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Summary

In the realm of traditional additive manufacturing, design and fabrication sequence planning have his-
torically followed separate tracks. However, recent strides in the field, particularly in the utilization of
robotic arms with multiple degrees of freedom, have brought forth a revolutionary approach known as
Space-Time Topology Optimization (STTO). This groundbreaking algorithm breaks down the barriers
between design and fabrication by simultaneously optimizing the structure and fabrication sequence.
It achieves this feat by employing density and time fields as design variables, allowing for a holistic and
integrated approach to the manufacturing process. However, within the framework of STTO, multiple
iterations of finite element computations become necessary. This results in a substantial computational
burden throughout the overall process.

My contribution within STTO lies in its adoption of a multi-resolution strategy. This strategy enables
the use of different resolutions for the design fields, enhancing computational efficiency. Coarsening, a
critical component of this strategy, is implemented through a sophisticated weighted average scheme.
This coarsening process facilitates the construction of stiffness matrices with significantly reduced finite
element calculations, resulting in substantial time savings during the optimization process.

The impact of coarsening in STTO has been rigorously studied across various levels, yielding remark-
able results and advantages. In 2D scenarios, this approach has achieved an impressive 5-fold reduc-
tion in computation time, while in the more complex 3D domain, it has led to an astounding 30-fold
decrease. Moreover, it’s worth noting that compliance, a crucial performance metric, maintains its in-
tegrity even with coarsening, with compliance drop remaining below 5% for levels deemed acceptable.
This study illuminates the profound implications of coarsening within the STTO framework, empha-
sizing the significant strides made in computational efficiency while ensuring structural integrity and
performance.
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1
Introduction

The concept of topology optimization as introduced by Bendsøe and Kikuchi [7] emerged as a pioneer-
ing mathematical technique aimed at redistributing material within a given design domain to achieve
optimal structural performance. This innovative approach sought to answer the question of how mate-
rial should be allocated to achieve specific engineering objectives while adhering to constraints. This
marked the inception of a powerful optimization method that continues to evolve and find applications
across various industries today.

In its early stages, topology optimization primarily emphasized achieving structural performance while
minimizing material usage and creating smoother, more continuous shapes for components. However,
as additive manufacturing and the interest in discrete lattice structures gained prominence, topology
optimization research began to shift towards investigating both continuum and discrete structures. This
evolution allows designers and engineers to leverage a wider range of tools to optimize components
and products, aligning with advancements in manufacturing technologies.

The emergence of the Optimality Criteria (OC) method introduced by Bendsøe[8] marked a significant
milestone in topology optimization. The Optimality Criteria (OC) method introduced a computational
framework aimed at expediting convergence towards an optimal condition by iteratively adjusting the
design variables based on certain optimality criteria. This advancement not only accelerated the ex-
ploration of design alternatives but also paved the way for more complex and realistic optimization
problems to be tackled effectively.

Topology optimization has gained substantial traction within engineering and design communities. This
surge in popularity was fueled by advancements in computer hardware and optimization algorithms,
which significantly enhanced the capability to address intricate geometries and intricate design chal-
lenges. These developments led to broader application across various industries, including aerospace,
automotive, and biomedical fields. The newfound ability to handle complex geometries and incorpo-
rate intricate constraints fostered innovative design solutions that were both structurally efficient and
manufacturable. As a result, topology optimization became a pivotal tool for engineers and designers
aiming to push the boundaries of traditional design paradigms.

The growing interest in additive manufacturing aligns seamlessly with the principles of topology opti-
mization. The advent of additive manufacturing has revolutionized traditional manufacturing methods
by enabling the creation of intricate and complex structures that were previously challenging to manu-
facture using conventional techniques. This technological synergy aligns well with the core tenets of
topology optimization, which seeks to find the most efficient and optimal distribution of material within a
given design space. As additive manufacturing techniques evolve and become more sophisticated, the
partnership between topology optimization and additive manufacturing is further strengthened, paving
the way for groundbreaking advancements in design and manufacturing.

In conclusion, topology optimization has emerged as a groundbreakingmathematical technique, initially
focused on reshaping material within design domains to achieve optimal structural performance. Early
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1.1. Topology optimization with additive manufacturing 2

research primarily concentrated on continuum structures, but as technology evolved, it encompassed
discrete structures as well. Over time, topology optimization gained widespread traction in engineering
and design communities, thanks to advancements in hardware and optimization algorithms. These de-
velopments empowered engineers and designers to tackle intricate geometries and constraints across
various industries. Moreover, the synergy between topology optimization and additive manufacturing
is driving innovation, promising remarkable advancements in design and manufacturing.

1.1. Topology optimization with additive manufacturing
The fusion of topology optimization and additive manufacturing marks a significant milestone in the
realm of generative design. This synergy leverages the capabilities of both fields to achieve a new
level of design freedom, efficiency, and sustainability. By integrating topology optimization’s ability
to optimize material distribution with additive manufacturing’s precision in fabricating complex geome-
tries, industries can now create optimized structures that are not only lightweight but also tailored to
specific performance requirements. This transformative approach has the potential to reshape various
industries, offering innovative solutions that were previously unattainable using traditional design and
manufacturing methodologies.

Topology optimization and additive manufacturing (AM) form a synergistic partnership rooted in their
shared capabilities. AM’s unique ability to construct intricate and complex geometries layer by layer
complements topology optimization’s strength in generating intricate material distributions. This har-
mony enables the creation of designs that were previously unfeasible using conventional manufac-
turing methods. AM’s potential to fabricate complex lattice structures aligns perfectly with topology
optimization’s purpose. By determining the optimal arrangement of struts and voids in these lattices,
topology optimization ensures lightweight yet robust components that leverage the full potential of AM
techniques. Furthermore, AM’s capability to produce parts with anisotropic material properties aligns
with topology optimization’s capacity to account for these anisotropic qualities, leading to tailored de-
signs that harness the material’s strengths in specific directions.

In addition to these synergies, the marriage of topology optimization and AM offers a range of practical
benefits. Rapid prototyping becomes a reality, allowing for swift iteration and testing of new designs.
Furthermore, AM’s potential to fabricate intricate components as single units reduces the need for
complex assembly, streamlining the manufacturing process. This powerful combination also fosters
design exploration, facilitating the exploration of novel concepts and pushing the boundaries of what’s
achievable in both design and manufacturing.

Figure 1.1: Fused Deposition Modeling [20]
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Wire Arc Additive Manufacturing (WAAM) and Fused Deposition Modeling (FDM) are two prominent
additive manufacturing techniques that have revolutionized the manufacturing landscape. WAAM uti-
lizes electric arcs to melt metal wire to fabricate large-scale metal parts layer by layer. This technique
is lauded for its ability to swiftly produce complex, high-strength components, making it particularly
well-suited for industrial applications. On the other hand, FDM operates by extruding thermoplastic
materials layer by layer to construct objects. FDM’s simplicity, versatility, and accessibility make it
a popular choice for rapid prototyping and small-scale production. Both WAAM and FDM highlight
the potential of additive manufacturing to create intricate geometries and optimize material utilization,
ushering in a new era of manufacturing possibilities.

Figure 1.2: Wire arc additive manufacturing [25]

Additive Manufacturing (AM) processes are profoundly influenced by the sequence in which material
is deposited, as it directly impacts factors like overhangs, support structures, and thermal stress ac-
cumulation. In this context, topology optimization can be further developed as a valuable tool [32],
seamlessly integrating manufacturing order planning with design considerations. By optimizing both
the structural layout and the sequence of material addition, topology optimization ensures not only
functional designs but also efficient fabrication processes. Additionally, AM frequently relies on sup-
port structures to address overhangs during printing. Topology optimization, with its ability to create
intricate and self-supporting geometries, can significantly diminish the need for such supports, stream-
lining the manufacturing process and enhancing the feasibility of additive manufacturing techniques as
per Langelaar[22].

1.2. Space-time topology optimization
In traditional design processes, there exists a clear separation between structural design and manu-
facturing order planning. This conventional approach treats these two stages as distinct and separate
steps, often resulting in challenges. One significant challenge is that this separation can lead to subopti-
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mal designs. This is because the design phasemay not adequately consider manufacturing constraints,
such as material deposition sequence, overhangs, and support requirements. As a result, designs op-
timized solely based on structural criteria might encounter difficulties during the manufacturing phase,
leading to increased costs, time, and potential design modifications. This lack of synchronization be-
tween design and manufacturing stages hinders the ability to achieve holistic and efficient solutions.

Space-time topology optimization introduced by Wang et al. [32] represents a transformative approach
that addresses the separation between structural design and manufacturing order planning. This
method introduces a unified optimization process where the structural design and the manufacturing
order are integrated seamlessly. At its core, space-time topology optimization employs two distinct
design fields: the density field for material distribution and the time field for determining the sequence
of material addition during fabrication. This dual-field approach enables the optimization of both de-
sign and manufacturing considerations in a single coherent framework. By optimizing these variables
concurrently, the approach ensures that the resulting designs are not only structurally efficient but also
compatible with the additive manufacturing process.

Figure 1.3: The images depict various time fields and the corresponding structures produced using different manufacturing
starting points, represented by the blue regions. From top to bottom, we observe the initial time fields, which are constructed

based on distance fields related to the starting points, followed by the optimized time fields and the resulting optimized
structures. The black curves demarcate boundaries between parts manufactured in distinct manufacturing stages. Notably, the
number of stages, set at 8 in this particular test, remains constant and is not a design variable; hence, the values denoted as Ti

that segment the time field are predefined. The colorbar on the right provides a reference for the time values.[32]

One of the key advantages of space-time topology optimization lies in its ability to integrate manufac-
turing constraints directly into the optimization process. This integration means that challenges such
as overhangs, support requirements, and thermal stress accumulation can be addressed during the de-
sign phase itself. This eliminates the need for subsequent modifications or adjustments to the design
after it has been optimized, streamlining the overall design-to-manufacturing process. The space-time
topology optimization approach thus marks a significant departure from traditional methodologies by
offering a holistic solution that harmonizes structural design and manufacturing order planning.

1.3. Computational complexity of topology optimization and space-
time topology optimization

Traditional topology optimization involves several computationally demanding steps. The computa-
tional complexity is typically denoted using the big O notation, explained by Chivers[12]. For instance,
it is expressed as O(n)in many cases. Here O represents the order of, or big O, indicating the upper
bound or worst case scenario of the algorithm. n represents the number of inputs, here the number of
degrees of freedom to be solved for.

The most computationally intensive aspect is the finite element analysis step. Solving equations i.e.
the equation u = F/K where K is the stiffness matrix, F is the force vector and u is the displacement
vector for each finite element, this operation entails dense linear algebra, leading to a complexity of
O(n3), described by Aage[1]. Additionally, sensitivity analysis, which relies on the solution of the finite
element analysis, shares a complexity similar to FEM analysis, contributing to the computational load.
Consequently, the complexity of this analysis step governs the overall computational requirements of
traditional topology optimization. Furthermore, the optimization algorithm’s choice, often relying on



1.3. Computational complexity of topology optimization and space-time topology optimization5

gradient-based methods, may extend computational demands due to the potential need for numerous
iterations.

The complexity of the objective function varies significantly between traditional and space-time topology
optimization. In traditional methods, the objective function is primarily concerned with the compliance
of the overall structure, reflecting its load-bearing capability. However, in space-time topology opti-
mization, the objective function encompasses compliance evaluations for both the complete structure
and each intermediate stage of fabrication. This inclusion of manufacturing order planning introduces
a multifaceted evaluation, allowing the space-time approach to optimize design and manufacturability
simultaneously.

Assembly Solving FEM
Equation Density Update(using OC)

Topology
Optimization 8.3 21.6 3.8

(a) Computation times for topology Optimization
Compliance of Entire structure Compliance of intermediate
Assembly Solving FEM Assembly per stage For 8 stages Solving FEM per stage For 8 stages

8.5 20.3 8.8 70.4 22.1 176.8
(b) Computation times per iteration for space-time topology optimization

Assembly Total Solving FEM equation Total Density Update (using MMA)
Space-time topology optimization 78.9 197.1 174.4

(c) Computation times per iteration for entire structure and intermediate structures

Table 1.1: Comparison of computational complexity for standard topology optimization and space-time topology optimization.
A mesh of 120× 40 elements was used for both. 8 stages were chosen for space-time topology optimization. (All times are in

milliseconds)

Space-time topology optimization introduces a stage-wise computation approach, dividing the fabrica-
tion process of a structure into multiple intermediate stages. As the number of stages increases, the
computational complexity of the optimization process escalates accordingly. Each iteration requires
calculating the compliance not only for the final structure but also for each individual stage in the man-
ufacturing sequence. This multiplies the intricacy of compliance calculations, resulting in a notable
increase in the overall computational burden of the space-time optimization process.

