivity of this constraint towards the change in filtered design variable is:
09:(2) _ 1 de(@) _ —p(Eo — Epin)# U (@) KU () (4.125)

0z; Clim O0%; Clim

or in case self-weight is considered:

09c(2) _ 1 dc(#) _ 2VepoFU (&) — p(Eo — Ermin)2" U ()T KOU (2)

i

= — 4.126
0z; Clim 0% Clim ( )
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4.4.2.3 Von Mises stress constraint

The calculation of the von Mises stress constraint is a bit more challenging. As derived
before the constraint is stated as:

CnormO PN,

gsq = XM (4.127)

O-leim

The part of the constraint that depends on the filtered design variable is opy,,,. Now the
adjoint method is applied, similar to in Equation 4.110 an extra term is added:

h=opy+ N (F - K(2)U(z)) (4.128)

differentiated with respect to Z this becomes:

dh “ 8013]\[ 801,]\/[(”' T ~ 8U(.@) TaK(i‘) N aO'PN
— ) K -7 -7 4.12
di: (Zl Dounras OU(E) T (x)> gn TN Tan VBt 5 (129)

To eliminate the unknown agj@% which is difficult to determine, from the equation the

part between brackets in the first term should equal zero. In that case:

"\ dopn O0uMai .. 1
A= — K 4.130
az:; 3avMﬁa’i GU(:%) ( )

Equation 4.129 can now be written as:

dopn

Oh _ 50K ()
0;

0Z; oz;

U(&) +

(4.131)

the terms that need to be known are described below:

P na +-1 95
o . OuvM.i ,~ _
= — (Z(am,f) M3 (G pg )P (4.132)

0T; ; 0x;
=1

aCNT'UM,z'
0T;
where p is the penalty factor and not the aggregation factor P.

= (p— Q)owarad? 4! (4.133)

Nag %_1
dopn (Z(&UM@)P> (Gonta)t™" (4.134)

abv_vM,a,i —
a=1

The von Mises stress was described in matrix and vector notation as:

&vM,a = \/ OTaTVOTa (4135)

in terms of the displacement U this is:

Gor.a = VUTCBTVBCU (4.136)
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Now it is easier to calculate the last needed derivative:

85—1)M a,t ip_q T
= 2 B*VEB 4.1
a0 () — (CB*VBCU) (4.137)

Now the adjoint variable A can be solved using Equation 4.130. This A can be inserted in
Equation 4.131 to obtain the derivative.

The final von Mises stress sensitivity function is given by:

898 1 1 80'PN T p—1 A
0%; TvMiim < 0T T [pxl ( 0 ) z] ($)
1 0
= < TPN 4 p(Bo — Bmin) @ ATKYU (2 )> (4.138)
o-lei'm 8561

4.4.2.4 Drucker-Prager stress constraint

The last sensitivity that is needed to be able to optimise structures is the derivative of the
Drucker-Prager stress constraint:

OPN,
gsg=—+—1 (4.139)

OLt
In a similar way as the von Mises constraint we use the adjoint method to derive the
derivative of the p-norm opy,,, which is the part of the constraint that depends on the

filtered design variable z.

h=opy+ N (F - K(2)U(z)) (4.140)
differentiated with respect to Z this becomes:

dh ( "\ opN O0eqai N ATK()) 0U(E) , \rOK(@), dopn

) 4.141
di; ~ \ &= 00eqai OU (%) 0 i R Tl e

To eliminate the unknown Bgii(f) from the equation the part between brackets in the first

term should equal zero. In that case:

dopn aO'eq,az 1
Z - )K (4.142)

Equation 4.141 can now be written as:

=" U 4.143
Oz o (@) + O ( )
the terms that need to be known are described below:
+-1
dopn N b eqi - B
o4 = (Z(Ueq,i)P> 8§:q (Ueq,i)P ! (4.144)
! i=1 i
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00eq,i
0Z;

where p is the penalty factor and not the p-norm factor P.

= (p— q)0eqid? ! (4.145)

e 31
OoPN _ (Z(aeq,a>f’> (Geqa)"! (4.146)

O0eq.a,i
€q,a,t a=1

The Drucker-Prager equivalent stress was described in terms of the displacement U as:

1 -1
Oeqa = 281 (S;; VUTMOU + SZSHOU> (4.147)
The last derivative can be determined:
eqa _ p—q (ST 770001100 s—1.9
LAY M M H 4.14
oU (z) . 2s v Uy MU + 2s (4.148)

Now the adjoint variable A can be solved using Equation 4.142. This A can be inserted in
Equation 4.143 to obtain the derivative.

The final Drucker-Prager equivalent stress sensitivity function is given by:

09gs,2 1 (OopNn | \7; .p—1 .
= = — M pit = (Ey — Epin) K
D o—Lt< oz A JE1U@)
1 _
- <‘9"If N p(Ey — Epin)2” 1ATK?U(@»)> (4.149)
OLt 8{E

4.4.3 Filtering of the sensitivities

Before the problem can be solved, the sensitivities of the objective and the constraint
functions need to be filtered according to the chosen filter. The final sensitivities are
calculated using the partial derivatives derived in the previous sections, which are sub-
sequently filtered according to Equation 4.53 when using the density filter, to Equation
4.54 when using the sensitivity filter, to Equation 4.57 in case of a Heaviside filter or to
Equation 4.60 when the robust approach is chosen.

4.5 Manufacturing constraints

The limitations of a 3D printer are far less than the constraints of the methods used in
current practice. Much more is possible with additive manufacturing than, for example,
with pouring concrete. Only when costly and labour intensive moulds are created, pouring
of concrete can produce forms that are more challenging. Although there are less limita-
tions, these limitations or constraints of the AM process should be taken into account in
the optimisation to avoid modifications or post-processing afterwards. That would add
costs and reduce the performance.

Many researchers tried to incorporate the additive manufacturing constraints into the
optimisation. The aim was to minimise the amount of support structure or to obtain
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1.5. Manufacturing constraints

designs that were completely self-supported. At first, scientists like Brackett et al. (2011)
and Leary et al. (2014) tried to solve the problem with a post-processing step. After
the optimisation the design was made printable. Other researchers, such as Gaynor and
Guest (2016) tried to include the constraint into the optimisation. They used nodal
design variables and they have added a projection step after the filtering of the variables.
If the density in the nodes is smaller than a certain average density in the support region,
then the node can be projected as solid, otherwise it will be projected as a void. The
support region is determined by an angle, defined by the critical overhang of the additive
manufacturing method and material.

O—O—"O0—O—CO—O—O—O—O—C—0—0)
‘.'.‘..‘..'=°=‘.'.‘.‘

..‘A HH
4: 2009 l: r
I :!.. .Q'. ...°l. r

Q.,_._ ....

Figure 4.18: Support regions proposed by Gaynor and Guest (2016) (left) and by Langelaar (2017)
(right)

Langelaar (2017) came up with a similar approach, however uses elemental densities
instead of nodal densities. The support region is also different than the suggested region
by Gaynor and Guest (2016) as visible in Figure 4.18. The supporting region is directly
tied to the finite elements, which is good for the computational cost, however the overhang
angle cannot be varied as easily as in the method of Gaynor and Guest (2016). It is fixed
to the finite elements. Another limitation, which holds for both methods, is the fact that
a predefined print direction and baseplate need to be chosen. They cannot be variable in
the optimisation problem, which will lead to less optimal results.

To take into account the 3D printing constraints in this research the filter method
as proposed by Langelaar (2017) is used. The filter considers a certain element i and its
supporting elements. In case of a 45 degree angle filter there are three elements supporting
a certain element ¢. The density of this element cannot exceed the maximum density of
the three supporting elements, otherwise it is not supported in a proper way. In the
subsections below the applied filters will be explained in more depth.

An important assumption that is made in this research, which is not actually correct,
is the fact that the printer can start and stop printing at any time. In the future this
might become possible with concrete additive manufacturing, however at the moment the
printer can only print in continuous printing paths.
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4.5.1 Printing constraint AM45

The 45 degree angle printing constraint, called AM45 in this research, is defined on the
regular mesh created in the algorithm. The vertical direction or y-direction is the direction
of printing, the first elements are printed on the baseplate.

|

S(i,4)

—>y Baseplate

Figure 4.19: Definition of support region S; ;) for element i, j in case of AM45

Every element in the design space contains a blueprint density z(; j), where i and j
are the vertical and horizontal locations of the elements. In this research the top layer
is denoted as ¢ = 0 and the bottom layer as ¢ = nely — 1, where nely is the amount of
elements in y-direction. The next step is to express the densities that can be printed,
called the printed densities £(i, 7).

The bottom layer can always be printed, because the baseplate supports these elements.
For the layers above holds that the elements can have a printed density £ that is not larger
than the maximum printed density in its support region, called Z. The following holds for
the layers above the baseplate:

) = min(x(ivj), E(i,j)) where (4.150)

[1]

(i) = MAT(E(i41,5—-1)5 §(i+1,5)5 E(i+1,41)) (4.151)

At the left and right edge of the domain the elements are only supported by two elements.
A problem with the equations stated above is the fact that they are not differentiable,
because of the min and the max operators. A smooth approximation for both equations
is proposed by Langelaar (2017):

smin(z,Z) = %(CC +2—((z—2)*+ e)% + V) (4.152)

Ql~

smaz (6,6, &) = (3 &) (4.153)
k=1

where € and P control the accuracy and the smoothness of the approximated equations.
If e - 0 and @Q — oo the smoothness is lost, however the real min and max operators are

obtained. () is described as:

log ns
=P+ 4.154
Q Tog € (4.154)

where ns is the number of supporting elements and &y = 0.5. The effect of changing these
parameters is studied by Langelaar (2017), however kept constant in this research.
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Not only the blueprint elemental densities should be filtered, the sensitivities of the
objective and the constraint function as well. These functions, now called f, depend on
the printed design, which depends on the blueprint design, so f(&(x)). Sensitivities with
respect to the blueprint densities x are given by:

of of o¢

B = 86 e (4.155)

To calculate these sensitivities an adjoint formulation is used by Langelaar (2017) and the
blueprint and printed densities are combined in:

& = smin(ws, &i1) = s(w4,&i41) (4.156)

where s is smin and the layers are denoted by the subscripts. Using this relation and
some calculation steps that can be consulted (Langelaar 2017) the following equation was
derived for the sensitivities:

of \T sk

=\ — 4.157
where of
M= 4.158
for the top layer, where k = 0. For the layers in between the top and the bottom layer
holds: of 5
A= 2L Dokl 4.159

The calculation of the printed densities was performed from bottom to top, however
the calculation of the transformed sensitivities is done from top to bottom (layer 0 — n;).
The partial derivatives in the formulas above are given by:

0s 1 _ — _1
o, ~ 21~ @=D@-2?+97) (4.160)
Osp  Osy, @
R =T (4.161)
0s 1 _ _ _1
o2, =~ 31+ @ =@ -2 +97) (4.162)
05, PPl &N oo

=—L () ¢ (4.163)
O&k Q =

Using these values the transformed sensitivities can be calculated at every iteration and
used in the optimisation.

4.5.2 Printing constraint AMO

In case of a zero degree angle filter element ¢ can not have a density value higher than the
element below. The support region now consists of only one element instead of three, so
ng = 1.
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S(i,5)

—>y Baseplate

Figure 4.20: Definition of support region S, ;) for element i, j in case of AMO

This printing constraint matches the current possibilities of the printer at the university
in Eindhoven. The printer can print layers on top of each other, however the layers can
not cantilever yet: a zero degree angle.

The method used for a 45 degree angle can be used for AMO as well, with the difference
that the elements now only have one supporting element.

4.5.3 Orientation of the baseplate

The orientation of the baseplate as defined in Tables 4.5 and 4.6 is not just of importance
for the material properties, however the baseplate is also influencing the manufacturing
constraints. When, for example, the baseplate is changed from the bottom to the top,
different solutions will come out of the optimisation. In the algorithm the grid is rotated
to make it possible to use the printing constraints in four (2D) or six (3D) directions.
Because of the rectangular grid and the square (2D) or box-shaped (3D) elements the
amount of possible baseplates is limited. The print direction can only be rotated with
steps of 90 degrees.

Results "printed” in other directions can lead to better or stiffer results than results with
the standard baseplate. It is therefore rewarding to perform the optimisation in all possible
directions, to see which way of manufacturing comes up with the most optimal structure.
This is assuming that the final result can be rotated after printing. In Figure 4.21 the
result printed on baseplate W, which is rotated after printing, has a lower compliance
value and is therefore a stiffer design than the design printed on the regular baseplate S.

