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Abstract

In this thesis, a we have designed and fabricated a Josephson Parametric Amplifier (JPA) using a new
double-angle evaporation method without a Dolan bridge. We have found and resolved several issues
in the fabrication procedure, but it requires further tuning before being fully functional. We have also
simulated the behaviour of a general parametric amplifier with an additional Duffing non-linear term,
and found that this term appears to limit the oscillation amplitude. We have attempted to characterize
Josephson junctions fabricated with the new double-angle evaporation procedure, but without much
success. Using a different fabrication method, a JPA was made and successfully characterized. The
maximum measured gain is 16 dB, with a bandwidth of 1 MHz. The noise temperature is comparable to
the cryostat temperature of 250 mK, but it was not characterized accurately.
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List of symbols

The list of symbols used in this thesis, their meaning and (if applicable) the units in which they are
commonly expressed are used. Symbols denoted with a non-zero number subscript (e.g. ω1, ω2, etc.)
are to be taken as token symbols that do not have a set definition.

Symbol Constant name Value
e Elementary charge 1.60 · 10−19 C
h Planck’s constant 6.63 · 10−34 m2kg/s
~ Reduced Planck’s constant 1.05 · 10−34 m2kg/s
kB Boltzmann constant 1.38 · 10−23 m2kg/s2K
Φ0 Magnetic flux quantum 2.07 · 10−15 Wb
µ0 Vacuum permeability 4π · 10−7 H/m

Table 1: Table of constants used in this thesis.

Symbol Meaning Unit
α Parametric pump modulation amplitude (αp normalized) -
β Duffing non-linearity parameter -
∆ Superconducting energy gap J (eV)

Detuning Hz
εr Relative dielectric permittivity -
η Quantum noise factor -
θ Angle (θ0 offset, θeq equilibrium) rad.
κ Angular loss rate (κi internal, κe external) Hz
λL London penetration depth m
µ Energy eigenvalue of a superconductor J (eV)
ρ Density of charge-carrying particles in a superconductor m−3

Resistivity Ω/m2

ϕ Phase (∆ϕ Phase difference) rad.
Φ Magnetic flux (Φext externally applied) Wb
ψ Wave function -
ω Angular frequency (ω0 resonance, ωd pump, ωs signal, ωi idler) Hz
a Growth rate s−1
a, b, d, y Fit parameters (simple model) -
ac, aω, aϕ, a0 Fit parameters (involved model) -
A Area m2

A,B,C,D Transmission matrix formalism -
A,A∗ Complex field (A0 amplitude) -
A(t), B(t) Amplitude -
A⃗ Magnetic vector field Vs/m
B Bandwidth Hz
B Magnetic field (B⊗

ext externally applied) T
C Capacitance (CC coupling, Cl per unit length, CJ Josephson, CN Norton, Ctot total) F
fe External drive -
F Force (F0 amplitude) N

vii



Symbol Meaning Unit
G Conductance (Gl per unit length) S
Ĥ Hamiltonian -
I Current (I0 amplitude, Ic critical, Iscreen screening) A
j⃗ Current density A/m2

K Coupling parameter -
l Length m
L Inductance (Ll per unit length, LJ Josephson, LSQUID of a SQUID, Lgeom geometric) H
m Mass g
n number (np of charge carriers) -
P Power W
q charge C
Q Quality factor (Qe external, Qi internal) -
r(t) Amplitude -
R Resistance (Rl per unit length, RN Norton, Rtot total, RJ Josephson) Ω
S Scattering parameter (S11 reflection, S21 transmission, Sin input) -
t time s
T Temperature (TC critical, Tinput input, Tamplifier amplifier, Tchain chain) K
V Voltage V
v⃗ velocity m/s
x position m
X Dummy variable -
Z Impedance (Z0 characteristic, Zin input, Zext external) Ω

Table 2: List of symbols used in this thesis.
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1
Introduction

This master thesis details work done on the subject of Josephson Parametric Amplifiers (JPAs) per-
formed in the group of Prof. Dr. Gary Steele, in the section Quantum Nanoscience of the department
of Applied Sciences of the TU Delft, between January and October 2018. First, a brief introduction to
the concept of JPAs will be given, followed by a short motivation. An overview of the relevant theory is
included in Chapter 2, the design, fabrication and measurement processes will be explained in Chapter
3, and we will also perform simulations of a general parametric amplifier here. Characteristic properties
of the fabricated junctions and JPAs will be treated in Chapter 4, and finally conclusions will be drawn
and a brief outlook on further research will be given in Chapter 5.

Amplifiers in general are common devices, and have been fundamental to the functioning of radios,
mobile phones, music systems, etc. since their inception. A parametric amplifier in general requires
the parameters of an oscillator (e.g. the length of a swing, the capacitance of an LC circuit, etc.) to be
varied with a specific frequency. The effect of parametric amplification was first noticed by Faraday in
1831 [1].

Electric parametric amplifiers were developed between 1910 and 1920 (Fig. 1.1a) for use in telephone
connections [2], and in the ’50s and ’60s the frequency range of parametric amplifiers was extended
to the microwave regime [3, 4]. Nowadays, parametric amplifiers can reach optical frequencies [5]
(Fig. 1.1b) and several types are commercially available.

(a) (b)

Figure 1.1: a) Parametric amplifier for radio signals. The plates form a variable capacitance [6] used for tuning the
device frequency, the parametric variation comes from another element, potentially a variable-capacitance diode
(varactor). b) Commercially available optical parametric amplifier [7].
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The devices studied in this thesis are based on a Josephson junction, which is a structure made of two
superconducting parts separated by a thin, non-superconducting barrier [8]. Here, two Josephson junc-
tions in parallel form a Superconducting QUantum Interference Device, a SQUID [9], which functions
as a tunable, non-linear inductor that is the key element of the Josephson Parametric Amplifier (JPA). It
requires cryogenic temperatures to work, and it is operated in the microwave regime.

The value of the Josephson parametric amplifier lies in the fact that it can be a phase-sensitive amplifier,
and potentially does not add any significant noise to the signal it is amplifying [10, 11]. This makes JPAs
vital for experiments where weak signals are measured, and their applications for research are thus very
broad. JPAs have been used in the search for dark matter [12, 13], for fast readout of qubits [14, 15]
and for sensitive magnetometers [16]. JPAs can also be used to generate squeezed states of photons
[17, 18]. Superconducting circuits at microwave frequencies also form an important part of quantum
computation efforts [19], and since JPAs fit in the framework of superconducting quantum circuits, they
could serve an important role in the communication between quantum computers.

The main motivation for this thesis lies in the fact that Josephson parametric amplifiers are not com-
mercially available1. Using JPAs to amplify the desired signals could decrease measurement times in
various experiments. Also, conventional JPAs have limited bandwidth, and although tuning them is an
option in some configurations, it would be more convenient if they were designed to operate at frequen-
cies that fit with the experiments. The goal of this thesis is the design, fabrication and characterization
of a Josephson parametric amplifier in the 6-8 GHz frequency range.

To realise this goal, a novel way of fabricating Josephson junctions is tested. With this method, it should
be possible to create larger junctions, with higher critical currents, which can be used to create JPAs that
work at higher signal strengths. Then, a design is made for a parametric amplifier. After fabrication of the
design, the JPA will be tested and characterized in a dilution fridge. However, results of the fabrication
show that the new method needs more fine-tuning before being ready for application. Using a different,
established, method of fabricating junctions, a JPA was made, and subsequently characterized.

1Optical parametric amplifiers are commercially available, but operate in a different frequency regime, and radio frequency
amplifiers are as well, but they do not operate well at superconducting temperatures.
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2
Theory

This chapter contains the theory necessary to understand the results of the experiments performed. As
the focus of this thesis is experimental rather than theoretical, the theory will be kept brief and as general
as possible. Sec. 2.1 describes circuits and their properties, Sec. 2.2 describes Josephson junctions.
Sec. 2.3 is focussed on parametric amplification, and specifically on Josephson Parametric Amplifiers.
Finally, Sec. 2.4 will treat noise and noise temperature of amplifiers.

2.1 Circuits
This section gives an overview of the relevant concepts and equations from circuit theory. Background
and more detailed information can be found in textbooks such as [20]. Microwave-frequency circuits are
of particular importance, and the interested reader is advised to look at microwave engineering textbooks
such as [21].

2.1.1 LC Oscillators
One of the most essential electrical circuits is an LC oscillator. They are present in nearly all electronic
equipment, e.g. in amateur radios such as Fig. 2.1a. In this work, we work with LC oscillators on the
planar surface of a chip, such as shown in Fig. 2.1b. Despite its many forms, the basic properties of
an LC oscillator remain the same and it is generally depicted schematically by the circuit diagram of
Fig. 2.2a (top). It contains a capacitor with capacitance C and an inductor with inductance L. The
current through the oscillator is sinusoidal in time,

I = I0 cos(ω0t+ ϕ), (2.1)

with an amplitude I0, frequency ω0 and phase offset ϕ. In the ideal case, it is an oscillator that dissipates
no energy: Once it is oscillating, it will continue oscillating forever at its resonance frequency. This is
also called the natural frequency of a LC oscillator, and it is given by [20]

ω0 =
1√
LC

. (2.2)

In the more realistic case, there will be some resistance R in the circuit. The non-ideal (dissipative)
parts of the circuit components are often grouped in a single resistor. For the LC oscillator, this leads
to a RLC oscillator, shown schematically in Fig. 2.2a (bottom). An RLC oscillator will have the same
natural frequency as the LC oscillator, but without a force driving it, the oscillation amplitude will decay
over time, as shown in Fig. 2.2b.
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(a) (b)

Figure 2.1: a) LC oscillator used for amateur radio. Clearly visible are the capacitor plates on the right, and the coil
on the left. The inductance of the coil is made tunable via a second coil (in red) around the main coil. This tunability
allows a radio to ’tune in’ to different stations [22]. b) Microscope image of an LC oscillator fabricated on a chip.
The washboard-like structure is an interdigitated capacitor.

(a)

L C

L
C

V

L

C

R

V
L C R

(b)

Figure 2.2: a) Circuit diagrams of a parallel (top left) and series (top right) LC oscillator, and a parallel (bottom
right) and series (bottom left) RLC oscillator. b) Amplitude of voltage between the capacitor plates over time. For
similar initial conditions, both an LC and RLC oscillator show oscillating behaviour (both voltage and current), but
the resistor in the RLC set-up damps the oscillations. The dashed lines trace the decay of the oscillation amplitude.
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(a) (b)

R L C

Cc

V1

Figure 2.3: a) Oscillation amplitude for an RLC oscillator, with the half-power frequencies ω1 and ω2 denoting the
bandwidth, and with it the Q-factor. b) Circuit diagram of a parallel RLC circuit capacitively coupled to a line with a
potential difference V1 between the two ports. Instead of directly connecting the circuit the line, it is coupled by a
coupling capacitor, Cc

From LC to RLC: Q-factor and losses
The resistor in the RLC oscillator does not change the resonance frequency ω0, but it affects the sys-
tem by introducing losses. A common measure of these losses is the quality factor, referred to as the
Q-factor [23]. It is given by the range of driving frequencies where the system will oscillate above a cer-
tain amplitude (relative to the amplitude exactly at resonance), normalized to the resonance frequency.
The conventional cut-off for the oscillation amplitude is the half-power point: the frequencies where the
oscillations contain half the power of the oscillations at resonance, shown schematically as ω1 and ω2 in
Fig. 2.3a. Note that half the power corresponds to 1√

2
times the current.

The band of frequencies between these two end-points is called the bandwidth B. The quality factor Q
is defined as

Q =
ω0

ω2 − ω1
=
ω0

B
. (2.3)

We can also relate this to the intensity decay rate, κ, the conventionally used parameter in (microwave-
)optics systems such as the ones studied in this thesis, via

Q =
ω0

κ
. (2.4)

Instead of directly driving oscillators (as in Fig. 2.2a) with a voltage or current source in the circuit, we
couple oscillators to a transmission line to the outside of the cryostat, as shown in Fig. 2.3b. In the next
sections, we will treat these transmission lines and how to couple a parallel RLC circuit to one.

2.1.2 Microwave transmission lines
We will make use of microwave-frequency signals to drive and probe our samples. These electromag-
netic waves with a frequency typically between 300 MHz and 300 GHz require consideration in design
of the circuit elements [21], because the electrical length of a microwave signal can be comparable to
or smaller than the length of the circuit elements. Thus, for example, the voltage might not be constant
through a wire, even if it is a perfect conductor [21].

Another issue to take into consideration is the radiation from unshielded wires. Losses caused by elec-
tromagnetic field radiating out of the wires can be avoided by using two wires of opposite polarity next
to each other. This causes the fields to cancel, and avoids most of the losses. Having these two wires
in a certain geometry next to each other is done in microwave transmission lines.

Microwave transmission lines serve to transmit the signals from point A to point B, similar to the wires

5



On-chip transmission lines

Microstrip

Coplanar strips

Stripline

Coplanar waveguide

Conventional lines

+ -

Open two-wire line

Coaxial line

Figure 2.4: Schematic of several microwave transmission line types. Red represents a metallic conductor, gray
represents a dielectric medium. The bottom red plane (and also the top plane for the stripline, and the side-planes
for the coplanar waveguide) are the ground planes, the other red areas are the lines carrying the signal.

in a conventional circuit. In this thesis, they are present in two different geometries: In planar, on-chip
geometries to connect our fabricated structures, and in open geometries to connect to the microwave
sources and measurement apparatus. A schematic overview of some common geometries is given in
Fig. 2.4. The coaxial (shortened to coax) line and the coplanar waveguide will be the ones used in this
thesis.

Due to the fact that the electrical signal wavelength is shorter than the transmission line length, we
can not describe the transmission line as simple (ideal) wire. Instead, we must take an approximation
per unit length of the transmission line. This can be done using four parameters in a lumped-element
model as shown in Fig. 2.5: Resistance per unit length, Rl (Ω/m), conductance per unit length, Gl (S/m),
inductance per unit length, Ll (H/m) and capacitance per unit length, Cl (F/m) [21]. These four parame-
ters are used to describe the characteristic impedance of a transmission line,

Z0 =

√
Rl + iωLl

Gl + iωCl
, (2.5)

which is 50 Ω for a typical coaxial cable. The characteristic impedance is the potential difference divided
by the current for a cable of infinite length, so its unit is Ω instead of Ωm. For high frequency (typically
above 10 kHz [24]) and a good conductor, the characteristic impedance of a transmission line can be
approximated as

Z0 =

√
L

C
. (2.6)

This is the case for the commercial coax lines used for the measurements performed in this work.
Besides commercially available coax lines to connect our sources to our sample and back to the mea-
surement equipment, we must also transmit signals from the edge of our sample to systems under study
(in the middle). For this, we use coplanar waveguides.

For us, the most important property of a coplanar waveguide is that its characteristic impedance must
match that of the rest of the microwave transmission lines, to prevent reflections at the interfaces. To en-
sure this, it is necessary to design the waveguide so that it has the right capacitance and inductance per
unit length. The capacitance per unit length of a coplanar waveguide can be calculated using conformal
mapping, and involves elliptical integrals [25]. There are tools available to calculate this for certain ge-
ometries, e.g. AppCAD. The coplanar waveguides used in this thesis have been simulated (Sec. 3.2.2)
to obtain the desired characteristic impedance of 50 Ω.

We are interested in coupling an RLC-oscillator to a transmission line. There are three ways in which
we can couple a circuit: Directly coupled, capacitively coupled, and inductively coupled. In the capaci-
tively coupled case, the transmission line is coupled to our circuit through a capacitor. In the inductively
coupled case, the transmission line is coupled through an inductor, and in the directly coupled case it is
connected through a wire. In our designs, we will use all three methods.

6



+

−

V1

R L

G C

+

−

V2

l

Lumped element model of transmission line

Figure 2.5: A lumped-element model of a typical transmission line of unit length l. Generally, this is designed to be
50 Ω, to prevent unwanted reflections at interfaces between different transmission lines.

2.1.3 RLC oscillator capacitively side-coupled to a transmission line
For the rest of this thesis, a lot of the systems we will use will have the form of an RLC oscillator capaci-
tively side-coupled to a transmission line, shown schematically in Fig. 2.6a. We are interested in finding
out how the circuit will behave if we send in a certain signal (e.g. a changing voltage, or a changing
current). Suppose we send in a signal through the leftmost port (transmission line) to the oscillator.
Part of this signal could be reflected back, so we can measure it at the left port. Another part could be
transmitted, so we measure it at the right port. Generally, this is described in terms of the fraction of
the power of a signal that is reflected or transmitted. For a two-port system (i.e. a system connected by
two transmission lines), reflected power fraction is denoted by S11, and the transmitted power fraction is
denoted by S21, which are called the scattering parameters [21].

To obtain these scattering parameters for our system (the capacitively side-coupled RLC oscillator),
we first translate the transmission lines into circuit elements. The new circuit is shown in Fig. 2.6b. At
the top, we have translated the transmission lines into resistors with impedance Z0. The dashed lines
indicate the border between the RLC oscillator (internal) and the transmission line (external) part of the
circuit. We treat the system as two oscillators, each with a separate loss rate and quality factor. The
loss rate of RLC circuit itself is called the internal loss rate, κi, and losses in the coupling to the outside
environment are called the external loss rate, κe. The total loss rate is given by

κ = κi + κe. (2.7)

Similarly, we can split the total Q-factor of the circuit into an external, Qe, and internal part, Qi.

To simplify the analysis of the circuit drawn in Fig. 2.6b, we can replace the external part of the circuit
by its Norton equivalent [20], with resistor RN and capacitor CN. The circuit diagram for this is shown at
the bottom of Fig. 2.6b.

First, we want to know RN and CN in terms of the transmission line impedance Z0 and coupling capacitor
CC. We combine the impedance of these last two into the external impedance, Zext,

Zext =

(
1

Z0
+

1

Z0

)−1

+
1

iωCC
=
Z0

2
+

1

iωCC
. (2.8)

We can also determine the external impedance of the Norton-equivalent part of the circuit,
1

Zext
=

1

RN
+ iωCN. (2.9)

If we combine these two equations, we can obtain expressions for RN and CN. We can simplify these
using the approximations ω ≈ ω0 and ωCC ≈ Z0, and get

RN =
4 + ω2C2

CZ
2
0

2ω2C2
CZ0

≈ 2

ω0C2
CZ0

CN =
4CC

4 + ω2C2
CZ

2
0

≈ CC.

(2.10)
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(a)

R L C

Cc

Z0 Z0

Zin

(b)

RLC

CC

Z0 Z0

RLCCNRN

Figure 2.6: a) Circuit diagram of an RLC oscillator capacitively side-coupled to two transmission lines with
impedance Z0. b) Equivalent circuits for the RLC oscillator capacitively side-coupled to a transmission line. At
the top, we have replaced the transmission line with a resistor of impedance Z0, where we have two of them in
parallel due to the two transmission lines. At the bottom, we have taken the Norton equivalent circuit, a resistor with
resistance RN and a capacitor with capacitance CN. The dashed lines indicate the separation between the RLC
oscillator (right) and the transmission line (left) part of the circuit.

With these, we can calculate the total resistance and capacitance of our circuit, and also find its reso-
nance frequency,

Rtot =
RRN

R+RN

Ctot = C + CC

ω0 =
1√

L(C + CC)
.

(2.11)

With the total resistance, capacitance and resonance frequency of the circuit, we can determine the total
quality factor, Q, and separate it into an internal and external quality factor,

Q = ω0RtotCtot =
(
Q−1

i +Q−1
e
)−1

Qi = ω0R(C + CC)

Qe =
2(C + CC)

ω0C2
CZ0

.

(2.12)

We can similarly also find expressions for the internal and external loss rate,

κi =
1

R(C + CC)

κe =
ω2
0C

2
CZ0

2(C + CC)
.

(2.13)

Before we can proceed to the scattering parameters, we only need to find the input impedance Zin. This
is the impedance between the input transmission line (as denoted in Fig. 2.6a) and the ground.