In Tables 1.1a, 1.1b, and 1.1c, we’ve recorded computation times within the optimization workflow.
Table 1.1a specifically focuses on standard topology optimization, highlighting key components like
stiffness matrix assembly, solving the linear FEM equation (u = F/K where K denotes the stiffness
matrix, F is the force vector, and u is the displacement vector for each finite element), and the time
needed for the optimizer to update density variables.

Table 1.1b maintains a similar structure but offers a more detailed breakdown. It dissects computa-
tion times into evaluating the compliance for the entire structure and intermediate structures. These
evaluations are further divided into time spent on assembling the stiffness matrix and solving the linear
equation. In this test, we adopted 8 stages, necessitating the calculation of compliance for each of
these stages per iteration.

Table 1.1c consolidates the results from Table 1.1b, encompassing assembly, linear equation solv-
ing, and density variable updates. Notably, due to the multiple compliance calculations across various
stages, space-time optimization experiences nearly a tenfold increase in per-iteration computation com-
pared to standard topology optimization.

Efficiently addressing the heightened computational complexity brought about by space-time optimiza-
tion demands algorithmic enhancements that can navigate the intricacies of optimizing intermediate
stages while maintaining computational efficiency. To manage the increased load of compliance cal-
culations across multiple stages, the integration of intelligent algorithms and strategic computational
shortcuts becomes crucial. These algorithmic innovations aim to strike a balance between accuracy
and computational feasibility within the space-time optimization framework.
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1.4. Multi-resolution approach to space-time topology optimization
Space-time topology optimization has proven to be a powerful tool for obtaining efficient and manufac-
turable designs that evolve over time. However, the computational demands associated with solving
the finite element method (FEM) equation in each iteration can become substantial, especially for large
and complex optimization problems. To address this challenge, a multi-resolution approach can be
adopted, offering significant computational advantages while maintaining design quality.

(a) Fine Mesh (b) Interposed Coarse and fine Mesh (c) Coarse Mesh

Figure 1.4: Representation of intended multi-resolution approach by using a fine mesh and a coarse mesh

The core idea of the multi-resolution approach is to generate coarser versions of the stiffness matrices
obtained from the fine mesh densities. Instead of solving the FEM equation on the fine mesh, the
optimization process focuses on coarser meshes, reducing the number of degrees of freedom and thus
decreasing the computation time. The coarser versions of the stiffness matrices capture the essential
characteristics of the problem while avoiding unnecessary fine-scale details that might not significantly
affect the overall performance of the structure.

Figure 1.4 provides an overview of the intended approach. Here, densities are defined on the fine mesh,
but the goal is to create a representation of the stiffness matrix on a coarse mesh. This coarse mesh
will have fewer degrees of freedom, reducing the computational load during linear equation solving.
Each coarse element in Figure 1.4b contains a variable number of fine mesh elements (e.g., four in
this illustration, but this can vary). The transfer of information between these fine and coarse mesh
elements is crucial. Accurate information transfer ensures that fine-scale features from the fine mesh
are appropriately represented in the stiffness matrix of the coarse mesh.

By coarsening the stiffnessmatrices, the optimization process can efficiently handle large-scale designs
without compromising the final design quality. The coarser meshes enable the optimizer to obtain
solutions that are more tractable while containing the increase in compliance of the structure within a
predefined threshold. This approach strikes a balance between computational efficiency and design
accuracy, making it an attractive choice for complex space-time topology optimization problems.

Implementing the multi-resolution approach requires careful consideration of the coarsening technique,
interpolation methods, and their integration into the optimization workflow. The coarser versions of the
stiffness matrices are transferred back to the fine mesh through interpolation, allowing the optimizer to
iteratively refine the design while maintaining overall computational efficiency.

In summary, themulti-resolution approach in space-time topology optimization offers a practical solution
to reduce computational demands without sacrificing design quality. By generating coarser versions of
the stiffness matrices and focusing on the essential regions of the design, the optimizer can efficiently
explore the design space while containing the increase in compliance within a controlled threshold. This
approach enables the solver to handle larger and more complex optimization problems, making space-
time topology optimization a more versatile tool for designing efficient and manufacturable structures.

1.5. Thesis structure
The thesis structure comprises three primary chapters, each building upon the previous to culminate
in a comprehensive exploration of topology optimization. In Chapter 2, a detailed examination of the
fundamental components of topology optimization is conducted. This chapter delves into the intricacies
of space-time topology optimization and rigorously assesses the computational complexities inherent
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to each step of this advanced process. Within this context, the chapter identifies a critical gap in the
optimization process, the need for an effective coarsening strategy. It proceeds to explore several
coarsening strategies commonly found in the existing body of literature.

Chapter 3 shifts the focus to the practical implementation of the identified coarsening strategy. This
includes the extension of the coarsening technique to higher-order coarsening levels and, subsequently,
the three-dimensional domain. The chapter serves as a bridge between theoretical understanding and
practical application, offering valuable insights into the complexities of bringing such strategies to life.

In Chapter 4, the thesis presents the results obtained from the implemented coarsening strategy. These
results are analyzed and compared with a rival coarsening strategy to discern the advantages and
limitations. Finally, Chapter 5 consolidates the findings and lessons learned throughout the thesis,
drawing meaningful conclusions.



2
Literature review

Topology optimization comprises a range of techniques aimed at achieving optimal material distribution
within a design space to meet specific structural performance criteria and constraints. These methods
vary in their mathematical formulations, optimization strategies, and handling of design variables. For
example, the Solid Isotropic Material with Penalization (SIMP), introduced by Bendsøe and Kikuchi [9],
approach directly manipulates material densities, while others focus on altering geometric boundaries
or effective material properties. These methods offer unique benefits and complexities, catering to dif-
ferent problem complexities, goals, and computational capacities. This diverse array of methodologies
enriches the field of topology optimization, providing a toolkit to tackle various engineering and design
challenges effectively.

2.1. Density based topology optimization
Density based topology optimization is a widely used approach in engineering design to determine
the optimal distribution of material within a given design domain. This section will delve into the key
components of density based topology optimization, including the SIMP (Solid Isotropic Material with
Penalization) and modified SIMP methods, the density filter, the objective and constraint functions, and
the optimizationmodel. Additionally, the importance of sensitivity analysis is explored and a comparison
is drawn into the use of the Optimality criteria (OC) optimizer and the Method of moving asymptotes
(MMA) optimizer for this problem.

2.1.1. SIMP and modified SIMP methods
The SIMP method, introduced by Bendsøe and Kikuchi [9], is a fundamental density based topol-
ogy optimization approach. It employs a penalization scheme to continuously interpolate between
void(completely empty) and solid material regions. The density variable in each element represents
the material volume fraction, and a high penalization factor penalizes intermediate densities, encour-
aging binary material distribution. For every element e, with a density value of x, a penalization factor
p is used to ascertain the stiffness of the element Ee.

Ee(xe) = xp
e (2.1)

The modified SIMP approach, as introduced by Bendsøe [7] and then Zhou et al. [34] uses E0 and
Emin wherein E0 stands for the stiffness of the material being used and Emin is a very small value used
to avoid the stiffness matrix becoming singular. The modified SIMP approach stands as:

Ee(xe) = Emin + xp
e(E0 − Emin) (2.2)

While the SIMP method has been highly successful in producing optimal designs, it can suffer from nu-
merical instabilities wherein the stiffness matrix may become singular and the so-called ”checkerboard”
pattern problem.

8
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To mitigate the chekerboard pattern issue, some modified SIMPmethods have been introduced. These
methods introduce additional filtering or regularization techniques to smooth the density distribution,
leading to improved convergence and stability. The introduction of density filters, which will be dis-
cussed next, is one such regularization approach that promotes the formulation of continuous material
regions, helping to alleviate the checkerboard problem.

2.1.2. Filtering techniques
The need for filtering techniques in topology optimization arises from the inherent challenge of dealing
with discrete design variables within a continuous design space. In this optimization process, material
distribution is represented by a discrete set of design variables, such as density values assigned to
finite elements. These discrete variables can result in designs with sharp and unrealistic transitions be-
tween materials, making them challenging to manufacture and analyze. Filtering techniques address
this issue by smoothing and regularizing the material distribution, promoting more manufacturable and
physically plausible designs while maintaining optimization efficiency. They play a crucial role in achiev-
ing the balance between design feasibility and structural performance, making topology optimization a
practical tool for engineering and design applications.

Density filters are crucial components in density-based topology optimization, particularly for mitigating
the checkerboard pattern and improving structural representation. Filters, such as the density based
filter smooth the material distribution by averaging the densities of neighboring elements. By applying
these filters, the density variables are averaged, ensuring that the optimized designs exhibit continu-
ous material regions, which can be more readily interpreted for manufacturing purposes as explained
by Diaz [14], Jog et al.[21], Sigmund[28]. The choice of the filter and its parameters significantly influ-
ences the outcome of the optimization process, and appropriate filter settings based on the problem
requirements.

The sensitivity filter introduced by Sigmund et al.[27] modifies the sensitivities ∂c/∂xe as:

∂c

∂xe
=

1

max(γ, xe)Σi∈Ne
Hei

Σi∈Ne
Heixi

∂c

∂xi
(2.3)

where c is the compliance function being evaluated, Ne is the set of elements i for which the center-
to-center distance ∆(e, i) to element e is smaller than the filter radius rmin and Hei is a weight factor
defined as

Hei = max(0, rmin −∆(e, i)) (2.4)

The term γ= 10−3 is a small positive number to avoid division by zero.

The density filter modifies the densities as:

x̃e =
1

Σi∈Ne
Hei

Σi∈NeHeixi (2.5)

For a filter with radius rmin and taking ∆(e, i) as the centre to centre distance between the centre
element e and another element i, within the filter, the filter is defined as:

Hei = max(0, rmin −∆(e, i)) (2.6)

Density and sensitivity filters are distinct tools used in the context of topology optimization. The density
filter is applied directly to the material density field, smoothing abrupt changes in material distribution
to yield more manufacturable and continuous structures. In contrast, the sensitivity filter is used during
sensitivity analysis, influencing the gradients computed for the optimization algorithm without directly
affecting material distribution. While the density filter aims to improve convergence by providing a
well-behaved material layout, the sensitivity filter assists in optimization convergence by offering pre-
cise gradients, particularly in areas with discontinuities in the objective function. These filters serve
complementary roles in the topology optimization process.
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2.1.3. Objective function and constraint function
The objective function in density based topology optimization quantifies the performance measure to
be maximised or minimised. Commonly objective functions are for maximising structural stiffness or
for minimising compliance, weight or displacement. The constraint function, on the other hand, en-
forces certain design requirements such as volume constraints, stress constraints or manufacturing
constraints. Balancing the objective and constraint functions is crucial for obtaining designs that meet
both performance targets and design constraints effectively.

For a compliance minimization problem, the general objective function and constraints are:

min : c(x) = UTKU = ΣN
e=1Ee(xe)u

T
e k0ue (2.7)

subject to:
V (x)/V0 = f

KU = F

0 ≤ x ≤ 1

(2.8)

In these equations, c is the compliance, U and F are the global displacement and force vectors, respec-
tively, K is the global stiffness matrix, ue is the element displacement vector, k0 is the element stiffness
matrix for an element with unit Young’s modulus, x is the vector of design variables(i.e. element densi-
ties), N is the number of elements used to discretize the design domain, V (x) and V0 are the material
volume and design domain volume, and f is the prescribed volume fraction.

2.1.4. Sensitivity analysis
Sensitivity analysis is a critical aspect of density based topology optimization as it provides the gradients
necessary for updating the density variables in each iteration. These gradients indicate how changes
in the density variables impact the objective and constraint functions. Accurate sensitivity analysis
ensures efficient convergence of the optimization process and helps achieve optimal designs. The
sensitivity analysis for the objective function defined in equation 2.7 with respect to the density field
can be derived as:

∂c

∂xe
= −pxp−1

e (E0 − Emin)u
T
e k0u (2.9)

∂V

∂xe
= 1 (2.10)

2.1.5. Optimizer - optimality criteria and method of moving asymptotes
The optimality criteria (OC) optimizer and the method of moving asymptotes (MMA) optimizer are two
commonly used algorithms for solving density basd topology optimization problems. The optimality
criteria optimizer employs a heuristic approach adjusting the design variables iteratively to meet the
specified constraints and objectives. While it is straightforward to implement, it may require tuning of
parameters to achieve optimal convergence.