Figure 4.21: Optimised result with standard baseplate S (left) and result with baseplate W (middle)
which is rotated after manufacturing (right)
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4.6 Solving the optimisation problem

Now that the filtered sensitivities are known a solver can be chosen to obtain an optimal
solution for the chosen objective function. The problem is non-linear and can be solved
using sequential convex approzimations such as sequential quadratic programming (SQP)
and the method of moving asymptotes (MMA). These approximisation methods consider
an initial design «*, try to find a convex approximation of the original non-linear problem
and use that to obtain an improved design z**!. The nature of the approximation is
depending on the used method. A special case of the sequential convex approximation
approach is the optimality criterion (OC) method. This method is used often in topology
optimisation because it is simple to implement and because of its numerical efficiency. The
method is described in this section, however it is not available in the created algorithm
because of its limitations. The method can only optimise a single objective considering
a single constraint. Furthermore, the SQP method is ignored in this research because a
second order derivative has to be calculated for every objective function and constraint
function to be investigated.

The available methods in the algorithm used to solve the non-linear problem are the
MMA and the GCMMA, the globally convergent version of the MMA.

4.6.1 Optimality criterion method

The optimality criterion method is an older method than the SQP and the MMA method
and was first applied to the compliance minimisation problem in 1995 by Bendsge and
Sigmund (1995).

The OC method updates the physical densities of the elements in every iteration.
Convergence is achieved when the Karush-Kuhn-Tucker (KKT) condition is satisfied:

Je() ov()
0%, +A 0%e

=0 (4.164)

where A is the Lagrange multiplier associated with the volume constraint v(z). This
condition can be written as B, = 1, where:

_ Oc(2) 3 0v(z)
0%e 0%e

B, = )1 (4.165)

To update the densities the following OC updating scheme is proposed by Bendsoe.

maz(0,z. —m),if xeBe < max(0,xe —m),
" = ¢ min(l,xe + m),if x.Bd > min(l,z, —m), (4.166)
z.BY, otherwise,

where m is the positive move-limit and 7 is the numerical damping coefficient. For mini-
mum compliance problems the choice for m = 0.2 and n = 0.5 is recommended by Bendsge
and Sigmund (2003).

The only unknown is now the value of the Lagrange multiplier A for which holds that:

V(F (@new(N))) = 0 (4.167)
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A can be found using the bisection method, a root-finding algorithm. It is assumed A\ is
between the values {; = 0 and Iy = 10°. In every step of this bisection method the central
value in a domain is taken. This value is taken to create a new value for x, z"°%. This
new obtained value is subsequently used to find new values for [; or I to come closer to
the true value of A. Once the final value is found, the new x value can be determined.

This value is then compared to the z value in the previous iteration using:

new

2" — 2| < e (4.168)

where € is the tolerance which is a relatively small value, for example 0.01.

When the largest change in elemental density is smaller than this tolerance or when
the maximum amount of iterations is reached, the optimisation stops and the final design
is determined.

Algorithm 1 OC Method

1: Define initial design z(®), set k < 0

2: while H:U(k“) — x(k)Hoo < e or k < mazloop do

3: Calculate nodal displacements U by performing a FEA

Compute objective function (compliance c)

Compute constraint function (volume v)

Perform sensitivity analysis

Apply the chosen filtering technique on the sensitivities and /or the design variables
Define boundaries {; and s

Define positive move-limit m and numerical damping coefficient 7

10: while (lg — ll)/(ll + lg) > 1072 and Iy > 1073 do

11: Compute a value for the Lagrange multiplier using the bisection method

12: Update design variables (z"¢") using the updating scheme in Equation 4.166
13: Compute new boundaries /7 and Iy

14: Set (k1)  gnew

15: Set (%) « 2+ and k «+ k + 1

Unfortunately, the OC method is not a very flexible method. If objectives or constraints
change, the method needs to be changed. In case of multiple constraints the method cannot
be used at all. For that reason two other solvers are applied in this research, the MMA
and the GCMMA.

4.6.2 Method of moving asymptotes

A different method that can be used to solve the optimisation problem is the method
of moving asymptotes (Svanberg 1987). The MMA is based on the convex linearisation
method (CONLIN) introduced by Fleury (1989). In every iteration a convex approxima-
tion subproblem is generated and solved. This subproblem is controlled by the moving
asymptotes. These asymptotes stabilise and fasten the convergence of the process.
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4.6. Solving the optimisation problem

The original problem is described as:

minimise go(x)
s.t. 9 <0 i=1,..,m (4.169)

Tmin < Zj < Trmaz Jj=1..,n

where go(z) is the objective function and g¢;(z) indicates the constraint functions. These
functions g are assumed to be smooth, non-linear and non-convex. Variable m is the
amount of constraints and n is the number of design elements.

Non-linear problems as stated above are hard to solve directly. An approach to tackle
this problem is to generate a series of sub-problems and solve these. This approach is
used in the MMA. The original functions ¢ are approximated by other functions f that
are convex. The convex functions used in the MMA are described as:

Dij qij
filz) = G - @) (4.170)
Jj=1 U Zj L

The moving asymptotes (U(k) and L )) and the coefficients p;;, ¢;; and r; are updated
at each iteration based on the design variables (), the real function values for that
design (go(z®) and g;(x®)) and the sensitivities of these functions (dgo(z¥))/0z*) and
dgi(z®))/02(*)). After 2 iterations the design history is used in the updating process as
well.

The MMA method uses several additional variables to ensure a feasible solution, de-
scribed by y; > 0. Another variable that is described is z, which can be used to solve
non-smooth problems, for example min-max problems. Equation 4.169 can now be trans-
formed in a standard MMA sub-problem and can be described as:

minimise fo(z) + 2z + Z +Z YiCi + yz

.. i —a;z — Y < =1, ...
S t fl(x) a;z yZ — 0 ? 17 7m (4171)
yi >0 i=1,...,m
z2>0
The coefficients pg-c), q,g?) and rgk) described in Equation 4.170 are expressed by Svan-

berg (1987) as:

aTCj Ly j j
(4.172)
0g; 0g; - 10~
i) = @ - L2 (o 001 (G2 )+ vo01 (FE)) 4
J J A
(4.173)
" 0 n p(k) q(k)
k 1] i
ri = gi(z") — + (4.174)
Z ( v® 0 " o L(k))



4.6. Solving the optimisation problem
S

J’_
in which the term (ggi (ZL'(k))) is the largest value of 0 and Bg; () and the term

(%(ﬂ“)) the largest value of 0 and — 891 ( (k).

L®) and U®) are updated iteratively to avoid large oscillation and to have a better
convergence. In the CONLIN method the asymptotes are L") = 0 and U®) — oo. In the
MMA the asymptotes are updated following the rules below proposed by Svanberg (1987).
Fork=1or k=2:

And for £ > 3:
Uk ¢ k) — Qx(k), gk _ k) — 7(’“) (4.176)
where:
0.7 (xgk) — $§k 1))(x§-k_1) — xg-k_Q)) <0
'yz( ) ={12 (azgk) a:gk D)(azgk*l) — x§-k72)) >0 (4.177)
1.0 (asgk) — :cgk 1))(chkfl) — x§-k72)) =0

This last equation indicates that if x; oscillates, which can be derived from the (opposite)

signs of the successive iterations, that the asymptotes will be brought closer to xgk). If z;
does not oscillate, and the signs are thus the same, the asymptotes are moved away from
(k)

Ly

The asymptotes should now satisfy the following four inequalities. If this is not the
case, the right hand side of the violated equation is the new value for the corresponding
asymptote.

(k) (k) mazx man
LY <al” —0.01(afr — )
(k) (k) maw min
U(k) (k) +0. 01( mazr __ mm) )
j T T
k k) max min
v § +10(a79" — zln)

The bounds «; and 3; are given by:

ag.k) = max{xgmn, Lgk) + 0.1(w§»k) — Lg-k), :cg-k) — m(x] Y — x;m”)} (4.179)
(k) _ . max (k) (k) (k) (k) max min
B;" = min{z}* U~ = 0.1(U;" — 27z + m(2]"* — 2"")} (4.180)

where m is the move-limit.

The now created regular convex sub-problem can be solved using a primal-dual method
(Svanberg 1987).
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4.6. Solving the optimisation problem

Algorithm 2 Method of Moving Asymptotes

1: Define initial design (), set k « 0
2: while Hx(k‘H) — x(k)Hoo <€ or k < mazxloop do

3:

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:

Calculate nodal displacements U by performing a FEA
Compute objective function g
Compute constraint function(s) g;
Perform sensitivity analysis to compute (9go(z*))/02®*) and dg;(x*))/0z*))
Apply the chosen filtering technique on the sensitivities and /or the design variables
Define move-limit m
if k=1or k=2 then
Update Lg-k) and U ;k) according to Equations 4.175
else
Update L§k) and U }k) according to Equations 4.176 and 4.177

Check the asymptotes using Equation 4.178

Compute the bounds « and

Solve the MMA-subproblem with a primal-dual method to obtain 2(*+1
Set (k=2 «— g (k=1

Set (k=) « g (k)

Set (k) «— g(k+1)

k+—k+1

4.6.3 Globally convergent method of moving asymptotes

The Globally Convergent Method of Moving Asymptotes or GCMMA (Svanberg 1995) is
an adapted version of the MMA. While the MMA approximations are monotonous, the
GCMMA approximations are non monotonous.
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Figure 4.22: MMA and GCMMA approzimations Bruyneel et al. (2002)

In a similar way as in the MMA the objective and constraint functions (g) are approx-

imated by a function f as stated in Equation 4.170. The difference is that p;; and ¢;; are
now both non-zero. Which means that both asymptotes (U; and L;) are used at the same
time. In the MMA only one of the values is non-zero. The asymptote that is used in the
MMA depends on the sign of the first order derivative (dg(x*))/dz*)). The use of only
one asymptote leads to a monotonous approximation.
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4.6. Solving the optimisation problem

(k)

In addition to the use of two asymptotes a non-monotonous parameter p;  is introduced

in the calculation of the coefficients p;;, ¢;; and ngk)'
o) _ r® 02 (1001 (2% 00+ o001 (2% 007 P
Dij —( T ) .00 a—x](l‘ ) 4+ 0.00 8—%(3} ) +W
J J
(4.181)
(k) _ (B _ ()2 99 )" 99 9\~ Py
ng = ((I,‘] — LJ ) 0.001 8_56](:1: ) + 1.001 8;6] (.’17 ) + LAz _ {[;mi”
J J
(4.182)
(k) ) n p(]?’y) q.(I?’V)
V) o k)y 1] i
J=1 J J J J

The GCMMA method consists of outer iterations k and inner iterations v. The process
of updating the asymptotes is the same as in the MMA. The non-monotonous parameters
pgk) are strictly positive and the starting value at a certain outer iteration k is calculated
according to:

(k,0) _ 0.1 - 891 (k) mazx min
(k,0)

If this value is lower than 1076, p; " is set to 1076, This value is updated in several inner
iterations according to a scheme proposed by Svanberg (1995) and used to calculate an
improved design.

Choose an initial feasible
design x(©

Calculate the objective and
constraint functions and
the sensitivities

Define the MMA/GCMMA
sub-problem (generate the
approximate functions)

Solve the MMA/GCMMA
sub-problem and find the
approximate solution

Convergence?

Final Solution

Figure 4.23: Iterative scheme of optimisation using MMA and GCMMA approximations
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Implementation

In the previous chapters the theoretical background of the created algorithm has been
given. In this chapter the implementation of this theory in the created algorithm is ex-
plained. The algorithm is a collaboration between two programs, Rhino (McNeel and
Associates 2017) and Python (Python Software Foundation 2018). The problem is stated
in Rhino, steered by its parametric plug-in called Grasshopper. When the problem is
defined, the parameters are imported in Python in which the optimisation is being per-
formed. The results are exported from Python and imported in Rhino again to create
an appealing visualisation. The resulting models can be adapted, saved and exported to
other software programs if needed.

)// )//
we’> @ python” =) =4 T

Rhinoceros Rhinoceros

Figure 5.1: Flowchart of the implementation

5.1 Defining the problem in Rhino/Grasshopper

At first the empty design space or domain in which the final result will fit, can be defined.
The design space is created by assigning an amount of elements in the x-direction (nelx),
in y-direction (nely) and in the 3D algorithm in z-direction (nelz). The total amount of
elements is nele. The size of the elements (in mm) can be assigned here. A rectangular
grid is now visualised in Rhino. The coordinates of the corner points, the coordinates of
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5.1. Defining the problem in Rhino/Grasshopper

the centre points and the node numbers are defined and exported. In the final step of the
creation of the design space, the nodes are "baked” in Rhino, which makes it possible to
"physically” grab some points and assign loads and boundary conditions to these nodes.

< 20

Figure 5.2: Define the 2D or 3D design space and bake the nodes in Rhino

Now that the elements and its corner points are known, the element connectivity matriz
can be created. In this matrix all the degrees of freedom per element are stored. Every
row contains the degrees of freedom of one element. The order in which the degrees of
freedom are stored is based on the local node numbers. This matrix is needed to calculate
the displacements.