The input impedance of a simple RLC circuit, as in the bottom left of Fig. 2.2a, can be found from
the impedances of all of the components in parallel

1

Zin
=

1

R
+

1

iωL
+ iωC. (2.14)

Then, we can add a coupling capacitor, as in Fig. 2.3b, which we add separately from the other terms
in the input impedance, because it is in impedance,

Zin =
R

1 + iR
(
ωC − 1

ωL

) + 1

iωCC
. (2.15)
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If we take the transmission line into account as a resistor, the calculations become more complicated.
However, we can achieve an approximate result by performing a Taylor expansion around ω ≈ ω0 and
performing a trick using complex frequency [21] to take into account the losses. We obtain for the RLC
oscillator capacitively coupled to a transmission line

Zin ≈
L(C + CC)

2

C2
C

(κi + 2i(ω − ω0)) (2.16)

Now, we can add the second transmission line in parallel and obtain the circuit of Fig. 2.6b (top). This
second transmission line can be added as an additional impedance in parallel,

1

Zin
=

C2
C

L(C + CC)2 (κi + 2i(ω − ω0)))
+

1

Z0
(2.17)

or, rewriting this,

Zin = Z0
κi + 2i(ω − ω0)

2κe + κi + 2i(ω − ω0)
(2.18)

Now, we are ready to find the scattering parameters, S11 and S21, that we are interested in. We can do
this using the ABCD-matrix for a two-port system [21],(

A B
C D

)
=

(
1 0
1
Zin

1

)
. (2.19)

The scattering parameters are

S11 =
A+ B

Z0
− CZ0 −D

A+ B
Z0

+ CZ0 +D
=

−Z0

Zin

2 + Z0

Zin

=
−κe

κi + κe + 2i(ω − ω0)

S21 =
2(AD −BC)

A+ B
Z0

+ CZ0 +D
=

2

2 + Z0

Zin

=
κi + 2i(ω − ω0)

κi + κe + 2i(ω − ω0)
.

(2.20)

Now that we have the scattering parameters, we can gain insight in how we expect our system to react
when we send in a certain signal. For a frequency range near the resonance frequency, we have plotted
S11 and S21 for several combinations of κi and κe in Figs. 2.7a and 2.7b. These combinations describe
how well the RLC circuit (in our case) is coupled to the environment. The combinations are:

• Undercoupled: Most of the loss happens inside the RLC oscillator, so κe < κi, and Qe > Qi.

• Critically coupled: The losses inside the RLC oscillator equal the losses to the outside of the
oscillator, so κe = κi, and Qe = Qi.

• Overcoupled: Most of the loss happens to the outside of the RLC oscillator, so κe > κi, and
Qe < Qi.

Concluding this section, we have described LC and RLC oscillators, as well as transmission lines. We
have detailed how to couple these oscillators to a transmission line, and derived what we can expect to
measure when we send in a certain signal through one of the transmission lines.

2.2 Josephson junctions
A Josephson junction consists of two superconducting parts separated by a thin non-superconducting
(insulator or normal conductor) part such that the Cooper pairs in the superconductor can tunnel between
the two parts, as shown schematically in Fig. 2.8a. The relation between current and voltage of such a
device were predicted by B.D. Josephson in 1962 [8], which earned him the 1973 Nobel prize together
with L. Esaki and I. Giaever, who had earlier reported observations of Cooper pairs tunneling between
the superconducting parts. Confirmation of the Josephson effect was done in 1963 by Anderson and
Rowell [26].
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(a) (b)

Figure 2.7: a) Reflected power coefficient S11 for various frequencies near the resonance frequency of the RLC os-
cillator. The reflected power shows a peak near the resonance frequency. Explanations of undercoupled, critically
coupled and overcoupled are given in the main text. b) Transmitted power coefficient S21 for various frequencies
near the resonance frequency of the RLC oscillator. The transmitted power shows a dip near the resonance fre-
quency.

2.2.1 Josephson relations
Josephson described the current I(t) through and voltage V (t) across the junction as dependent on the
phase difference∆ϕ of the wave functions of the two superconducting parts [8], as sketched in Fig. 2.8a,

I(t) = Ic sin(∆ϕ)

V (t) =
~
2e

∂∆ϕ

∂t
.

(2.21)

These are commonly referred to as the Josephson equations. When the phase difference is constant
(V = 0), there can be a supercurrent through the junction, consisting of tunnelling Cooper pairs [8]. This
supercurrent will not lead to an increase in voltage, and the junction will have zero resistance. However,
above a certain critical current, Ic, which is an important junction parameter [27], the junction will behave
Ohmic. This behaviour is seen in the slope of the I-V (current-voltage) curve in Fig. 2.8b for sufficiently
large voltage, |V | > 2∆

e , where∆ is the superconductor energy gap, is related to quasiparticle tunneling
[28].

The anomalous current at V = 0 is called the DC (Direct Current) Josephson effect, which is one of
three effects predicted by Josephson [8]. The other two are the AC- (Alternating Current) and inverse AC
Josephson effects, which allow a Josephson junction to function as respectively a voltage-to-frequency
and a frequency-to-voltage converter [27]. The AC Josephson effect happens when a constant non-zero
voltage V ̸= 0 is put across the junction. The phase difference ∆ϕ will vary linearly over time, which
results in an AC current with amplitude Ic and frequency 2e

h V . The inverse AC Josephson effect occurs
when a Josephson junction is driven with a combination of an AC and a DC current, which generates a
set of voltage steps in the I-V curve, the so-called Shapiro steps [29].

Josephson junctions come in different geometries and types, several of which are shown schematically
in Fig. 2.9. All of these have in common that some type of barrier separates the superconductors. This
can be a constriction (as in a) and e) in the figure), an insulating or barrier layer (as in c) and d)), or a
boundary junction (as in b) or f)) [30]. In this thesis, all fabricated junctions consist of the superconductor-
insulator-superconductor type.

Derivation of the Josephson relations
We can derive the Josephson relations from more fundamental concepts. Here, we follow the example
of [28] and [27]. The starting point of the wave function of a superconductor. In general, this takes the
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(a)

I I

Josephson junction

contact
substrate

superconductor

insulator

∼nm

- - -

+

Cooper pair current

Quasiparticle current

1

(b)

2Δ /e

V (a.u.)
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I 
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Figure 2.8: a) Schematic of two different types of Josephson junction. Red represents a superconducting material
(e.g. Al), black an insulating layer (e.g. Al2O3), dark grey a substrate (e.g. Si) and light grey are the contacts
(generally also superconducting). Zoom-in schematically shows two important factors contributing to the current:
The supercurrent from Cooper pairs tunnelling through the barrier, and the quasi-particle tunnelling current. b) I-V
curve of an ideal Josephson junction. The current peak at V = 0 consists of Cooper pairs tunnelling, while the
slope for large positive and negative voltage originates from quasi-particles tunnelling across the barrier.

Figure 2.9: An overview of several types of Josephson junctions: a) Point contact junction, b) break junction, c)
crossed electrodes and barrier (B) junction, d) edge junction with insulator (I) and barrier (B) layers, e) nanobridge
junction, f) bicrystal grain boundary junction [30].
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form
ψ =

√
ρeiϕ (2.22)

where we treat ρ as the (constant) density of the charge-carrying particles in the superconductor, Cooper
pairs, and we call ϕ the phase of the wave function. The Schrödinger equation,

i~
∂ψ

∂t
= Ĥψ (2.23)

describes the time evolution of the wave function, where Ĥ is the Hamiltonian of the system. In steady
state, the Hamiltonian working on the wave function results in a constant factor that represents the
energy of the state, the energy eigenvalue,

i~
∂ψ

∂t
= µψ. (2.24)

Suppose we take two separate pieces of superconducting material, ψ1 and ψ2 with Cooper pair densities
ρ1 and ρ2, and phases ϕ1 and ϕ2 respectively. If we bring the two pieces sufficiently close together, a
coupling will start to play a role and can be taken into account using a simple model if it is small enough.
We get two coupled equations,

i~
∂ψ1

∂t
= µLψ1 +Kψ2

i~
∂ψ2

∂t
= µRψ2 +Kψ1.

(2.25)

The coupling is described by a coupling constant K. If the superconductors are identical, the energies
will be equal, µ1 = µ2. If we then apply a potential difference V between the two superconductors and
offset the zero of energy, we get µ1 = eV , µ2 = −eV . Here 2e is the charge of the Cooper pairs, twice
the electron charge. We obtain

i~
∂ψ1

∂t
= eV ψ1 +Kψ2

i~
∂ψ2

∂t
= −eV ψ2 +Kψ1.

(2.26)

Now, we can substitute our assumption of the wave function form, ψ1 =
√
ρ1e

iϕ1 and ψ2 =
√
ρ2e

iϕ2 .
Then, we separate the two equations each in a real and imaginary part. To simplify, we write the phase
difference between the superconductors as ∆ϕ = ϕ2 − ϕ1,

∂ρ1
∂t

=
1

~
K
√
ρ1ρ2 sin(∆ϕ)

∂ρ2
∂t

= −1

~
K
√
ρ1ρ2 sin(∆ϕ)

∂ϕ1
∂t

= −K
~

√
ρ2
ρ1

cos(∆ϕ) + eV

~
∂ϕ2
∂t

= −K
~

√
ρ1
ρ2

cos(∆ϕ)− eV

~

(2.27)

The first two of these equations show that the change in pair density between the two superconductors
is opposite in sign, and equal in size, as expected from conservation of charge. To avoid charging of
the individual superconductors, there must be a current flowing through the circuit connecting the two
superconductors to the outside world (i.e. the source of the voltage difference). This shows that these
two equations already have the correct form,

I = Ic sin(∆ϕ). (2.28)

Where the Ic is a constant. An equation for this constant can be obtained frommore detailed microscopic
description of the situation, but what follows is called the Ambegaokar-Baratoff relation [31],

Ic =
π∆(T )

2eRn
tanh

(
∆(T )

2kBT

)
, (2.29)

12



where∆(T ) is the energy gap (temperature dependent), Rn is the normal state resistance of the junction
(due to quasiparticle tunneling) and kB is the Boltzmann constant.

The other two equations of Eq. (2.27), can be subtracted from each other to get on the left hand side the
derivative of the phase difference, ∂ϕ

∂t , and on the other side the voltage V with some constants. Shifting
these to the left hand side returns the other Josephson equation in Eq. (2.21).

2.2.2 Josephson inductance
In this thesis, we utilize Josephson junctions as inductors in a LC oscillator. We treat the junction as a
circuit element, as shown schematically in Fig. 2.10a. To do this accurately, we need to find the induc-
tance of a single Josephson junction, LJ. We follow the derivation of [27].

The general form of a voltage across an inductance is

V = L
∂I

∂t
. (2.30)

Using the chain rule, we can split the derivative with respect to time: ∂I
∂t = ∂I

∂∆ϕ
∂∆ϕ
∂t and we can use both

Josephson relations, Eq. (2.21), to obtain expressions for both parts,

∂I

∂∆ϕ
= Ic cos(∆ϕ)

∂∆ϕ

∂t
=

2eV

~
=

2πV

Φ0

. (2.31)

Where Φ0 is the magnetic flux quantum (Sec. 2.2.3). We can combine these to obtain an equation of
the form of the general voltage-over-inductor relation,

V =
Φ0

2πIc

1

cos(∆ϕ)
∂I

∂t
. (2.32)

Where we retrieve the Josephson inductance

LJ(ϕ) =
Φ0

2πIc

1

cos(∆ϕ)
=

Φ0

2πIc

1√
1− sin2(∆ϕ)

=
Φ0

2πIc

1√
1− I2

I2
c

. (2.33)

We see that the Josephson inductance is non-linear, it depends on the phase difference between the
superconducting parts of the junction.

2.2.3 Flux quantization
We take a side-step from the Josephson junctions, to explain a phenomenon called flux quantization.
In a superconductor, the magnetic flux is quantized, with one magnetic flux quantum being Φ0 = h

2e ≈
2.07 · 10−15 Wb. We can see effects of this if the superconductor surrounds a non-superconducting
part, for example if we have a hole in a ring-shaped superconductor, or if we consider the center of a
magnetic vortex. Flux quantization was first predicted phenomenologically by London in 1948 [32], and
experimental evidence for flux quantization was given in 1961 for cylinders [33] and rings [34].

Flux quantization follows from the form of the superconducting wave function, Eq. (2.22) ψ =
√
ρeiϕ,

where again ϕ is the phase of the wave function. Adding 2π to the phase ϕ will result in an identical
wave function, due to the exponent. So when a superconductor has a hole (e.g. it is loop or ring shaped,
or has a non-superconducting part in its interior), the wave function can contain a phase change of n2π
(integer n) over the loop without it changing the state the superconductor is in.

There are two main factors which affect the phase of the wave function: The movement of the charge
carriers (Cooper pairs) and the magnetic field, expressed by the supercurrent density j⃗ and the vector
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(a)

V1 V2

CC

LJ RJ CJ

Figure 2.10: a) Model of a Josephson junction capacitively coupled to a transmission line. The junction, denoted
by a cross, can be treated as a resistively and capacitively shunted inductor with inductance LJ. It is capacitively
coupled to a transmission line by a capacitor CC.

potential A⃗ respectively (see also Appendix I of [9]). To see how the phase of the wave function changes
around a hole on a loop or ring shaped superconductor, we study the gradient of the phase and integrate
it over a path around that loop.

First, the gradient of the superconducting phase (∇ϕ) is

∇ϕ =
1

~
(mv⃗ + qA⃗) =

1

~

(
m

qnp
j⃗ + qA⃗

)
, (2.34)

where m is the mass of a charge carrier, v⃗ its velocity, q the charge, np the number of charge carriers, j⃗
the current density, and A⃗ is the local (magnetic) vector potential. Wemust have that the superconductor
be described by one wave function, but as we have seen earlier, we can add n2π (n integer) to the phase
without it changing the state. Thus, total change in phase around a hole in the superconductor must be
an integer multiple of 2π. In other words, the flux quantization condition states∮

∇ϕ · d⃗l = 2πn. (2.35)

for integer n. Using the expression for the phase gradient, this becomes

m

qnp~

∮
j⃗ · d⃗l + q

~

∮
A⃗ · d⃗l = 2πn, (2.36)

which can be rewritten in terms of magnetic flux. We can simplify this by using the London penetration
depth λL =

(µ0qnp
m

)−1/2, which is a constant [35], to get

µ0λ
2
L

∮
j⃗ · d⃗l +Φ = nΦ0. (2.37)

Here Φ =
∮
A⃗ · d⃗l is the flux enclosed by the superconducting loop, Φ0 is the flux quantum and n is again

an integer.

Now we explain how to see Eq. (2.37). Suppose we have a ring-shaped superconductor with zero
external magnetic field, Fig. 2.11a. Now if we impose a small magnetic field that generates a certain
flux through the ring (Fig. 2.11b), an extra ’compensation’ current, known as the screening current, will
form in the ring, which follows from Faraday’s law. This extra current will generate a magnetic field to
counter the flux from our external field, so that the total flux through the ring is still zero.
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We can invert the situation, by having some magnetic flux already penetrating the hole in the super-
conductor (if we cool it down in the presence of an external field). Then we have flux trapping, which
means that one or more flux quanta are present in the hole in the superconductor. The currents in the
superconductor will then ensure that the flux in the hole is always equal to the trapped flux, even if the
external magnetic field is zero, as in Fig. 2.11c.

(a)

B⊗
ext = 0

Φ = 0

(b)

B⊗
ext > 0

Φ = 0

Iscreen

(c)

B⊗
ext = 0

Φ = Φ0

Iscreen

Figure 2.11: a) A superconducting ring (red) cooled down below its critical temperature with zero external magnetic
field B⊗

ext will have no flux Φ threading the ring. b) When a weak external field is added, the flux threading the ring
will still be zero. To achieve this, a screening current will run through the ring. c) When we apply an external field as
we cool down the structure so that it becomes superconducting, we can trap flux in the loop. Then, the screening
current will generate flux through the loop even if the external field is zero.

2.2.4 SQUIDs
A Superconducting QUantum Interference Device (SQUID) is a device that consists of a superconduct-
ing loop interrupted at one (RF-SQUID, where RF is Radio Frequency, and used instead of AC) or two
(DC-SQUID) points by a Josephson Junction [9]. The first fabrication of SQUIDs dates back to the 60’s
[36, 37], and the technology has been developed further alongside the semiconductor industry and with
the advent of high-TC superconductors [9].

SQUIDs tie the concepts of Josephson junctions and flux quantization together. The two junctions form
a loop (usually a rectangle) of superconducting material, where the flux penetrating the loop is quantized.
An example of a SQUID is shown in Fig. 2.13. The current through the loop cannot take any arbitrary
value (as it could in the ideal superconductor in Sec. 2.2.3), because the Josephson junctions have a
critical (maximum) current. Suppose we have a current from one side of the loop to the other (via the
connections at the top and bottom of Fig. 2.11a, for example), and we apply an external magnetic field.
The maximum current through the SQUID will change with the applied field, as plotted in Fig. 2.12a.
Effectively, we can change the critical current of the junction by applying a magnetic field.

The modulation of the critical current can also be seen as a modulation of the inductance that the SQUID
has. For a DC SQUID with two identical Josephson junctions with each a Josephson inductance LJ

2 , an
external flux Φext, the SQUID inductance is given by [38]

LSQUID =
LJ∣∣∣cos(πΦext

Φ0

)∣∣∣ . (2.38)

Based purely on this equation, we would have a SQUID inductance that diverges for specific values
of our applied magnetic field, Φext =

π
2 ,

3π
2 , 5π

2 , ..., as is plotted in Fig. 2.12b. We have only used a
simple model to describe ideal SQUIDs, without taking into account things such as the loop inductance,
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(a) (b) (c)

Figure 2.12: a) For a SQUID, the critical current is modulated by the flux penetrating the SQUID loop. The effective
critical current is a periodic function of the flux. b) Based on the modulation of the critical current, the inductance of a
SQUID is also modulated by the flux penetrating the loop area. c) The resonance frequency of a SQUID embedded
in an LC oscillator is also modulated by the flux penetrating the SQUID loop.

Φ

Figure 2.13: SEM image of a SQUID. In black the Silicon substrate, in dark grey two metal electrodes and in lighter
grey the two Aluminium Josephson junctions. The flux through the red loop between the two junctions is quantized,
and an external field can be used to modulate the SQUID inductance. Overlaid on the image in red is part of the
circuit diagram showing two Josephson junctions denoted by crosses, and the flux through the area they enclosed
denoted by Φ.

or mutual inductance from the parallel junctions. Qualitatively, this model serves to illustrate the most
important function of the SQUID for this thesis, namely that of a tunable inductor.

When combined with a capacitance C, the SQUID forms a resonator with resonant frequency

ω0 =
1√

C LJ∣∣∣cos(π Φext
Φ0

)∣∣∣
. (2.39)

The resonance frequency of the SQUID oscillator (also SQUID cavity) is modulated by the flux pene-
trating the SQUID loop, as plotted in Fig. 2.12c. The fact that we can tune the resonance frequency of
an oscillator containing a SQUID by varying the applied magnetic field makes is a valuable structure for
many applications in research.

2.3 Parametric amplification
Parametric amplification is an effect where the amplitude of the oscillation of a harmonic oscillator is
increased (i.e. it is driven) by a periodically varying system parameter. If the driving frequency is approx-
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imately twice the natural frequency of the oscillator, it amplifies an input signal (i.e. the initial oscillation),
depending on the phase relation between the two oscillations. An example of this is moving your center
of gravity by standing and squatting on a swing to go faster1. In our case, this input signal is electrical,
in the form of an oscillating voltage and current. The phenomenon was first described by Faraday [1],
and its description was generalized by Lord Rayleigh [39]. Parametric amplifiers are commonly used in
electronics [4] and optics [40].

2.3.1 Parametric oscillation
Parametric oscillators are common across many fields of physics, so parametric oscillation is generally
treated in textbooks on dynamics or optics [40]. The main goal of this section is to show how vary-
ing the parameter of an oscillator at a specific frequency results in a growing oscillation amplitude, i.e.
driving the oscillator. To do that, we will treat the LC oscillator as a parametric oscillator. We can apply
the derivation we perform below on an RLC oscillator to include damping, but this makes it rather tedious.

We start from an LC oscillator, and we make the resonance frequency time dependent. We can do
this by varying the capacitance, or the inductance (or both). For the derivation, it does not matter which
one we vary, so to keep it general we will not specifically choose one. We will just make the resonance
frequency itself time dependent,

1

LC
= ω2

0 = ω2
0(t). (2.40)

Parametric oscillation does not happen for all time-dependent resonance frequencies. To get parametric
oscillation, we must have a sinusoidal variation, with a frequency that is approximately twice the natural
resonance frequency of our oscillator. So, we describe the time dependence to be small (amplitude α),
on top of an average ω0, and sinusoidal with frequency 2ω

ω2
0(t) = ω2

0 (1 + α sin(2ωt)) . (2.41)

We can put this into the differential equation describing the current through our LC oscillator. To show
parametric oscillation, we must solve

∂2I

∂t
+ ω2

0 (1 + α sin(2ωt)) I = 0. (2.42)

Because the amplitude of the variation of our resonance frequency is small, it will not alter the general
form of our solution. We expect the current to be sinusoidal, as in Eq. (2.1), and grow (or decay) over
time, slowly with respect to the resonance frequency. We modify the expected solution from Eq. (2.1)
by separating the fast (cos and sin) and slowly changing (A and B) parts, and try a solution of the form

I(t) = A(t) cos(ωt) +B(t) sin(ωt). (2.43)

Here, we have tacitly assumed the solution has frequency ω, instead of the resonance frequency of the
bare oscillator, ω0. We can do this, as long as ω and ω0 are not too different. We will later quantify the
allowed difference (i.e. the detuning) between the frequencies.