On the other hand, the MMA optimizer is a more sophisticated mathematical optimization technique.
It provides a rigorous solution to the optimization problem by iteratively updating the design variables
based on the gradients of the objective and constraint functions. MMA typically demonstrates faster
convergence and improved robustness compared to the optimality criteria optimizer but may require
more computational resources.

In conclusion, density based topology optimization is a powerful approach for determining optimal ma-
terial distributions ine engineering design. The SIMP and modified SIMPmethods, density filters, objec-
tive and constraint functions, and sensitivity analysis are critical components in this process. Choosing
appropriate algorithms such as the optimality criteria optimizer or MMA optimizer, depends on the prob-
lem complexity and computational resources available. Careful consideration of these components is
essential for achieving accurate and efficient density based topology optimization results.
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2.2. Space-time topology optimization
Space-time topology optimization represents an innovative paradigm that bridges the longstanding gap
between material distribution in a design space and the intricacies of manufacturing order planning.
Traditionally, these two essential aspects have been treated as distinct processes, often leading to
suboptimal designs or complicated post-optimization adjustments. However, the emergence of space-
time optimization introduces a transformative approach by seamlessly integrating both considerations
through the introduction of two distinct design fields. The first field, the density field, serves as a rep-
resentation of material distribution within the design, offering a unique perspective on structural layout.
Simultaneously, the second field, the time field, takes on the role of a manufacturing order plan, delin-
eating the sequence of construction for different parts of the design.

This integration of material distribution and manufacturing order within a unified framework holds im-
mense potential for enhancing the efficiency and effectiveness of the design process. With the in-
corporation of the time field, the concept of intermediate structures comes into play, allowing for the
creation of sectional geometries that will be printed at different time points. This temporal dimension
not only adds a new layer of complexity to topology optimization but also provides a means to address
manufacturing-related challenges in a holistic manner. As a result, space-time topology optimization
heralds a new era where design and manufacturing intricacies are harmoniously orchestrated, enabling
the realization of more efficient, functional, and manufacturable structures.

2.2.1. The objective function
The section delves into the objective function of space-time topology optimization, which is composed
of dual components. The initial segment encapsulates the overall material property, for example com-
pliance, inherent to the entire structure. In parallel, the subsequent component reflects the material
property pertaining to the intermediate structures, further enriching the optimization process.

J(ρ, t) = Jcomplete(ρ, t) + Jprocess(ρ, t) (2.11)

wherein,
Jcomplete = UTK(ρ)U (2.12)

Jprocess = ΣN
i=1αi(U

Ti)TK(ρTi)(UTi) (2.13)

here U is the displacement vector, K is the assembled stiffness matrix and α is the weighting factor for
the intermediate structures.

2.2.2. Generating intermediate structures
Utilizing finite element discretization within the design space, each element is assigned a (pseudo)
density value ρe ∈ [0, 1] and a (pseudo) time value te ∈ [0, 1]. The density value signifies whether
the element is either empty (ρe = 0) or solid (ρe = 1) within the final structure. Simultaneously, the
time value denotes the sequential addition of material to the element within the structure. Larger time
values correspond to later fabrication instances. Similar to conventional density-based methodologies,
the density value ultimately converges to either 0 or 1.

(a) Density Field (b) Time Field (c) Intermediate Structure at T=0.2 (d) Intermediate Structure at T=0.4

Figure 2.1: Illustration of a discrete density field (a), a continuous time field (b), and resulting intermediate structures at T=0.2
(c)and T=0.4(d)[32].

In the presented space-time topology optimization, elements with time values te ≤ T contribute to the
structure at a given time T . This has been illustrated in figure 2.1. Consequently, the intermediate
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structure at time T is defined by

ρ[T ]
e =

{
ρe, if te ≤ T

0, otherwise
(2.14)

The projection method has been discussed by Wang et al. [30]. To avoid the use of piecewise functions
which are conditional and hence not differentiable, a filtering technique is used to generate the interme-
diate structures from the density and time field. The design variables ϕ and τ are used for density and
time design variables. To avoid checkerboard patterns, convolution operators are applied to smooth
both fields. This results in ϕ̃ and τ̃ for the density field and time field respectively.

ϕ̃ =
Σi∈Se

w(xi, rd)viϕi

Σi∈Se
w(xi, rd)vi

(2.15)

and
te = τ̃ =

Σi∈Sew(xi, rd)viτi
Σi∈Sew(xi, rd)vi

(2.16)

where vi is the area or the volume of the element and the weighting function is defined as,

w(xi, r) = r − ||xi − xe|| (2.17)

where r is the filter radius, xe and xi are the positions of the centroid of the element e and neighbouring
element i ∈ Se = {i|w(xi, r) > 0}. Also, the filter radius rt for time and rd for density can take different
values. rd also helps to control the thickness of the resulting structures.

Figure 2.2: Image showing the density field (bottom), the time field (top) and the corresponding filtering and projection
operators for generating an intermediate structure (right)[32]

After the smoothing operator, a smoothed Heaviside projection is applied to generate discrete values
ρ =

¯̃
ϕ and t̄, with the bar indicating the projected time fields. The projection is applied by,

ρe =
¯̃
ϕe =

tanh(βdη) + tanh(βd(ϕ̃e − η))

tanh(βdη) + tanh(βd(1− η))
(2.18)

where βd is a positive number to control the sharpness of the shape function, and η = 0.5 is the density
threshold value.

For the time field, a projection is used to convert a time value smaller or larger than a given threshold
T in time, to close to 1 or 0 respectively. This is done by:

τ [T ]
e = 1− tanh(βtT ) + tanh(βt(te − T ))

tanh(βtT ) + tanh(βt(1− T ))
(2.19)

where βt, similar to βd controls the projection sharpness, and T is the threshold time value.

The intermediate structure at time T is defined by

ρ[T ]
e = ρe

¯
t
[T ]
e (2.20)

The process has been explained with the help of an illustration in figure 2.2.
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2.2.3. Volume and continuity constraint on intermediate structures
The fabrication speed, representing material deposition per unit time, is a key factor in this process.
To integrate it into space-time optimization, the time range [0, 1] is discretized into N + 1 uniformly
distributed timepoints, which is

Ti =
i

N
, i = 0, .., N (2.21)

here N is the number of stages each with a duration of 1
N . Taking a constant fabrication speed, the

increment in volume in each time interval is then V0

N , hence

V [Ti] ≤ i

N
V0, i = 1, ..., N, (2.22)

Here V [Ti] is given by
V [Ti] = Σeρ

[Ti]
e ve, i = 1, ..., N (2.23)

here ve is the area or the volume of the element. Since in this study, a uniform finite element discretiza-
tion is used, ve is constant for all elements.

In the incremental additive manufacturing process, it is crucial that material is deposited onto previously
deposited material. Isolated structural fragments require temporary auxiliary structures to hold them
in place. To avoid the cost of additional supports, we introduce a continuity constraint that prevents
isolated material patches. Such patches correspond to local minima in the time field, with their adjacent
elements having larger time values, indicating later fabrication. Hence, isolated material patches are
prevented by having

g(te) = mini∈Ne
(ti)− te ≤ 0, ∀e ∈ M (2.24)

wherein Ne denotes the set of elements adjacent to element e. M is the set of active elements in the
design domain, i.e., all elements except those which are prescribed as the starting point/region for the
fabrication process (i.e., with te = 0).

Equation 2.24 is non differentiable and has to be approximated by a continuous function. Since t ≤ 1,
mini∈Ne

(ti) is written as:
mini∈Ne

(ti) = 1−maxi∈Ne
(1− ti) (2.25)

where maxi∈Ne(1− ti) can be approximated with a p-norm [33],

maxi∈Ne
(1− ti) ≈ (Σi∈Ne

(1− ti)
p)

1
p (2.26)

Hence g(te) can be approximated as,

g(te) ≈ 1− (Σi∈Ne
(1− ti)

p)
1
p − te (2.27)

2.2.4. Space-time problem formulation
Upon introduction of the objective function and the various constraints as discussed above, the formu-
lation for the space-time topology optimization for self weight for intermediate structures stands like:

min : c(x) = UTK(ρ)U +ΣN
i=1αi(U

Ti)TK(ρTi)(UTi) (2.28)

subject to:
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(K(ρ))U = F,

(K(ρTi))(UTi) = G(ρTi), i = 1, 2, ..., N,

Σeρeve ≤ V0,

0 ≤ ϕe ≤ 1

0 ≤ τe ≤ 1

V [Ti] = Σeρ
[Ti]
e ve ≤

i

N
V0, i = 1, 2, ..., N,

1

(#M)
ΣeϵMH(g(te)) < ϵ,

In these equations, c is the compliance, K(ρTi), UTi and G(ρTi) are the stiffness matrix, displacement
vector and the force vector for the intermediate structures respectively, K is the fine mesh global stiff-
ness matrix, ϕe is the element densities,τe is the time field variable for each element, N is the number
of elements used to discretize the design domain, v and V are the material volume and design domain
volume, and V0 is the material volume.

2.3. Computational complexity of topology optimization
In the realm of topology optimization using the SIMP (Solid Isotropic Material with Penalization) method,
various computational steps contribute to the overall complexity of the process. During each iteration,
the assembly of the stiffness matrix, a pivotal step, incurs a complexity ofO(n), where ’n’ represents the
number of degrees of freedom in the mesh. Subsequently, solving the linear Finite Element Method
(FEM) equation becomes the most computationally intensive part, with a complexity of O(n3). This
step involves significant matrix manipulations and is directly proportional to the cube of the number of
degrees of freedoms.

While the FEM equation solving exhibits the highest complexity, other steps like assembling the stiff-
ness matrix, computing the objective function and sensitivities, and OC-based or MMA-based design
updates also contribute to the computational workload of TO. It’s important to note that the complexities
outlined here serve as general guidelines, subject to variation based on factors like mesh size, problem
complexity, and algorithmic implementations.

Evidently, a pivotal strategy for enhancing computational efficiency revolves around diminishing the
number of elements and consequently degrees of freedom, primarily affecting the most demanding
computational task, the FEMequation solving. The ensuing sections delve into an exploration of diverse
coarsening strategies documented in the existing literature.

2.4. Comparison of various coarsening methods
2.4.1. Higher-order multi-resolution topology optimization using finite cell method
The voxel-based variant of the Finite Cell Method (FCM) researched by Duster et al.[16], Parvizian
et al.[24], Schillinger[26], employs discrete meshes to delineate both the geometry and the analysis
processes. Cells represent the elements engaged in the analysis mesh, while the topology is charac-
terized by density elements known as voxels, which essentially function as volume pixels explained
by Groen et al.[18]. This approach allows for a detailed representation of both geometric features and
analytical aspects within the FCM framework. A representation of the cell discretization is shown in
figure 2.3.

The arrangement of voxels within an individual cell is describable through the parameterization of voxel
quantity along a cell direction (nvoxel). As such, the overall voxel count in a cell (nsc) becomes reliant
on both nvoxel and the dimension of the design domain, explained by Groen et al[18]. This parameteri-
zation approach offers a versatile means to define the voxel distribution within cells, contributing to the
flexibility and adaptability of the method.
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For cells featuring intricate material distributions, linear shape functions are inadequate for accurately
interpolating the displacement field. As a result, the finite cell method (FCM) incorporates the p-version
of the finite element method (FEM). This enhancement allows for improved accuracy in representing
complex displacement fields within cells. The utilization of the p-version FEM enhances the FCM’s
capability to handle varying degrees of complexity in material distributions, making it a robust approach
for topology optimization tasks that involve intricate geometries.

The voxel contributions to the cell stiffness matrix (kc) are incorporated through a composite integration
approach. This involves integrating the stiffness matrix and load vector within the voxels, which are
then projected onto the cells. The voxel stiffness is interpolated using the solid isotropic material with
penalization (SIMP) technique.

kc = Σnsc
i=1(Emin + ¯̃ρqi (E − Emin))k

0
i (2.29)

where ¯̃ρi is the physical density associated with the ith voxel, q is the penalization factor, E is the
Young’s modulus of a solid voxel, Emin is a very small value to avoid ill-conditioning of the stiffness
matrix, and k0i corresponds to the contribution of the ith voxel using a unit stiffness.

Integrated Legendre polynomials serve as the foundation for higher-order basis functions. In contrast
to Lagrange polynomials, Legendre polynomials possess a hierarchical property, meaning that shape
functions for polynomial degree p are included when degree p+ 1 is utilized.