N, N,

N, N,

Figure 5.3: Local node numbers within a square or a cubic element

Every row of the 2D element connectivity matrix will contain 8 degrees of freedom (2
degrees of freedom per node and 4 nodes per element) and the same number of rows as
there are elements. For example: if nelr = 10 and nely = 6 the matrix will look like:

2 3 16 17 14 15 0 1 «— element 0
4 5 18 19 16 17 2 3 | < element 1
136 137 150 151 148 149 134 135]| « element 58
138 139 152 153 150 151 136 137| + element 59

—_—— —— —— N——
Local Node 1 Local Node 2 Local Node 3 Local Node 4

A similar approach holds for the 3D elements, however these elements have 8 nodes per
element and 3 degrees of freedom per node, so the rows will have a length of 24 instead of
8.
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5.1. Defining the problem in Rhino/Grasshopper

The elements and global nodes in 2D are ordered from top to bottom and from left to
right (starting at = 0, ¥ = Ymaz ). In 3D they are ordered from top to bottom, from left
to right and from back to front (starting at x = 0, ¥ = Ymaz and 2 = Zpeq).

4279

43—50

9 15 21 27 33 39 45 51 57

% 8

Figure 5.4: Global node numbers and element numbers in a 2D space

In Grasshopper it is possible to create passive en solid elements. The density of these
elements will remain 0 or 1 during the optimisation. Solid elements are a part of the
structure. Passive elements restrict the design space.

The next step in the preparation of the optimisation is the assignment of the loads and
boundary conditions. In Grasshopper the forces can be assigned to the nodes as vectors.
The values are stored in a force vector which is exported to be used in Python. The
degrees of freedom that are either fixed or free are also stored in a vector and exported.

e = 2 oo ool oo
|| | | L

x x x x x x * x x x x x

> 1

.~ - —

y Y

IAvAVAvAvA VA v

Figure 5.5: Boundary conditions and forces in Rhino

Now the elements, loads and boundary conditions are defined and can be imported in
Python to run the actual optimisation.
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5.1. Defining the problem in Rhino/Grasshopper

The next step in defining the optimisation problem is the definition of the problem to
be solved. It is possible to choose one of the objective/constraint-combinations described
in Chapter 4.1.

LY 4 Maximise stiffness s.t. volume constraint
Problem Minimise volume s.t. stiffness constraint D
Minimise volume s.t. stiffness & global stress constraint

Minimise volume s.t. global stress constraint

Figure 5.6: Choose the problem in Grashopper/Rhino

If a stress constraint is considered, the stress failure criterion needs to be determined.

- P-norm + gp-relaxed von Mises stress
Stress Failure Criterion \

P-norm + gp-relaxed Drucker-Prager stress

Figure 5.7: Choose the stress failure criterion to be considered in Grashopper/Rhino

Then the limit values of the stresses, compliance and/or the volume should be assigned.

(m—] o0+

0040 - P
])-
])_

Figure 5.8: Define the limits in Grashopper/Rhino

Other important inputs for the optimisation that need to be defined, are the standard
topology parameters, such as the penalisation power p, the stress relaxation factor ¢ and
the filter radius. The loop parameters that determine when the optimisation is finished
are described as well.
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_| A 300 b
lal 028 b
(Rmin | 020 b
(tox] oo0.0010 b

©200 D=

Figure 5.9: Standard topology parameters and loop parameters in Grashopper/Rhino

The preferred filter can be chosen to avoid numerical difficulties such as checker-board
patterns. The solver is defined in this stage as well. Users can choose between the MMA

or GCMMA.
& MMA ’ '
Solver‘
GCMMA

Sensitivity filter

Density filter
Filter
Heaviside filter

Robust Approach

Figure 5.10: Choose the solver and the filter method

One of the last parameters that need to be determined, are the used material model
and the baseplate.

S (Front)
W (Left)
N (Back) L
E (Right) [

@ Bottom

Top

Baseplate

J - —"
[Factore2 | - @100 -~ - - )
(fectongsyl oto0 )=

Figure 5.11: Choose the baseplate and the used material model




5.1. Defining the problem in Rhino/Grasshopper

The baseplate is important for the material model and influences the printing con-
straints, so needs to be chosen carefully. If isotropic material is assumed and no manufac-
turing constraint is used, the baseplate is not important. The factor Ey = E,, (or B3 = E,
in 3D problems) can be changed to a value between 0 and 1 to create a lower stiffness
in the weaker direction. This value is thus a factor between the stiff and the less stiff
direction. The standard value for the Young’s modulus is not a parameter and therefore
described in Python. If the code is used for other materials this value can thus be adapted
in Python.

The last choices that need to be made are the manufacturing filter and whether self-
weight is considered in the optimisation.

off
Self-Weight lv >
On

Off
AM-Filter ' Y——
& on

0 degrees
Print Angle ' Yo
- & 45degrees |

Figure 5.12: Choose the additive manufacturing filter and if self-weight is considered

In a flowchart all the steps in the definition of the design problem are summarised.

Create design space using
nelx, nely, nelz and the Choose filter method
element size

Assign boundary conditions

and loads to nodes Choose baseplate

Define objective/constraint

combination and stress

: e Determine material model
failure criterion

Define limit values for
stresses, compliance and/or Choose the manufacturing
volume filter {(AMO, AM45 or none)

Define standard TO
parameters
(P+ G R, tol., maxloop)

Choose if self-weightis
considered in de
optimisation

Choose solver
(MMA or GCMMA) Export problem and start
the optimisation in Python

Figure 5.13: Flowchart of the definition of the design problem
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Optimisation in Python

5.2 Optimisation in Python

Before importing the problem defined in Rhino/Grasshopper some packages must be
loaded in Python to be able to solve the problem. NumPy (NumPy Developers 2017) and
SciPy (SciPy Developers 2018) are packages used for scientific computing in Python and
Sympy (SymPy Development Team 2018) is loaded for symbolic computation. Further-
more, the math module is loaded for using mathematical functions and time is imported

to keep track of the total duration of the optimisation.

Now the problem as defined in Rhino/Grasshopper is imported in Python.

nelx
nely
nelz

nele t(nelx nely‘nelz)

ele_list

P iz)
nnod elx:+1)“(nely:1) “(nelz

ndof

DOFsX

DOFsY

DOFsZ
dofsperel
IPperElement
Fex1

Fex2
bedof_vector
bcdofs
freedofs

problem
volfrac
penal
genal
ft

rmin
solver
maxloop
tolx

pathlib
solele
sol

solidelements

solideleme

("solidelem (GH).csv',d:

delem (GH).csv')

():

voidelements
elelist_minvoid
nele minvoid

baseplate

AM np.
print_angle np.
AM 1 nt_angle
eta_cont 0.0

eta cont
AM a:
eta_cont 1.0

E
selfueight
max_sw_ele

stressmeasure
Aggr

vmslim

vms1lim
comslim
comslim
tenslim
tenslim

clim

("voidelem (GH).c:

e(ele_list, voidelements)

ist min

3 (GH).csv'

Baseplate (GH).cs

Element Size (GH)

‘Self-Weight (GH

2 00°g)

Stress Measure (GH).cs

ompliance Limit (EH).cs:

Figure 5.14: Importing from Rhino/Grasshopper
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5.3. Visualisation in Rhino/Grasshopper

Now that the problem is defined the iterations can be initialised. An empty displace-
ment vector U is defined, the element connectivity matrix is imported as edofMat and the
starting value for the densities is created: a vector x in which all the elemental densities
are 1.0. Some of these variable should go to 0, some of them should stay 1.

This vector with the design variables is filtered according to the chosen filter and, if
manufacturing constraints are used, filtered by the described AM filter from Section 4.5
as well. Before the iterations can start the MMA/GCMMA parameters are defined, as
well as the starting value of the iteration number (0) and the starting value of the change
(1.0). The empty vectors with sensitivities dc and dv and the empty vector with elemental
compliances ce are the last vectors defined.

Now the global stiffness matrix is created based on the filtered densities & to calculate
the nodal displacements. The objective value and the constraint values are now calculated.
The derivatives are then filtered by the chosen filter and eventually by the AM-filter. Now
depending on the chosen solver the optimisation is done.

The final step in the Python algorithm consists of exporting the calculated values. The
nodal displacements, the elemental stresses and most importantly the design variables.

In the pseudo code below the algorithm in Python is summarised.

Algorithm 3 Created Topology Optimisation Algorithm

Import design problem from Rhino/Grasshopper
Create elemental stiffness (Kj), strain-displacement (B) and stiffness (Cp) matrices
Calculate the weight-factor (H) according to the formula in Section 4.2
Initialise the iterations
while change > tolx and k < maxloop do

Calculate displacements using FEA

Calculate objective function and its sensitivities

Calculate constraint function(s) and the sensitivities

Filter sensitivities

Solve the optimisation problem

Filter the design variables

—
—= O

—_
[\]

. Export final design, displacements and stresses

5.3 Visualisation in Rhino/Grasshopper

The calculated values can now be imported in Grasshopper. Depending on what the
designer wants to see the results of the optimisation can be visualised. It is possible to
view the virtual densities in a black and white scale, as well as in a coloured scale. It is
also possible to view the stresses in the structure in all the directions.

88
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Figure 5.15: Example of the different visualisation options. Density in black and white scale
(bottom), Von Mises stress in coloured scale (centre) and the stress in y-direction (top)

3D results can be smoothed, by creating an isosurface, based on the densities, and
exported as 3D objects. These objects can be sliced into layers and printed.

Figure 5.16: Example of a 3D object resulting from an optimisation
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Results and verification

In this chapter the outcomes of the optimisations are presented. Some 2D results, as well
as some 3D outcomes are presented and the effect of the different input parameters is
discussed.

6.1 MBB-beam

The different results for different parameters are visualised and explained. The results are
compared using well known examples in topology optimisation, such as the MBB-beam
and the cantilever problem. Half the beam is modelled and mirrored in the y-axis (2D) or

the yz-plane (3D) to obtain a design space with double the size for the same computational
costs.

1494,

1777/

/77777

X

Figure 6.1: Half MBB beam used to compare the results of changing parameters

The nodes on the left side of the domain are all fixed in x-direction. A load is distributed
over the three top nodes on the left side of the design space. The three lowest nodes on
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6.1. MBB-beam

the right side are fixed in y-direction. The forces and boundary conditions are distributed
over multiple nodes to avoid stress concentrations.

6.1.1 Volume fraction

An important parameter in compliance minimisation is the maximum volume fraction or
volume limit. In topology optimisation a predefined value of, for example 0.50 can be
chosen for the volume fraction. This means that the algorithm tries to find an optimal
topology for 50% of the initial volume, in case of compliance minimisation. In Figure 6.2
the optimal topologies are presented for changing volume fractions.

Parameter Value

Objective function Maximising stiffness
Constraint function Volume

Volume limit 0.20, 0.40, 0.60 and 0.80
Compliance limit -

OpM limit -

Penalisation power p 3

Penalisation power q 2.8

Filter radius 2.5

Filter Density

Solver MMA

Material model Isotropic
Manufacturing constraint | -

Table 6.1: Input parameters for comparison of different mazximum volume fractions

The design is modelled using 100 elements in x-direction and 40 elements in y-direction.
The design is mirrored in the y-axis, resulting in a design space consisting of 200 times
40 elements with a length of 50 mm each. The total design space is therefore 10 m x 2
m and the thickness of the design is 50 mm. The acting load is a point load of 20 kN at
midspan.

The numerical results are listed in Table 6.2.

Result ‘ Value 1 ‘ Value 2 | Value 3 | Value 4
Volume [-] 0.20 0.40 0.60 0.80
Compliance [Nm] | 54.74 19.46 12.69 9.82
ounr [N/mm?] 10.55 3.92 3.24 3.25
Ozz [N/mm?] 8.21 4.44 3.31 2.79
oyy [N/mm? 3.31 2.77 2.91 2.95
Oy [N/mm?] 2.83 1.12 1.08 1.08
Mnd [-] 0.37 0.21 0.23 0.26

Table 6.2: Optimisation results for different volume fractions
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6.1. MBB-beam

Figure 6.2: Effect of a changing volume fraction (0.20, 0.40, 0.60 and 0.80, from top to bottom)

Logically, the design becomes stiffer as the maximum volume fraction increases. Most
maximum stresses decrease as well as the volume limit increases. To use this approach
in an valuable manner, the designer should actually calculate the required stiffness or
compliance first. Then the volume fraction should be chosen that matches this value of
compliance. Obviously this is not a very efficient way, because multiple optimisations need
to be performed. In the created method it is therefore possible to minimise the volume
fraction given a certain maximum compliance.