Now, we substitute the proposed solution into the differential equation and work out the double time
derivative. This gives us

Ä(t) cos(ωt)− 2ωȦ(t) sin(ωt)− ω2A(t) cos(ωt) + B̈(t) sin(ωt) + 2ωḂ(t) cos(ωt)− ω2B(t) sin(ωt)
+ ω2

0 (1 + α sin(2ωt)) (A(t) cos(ωt) +B(t) sin(ωt)) = 0. (2.44)

We can drop the terms containing Ä(t) and B̈(t) because we presumed them to change slowly, so their
second time derivative will be small. We also see that by writing out the last term, we get terms that

1The standing/squatting is important: the parameter we vary is the length of the oscillator. By standing/squatting, we change
the distance between our center of mass and the rotation point of the swing, which is determines the length of the oscillator. This
is the parameter that we vary to make the oscillation parametric.
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contain a product of sines and cosines, which we can rewrite using the product-to-sum relations,

sin(2ωt) cos(ωt) = 1

2
(sin(ωt) + sin(3ωt))

sin(2ωt) sin(ωt) = 1

2
(cos(ωt)− cos(3ωt)) .

(2.45)

This step contains the crux of the derivation. The sinusoidal time-variation of the parameter of our oscil-
lator at frequency 2ω results in a term at frequency ω, and one at 3ω. Using the assumption that ω is not
too different from the resonance frequency of the oscillator, ω0, this term effectively serves as a driving
force resonant with the oscillator. Intuitively, we would expect the system to oscillate with increasing
amplitude if we drive it on resonance. This is the basis of parametric amplification.

To show parametric oscillation more formally than just intuition, we continue with the derivation. We
neglect the terms with 3ωt, presuming them to be far off-resonance and thus strongly attenuated. Then,
we group the terms from Eq. (2.44) by whether they contain a sin(ωt) or a cos(ωt). We get(

−2ωȦ(t)− ω2B(t) + ω2
0B(t) + ω2

0

α

2
A(t)

)
sin(ωt)

+
(
−ω2A(t) + 2ωḂ(t) + ω2

0A(t) + ω2
0

α

2
B(t)

)
cos(ωt) = 0. (2.46)

To get this expression to be zero at any time, we must have both the parts in the big brackets be zero,
as sin(ωt) and cos(ωt) will never be simultaneously zero for any t. That is, we get two equations, which
are coupled differential equations for amplitudes A(t) and B(t),

−2ωȦ(t)− ω2B(t) + ω2
0B(t) + ω2

0

α

2
A(t) = 0

2ωḂ(t)− ω2A(t) + ω2
0A(t) + ω2

0

α

2
B(t) = 0.

(2.47)

To solve these equations and obtain expressions for A(t) and B(t), we need to decouple them. We can
do this by the following change of variables,

A(t) = r(t) cos(θ(t))
B(t) = r(t) sin(θ(t)),

(2.48)

and we get

−2ω
(
ṙ cos(θ)− rθ̇ sin(θ)

)
− ω2r sin(θ) + ω2

0r sin(θ) +
α

2
ω2
0r cos(θ) = 0

2ω
(
ṙ sin(θ) + rθ̇ cos(θ)

)
− ω2r cos(θ) + ω2

0r cos(θ) +
α

2
ω2
0r sin(θ) = 0.

(2.49)

Now we have translated the problem into one of finding r(t) and θ(t). To obtain an equation for r(t), we
multiply the upper equation by − cos(θ) and the lower equation by sin(θ) and add them. We have

ṙ =
αω2

0

4ω
cos(2θ)r. (2.50)

To obtain an equation for θ(t), we multiply the upper equation by sin(θ) and the lower equation by cos(θ)
and then add the two. We have

θ̇ = −αω
2
0

4ω

(
sin(2θ)− 2

α

ω2 − ω2
0

ω2
0

)
. (2.51)

The equation for θ(t) does not depend on r(t), so we can solve it. Linearising θ, we can see that it will
move towards an equilibrium value

sin(2θmathrmeq) =
2

α

ω2 − ω2
0

ω2
0

. (2.52)
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With this, we obtain as the equation for r(t)

ṙ =
αω2

0

4ω
cos

(
2
ω2 − ω2

0

2ω

)
r. (2.53)

Which can straightforwardly be solved,
r = r0e

at. (2.54)

Where the exponential growth rate a is

a =
αω2

0

4ω
cos

(
2

α

ω2 − ω2
0

ω2
0

)
. (2.55)

To recap, we have that θ(t) becomes a constant, while r(t) grows exponentially. This means that A(t)
and B(t) also grow exponentially, with the same rate as r(t), and that the amplitude of our solution I(t)
grows exponentially as well. Or, to put it formally,

I(t) = A(t) cos(ωt) +B(t) sin(ωt)
= r(t) cos(θ(t)) cos(ωt) + r(t) sin(θ(t)) sin(ωt)
= r0e

at (cos(θeq) cos(ωt) + sin(θeq) sin(ωt)) .
(2.56)

So, the current through our oscillator oscillates with a frequency ω, and with an amplitude r0eat that
grows (or decays) exponentially with time.

Obviously, this becomes un-physical quickly: We cannot have an infinitely large current through our
system. A partial solution to this problem can be achieved by including a resistance, which is straight-
forward but rather tedious, and results in the equation for r(t),

r = r0e
(a−κ)t, (2.57)

where the κ is the loss rate. The difference between the growth rate a and the loss rate κ determines
whether the oscillations keep growing, keep decaying or stay the same. This effect is straightforward:
The resistance in a driven RLC circuit damps the oscillations which would continue growing in a driven
LC circuit.

As a last comment on this derivation: We have tacitly assumed that ω0 and ω are not too different.
If they are identical, θeq will be zero, but if they are not (for a certain detuning), it will become non-zero.
This will cause the exponential growth constant a to decrease. The condition for parametric oscillation
on ω is

ω0

√
1− α

2
< ω < ω0

√
1 +

α

2
(2.58)

Outside this range of detuning, we cannot get a growing oscillation intensity. This is one of the limits
of a parametric amplifier: We have to drive the oscillator at a frequency 2ω that is not too different from
twice the natural resonance frequency ω0

In this part, we have shown that for an oscillator, varying its parameters at twice the natural frequency
results in oscillations at its natural frequency that grow exponentially. In other words, we have shown
parametric oscillation. To go from parametric oscillation to (a description of) a parametric amplifier, we
need to consider other things, such as for example an input signal (oscillating voltage or current) that is
to be amplified. We will do that in the next section.

2.3.2 From a parametric oscillator to a parametric amplifier
To obtain a description of a parametric amplifier, we must add an input signal (oscillating voltage or
current) to our differential equation. Initially, we will treat it as an harmonic oscillator where we describe
the amplitude of the internal field, and for later steps we can place the harmonic oscillator into our circuit
as done in, for example, [41].
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We start with a differential equation as in Eq. (2.42), but now we include a signal fe and some damping
in the form of a loss rate κ = ω0

Q . That is,

∂2X

∂t2
+ κ

∂X

∂t
+ ω2

0(1 + α sin(2ωt))X = fe. (2.59)

We make a switch in variables, from our dummy variable X to the complex variable A and A∗,

A =
∂X

∂t
− iω∗

1X

A∗ =
∂X

∂t
+ iω∗

1X

ω1 = ω0

((
1− 1

4Q2

) 1
2

− i

2Q

)
.

(2.60)

These variables, A and A∗ represent the complex field amplitudes. We are interested in how they
change, and rewriting Eq. (2.59) in terms of the field amplitude gives us

∂A

∂t
= −iω1A− iα2

p sin(2ωt)
A−A∗

ω∗
1 + ω1

+ fe, (2.61)

where we have taken αp = α
ω0
. For the systems in this thesis, we can make the high-Q approximation.

If Q≫ 1, we take ω1 = ω0 − iκ
2 . Then we can simplify our equation for the complex field amplitude,

∂A

∂t
= −i

(
ω0 − i

κ

2

)
A− i

α2
p

2ω0
(A−A∗) sin(2ωt) + fe. (2.62)

Now we assume that the solution for the intra-cavity field takes the form A = A0e
−iωst, that our signal

is given by fe =
√

κe
2 Sine

iωst, and we will call ωs − ω0 the detuning between the signal and resonance
frequencies.

So far, the description has been of a general parametric amplifier. Here, we will only use this bit of
theory for the analysis of our specific amplifier. That is, we are only interested in the transmission of
a side-coupled cavity, S21, and we know we measure in a frame rotating with the signal frequency ωs.
Furthermore, for the specific system studied in this thesis, half the frequency of our parametric modula-
tion, ω, is slightly different from ωs.

Taking all the steps described above, we obtain

0 =
(
i(ωs − ω0)−

κ

2

)
A0 −

α2
p

4ω0
A∗

0e
i(ω−ωs)t +

√
κ

2
Sin. (2.63)

We can rewrite this to obtain an expression for the cavity field amplitude A0,

A0 =

√
κe
2

1

κ2

4 −
(

α2
p

4ω0

)2
+ (ωs − ω0)2

(
α2
p

4ω0
ei(ω−ωs)t + i(ωs − ω0) +

κ

2

)
Sin. (2.64)

We are interested in what we get at the output port of our system. For a side-coupled cavity in transmis-
sion, we have

Sout = Sin −
√
κe
2
A0. (2.65)

Combining these last two equations, we can get an expression for the parameter we can measure,

S21 =
Sout
Sin

= 1− κe

κ2

4 −
(

α2
p

4ω0

)2
+ (ωs − ω0)2

(
α2
p

4ω0
ei(ω−ωs)t + i(ωs − ω0) +

κ

2

)
. (2.66)

So, we have obtained an expression for the transmission parameter, S21 of a parametric amplifier that
is side-coupled to a transmission line. Qualitatively, we see that we should get a signal oscillating with
ω − ωs, the detuning between our signal and half the frequency of our parametric pump.
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2.3.3 Modes of parametric amplification
Turning from the description of our specific parametric amplifier back to a more general one, we will now
describe several types of parametric amplifiers. We will first treat degenerate versus non-degenerate
amplification, and later treat the difference between 3-wave and 4-wave mixing, which is the 3-photon
versus the 4-photon process.

Degenerate versus non-degenerate
Degenerate versus non-degenerate parametric amplification (Fig. 2.14) refers to the frequency relation
between half the pump and the signal. Suppose we pump at a frequency twice the resonance frequency
of our cavity, ωd = 2ω0. If the input signal is at exactly half of that frequency, ωs = ω0, we have what
is called a degenerate parametric amplifier. In this case, the amplifier is phase-sensitive, the phase
relation between the pump and the signal determines if we get amplification or de-amplification [42, 43].
In Sec. 3.5, we simulate a general parametric amplifier and show the phase-sensitivity of the gain for a
degenerate parametric amplifier.

Non-degenerate parametric amplification happens when the signal is not exactly half of the pump fre-
quency, ωs ̸= ω = ωd

2 , but has a different frequency. We will refer to the difference between the actual
frequency of the input signal and half of the pump signal, ωs − ω as the detuning. The non-degenerate
case differs in three ways from the degenerate case.

The first difference is that for the non-degenerate case, the amplification (gain) is effectively not phase-
sensitive any longer. That is, the gain is still affected by the phase difference between the signals, but the
phase difference between two signals at different frequencies is not a constant. The phase difference
changes with 2π times the frequency difference (detuning) between half the pump and the input signal
every second. If this detuning is large enough, the phase difference changes so fast that the amplifier
does not reach the steady-state gain it can reach in the degenerate case. Effectively, the gain in the
non-degenerate case is the mean value of the gain in the degenerate case integrated over the phase.
As this is a constant, the gain for a non-degenerate parametric amplifier is effectively independent of the
phase-difference between the input signal and the pump.

The second difference between the non-degenerate and the degenerate cases is the appearance of
an idler at frequency ωi, detuned on the other side of the resonance so that ωs + ωi = 2ω = ωd. This is
shown in the bottom case of Fig. 2.14. If the amplifier amplifies the input signal with a gain

√
G, the idler

will be amplified with respect to the input signal with a factor
√
G− 1 [16].

The last difference between the degenerate and non-degenerate amplifiers lies in the limit to the noise
they add to a signal. In the ideal case, a phase-sensitive amplifier does not add any noise to the signal
it amplifies, while a phase-insensitive amplifier does add some noise [10]. This lack of noise is one of
the main reasons to study parametric amplifiers.

3-wave versus 4-wave mixing
3- and 4-wave mixing refers to the process that a parametric amplifier uses. This is independent of the
degenerate versus non-degenerate case. For a 3-wave amplifier, one pump photon ωd can split into a
signal- and an idler wave (signal and idler photon, or two signal photons, in the degenerate case), via
ωd = ωs + ωi. That is, the pump frequency is twice the resonance frequency of the cavity ωd = 2ω0, as
is sketched in Fig. 2.14. For a 4-wave amplifier, two pump photons ωd can be split into a signal- and an
idler wave, via 2ωd = ωs + ωi. That is, the pump frequency is equal to the cavity frequency, ωd = ω0.

The difference between the 3-wave and 4-wave processes appears small, but it is important for practical
reasons. For example, in a 3-wave degenerate parametric amplifier, with the signal at 2π·6 GHz, the
pump must be at 2π·12 GHz, and we can easily filter the pump from the output signal. For a 4-wave
degenerate parametric amplifier, this would be an issue. On the other hand, generating a pump at 2π·12
GHz could require different electronics than generating a pump at 2π·6 GHz.

Another difference between 3-wave and 4-wave mixing is that the 4-wave mixing requires a certain

21



Figure 2.14: Frequency diagram of parametric amplification, degenerate (top) versus non-degenerate (bottom)
mode. In both cases, we pump parametrically at frequency that is twice the resonance frequency of the cavity,
ωd = 2ω0. For the degenerate case, our signal is at frequency ωs = ω0, while for the degenerate case, it is
slightly detuned from that. For the non-degenerate case, we get an additional peak detuned on the other side of
the resonance, which is called the idler, such that ωs + ωi = 2ω = ωd.

non-linearity, as it involves a two-photon process. Parametric amplification can only happen if the pump
is at twice the resonance frequency of the oscillator. The way 4-wave mixing works is that if the param-
eter we vary has a large enough non-linearity, the drive at ω0 can become an effective drive at 2ω0. The
difficulty of realizing this non-linearity is dependent on the system specifics. In contrast to the 4-wave
process, the 3-wave process does not require any non-linearity at all.

Flux-pumped versus current-pumped
For our specific type of parametric amplifiers, the Josephson parametric amplifier, there is another choice
in how to pump the system [44, 16]. It is possible to pump the system by sending in a current (signal)
at 2ω0, but it is also possible to vary the flux penetrating the SQUID loop at 2ω0. The current-pump has
the advantage of requiring only one transmission line where the flux-pump requires two, but this brings
with it the disadvantage of having to separate out the (desired) signal from the pump.

A flux-pumped amplifier requires some extra consideration in design. To amplify as much as possi-
ble (achieve a high gain), we want to vary the flux penetrating the SQUID loop by a large amount. This
requires positioning the flux-pump transmission line such that it generates the largest magnetic field (and
thus flux) at the SQUID. In a current-pumped amplifier, this is not an issue, since the pump is coupled
to the cavity in the same way as the signal is.

An overview of these different types of JPAs is given in Fig. 2.15. Here, combinations of degenerate ver-
sus non-degenerate, 3-wave versus 4-wave and flux-pumped versus current-pumped are shown. For
the relevant systems, the flux penetrating a SQUID loop is denoted by the Φ with an arrow circled around
it. The crosses denote Josephson junctions, and the pipes represent a coupling to a transmission line.

2.3.4 JPA parameters
For building a practical JPA, it is useful to look at design parameters from other JPAs used in previous
works, an incomplete overview of these is given in Table 2.1. Important typical parameters of an amplifier
are the (operating) gain, the -1dB bandwidth, the input power limit and noise temperature. In most of the
mentioned papers, the gain stated is not the maximum gain the amplifier can reach. Conventionally, a
single operating point is chosen such that the amplifier has a stable gain. That is, around its maximum,
the gain might be very sensitive to disturbances, so a better signal-to-noise ratio is reached if a lower
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Figure 2.15: Overview of JPAs with different number of ports, different modes of pumping (3-wave and 4-wave)
and degenerate versus non-degenerate setups. Flux penetrating a SQUID loop is denoted by the Φ with the arrow
circled around it, the crosses represent Josephson junctions [45].
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Table 2.1: Overview of JPA parameters in some recent papers

Gain Bandwidth Input power Process Pump Connection Mode
(dB) (MHz) limit (dBm)

[47] 20 30-40 -102 3-wave current reflection degenerate
[48] 20 100 - 3-wave flux - both
[49] 30 5 -93.1 - flux transmission degenerate
[50] 20 10 -124 3-wave current transmission non-degenerate
[51] 20 1 - 3-wave current transmission non-degenerate
[52] 21 2.3 -190 3-wave current reflection -
[53] 20 1 - 3-wave flux reflection non-degenerate
[54] 28 3 -127 3-wave current - non-degenerate
[46] 20 640 -110 - current reflection non-degenerate
[55] 33 1.3 -103 4-wave current reflection degenerate

but more stable gain is chosen.

A JPA has almost by default a rather narrow frequency band in which it can amplify. This is depen-
dent on the quality factor of the SQUID cavity, which we want to be high to achieve a high gain and low
losses, but we want it to be low to have a broad bandwidth. Several of the papers mentioned in Table 2.1,
e.g. [46], feature specific JPA designs that have a much broader bandwidth than a conventional JPA. A
broad bandwidth is desirable for many experiments, as the frequency of the signals of interest might not
be known beforehand.

Two types of bandwidth can be mentioned in regards to a JPA. The flux can be tuned with a static
magnetic field (biasing field), which changes the frequency of the cavity and thus moves the bandwidth
of the amplifier. This is called tunable bandwidth, and can be on the order of GHz. However, this tuning
can only be done slowly compared to the frequencies under study (GHz). Usually, we are interested in
the instantaneous bandwidth, which is the bandwidth of our amplifier without changing the biasing field.
This gives the range of frequencies which can be amplified simultaneously, and this is commonly the
limiting factor for experiments. For most of the papers cited in Table 2.1, the instantaneous bandwidth
is on the order of MHz on a GHz signal.

The maximum input power of a JPA is also of interest for practical reasons. The current through a
JPA is limited, and this also limits the maximum power of the oscillation. If a strong signal enters the
JPA, it gets amplified until its amplitude reaches the limit of the amplifier. That is, the gain of the amplifier
decreased for higher signal strengths [45]. Typically, the power level where the gain decreases by 1 dB
is taken as the input power limit.

The most important parameter missing in Table 2.1 is the added noise, or noise temperature of the
amplifiers. The reason for this, is that it is often not reported in the papers, with as underlying reason
that the noise temperature is hard to measure. This is treated more in-depth in Sec. 2.4.

2.4 Noise and noise temperature
Quantum noise has been the subject of many studies over the past years (see e.g. [56] for a review),
and we will look only in very simple terms at it in this thesis. That is, we will only treat it in terms of the
noise temperature of an amplifier, and refer to other works for more fundamental discussions of quantum
noise of amplifiers (e.g. [10]).

2.4.1 Thermal noise
Thermal noise is caused by the thermal movement of the charge carriers in a conductor. For high enough
frequencies and low enough temperatures, the thermal noise power goes to zero. In the systems used
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in this thesis, this zero-temperature approximation doesn’t hold. The power spectral density of thermal
noise is multiplied with a factor η(ω), given as

η(ω) =
hω
kBt

e
hω
kBt − 1

, (2.67)

which is generally 1 for electronics at normal temperatures, but which drops to 0 for temperatures near
absolute zero and frequencies in the GHz range. For this thesis, we work with 2π·6 GHz signals at 250
mK, so η ≈ 0.5. Although lower temperatures (10 mK) where η ≈ 0 are quite within reach of modern
dilution fridges, the fridge used for this thesis is limited to 250 mK.