Figure 2.3: Different meshes used in the Finite cell method with nvoxel = 5[18]

The corresponding one dimensional set of shape functions can be defined as:

N1(ξ) =
1

2
(1− ξ)

N2(ξ) =
1

2
(1 + ξ)

Ni(ξ) = ϕi−1(ξ),i = 3, 4, ..p+ 1

(2.30)

whereNi(ξ) corresponds to the ith shape function, and where ϕ corresponds to an integrated Legendre
polynomial. With the integrated Legendre polynomials as basis functions, the displacement field can
be interpolated:

u(ξ) = N1(ξ)u1 +N2(ξ)u2 +Σp+1
i=3Ni(ξ)ui (2.31)

Here u1 and u2 correspond to the nodal displacements, while ui correspond to the amplitudes of the
higher-order shape functions.

Utilizing the p-FEM version to modify the polynomial order of shape functions for specific density ele-
ments within this method can lead to heightened computational demands, particularly for higher reso-
lutions featuring intricate and non-homogeneous topologies, explained by Babuka [6]. The expansion
in p-degree results in a growing number of nodes, further accentuating the computational complexity,
particularly in scenarios of large-scale resolutions.
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2.4.2. Design and analysis adaptivity in multi-resolution topology optimization
An MTO element encompasses a finite element (FE), a set of design points, and an overlapping back-
ground element equipped with a standardized grid of density cells. All these components share the
same spatial domain, a deliberate choice aimed at streamlining integration within an established finite
element framework.

Figure 2.4: Illustrated in this diagram is a Q2/d8 multi-resolution topology optimization element, demonstrating a symbiotic
relationship between three interconnected and overlapping domains. On the left, we observe a design domain housing eight

strategically positioned design points. In the center, a 3×3 grid of density cells forms a background distribution within the design
space. On the right, a Q2 finite element is displayed. Notably, this configuration utilizes projections, labeled as P1 and P2, to
seamlessly link the design domain with the background domain and the finite element. The allocation of design points in the

domain is accomplished through a modified variant of the k-means clustering approach.[19]

Figure 2.4 illustrates the schematic layout of a Q2/d8 MTO element, utilizing a Q2 finite element charac-
terized by second-order Lagrange quadrilaterals. This MTO element is comprised of eight strategically
positioned design points within the domain, arranged non uniformly. The accompanying overlapping
background element encompasses a grid of 3x3 density cells. Each of the design points is linked with a
density design variable. In the optimization process, these density variables undergo iterative updates
driven by the response functions and corresponding design sensitivities.

For achieving adequately uniform arrangements of design points within an element across various
numbers of design variables, a modified version of the k-means clustering technique is employed. This
method involves partitioning the design domain into approximately equal-sized segments or clusters,
denoted ask. The design points are then positioned at the centroids of these identified clusters, thus
establishing a balanced distribution.

The attainable resolution limit of the design is influenced by the spacing maintained between the design
points. When considering a specific count of design points, a uniform distribution provides the highest
achievable resolution without requiring prior knowledge of the optimal design. It’s important to highlight
that the suggested adaptive MTO method is not restricted to any particular approach for distributing de-
sign points; alternative methods for point distribution, such as predefined patterns or other techniques,
can also be incorporated as explained by Bruggi et al. [11].

Within the background mesh’s density cells, the density is computed employing the P1 projection
method. This calculation exclusively involves design points that reside within the corresponding MTO
element. The localized projection serves the purpose of establishing density values for all density cells
within the associated MTO element.

Density values at integration points are determined through the projection of densities from the back-
ground mesh’s density cells. To achieve this, a linear projection method based on density filtering
is utilized, following the approach commonly employed in topology optimization. Mathematically, this
process can be expressed as follows:

ρ̃i =
1

Σ
nρ

j=1Hij

Σ
nρ

j=1Hijρj (2.32)

where ρ refers to density values for the cells contained in the background mesh with their centers lying
within a distance R from the corresponding integration point, and their number is denoted by nρ. Here,
terms Hij reduce linearly with distance from the integration point, i.e,

Hij = R− dist(i, j) (2.33)
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where dist() denoted the Euclidean distance operator. The background mesh densities are calculated
using the P2 projection from the design mesh to the background mesh. For the pth MTO element, the
density of the qth density cell is given as:

˜
ρ
(p)
q =

1

Σ
np

s=1hqs

Σ
nρ

j=1hqsρs (2.34)

where ρs refers to the density value associated with the sth design point in the design domain contained
within the pth MTO element, and lying within a distance rp from the centroid of its qth density cell. The
number of such design points is denoted by np, and rp is the radius of the projection for the pth element.
The projection radius rp needs to be chosen such that it is as small as possible, however, large enough
to define densities for all the density cells that correspond to the respective element. It is defined as:

rp = 1.04(dim)0.5
Lp

d1/dim
(2.35)

where dim denotes problem dimension, and Lp is the edge length of the pth MTO element. Note that
Equation 2.35 has been obtained empirically through observations based on various design distribu-
tions obtained using the k-means clustering approach.

2.4.3. Multi-resolution topology optimization (MTOP)
In this approach, three distinct meshes are employed to address the topology optimization problem
effectively. The displacement mesh is utilized for conducting analyses, the design variable mesh is
utilized for optimization purposes, and the density mesh is employed to characterize material distri-
bution and calculate stiffness matrices. Design variables represent material densities positioned at
the center of density elements. However, it’s important to note that the design variable mesh and the
density mesh are not necessarily identical. The design variables lack individual physical significance.
In the proposed methodology, element densities are derived from design variables through projection
functions, allowing for a coherent integration of these mesh-based components.

Figure 2.5: The MTOP approach[23]

To achieve a finer level of design resolution, they adopt a density mesh with higher granularity than the
displacement mesh, resulting in multiple density elements (sub-elements) within each displacement
element. In this arrangement, uniform material density is assumed within each density element. Addi-
tionally, a method is introduced to integrate the stiffness matrix, allowing for the incorporation of various
density elements within a single displacement element.

In contrast to the adaptive mesh refinement approach, which involves varying the element density
based on the presence or absence of material as explained by Sturler[13] and Stainko[29], this method
focuses on streamlining computational complexity. Here, element densities are determined via projec-
tion functions from design variables. This cohesive integration of mesh-based elements allows for a
unified and efficient representation, potentially leading to improved optimization processes with reduced
computational overhead.

Within the MTOP framework, the element is labeled as Q4/n25, signifying that each Q4 displacement
element encompasses 25 density elements denoted as ”n25.” The computation of the stiffness matrix
involves evaluating the stiffness integrand at 25 integration points, positioned at the centers of the 25
density elements. The associated weight of the integrand corresponds to the area of the respective
density element.
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The formulation for the stiffness matrix integration is expressed as:

Ke =

∫
Ωe

BTDBdΩ ≈
Nn∑
i=1

(BTDB)|iAi (2.36)

where Nn is the number of integration points in the displacement element domain (Nn is also equal to
the number of density elements per displacement element), andAi is the contribution of density element
i to the integration (Ai represents the area/volume of the density element for 2D/3D problems).

From here onwards, this method has been named as the Trimesh method. Since the method described
by Nguyen is just one among several viable options of multi-resolution strategies, the name Trimesh
method is used to avoid any confusion.

2.4.4. Coarsening in multigrid methods
Geometric multigrid solvers leverage a hierarchical approach involving progressively coarser grids to
address differential equations as explained by Amir et al. [2],Amir et al.[5], Amir et al.[4]. Following sev-
eral smoothing iterations, a residual is computed at a particular grid level. This residual is subsequently
determined for a coarser grid using a restriction operator, explained by Amir et al.[3], Bogomolny[10],
Zuo et al.[35],Wang et al.[31]. Utilizing the solution derived from the coarser grid, a correction term is
generated and then interpolated to the finer grid. This correction is incorporated into the initial smoothed
estimate, thereby yielding the final solution.

Figure 2.6: Restriction and Interpolation operators[15]

In the context of 2D scenarios, a bilinear operator is employed as an interpolation operator. The cor-
responding restriction operator, facilitating the transfer of information from a finer mesh to a coarser
one, is selected as the transposed form of the interpolation operator. Drawing from Galerkin-based
coarsening methods, the system matrix at the coarser level is constructed by combining the restriction
operator, the system matrix at the finer level, and the interpolation operator. In a matrix-free approach,
the equations at the fine grid vertices are distributed to their coarse grid counterparts for building the
coarse grid equation. Subsequently, the fine grid unknowns are interpolated back utilizing the coarse
grid unknowns, employing specified weights as depicted in the figure.

In the context that follows, the current level of the grid hierarchy is denoted by a subscript h and the
next coarser level by a superscript 2h, indicating the relative grid spacings between levels. For the
multigrid solver, it becomes necessary to have coarse grid versions of the system matrix A along with
corresponding restriction and interpolation operators. These operators play a pivotal role in transferring
various quantities between consecutive grid levels in the hierarchy.

The multigrid interpolation operator Ih2h is based on bilinear interpolation, while the multigrid restriction
operator R2h

h is determined as the transpose of the interpolation operator. Additionally, the approach
employs Galerkin-based coarsening, wherein the coarse grid iterations of the systemmatrix are system-
atically constructed, progressing from fine to coarse grids. This process ensures a coherent transfer of
information across grid levels, facilitating effective multigrid solving strategies.

R2h
h = (Ih2h)

T (2.37)

A2h = R2h
h AhIh2h (2.38)
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Figure 2.7: Weighted Averaging from fine mesh to coarse mesh[15]

2.4.5. Comparison of coarsening strategies
The dp adaptive method and the method using the Finite cell approach both employ the p-FEM ver-
sion of solving the finite element equation. p-FEM (polynomial Finite Element Method) is generally
more computationally expensive than standard FEM (Finite Element Method). This is because p-FEM
involves using higher-order polynomials for shape functions within the elements, which increases the
degrees of freedom and consequently the number of unknowns to be solved for. While p-FEM can offer
increased accuracy and flexibility in approximating complex solutions, it comes at the cost of increased
computational demands, particularly in terms of memory usage and computational time. The higher
polynomial order requires more computations for numerical integration, assembling stiffness matrices,
and solving linear systems, which can lead to higher computational complexity compared to standard
FEM with lower-order shape functions.

In the trimesh method approach, densities within a single displacement cell are aggregated using den-
sity penalization, where the weighting factor is determined by the ratio of the area occupied by each
fine cell within a coarse cell. This approach eliminates the need for distinct density distributions within
a coarse element. While this method is computationally efficient and exhibits rapid convergence, there
is a compromise in the accuracy of assembling the stiffness matrix for the displacement cell.

In the context of the multigrid approach, densities within a single displacement cell are aggregated
through density penalization, and the weighting factor is determined based on the geometric relation-
ship between coarse mesh nodes and fine mesh nodes. This method offers a distinct contribution from
each density value, facilitating the distribution of densities within a coarse element. While this approach
involves weighted averaging and isn’t as computationally efficient as the trimesh method approach, it
provides amore accurate representation of the stiffnessmatrix as it’s developed on a finemesh, thereby
enhancing the accuracy of the optimization process.

(a) Density Distribution 1 (b) Density Distribution 2

Figure 2.8: The stiffness matrix for the assembled 4 densities should ideally capture the difference in distribution of densities.
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For instance, when creating a coarsened density representation from a 2x2 fine mesh density set, as
illustrated in figure 2.8a and 2.8b, the trimeshmethod approach fails to distinguish between the depicted
density representations. This limitation arises because the trimesh method strategy assigns the same
weight to each fine mesh entity, as they all have the same area. In contrast, the multigrid approach,
employing weighted averaging, provides amore accurate reflection of density variations. This improved
accuracy is achieved by applying appropriate weights to each fine mesh degree of freedom, determined
by the geometric relationship, resulting in a more faithful representation of density variations.

A comparison study between the trimesh method approach and the Galerkin method used in multigrid
methods is discussed in later chapter.



3
Multi-resolution scheme

This chapter addresses the development of the coarsening operator, its validation, the selection of the
interpolation operator, its expansion within the multigrid framework, its extension into three dimensions,
and the resulting adjustments to the workflow for both topology optimization and space-time topology
optimization.

3.1. Weighted average coarsening
Weighted averaging is the aggregation technique used in creating the coarsening operator. In this
method, the density values of the fine grid elements are combined to determine the density of the
corresponding coarse grid element. Each fine grid element contributes to the coarse grid element
proportionally based on a set of weights. The weights typically depend on the geometric relationship
between the fine and coarse grid nodes.