In 3D the resulting structures are heavily influenced by the maximum volume as well.
In the example below a design space is created with 50 elements in x-direction, 6 in y-
direction and 10 in z-direction. In both x-, and y-direction symmetry is used. For clarity
the colour scale is changed from black/grey to dark blue (solid elements) and light blue
(intermediate elements). Elements with a virtual density below 0.5 are not visualised.
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=
-

Figure 6.3: Effect of a changing volume fraction in 3D (0.2, 0.4, 0.6 and 0.8)

The 3D numerical results are listed in Table 6.3.

Result Value 1 | Value 2 | Value 3 | Value 4

Volume fraction [-] | 0.20 0.40 0.60 0.80

Compliance [Nm] | 60.774 | 12.107 | 5.343 | 3.489
OvMpae [IN/mm?] | 8778 | 1.727 | 0.445 | 0.320
OuM,,, [N/mm?] | 0.007 | 0.006 |0.002 | 0.007
Oveman [IN/mm?] | 3.006 | 0.609 | 0270 | 0.224
Ozzmin |N/mm?] | -2.264 | -0.561 | -0.377 | -0.300
Oyyman |N/mm? | 0.155 | 0.063 | 0.036 | 0.013
Oyymin |N/mm?) | -0.317 | -0.060 | -0.050 | -0.025
Oszmes |[IN/mm?] | 0.611 | 0.266 | 0.084 | 0.032
Oszmin |[IN/mm?] -1.919 | -0.562 | -0.264 | -0.190
Tyzmas |IN/mm?] 0.450 | 0.087 | 0.033 | 0.014
Tyzmin |IN/mm?] -0.453 | -0.092 | -0.041 | -0.011
Tozmas |IN/mm?] 0.187 | 0.058 | 0.042 | 0.037
Towmin |IN/mm?] -0.337 | -0.066 | -0.018 | -0.023
Tayman |IN/mm?] 0.919 | 0.425 | 0.203 | 0.107

)

[\

Toymin [IN/mm2] | -0.069 | -0.016 | -0.001 | -0.009
U.,n [mm] 0.74 0.15 0.07 0.05
U.,.. [mm 306 | -061 |-027 |-0.18
Mnd [-] 0.77 0.69 0.60 0.58

Table 6.3: 3D optimisation results for different volume fractions
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6.1.2 Penalisation power

As discussed in Chapter 4 and adapted in the method via Equation 4.46, the penalisation
power is introduced to obtain more realistic designs. The penalisation factor helps to steer
densities towards voids or solids and helps to avoid intermediate densities. Normally a p
value of 3 is chosen in topology optimisation. The factor can vary between 1 and 4 for the

best results.

Parameter

Value

Objective function
Constraint function
Volume limit
Compliance limit
ounm limit
Penalisation power p
Penalisation power q
Filter radius

Filter

Solver

Material model
Manufacturing constraint

Maximising stiffness

Volume
0.50

1.0, 2.0, 3.0 and 4.0
0.8, 1.8, 2.8 and 3.8

2.5
Density
MMA
Isotropic

Table 6.4: Input parameters for comparison of different values for the penalisation power

Again the design is modelled using 100 elements in x-direction and 40 elements in y-
direction. The design is mirrored, resulting in a design space consisting of 200 times 40
elements with a length of 50 mm each. The total design space is therefore 10 m x 2 m
and the thickness of the design is 50 mm. The acting load is a point load of 20 kN at
midspan. The volume fraction is now set to 0.50.

The numerical results of a changing penalisation power are listed in Table 6.5 and the
effect on the topology can be seen in Figure 6.4.

Result ‘ p=1.0 ‘ p=2.0 ‘ p=3.0 ‘ p=4.0
Volume [-] 0.50 | 050 |0.50 |0.50
Compliance [Nm] | 11.70 | 14.43 | 15.52 | 16.07
oum [N/mm? 3.34 324 |339 |3.60
Oz [N/mm?] 2.95 | 351 |384 |3.83
oyy [N/mm?] 3.07 |289 |287 |286
Ouy [IN/mm?] 1.04 |[1.09 |1.10 | 1.10
Mnd [-] 0.57 |028 |[024 |0.22

Table 6.5: Optimisation results for different penalisation factors
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6.1. MBB-beam

Figure 6.4: Effect of a changing penalisation power (1.0, 2.0, 3.0 and 4.0, from top to bottom)

A clear effect of the changing penalisation power is that the compliance becomes higher,
when the penalisation power becomes larger. This is a result of the rejection of interme-
diate densities that contribute to the overall stiffness of the structure, but cannot be
manufactured. The rejection of intermediate results can clearly been seen in Table 6.5,
where the measure of non-discreteness is decreasing when the penalisation power increases.
The variation in the stresses is minimal.

In 3D a similar result is visible. A large amount of intermediate densities (light blue) in
the final result are present in case of a low penalisation power. The higher the penalisation
power, the less intermediate values and the lower the stiffness.
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6.1. MBB-beam

Figure 6.5: Effect of a changing penalisation power (1.0 (left top), 2.0 (left bottom), 3.0 (right top)
and 4.0 (right bottom,))

The 3D numerical results are listed in Table 6.6.

Result

p=1.0 | p=2.0 | p=3.0 | p=4.0

Volume fraction [-] | 0.50 | 0.50 | 0.50 | 0.50
Compliance [Nm| | 4.026 | 5571 | 7.524 | 9.945
OoMpa, [IN/mm?] | 0.338 | 0.378 | 0.944 | 1.612
OuM,,., [N/mm?] | 0.012 | 0.010 | 0.002 | 0.003
Orepas [IN/mm?] | 0.243 | 0.289 | 0.376 | 0.485

Ozzrin [IN/mm? | -0.325 | -0.375 | -0.436 | -0.521
Tyyman |IN/mm?] 0.011 | 0.028 | 0.107 | 0.094
Tyymin [IN/mm?] -0.019 | -0.049 | -0.074 | -0.059
Oroman [ IN/mm?] 0.017 | 0.045 | 0.171 | 0.356
Oszpin |IN/mm?] -0.191 | -0.221 | -0.322 | -0.452

[\

[
Tyzman |IV/mm?] 0.005 | 0.027 | 0.047 | 0.093
Tyzmin |IN/mm?] -0.011 | -0.029 | -0.060 | -0.079
Towmas IN/mm?] ] 0.036 | 0.041 | 0.050 | 0.047
Tozyin |[IN/mm?] -0.024 | -0.023 | -0.041 | -0.128
Taymes [IV/mm? 1 0.109 | 0.158 | 0.301 | 0.395
Taymin | N/ mm?] -0.016 | -0.014 | -0.002 | -0.015

[\

[\

U.,.. [mm] 0.06 |0.07 |0.09 |0.12
U.... [mm] 020 |-0.28 |-0.38 |-0.50
Mnd [-] 0.66 |0.65 |0.64 |0.64

Table 6.6: 3D optimisation results for different penalisation factors
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6.1. MBB-beam

6.1.3 Filter radius

In topology optimisation every element is considered individually, and every virtual ele-
mental density can have a value between 0 and 1. Filters like the density filter in Equation
4.48 are used to link elements with their neighbouring elements to avoid alternating den-
sities that lead to so called checker board patterns. The amount of elements the function
considers, depends on the size of the filter radius, R,,;,. The filter radius is measured in
element length.

Parameter ‘ Value

Objective function Maximising stiffness
Constraint function Volume

Volume limit 0.50

Compliance limit -

oy limit -

Penalisation power p 3

Penalisation power q 2.8

Filter radius 0.5, 1.5, 2.5 and 3.5
Filter Density

Solver MMA

Material model Isotropic
Manufacturing constraint | -

The numerical results of a changing minimum radius are listed in Table 6.7.

Result | R=0.5 | R=1.5 | R=2.5 | R=3.5
Volume [-] 0.50 [0.50 [0.50 |0.50
Compliance [Nm] | 13.70 | 14.60 | 15.52 | 15.92
ounr [N/mm?] 3.40 3.28 3.39 3.36
Oz [N/mm?] 3.69 | 3.71 3.84 | 3.80
oyy [N/mm?] 3.10 2.91 2.87 | 2.86
Oy [N/mm?] 1.03 1.09 1.10 1.10
Mnd [-] 0.03 [0.18 [024 |0.25

Table 6.7: Optimisation results for different minimum radii
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6.1. MBB-beam

Figure 6.6: Effect of a changing filter radius (0.5, 1.5, 2.5 and 3.5, from top to bottom)

The compliance becomes lower, when the radius gets smaller, however the design be-
comes harder to manufacture. When the radius is too small (0.5 element lengths) the
optimisation does not take into account neighbouring elements so an undesired pattern
arises, like in the top design in Figure 6.6. It is important to take a certain neighbourhood
into consideration, using a filter, however that area should not be too large. The larger
the radius, and thus the neighbourhood, the higher the computational costs.

In 3D the effect is visible as well. Clearly the result with a filter radius of 0.5 does
not take into account neighbouring elements. The result is an alternating pattern which
cannot be printed by a 3D concrete printer.
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6.1. MBB-beam

Figure 6.7: Effect of a changing filter radius (0.5 and 3.5)

The 3D numerical results are listed in Table 6.8.

Result | R=0.5 | R=3.5

Volume fraction [-] | 0.50 0.50
Compliance [Nm| | 4.273 | 9.509
OoMpas [IN/mm?] | 0.380 | 1.127
OuM,,q, [N/mm?] | 0.000 | 0.007
Oriman |[IN/mm?] 0.256 | 0.504

Owzmin | IN/mm?] -0.368 | -0.466
Tyymas [IN/mm?] | 0.030 | 0.018
Oyymin [N/mm?] -0.032 | -0.026
Oszmas |IN/mm?] 0.041 | 0.131
Oszpin [IN/mm?] -0.186 | -0.267
Tyzmaz [IN/T0M7] 0.031 | 0.035
Tyzmin [IN/mm?] -0.032 | -0.028

T2Zmac [N/mm2] 0.030 0.035
Tozin [ IV/MM7] -0.023 | -0.026
Taymas [ IN/mm?] 0.122 | 0.305
]

V)

Toymin [N/mm? -0.008 | -0.001
Uspaa [mm] 0.06 | 0.12
Usppi [mm] -0.22 | -0.48
Mnd [-] 0.00 | 0.77

Table 6.8: 3D optimisation results for a changing filter radius
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6.1. MBB-beam

6.1.4

In this research the assumed transverse isotropic behaviour of printed concrete layers on
top of each other is modelled. By changing the Young’s moduli in the different directions
different optimised results can be obtained. The isotropic case is visualised in the top
design of Figure 6.8, the cases with a lower Young’s modulus in the y-direction (or z-

Material model

direction in 3D) are presented below.

Parameter

Value 1

Value 2,3 and 4

Objective function
Constraint function
Volume limit
Compliance limit
oupm limit
Penalisation power p
Penalisation power q
Filter radius

Filter

Solver

Material model
By/E,

Manufacturing constraint

Maximising stiffness
Volume
0.50

3

2.8

2.5
Density
MMA
Isotropic
1

Maximising stiffness
Volume
0.50

3

2.8

2.5

Density

MMA

Transverse isotropic
0.5, 0.1 and 0.01

The

Table 6.9: Input parameters for comparison of different material models

numerical results of a changing material model are listed in Table 6.10.

Result | E,/E,=1 | E,/E,=0.5 | E,/E,=0.1 | E,/E,=0.01
Volume [-] 0.50 0.50 0.50 0.50
Compliance [Nm] | 15.52 16.56 21.45 42.63

oun [N/mm? 3.39 3.64 5.06 7.89

Ozz [N/mm?] 3.84 4.10 5.57 8.25

oyy [N/mm?] 2.87 2.55 1.87 1.09

Oy [IN/mm?] 1.10 1.22 1.43 1.51

Mnd [-] 0.24 0.24 0.21 0.15

Table 6.10: Optimisation results for different material models
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6.1. MBB-beam

Figure 6.8: Effect of a changing material model (Ey=E,, E,=0.5E,, E,=0.1E, and E,=0.01F,,
from top to bottom)

A clear effect of the changing material model is that the weaker the material gets in
the y-direction (or z-direction in 3D), the more the material is positioned in the stronger
x-direction. The stress in x-direction becomes much larger and the compliance increases
when the Young’s modulus in y-direction decreases. The stress in y-direction is decreasing.
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6.1. MBB-beam

In 3D the transverse isotropic behaviour of printed concrete layers on top of each other
is modelled as well. By changing the Young’s moduli in the z-direction different optimised
results are obtained.

Figure 6.9: Effect of a changing material model (E.=E, , (left top), E.=0.5E,, (left bottom),
E.=0.1E,, (right top) and E.=0.01E, , (right bottom))

The 3D numerical results are listed in Table 6.11.