This work focusses on amplifiers, for which the added noise is usually expressed as a noise tempera-
ture: The temperature where thermal noise would have the same noise power (spectral density) as the
noise the amplifier adds to the signal. The noise temperature is given for a certain measuring bandwidth
B (Hz) as

P

B
= kBT (2.68)

with P being the noise power (W) and T (K) the noise temperature. This is also called Johnson-Nyquist
noise [57].

2.4.2 Measuring noise temperatures
There are several methods commonly used to obtain the noise temperature of an amplifier, the Y-factor
method, the gain-method and the noise-figure-meter method. They are all based on the same principle,
namely that of sending in a signal at a know noise temperature and measuring the noise temperature of
the output. Based on which parameters of the system under study are known (and to which accuracy),
several variations can be used. The noise temperature of the amplifier can be extracted from

P

B
= GkB(Tinput + Tamplifier). (2.69)

where G is the amplifier gain, and the noise temperature of the input, Tinput, is known.

If the gain of the amplifier is unknown (or not known very accurately), the Y-factor method can be used.
It is based on two measurements, where the noise temperature of the input is varied. From the noise
temperature of the output signal of each of the measurements, both the amplifier noise temperature and
the amplifier gain can be found in principle.

If the gain of the amplifier is known (accurately), the added noise temperature can in principle be ex-
tracted from a single measurement where the input noise temperature is known. This is called the
gain-method. This can also be done in an automated manner, using a calibrated noise source and a
noise-figure-meter function of the spectrum analyser.

2.4.3 Noise temperature of an amplifier chain
For the specific system under study in this thesis, there are several issues with the measurement meth-
ods of the previous section. For one, we do not have a single amplifier. Instead, we have an amplifier
chain, and we can only measure the noise temperature of the entire amplifier chain. The noise tem-
perature of an amplifier chain is described by the Friis formula [21]. The total noise temperature of the
amplifier chain, Tchain is determined from the noise temperatures of the amplifiers (T1, T2, etc.) and their
respective gains (G1, G2, etc.) as

Tchain = T1 +
T2
G1

+
T3

G1G2
+ . . . (2.70)
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Extracting the noise temperature of the first amplifier requires knowing the gain of all amplifiers, and
knowing the noise temperature of all other amplifiers.

For our specific amplifier chain, we know the noise temperatures and gains of the other amplifiers from
their specifications. This should not be an issue, except that the noise temperature that we are inter-
ested in measuring is potentially very low, less than 1 K [58]. This means that any inaccuracy in the
noise temperature or gain of the other amplifiers could affect the noise temperature obtained for our
amplifier.
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3
Design, fabrication and simulation

This chapter details the design and fabrication method of the structures and samples used in this thesis,
as well as the measurement set-up and protocols used to characterize them. We also describe issues
found in the fabrication process, and ways to resolve them. Finally, we also perform simulations of a
general parametric amplifier with an additional Duffing non-linearity.

3.1 Facilities
The fabrication of the samples was donewithin the Kavli Nanolab, using the facilities of the Van Leeuwen-
hoek Laboratory, Delft, The Netherlands. The majority of the equipment used for fabrication is summa-
rized below, and shown in Fig. 3.1. A brief description of the equipment function is given, more details
can be found in textbooks such as [59].

1. The AC450 sputterer (Fig. 3.1a) is used to deposit metal on a sample chip. To do this, a plasma is
created between electrodes in such a way that the ions (usually Argon) are accelerated towards a
metallic target. The impact of the ions on the metal releases atoms from the surface of the target,
which can then condense on the sample chip.

2. The Raith EBPG5000+ (Fig. 3.1b) is an Electron Beam Pattern Generator (EBPG) used to write
patterns on a chip. A layer of electron-sensitive polymer (called a resist) is spin-coated on the
chip. Impact of electrons changes the structure of the resist (i.e. the resist is exposed), which
can happen in a controlled and localized manner by using a focussed electron beam. Exposed or
unexposed parts of the resist layer can then be selectively removed using solvents.

3. The Leybold F1 (Fig. 3.1c) is used to etch away parts of the chip. Here, a plasma is made using
SF6, O2 or He gas, and the ions of this plasma are accelerated towards the chip where they
can etch the sample using a combination of collisions and chemical reactions. This allows both
chemical selectivity and some control over the (an)isotropy of the process. Depending on pressure
and plasma power, this can result in vertical side-walls.

4. The Tepla (Fig. 3.1d) functions similarly to the Leybold F1, it also uses the ions from a plasma (O2

or Ar) to etch away parts of the sample. However, this is mainly used to clean (remove organic
material from) a chip.

5. The FEI Nova (Fig. 3.1e) is a scanning electron microscope, which is used to obtain high-resolution
images of chips. Its role in fabrication is mainly to provide information on issues that might arise.
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Overview of the machines used for fabrication. a)-e) are located in the cleanroom of the Van Leeuwen-
hoek Laboratory, f) is located outside the cleanroom. a) AC450, b) Raith EBPG5000+, c) Leybold F1, d) Tepla, e)
FEI Nova. f) UTS a)-e) sourced from [60].

6. The UTS (Fig. 3.1f) is an evaporator, which is also used to deposit metal on a chip. In contrast
to the AC450 (sputterer) and evaporator uses a heater or electron beam to heat a metal source.
The target chip is far enough away from the source for the atoms to be reasonably collimated.
In contrast to the isotropic sputtering (metal atoms hit the sample from all directions), anisotropic
evaporation allows good control of the incidence direction of the metal atoms.

Besides this set of equipment, there are multiple smaller machines used for different steps in our fabri-
cation. We will explain in general terms the process of lithography, and the machines used for this.

Lithography is the process of creating patterns on a semiconductor substrate. Our designs are based
on a planar, Silicon (Si) substrate which forms the back-bone of our sample. It is a small (usually 10×10
mm2) square of Silicon typically 500 µm thick, with a layer of Silicon oxide (SiO2) on the outside. An ex-
ample of such a substrate, though with other structures already patterned on top, is shown in Fig. 3.2a.
Typically, one side of the square is polished and reflective, and the other is not.

The substrate can be coated evenly with a light- or current-sensitive polymer (called a resist). To do
this, we place a small amount of the (liquid) polymer in the middle of our substrate, and then spin it
around to spread the polymer evenly. This process is called spin-coating. Typically, we have to bake
the substrate and polymer so that it is not liquid anymore. We can then use the light- or current-sensitivity
of the polymer to create the pattern. We selectively expose some areas of the polymer to light or current
(this refers to optical and electron-beam lithography, respectively), and use the chemical change that
either of these two processes induce in the polymer to selectively remove parts of the polymer layer (this
is called developing, as with photographic film). With this pattern in the resist, we can then controllably
remove (etch) or deposit metallic or semiconductor parts on the chip. This determines the functionality
of our chip.

3.2 Design and fabrication
This section details the designs created in this thesis, and the fabrication thereof. There are three
different designs used: The first one is a design for a set of Josephson junctions and SQUIDs for testing
the properties of these structures. The second is a design for a parametric amplifier, and the third
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(a) (b)

Figure 3.2: a) Photograph of a typical 10 × 10 mm2 Silicon chip used in this work. The bright squares are metal
contact pads. The other brighter areas are pieces of metal that were left over from fabrication, the dark spots
near the top are the edges of the chip damaged during handling. b) Optical microscope image of several tapered
rectangular contact pads. They consist of a 100 nm thick alloy of Molybdenum-Rhenium (MoRe). The grey area is
the Silicon substrate.

is a different design for a parametric amplifier using a different fabrication method. We will treat the
fabrication processes when it is relevant for the design. The last subsection details the Josephson
junctions, as they are used in all designs and their fabrication is an important part of this thesis.

3.2.1 Junction and SQUID test design

To test the properties of our junctions and SQUIDs, we need to be able to connect these structures
electrically to our measurement equipment. To do this, we use contact pads, which is simply a flat area
made of metal that is large enough to connect a wire to, either by hand or by a precision manipulator.
In this design, the contact pads are tapered squares made of a 100 nm thick layer of a Molybdenum-
Rhenium (MoRe) alloy. An example of a contact pad is shown in Fig. 3.2b.

Each junction or SQUID requires at least two connections, one to send a current or voltage in, and the
other to ground. We can place our junction or our SQUID between two contact pads, and characterize
it through them. In Fig. 3.2b, we see part of the second contact pad of the pair at the bottom left of the
figure, and we can also see the small gap between them where the junction will be fabricated. This way,
we require twice as many contact pads as we have junctions (or SQUIDs).

The contact pads we use are large with respect to the size of our substrate, and take some time to
pattern, so we would like to reduce the amount of contact pads we need. As one of the contact pads
of the junction or SQUID is grounded, we can connect the grounded pads for all the structures we want
to test and replace it by a single common ground pad. However, we still need to ensure an electrical
connection from all the pads to the junctions, and then from all the junctions to the common ground. We
can do this by simply patterning a strip of conductive metal (called a wire, or a line) from the tapered end
of the contact pads to the junctions, and then from the junctions to the common ground.

To be able to easily connect to our contact pads from outside our sample, they are spaced symmet-
rically around the outside edge of the chip. The design shown in Fig. 3.3a features 32 contact pads in
four sets symmetrically placed around the chip. One of the connectors of each of the four sets is intended
as a common ground, and it is directly connected to a 20 µm wide metal strip (a wire) on the chip. The
other contact pads taper down to a 20 µm wide area where one end of the junctions or SQUIDs makes
contact. The other end of the junctions connects to the common ground wire. A close-up of this area of
the design is shown in Fig. 3.3b, where a 5× 2 µm2 junction (red) bridges the gap between the contact
pad (left) and ground wire (right). To ensure proper connection, a 2 µm overlap is designed between the
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(a) (b)

Figure 3.3: a) Overview of the junction test design showing four sets of contact pads with connections between
them. The junctions must be oriented in the same direction due to fabrication constraints, this causes two of the
arrays to have a different layout. b) Close-up of a single 5× 2 µm2 junction (red) for DC-measurements. On the left
side, the tapered end of the contact pad is drawn, while the right side shows the wire connecting to ground. Units
of the figures are in µm.

junction and each of the sides.

3.2.2 Parametric amplifier design
The design for our parametric amplifiers (Fig. 3.4a) resembles the previous design for testing junctions
and SQUIDs. It features the same four sets of contact pads with a common ground, but it includes
several other components which we will explain.

First, the size of the substrate used for this design is larger. The design still fits in a 10 × 10 mm2

area, but should be fabricated on a larger chip and then diced to size to prevent effects from edge- and
corner beads. These beads form during fabrication, when we spin-coat our resist, and are unwanted.

While the junction and SQUID test design was built for DC measurements, the parametric amplifier
design features several connector fit for GHz-frequency connections (AC connections, also referred to
as RF, Radio Frequency, lines). We will mainly operate the amplifier in the 4-8 GHz range, which is in
the microwave regime. The connections are referred to as microwave connections, or microwave lines.

There are four microwave connections from the measurement devices to the structures of our para-
metric amplifier, via the four big contact pads (two on the left side of Fig. 3.4a, and two on the right).
They have a tapered square shape similar to the DC contact pads, but are larger, 500 × 400 µm2, and
taper down to 10 µm width. One of these microwave connections is shown in Fig. 3.4b. The connectors
are spaced symmetrically around the design. The tapered end of the microwave connection is con-
nected to the center conductor of a coplanar waveguide. This coplanar waveguide is visible in Fig. 3.4a
as the line with the bend in the middle.

Fig. 3.4b also features a dicing marker (large chevron in the top left corner), and a set of 20 × 20 µm2

alignment markers (the three small squares inside the large red square). The dicing markers are used
to align the saw used for dicing the chip to size at the end of the fabrication process, the alignment
markers are used to align the different layers of the pattern. Both the dicing and the alignment markers
are placed symmetrically at the four corners of the design.
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Figure 3.4: a) Overview of the design of the parametric amplifier, showing two sets of two microwave connections,
each connected to a single SQUID cavity, the small rectangles near the middle of the design. Also visible are four
sets of SQUIDs and junctions, similar to the previous design. b) Close-up on one of the microwave connectors
(blue), and a set of red alignment (square) and dicing markers (chevron). c) Close-up on one of the SQUID cavities.
The top left shows an interdigitated capacitor stretching out of the image connected on the right side to the signal
line. The signal line is connected to ground via a SQUID (red). From below, an approaching flux pump line is also
shorted to ground. The scales of the image are in µm.

Another circuit element present in the design of our parametric amplifier is the interdigitated capaci-
tor. This consists of a set of long, rectangular pieces of metal colloquially called the fingers (digits). One
half of the set of digits is connected on one end to the center conductor of a coplanar waveguide, and
the other half of the set is connected to a ground plane. In this design, the entire are of the chip that
appears empty in Fig. 3.4a is in fact a grounded metal plane. If the digits of the structure are connected
in an alternating fashion to either of the two sides, they form a capacitor.

The interdigitated capacitor in this design consists of 200 separate 200 × 1 µm2 fingers, half of them
are connected to the transmission line and the other half are connected to the ground plane. A part of
the interdigitated capacitor in this design is shown in Fig. 3.4c. Here, the right side of the capacitor (the
washboard-like pattern) is connected to the center conductor of the transmission line. Half the digits are
connected out of view of the figure to the grounded plane.

The interdigitated capacitor forms the C of our LC-oscillator. The L is formed by a SQUID, two 7 × 2
µm2 junctions, which are shown in red in Fig. 3.4c. One end of the junctions is connected to the (end of
the) center conductor of a the transmission line, the other is connected to the grounded plane. These
two elements together form our SQUID cavity.

Below the SQUID in Fig. 3.4c, we can see the end of a different transmission line. This line is directly
connected to the ground plane next to the SQUID. The connection here is also slightly more narrow
than the rest of the center conductor. This was done to increase the inductance of this part of the line,
so a current through the transmission line generates a strong magnetic field close to the SQUID. This
field is then varied over time, and this changes the inductance of the SQUID. This is used to pump the
parametric amplifier, and is referred to as the flux pump line.

The parametric amplifier design involves two main layers. The first is a 100 nm thick Molybdenum-
Rhenium alloy (MoRe) layer, which is sputtered directly on top of the cleaned Silicon substrate. This
layer contains all the contact pads, the transmission lines (coplanar waveguides), the interdigitated ca-
pacitors and all the markers. The pattern is etched into the MoRe layer using a reactive ion etcher
(Fig. 3.1c). The full recipe containing the parameters of all the fabrication steps is given in Appendix A.
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The second layer is the Aluminium layer, which is fabricated in a different way. First, the pattern is
created in the resist covering the chip. Then, Aluminium is evaporated onto the entire chip. Most of
the Aluminium is then removed by lift-off, a process where the resist is chemically removed and this
releases the metal deposited on top. Only the metal that was deposited in the areas where the resist
was selectively removed (i.e. the pattern) remains on the sample. The Aluminium pattern layer contains
the Josephson junctions.

Impedance matching a coplanar wave-guide
The parametric amplifier design is the first of our designs that contains transmission lines (coplanar
waveguides) to transmit GHz-frequency radiation. It is important to pay attention to the design of this
circuit element. We want to prevent unwanted reflection of the microwave signal at the interface be-
tween the chip and the rest of the cabling, and to do so the coplanar wave-guides in this design must
be impedance matched the rest of the cabling, i.e. to Z0 = 50 Ω.

To do this, we have simulated a straight piece of wave-guide in Avago AppCAD, where we have taken as
simulation parameters the substrate height 535 µm, the thickness of the metal layer 100 µm, the width of
the center conductor 10 µm, the width of the gap 6 µm and the relative dielectric constant of the substrate
εr = 11.9. This gives a characteristic impedance of Z0 = 50.1 Ω.

Estimating the resonance frequency of the SQUID LC oscillator
In the design phase, it is critical that we pay attention to the resonance frequency of the SQUID cav-
ity. To do this, the design was simulated in Sonnet. To reduce computation time, only a limited area,
400× 500 µm2, shown in Fig. 3.5a, of the total design (10× 10 mm2) was taken into account. The simu-
lation consisted of a signal transmission line coming from the top, connected to half of the fingers of the
Interdigitated Capacitor (IDC, middle), with the other half being connected to ground. The signal line is
also connected to one end of the SQUID, which is modelled as an ideal, linear inductor, as shown in
Fig. 3.5b. A pump line is shorted to ground just below the SQUID. The simulation area is surrounded by
a ground plane.

All the material was modelled as an ideal lossless material. The substrate was modelled as 500 µm
thick intrinsic Si with a relative dielectric constant of 11.9. The top side was modelled as 1 mm vacuum.
It is difficult to simulate the correct inductive behaviour of a SQUID modulated by an oscillating magnetic
field. To go around this limitation, we parametrized the SQUID inductance and simulated the circuit be-
haviour for various values of this parameter.

The result of the simulation that is of interest for us is the magnitude of the reflected signal S11. We
have simulated the circuit response between 1 and 15 GHz. The resulting S11 traces show a broad dip
representing the cavity resonance, which decreases in depth as we increase the SQUID inductance, as
expected. The dip magnitude is dependent on the modelling of the losses in the circuit, which are not
taken into account accurately in our model.

From the simulation, we observe that to get the resonance frequency of our cavity in the desired range
of 4-8 GHz, our SQUID inductance must be between 0.1 and 0.7 nH. This value can be compared to the
expected inductance of our Josephson junctions in Sec. 3.2.4.

We are interested in which fraction of the inductance of our SQUID cavity comes from the SQUID. The
fraction of the total inductance that is contributed by the SQUID inductance is called the SQUID partici-
pation ratio. This determines howmuch the resonance frequency can change if the SQUID inductance is
modulated by a magnetic field. If a significant portion of the total inductance of the cavity comes from the
geometric inductance of the circuit, and is thus not changed by the magnetic field, it does not contribute
to the parametric amplification. If the SQUID participation ratio is large, the amplitude of our magnetic
pump field is small. This is desirable, as unwanted heating of our sample can occur if the pump field
amplitude is large.

We can extract the geometric inductance of the SQUID cavity by varying SQUID inductance param-
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Figure 3.5: a) Design of the parametric amplifier used for simulations in Sonnet. b) Close-up of the area around the
SQUID. In both figures, red represents a lossless material on top of a Si substrate. The SQUID is modelled as a
lumped element inductor, whose inductance is a parameter to be varied in the simulations.

eter. We plot the inverse of the resonance frequency squared, 1/ω2 against the SQUID inductance
LSQUID in Fig. 3.6b. We perform a linear fit, where the crossing with the x-axis (inductance) gives the
geometric inductance contribution of the cavity,

1

ω2
= C(Lgeom + LSQUID) (3.1)

We obtain value for the geometric inductance Lgeom of 238 pH. With this value, and the expected SQUID
inductance value, we can calculate the SQUID participation ratio.

3.2.3 Transmission cavity design
A third design was used for the parametric amplifier measurements, which was necessary due to ma-
chine access issues. Most of the design elements present in the parametric amplifier design, are also
present in this one. We will highlight the differences.

The transmission cavity design features a set of seven cavities, which are capacitively side-coupled
to the same transmission line. Thus the cavities are measured in transmission, instead of in reflection
mode such as the parametric amplifier design of the previous section. Our cavities consist of seven
differently-sized interdigitated capacitors, with an equally-sized SQUID. One such cavity is shown in
Fig. 3.7a. This figure shows at the top the center conductor of a transmission line, where another
(smaller) interdigitated capacitor capacitively couples our SQUID cavity to the transmission line. This
capacitor has 17 25× 1 µm2 fingers for all of the different cavities.

The main interdigitated capacitor providing the bulk of the capacitance of the cavity is in the middle
of Fig. 3.7a. This capacitor is symmetrical around a middle connector, features 100×1 µm2 fingers. The
number of fingers varies between the different cavities. This is to have cavities with different resonance
frequencies, so we can separately address them by sending in signals at their resonance frequency.

Each cavity is also inductively coupled to a flux-pump line, similarly to the previous parametric amplifier
design. Here, there is only one flux-pump line for all seven cavities, so it is not terminated to ground at
each one. The flux-pump line is shown at the bottom of Fig. 3.7a, with just above it the SQUID loop. A
close-up of the area around the SQUID loop is given in Fig. 3.7b. This shows at the bottom the flux-pump
line, in the center the SQUID loop. The SQUID loop is interrupted by two constriction-type Josephson
junctions, which are visible as a narrowing in the line. The SQUID is connected to the ground plane, as
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Figure 3.6: a) Reflected signal power S11 between 1 and 15 GHz for several values of the SQUID inductance. As
expected, for lower SQUID inductance the resonance frequency increases. b) Plot of resonance frequency versus
the lumped-element SQUID inductance. The crossing of the fit with the x-axis gives the geometric inductance.

with out previous design, but here this connection is through a wire with bends to create an additional
inductance. This is done to lower the cavity frequency.