3.1.1. Creating one coarse element
Let’s consider a simple example to demonstrate how weighted averaging works. Considering a fine
grid of four elements arranged in a 2x2 pattern. Each fine element has its own material density value
(ρ1,ρ2,ρ3,ρ4). The first step towards this would be to assemble the stiffness matrix for this set. Assuming
a 2D Q4 element is being used and there are 2 degrees of freedom per node, the assembled global
stiffness matrix, Kf would have a size of 18x18. The Galerkin based coarsening method is defined by
the formula,

Kc = RKfI (3.1)

whereinKc is the coarse element stiffness matrix, R is the restriction operator and I is the interpolation
operator. The restriction and interpolation operator are linked to each other by the following formula,

I = RT (3.2)

The restriction operator R is made based on the geometric relationship of the fine grid nodes and the
coarse grid nodes as shown in the image. In the Fig 3.1, the red nodes are the overlap between the
the fine mesh nodes and the coarse mesh nodes. The blue nodes signify the fine mesh nodes. The
weights of each fine mesh node to be interpolated to the coarse mesh node is shown in the image.

Once the coarsened element is created, the coarsened stiffness matrix can be assembled using the
coarsened elements to give the coarse mesh stiffness matrix.

3.1.2. Creating the restriction operator for an assembled fine mesh stiffness ma-
trix

In the context of creating the coarse mesh stiffness matrix, there are two distinct approaches to be
considered. The first approach involves constructing each coarse element independently from a set
of 2x2 fine elements, followed by the assembly of all the individual coarse elements. The second

21



3.1. Weighted average coarsening 22

Figure 3.1: Weighted averaging used for creating restriction operator (Red nodes signifiy overlapping fine and coarse mesh
nodes, blue nodes show fine mesh nodes)

approach, on the other hand, entails directly deriving the assembled coarse mesh matrix from the
assembled fine mesh matrix using pre-established restriction and interpolation operators tailored for
the fine mesh stiffness matrix.

The first approach relies on the discrete representation of the problem, where the fine mesh is initially
partitioned into 2x2 fine elements. Each of those fine elements encapsulates local information such as
nodal stiffness values and material properties. Subsequently, the coarsening procedure commences
by aggregating the nodal information of the 2x2 fine elements into a single coarse element. This aggre-
gation is accomplished through weighted averaging, where the contributions of individual fine element
nodes are combined using appropriate weights based on the geometric relationship between the fine
and coarse nodes.

Following the creation of the individual coarse elements, the assembled coarse mesh stiffness matrix
is formulated by assembling the stiffness contributions of each coarse element. The assembly pro-
cess ensures that the contributions from overlapping nodes in adjacent coarse elements are properly
accounted for, generating a global stiffness matrix for the entire structure at the coarse level.

In contrast, the second approach bypasses the explicit construction of individual coarse elements. In-
stead, it leverages the established restriction and interpolation operators developed for the fine mesh
stiffness matrix. These operators facilitate the transition between the fine and coarse meshes, enabling
the derivation of the coarse mesh stiffness matrix directly from the assembled fine mesh stiffness matrix.

The method of creating the restriction operator is based on the geometric relationship of the fine mesh
nodes and the coarse mesh nodes. By going along the fine mesh in 2x2 sections, using the same
method of weighted averages explained in the previous section the restriction operator can be created.
Since the interpolation operator is the transpose of the restriction operator, as per Galerkin based
coarsening, the assembled coarse mesh stiffness matrix can be easily generated.
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(a) Approach 1

(b) Approach 2

Figure 3.2: Two distinct approaches towards coarsening. Approach 1:Assemble 2x2 fine element set. Perform coarsening to
create one coarse element. Assemble coarsened elements. Approach 2: Assemble fine mesh stiffness matrix, perform

coarsening to get assembled coarse mesh stiffness matrix

Both approaches serve to achieve a coarsening method for space-time topology optimization, stream-
lining the computation while preserving the critical structural characteristics.

3.1.3. Comparison of the approaches
The first approach selects 2x2 sections of the fine mesh, assembles the stiffness matrix for the 2x2
section uses the restriction operator for each coarse element and then assembles the coarse mesh
stiffness matrix. The second approach creates the restriction operator for the full fine mesh outside the
main iteration loop and then uses it on the assembled finemesh stiffnessmatrix to create the assembled
stiffness matrix for the coarse mesh.

The comparison of computation times for the two approaches are summarised in the following table:

Assembly time Coarsening Solving FEM Equation Interpolation
One coarse element 50.2 21.7 3.7

Full Restriction operator 28.6 8.9 21.6 3.8

Table 3.1: Comparison of computation times between the full restriction operator and generating single coarse elements. The
fine mesh size used was 240x80 elements (All times are in milliseconds)
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(a) Geometry with single element coarsening. Compliance: 198.14 (b) Geometry with full restriction operator. Compliance: 198.14

Figure 3.3: Comparison of geometries for different implementations of coarsening operators.

The comparison in table 3.1 clearly illustrates that employing the full restriction matrix operator for
coarsening yields a considerable computational advantage over the approach of individually creating
every single coarse element. This efficiency gain can be attributed to the workflow differences between
the two approaches. In the first approach, for each coarse element, there are multiple steps involved,
including the assembly of 2x2 fine elements, coarsening action, and assembling the coarse mesh
stiffness matrix. These individual steps accumulate computational overhead due to their repetitive
nature within the iteration loop.

Conversely, the full restriction matrix operator approach offers a more streamlined process. The opera-
tor is precomputed outside the iteration loop, eliminating the need for repetitive assembly steps during
each iteration. As a result, only the fine mesh stiffness matrix requires assembly, reducing the overall
computational burden significantly. By circumventing the repeated assembly of the stiffness matrix for
coarse elements, this approach optimizes the computation, leading to improved efficiency and reduced
computational costs in space-time topology optimization.The approach mentioned in section 3.1.1 and
the above are similar mathematically and hence deliver the same result.

3.2. Sizing factor for coarsening of element
In the context of coarsening strategies, accounting for the sizing factor of elements becomes crucial for
maintaining the accuracy and reliability of the analysis. Specifically, when applying a 2x2 coarsening
scheme, which involves grouping four fine elements into a single coarse element, a significant change
in the dimensions occurs. The coarse element’s size/edge length is essentially doubled compared to
that of the fine elements it encompasses.

This size alteration has important implications for constructing the coarsened stiffness matrix. When
assembling the stiffness matrix for the coarse element, it becomes necessary to introduce a scaling
factor to appropriately balance the contributions from the fine elements. This scaling factor ensures
that the resulting coarsened stiffness matrix accurately represents themechanical behavior of the larger
coarse element.

However, it’s important to note that the situation differs when considering certain element types, for
example, the 2D Q4 element commonly used in finite element analysis. In this case, the stiffness
contributions stemming from the element’s dimensions tend to mutually offset each other. This inher-
ent cancellation effect results in no net change in the stiffness terms when transitioning from fine to
coarse elements. Consequently, there is no need to apply a scaling factor for the stiffness matrix when
coarsening Q4 elements.

Assuming 2 degrees of freedom per node, a 2D Q4 element stiffness matrix would be of size 8x8. It
will also be symmetric by design, hence only one half of the matrix is considered,

k =



k11
k21 k22
k31 k32 k33
k41 k42 k43 k44
k51 k52 k53 k54 k55
k61 k62 k63 k64 k65 k66
k71 k72 k73 k74 k75 k76 k77
k81 k82 k83 k84 k85 k86 k87 k88


(3.3)
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For a 2D Q4 element, the contribution to a single element kij in the stiffness matrix from the dimensions
for each element is,

kij =
1

2
(
A2(E

∗s1 +Gs2) + f1(E
∗s3 +Gs4)

3A2
2 − f2

1

+
A2(E

∗t1 +Gt2) + f2(E
∗t3 +Gt4)

3A2
2 − f2

2

) (3.4)

where A2 is twice the area of the element, E∗ is either E1 or E2.

A2 = (x4 − x2)(y3 − y1)− (x3 − x1)(y4 − y2) (3.5)

and
f1 = (x1 + x3)(y4 − y2)− (x4 − x2)(y1 + y3)− 2(x2y4 − x4y2) (3.6)

f2 = (x3 − x1)(y4 + y2)− (x4 + x2)(y3 − y1)− 2(x3y1 − x1y3) (3.7)

The functions s1, s2, s3, s4, t1, t2, t3, t4 keep changing for each of kij . Further knowledge on this can be
found in the paper published by Griffith et al. [17].

In summary, understanding the impact of element sizing and appropriately applying scaling factors
during coarsening is crucial for maintaining the accuracy and predictive capability of the analysis, while
also achieving computational efficiency.

3.3. Validation strategies for the coarsening method
In the pursuit of reliable and accuratemulti-resolution space-time topology optimization, the validation of
coarseningmethods becomes paramount. Two distinct methods of validation are employed in this study
to assess the effectiveness and fidelity of the coarsening techniques. The first validation method is a
straightforward nature, where a homogeneous density distribution within a 2x2 fine mesh is subjected
to coarsening. The aim is to investigate whether the stiffness matrix of the resulting coarsened element,
which possesses an identical density distribution, remains unchanged. This fundamental test seeks to
confirm whether the coarsening process consistently preserves the stiffness properties when dealing
with homogeneous distributions.

In the second validationmethod, the primary objective is to rigorously assess the accuracy and reliability
of the coarsening method employed in the multi-resolution framework. To achieve this, a 2x2 fine
mesh with a heterogeneous density distribution is considered, and the coarsening process is applied
to generate a new coarse element.

The first step involves utilizing numerical homogenization techniques to determine the macroscopic
properties of the heterogeneous material represented by the 2x2 fine mesh. Through this process, the
effective material properties of the fine mesh are obtained, enabling the generation of a corresponding
coarse element with the homogenized properties as described in figure 3.4.

Figure 3.4: Numerical homogenization approach. 4 fine mesh densities are used to generate a single coarsened element

Subsequently, the stiffness matrix of the coarse element derived through numerical homogenization is
carefully examined. The objective is to validate whether the coarsening method employed in the multi-
resolution space-time topology optimization accurately represents the homogenized stiffness matrix
obtained through numerical methods. To facilitate this validation, the stiffness matrix of the coarsened
element is compared to the stiffness matrix generated using the coarsening method, specifically the
weighted averaging technique. By performing this comparison, the validation confirms the consistency
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Density distribution on fine mesh Match between result from operator and result from homogenizationDensity 1 Density 2 Density 3 Density 4
1 1 1 1 Yes
1 0.5 0.5 1 Yes
0.5 0.75 0.5 0.75 Yes
0.25 0.25 0.25 0.25 Yes

Table 3.2: Range of different fine mesh densities used for validation. The generated coarse stiffness matrix was compared to
the coarse stiffness matrix from the operator.

and fidelity of the coarsening process, ensuring that the coarsened element stiffness matrix aligns with
the properties through numerical homogenization.

An optimization experiment was executed to compare the performance of the strategy with standard
topology optimization. This test utilized identical boundary conditions and mesh resolution for a fair
comparison.

(a) Standard topology optimization. Compliance: 168.21 (b) Topology Optimization with operator. Compliance: 170.77

Figure 3.5: Validation of coarsening operator. Compliance values indicate that the coarsening of stiffness matrix has been
applied correctly

Through this validation method, the robustness of the coarsening technique is rigorously assessed in
handling heterogenous density distributions and its ability to reproduce the macroscopic properties as
shown in figure 3.5. The validation process encompassed the utilization of four distinct density dis-
tributions, spanning from entirely homogeneous to significantly heterogeneous density patterns. Sub-
sequently, the stiffness matrix for the coarse element, generated through the trimesh method, was
compared against the stiffness matrix derived from the operator, as detailed in table 3.2. The results
of this validation serve to build confidence in the coarsening method’s accuracy, further reinforcing its
sustainability for application in diverse engineering optimization scenarios.

In conclusion, the second validation method primarily focuses on evaluating the coarsening method’s
performance itself, specifically in capturing the macroscopic properties through numerical homogeniza-
tion. The aim is to affirm the coarsening method’s reliability and consistency, corroborating its efficacy
for multi-resolution space-time topology optimization and ensuring the precision of the optimized de-
signs.

3.4. Using the interpolation operator
The choice of the interpolation operator in the context of Galerkin based coarsening holds significant
importance in the multi-resolution space-time topology optimization framework. The interpolation op-
erator plays a pivotal role in transferring displacement results obtained from the coarse mesh back to
the fine mesh. It ensures consistency and accuracy in the optimization process while preserving fine
scale structural details.