Result | E,/E,=1| E,/E,=0.5 | E,/E,=0.1 | E,/E,=0.01
Volume fraction [-] | 0.50 0.50 0.50 0.50
Compliance [Nm] | 7.524 7.981 9.558 38.900
OoMpas [IN/mm?] | 0.944 1.270 0.801 1.737
oM, [IN/mm?] | 0.002 0.001 0.000 0.013
Oremas [IN/mm?] | 0.376 0.364 0.333 0.000
Ovzmin [IN/mm? | -0.436 -0.461 -0.572 -1.537
Tyyman |IN/mm?] 0.107 0.083 0.040 0.000
Tyymin |N/mm?) | -0.074 -0.084 -0.114 -1.679
Oozman |N/mm?] | 0.171 0.182 0.017 -0.222
Oszmin |IN/mm?] -0.322 -0.256 -0.135 0.000
Tyzmae | IN/mm?] 0.047 0.057 0.056 0.022
Tyzmin | IN/mm?] -0.060 -0.064 -0.020 -0.038
Towmas | IN/mm?] 0.050 0.055 0.046 0.053
Towmim |IN/mm?] -0.041 -0.039 -0.034 -0.032
Tayman [ IN/m0m?] 0.301 0.349 0.230 0.188
Taymin | IN/mm?] -0.002 -0.002 -0.004 -0.009
Usnaw [mm] 0.09 0.10 0.11 0.37
Usppin [mm] -0.38 -0.40 -0.48 -1.95
Mnd [-] 0.64 0.63 0.58 0.41

Table 6.11: 3D optimisation results for a changing material model
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6.2. Cantilever beam

6.2 Cantilever beam

For the following parameters a different problem is solved to give a clearer comparison:
the cantilever problem. The nodes on the left side of the design are all fixed in all possible
directions. The load of 10 kN is assigned to the node (2D) or nodes (3D) on the bottom
right. For 2D problems 100 elements are used in x-direction and 40 elements in y-direction.
The element size is 50 mm.

Figure 6.10: Cantilever problem used to compare the results of changing parameters

6.2.1 Manufacturing constraints

When taking into account manufacturing constraints the optimised designs are mainly
dependent on the defined baseplate. In the examples below it is clear that the optimised
results are very different for the different baseplates. An optimal design without consid-
ering manufacturing constraints looks as follows:

Figure 6.11: Optimised result without considering additive manufacturing constraints

In case the print filter AM45 is applied this result will change depending on the chosen
baseplate.
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6.2. Cantilever beam

Parameter Value

Objective function Maximising stiffness
Constraint function Volume

Volume limit 0.25

Compliance limit -

ounm limit -

Penalisation power p 3

Penalisation power q 2.8

Filter radius 2.5

Filter Density

Solver MMA

Material model Isotropic
Manufacturing constraint | AM45
Baseplate S, W, N and E

The numerical results of a changing baseplate are listed in Table 6.12.

Result | No AM filter | S |W |N | E

Volume [-] 0.50 0.50 | 0.50 | 0.50 | 0.50
Compliance [Nm] | 14.99 15.90 | 14.80 | 17.15 | 15.32
oun [N/mm?] 5.27 527 | 524 | 6.04 | 527
Oz [N/mm?] 3.21 3.03 |3.23 |3.90 | 3.69
oyy [N/mm?] 4.35 4.35 | 4.32 | 4.34 | 4.36
Ozy [N/mm?] 1.33 1.33 | 1.32 | 1.31 | 1.32
Mnd [-] 0.24 026 |022 [029 |0.25

Table 6.12: Optimisation results for different baseplates for AM45
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6.2. Cantilever beam

Figure 6.12: Effect of the changing baseplate for AM45 from S, W, N, E (from top to bottom)

The compliances differ significantly depending on the baseplate. In this particular case
the maximum stiffness is obtained when printing from left to right, so with baseplate W.
Notable is that the compliance is even smaller than the compliance without a manufactur-
ing filter. Except for the compliances and the topologies, the results are not significantly
different.

In 3D there a two additional baseplates, the top surface and the bottom surface of the
design space. All these six sides of the design space can be chosen as the baseplate for the
print process. After construction the design is rotated (except when the bottom surface
is chosen), installed and used.
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6.2. Cantilever beam

(a) Resulting topology with baseplate S (b) Baseplate S

(¢) Resulting topology with baseplate W (d) Baseplate W

(e) Resulting topology with baseplate N (f) Baseplate N

(g) Resulting topology with baseplate E (h) Baseplate E

Figure 6.13: Effect of a changing baseplate for AM45 (S, W, N, E)
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6.2. Cantilever beam

B B

(a) Resulting topology with baseplate B (b) Baseplate B
(¢) Resulting topology with baseplate T (d) Baseplate T

Figure 6.14: Effect of a changing baseplate for AM45 (B and T)

Switching the baseplates results in very different optimal designs. Because the design
space is relatively small in y-direction not all results are considerably different.
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6.2. Cantilever beam

6.2.2 Filtering method

As explained in Section 4.2 there are different methods of filtering the densities and sen-
sitivities used in the optimisation. This filtering is needed to avoid numerical difficulties
such as mesh-dependency, checker-board patterns and local minima (Bendsge and Sig-
mund 2003). The methods used in this research are the density filter, the sensitivity filter,
the volume preserving Heaviside filter and the robust filter.

Parameter ‘ Value

Objective function Maximising stiffness
Constraint function Volume

Volume limit 0.50

Compliance limit -

oy limit -

Penalisation power p 3

Penalisation power q 2.8

Filter radius 2.5

Filter Sensitivity, Density, Heaviside, Robust
Solver MMA

Material model Isotropic
Manufacturing constraint | -

Baseplate -

The numerical results of a changing baseplate are listed in Table 6.13.

Result ‘ Sensitivity | Density | Heaviside | Robust
Volume [-] 0.50 0.50 0.50 0.50
Compliance [Nm] | 14.31 14.99 13.25 13.98
oo [N/mm?] 5.27 5.27 5.26 5.27
O [N/mm?] 2.88 3.21 2.83 3.12
oyy [N/mm?] 4.35 4.35 4.37 4.35
Ozy [N/mm?] 1.33 1.33 1.31 1.33
Mnd [-] 0.18 0.24 0.01 0.05

Table 6.13: Optimisation results for different filtering techniques

Different filtering methods result in different designs. Clearly visible in Figure 6.15 is
that the Heaviside and robust filtering methods result in a more black and white structure
than the sensitivity and the density filter. This is desirable if the design needs to be
printed afterwards. The measure of non-discreteness is a value that indicates the degree
to which a design is black-and-white (Hofmeyer et al. 2017).

n (%)jeu - ie)
Mu=Y" 1a=7) - 100% (6.1)
e=1

where f is the design volume fraction. 0% means that the design is fully discrete and thus
only black and white elements exist. 100% means a fully homogeneous distribution. By
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6.2. Cantilever beam

comparing this value for the four different filtering techniques it can be proved that the
Heaviside and robust filter come up with designs that are more black-and-white than the
sensitivity and density filters.

Figure 6.15: Different topologies due to the different filtering methods used (sensitivity, density,
Heaviside and robust filtering, from top to bottom

In 3D the filters can be applied as well. Elements with a density near 1.0 are visualised
in dark blue, the intermediate results are light blue and the elements below 0.5 are removed
from the design. Again it is very clear that the use of the Heaviside and robust filter lead
to more black-and-white solutions.
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6.2. Cantilever beam

pa gzt

(a) Sensitivity filter in 3D

(b) Density filter in 3D

R iR,

(¢) Heaviside filter in 3D (d) Robust filter in 3D

Figure 6.16: Effect of a different filtering techniques in 3D

6.2.3 Problem definition

When changing the objective function and the constraints, the optimised results are dif-
ferent. To make a fair comparison first the volume minimisation with stress constraint
is executed. The resulting volume is than inserted as the constraint for the compliance

minimisation.

Parameter

Value 1

Value 2

Objective function
Constraint function
Volume limit
Compliance limit
oppm limit
Penalisation power p
Penalisation power q
Filter radius

Filter

Solver

Material model
Manufacturing constraint

Minimising compliance
Volume
0.26

3

2.8

2.5
Density
MMA
Isotropic

Minimising volume
Von Mises stress limit

5.50

3

2.8

2.5
Density
MMA
Isotropic
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6.2. Cantilever beam

The numerical results of a changing problem definition are listed in Table 6.14.

Result ‘ Minimum compliance | Minimum volume
Volume [-] 0.26 0.26

Compliance [Nm] | 33.39 38.41

ounr [N/mm?] 8.31 5.50

Oze [N/mm?] 6.26 5.51

oyy [N/mm?] 4.29 4.30

Ozy [N/mm?] 1.64 1.87

Mnd [-] 0.29 0.39

Table 6.14: Optimisation results for different objectives and constraints

Clearly visible in the stress plots (top figures) in Figure 6.17 is that if the stress con-
straint is applied almost all members are fully stressed. The volume fraction of both
designs is about 26%, however de left design is stiffer and the right design contains a lower
maximum stress.

An observed problem is that the code sometimes is not able to find an optimum in case
of the stress constraint. The stress limit should therefore be chosen carefully. Another
noteworthy aspect that needs to be mentioned is that the stress constrained optimisation
mostly needs more iterations to reach an optimum. This leads to a more calculations and
therefore a larger computational time.

Figure 6.17: Difference in minimising the compliance with a volume constraint (left) and minimis-
ing the volume with a von Mises stress constraint (right)

In 3D the choice for an objective function and the constraint function(s) is even better
visible. To compare the results, again first the minimising volume problem is conducted.
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6.2. Cantilever beam

The volume fraction resulting from this problem (31 %) is used as the limit for the com-

pliance minimisation.

Parameter

Value 1

| Value 2

Objective function
Constraint function
Volume limit
Compliance limit
OuvM limit
Penalisation power p
Penalisation power q
Filter radius

Filter

Solver

Material model
Manufacturing constraint

Minimising compliance
Volume
0.31

3

2.8

1.5
Density
MMA
Isotropic

Minimising volume
Von Mises stress limit

5.50

3

2.8

1.5
Density
MMA
Isotropic

If the problem (a combination of objective and constraints) is different it can be seen
that the results of the optimisation are different as well. Figure 6.18 shows two completely

different material distributions.

(a) Minimising compliance in 3D

(b) Minimising volume in 3D

Figure 6.18: Effect of different problem definitions in 3D
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6.3.

Tension and/or compression structure

6.3 Tension and/or compression structure

For the last verification a square (2D) or box shaped (3D) design space is chosen with a
downward pointing load at the centre of this design space. The corners of the design space
are fixed in all possible directions. The design space in 2D is 2 m x 2 m and consists of
40 x 40 = 1600 elements with a length of 50 mm. The load is 20 kN.

6.3.1 Stress failure criterion

To avoid large tensile forces in the final structure the stress failure criterion to be considered
can be changed from the von Mises stress to the Drucker-Prager equivalent stress.

Parameter

Value 1

Value 2

Objective function
Constraint function
Volume limit
Compliance limit
oy limit

Ot limit

O limit
Penalisation power p
Penalisation power q
Filter radius

Filter

Solver

Material model
Manufacturing constraint
Baseplate

Minimising volume
Von Mises stress limit

3.00

3

2.8

2.5
Density
MMA
Isotropic

Minimising volume
Drucker-Prager stress limit

1.00
5.00

3

2.8

2.5
Robust
MMA
Isotropic

The numerical results of a changing stress constraint are listed in Table 6.15.

Result ‘ Von Mises stress | Drucker-Prager stress
Volume [-] 0.13 0.11

Compliance [Nm] | 12.82 5.92

oum [N/mm? 6.04 6.04

Ope [N/mm?] 3.48 3.76

oyy [N/mm?] 3.68 3.61

Ouy [N/mm?] 3.26 2.77

Mnd [-] - -

Time [s] 15 528

Table 6.15: Optimisation results for different stress constraints

To compare, the densities, the von Mises stress and the stresses in the weaker y-direction

are visualised in Figure 6.19.
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6.3. Tension and/or compression structure

In case a different stress criterion is chosen as constraint for the volume minimisation,
the topology changes. If possible a structure is found that only contains compressive
internal forces. If not, the tensile stresses are diminished by adding more material in
the tensile areas. In this case it was possible to reduce the stresses in y-direction to a
minimum. Only compressive stresses are present in the final result (left figures in Figure
6.19).

Figure 6.19: Results for the Drucker-Prager stress (left) and the von Mises stress criterion (right)
(oyy, von Mises stress and densities, from top to bottom)

An important difference of stress constraint optimisation (and especially using the
Drucker-Prager stress) compared to compliance or volume constraint optimisation is the
enormous increase in computational time. The results above are calculated in 15 sec-
onds (von Mises stress constraint) and 528 seconds (Equivalent Drucker-Prager stress
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6.3. Tension and/or compression structure

constraint). These values are both larger than the 5 seconds needed to solve the same
problem subjected to a compliance constraint.

