

Balancing sustainability and livability in dense urban environments through strategies for the mitigation of the UHI effect

> MSc Thesis Francisco Marín Nieto 4516281 29.06.17

Alhaurín de la Torre +

Torremolinos

MÁLAGA

Benalmádena

Fuengirola

Rincón de la Victoria

3 / 58

DENSITY

Nuevo San Andrés 1 967,9 inhabitants/hectare

SUSTAINABILITY LIVABILITY

INDICATORS OF SUSTAINABILITY

Lower capacity to cope with domestic waste			Higher potential for the implementati innovations, aiming for a more effici	ion of ent mobi
	Lower quality of urban ecosy	ystems Lower pressure on agricu industrial land	ultural and	
	Higher per capita consumption of energy or leisure travel	for long Reduced fossil fuel emiss	Higher social diversity sions	
Lower solar accessibility and potential for passive solar power	Preservation of green open spaces, flora and fauna within plan boundaries	Higher energy consumption during		Higher space
Lower energy heat losses	y consumption due to	construction	Higher potential for green design	
	Lower capacity of surfaces to absorb rainfall water		Higher social diversity	
Higher relative prices	for dwellings	Higher presence of quality health, education, services	Higher levels of social support	
	Lower sense of community			Higher hotels,
		Higher number of employment opportunities	More efficient use of resources	
Higher ine	equality and segregation			
	Lower per ca energy for eve	pita consumption of eryday travel Higher level	ls of water pollution	

Lower crime rates ("eyes on the street")

8 / 58

oility

Lower consumption of water

Higher overal accesibility

er levels of competition over e and other conflicts

More efficient use of resources

Higher potential for the introduction of urban agriculture

er attractiveness for businesses, , shopping ares...

Often, higher housing choice and affordability

Lower levels of social segregation and exclusion

INDICATORS OF SUSTAINABILITY AND HIGH LEVELS OF DENSITY

Lower capacity to cope with domestic waste

Lower quality of urban ecosystems

Higher per capita consumption of energy for long or leisure travel

Lower solar accessibility and potential for passive solar power

Higher levels of water pollution

Higher energy consumption during construction

Lower sense of community

Lower capacity of surfaces to absorb rainfall water

Higher relative prices for dwellings

Higher levels of competition over space and other conflicts

Higher inequality and segregation

Higher number of employment opportunities

Lower pressure on agricultural and industrial land

Reduced fossil fuel emissions

Higher social diversity

Preservation of green open spaces, flora and fauna within plan boundaries

heat losses

Higher social diversity

Higher potential for green design

More efficient use of resources

Higher presence of quality health, education,... services

Higher levels of social support

Lower crime rates ("eyes on the street")

9 / 58

Higher overal accesibility

Lower per capita consumption of energy for everyday travel

> Higher potential for the implementation of innovations, aiming for a more efficient mobility

Lower energy consumption due to

Higher potential for the introduction of urban agriculture

Lower consumption of water

More efficient use of resources

Higher attractiveness for businesses, hotels, shopping ares...

Often, higher housing choice and affordability

Lower levels of social segregation and exclusion

Lower general satisfaction with the neighbourhood

Lower water quality

Higher exposure to unfavourable climate conditions (UHI)

Lower access to green areas

Obstructing views and overshadowing

Higher levels physoclogical stress

Perceived cramped living environments

Lower availability of public open space

Higher likeliness of suffering from cognitive overload

Lower levels of privacy

Higher pedestrian congestion

Lower levels of maintenance

spaces

10 / 58

Higher likeliness of social and spatial constrains on individual behaviour

Higher levels of noise

Lower availability of open public

INDICATORS OF LIVABILITY AND HIGH LEVELS OF DENSITY

Obstructing views and overshadowing

Lower access to green areas

Lower availability of public open space

Lower levels of maintenance

Higher likeliness of social and spatial constrains on individual behaviour

Higher levels physoclogical stress

Lower availability of open public spaces

Higher pedestrian congestion

Higher exposure to unfavourable climate conditions (UHI)

Lower water quality

Lower general satisfaction with the neighbourhood

Lower levels of privacy

Higher levels of noise

Perceived cramped living environments

Higher likeliness of suffering from cognitive overload

11 / 58

There is a discrepancy between sustainability and livability.

There is a gap in knowledge on the discrepancy between sustainability and livability.

In Málaga, this discrepancy can be aggravated by the particular conditions of its city form.

TEMPERATURE

38,0
37,0
36,0
35,0
34,0
33,0
32,0
31,0
29,7

What spatial interventions can be applied in Málaga in order to mitigate the Urban Heat Island effect, as a way to overcome the discrepancy between sustainability and livability that characterizes dense urban environments?

LAND SURFACE TEMPERATURE (LST)

38,0
37,0
36,0
35,0
34,0
33,0
32,0
31,0
29,7

LST AND LAND USE

(Left) LST map. Generated by author using GIS sofware, based on images obtained from the satellite Landsat 8 (09/07/2016, 10:56h). Mean LST of each urban block displayed on the buildings layer.