Galerkin based coarsening offers a particularly advantageous property in selecting the interpolation
operator. It states that the transpose of the restriction operator used for transferring information from
the fine mesh to the coarse mesh can be utilized as the interpolation operator for transferring results
back to the fine mesh as stated in equation 3.2. This property is known as ”coarse-to-fine interpolation”,
and it simplifies the selection process by exploiting the inherent symmetry between the restriction and
interpolation operators.

The interpolation operator serves as the bridge between the coarse and fine meshes, facilitating the



3.5. Extension of the coarsening operator along the lines of multigrid 27

Figure 3.6: Displacement interpolation from coarse mesh to fine mesh (Red nodes signifiy overlapping fine and coarse mesh
nodes, blue nodes show fine mesh nodes)

transfer of computed nodal displacements from the coarse mesh to the corresponding nodes on the fine
mesh. The weights used for the interpolation are explained in figure 3.6. They are similar to the weights
used in weighted averaging, explained in figure 3.1. By employing the transpose of the restriction
operator, the interpolation process ensures that the fine mesh captures the accurate representation of
the structural response obtained from the coarse mesh FEM equation solving.

The accurate transfer of displacement results is crucial for maintaining the fidelity of the optimization
process. It ensures that the finemesh, which contains finer scale structural details, appropriately refines
the displacement field obtained from the coarse mesh. This refinement is essential for obtaining accu-
rate stress distributions and other fine scale responses, which significantly influence the optimization
outcomes.

In summary, the adoption of an interpolation operator plays a crucial role in facilitating a smooth and
precise transfer of displacement data from the coarse to the fine mesh within the Galerkin-based coars-
ening approach. Through harnessing the inherent symmetry between the restriction and interpolation
operators, the introduced interpolation method ensures the reliability and integrity of the optimization
workflow.

3.5. Extension of the coarsening operator along the lines of multi-
grid

The coarsening operator has proven to be a valuable tool in enhancing the efficiency of space-time
topology optimization by reducing the computational burden associated with large scale engineering
problems. In this section, the concept of higher degree of coarsening is explored, where multiple
coarsening steps are introduced to generate even coarser versions of the fine mesh stiffness matrix.
The changes required in the standard topology optimization workflow to accommodate higher degree
of coarsening is discussed and the influence of increased coarsening on the standard density filter is
analyzed.

3.5.1. Higher degree coarsening: from 2x2 to 4x4 to 8x8
Higher degree coarsening refers to the successive application of coarsening operators to generate
coarser versions of the fine mesh stiffness matrix. Starting with a 2x2 coarsening operator, the process
involves applying the coarsening operator once to obtain a 4x4 coarsening, and subsequently applying
it twice to obtain an 8x8 coarsening. Each coarser version reduces the number of degrees of freedom
further, leading to more significant computational savings. Higher degree coarsening allows for the
efficient solution of the FEM equation on successively coarser meshes, making space-time topology
optimization even more computationally tractable for large-scale problems.
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3.5.2. Incorporating higher degree coarsening in the standard topology optimiza-
tion workflow

To accommodate higher degree coarsening in the standard topology optimization workflow, certain
modifications are necessary. The interpolation of displacements from the finemesh to the coarser mesh
is performed after each coarsening step. Consequently, after solving the FEM equation on the coarsest
mesh, the displacements are interpolated back to the finest mesh through a series of interpolation
steps. This process ensures that the optimization occurs at the highest resolution while reaping the
computational benefits of the coarser mesh during the equation solving step.

Figure 3.7: Multi level coarsening hierarchy

Both the higher degree of coarsening in topology optimization and the multigrid method (mentioned
in section 2.4.4) share certain similarities in their approaches to improve computational efficiency and
accelerate convergence. Here are the key similarities between the two techniques:

• Hierarchy of meshes: Both methods involve working with a hierarchy of meshes with varying
resolutions. In the higher degree coarsening, successive coarsening operators generate coarser
versions of the fine mesh stiffness matrix, leading to a hierarchy of coarser meshes. In the multi-
grid method, a series of nested grids with different levels of resolutions create a hierarchical mesh
structure.

• Coarse mesh solution: Both techniques aim to solve the problem on coarser meshes to reduce
computational burden. In higher degree coarsening, the FEM equation is solved on the coars-
est mesh to achieve computational efficiency. In the multigrid method, the problem is solved
iteratively on the coarsest mesh as part of the hierarchical correction process.

• Displacement Interpolation: Both methods involve the interpolation of results between different
mesh levels. In higher degree coarsening, displacements obtained from solving the FEMequation
on the coarsest mesh are interpolated back to the finest mesh to ensure the optimization occurs at
the highest resolution. In the multigrid method, error information is transferred between different
mesh levels and interpolated back to the finest mesh during the error correction process.

• Convergence improvement: Both techniques contribute to faster convergence and improved
efficiency in solving large-scale engineering problems. The coarser meshes in higher degree
coarsening and the error propagation and correction in the multigrid method facilitate better con-
vergence behavior and accelerate the optimization process.

• Computational savings: Both methods provide computational advantages by reducing the num-
ber of degrees of freedom and the size of the optimization problem. In higher degree coarsening,
each coarser version of the mesh reduces the number of elements and degrees of freedom, lead-
ing to computational savings. Similarly, the multigrid method leverages the error information to
approximate solutions on coarser meshes, reducing the computational effort required for accurate
results.

• Localized smoothing: Both methods involve some form of localized smoothing to capture fine-
scale features and address numerical artifacts. In higher degree coarsening, tuning the density fil-
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ter becomes important to achieve accurate and manufacturable designs. In the multigrid method,
error propagation and correction are performed iteratively, providing localized corrections to im-
prove the accuracy of the solutions.

In conclusion, the higher degree of coarsening in space-time topology optimization and the multigrid
method share several common approaches to enhance computational efficiency and convergence.
Bothmethods utilize a hierarchy of meshes, involve coarser mesh solutions, interpolate results between
different mesh levels, and focus on reducing computational burden to achieve faster convergence. By
capitalizing on these similarities, engineers and researchers can effectively tackle large-scale engineer-
ing problems and optimize designs more efficiently.

To understand the flow of higher order coarsening for a 4x4 case, the flowchart in figure 3.7 has been
created.

Figure 3.8: Weighted averaging used for the 3D case. The red nodes signify the coarse mesh nodes. The blue nodes signify
the fine mesh nodes. The yellow node signifies the fine mesh node shared by the 8 elements of the 2x2x2 mesh. The dotted

lines extending from the yellow node to each of the coarse mesh nodes carry a weight of 0.125

3.6. Extension to 3D
In the pursuit of applying the coarsening operator to 3D topology optimization, this chapter delves into
the challenges and methodologies involved in defining the restriction operator for coarsening in a three-
dimensional environment. The extension to 3D coarsening aims to achieve computational efficiency
while preserving fine-scale details and accurately optimizing intermediate structures. Similar to its 2D
counterpart, the 3D coarsening operator is based on weighted averaging, the scheme is explained
in figure 3.8, leveraging the geometric relationship between fine and coarse mesh elements. Some
features of the approach are:

• FEM solution on coarse mesh: As in the 2D case, the FEM equation is solved on the coarse
mesh during 3D coarsening. By reducing the mesh resolution, the computational effort is sig-
nificantly decreased, enabling faster FEM equation solving and optimization convergence. The
results obtained from the coarse mesh solution are later interpolated back to the fine mesh for
compliance calculation.

• Challenges in restriction operator definition: One of the primary challenges in the extension to
3D coarsening lies in defining the restriction operator accurately. The restriction operator governs
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the transfer of information from the fine mesh to the coarse mesh during coarsening. In 3D, the
complexity of element relationships and geometries poses unique challenges in capturing relevant
information from the fine mesh and accurately representing it on the coarse mesh.

• Weighted averaging for restriction: To address the challenges, the restriction operator is for-
mulated based on weighted averaging, considering the geometric relationship between fine and
coarse mesh elements. By carefully assigning weights to the contributions of neighboring fine
mesh elements to each coarse mesh element, the restriction operator effectively captures rele-
vant information while maintaining computational efficiency.

• Preserving fine scale details: The 3D coarsening operator is designed to preserve fine-scale
details during coarsening. The weighted averaging approach ensures that critical design features
andmaterial distribution are accurately represented on the coarsermesh levels. This preservation
of fine-scale details plays a pivotal role in generating optimal designs that meet performance
requirements and manufacturability constraints.

By overcoming the challenges associated with the restriction operator and adopting weighted averaging
in a 3D environment, the extension to 3D coarsening enriches the topology optimization process. The
chapter sheds light on the methodologies used to adapt the coarsening operator to three-dimensional
structures, ultimately contributing to a more efficient and scalable optimization framework for complex
engineering problems.

3.7. Topology optimization formulation
3.7.1. Application of operator to topology optimization
The introduction of the operator has a significant impact on several aspects of the optimization process.
Specifically, it affects the calculation of the displacement vector U , which plays a crucial role in both the
compliance objective function and the constraint represented by the linear equation of finite elements,
denoted as KU = F . It’s important to note that the objective function is computed on the fine mesh,
and in this regard, there is no change compared to the formulation of the standard topology optimization
problem. This means that the optimization process itself, conducted on the fine mesh, remains consis-
tent with traditional approaches. Furthermore, the sensitivity analysis used to compute the gradients in
the optimization process remains unchanged and is akin to the methodology employed in the original
topology optimization problem.

Figure 3.9: The steps for the topology optimization workflow when the coarsening operator is included is explained. Boxes
which are marked in blue represent steps carried out on the fine mesh. Boxes which are marked in red represent steps carried

out on the coarse mesh.

However, a pivotal alteration occurs when it comes to the linear FEM equation. This equation is cal-
culated on the coarse mesh as explained in figure 3.9, representing one of the key distinctions in the
workflow. To bridge the gap between the fine and coarse meshes, an interpolation operator is em-
ployed, aligning with the principles of Galerkin-based coarsening. This operator facilitates the transfer
of the displacement vector from the fine mesh to the coarse mesh, ensuring that the linear equation
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constraint is accurately applied in the coarser representation. This approach allows for a reduction in
computational complexity while maintaining the integrity of the optimization process.

3.7.2. Final formulation for topology optimization
On introduction of the restriction operator R and the interpolation operator I, the new formulation be-
comes:

min : c(x) = UTKU = ΣN
e=1Ee(xe)u

T
e k0ue (3.8)

subject to:
V (x)/V0 = f (3.9)

(RKI)U = F (3.10)

0 ≤ x ≤ 1 (3.11)

In these equations, c is the compliance, U and F are the global displacement and force vectors, re-
spectively, K is the fine mesh global stiffness matrix, ue is the element displacement vector, k0 is the
element stiffness matrix for an element with unit Young’s modulus, x is the vector of design variables(i.e.
element densities), N is the number of elements used to discretize the design domain, V (x) and V0 are
the material volume and design domain volume, and f is the prescribed volume fraction. R and I are
the restriction and interpolation operators for the coarsening action.

Through this workflow, the proposed optimization process effectively balances computational efficiency
and accuracy, capitalizing on the coarse mesh form FEM equation solving while leveraging the fine
mesh for detailed optimization and representation of structural behaviour.

3.7.3. Sensitivity analysis for topology optimization
Incorporating the new workflow, subsequent to solving the linear FEM equation within the coarse mesh,
the resulting displacement vector is interpolated back to the fine mesh from the coarse mesh. It’s on
this fine mesh that the objective function and the associated constraints are rigorously evaluated, em-
ploying the interpolated displacement vector. Following this comprehensive assessment, the optimizer
effectively engages with the density field, facilitating the necessary design updates specifically within
the fine mesh domain.

The equation for the sensitivity calculations of the objective for the topology optimization problem are
as follows:

∂c

∂xe
= −pxp−1

e (E0 − Emin)u
T
e k0u (3.12)

The equation for the sensitivity calculations of the volume constraint is as follows:

∂V

∂xe
= 1 (3.13)

In these equations, c is the compliance, U and F are the global displacement and force vectors, respec-
tively, K is the global stiffness matrix, ue is the element displacement vector, k0 is the element stiffness
matrix for an element with unit Young’s modulus, x is the vector of design variables(i.e. element densi-
ties), N is the number of elements used to discretize the design domain, V (x) and V0 are the material
volume and design domain volume, and f is the prescribed volume fraction.