In 3D the same problem is created, however now with the eight corner points con-
strained instead of four. The design space is box, instead of a 2D square. The optimisations
took several hours.

z

¥ .

Figure 6.20: 3D example of the difference in stress failure constraint (left: wvon Mises stress
criterion, right: Drucker-Prager equivalent stress)
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Case Study

In the previous chapters the theory, the implementation of that theory and the results of
the created algorithm are described in detail. To investigate what the possible benefits of
the method can be for construction a case study is performed in this chapter.

7.1 Floor slab design

An example of a structural part that is often created in concrete is a floor. Floors are often
made of poured concrete in a rectangular mould due to the simplicity. The top surface is
subjected to a distributed load. An idea for optimisation is to print the floor upside down
and rotate it afterwards. This idea results from the fact that the top layer must be a part
of the structure, because that is where the distributed load is acting on.

To compare the results of the optimisation with real values, the theory about thin floor
slabs is used and briefly explained below. A slab is a plate loaded perpendicular to its
plane. We can assume a thin floor because the thickness to width ratio is (lower than
or) equal to 1/10. We consider the floor to be thin, so we can assume that the shear
deformation is negligibly small. According to the Kirchhoff-Love theory (Love 1888), an
extension of the Euler-Bernouilli beam theory, flat cross sections remain flat after loading.
And deflections are not depending on the z-coordinate.

The considered floor has a length of 4.0 meters in x-direction and 3.0 meters in y-
direction. The thickness of the slab is ¢ = 300 mm. And we consider a distributed load
p =5 kN/m?. The self-weight is added to this value: piotar = P + Psel 7. In this formula
Pself depends on the thickness, the gravity acceleration (9.81 m3s~2kg~!) and the density
(2029 kg/m?). The formula for the self-weight part becomes pse;r = ptg. The total load
is Now protar = 10.97 kN/m?. The Young’s modulus is £ = 17336 N/mm? according to
Section 4.3 and the Poisson’s ratio v = 0.12.
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7.1. Floor slab design

In slabs different relations can be described. The relations between displacements,
deformations, stresses/moments and loads are called the kinematic, constitutive and equi-
librium equations.

xx In\ X
w K, m, p
o, Py m,, q,
?, Vs Va q,
Yy %
\—AA/
kinematic constitutive equilibrium
equations equations equations

Figure 7.1: Relation scheme plates

Because the shear deformations (v, and +,) are considered zero in thin plates, the
relation scheme can be altered.

K\\ m.\,\
e Ky m,, P
Py m,,
kinematic constitutive equilibrium
equations equations equations

Figure 7.2: Relation scheme thin plates

In Figure 7.3 the relations between stresses/moments and deformations are visualised.

Figure 7.3: Stress resultants and deformations due to bending in a plate with lateral contraction
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7.1. Floor slab design

According to the theory the kinematic equations, the relations between the displace-
ments and the deformations, are given by:

B 52w
Far = =50
52w
52w
Pry = 2Kzy = _QM
The constitutive equations, relating the deformations and the stresses are given by:
Mag = D(Kgz + VEyy)
Myy = D(VKga + Kyy) (7.2)
1
May = 5(1 — V) Dpay
Where D = #ﬁﬂ) The equilibrium equation, which is the relation between the stresses
and the external distributed load p can be derived from Figure 7.4.
dbx
;;;;; X
Y =
ov, ox
v, +—=dy
J ay
Figure 7.4: Plate equilibrium in z-direction
Coming from the equilibriums in x- and y-direction it can be concluded that:
,Ux _ 8m:x:r 8myl‘ 7 'Uy — % % (73)
Ox y y Oz

Therefore, the equilibrium in z-direction can be written as:

Py 82mwy 82myy
_< 522 +2 92y + By =p (7.4)

Substitution of Equations 7.1, 7.2 and 7.4 delivers a partial differential equation in terms

of w:
0w *w Ntw  p
+2 t ==
ox? 0x20y?  oy* D

(7.5)
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7.1. Floor slab design

This differential equation is known as the biharmonic plate equation. To solve this equation
a displacement field w(x,y) must be found that matches the boundary conditions and the
plate equation.

To compare several floors and to come up with different topologies, different boundary
conditions are imposed. Design 1A is a simply supported floor on all outer edges. Design
1B is supported on the two short edges.

Figure 7.5: Different boundary conditions for designs 1A (left) and 1B (right)

7.1.1 Design 1A - Uniformly loaded plate, simply supported on all edges

Levy (1899) suggested to use the following equation to find the solution to the differential
equation from Equation 7.5:

w = Z Y, sin <m;rx> (7.6)
m=1

where Y,,, is a function of y, a is the length of the plate in x-direction and m is an integer
that ensures the boundary conditions at © = 0 and at x = a are satisfied. Because the
deflection and the moments are equal to 0 at these positions it holds (for x = 0 and x = a)
that:

0*w (7.7)

== P 1= N o+

Y

Figure 7.6: Sides a and b in relation to the z- and y-azxis (Timoshenko and Woinowsky-Krieger
1959)
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7.1. Floor slab design

Now Y;, needs to be determined in a way that the boundary conditions at y = —b/2
and y = b/2 are satisfied, as well as the biharmonic plate equation. Nédai (1925) came up
with the idea to divide the solution w in two parts:

w = Wi + wa (7.8)
where
P 4 3, .3
= — (2" — 2az” + .
w1 24D(w ax® + a’x) (7.9)

this part of the solution represents the deflection of a uniformly loaded strip parallel to
the x-axis (Timoshenko and Woinowsky-Krieger 1959). It satisfies Equation 7.5 and the
boundary conditions at « = 0 and x = a.

The part wy now has to satisfy:

0w P 0*w N *w
Ox? 0x20y? oyt

=0 (7.10)

and needs to be chosen such that Equation 7.8 holds. ws is taken in the form of Equation
7.6 and substituted in Equation 7.10:

> v m27r2 II m47r4 . mTmTx
v -2 Yol Yo | sin == =0 (7.11)
m=1
this can only be true for every value of x if:
2,2 4,4
yIv _ oM™ maf Y =0 (7.12)
the general integral of this equation is:
4
Y, = p‘L(Am cosh Y o g ™Y b ™™ 4 ¢ sinn 7Y 4 p, Y hw
D a a a a a
(7.13)

Because of the symmetrical deflection with respect to the x-axis the constants C,, and
D, can be taken 0. Equation 7.8 can now be rewritten as:

4
_ P a4 3 3 pa mmy mwy . . ommy\ . mmy
= 54D (% — 2ax” + a’z) + 53 <Am cosh . + B, . sinh . ) sin — (7.14)

the first part of this equation (w;) can be written as:

szp(x — 2ax® + a’x) i % in " (7.15)
m=
so Equation 7.14 can be rewritten as:
pat & 4 mmy mmy . . omwry\ . mrr
W= Zzzl <7r5m5 + A, cosh ot B, " sinh . ) sin — (7.16)

The boundary conditions in Equation 7.7 also hold for the sides y = —b/2 and y = b/2
in case of a plate that is simply supported on all edges. By substitution of w in these
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7.1. Floor slab design

boundary conditions and by taking a,, = ™ it is possible to determine the constants

2a
(A, and By,):

4 .
g + Ay, cosh oy, + oy By sinh oy, = 0 (7.17)

(Ap + 2B,y,) cosh ayy, + vy By sinh i, = 0

so the constants are:
2(a tanh ayy, + 2)

Ay, =—
5,5
s 2m cosh oy, (7.18)
Bp=—+—"—
" wdmb cosh ayy,
so the final equation for the displacement field for design 1A is:
4pa* > 1 am, tanh oy, + 2 Qm 2y 20,y mnx
= — | 1= h2 b+——————"sinh i
YD m1§3:5 mb < 2 cosh oy, COSR 20mY +200$h om b ST S
(7.19)

Using this equation the bending moments and shear forces in the plate can be calculated.
The bending moments are given by Equation 7.2 and the shear forces by:

D Pw n Pw
Vg = — + =
* ox3  Oy20x
Pw Pw
—D|Z— 4+
Yy <8y3 * 8:U26y>
The results are visualised in Figure 7.7 and listed in Table 7.1. The maximum deflections
and maximum bending moments are found at z = a/2 and y = 0. The maximum and
minimum twisting moments are found at the corner points. The maximum and minimum

shear forces can be found at midspan of the edges. The maximum stresses are calculated
using:

(7.20)

122 6
Ox = ﬁmxzmaz = iﬁmxzmaz
oy = %myymaz = :I:%myymaz (7.21)
122 6
Tey = 73 Maymas = iﬁmxymaz
Result ‘ Minimum Maximum
w [mm)] 0.000 0.149
Mgz [ENm/m] | 0.000 3.858
My [ENm/m] | 0.000 6.494
My [kNm/m] | -4.998 4.998
Uy [N/mm] | -10.71 10.71
vy [N/mm] | -13.11 13.11
o [N/mm?] | -0.257 0.257
oy [N/mm?] | -0.433 0.433
Tay [N/mm?] | -0.333 0.333

Table 7.1: Results plate theory calculations for design 1A (1A-P-100)
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0.14
— 35
012 g. .
0.10 2 M.s
0.08 % |}20
0.06 Ellis
0.04 1.0
0.02 0.5
20 25 20 25
X (m) a5, 15 X ) 035, -5
(a) Deflections (b) Bending moments mg,
.
Py 6 .
S E er’
+ E 5 E
= = 2
;s 2|4 X
Fa) 2 0
: B3 g
L 2 -2
., s .
15
510 -05 : & S0
520 55 o BTN 20 5 o -0 3
X (m) 35 45 15 X ) 5 ., -15
(¢) Bending moments my, (d) Twisting moments mg,
B
s 10.0
50 —~ 75 _ i
25 .ZE' 5.0 5 5
0 £ |la2s =
25 % Loo BN
=,
73 -5.0 -5
J o -1.5 e
15 ~10.0
0 os 10 /
51 o~ 5
235 0 EURIE ST
() asy =18 X () 35 ,, S

(e) Shear forces v, (f) Shear forces v,

Figure 7.7: Results floor plate calculations (1A-P-100)
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7.1. Floor slab design

7.1.2 Design 1B - Uniformly loaded plate, simply supported on two short
edges

The second design is the uniformly loaded plate, simply supported on the two short edges.
So the edges © = 0 and x = a are simply supported and the other edges are free. Again
we assume that the load is uniformly distributed and the deflection will be symmetrical
with respect to the x-axis, so we only have to consider the boundary conditions along the
edge y = b/2.

I{Elost beam or free

_________ —
]
1
ol
0 i
—xX
1
i
Elost. beam .
or free~_ !
A L .—__———L
[ —

Figure 7.8: Sides a (free) and b (simply supported) in relation to the z- and y-axis (Timoshenko
and Woinowsky-Krieger 1959)

According to Timoshenko and Woinowsky-Krieger (1959) we first have to assume that
the free edges are elastically supported. They only resist bending in vertical planes and
do not resist torsion, therefore the boundary conditions are:

827w + 1/827w =0
Oy? Ox? N
y=b/2

Pw Pw *w
y=b/2 y=b/2

where ET is the flexural rigidity of the elastically supporting beams. In a similar way as
in Section 7.1.1 a deflection field w is assumed:

(7.22)
D

w = wy + wsy (7.23)

where -

4pa4 1 . mnrx
w1 = ﬂ_T Z ﬁ S 0 (724)
m=1,3,5,
and
> mmx
wp= Y Ypsin—— (7.25)
m=1,3,5, a

Again we assume the constants C,, = D,, = 0, because of symmetry in the x-axis. So,

4

Yo = pa (Am cosh 7Y + B, 7Y ginh mﬂ/) (7.26)
D a a a

Now we have the same unknown constants as in Section 7.1.1, however the boundary
conditions are different. Filling in the new boundary conditions in Equation 7.22 and
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7.1. Floor slab design

using the notations T’é’rb = q;, and % = )\ we get:
. 4v
A (1 —v) cosh oy, + B [2 cosh agy, + (1 — v)ayy, sinh ayy, ] = —
mom
—Ap[(1 — v) sinh oy, + ma cosh oy (7.27)
. 4\
+Bpn[(1 + v)sinh oy, — (1 — v)ay, cosh ayy, — mm Aoy, = o

Solving these equations, we find:

4  v(1+v)sinha,, —v(1 — v)ay, cosh a,, — maA(2 cosh auy, + @y sinh )

A p—
™ mbd (3 +v)(1 — v)(sinh ay, cosh oy, — (1 — )20y, 4+ 2mm A cosh? ay,
B - 4 v(1 — v)sinh a,, + m7A cosh
"™ mbS (34 ) (1 — v) sinh ayy, cosh ayy, — (1 — v)2a, + 2ma cosh? oy,
(7.28)
the final deflection is found by filling in these constants in:
pat & 4 mmy mmy mmy mmx
w=wy +wy = —— Z ——— + A, cosh + By, sinh sin
D oM a a a a
m=1,3,5,...
(7.29)

In the considered case two edges are free, instead of elastically supported, so we can fill in
A =0 (if we would fill in A\ = oo we would obtain the same result as in Section 7.1.1.