(Right) Land Use map. Generated by author using GIS sofware, based on the information provided by the Municipality of Málaga on its Open data portal. For this analysis, only residential (low and medium/heigh density) and industrial uses have been considered. (D) I 5km

Scale 1:100.000 |0 |1 |2

Main land use

- Industrial
- Residential
- Residential (low density)
- Other

ANALYSIS

(Left) LST map. Generated by author using GIS sofware, based on images obtained from the satellite Landsat 8 (09/07/2016, 10:56h). Mean LST of each urban block displayed on the buildings layer.

(Right) Height map. Generated by author using GIS software, based on the Digital Elevation Model (MDT5) provided by the National Geographic Institute (Instituto Geográfico Nacional - IGN). Mean height of the ground within each urban block, represented on the buildings layer. ⊕ I5km

Scale 1:100.000 |0 |1 |2

,É

Height (m)

150 - 413
90 - 150
55 - 90
35 - 55
15 - 35
0 - 15

LST AND VEGETATION

(Left) LST map. Generated by author using GIS sofware, based on images obtained from the satellite Landsat 8 (09/07/2016, 10:56h). Mean LST of each urban block displayed on the buildings layer.

(Right) Vegetation index map. Generated by author using GIS software, based on images obtained from the satellite Landsat 8 (09/07/2016, 10:56h). Mean Normalized Difference Vegetation Index (NDVI) of each urban block, represented on the buildings layer. (D) I 5km

Scale 1:100.000 |0 |1 |2

Average NDVI 0 - 0,045 0,045 - 0,080 0,080 - 0,100 0,100 - 0,140 0,140 - 0,180 0,180 - 0,320

LST AND WATER

(Left) LST map. Generated by author using GIS sofware, based on images obtained from the satellite Landsat 8 (09/07/2016, 10:56h). Mean LST of each urban block displayed on the buildings layer.

(Right) Vicinity to water map. Generated by author using GIS sofware, based on the information provided by the Municipality of Málaga on its Open data portal. For this analysis, only the Mediterranean Sea has been considered.

⊕ I5km

Scale 1:100.000 |0 |1 |2

Distance to the sea (m)

8000 - 13000
4000 - 8000
2000 - 4000
1000 - 2000
500 - 1000
0 - 500

Some structural features of Málaga and its territory play a big role in determining the city's temperature.

Any integral approach towards the issue of the UHI effect should take into consideration the intervention at metropolitan scale.

WATER

Elements conforming the metropolitan system, according to their water function. Elaborated by the author.

Fig. 92. Existing stream network and main sewage collectors. Elaborated by the author based on municipal information.

Surface stream/river

Underground stream/river Main sewage collector

Fig. 93. Catchment delineation and stream network based on the existing topography, calculated using ArcGIS' Hydrology Toolbox. Elaborated by the author.

METROPOLITAN SYSTEM

Proposed network of green and blue main corridors. Elaborated by the author.

Areas with potential for water treatment

Main corridors Ktm -N mmmm

Secondary corridors

Qualified routes

Higher retention and discharge capacity

PCI effect and higher vicinity to green

Biodiversity corridors and facilitation of wind flows

Current street section in Ingeniero De la Torre Acosta street.

Proposed street section in Ingeniero De la Torre Acosta street.

The characteristics of the urban fabric determine the ways in which such a system might be integrated in the city.

Density is one important factor defining the difference among types of environments.

Measuring density

Measuring density

Measuring density

Scale 1:50.000 10 10,5 11 12km C Floor Space Index (FSI) map of Málaga. Generated by author using GIS software, based on the information provided by the Municipality of Málaga and the Online Office of the Land Registry. Information displayed on the buildings layer. 42 / 58

Scale 1:50.000 10 10,5 11 12km Ground Space Index (GSI) map of Málaga. Generated by author using GIS sofware, based on the information provided by the Municipality of Málaga and the Online Office of the Land Registry. Information displayed on the buildings layer.

DENSITY TYPOLOGY

SITE SELECTION

HAZA DEL CAMPILLO

la trinidad

Area

- La Trinidad
- Gamarra
- Haza del Campillo 0
- Nueva Málaga \bigcirc
- Camino de Antequer
- Torre Atalaya

Spacemate graph of the density values per block. Elaborated by the author.

Perceptive/subjective analysis. Author

Density typology

GSI () Γ E .

NDVI

Albedo

Private ground

Public ground

Built area

Unbuilt private space

Traffic space

1

∕

Accessible green

Scale 1:10.000 |0 |50

Characterization and quantification of surfaces in La Trinidad. Elaborated by the author.

IDENTIFICATION OF POTENTIALS

La Trinidad's map of potentials.

*

TRANSFERABILITY

#1	ŚĹ
#2	· < _
#3	\$
#4	· < _
#5	٤,
#6	· < 🖊

Transferability types

#1	~
#2	· < _
#3	۶_
#4	· < _
#5	۶ /
#6	· ٤

REFLECTION