3.8. Space-time problem formulation
3.8.1. Application of operator to space-time topology optimization
In the context of space-time topology optimization, the objective function takes on a distinctive structure
comprising two integral components. Firstly, the initial part of this function is dedicated to computing
the compliance of the entire structural design. Secondly, it delves into calculating the compliance for
each intermediate stage or phase of the optimization process. The underlying mathematics of both
components involve solving the linear finite element method (FEM) equation, represented as KU = F .
Notably, for the first part, this equation is solved once, while for the second part, it’s solved multiple
times, contingent upon the number of predefined stages in the optimization.



3.8. Space-time problem formulation 32

With each iteration involving the FEM equation, the coarsening operation is integrated into the stan-
dard workflow, resulting in a modification. This process aligns with the depiction illustrated in the figure
3.9. Initially, the stiffness matrix for the fine mesh is assembled. Subsequently, a the coarsening op-
erator is applied to generate an equivalent stiffness matrix for the coarse mesh. This transformation
leads to the generation of a displacement vector that needs to be interpolated back into the fine mesh.
Post-interpolation, computations ensue on the fine mesh to determine the compliances and their cor-
responding sensitivities, contributing to the evaluation of the optimization process.

The proposed optimization process effectively balances computational efficiency and accuracy, capi-
talizing on the coarse mesh form FEM equation solving while leveraging the fine mesh for detailed op-
timization and representation of structural behaviour. The successful implementation of this workflow
demonstrates the practicality and efficacy of the coarsening operator when applied to the space-time
topology optimization framework.

3.8.2. Final formulation for space-time topology optimization
Upon introduction of the restriction operator R and interpolation operator I, the formulation for the
space-time topology optimization for self weight for intermediate structures stands like:

min : c(x) = UTK(ρ)U +ΣN
i=1αi(U

Ti)TK(ρTi)(UTi) (3.14)

subject to:
(RK(ρ)I)U = F,

(RK(ρTi)I)(UTi) = G(ρTi), i = 1, 2, ..., N,

Σeρeve ≤ V0,

0 ≤ ϕe ≤ 1

0 ≤ τe ≤ 1

V [Ti] = Σeρ
[Ti]
e ve ≤

i

N
V0, i = 1, 2, ..., N,

1

(M)
ΣeϵMH(g(te)) < ϵ,

(3.15)

In these equations, c is the compliance, K(ρTi), UTi and G(ρTi) are the stiffness matrix, displacement
vector and the force vector for the intermediate structures respectively, K is the fine mesh global stiff-
ness matrix, ϕe is the element densities,τe is the time field variable for each element, N is the number
of elements used to discretize the design domain, v and V are the material volume and design domain
volume, and V0 is the material volume.

3.8.3. Sensitivity analysis for space-time topology optimization
Integrating the novel workflow, following the resolution of the linear finite element method (FEM) equa-
tion within the coarse mesh, the resulting displacement vector is subsequently interpolated back to
the fine mesh from the coarse mesh. On this fine mesh, evaluation of the objective function and its
associated constraints is performed, utilizing the interpolated displacement vector. This comprehen-
sive assessment encompasses compliance evaluations for both the entire structure and intermediate
stages. The constraints are applied within the fine mesh framework, followed by the implementation of
design updates through the MMA solver.

The sensitivity analysis equations for the volume constraints in equation 3.15 in space-time topology
optimization are as follows:

∂V [Ti]

∂ϕe
= Σk∈Se

∂V Ti

∂ρTi
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∂ρTi

k

∂ρk

∂ρk

∂ϕ̃k

∂ϕ̃k

∂ϕe
,

= Σk∈Sevk
¯tTi

k

∂ρk

∂ϕ̃k

∂ϕ̃k

∂ϕe

(3.16)
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where ∂ρk

∂ϕ̃k
follows as:

∂ρk

∂ϕ̃k

= βd
1− tanh2(βd(η − ˜ϕk))

tanh(βdη) + tanh(βd(1− η))
(3.17)

and ∂ϕ̃k

∂ϕe
is calculated based on the definition of ϕ̃e in equation 2.15.

Similarly, the derivative of constraint regarding τe at time Ti is given as:

∂V [Ti]

∂τe
= Σk∈Se

∂V Ti

∂ρTi

k

∂ρTi

k

∂ ¯tTi
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∂ ¯tTi
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∂tk

∂tk
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,

= Σk∈Se
vkρk
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∂tk

∂tk
∂τe

(3.18)

where
∂ ¯tTi

k

∂tk
= βt

tanh2(βt(Ti − tk))− 1

tanh(βtTi) + tanh(βt(1− Ti))
(3.19)

and ∂tk
∂τe

is calculated based on the definition of te in equation 2.16.

For the continuity constraint in equation 3.15, the constant 1
#M is dropped out, thus the derivative with

respect to time variable τe is:

∂Σe∈MH(g(te))

∂τe
= Σi∈Se

∂H(g(ti))

∂τe
, (3.20)

where
∂H(g(ti))

∂τe
=

∂H(g(ti))

∂g(ti)
(
∂g(ti)

∂ti

∂ti
∂τe

+Σk∈Ni

∂g(ti)

∂tk

∂tk
∂τe

), (3.21)
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2
(3.22)
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Results and discussion

The boundary conditions shown for the standard topology optimization are shown in figure 4.1.

Figure 4.1: Half-MBB Beam Boundary problem [18]

4.1. Topology optimization results with coarsening operator
The coarsening operator was seamlessly integrated into the topology optimization function, with a fo-
cus on higher order coarsening using the multigrid approach. The performance of the operator in
conjunction with the density filter was examined through a series of tests. While the density filter ap-
proach employed the standard density filter, the filter radius required careful calibration to avoid the
occurrence of disconnected structures or QR or checkerboard patterns.

Figure 4.2: Disconnected structures arising due to smaller filter radius

34
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For the standard topology optimization, a filter size covering just two elements was adequate. In fig 4.2
it can be seen that structures with such disconnected structures are not manufacturable and hence not
practical. Thus a proper choice of filter radius is crucial. The situation changed with higher order coars-
ening. With 2x2 coarsening, the filter radius had to span at least three elements to maintain design
accuracy and prevent numerical artifacts. Similarly, 4x4 coarsening necessitated a filter radius encom-
passing at least eight fine mesh elements, while 8x8 coarsening demanded a filter radius covering a
minimum of 16 fine mesh elements. Striking the right balance between filter radius and coarsening
level was critical to achieving successful optimization outcomes.

To test the effectiveness of the coarsening operator and the density filter, standard half MBB beam
boundary conditions were utilized. The integration of the coarsening operator, along with appropriately
adjusted filter parameters, demonstrated improved computational efficiency and accurate preservation
of fine-scale features. The results showcased the potential of the proposed approach to optimize com-
plex structures efficiently while maintaining manufacturability and structural robustness.

(a) Standard topology optimization (b) 2x2 coarsening

(c) 4x4 coarsening (d) 8x8 coarsening

Figure 4.3: Results comparing the geometries for different levels of coarsening

The smoothening effects due to the increase in density filter size gets very pronounced as the the level
of coarsening is increased. After 2x2 coarsening, from 4x4 coarsening onwards, fine scale features
are lost and thicker structures are produced since the filter radius is very high.

The compliance and computation times for the cases are as follows:

Assembly Coarsening Solving Interpolation Compliance % difference
Standard 30.1 NA 201.25 NA 196.5261 0

2x2 30.4 10.7 64.2 7.9 204.56 4.0879557
4x4 26.2 13.8 13.1 8.5 218.42 11.140454
8x8 32.8 15.9 2.9 10.4 267.34 36.032822

Table 4.1: Table showing the breakup of computation times for assembly of the stiffness matrix, the coarsening operation,
solving the FEM equation, Interpolation of displacements, the time taken for the optimizer update, compliance of the final
geometry and the percentage difference in compliance with respect to the standard approach(All times in milliseconds)

Observing the results, it becomes evident that as the coarsening degree escalates, there is a noticeable
emergence of thicker structures within the design. This phenomenon arises from the necessity to
proportionally increase the density filter radius with higher levels of coarsening. This adjustment is
crucial to ensure that at least one coarse cell is adequately covered by the filter. As illustrated in
figure 4.4, if the filter radius remains set at a lower value, it can lead to discrepancies between material
addition, potentially resulting in fragmented or disconnected structural elements.

As the degree of coarsening increases, there is an anticipated rise in compliance values. This in-
crease remains within acceptable limits, hovering around the 5% mark, up to a coarsening factor of
2x2. However, as coarsening becomes more aggressive, there is a notable escalation in compliance.
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Figure 4.4: The blue outline denotes one coarse element. The grey cells denote elements which are solid. When the filter
radius is small, the densities are not properly averaged and hence there might be disconnected densities arising

The tabulated data in table 4.1 underscores another noteworthy trend – a substantial reduction in the
time required for solving linear equations. On average, for each successive increase in the degree of
coarsening, there’s almost a five fold improvement in computational efficiency.

Nevertheless, it’s essential to highlight that beyond a coarsening factor of 4x4, the most computationally
intensive step shifts from solving the linear equation to the assembly of the fine mesh stiffness matrix.
This shift signifies that aggressive coarsening might not be the optimal choice, especially considering
the considerable disparity in compliance observed. These findings underscore the delicate balance re-
quired between computational efficiency and maintaining structural integrity in the coarsening process

4.2. Space-time topology optimization results
The coarsening operator was successfully integrated into the space-time topology optimization function,
enabling higher order coarsening through the multigrid approach. The boundary conditions shown for
the space-time topology optimization are shown in figure 4.5. It shows the progress of the robot along
the length of the domain. The boundary conditions shown for the space-time topology optimization are

Figure 4.5: A robot printer platform moves along the structure from left to right. The dimensions taken are 3:1 as in the
standard half MBB problem [32]
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shown in figure 4.5. It shows the progress of the robot along the length of the domain.

(a) Standard Space-time optimization (b) 2x2 coarsening

(c) 4x4 coarsening (d) 8x8 coarsening

Figure 4.6: Density field after implementing coarsening on space-time topology optimization

(a) Standard Space-time optimization (b) 2x2 coarsening

(c) 4x4 coarsening (d) 8x8 coarsening

Figure 4.7: Combined Density field and time field (the lines indicate manufacturing order) after implementing coarsening on
space-time topology optimization

When applying the density filter with increased filter radii to accommodate higher coarsening levels,
the voids in the optimized structures become substantially larger. While the 2x2 coarsening still yields
results similar to the standard space-time optimization, the 4x4 coarsening suffers from the effects of a
larger filter radius, and the 8x8 coarsening leads to even poorer results. These outcomes highlight the
limitations of the density filter in preserving fine-scale features as coarsening levels escalate.

The computation time calculation with regard to the space-time calculation is as shown in table 4.2.
As anticipated, the application of higher-order coarsening in standard topology optimization reveals
a substantial reduction in the time needed to solve linear equations, even with a slight increase in
compliance. However, when extending this approach to space-time optimization, a new complexity
emerges. The introduction of the time field, which enables the consideration of multiple intermediate
structures, necessitates the solution of additional linear equations in each iteration. Consequently,
the decrease in computational time per iteration becomes notably more pronounced in the context of
space-time optimization compared to standard topology optimization.

Interestingly, despite this intensified computational burden, the compliance of the final optimized geom-
etry in space-time topology optimization does not exhibit a significant increase. It remains well within
the accepted 5% threshold, even up to a coarsening factor of 4x4. This observation highlights the ro-
bustness of the proposed coarsening methods, suggesting their applicability in scenarios where com-
putational efficiency is a priority without compromising the structural integrity of the resulting designs.
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Assembly Coarsening Solving Interpolation
Standard - Entire structure 20.4 89.1

2x2 - Entire structure 18.9 12.6 21.5 7.4
4x4- Entire structure 19.8 14.1 5.4 9.4
8x8- Entire structure 19.9 15.8 0.9 11.2

Standard - Intermediate structure 20 90.1
2x2 - Intermediate structure 19.2 12.1 20.9 7.4
4x4- Intermediate structure 19.1 14.6 4.1 9.7
8x8- Intermediate structure 19.5 16.1 0.7 10.3

Table 4.2: Computation times for the different coarsening strategies with respect to the entire structure and the intermediate
structures are displayed above. The times for the intermediate structure are per stage.