3.2.4 Josephson junctions

Josephson junctions form the most critical part of the structures used in this thesis. We will treat the
fabrication method we use in more detail, and compare it with the conventional method of fabricating
our type of junctions.

Fabrication of junctions in general
There are several different methods for fabricating junctions, dependent on the type of junction, the ma-
terials involved and the desired geometry. All junction methods share the same principle, they all result
in two superconductors being weakly connected. It is possible, for example, to use a crystal grain barrier
as a boundary between two superconductors. Or, another example, a junction can be made using only
one point contact between two superconductors. In this thesis, we will focus on two fabrication methods
based on having a metal oxide as the barrier between the two superconductors.

Thesemethods are the (conventional) Dolan-bridgemethod [61], and an experimental bridge-less shadow
evaporation method 1 These two methods are suitable for the type of junctions that we are interested in,
which are superconductor-insulator-superconductor junctions where the superconductor is Aluminium
(Al), and the insulator is Aluminium oxide (Al2O3). These junctions are suitable for operation in the mK
temperature regime.

Both methods of fabrication are based on the same principle of double-angle evaporation with a shadow.
To create the superconductor-barrier-superconductor structure of a Josephson junction, we evaporate
metal at two (different) incident angles, and let the sample oxidise in between the evaporations to create
the barrier. This method requires a ’shadow’, a part where no superconducting material is deposited
during the evaporation. This is necessary to separate the electrical connection between the two su-
perconducting parts. Aluminium is a convenient and common material for this because it oxidises into
Al2O3, which forms only a suitably thin layer that stops further oxidation.

We will first explain the two fabrication methods, the Dolan bridge method and the bridge-less shadow
method, and afterwards discuss their weaknesses and strengths.

1This idea to use the shadow of the electrodes themselves (instead of a free-hanging bridge) to create the junctions originates
from the group of Prof. DiCarlo at TU Delft. However, it is published nowhere yet to the best of our knowledge.
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Figure 3.7: a) Overview of one of the cavities in the transmission cavity design. At the top, a coupling capacitor
(interdigitated) to the signal transmission line is shown. The large capacitor (interdigitated) in the middle forms the
bulk of the capacitance of the cavity. Below that, the SQUID loop is visible. At the bottom, the pump line is shown.
b) Close-up of the SQUID loop area of the transmission cavity design. Visible are the two junctions in the SQUID
loop. The lines branching off to the left and right are bent to generate extra inductance. The scales in both images
are in µm.

The Dolan bridge method
The Dolan bridge method [61] is based on a narrow, free-hanging bridge creating a shadow for the
evaporation. This is schematically shown Fig. 3.8, the left process.

(a) Two resist layers (light and dark blue) are spin-coated on a substrate (gray). A pattern is transferred
to the top resist (hatched rectangles)

(b) Both resists are developed. They have been chosen such that we get an undercut that is sufficient
to fully release the middle part of the top resist layer. This is the free-hanging bridge.

(c) Under a certain angle, the first layer of metal (red) is evaporated onto the sample.
(d) The outer layer of the metal oxidises (black), and then the other layer of metal is evaporated onto

the sample under a different angle.
(e) The remaining resist is removed, taking the bridge structure with it, and leaving only the metal and

oxide on the substrate.

The bridge-less method
In this thesis, we also use a bridge-less method. The shadow is generated by the electrode side-walls.
This process is shown on the right side of Fig. 3.8. This method does not require the resist to be on the
chip, it can be done completely without it. It is only present in the sketch because it is also present when
we perform the evaporation, as we use it for lift-off.

(a) Two layers of resist (light and dark blue) are spin-coated onto the sample, where electrodes (light
gray) are already patterned and present. The electrons are separated by a gap, where the resist
touches the substrate (dark gray). The resist layers are patterned (hatched region) with a slightly
larger area than the gap between the electrodes.

(b) The exposed area is developed. The different resist layers are necessary to generate the required
undercut for lift-off.

(c) Metal (red) is evaporated under the first angle. It connects only to one of the electrodes.
(d) The first metal layer is oxidized (black), and then the second layer is evaporated at a different

angle. This layer connects to the other electrode.
(e) The resist is lifted off, and the Josephson junction is complete.

Strengths and weaknesses of the fabrication methods
Now we discuss the strengths and weaknesses of the individual methods. The Dolan-bridge method is
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The Dolan bridge method The bridge-less method

Figure 3.8: Two ways of fabrication Josephson junctions: left part of the image shows the Dolan-bridge, right part
shows the bridgeless shadow method. Explanation of the different steps is given in the main text.
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already established, so process parameters are well understood and can be controlled, while the bridge-
less shadow method is new and process parameters are not well known. However, the Dolan-bridge
method is not very flexible regarding the design of the junction size. For the bridge-less shadow evapo-
ration method, the junction area is determined by the gap between the electrodes and the two angles of
evaporation, while in the Dolan-bridge method it is determined by the distance between the bridge and
the substrate, and the width of the bridge, and also the two angles of evaporation.

This flexibility in designing the junction area is desirable in our case. We want our JPA to be able to
amplify even for a relatively large input signal strength. To do this, we need our junctions to have large
critical currents. Josephson junctions with a larger area tend to have a larger critical current, though
the increase of critical current with junction area diminishes if the area becomes too large [27]. The
bridge-less evaporation method allows us to be more flexible in the junction size than the Dolan-bridge
method.

Furthermore, the bridge-less shadow method requires (typically) one less fabrication step. With the
Dolan-bridge method, the contact electrodes need to be patterned on the end parts of the junction.
The contact between the electrodes and the junction is already ensured automatically in the bridge-less
method.

Josephson junction design
To be able to design a JPA, we need to know several parameters of our junctions (and SQUIDs). Due to
machine access and time constraints, there were no junction test performed for the bridge-less method
before a JPA design was created. We have based our design decisions on junctions fabricated with the
Dolan-bridge method in a different system than the one used in this work (the UTS). In particular, we
have based our design decisions on the critical current density of these junctions, which is 0.7 µA/µm2.

With this critical current density, we can calculate the critical current for our junction sizes, under the
assumption that they are small enough that the critical current density will not change by too much due
to the magnetic field it generates [27]. The smallest junctions designed are 1× 1 µm2, and should have
a critical current of 0.7 µA. This would give a Josephson inductance of 471 pH. The largest junctions
designed are 6 × 4 µm2, should have a critical current of 16.8 µA and this would give a Josephson
inductance of 20 pH.

3.3 Fabrication issues
Several issues were found and resolved during the fabrication process. As they are an important part of
this thesis, but not part of the characterization of a Josephson Parametric Amplifier, they are described
here instead of in Chapter 4.

Etch sensitivity
There were issues with the etching step, where the pattern is transferred into the MoRe layer. The etch
process is a SF6 and O2 plasma etch, which also etches SiO2. If the etch is continued for too long, this
would prevent the evaporated Aluminium to connect to the MoRe electrodes.

To prevent over-etching the sample, a laser was used to measure the reflection of the surface. MoRe is
more reflective than SiO2, and the reflection changes in a certain pattern when etching. After the etch is
started, the reflection goes up slightly, and then remains constant for most of the etch. Near the end of
the etch, it drops down until it stabilizes to a lower value, and that is when the etch should be stopped.

Another issue is present due to the etching process, because the SF6 and O2 plasma has a non-
negligible etch rate for the resist used. If the etching takes too long, the etch mask can be removed
completely and the MoRe layer is etched in unwanted places. This issue was solved by spin-coating at
lower speeds, to increase the etch mask thickness.
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Figure 3.9: a) One end of the sample is etched successfully. Shown is part of an array of contact pads, the top of
which serves as a common ground for the rest. b) The other end of the same array of contact pads (and connections
between them) is under-etched, there is still MoRe covering the Si where it should have been removed.

There is a third issue related to the etch step of the fabrication. The etch rate can depend on the location
in the reaction chamber of the etcher. This could be due to local variations in the plasma parameters,
potentially related to gas flow or potential difference of the charged plates creating the plasma. This
sensitivity of the etch process to the location of the chip in the chamber can lead to issues where one
end of a sample is fully etched, while the other is not, such as in Fig. 3.9 where one end of a 15 × 15
mm2 chip is etched sufficiently, while the other half is not. There is still MoRe left, though some etching
has taken place as the pattern is visible. This issue can be fixed simply by not etching more than one
chip at a time, and by ensuring that the sample is in the center of the etching chamber.

Electrode side-wall angle
We have a trio of fabrication issues (this paragraph, and the next two) that share a common origin. When
we evaporate Aluminium, we expect the atoms to only hit the sample from one direction, and we assume
the do not move too much from the position where they first hit the sample. However, all three issues
show that Aluminium does in fact move around somewhat after it hits the sample. We will first comment
on each of the three issues separately, and afterwards discuss how we can ensure that Aluminium sticks
to where it lands on the sample.

The deposition of the Aluminium for the junctions requires the shadow of the MoRe sidewall. If the
sidewall angle with respect to the substrate is rounded by the etching, this prevents the fabrication of
junctions. During the evaporation step, the rounded side-walls don’t cause a shadow, which leads to
the Al simply connecting to both electrodes instead of forming a junction. This was observed, as shown
in Fig. 3.10a, where we would expect to see the separation between the Al layers (as visible in the top
of the figure) below the side-wall as well.

We have sketched the situation in Fig. 3.10b, where the dark gray represents the substrate, the lighter
gray represents the MoRe electrodes, the red is the Aluminium of the junctions and in black we have
Al2O3 as the insulator separating the layers. The arrows denote the angle of incidence of the evapora-
tion.

This issue could have been solved by evaporating at higher angles with respect to the surface nor-
mal, though this uses more Aluminium. Instead, the etch parameters were fine-tuned to etch more
an-isotropically. This makes the electrode side-wall closer the substrate normal, and ensures we can
have a shadow for our Aluminium evaporation.

Top-layer thickness
There was an issue where the top one of the two evaporated Aluminium layers did not conform to
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Figure 3.10: a) SEM image of the side-wall of the MoRe electrode, with two layers of Aluminium evaporated on
top. Taken at an angle, it is visible that the side-wall is not angled vertically to the substrate. There was no shadow
created by the side-wall to disconnect either of the evaporated layers. b) Sketch of the situation in a), where dark
gray represents the Si substrate, light gray the MoRe electrodes, red the Al, black the Al2O3, and red the angle of
incidence of the evaporated Al. c) SEM image of a junction where the top layer does not conform to the electrode
side-wall, at the top of the image both layers are disconnected from the electrode. The two layers are visible due to
a slight misalignment during the evaporation step. d) Sketch of the situation in c). The top layer does not conform
to the side-wall, and causes both layers to be disconnected. e) SEM image of a junction where the bottom layer
causes a shadow for the top layer, so that the top layer is also disconnected. f) Sketch of the situation in e), where
the shadow of the bottom layer disconnects the top layer.
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the bottom one, and was therefore unconnected to the MoRe electrode on both sides of the junction.
The bottom layer is evaporated on flat Si, but the top layer must conform to the gap from the side-
wall shadow, as sketched in Fig. 3.10d. The Aluminium layers are visibly disconnected in Fig. 3.10c
near the top of the junction structure. We can see that the top layer of the Al has some overhang over
the MoRe electrode. This tells us that the Al we expect to have been deposited in the gap between the
bottom Al layer and the MoRe electrode has moved from where it has been deposited by the evaporator.

This issue could be fixed by increasing the thickness of the top Aluminium layer, or by decreasing the
thickness of the bottom one. Alternatively, Aluminium should move around less after deposition on the
Si surface if the temperature is lower. This could be achieved by cryo-cooling the sample via the sample
holder.

Bottom-layer shadow
The third issue that has to do with the Aluminiummoving around after it hits the sample is that the bottom
junction layer can also create a shadow when the top layer is evaporated. This breaks the connection of
the top layer, as is shown in Fig. 3.10e and sketched in Fig. 3.10f. This should not be able to happen if
the top layer is thicker than the bottom layer, as is the case for these evaporations, but it does happen.
This is possible if the Aluminium is able to move around just after it has hit the sample. If the Aluminium
atoms prefer to clump together, we get an extra gap at the bottom electrode.

This issue is also related to the evaporation angle of the top layer with respect to the bottom layer,
as well as the thickness of this layer. By decreasing the angle of evaporation of the top layer, or increas-
ing its thickness, the issue can be resolved.

To conclude these three paragraphs, we have seen issues partially caused by the Aluminium having
the ability to move around somewhat after it hits the sample. We expect movement to be related to the
kinetic energy of the incident Aluminium atoms, which could heat up the sample during the evaporation.
At higher temperatures, the Aluminium atoms can move around more, so as a solution to these issues,
we could try to cool down the sample during evaporation. We would have to ensure a good thermal
contact between the sample and the sample holder if we use the sample holder for cooling, but this can
be achieved by using, for example, carbon tape between the sample and the sample holder.

MoRe oxidation
MoRe oxidises when left exposed to air, it forms Rhenium-oxide crystals that grow over the course of
weeks until they cover the MoRe fully. This is unwanted, as they form an insulating barrier that makes
creating a good contact between the sample and measurement devices difficult. The oxide crystals are
visible in dark-field microscope images, Fig. 3.11a. The oxidation is slowed by keeping the sample in a
Nitrogen-box. Given enough time, the oxidation will happen and be visible to the naked eye, as MoRe
will lose its shine. The oxidized crystals can be etched away by dipping the sample in MF321 for 30
seconds, and cleaning with H2O and IPA baths afterwards. This also etches the MoRe layer somewhat,
so it can not be repeated indefinitely.

The oxidation of MoRe is an issue that would prohibit the use of these samples as amplifiers for longer
periods of time. Another material is necessary for the superconducting structures, both Aluminium and
NbTiN would be suitable options. However, changing to these material would change process parame-
ters and require re-tuning the processes used. Because of that, the choice was made to keep MoRe as
the base layer material.

Aluminium bubble issue
There appears to be another issue present on the Aluminium contact pads. That is, there are bright
spots visible in a dark-field optical microscope image, Fig. 3.12a, similar to the MoRe oxidation de-
scribed earlier. Only, Al2O3 is a very well known-oxide that forms a thin, smooth layer and does not
grow the point-like crystals that MoRe grows.

Instead, we propose that the issue is similar to the one described in [62], where bubbles were shown in
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Figure 3.11: a) SEM image of a SQUID. On top of the MoRe electrodes (top and bottom), faint light spots are visible.
These are suspected to be the Rhenium-oxide crystals. b) The bottom layer of the junction causes a shadow that
breaks the connection of the top junction layer. Some lighter spots are also visible on the MoRe electrode, and
another contamination is particularly visible near the top of the Aluminium junction. This could be a Rhenium oxide
crystal, but it is also possible that this is a different type of contamination from the evaporation step.

(a) (b)

Figure 3.12: a) Bright spots on one of the Aluminium contact pads under dark-field optical microscope. b) SEM
image of those same spots on the Aluminium contact pad. They look like (partially) popped bubbles. This could be
related to an issue with the etch process, see main text for discussion.

Aluminium films on a Silicon substrate. Though no definitive explanation is offered, it is thought that the
bubbles are formed by an contamination on the surface between the Aluminium and the substrate that
interacts with one or more of the subsequent steps in fabrication. In this interaction, gas is formed and
trapped below the Aluminium. If little gas is present, a bubble forms in the Aluminium, which bursts if
more gas is present.

In our case, the Aluminium is not deposited directly on top of Si, as in [62], but on top of a MoRe layer.
However, if a contamination is also present on our MoRe as it is on the Si, the effects could be similar,
and it would explain the formation of bubbles on the surface of our Al films. Unfortunately, the presence
of contaminants on the surface of the MoRe was not checked, and the steps taken in [62] to prevent
the formation of such bubbles were not attempted. The issue appears to be present only for large area
films, such as our contact pads, as it does not appear to be present in our junctions. Therefore, it is not
likely to impact the functioning of the junctions significantly.

Lift-off
The lift-off process initially used consisted of bathing the sample chip in NMP (N-Methyl-2-pyrrolidone)
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Figure 3.13: Lift-off issues. a) shows a large Aluminium flake that failed to lift-off, with some unidentified brown dirt
surrounding it. b) A small flake of Aluminium left connected to the contact pad, where the lift-off locally failed. The
scratches on the pads are from probing needles, and unrelated to the lift-off issue.

at 80◦ for 20 minutes with a stirring magnet. Occasionally, the metal did not lift off until a subsequent
bath in Acetone. Even then, large parts of the metal occasionally remained on the chip, such as shown
in Fig. 3.13a.

Initially, we thought the problem was the lack of flows in the solution to draw the metal away from the
chip when the resist was dissolved. As a solution, a pipette was used while the sample was still in NMP
to rinse off the metal. This solved most of the issue, but some smaller flakes were still present after the
pipetting, such as shown in Fig. 3.13b. To prevent this, the beaker containing the sample and the 80◦
NMP was put in an ultrasonic cleaner before and after pipetting.

Conclusion of fabrication issues
We have discovered and solved several issues related to the fabrication of a Josephson parametric
amplifier. There were two issues related to the etching step in our fabrication process. Regarding the
etch sensitivity, we can conclude that we must closely monitor the etching as it happens. Measuring the
reflectance of the sample with a laser from outside the etching chamber is an effective way to do this.
We must also monitor the etching parameters (gas flow and pressure, and power) carefully to prevent
the electrode side-walls from rounding.

There were also issues regarding the evaporation of Aluminium for the Josephson junctions. The evap-
oration angle, and thickness of the evaporated layer are important parameters to obtain junctions, so
they must be monitored carefully. We could have searched for an optimum in these parameters, but we
were limited by access to the evaporator. There is also a contribution common to the mentioned issues
from the fact that the Aluminium can more around after its deposition. We suspect we can limit this effect
by cooling the sample down during evaporation.

There was an issue regarding the oxidation of MoRe, which is a fundamental issue. This can only
partially be avoided by keeping the sample in an atmosphere with little Oxygen between the fabrication
step. A way around this issue would be to switch to a different material for the structures (contact pads,
waveguides, capacitor, etc.) on our chip. For example, NbTiN (Niobium Titanium Nitride) could be used,
as we have access to it in our cleanroom facilities. However, this would mean changing several other
steps of the fabrication process, for example the etchant gas, power and pressure would need to be
fine-tuned for this new material.

Regarding the Aluminium bubble issue, we have not confirmed that the origin of the issue is the same
as that of [62]. They achieve a solution to their problem, but we have not tested to see if it applies in our
situation as well. If it does, it involves an extra cleaning step before evaporating the Aluminium, which is
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(a) (b)

Figure 3.14: a) Probe station used for room temperature DC resistance measurements. At the top is the hood cover,
which can be closed to block off light. In the center is the observation microscope, to position the probe needles
accurately. Below the microscope is the sample table, where the sample can be held in place by a vacuum pump. To
the sides of the microscope are the positioning units, for fine control of the probe needles. b) Junction measurement
box, which converts the measured junction resistance into a DC voltage. The circuit diagram is shown on the box
itself, with the connection to the junction at the the left and the voltage output going to the right. At the bottom is a
set of switches, to control the box settings.

not currently possible in the evaporator used. It is possible that other, similar, cleaning processes could
solve the issues, but these were not attempted.

There are several avenues open where the fabrication could benefit from tuning of the fabrication pro-
cess. Alternatively, a shift to a different superconducting material for circuit elements on the chip (NbTiN)
might be a better solution in the long term, as we are limited byMoRe oxidation in the practical application
of our amplifiers.

3.4 Measurement set-up and protocol
This section details the machines and set-ups used to perform the measurements shown in Chapter 4.
In particular, the room-temperature set-up and the Helium cryostat (fridge) will be described.

3.4.1 Room temperature Junction measurements
To measure and characterize the resistance of the Josephson junctions at room temperature, a probe
station was used (Fig. 3.14a). The probe needles were connected to a custom-built junction measure-
ment box (Fig. 3.14b). Using a normal multimeter would put too much current through the junction and
could damage it, so this measurement box was required. It is custom built to determine the resistance
of a structure (Josephson junction) while delivering minimal power to that structure. It measures the
resistance of the junction, and outputs a corresponding voltage. This can be converted to a resistance,
dependent on the measurement setting.