Now that w can be calculated, the bending moments, twisting moments, shear forces
and the maximum stresses are calculated again using Equations 7.2, 7.20 and 7.21.

Result ‘ Minimum Maximum
w [mm] 0.000 0.957
Mgz [kNm/m] | 0.000 22.38
My [kNm/m] | 0.000 1.583
My [kNm/m] | -1.734 1.734
. [N/mm)| -19.95 19.95
Uy [N/mm) -1.171 1.171
Oy [N/mm?] | -1.492 1.492
oy [N/mm?] | -0.106 0.106
Ty [N/mm?] | -0.116 0.116

Table 7.2: Results plate theory calculations for design 1B (1B-P-100)

The results are visualised in Figure 7.9.

125



7.1. Floor slab design

= 20.0
£
£ o8 € [t17s
4
E Los & |r15.0
= % 125
0.4 E |[ w0
7.5
0.2 5.0
25
20 25 20 25
X(m) 30 35 an =15 X(m} 30 35 40 =15
(a) Deflections (b) Bending moments mg,
15
14 -l " 4 15
S 2 I b J Mt wg
w0 £ [F12 . : L £ [rro
08 ; 1.0 ) ; 0.5
w2 los A M s B oo
w E T~ E
0.6 —0.5
o
0o :’: -1.0
15 ) -15
00 0.0 00
051015 -05 \((‘\ 51.015
235 -0 Y LI
X (my 35 45 15 X fm) 5 ., -15
(¢) Bending moments my, (d) Twisting moments mg,
L0
= 1.00
b B = < [fors
s 5 o S [toso
o 2 fis < |tozs
= ¥ lto 2 [fooo
-10 i -0.25
s i —0.50
ie -0.75
-1.00
® 20 50 ol TR ® 20 55 Sl TIRRY
Ximy 30 as a0 15 X () EL w15

(e) Shear forces v, (f) Shear forces v,

Figure 7.9: Results floor plate calculations (1B-P-100)
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7.2. Topology optimised floor

7.1.3 Design 1A and 1B - 60% of the total volume

In Section 7.2 floors will be optimised using a volume constraint of 60%. To make a clear
comparison afterwards, first the two flat floors with a volume of 60% are calculated. The
height of the floor is now 180 mm instead of 300 mm. The results are listed in the tables
below.

Result ‘ Minimum Maximum
w [mm] 0.000 0.539
Mz [kNm/m] | 0.000 3.018
My [kNm/m] | 0.000 5.080
My [kNm/m] | -3.910 3.910
Uy [N/mm] | -8.382 8.382
vy [N/mm] | -10.25 10.25
o [N/mm?] | -0.559 0.559
oy [N/mm?] | -0.941 0.941
Tay [N/mm?] | -0.724 0.724

Table 7.3: Results plate theory calculations for design 1A (1A-P-60)

Result ‘ Minimum Maximum
w [mm)] 0.000 3.468
My [kNm/m] | 0.000 17.51
My [ENm/m] | 0.000 1.238
My [kNm/m] | -1.356 1.356
Vg [N/mm] | -15.60 15.60
Uy [N/mm] | -0.916 0.916
o [N/mm?] | -3.242 3.242
oy [N/mm?] | -0.229 0.229
Tay [N/mm?] | -0.251 0.251

Table 7.4: Results plate theory calculations for design 1B (1B-P-60)

7.2 Topology optimised floor

To properly model and optimise a floor the aim is to use a design space which is as
large as possible. The larger the amount of elements, the higher the computational costs.
By choosing different numbers of elements and keeping track of the increase in time, a
design space of 40 x 30 x 6 elements has been chosen for this case study. A compliance
minimisation subjected to a volume constraint takes about three quarters of an hour.
Doubling the thickness (from 6 to 12 elements) leads to an exponential growth in the total
time of about 3 hours.

Because of symmetry in the yz-plane and in the xz-plane a floor of 80 x 60 x 6 elements
can be optimised. A total amount of 28800 elements is thus considered. All elements have
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7.2. Topology optimised floor

a length of 50 mm and therefore the design space has a length of 4 m, a width of 3 m and
a thickness or height of 300 mm.

According to Section 4.3 the Young’s modulus in the strong x- and y-direction is F, , =
17336 N/mm?2. In the weaker direction the modulus is about 65% of that value. So the
material to be used is transverse isotropic and the factor F3 = 0.65 for the weak z-
direction. The density of the concrete mixture is, according to mentioned section, equal
to 2029 kg/m3.

As stated above the top layer cannot be removed from the design, because a distributed
load is acting on it. The top 1200 (or actually 4800) elements are therefore set to solid.
No elements are set to zero density (passive) in the design space, because there is no
restriction to place material anywhere.

The load acting on the top surface of the floor slab is set to 5.0 kN/m?. The modelled
part of the floor has an area of 2.0 m x 1.5 m = 3.0 m2. So a total force of 5.0 kN/m?
x 3.0 m? = 15 kN is divided over the nodes on the top surface.

Furthermore, the optimisation will be a compliance minimisation with a volume con-
straint of 60%. The additive manufacturing filter without a possible overhang (AMO) is
used and the top surface is taken as the baseplate. The floor will thus be printed upside
down and be rotated afterwards.

All parameters and assumptions are listed in Table 7.5 for a clear overview.
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7.2. Topology optimised floor

Parameter ‘ Value

Elements in x-direction 40 (80 using symmetry)
Elements in y-direction 30 (60 using symmetry)
Elements in z-direction 6

Element size [mm)] 50

Length (x-direction) [mm] | 2000 (4000 using symmetry)
Width (y-direction) [mm] | 1500 (3000 using symmetry)
Height (z-direction) [mm] | 300

Loads [N] 15000 (divided over top nodes)
E.y [N/mm?] 17336

Factor Ej3 0.65

v [ 0.12

Density [kg/m?] 2029

Self-weight Considered

Objective function Minimising compliance
Constraint function Volume

Volume limit 0.60

Penalisation power p 3

Penalisation power q 2.8

Filter radius 2.5

Filter Robust

Solver MMA

Material model Transverse isotropic
Manufacturing constraint | AMO

Baseplate Top

Tolx 0.001

Maxloop 200

Table 7.5: Parameters used in the topology optimisation algorithm

The resulting topologies can be seen in Figure 7.11 and the resulting values are listed
in Table 7.6.

From the results it can be concluded that the maximum deflection of a slab is highly
dependent on the boundary conditions. Without the additional supports on two sides
the displacement is almost two times larger. Clearly visible is that the compliance of the
structure is therefore much larger as well for the same volume fraction. Almost all stresses
are larger for design 1B as well.

To make a fair comparison between the values coming from the plate theory (with
volume fraction 100%, called P-100) and the finite element method used in this research,
a simple non-optimised floor is calculated in the algorithm as well. This non-optimised
floor has a volume fraction of 100% and is visualised in Figure 7.10 and denoted as TO-100.

The resulting values from the 100% volume floor (TO-100) and the results from the
optimised structures (TO-60) are calculated in the algorithm and listed in Table 7.6.
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7.2. Topology optimised floor

Result | 1A-TO-100 | 1A-TO-60 || 1B-TO-100 | 1B-TO-60
Volume fraction [-] || 1.00 0.60 1.00 0.60
Compliance [Nm] | 2.48 3.49 19.77 20.36
OoMpmas [IN/mm?] || 0.53 0.77 1.23 1.73
ouM,,;,, [IN/mm?] | 0 0 0 0
Oman | IN/mm?] 0.23 0.67 1.22 1.52
Oz [IN/mm?] -0.23 -0.37 -1.22 -1.18
Tyyman [ IN/mm?] 0.39 0.61 0.07 0.58
Tyymin | IN/mm?] -0.39 -0.51 -0.10 -0.26
Oozraw [IN/mm?] 0.50 0.10 0.02 0.15
Oszmin |IN/mm?] -0.35 -0.63 -0.68 -1.43
Tyzman [ IN/Mm?] 0.22 0.26 0.06 0.48
Tyzmim | IN/mm?] -0.22 -0.37 -0.06 -0.53
Tozmas |IN/mMmM?] 0.13 0.23 0.05 0.21
Tozpin |[IN/mm?] -0.16 -0.19 -0.00 -0.33
Taymas | IN/mm?] 0.13 0.23 0.26 0.57
Taymin | IN/mm?] -0.17 -0.23 -0.03 -0.18
Uspe [mm] 0.03 0.29 0.12 0.66
Uz, [mm] -0.17 -1.32 -0.97 -2.40
Total time [s] 42 2623 42 2688

Table 7.6: Results from the topology optimisations

Figure 7.10: Non-optimised outcome of the created algorithm: TO-100
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Figure 7.11: Final topologies for different boundary conditions 1A-TO-60 (top) and 1B-TO-60
(bottom,)

In addition to a comparison between flat floors and topology optimised floors, the
results of the improvements made in this research are studied as well. To make a clear
comparison between a standard code and the code created in this work, the designs 1A
and 1B are also optimised without all the adaptations. The isotropic material behaviour
is used, self-weight is not considered, the density filter is used instead of the robust filter
and no manufacturing filter is considered. The deviating result can be seen in Figure 7.12.
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Topology optimised floor

Figure 7.12: Final topologies for 1A-TO-60 (top) and 1B-TO-60 (bottom) (left = the created
algorithm, right = standard TO)

Result | 1A-TO-60-std | 1A-TO-60-real || 1B-TO-60-std | 1B-TO-60-real
Volume fraction [-] || 0.60 0.60 0.60 0.60
Compliance [N'm] || 0.931 3.49 6.31 20.36
CoMynas [IN/mm?] | 0.79 0.77 1.19 1.73
OuM,,, [N/mm?] 0 0 0 0
Criman | IN/mm?] 0.283 0.67 0.81 1.52
Oz |IN/mm?] -0.244 -0.37 -0.72 -1.18
Oyyman | IN/mm?] 0.345 0.61 0.27 0.58
Tyymin [IN/mm?] -0.266 -0.51 -0.17 -0.26
Oroman |[IN/mm?] 0.059 0.10 0.08 0.15
Oszpin [IN/mm?] -0.348 -0.63 -0.91 -1.43
Tyzmas |IN/mm?| 0.125 0.26 0.24 0.48
Tyzmin | IN/mm?] -0.184 -0.37 -0.25 -0.53
Towmas [ IN/mm?] 0.200 0.23 0.15 0.21
Toxin | IN/mm?] -0.269 -0.19 -0.16 -0.33
Tayman |IV/Mm?] 0.221 0.23 0.47 0.57
Taymin | IN/mm?] -0.271 -0.23 -0.06 -0.18
Usnaw [mm] 0.03 0.29 0.09 0.66
Us,i [mm] -0.14 -1.32 -0.66 -2.40
Total time [s] 2245 2623 2382 2688

Table 7.7: Results from the standard (std) and the more realistic (real) topology optimisations
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7.3 Discussion

In this section the results of the plate theory and the optimised results are discussed. Note
that the displacements U in the algorithm are negative, because the z-axis is pointing up.
In the plate theory the z-axis is pointing down, so the deflections w are positive. In the
tables below the maximum deflection is positive and called w;,qz-

In the following two tables the non-optimised design from the algorithm (TO-100) is
listed in the first column, the topology optimised design (TO-60) in the second column
and the outcome of the plate theory with 100% of the volume in the third column (P-100).
In the last column a floor with the same amount of material as the optimised result is
listed (P-60). In both cases a floor with a thickness of 180 mm is calculated.

The results for design 1A, a slab simply supported on all edges with a distributed load
on the top surface, is listed Table 7.8.

Result | 1A-TO-100 | 1A-TO-60 | 1A-P-100 | 1A-P-60
Volume fraction [-] | 1.00 0.60 1.00 0.60
Winaz [Mm] 0.17 1.32 0.15 0.54
op [N/mm?] 0.23 0.67 0.26 0.56
oy [N/mm?] 0.39 0.61 0.43 0.94
Tay [N/mm?] 0.17 0.23 0.33 0.72

Table 7.8: Combined results for design 1A

For design 1B, a slab simply supported on the two short edges with a distributed load
on the top surface, the following result are obtained.