Assembly Coarsening Solving Interpolation Compliance % difference
Standard 180.4 0 809.9 0 231.8468 0

2x2 172.5 109.4 188.7 66.6 233.1257 0.552
4x4 172.6 130.9 38.2 87 235.7426 1.68
8x8 175.9 144.6 6.5 93.6 261.2848 12.7

Table 4.3: Table showing the breakup of computation times for assembly of the stiffness matrix, the coarsening operation,
solving the FEM equation, Interpolation of displacements, the time taken for the optimizer update, compliance of the final
geometry and the percentage difference in compliance with respect to the standard approach (All times in milliseconds)

As the coarsening level progresses from 4x4 to 8x8, a shift in the dominant contributor to computation
time is evident. The assembly of the fine mesh stiffness matrix becomes the primary factor affecting
computational efficiency rather than the solving of the FEM equation. Additionally, the extension to 8x8
coarsening leads to a significantly larger difference in compliance values, and the time taken by the
optimizer to update the density field experiences a notable increase.

Considering the presented mesh size of 240x80 elements, the results demonstrate the potential chal-
lenges and trade-offs associated with incorporating 8x8 coarsening. While increasing the mesh size
could potentially alleviate some of the computational demands, this approach was investigated within
the current mesh configuration. The findings underline the importance of carefully considering coars-
ening levels, mesh size, and density filter radius tuning to strike a balance between computational
efficiency and design accuracy in topology optimization and space-time topology optimization.

4.3. 3D topology optimization results
The coarsening operator was successfully integrated into the 3D topology optimization function, en-
abling higher order coarsening through the multigrid approach. The results obtained demonstrate the
performance of the operator in conjunction with the density filter. While the density filter approach uti-
lized the standard density filter, careful calibration of the filter radius was required to avoid undesirable
QR or checkerboard patterns. For the standard approach, a filter size of 1.2 sufficed, but as coarsen-
ing levels increased, larger filter radii became essential. Specifically, for 2x2 coarsening, the filter size
needed to cover at least 2 elements, while 4x4 coarsening necessitated a filter radius encompassing at
least 4 fine mesh elements. For the most extensive 8x8 coarsening, the filter radius had to span a min-
imum of 8 fine mesh elements to achieve optimal results. Throughout these tests, half MBB boundary
conditions were employed with a mesh size of 96x32x32 elements as illustrated in figure 4.8, provid-
ing a consistent benchmark for evaluating the coarsening operator’s efficiency and accuracy within the
topology optimization framework.
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Figure 4.8: Boundary conditions for the 3D simulations

(a) Standard Topology optimization (b) 2x2x2 coarsening

(c) 4x4x4 coarsening (d) 8x8x8 coarsening

Figure 4.9: Results of higher order coarsening on 3D Optimization

To check for material removal, the structure was sliced along an axis parallel to the Z axis and the
results showed that as the level of coarsening is increased, to account for the coarsening, the density
filter radius has to be increased. With the size of the density filter being increased, it can be seen in
figure 4.10 that the size of the smallest features appearing after optimization keep increasing, which is
to be expected.

To compare the computation times and compliances of the generated geometries, refer to table 4.4
The results obtained through 3D optimization align closely with those derived from both standard topol-

Assembly Coarsening Solving Interpolation Compliance % difference
Standard 3417.5 0 338972.4 0 5880.2 0

2x2 3285.9 164.6 11514.2 2.9 6109 3.89
4x4 3518.7 172.4 360.9 3.6 7272.8 23.68
8x8 3330.4 177.3 15.6 4.7 9143.2 55.49

Table 4.4: Table showing the stage by stage computation times and the compliance for each level of coarsening

ogy optimization and space-time topology optimization. Notably, the reduction in time required for
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(a) Standard Topology optimization (b) 2x2x2 coarsening

(c) 4x4x4 coarsening (d) 8x8x8 coarsening

Figure 4.10: Cut slices to shave material removal after higher order coarsening on 3D Optimization

solving linear equations in 3D optimization is more pronounced, exhibiting an average decrease of ap-
proximately 30 times. This substantial decrease can be attributed to the unique characteristics of 3D
optimization. At each stage of coarsening in three dimensions, there is a significantly greater reduc-
tion in the number of degrees of freedom that need to be solved for compared to the 2D case. This
efficiency gain arises from the inherently higher dimensionality of 3D structures, allowing for a more
substantial reduction in computational complexity.

One crucial factor contributing to these results is that the 2D case accounts for the plane stress condition,
which does not apply in the 3D scenario. Consequently, the increase in compliance is much more
pronounced in 3D optimization, as this aspect is not discounted. Nevertheless, it’s important to note
that even with the increased compliance, the final optimized designs in 3D remain within the acceptable
threshold of 5% for coarsening up to 2x2x2. Beyond this point, there is a significant rise in compliance,
which indicates a trade-off between computational efficiency and structural performance that designers
must consider when implementing higher-order coarsening in 3D topology optimization.

The selection of the filter radius proves to be a critical aspect in 3D optimizations. As the degree of coars-
ening intensifies, it becomes imperative to expand the density filter radius to prevent the emergence of
disconnected structures. However, this necessary increase in the filter radius has a proportional effect
on both the solid structures and voids, leading to a noticeable impact on the final results, as evident
in Figure 4.10. Specifically, in the case of 8x8x8 coarsening, the resulting structures exhibit greater
thickness compared to those achieved with other coarsening levels. This observation is substantiated
by the compliance values illustrated in Table 4.4.
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4.4. Comparison with the trimesh method coarsening strategy
Weighted average coarsening stands out for its heightened accuracy in depicting the stiffness matrix.
This heightened accuracy stems from its incorporation of weighted contributions sourced from individual
density values confined within a single coarse element. This approach ensures that the coarser rep-
resentation retains a more faithful reflection of the intricate material distribution present at finer scales.
By considering the influence of each density value within the larger context of the coarse element, the
weighted average coarsening approach manages to provide a superior approximation of the underlying
mechanics, making it a preferred choice for scenarios demanding precision and fidelity.

In the trimesh method, a unique approach is employed to aggregate densities within a single displace-
ment cell. This aggregation process relies on density penalization, and the weighting factor is deter-
mined by considering the ratio of the area occupied by each fine cell within a coarse cell. A distinct
feature of this method is its capacity to eliminate the need for maintaining discrete density distributions
within a coarse element. While offering remarkable computational efficiency and rapid convergence,
this approach comes with a trade-off in terms of the accuracy of assembling the stiffness matrix for
the displacement cell. An illustrative experiment depicted in Figures 2.8a and 2.8b highlights a key
limitation of the trimesh method. In this experiment, the areas of each fine mesh element were identi-
cal, resulting in equal weights. Consequently, when faced with two separate density distributions, as
shown in these figures, the trimesh method struggles to differentiate between them. Consequently, the
resulting coarse mesh stiffness matrices would be identical in both cases.

Weighted averaging guarantees that every individual density value makes a proportional contribution
to the stiffness matrix of the coarser element. This mechanism results in a more dependable portrayal
of the material distribution within the context of the coarser mesh. By upholding this balance between
contributions, the weighted averaging approach significantly enhances the accuracy of the overall in-
terpolation process, offering a robust and trustworthy representation of the material’s behavior across
different scales.

Weighted averaging is particularly advantageous when dealing with finer structures or intricate mate-
rial distributions that require precise representation. This method excels in capturing the nuances of
complex geometries and material arrangements by effectively incorporating the influence of individual
density values within each coarser element. This accuracy is crucial for applications where fine-scale
details significantly impact the overall performance and behavior of the optimized design.

The computation times comparison for the two approaches are as shown in table 4.5.

The table 4.5 highlights a notable observation: while the trimesh method approach exhibits faster con-
vergence than the Galerkin-based method, the accuracy compromise becomes evident with intensified
coarsening in trimesh method. The discrepancy in compliance from the standard approach becomes
more pronounced with aggressive coarsening, underscoring a trade-off between speed and accuracy.
Conversely, the Galerkin-based weighted averaging approach demands additional time per iteration
compared to trimesh method. However, it compensates for this by offering higher accuracy, making it
a more reliable and precise strategy in achieving optimal designs.
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(a) Standard topology optimization Compliance: 195.758

(b) 2x2 coarsening - Galerkin Compliance: 198.55 (c) 2x2 coarsening - trimesh method Compliance: 212.48

(d) 4x4 coarsening - Galerkin Compliance: 208.64 (e) 4x4 coarsening - trimesh method Compliance: 233.47

(f) 8x8 coarsening - Galerkin Compliance: 247.62 (g) 8x8 coarsening - trimesh method Compliance: 263.51

Figure 4.11: Results comparing the geometries for different levels of coarsening

Figure 4.12: Convergence comparison between the standard topology optimization, Galerkin based weighted averaging and
the trimesh method approach
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Assembly Solving No. of iterations Total Time Time per Iteration
Standard 29.4 113.3 739 134152.5 181.53
2x2 (Q4/n4) 19.4 22.2 357 30937.38 86.66
4x4 (Q4/n16) 5.2 4.9 299 17162.9 57.40
8x8 (Q4/n64) 3.4 0.9 139 4766.889 34.29

(a) Comparison of stage wise times for trimesh method approach.(All times in milliseconds)
Assembly Coarsening Solving Interpolation Total Time Steps no. Time per step

Standard 29.4 0 113.1 0 134152.5 739 181.53
2x2 28.6 8.9 23.7 4.6 83598.47 623 134.19
4x4 29.1 9.1 5.2 4.9 68738.48 796 86.35
8x8 28.7 11.2 0.9 6.1 54694.79 915 59.78

(b) Comparison of stage wise times for the Galerkin based approach. (All times in milliseconds)
Galerkin Trimesh method

Compliance % diff Compliance % diff
Standard 195.758 0 195.758 0

2x2 198.55 1.43 212.48 8.54
4x4 208.64 6.58 233.47 19.26
8x8 247.62 26.49 263.51 34.61

(c) Comparison of compliance between the trimesh method and the galerkin based methods.

Table 4.5: Comparison of Computation times and compliance values between the trimesh method approach and the Galerkin
based weighted averaging approach. (All times in milliseconds)
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Conclusion and future scope

5.1. Conclusion
In the ever-evolving realm of topology optimization, this thesis embarked on an in-depth exploration
of diverse approaches, illuminating their intricacies and implications. The journey began by dissecting
traditional techniques like SIMP, revealing their computational complexity, advantages, and challenges.

A pivotal turning point emerged with the introduction of Space-Time Topology Optimization (STTO), a
concept that fuses design and fabrication into an integrated whole. By seamlessly incorporating manu-
facturing order planning into optimization, STTO offers designs that are not only structurally optimal but
also inherently manufacturable. This groundbreaking paradigm shift marked a crucial advancement,
setting the stage for revolutionary changes in the optimization landscape.

Amid this rich array of methodologies, the Galerkin-based weighted averaging approach shone as a
pragmatic balance between computational efficiency and accuracy. While the Multi-Resolution Topol-
ogy Optimization (trimesh method) approach demonstrated swift convergence, it sometimes sacrificed
accuracy under aggressive coarsening. In contrast, the Galerkin approach, with its meticulous atten-
tion to preserving the integrity of stiffness matrices, emerged as a more reliable solution for intricate
material distributions.

In conclusion, this thesis has navigated through topology optimization’s multifaceted landscape, unveil-
ing the diversity and potential of each method. From established techniques to visionary integrations,
the journey underscores the intricate balance between computational prowess and precision. As en-
gineering challenges evolve and industries seek lightweight, functional, and sustainable designs, the
marriage of computational acumen and creative design thinking becomes paramount. The road ahead
lies in the hybridization of methodologies and the continual quest for innovative solutions, shaping the
future of optimal design.

5.2. Future scope
While this thesis has provided valuable insights into the coarsening strategies for topology optimization,
there are several exciting avenues for further exploration. Some areas that can be looked into in the
future are:

• The incorporation of coarsening techniques into the optimization process offers the possibility
of optimizing structural designs without the need for displacement interpolation. By evaluating
compliance and other desired objective functions directly on the coarse mesh, this modification
would streamline the optimization process.

• Further research could be dedicated to investigating the utilization of diverse filtering functions to
accommodate coarsening processes and mitigate the emergence of checkerboard patterns. This
avenue of exploration aims to enhance the coarsening method’s effectiveness by identifying opti-
mal filtering strategies that minimize unwanted artifacts and promote more accurate and reliable

44



5.2. Future scope 45

results. Such investigations could contribute to refining coarsening techniques and expanding
their applicability in various optimization contexts.

• The trimesh method exhibits accelerated convergence in comparison to the Galerkin-based ap-
proach. Future investigations could delve into the underlying factors contributing to this discrep-
ancy, aiming to discern the specific mechanisms or design conditions that lead to the observed
differences in convergence rates. This exploration could provide deeper insights into the com-
parative behaviors of these methods and offer valuable guidance for optimizing their respective
strengths in diverse optimization scenarios.
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