To perform a room temperature resistance measurement, the sample was put on the sample plate of the
probe station, fixed by a vacuum system and brought into the focus of the microscope. The two probe
needles were connected to the contact pads of the sample using the probe station’s manipulators. Suffi-
cient force was applied to ensure good contact between the needles and the sample. The probe station
light source was turned off to decrease the Si photo-conductance. A current was sent through one of the
probe needles, it passes through one of the contact pads, through the junction, and through the other
contact pad back via the probe needle towards the measurement box.
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Figure 3.15: a) Setup for DC measurements. 1) I/V source module, 2) Voltmeter module, 3) Output module, 4)
Digital-analog converter (DAC) for computer control of the modules 1-3, 5) Matrix module, 6) Digital multimeter. b)
The three shielding cans of the Entropy system. The (red) outer can is the only vacuum seal, and around the outside
of this can is the magnet (black). The inner two shields (gray and copper-coloured) function mainly as thermal and
radiation shields. c) Wiring schematic for the Entropy He3/He4 sorption fridge. The He3 head is the coldest stage
at 250 mK.

3.4.2 Fridge
Themeasurements detailed in this thesis were performed in a He3/He4 sorption fridge (manufactured by
Entropy Cryogenics, and therefore referred to as the Entropy) at approximately 250 mK. As is common in
these type of fridges, there are multiple stages with decreasing temperatures as one goes further down-
wards, with thermal shields separating the stages and a vacuum can sealing the outside of the fridge.
These shields are shown in Fig. 3.15b, where the outermost (red) shield is a vacuum can, thermal and
radiation shield, and the innermost (gray and copper-coloured) cans serve only as thermal and radiation
shields. The outermost can also has a magnet consisting of a (black) hand-wrapped wire around the
can [63].

Inside the fridge are two sets of cables used for the measurements in this thesis. One is a set of 24
individually addressable wires used for DC measurements, and the other is a set of four cables suitable
for transmitting signals in the GHz regime. A schematic of these wires is shown in Fig. 3.15c, where
the attenuators and amplifiers on each individual line are shown (detailed in the following sections).

3.4.3 Measurements
Single current-voltage (I-V) curve
We are interested in the relation between the current through and voltage over our structures, as we can
use this to determine whether we have a Josephson junction. We put a current through out structure,
and measure the voltage. The resultant curve, if plotted, is called an I-V curve. To obtain the I-V curves
of junctions and SQUIDs fabricated for this project, a computer-controlled DC 4-point measurement set-
up was used, shown in Fig. 3.15a. An I/V-source was used to send a current through the matrix module.
The matrix module is a board of switches that allows us to control through which of the 24 DC wires
we send a current. A voltmeter was used for read-out. The voltmeter output was sent to a computer-
controlled Keithley 2000 digital multimeter.

Inside the fridge, the sample was connected through a 24-pin connector to the 24 DC wires combined
into one cable. This cable terminates in the matrix module where the individual wires could be connected
to the rest of the measurement set-up.

Magnetic field sweep
A magnetic field was generated using a wire wrapped around the fridge casing, through which a current
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(a) (b)

Figure 3.16: PCBs used in this thesis. a) PCB for DC measurements, with 24 ports symmetrically spaced around
the inset for the 10× 10 mm2 chip. b) PCB for RF measurements, with four ports

was sent. The current was generated using a Keysight B2901A precision source/measure unit, and
controlled from the measurement computer. The maximum current through the wires was 2.6 A, which
corresponds to a magnetic field of 0.65 mT.

RF measurements
To operate a JPA, microwave-frequency signals are needed, which require different cabling than DC
measurements. The Entropy system has four connections suitable for GHz signals between the outside
world and the cold plate, shown schematically in Fig. 3.15c. Line 1 is the signal output line, featuring a
High Electron Mobility Transistor (HEMT) amplifier, LNF-LNC4 _8C s/n 506Z, with 39 dB gain [64] at the
4K stage. Line 1 also contains a circulator between the He3 and He4 heads, to prevent thermal noise
from the HEMT amplifier from reaching the sample via this line. Line 2 is the signal input line, with a total
of 49 dB of attenuation. Line 3 is the pump line, with 20 dB of attenuation. Line 4 is unused. All lines
also contain a DC block at the He3 head, which prevents a DC (or low frequency) signal from reaching
the sample. Outside the fridge, at room temperature, we have connected an additional amplifier to line
1, providing an additional 32 dB of gain [65].

3.4.4 Printed circuit boards
To connect our sample chips to the fridge cabling and the room-temperature measurement devices out-
side it, two Printed Circuit Boards (PCBs) were used. Both have an inset to connect 10× 10 mm2 chips,
and both have internal wires to connect the chips to the fridge cabling. The DC PCB (Fig. 3.16a) has 24
ports symmetrically spaced around the chip inset, and featured a connector for a cable to a matrix board
outside the fridge. All ports could be connected to any other via this matrix board, or be set to open
or ground. The PCB for GHz measurements (Fig. 3.16b) has four ports in two sets of two on opposing
sides of the inset. These can be connected to via SMA-connectors (as shown in the figure), which are
common connectors suitable for microwave-frequency signals.

To ensure the chip is connected sufficiently to the PCB, it is glued at the back, both for stability and
for thermalization of the chip. The electrical connections are realized through wire-bonds from the con-
tact pads on top of the chip to the pads on the PCB. Some of these wire-bonds can be see in Fig. 3.16a,
they are the small lines stretching radially outward from the center of the chip.

3.5 Simulation of a general parametric amplifier
To gain insight in how a parametric amplifier works, we have simulated a general parametric amplifier.
We could use the simulation results to qualitatively study what behaviour to expect from a parametric
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Figure 3.17: a) Gain dependent on input signal phase delay. As expected, the gain is a periodic function ϕ with
period π. The maximum de-amplification is 6 dB, related to the fact that this simulation only looks at the internal field
of the amplifier [43]. b) Gain dependent on pump strength. As expected, the gain increases if the pump amplitude
increases. It appears to diverge above a certain pump strength, but is in fact limited due to the non-linear Duffing
term included in our simulation.

amplifier. We have simulated a parametric amplifier with an additional Duffing non-linearity. Earlier the-
oretical work [66] has shown that a SQUID embedded in a transmission line gains a Duffing oscillator
term. We expect this non-linearity to limit the oscillation amplitude.

We have simulated the parametric amplifier using MATLAB. The differential equation used to model
the system is

ẍ+ κẋ+ ω2x+ βx3 = F (t) (3.2)

Where κ is the loss rate, ω2 = ω2(t) = ω2
0 (1 + α sin(2ωt)) includes the parametric pump as in Eq. (2.41),

which shows we are using the 3-wave process. We use β to describe the strength of the Duffing non-
linear term and F (t) = F0 sin(ωt) is the driving term (i.e. the signal). This differential equation was
numerically solved in MATLAB using the Euler method with 10.000 points per oscillation (natural fre-
quency). To simplify calculations, we have set ω0 = 1, and taken κ = 0.005 as the default value (corre-
sponding to a Q-factor of 200).

Amplifier gain versus input signal phase delay
When the input signal is resonant with the natural frequency of the oscillator, the amplifier is phase
sensitive. We expect the gain to have a maximum when the phase difference between the signal and
the pump is zero2, and have a minimum when they differ by ±π

2 [42, 44]. We have included the input
signal phase delay ϕ as

F (t) = F0 sin(ωt+ ϕ) (3.3)

into Eq. (3.2).

The gain is plotted versus the input signal phase delay in Fig. 3.17a, which nicely matches expecta-
tions. We see a periodic function with maxima of gain above 24 dB, and minima corresponding to 6dB
of signal squeezing [42]3. The periodicity of the gain with ϕ is π, which is also as expected.

Amplifier gain versus pump strength
The gain of a parametric amplifier is controlled partially by the amplitude of the pump. For our amplifier
model, we study the relation between these two. For various pump amplitudes, we have simulated our
oscillator and calculated the gain. The resulting curve is plotted in Fig. 3.17b.

2This is dependent on whether we choose a sine or a cosine as the pump/input signals.
3The squeezing in this model is limited to 6dB, because we only look at the oscillator amplitude. The output amplitude can be

squeezed further, due to interference effects [43].
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Figure 3.18: Amplifier gain as a function of signal strength for various pump intensities. There are three main
regimes: The linear gain regime (the gain is independent of the signal strength), the saturation regime, (the gain
decreases with increasing signal strength), and the self-oscillation regime (the oscillator resonates independently
of signal strength).

We see that for low pump amplitude, the gain is negligible. When we increase the pump amplitude,
the gain increases exponentially. In an ideal amplifier, this would continue without limit, and the gain
would diverge [43]. However, in our amplifier, the gain does not diverge. Instead, it is limited by the non-
linear Duffing term we have included in our simulation. This term limits the maximum amplitude of the
movement of our oscillator, and that is what limits the gain. The gain can be increased by decreasing the
input signal strength, and only the total amplitude of the oscillator movement is limited. By decreasing
the input signal strength, we can therefore amplify it more and have higher gain.

Amplifier gain versus signal strength
We are interested in the expected gain depending on the input signal strength. The gain also depends
on the pump strength, so we sweep over various pump strengths too. The results are plotted in Fig. 3.18.
Clearly, three regimes can be recognized [43].

• Linear gain regime. Here, the gain is independent of the signal strength. For higher pump powers,
the gain increases.

• Saturation regime. Here, the gain decreases for increasing signal strength. This is likely due
to the oscillation amplitude being limited by the non-linear term. For higher pump powers, the
saturation regime sets in at lower signal strengths.

• Self-oscillation regime. In this regime, the amplifier oscillates even with zero signal strength. For
a linear oscillator, the amplitude of the oscillations would diverge. In this model, the amplitude is
limited by the non-linear term.

With our parametric amplifier, or any amplifier in general, we want to be in the linear gain regime. In this
regime, we can reliably calculate the strength of the original input signal from the output of the amplifier.
For the saturation regime and the self-oscillation regime, this is not possible. For the self-oscillation
regime, we could not even reliably say if there was any signal input for a given output.

We see that for any given pump amplitude, we are in the linear regime for low signal power. If we
increase the signal power, we will enter the saturation regime. Here, the gain will decrease towards
zero. This is related to the maximum oscillation amplitude of our amplifier. The Duffing non-linear term
limits this amplitude, so we cannot amplify a sufficiently strong input signal by the same factor as a
weaker input signal. This causes the gain to decrease.

Maximum oscillation amplitude versus Duffing non-linearity parameter
Here, support is given to the point made in the previous paragraph, that the maximum amplitude of the
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Figure 3.19: Self-oscillation amplitude for various non-linearity parameters. The amplitude goes to infinity as β
tends to zero, and it behaves symmetric around the origin.

oscillator motion is limited by the Duffing non-linearity included in the model. We simulated the oscilla-
tor for identical pump and signal strengths, and varied the Duffing non-linearity parameter β. We have
simulated the oscillator for both positive and negative values of β.

The results are plotted in Fig. 3.19. We can see from the symmetry of the plots that the sign of our
Duffing term does not matter for the maximum amplitude of the oscillation. The determining factor for
this amplitude is the magnitude of the non-linear term, we see that for larger (absolute) values of β,
the maximum oscillation amplitude decreases. For β = 0, the maximum oscillation amplitude tends to
infinity. This is expected, as it is the behaviour of an ideal linear amplifier.

Amplifier gain versus Duffing non-linearity parameter
We have shown the behaviour of the maximum oscillation amplitude for various values of the Duffing
term. Now, we study the behaviour the amplifier gain if we were to vary the Duffing parameter. In
Fig. 3.20, we simulate and plot the amplifier gain as a function of signal strength for various values of
the non-linearity parameter β in Eq. (3.2). The figure shows that for higher non-linearity, the saturation
regime sets in earlier and the maximum input signal strength the amplifier can amplify with a constant
gain is decreased.

From these simulations of the behaviour of our parametric amplifier for various values of the Duffing
non-linearity parameter β, we can conclude that a small β is preferable. This would allow us to reach
a higher gain, by allowing us to increase the pump strength further without entering the saturation or
self-oscillation regime. Another benefit of having a small β is the possibility to amplify stronger input
signals linearly (again, not entering the saturation or self-oscillation regime).

Amplifier bandwidth
An important figure of merit is the amplifier bandwidth. There are several different properties of a JPA
parametric amplifier that could be called a bandwidth. The first is called the instantaneous bandwidth,
this is the frequency range of signals that can be (simultaneously) amplified. The second is the tunable
bandwidth, this is the frequency range over which we can tune the resonance frequency of our SQUID
cavity. Typically, the instantaneous bandwidth is the measure used to qualify bandwidth of an amplifier,
and this is also the quantity which we will simulate here. The instantaneous bandwidth of a typical JPA
is several MHz, as is shown in Table 2.1 for several recent papers, while the tunable bandwidth can be
on the order of GHz.

We have simulated our parametric amplifier for various detuning (the frequency shift of the input sig-
nal with respect to half the pump), for various pump powers. This is shown in Fig. 3.21. We can see two
different qualitative behaviours of the curves in the plot. For low pump strengths, the gain is highest for
zero detuning, and decreases if the detuning increases. However, for high enough pump strengths, we
reach a plateau in the gain for low detuning, and then a drop.
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Figure 3.20: Simulation of amplifier gain as a function of signal strength for various values of the Duffing non-linearity
parameter β. For higher non-linearity, the saturation regime sets in earlier.

The plateau we see is related to the maximum oscillation amplitude, and the value at which the gain
plateaus is governed by the Duffing non-linearity parameter in combination with the input signal strength.
The plateau is slanted, with the maximum gain being lower for negative detuning. This appears to be
related to the sign of the Duffing non-linearity, as we can change the behaviour to have a maximum gain
higher for negative detuning by flipping the sign of the Duffing non-linearity parameter β in our simulation.

The plateau of maximum gain suddenly drops off for large detuning and high pump powers. This ap-
pears to be related to a limitation of the simulation. We simulate the oscillator only for a limited (set) time.
For some particular parameter combinations, the amplitude does not stabilize in time. For example, for
a very small detuning we get a beating of our oscillation amplitude. This can affect the calculation of our
gain, and lead to erroneously placed points in the figure. We have attempted to remedy this by extending
the time which we simulate the oscillator, but were limited by the time involved in these calculations.

The bandwidth of the oscillator can also be seen from the results of Fig. 3.21. We take the bandwidth to
be the range of frequencies where the amplifier gain is within 6 dB of its maximum. We can observe a
trend from the curves in the figure. For low pump power, the gain is low and the amplifier bandwidth is
broad. As we increase the pump power, the bandwidth decreases, as expected if we assume the prod-
uct of gain and bandwidth to be constant. But if we increase the pump power further, we break away
from this trend, as the gain increases (marginally), and the amplifier bandwidth increases (the peaks
broaden in the figure). This is related to the maximum oscillation amplitude, which constricts the gain of
the amplifier.

Conclusion of the simulations
We have simulated an ideal parametric amplifier with an additional Duffing non-linearity, with a simple
and straightforward method. Qualitatively, the simulation show amplifier behaviour as expected. The
gain is dependent on the phase delay between the pump and the input signal, and increases with pump
power until it saturates the amplifier. The saturation is governed by the Duffing non-linear term, as it lim-
its the maximum oscillation amplitude. For low pump power, we see a constant gain-bandwidth product.
If we increase the pump power so that we can enter the saturation regime, the gain is limited and the
amplifier-gain product increases.

There are many avenues left open for a quantitative analysis of the simulations we have performed.
There have been significant works by others to simulate parametric amplifiers with more accuracy, and
more realistic parameters, for example [46, 45], and we have not attempted to quantitatively link the
parameters of our simulation to design parameters of our parametric amplifiers.
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Figure 3.21: Parametric amplifier gain plotted for different detuning (input signal detuned from half the pump fre-
quency), for various pump strengths. The x-axis shows the frequency difference between the input signal and half
the pump frequency in units of 10−3 the resonance frequency of the oscillator.
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4
Results

4.1 Characterization of Josephson junctions
This section details the measurements done to characterize the fabricated Josephson junctions, both at
room temperature and at 250 mK.

4.1.1 Room-temperature resistance
An attempt was made to measure the room temperature resistance of each of the junctions. These mea-
surements were performed using a probe station and a custom junction measurement box designed to
probe using low power to prevent damage to the junction. Two probe needles were put into contact with
the Aluminium contact pads shown in Fig. 4.1a, as the geometry is a 2-terminal one, and the resistance
was measured between them.

The results show no clear correlation between the designed junction area and the measured resistance.
This is most likely due to the fact that the metal leads are 0.1× 20 µm2 MoRe. The resistivity of similarly
sputtered MoRe thin films is approximately 800 nΩm [67], or 8.0 Ω per square.

We can calculate the expected normal-state (i.e. non-superconducting, such as at room temperature)
resistance of the Josephson junctions via the Ambegaokar-Baratoff relation, Eq. (2.29),

Rn =
π∆(T )

2eIc
tanh

(
∆(T )

2kBT

)
, (4.1)

where we can use the earlier provided estimation of the critical current density, 0.7 µA/µm2. Using the
smallest (1× 1 µm2) and largest (6× 4 µm2) junction sizes as limits, we expect critical currents between
0.7 µA and 16.8 µA. If we insert the energy gap for Aluminium, ∆(T ) = 180 µeV, we find expected
normal-state resistances of 404 and 15.2 Ω for the smallest and largest junctions respectively.

We expect to be able to measure the room-temperature resistance of the junctions, as their normal
state resistance is comparable to the expected resistance contribution from the MoRe leads. However,
no clear trend is observed when plotting the measured resistance versus the designed junction area
(which controls the Ic). There is a trend observed of the measured resistance with the designed electric
path length, as plotted in Fig. 4.1b. We have taken a linear (Ohmic) fit, in an attempt to subtract the lead
resistance and obtain the junction resistance. However, there is a spread of data points around the fit
in Fig. 4.1b that is wider for longer path lengths. Subtracting the (fitted) resistance from the data points
does not result in an observable trend of resistance scaling with junction area.
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Figure 4.1: Room-temperature resistance measurements. a) Optical microscope image of one of the samples.
Two Aluminium contact pads on top of MoRe pads are visible, connected through a 20 µm wide MoRe lines to
a junction. The lines connecting other junction lead to identical contact pads outside the image. b) Measured
resistance versus (designed) electrical path length. The fit is linear, representing Ohmic behaviour, and does not
go through the origin due to one or more contact resistance(s) in the system.

Sources of this additional resistance could be the contact between the probe needle and the Aluminium
contact pad, or the contact between the Aluminium pad and the MoRe. Also the contact between the
Aluminium of the junction and the MoRe lead could lead to the measured spread in the data points of
Fig. 4.1b. Potentially, larger-scale variations in, for example (see Sec. 3.3), the thickness of the MoRe
over the chip, or small impurities or contaminations from fabrication can cause variations in the resis-
tance.

The photo-conductance of the Si substrate could also affect the resistance measurements, but for the
measurements in Fig. 4.1b themicroscope light was turned off. Themagnitude of the photo-conductance
can be estimated from a sample where no junction was deposited between the MoRe electrodes. Over
a distance of several microns, the resistance of the Si is 20-50 kΩ with the microscope lamp, and MΩ
without the microscope lamp. Thus, we do not expect the photo-conductance to influence these mea-
surements significantly.

The slope of the fit can be used to estimate the resistivity of the MoRe. Based on the designed ge-
ometry (0.1 × 20 µm2 leads), the resistivity can be obtained for different samples. From the measured
resistance R, and the designed length L of the path and cross-section A, we can calculate the resistivity
according to

ρ = R
A

L
. (4.2)

The results are shown in Table 4.1, where both the offset resistance and the MoRe resistivity are tabu-
lated. The resistivity is less than the expected value of approximately 800 Ω [67] measured for thin-films
in our lab, though the uncertainty (based in the 95% confidence interval from the fits) is considerable.
This could be explained if the MoRe layer thickness is different than the designed 100 nm. Based on
profilometer measurements, the depth of the gaps between MoRe electrodes (where the Si substrate
is exposed) is increased by a small factor, which suggests that the samples were over-etched slightly.
This would explain a calculated resistivity that is higher than the literature value, while we have a resis-
tivity that is higher than the literature value. We attribute the discrepancy between the calculated and
expected value of the resistivity to differences in sputtering parameters.
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# Offset resistance (Ω) MoRe resistivity (nΩm)
1 439 (±322) 477 (±183)
2 344 (±486) 524 (±272)
3 193 (±52) 508 (±52)

Table 4.1: Tabulated MoRe resistivity and offset resistance for various samples. Uncertainties give the 95% confi-
dence interval.