Result | 1B-TO-100 | 1B-TO-60 | 1B-P-100 | 1B-P-60
Volume fraction [-] | 1.00 0.60 1.00 0.60
Winaz [MM] 0.97 2.40 0.96 3.47
oz [N/mm?] 1.22 1.52 1.49 3.24
oy [N/mm?] 0.10 0.58 0.11 0.23
Tay [N/mm?] 0.26 0.57 0.12 0.25

Table 7.9: Combined results for design 1B

o Comparison between TO and plate theory results (TO-100 and P-100)
Clearly visible in the tables above is that, as expected, the non-optimised results
from the algorithm (TO-100) are very similar to the results from the plate theory
(P-100). Small differences can be explained by the use of very simple elements in
the finite element method. The used linear elements cannot capture the kinematics
of deformation. In the theory we assume that the shear strain can be neglected.
However, because of the linear elements the presence of a shear strain is inevitable.
Because first-order solid elements are used, the displacement field is approximated by
a linear function. The strains are a derivative of the displacement, which is a constant
value for linear functions. This leads to a constant strain in the elements, which is not
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really the case. This leads to a different stiffness, which leads to different deflections.
This problem can be diminished by refining the mesh, however the computational
time grows exponentially when more elements are used. Improving that aspect is
out of the scope of this research. It is also possible to solve this problem by choosing
second or higher order elements.

o Comparison between total volume and 60% of the volume (TO-100 and TO-60)
Another expected result visible in the comparison is that the stresses and displace-
ments become larger if material is saved. The material is thus used in a more
efficient way. Neither the stress limit (0., <1.0 N/mm?), nor the deflection limit
(Wmaz < 0.004L=16 mm) is exceeded, so more material can be saved. Of course
there is tension (in the other directions), so actually reinforcement is needed any-
how. This aspect is outside the scope of the research as well, however it should be
mentioned.

o Comparison between topology optimised floors and thinner floors (TO-60 and P-60)
When comparing the topology optimised results (TO-60) with the thinner floors (P-
60) it is clear that in case of design 1A the maximum deflection and the maximum
stress sigma, are higher in case of TO than in case of a thinner floor. Considering
stiffness and the used material volume it is therefore better to choose a thinner floor
in this situation. For stresses in the other directions the topology optimised floor is
preferred.

In case of design 1B the opposite is true. In this case the topology optimised result
(1B-T0O-60) leads to a smaller maximum displacement and a lower maximum stress
sigma, than the thinner floor (1B-P-60). So it depends on the boundary conditions
what is the best thing to do, when considering the deflection and thus the stiffness of
the structure. When considering the strength or stresses in the structure it depends
on the boundary conditions and the stress criterion what method is preferred.

In addition to the comparison between the theory and the optimisation it is also inter-
esting to compare the standard topology optimisation with the created algorithm. In that
way it can be clearly visualised what the effects of the material model, filters and other
changes are.

o Comparison reqular TO with the created algorithm (TO-60-std and TO-60-real)
From the results in Table 7.7 and the resulting topologies it is clear that completely
different outcomes are created by the different TO approaches. The standard TO
results in much lower compliances, is therefore stiffer and has a maximum deflection
that is much smaller than in the created algorithm. This makes sense, because the
new results are limited by manufacturing constraints and the real behaviour of the
material is included. When considering the topology it is very clear that many holes
are present in the standard optimised floor. These holes cannot be printed by a 3D
concrete printer, without moulds.
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In addition to designs 1A and 1B more boundary conditions have been used to optimise
floors. For example, a floor supported on the four corner points (1C) and a floor supported
on a column at the bottom and centre of the slab (1D). These results are not used to
compare results numerically, however the differences in topologies can be compared.

Figure 7.13: Final topologies for boundary conditions 1C (top) and 1D (bottom)
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Conclusions

In this chapter the most important conclusions of the study are listed and an answer to
the research question is given.

8.1 Answer to the research question

The research question of this study was:

What possibilities can additive manufacturing of concrete provide in the design and
construction of topology optimised structures?

As the main conclusion and as an answer to the research question it can be said that
combining topology optimisation and additive manufacturing can lead to material savings
and a more automated building process. However, from this study it can be concluded that
taking into account manufacturing constraints and the real material behaviour of printed
concrete has a great effect on the structural performance of the optimised results. From
the case study, for example, it can even be said that it depends on the boundary conditions
if it is more beneficial to use topology optimisation in combination with 3D printing or to
simply design a thinner rectangular floor.

8.2 General conclusions

e From the literature study on recent concrete printing projects, it can be concluded
that all over the world different groups are focussing on large scale 3D printing.
From the case study it can be concluded that the manufacturing constraints heavily
influence the structural behaviour. Because many projects are focussing on concrete
printing, the processes are improving and more experience is gained. This will
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probably lead to more form-freedom and therefore more-optimised structures in the
years to come. The knowledge of the material will improve as well.

o By applying a new material model to the topology optimisation more realistic designs
are the result of the optimisation. The stiffness behaviour in the optimisation is
changed from isotropic to the special orthotropic case: transverse isotropic. This is
done assuming that the material behaves isotropic in its plane and different in the
height (printing direction). From the examples in Section 6.1.4 it can be concluded
that a transverse isotropic material model results in considerably different topologies
than an isotropic material model. To improve the material model decent research is
needed in the behaviour of printed concrete in topology optimised structures.

e The stresses in different directions are not processed in the material model, but in the
stress constraints. In the research a von Mises stress constraint and a Drucker-Prager
stress constraint can be applied. By applying these constraints to the optimisation
the stress limits (average stress or tension/compression) will not be exceeded if pos-
sible with the chosen material and the chosen design space and loads. A stress
constraint has a considerable effect on the resulting topology, as can be concluded
from Section 6.2.3. As a conclusion from Section 6.3 it can also be said that the
choice for the von Mises or the Drucker-Prager constraint is very important for the
final design.

o To take into account a certain print angle, two additive manufacturing filters are
included in the created algorithm. One filter tries to steer the optimum towards
a design without an overhang. The second filter allows a maximum overhang of
45 degrees. The degrees are measured from a baseplate. This baseplate can be
changed to all the six border surfaces of the design space. In case another baseplate
than the bottom surface is chosen, the final design should be rotated after printing.
Taking into account a manufacturing filter and changing the baseplate results in very
different topologies as can be concluded from Section 6.2.1 and from the case study
(Figure 7.12).

By applying all these constraints, filters and a different material model to the standard
topology optimisation codes, the final outcome of the process is a much more realistic
design than the final designs coming from the standard methods. The obtained final results
are much closer to a printable design than the resulting structures of the optimisation
without the filters, constraints and with the standard isotropic material model. However,
from the case study it can also be concluded that this is at the expense of the strength
and stiffness of the structure. Nevertheless, the case study also shows that for different
boundary conditions, different parts of a box-shaped floor (design space) can be removed,
without exceeding the limits for stiffness or strength.

e The developed algorithm makes it possible to design different optimised structures by
making use of several user-friendly steps. From working with the created algorithms
it can be concluded that setting up a design space is convenient, the optimisation is
done only by running the Python script and in the end the final design can be visu-
alised, adapted and exported in Rhino very straightforward. The total flow of work
is therefore easy and very flexible. Because of the link between Rhino/Grasshopper
and Python every parameter can be changed in a visually appealing way instead of
coding inside Python. The results from the optimisation can finally be viewed in
different ways: as Excel lists, as squares/cubes with colours that match the values
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for density or stress, or the results can be smoothed and used as a 3D model for
visualisations or further calculations. For example, in Figure 8.1 the created floors
from the case study are smoothed and rendered in Rhino.

Figure 8.1: 3D impression of topology optimised concrete floors

« Unfortunately, sometimes the final results are not pleasing. In some cases the result-
ing structure is not converging to a crisp black and white solution. If the structure
is going to be printed, this needs to be the case. Virtual densities between 0 and 1
cannot be printed. The designer needs to think carefully about specifying the opti-
misation problem, to avoid unwanted results. For example, if a complete structure
is loaded in tension, it is not possible to come up with a structure that does not
contain tensile forces. The same holds for cases where additive manufacturing fil-
ters are used in an illogical way, such as the last topology in Figure 6.14 in Section
6.2.1. In those cases an almost fully filled design space would be needed, however
if a volume limit is set, this will not be the result of the optimisation. It should
therefore be noted that parameters must be chosen carefully and that results should
be examined afterwards.
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Recommendations

In this chapter the recommendations for further research are presented.

The combination of topology optimisation and additive manufacturing can lead to
better concrete structures in the future, however only if more research is done and some
aspects of the optimisation are improved.

e First of all the safety of 3D printed optimised results should be assured. Before the
safety can be guaranteed a lot of tests should be performed first to give a clear insight
in the effect of changing (manufacturing) parameters and the real material model.
For example, research must be done in the effect on the strength and stiffness of the
material if the time in between printing two layers next to or on top of each other
varies. The algorithm now considers a material that is transverse isotropic, however
the material behaviour depends on a large amount of variables, so that assumption
should be examined. Another aspect that is not considered in this research but
might influence the safety of the result is the non-linear behaviour of concrete. This
is not researched in this study because the deflections are assumed to be small, so
the material is still in the elastic phase.

e Furthermore, it is also recommended to study better stress constraints. The cre-
ated algorithm searches for the best result without exceeding a certain von Mises
stress or an equivalent Drucker-Prager stress. These failure criteria do not con-
sider the different strengths in different directions. Printed concrete, for example, is
stronger in tension in the direction of printing than in tension perpendicular to the
print direction (in z-direction). That distinction is not made in the Drucker-Prager
stress criterion, while the von Mises stress criterion does not even make a distinc-
tion between tension and compression. It might be a good idea to incorporate the
Mohr-Coulomb criterion in the optimisation. In that case both the stiffness as well
as the strength limit are non-isotropic.
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e In the optimisation the restriction of the printer that is implemented is the angle
of printing. The choice can be made between an angle of zero or 45 degrees. It is
also possible to switch off this constraint. In future work it should be possible to
choose any desired angle, because that angle is different for different materials and
different printers. Maybe other manufacturing constraints can be incorporated into
the optimisation as well. The size of the printer, the size of the printing nozzle,
the speed of the printer, the angle of printing (which is a different angle than the
support angle) or the start/stop-system of the printer.

e Another practical challenge that needs to be resolved is the link between an optimised
model and the actual construction of that design. In the current algorithm a design
is formed based on square or box-shaped elements, however it is not possible to
print those elements exactly. The idea is now that a 3D smoothed model is created
from the optimisation results, which is later sliced. For every slice a printing path is
created. This process is not ideal, because it might be possible that a slice cannot
be printed in one go. It would probably results in a lot of "stops” and "goes”. In
future research it might be an option to take printing paths as starting point for the
structural optimisation. It then might be possible to combine structural demands
with functional and physical needs.

Figure 9.1: Printing paths as starting point to regulate/optimise light income (Tissink 2017)

e The next aspect that needs attention, before topology optimisation and additive
manufacturing can be used in designing concrete structures is the computational
time needed for the optimisations. In this research a pretty coarse mesh is used to
calculate results. In real designs the design spaces are much larger and much more
complicated, so a larger design space and a finer mesh are needed to analyse these
structures properly. This will lead to a large increase in the amount of elements,
which will exponentially increase the computational effort. The part of the code that
is computationally the most costly is the finite element calculation, the determination
of the displacements. If the matrix calculations in this part of the research can be
improved, the speed of the optimisations would be much higher. It might also be
good to visualise the final outcome in a different way. When importing the results in
Rhino, it takes a lot of time to convert the information into a visual. The elements
with a virtual density higher than 0.5 are all visualised by a small box with six
surfaces. In, for example, the case study this leads to more than 100,000 surfaces.
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o Another practical recommendation is to use different elements in future research.
Now eight node hexahedrons are used in 3D and four node quadrilaterals are used in
2D for simplicity. To obtain better results for stresses and deflections, it is beneficial
to use non-linear (higher order) elements.

e In the case study of this research a minimum compliance problem with a volume
constraint is solved. As discussed in this work, it might be a better solution to
minimise the volume subjected to a stress constraint and a deflection constraint.
This is not done, because of the high computational time of the stress constraint
and the fact that it is hard to give a value for the compliance on beforehand. To use
the full potential of topology optimisation, the computational effort for the stress
constraint should be lowered. And to use the stiffness constraint in a proper way, it
might be an idea to fill in a maximum deflection. In the latter case the relationship
between the total compliance and the maximum deflection should be defined.

e In applying the forces a total force is equally divided over an amount of nodes. In
reality if a surface load is applied corner nodes receive a quarter of the load, line
nodes half of the load and inner nodes receive the full load of a considered surface.
Another aspect that can improve the assignment of the loads is the use of safety
factors. Actually different load factors should be applied in different calculations. It
might be an option to solve multiple displacement vectors, for example one for the
serviceability limit state and one for the ultimate limit state. However, this would
lead to double the amount of FEA calculations and thus double the computational
time.

e Finally, a practical improvement that can be made is the combination of the total
process in one program. Now it is necessary to change programs and export and
import data. It would be more efficient to do all the work in a single program.
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