4.1.2 Critical current at 250 mK
One of the samples from the previous section (# 3 from Table 4.1) was loaded into the Entropy fridge
and cooled down. The I-V curves of the single junctions were taken as detailed in Sec. 3.4.3. We see
two qualitatively different behaviours, and we will treat them separately in the following paragraphs.

Critical-current like behaviour
At first glance, three of the junctions show the behaviour expected from a Josephson junction, but a
more detailed look shows that this is not the case. In Fig. 4.2a, we have plotted the I-V curves of these
three junctions, denoted by the numbering of the DC lines they are connected to, that appear to have
a jump in the measured voltage around 130 µA (denoted with a 1 in the figure). While we expect such
a jump from the critical current of the Josephson junctions, its magnitude should reflect the designed
junction size (13-14: 9.6 µm2, 13-16: 23.2 µm2, 13-18: 2.4 µm2) based on a constant critical current
density, which it clearly does not. The normal state resistance is approximately 30 Ω based on the slope
of the I-V curve, which would correspond to a critical current of 10 µA for an Aluminium junction, based
in Eq. (2.29). From this, relation, we can calculate the IcRn product, which is a material-dependent
constant. From the measured Ic and Rn, their product is 3.9 mV, where only 0.28 mV is expected for an
Aluminium junction. One of the junctions also has a much larger jump in the I-V (denoted by a 2 in the
figure) at 170 µA.

The voltage jump is a critical current of some structure on the sample, as the sample is superconducting
at lower applied currents, and not superconducting at higher currents, where we see a normal-state
resistance. All three junctions that show this behaviour are connected to one of the common ground
contact pads, number 13. However, other junctions connected to this pad show qualitatively different
behaviour, as in Fig. 4.2b. Therefore, we hesitate to ascribe this difference in behaviour to an issue with
the contact pad, or the wire leading from the common ground pad to the junctions.

A potential origin of the voltage jump at 130 µA is that it is the critical current of a constriction in the
Aluminium of the junction. However, the current through this constriction would have to generate a
magnetic field higher than the critical field of Aluminium, 0.01 T. If we approximate the constriction as a
wire,

B =
µ0Ic
2πr

(4.3)

it would have a radius r of 2.6 nm, which is much smaller than the the designed junction sizes, The
designed junction dimensions are: The bottom layer 32 nm thick, the top layer 74 nm thick, with widths
and lengths ranging between 1 and 6 µm.

The disparity between the designed size of the Aluminium junction and the apparent size of the constric-
tion (if it were in Aluminium) could be caused by the Aluminium diffusing or partially de-wetting during
evaporation. This would result in the evaporated Aluminium atoms moving around before settling on the
substrate. This could result in constrictions in the Aluminium that limit the critical current to 130 µA. The
voltage jump at 170 µA could be caused by a similar but slightly larger constriction.

However, this explanation does not take into account that we obtain a very similar critical current of
130 µA for three different junctions. It is unlikely that the Aluminium clumping together on the sample
during the evaporation process would result in three different constrictions with identical size, and no
constrictions apparent in the other junctions. It would appear that if the cause of the critical current is a
constriction, it is somewhere else in the sample than the junctions.
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We would suspect MoRe lead of the ground wire connected to pad 13, as this is the one connection
that the three junctions share. However, measurements of other junctions also connected to this wire
shown no voltage jump at 130 µA. These junctions did show the other type of I-V behaviour, as in
Fig. 4.2b, and it is possible that the voltage jump did not appear clearly in the measurement that we
have done for this range of applied current. We conclude that we have not found a conclusive origin
of the critical-current like step in the voltage that appears at 130 µA for three of the junctions on our
sample.

Shapiro step-like behaviour
Several of the tested structures show a qualitatively different type of I-V curves, as shown in Fig. 4.2b.
Here, several steps are present in the I-V before the junction appears to enter a normal (non-superconducting)
state and the I-V curve becomes linear, at currents approximately ten times smaller than of the I-Vs
shown in Fig. 4.2a.

Our initial guess to the origin of the steps was that they are Shapiro steps [29]. If the junction is driven
with an AC current at frequency ω, you would see steps in the I-V curve at

V = n
~ω
2e
, (4.4)

where n is an integer. Based on the voltages of the steps, approximately 270 µV, the associated driving
frequency would be 2π·130 GHz. We send only a DC current through the junctions, and another source
of current of this frequency would have to be located close to the junctions, as the cabling used for DC
measurements is not a good conductor a those frequencies. It is unlikely that we would have such a
high-frequency noise in our system at sufficient amplitude to generate these Shapiro steps.

Another possibility is that the steps are Fiske steps [68]. However, to excite Fiske steps, we would
require a magnetic field to be applied (in-plane) to the junctions. Here, we do not apply such a field. We
can rule out a stray field from other parts of the sample in a subsequent experiment (Fig. 4.3a), where
we do apply a magnetic field with a strong in-plane component and vary the field strength. If the steps
were Fiske steps, they would change in the size of the voltage jump with the applied magnetic field [68].

A variation of the Fiske steps, called zero-field steps [69], could be possible. We are in the right junction
size-range (junction size comparable to the Josephson length), and structural variations in the critical
current density of the junction could be possible. However, we can also rule out the zero-field steps with
the same argumentation as above, as zero-field steps would also be affected by a magnetic field in the
same way that Fiske steps are. We do not see the voltage jump change size with the applied magnetic
field, so we conclude that the steps are not zero-field Fiske steps.

A third possibility for the origin of the steps is that they are photon-assisted tunnelling steps [70]. If
we were to attribute two neighbouring steps to this, the frequency of radiation required would be 2π·65
GHz. Though this is not as high a frequency as for the Shapiro steps, we measure only using DC and
have no microwave-frequency lines connected to the sample. It is therefore unlikely that the steps are
photon-assisted tunnelling steps.

A fourth option for the possible origin of these steps is that they are related to the thermoelectric ef-
fect. If we have connections between two different types of metal in the wiring of our fridge, we could
have a thermocouple voltage. Depending on the temperature difference between the two connections,
this voltage can be on the order of mV. We have not studied the wiring specifics of the fridge in sufficient
detail to be able to reject this explanation. It is possible that the thermocouple voltage biases the junc-
tion, and makes it radiate at a certain frequency. Because we have several junctions close together,
this radiation could affect the other junctions nearby, and create Shapiro steps.

We have searched for explanations for these steps, and have found a reasonable explanation in the
thermal voltage from connections between different metals at different temperatures in the form of the
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Figure 4.2: I-V measurements of junctions and SQUIDs. a) I-V curves from three different junctions. All junctions
have a jump in the measured voltage at 130 µA, despite different junction sizes, and one junction has a jump at 170
µA. The numbers in the legend denote contact pads on either side of the various junctions. b) I-V characteristics for
two single Josephson junctions (13-15 and 13-17) and a SQUID (19-24) showing steps of approximately 270 µV.

fridge cabling. However, we have not studied the fridge cabling in sufficient detail to be certain about
this explanation.

4.1.3 SQUIDs in a magnetic field

To check whether the fabrication of the SQUIDs had succeeded, A magnetic field was applied to check
for modulation of the critical currents. The I-V curves of the SQUIDs were taken while varying the applied
magnetic field, the results are plotted in Fig. 4.3a and show dV /dI of one of the SQUIDs.

Fig. 4.3a shows four vertical lines, corresponding to steps in curve 19-24 of Fig. 4.2b, that are not
modulated by the applied magnetic field, and two lines (also in Fig. 4.2b) that are modulated. If we
attribute the modulating line to the critical current of the SQUID, we can extract the apparent size of the
SQUID loop to check if it matches to the design. However, the addition of a bracket to the fridge set-up
(which was added for ease of mounting) causes the sample to be mounted at a 90◦ angle with respect
to the expected orientation. For this reason, the previously out-of-plane magnetic field to becomes an
in-plane magnetic field, as shown in Fig. 4.3b.

Despite this experimental error, we still see some modulation of one of the voltage steps with the mag-
netic field in Fig. 4.3a. The difference in applied (in-plane) magnetic field between the peaks of the
modulation is 0.41 mT, and if one modulation period represents one flux quantum moving in or out
of the SQUID loop we can determine the apparent loop area, A = Φ0

B , where Φ0 is the flux quantum
(2.067 · 10−15 Wb) and B the applied magnetic field. For this SQUID loop, the apparent area is 5.2 µm2

which is significantly smaller than the designed area of 32 µm2. If we attribute this difference to a rota-
tion, and we can determine how much off from the perfectly in-plane field we appear to be. Here, we
appear to have an angle difference of 9.4◦. For similar B-field sweeps involving other SQUIDs on the
sample, similar results are reached. These are tabulated in Table 4.2.

One immediately noticeable thing about the data tabulated in Table 4.2 and the fridge shown in Fig. 4.3b
is the discrepancy between the apparent angle and visible rotation angle of the bracket. If the bracket,
to which the sample is bolted flatly, was 9◦ out of plane, it should be visible by eye, and it is not. Thus,
this is not the reason of the magnetic field appearing to have an out-of-plane component at our sample.

There are several things that could be (partially) responsible for the out-of-plane component of the mag-
netic field at our sample. Because the solenoid is around the outside of the fridge, and not infinitely
long, and the sample is not exactly in the middle of the solenoid, we could get a radial component of
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Figure 4.3: SQUID behaviour in a magnetic field. a) The I-V curve of a SQUID is modulated by the applied
magnetic field in a periodic way. However, the magnetic field is applied in-plane with the SQUID loop, instead of the
conventional out-of-plane manner, due to the addition of a new bracket (added for ease of mounting) in the fridge.
b) Entropy fridge set-up with in blue the direction of the applied magnetic field, and the bracket shown where the
sample is mounted so that the magnetic field is in-plane.

B-field for one Apparent area Designed area Apparent difference
period (mT) (µm2) (µm2) angle (◦)
0.41 5.2 32 9.4
>0.65 <3.2 24 <7.7
>0.65 <3.2 18 <10.2

Table 4.2: Tabulated B-field periodicity, area calculated from the periodicity and designed area, and the angle of
orientation of the SQUID based on the discrepancy between the two.

the magnetic field. If our sample is 2/3 of the solenoid radius away from the center, and 2/3 of (half the)
solenoid length away from the middle, the ratio of radial to vertical (parallel to the solenoid axis) fields is
0.07, which is enough to explain an angle difference of about 5◦.

Other components localized near the sample (e.g. superconducting wires) or on the sample itself (super-
conducting ground plane covers most of the chip, as in Fig. 3.4a) could modify the local field, potentially
enhancing out-of-plane components. To gain insight in how this affects our sample would require simu-
lations and knowing the location of components in the fridge very well.

Another effect might be the calibration of the magnet itself. This was done in another work [63], but it was
measured only inside the outer shield of the fridge, and not inside the innermost shield. If the magnetic
field generated by the coil is different from the expected value, the apparent angle also changes.

A fourth effect that contributes to the apparent angle difference could be a overestimation of the ef-
fective SQUID-loop area. In general the area through which the flux penetrates is not strictly the area
surrounded by the superconductor. Some flux could also penetrate the edges of the superconductor,
which increases the area. For the designed area, a line through the middle of the junctions was taken,
and a similar distance to the actual edge of the superconductor was taken for the ends of the SQUID.
This is a very rough estimation, and could give an error of several µm2 in the designed area in Table
4.2.

We have so far mentioned several effects that could cause the apparent difference angle to be ap-
proximately 10◦. Without further study, we cannot be sure which effect contributes what to this figure,
but this is beyond the scope of this work. For now, we will consider this apparent angle difference not a
major unexplained issue.
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Figure 4.4: Constriction Josephson junction. SEM image of one of the constriction type Josephson junctions
present on the chip used for the measurements of Sec. 4.2. The image shows part of the SQUID loop, where at the
top right a part of the loop is released, and forms a mechanical element that is free to move.

4.2 Parametric Amplification
For parametric amplification, a different sample (with the design of Sec. 3.2.3) was used. Due to ma-
chine access issues, this sample was fabricated with a different type of Josephson junction, one with
narrow constriction. One such junction is shown in Fig. 4.4. This figure also shows part of a free-hanging
mechanical element (top left, where the substrate is etched away) as this design was created for a dif-
ferent project in the research group.

First, we characterize the SQUID cavities. We start by determining their resonance frequencies, and
how this changes when we apply a magnetic field (i.e. we bias the SQUIDs). We also characterize their
behaviour when we apply microwave signals through the signal and the flux pump line. After this, we will
show that the SQUID cavities can be operated as a Josephson parametric amplifier. We will operate the
JPA in 3-wave mode, and attempt to characterize the gain, bandwidth and noise temperature. Finally,
we will operate the JPA in 4-wave mode, and attempt to characterize the gain and bandwidth as well.

4.2.1 SQUID cavities
To find the cavity resonance frequencies, we send in a microwave signal at a certain frequency, and
measure how much of it is transmitted. By changing the frequency of the signal (i.e. performing a fre-
quency sweep), we can detect the cavity resonance frequencies. We have done a frequency sweep
between 3 and 8 GHz. The results are shown in Fig. 4.5, where all seven cavities are visible as sharp
dips in the transmission. Several cavity parameters are tabulated in Table 4.3. Cavities 1-5 had a re-
leased mechanical part, and higher quality factors, while cavities 6 and 7 had no movable parts and a
lower quality factor. Related to that, the external loss rate, κe, was higher for cavities 6 and 7. We have
found the Qe and κe from fitting the cavity. Ideally, we would have found the internal quality factor Qi as
well, but this is difficult to fit accurately if Qi is very different than Qe.

Noticeable in Fig. 4.5 is the background, which is not constant. Several dips are visible in the trans-
mission, but they are too low in frequency to be higher modes of our cavities.

4.2.2 Biasing the SQUIDS
To drive the SQUID cavity parametrically, we modify the resonance frequency via the flux threading the
SQUID loop. The change in resonance frequency per change in flux through the loop, ∂ω

∂Φext
is not a

constant, there are certain ranges of flux where the resonance frequency is sensitive to a small change
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Figure 4.5: SQUID cavity characterization. Frequency sweep between 3 and 8 GHz showing all 7 cavities of the
sample, denoted in the figure. The background is not flat, which is most likely due to the cable resonances. Based
on the frequencies involved, none of the other dips is likely to be a higher mode of our cavities.

Cavity # Center frequency (2π·GHz) Qe κe (2π·MHz)
1 (released) 4.80 680 7.05
2 (released) 5.01 797 6.29
3 (released) 5.29 722 7.33
4 (released) 5.53 703 7.87
5 (released) 5.87 495 11.86
6 6.19 129 47.98
7 6.70 162 41.36

Table 4.3: Overview of SQUID cavity parameters

in flux. We can see this from the curve (flux arc) shown in Fig. 2.12c. To drive our parametric ampli-
fier, we want the change in frequency per change in flux, ∂ω

∂Φext
, to be as big as possible. To achieve

this, we apply a constant, external magnetic field to ’bias’ the SQUID to one of these points on the flux
arc, where a small modulation of the flux invokes a large change in the resonance frequency of the cavity.

In Fig. 4.6a, we can see the curve of the resonance frequency with the applied field, which is the flux arc.
If there is inductance present from the SQUID loop itself (instead of only from the SQUID junctions), the
flux arc changes shape from the ideal case (Fig. 2.12c) and the different arcs can overlap. The SQUID
can jump between different flux arcs if perturbed, which is visible in Fig. 4.6b. This can cause hysteretic
behaviour, if the cavity jumps to a different flux arc due to flux noise, it will follow it if the magnetic field
is reduced to below where the cavity jumped. It can be made to jump back by lowering the field further.

The biasing is automated via a Python script. The magnetic field is initialized at zero, and the resonance
frequency of the cavity is measured. In steps of 0.5 mA, the current through the magnet is increased
until the resonance frequency has reached 0.998 times the resonance frequency at zero field, which
is denoted by the green dots in Fig. 4.6b for cavities 6 and 7 respectively. The current applied to the
magnet was between 30 and 40 mA. The results of a typical SQUID-biasing procedure are shown in
Fig. 4.6a. Starting from zero applied field at the top of the image, the applied current is increased in
steps until the cavity resonance frequency has reached 0.998 times its zero-field value at the bottom of
the image.

4.2.3 SQUID cavity power limits

If we put a large amount of power into our SQUID cavity, either by having a strong signal or a strong
pump, the behaviour of the SQUID cavities can become different from the behaviour for small signal and
pump powers. We can, for example, observe this from the behaviour dip in the S21 transmission ampli-
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Figure 4.6: SQUID cavity behaviour in magnetic field. a) SQUID biasing. In steps, a larger current is applied to
create a stronger magnetic field. When the resonance frequency of the SQUID reaches 0.998 times the resonance
frequency at zero applied field, the biasing process is finished. b) Overview of cavity 6 and 7 for changing magnetic
field. Several jumps are clearly visible for larger magnetic fields.

tude, which becomes asymmetric for high input signal power, as is visible near the bottom of Fig. 4.7a.
Here, cavities 6 and 7 change their transmission behaviour for signal powers (generator output, not
power-on-chip) of 9.4 dBm and 11.9 dBm respectively. That is, the dip in the transmission becomes
smaller and behaves asymmetrically in frequency, as can be seen from the line-cuts of Fig 4.7c.

From the line-cuts shown in Fig 4.7c, we see that for input signal power of 0.5 dBm (blue line), the dip
in transmission is roughly symmetric. There is some asymmetry, particularly visible if the leftmost and
rightmost part of the line-cut are compared), but we attribute this to the background being non-constant.
For higher signal powers, 13.5 dBm (red) and 15.0 dBm (yellow), the cavity becomes asymmetric, and
more shallow.

We see some more cavity behaviour that deserves comment in Fig. 4.7a. The cavity frequency is seen
to increase slightly with increasing signal power. The change in frequency between -60 dBm and -10
dBm signal power is comparable to the cavity linewidth. We must take note of this if we want to apply a
pump tone resonant with the cavity for different signal powers.

At -10 dBm and -9 dBm pump power, both cavities have a jump in their resonance frequency. We
attribute this to them jumping from one flux arc to the next. If we apply a strong input signal, this could
cause a stronger varying flux and the SQUID cavity might jump to a different flux arc. If and when the
SQUID cavity jumps depends on how far it is biased, with further-biased SQUID jumping at lower signal
strengths.

We have also applied a pump with varying strength, resonant with the cavity, to measure if the SQUID
cavity shows similar behaviour as when we apply an input signal. The results of this measurement are
plotted in Fig. 4.7b. Unlike the previous measurement, we do not see the resonance frequency of the
SQUID change with applied pump strength. We do see a jump in the resonance frequency of the SQUID,
for an applied pump power of 1.6 dBm.

At applied pump strengths above this 1.6 dBm, we see two peaks in the cavity transmission that we
do not see for lower pump strengths. Line-cuts for applied pump strengths above (red) and below (blue)
this change are shown in Fig. 4.7d. From the location of the dip in the transmission, we see that the
cavity resonance frequency has jumped by several MHz. The two peaks are related to the pump tone
we apply. The higher-frequency peak is the pump frequency we apply, the lower-frequency peak is not
expected.

We have investigated the origin of this additional peak. It is not related to the microwave source used
for pumping, as the peak remains when we use a different microwave source. It is also not related to
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Figure 4.7: SQUID cavity behaviour for pump and signal power. a) Cavities 6 and 7 for increasing signal power.
At 9.4 dBm and 11.9 dBm respectively, the cavities become non-linear. b) Cavity 7 for increasing pump power. At
1.6 dBm, there is a jump in cavity frequency, and two high intensity peaks become visible. The higher-frequency
one is at half the pump frequency, the other is 6 MHz lower in frequency. c) Line-cut of SQUID cavity 7 for several
signal powers. For low power the cavity dip is symmetric, but for higher powers we see it become more and more
asymmetric. d) Line-cut of SQUID cavity 7 for various pump powers. For low pump power, the cavity is symmetric.
It suddenly jumps a sufficient pump power, and we see two clear peaks which we attribute to the pump.

the specific frequency of the cavity, as it also happens if we pump at 8 GHz (where there is no cavity).
It is possible that it is related to the synchronization of the Vector Network Analyzer (VNA) clock and the
microwave source clock, but then the additional peak should occur 5 MHz below the pump peak, but it
is very clearly 6 MHz below the pump peak.

4.2.4 Transmission amplitude versus pump strength
As first sign that our amplifier shows amplification, we look into the behaviour of the cavity when we apply
a varying pump power. We expect that the depth of the dip in transmission of the cavity would decrease.
We do not vary the input signal strength, but if there is amplification, the strength of the cavity output
would increase if compared to no amplification. So, we would expect the depth of the transmission dip
to decrease.

We have performed this experiment by applying a fixed-strength signal, and varying the strength of
the pump. We have plotted the transmission of the cavity over a range of 50 MHz in Fig. 4.8a for dif-
ferent applied pump strengths. However, we do not see a significant change in the depth of the cavity
transmission dip. We have tried different signal powers, but were unable to find a parameter range of ap-
plied input signal strength and pump strength where we found a noticeable difference in cavity dip depth.

It is possible that we have not found the right parameter regime (pump strength, input signal strength)
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Figure 4.8: Pumped SQUID cavity. a) Sweeping the pump power does not measurably change the cavity signal.
b) Pump detuning sweep. One every three traces shows the pump, but there are now four pump peaks. This is
most likely due to aliasing.

to clearly see the change in cavity transmission. It is also possible that our experimental parameters
(measurement integration time, frequency resolution) were such that the amplifier gain is difficult to
distinguish from the noise. We could rule out the frequency resolution affecting our measurements by
changing the frequency of the applied pump.

We have swept the detuning between (half) the pump frequency and the cavity resonance frequency,
and measured the effect it has on the transmission. The results are plotted in Fig. 4.8b, and several
things are noticeable. The first is that we see peaks in the cavity transmission that we can attribute
to the pump, as they follow the detuning from the cavity frequency. Secondly, we notice that we see
not one but four different peaks, in two sets of two. The peaks are separated by 1.5 MHz, the sets are
separated by 3.0 MHz. The outer peaks match the detuning of the peaks measured in the previous sec-
tion for high pump powers, but we are at lower pump powers (-8 dBm versus +1.6 dBm in the previous
section).

Another noticeable thing is the fact that we only see the peaks periodically, only one in every three
traces shows the peaks. This we can attribute to the pump having a very low linewidth compared to
the frequency resolution of our measurement. Due to a mismatch of the pump and frequency steps,
only one in every three traces has the pump exactly at one probe frequency point. The issue that the
frequency resolution of the measurement is much larger than the linewidth of the pump could cause the
measurement of Fig. 4.8a to not show any variation with pump strength.

4.2.5 Gain versus phase delay

In the previous section, our measurements have not shown any amplification, which could be due to the
spectral resolution of our measurements. Here, we describe an experiment where we should be able to
see whether our amplifier amplifies regardless of the spectral resolution of our measurement. To show
parametric amplification, we study the system output while varying the phase of our input signal. We
expect a gain-phase relation as shown in Fig. 3.17a.

However, we do not have a phase-shifter in our set-up. We can use a workaround: If the signal is
slightly (0.1 Hz, in this case) detuned from half the pump signal, the phase difference between the sig-
nal and half the pump varies slowly. In time (every 10 s, in our case), we shift the phase by 2π, so we
obtain in time similar curves as Fig. 3.17a. We have chosen the frequency difference of 0.1 Hz to allow
an integration time of 1 s per measurement point to reduce the visible noise.
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Simple amplifier model
One such measurement is shown in Fig. 4.9a (blue dots), where we have included a fit to a simple
theoretical model is also plotted (orange line), with the model being

y = a ·

√(
sin(bπt+ ϕ)

1− d

)2

+

(
cos(bπt+ ϕ)

1 + d

)2

, (4.5)

where a, b, d and ϕ are the fitting parameters, y is the linearised magnitude of the S21 signal and t is
the time. a represents a vertical offset of the signal from 0 due to attenuators/amplifiers in the line and
the cavity transmission dip, b represents the beating frequency, d represents the amplitude of the os-
cillations, and ϕ is a phase offset. We found b = 0.096 Hz for all fits, which is sufficiently close to the
expected 0.1 Hz given the high frequency of the involved signals (6 GHz range).

An initial measure of the gain of the amplifier is described by the parameter d. For the maxima and
the minima of the phase-gain curve, the fit equation reduces to 1

1−d and 1
1+d . These describe the maxi-

mum amplification and deamplification [42, 44].

We have repeated the measurement of Fig. 4.9a for various combinations of input signal and pump
power. We have calculated the amplifier gain for each of these measurements, and show the results in
Fig. 4.9b. The JPA shows little gain for low signal powers, even for high pump powers. For higher signal
strengths, there appears to be a peak in the gain, after which it drops off. The peak height appears
independent of the pump power, but the signal power for which the gain peaks is affected by the pump
strength. This plot does not conform to expectations from the simulation of a parametric amplifier, nor to
what is expected from literature. We expect the gain to be constant for low signal power, and decrease
for stronger signal powers, conform Fig. 3.18.

A partial explanation for this discrepancy may lie in the resonance frequency of the cavity being de-
pendent on signal- and pump power. We bias the SQUID and determine the resonance frequency only
for one signal power strength. Thus, for other combinations of signal and pump power, the resonance
frequency may have shifted and we pump and measure off-resonant. This would lead to a significant
decrease in gain.

Another partial explanation could be that the simplistic model used above does not describe our sys-
tem well. We have side-coupled cavity measured in transmission, so the amplified signal emitted from
our cavity could interfere with the directly transmitted signal. We also have a background of the cavity
transmission dip, where we fit the data as if we only had the amplifier.

Involved amplifier model
We have used a more involved model of our parametric amplifier, which takes into account the fact that
we have a side-coupled cavity measured in transmission, to see if the amplifier gain does conform to
the simulations.

To take into account the background signal in the transmission spectrum, we have measured the trans-
mission spectrum without a pump being sent in. Using these data, we have used a fitting script that
separately fits the background and the cavity, and then fits them together using the initial parameters
found in the from the separate fits to refine the results. This script is publicily available [71].

From this fitting script, we obtain the parameters of the background, and of the cavity. The fitting script
fits a function of the form

S21 = (b1 + b2ω + b3ω
2)

(
1− κee

iθ0

κe + κi + ω − ω0

)
ei(b4+b5ω) (4.6)

Where the fit parameters are b1, b2, b3 describing the amplitude variation of the background, b4 and b5
describing the phase variation of the background, and θ0 describing the phase shift between the am-
plified signal emitted by the cavity with respect to the directly transmitted signal. We also obtain the
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Figure 4.9: Amplifier gain versus phase delay. a) Measurement of S21 magnitude versus time. Blue dots are
measurement, orange line is a fit to theory. We have estimated the gain of the amplifier from the fit to the theory
curve. b) Overview of gain for various combinations of pump and signal power.

cavity parameters, which are the resonance frequency ω0 and the internal and external quality factors,
Qi andQe respectively. We can calculate the internal and external loss rates, κi and κe, from these. One
limitation is that if the difference between Qi and Qe is larger than an order of magnitude, we cannot
determine the larger of the two accurately. In our system, we do not know the Qi accurately for this
reason.

With these background parameters found for our system, we can subtract the background from our
total transmitted signal and end up with only the part of the transmission that is due to the cavity. We
can then use the model derived in Sec. 2.1.3 to fit to our cavity signal to the transmission with the
background subtracted,

S21,subtr = 1− eiθ0κe
κ2

4 + (ωs − ω0)2 − a2c

(κ
2
+ i(ωs − ω0) + ace

i(aω)t+aϕ

)
+ a0. (4.7)

We have denoted the parameters of our fit as ac representing the amplitude, aω representing the fre-
quency difference between the applied signal at ωs and half the pump frequency ωd, and aϕ a phase-
offset. Lastly, we have found that an additional offset was necessary, which we have denoted as a0.
This offset is a complex constant.

We have plotted the data of our measurement with the background subtracted in Figs. 4.10a and 4.10b.
We have plotted the real and imaginary parts of S21 separately for clarity, as plotting them in a single
plot would result in overlapping circles, as they describe several rotations through the complex plane.
This is the oscillating behaviour that is visible in the plots, where we can more clearly separate the data
(blue dots) and fit (orange lines). The fits do not look smooth, which is because we have calculated
their values only for the data points and interpolated between them. This does not qualitatively affect
the behaviour of the fit in the plot.

We have used this model to fit our measurements for various signal- and pump strengths. We have
plotted the fit parameter of the amplitude, ac, for these traces in Fig. 4.11. We see that for increasing
pump strength, the amplitude fit parameter value decreases. For increasing signal strength, it increases.
We have not yet been able to relate this amplitude parameter to the gain of the amplifier. It is directly
related to the strength of the parametric pump as defined in Eq. 2.59,

ac =
α2
p

4ω0
=

α2

4ω3
0

, (4.8)

where we expect α to be of the order 10−3 based on our simulations. The parameter α in our simulations
is normalized to the resonance frequency of the oscillator. Still, we would expect ac to be of the order
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Figure 4.10: Amplifier gain versus phase delay, refined model. a) Plot of the real part of S21 over time (blue
dots) and a fit (orange line) according to the model described in the main text. b) Plot of the imaginary part of S21

over time (blue dots) and a fit (orange line) to the same model. The value of the fit is calculated at the data points
and interpolated between them, which causes the fit line to not be smooth.
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Figure 4.11: Fit amplitude versus signal power. Amplitude parameter of our fit to the data for various signal and
pump strengths. The trends shown here do not follow the expected trend, and the value of the parameter is different
from what is expected based on the simulations.

10−15 instead of 108 as we find from the fits. We conclude that something in either our fit or our analysis
of the fit parameters with respect to the simulation parameters is wrong. Therefore, we have not been
able to draw conclusions about the gain from this model.

4.2.6 Noise Temperature

One of the most important parameters of an amplifier is the noise temperature. In this subsection, we
describe the measurements performed to gain insight in the noise temperature of our amplifier.

Because we have a chain of amplifiers (instead of only our single JPA) and cannot access the sam-
ple directly without warming up the fridge, we are severely limited in our choices of how to measure the
noise temperature. For example, using the Y-factor method (Sec. 2.4) would require us to be able to
control the noise temperature of the input signal. This could be achieved for example by connecting a
resistor at the input of the amplifier, with a heater and a thermometer, neither of which are things we have.

Another option would be the gain method, this would require us to know the temperature of the input
signal very accurately, which could be achieved with a resistor and a heater, or even by looking at the
frequency splitting of a qubit, but it would also require us to know the gain of the amplifier very accurately.
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A third option to gain an estimation of the added noise temperature of the JPA is to have a switch in
parallel to it, so we could bypass it and calibrate out the rest of the amplifier chain. However, we do not
have that option, as we lack the hardware of such a switch.

The only (seemingly) available avenue is to take the input noise temperature to be equal to the tem-
perature of the fridge (250 mK), which is not an unreasonable approximation if we do not send in a
signal (and the attenuation of our input line is properly done). If we have some gain in our amplifier, this
should amplify the noise in our cavity above the rest of the noise.

To do this, we must first determine whether we can actually measure the thermal noise of our system.
A limiting factor might be the HEMT amplifier, or alternatively the noise floor of the spectrum analyser.
The rated noise temperature of the HEMT is 2.3 K [64]. With the equation for Johnson noise,

P

B
= kBT (4.9)

where we use B = 1 Hz, we can find out the power level we expect, which is P = −195 dBm. The noise
floor of our spectrum analyser (Displayed Average Noise Level, DANL) is rated at -146 dBm at 7 GHz.
With the 39 dB gain from the HEMT (High Electron Mobility Transistor), and the 32 dB gain from the
room temperature amplifier, the thermal noise should be visible, but attenuation in the lines might be an
issue. We check it by giving no input signal or pump, and measuring the noise level in the frequency
region we are interested in (approx 300 MHz width centred around our cavity frequency of 6.16 GHz).
If we toggle the HEMT on/off, we should see the noise level of the amplifier change (it should be higher
if the HEMT is on). If this is the case, and the power detected is significantly above -146 dBm, we can
detect the thermal noise.

Then we try to measure the cavity thermal noise. This should be visible as an increase in noise from
the cavity photons. Compare the energy of a photon at 6.165 GHz (~ω = 4.08 · 10−24J) to the thermal
energy at 250 mK (kBT = 3.45 · 10−24 J), if there are some extra photons in the cavity, we should see it
rise above the rest of the spectrum (where there is no cavity).

This was done, and the results are shown in Fig. 4.12. Here, we see the measured output signal for
various pump powers. For no (and very low) pump powers, the noise is expected to be thermal noise.
There appears to be a non-constant background, this could be a property of our sample. For higher
pump powers, we expect to see the cavity noise rise faster than the noise at other frequencies. This can
be observed in Fig. 4.12, particularly the trace for -10 dBm pump power has a region where it is elevated
above the other traces. We also see an increase in output power that appears to be constant over the
measured frequencies. This could be attributed to the pump increasing the local (noise) temperature of
the sample.

For the highest pump powers, we see a narrow peak. We could attribute this to the pump leaking
into the transmission line from the flux line, except that the pump was operated at twice the frequency
we measure here (we operate the JPA in the 3-wave process). Thus, we attribute this peak to be the
gain by the JPA. It is rather narrow in bandwidth (<1 MHz), but it is unlikely that the pump would leak
in any significant amount at half the frequency, and it is possible that the gain is approximately 1 for a
range of pump powers, and then it suddenly increases.

To make the increased cavity noise more visible, we can try to subtract the background. We do this
by subtracting the (linear) amplitude of the zero-pump signal from all other traces. For some traces,
this results in negative numbers due the noisiness of the signal. To cope with this, we give everything a
slight offset. This does not qualitatively affect our results.

For no pump, the temperature corresponding to the noise level (if we go by the specifications of the
amplifiers) is 340 mK without the pump and 360 mK with the pump. This is a very small difference,
considering the pump strength is sufficient to have a noticeable gain, and that should affect the noise
contributed by the HEMT and the RT amplifier.
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Figure 4.12: Cavity noise. Measurement of output from the amplifier for zero input, for various pump powers. For
low pump powers, the S21 magnitude follows the same trend, but with an offset. For higher pump powers, the cavity
noise becomes visible. The sharp peak is due to the gain of our amplifier.
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Figure 4.13: Cavity noise with subtracted background. Output from the amplifier for zero input, for various pump
powers, with the background removed. From this, the added noise from the cavity for higher pump powers (and
thus higher gains) is clearly visible. Without pumping, the cavity noise temperature corresponds to approximately
340 mK, with pumping the temperature increases to 360 mK.

We have not obtained the noise temperature of our amplifier from this measurement. During the analysis
of the data, we had discovered that the sharp peak was actually due to the gain of the amplifier instead
of due to the pump, as we pump at 2ω0 ≈ 12.3 GHz. To obtain the noise temperature of the amplifier,
we should have measured the output signal for no input signal (i.e. the noise) at exactly the frequency
of the amplifier. From the noisiness of this output, we can extract the noise temperature of the amplifier.
From the height of the gain peak with respect to the background (outside the cavity), we can extract the
gain. However, no measurement was performed at half the pump frequency for a prolonged time (to
obtain the noisiness of the amplified signal).

4.2.7 4-wave mixing

So far, we have only operated the JPA in 3-wave mode. In this section, we describe the results from
operating the JPA in 4-wave mode. To observe 4-wave mixing, the JPA was pumped at resonance (fre-
quency ω0), and a weak signal was sent in with a slight detuning from the pump frequency. We varied
this detuning over 1 MHz, which is shown in Fig. 4.14a. Several line-cuts are taken from this data set,
and shown in Fig. 4.14b.

In Figs. 4.14a and 4.14b, we see the pump at resonance (big peak in the center), the signal at a fre-
quency denoted by the detuning ∆ from the pump peak and on the other side of the pump, the (much
smaller) idler is visible at the same detuning ∆. The presence of this idler, and the fact that it moves
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Figure 4.14: 4-wave mixing. a) Probe signal detuning sweep over 1 MHz. We see the probe signal going from
top left to bottom right, and the smaller idler going from top right to bottom left. There is a tiny line going the same
direction as the probe, but at twice the detuning from the pump. There are also multiple side-bands of the pump,
visible as vertical lines at the left side of the plot. b) Spectrum showing the 4-wave mixing process. The cavity is
pumped resonantly (the big peak, frequency ω0) and a weak probe is sent in with detuning∆, and an idler is created
detuned with ∆ on the other side of the pump. Different curves are for various detunings, and offset with 5, 10, 15
and 20 dBm in increasing order.

opposite to the input signal with respect to the pump, show that we can operate our JPA as a 4-wave
mixer. The asymmetry between the signal and idler peak heights is due to the fact that we measure
cavities coupled in transmission. Part of the signal does not enter the cavity and is directly transmitted,
while no such thing happens for the idler peak, as we do not apply a tone at the idler frequency.

Extracting the gain of our JPA from the data shown so far of 4-wave mixing is tricky. Ideally, the signal
and idler peaks would be amplified by a factor of

√
G and

√
G− 1 respectively [16], and we could ex-

tract our gain G from the ratio of the peak heights. However, as our amplifier works transmission mode,
we see as the signal peak both the directly transmitted part that bypassed the cavity, and the amplified
part that entered the cavity. These could interfere, so our cavity contribution can not be singled out easily.

We can make an estimation of the range of our gain, however. The upper bound of the gain is found if
we take the strength of the noise background (-92 dBm in Fig. 4.14b) as the signal strength. The idler
strength is then

√
G− 1 times the signal strength, and we can read out both these strengths from the

graph. This gives an upper limit of the gain of 7.1 dB. The lower limit is reached by attributing the entire
signal peak as detected to the direct transmission. This would give a lower limit to the gain of 2.3 dB.
If we take the nominal input signal strength, -89 dBm, we end up with a gain of 4.3 dB. We repeat this
calculation for all traces of the data set of Fig. 4.14b and obtain an average (nominal-signal-strength)
gain of 4.6 dB over the range of our measurement.

We would like to know how the JPA gain changes for various pump and signal strengths. The pump
strength sweep is plotted in Fig. 4.15a. The uncertainty in the determination of the gain is quite consid-
erable, no clear trend can be observed. For pump strengths outside the plotted limits, no idler could be
observed. For lower pump strengths, the idler was lost in the noise, while for higher pump strengths,
the pump side-bands prevented accurate determination of the idler peak height.

The pump side-bands are shown in Fig. 4.15b for the pump strengths relevant for Fig. 4.15a. The
average separation between the pump side-bands is 131 kHz. For high pump powers, the side-bands
are at least 50 dB smaller than the pump, while for lower powers the difference in power between the
pump and the side-bands diminishes. This is in reasonable accordance to the specifications of the mi-
crowave source used to generate the pump tone [72]. The side-bands at higher frequencies are 3 dB
smaller than the side-bands at lower frequencies. The spectral width of the side-bands is comparable
to the spectral width of the main peak. The strongest side-bands are those detuned 790 kHz from the
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Figure 4.15: 4-wave amplification gain and pump sidebands.a) Gain of our amplifier in 4-wave mode for various
pump strengths, and an estimated signal strength of -89 dBm at the sample. Error bars are calculated as upper and
lower limits as described in the main text. b) Side-bands of the pump for various pump powers. The side-bands are
separated by 131 kHz, around the center pump peak, with the strongest side-band detuned by 790 kHz.

main peak, this is probably related to the internal filters in the microwave source.

We have also calculated the gain for various signal strengths, as plotted in Fig. 4.16a. As in the above
parts, the uncertainty in the calculated gain is quite considerable. The upper and lower errorbars come
from calculating the gain when taking the input signal to be equal to the noise, and when taking the input
signal to be the full signal peak (respectively). However, for low signal strengths, the noise (-92 dBm) is
higher than the expected signal strength. For these, the data point plotted is the average between the
upper and lower limits.

We see from Fig. 4.16a that the gain goes down (even though the uncertainty in our gain determination
goes up). This is what we would expect, if the amplifier saturates. However, we do not expect this to
happen here, as the sum of all inputs to the cavity together is less than the power at which the cavities
become non-linear (Sec. 4.2.3).

Instead of the cavities becoming non-linear, there is another process happening, which can be seen
in Fig. 4.16b. Here, the input signal is detuned from the pump, and the detuning is varied. This re-
sults in the red line from the upper left to the lower right of the figure. However, there is also a white
line at twice the detuning from the pump as the probe signal, in the same direction. This could be
related to an interference between the probe signal ωprobe and the pump ωpump, where the process is
2ωprobe = ωpump + ω2∆, where the ’twice-detuned’ signal is denoted with ω2∆. The strength of this peak
increases for signal strength, while the idler strength diminishes (causing the gain to drop by our calcu-
lations in Fig. 4.16a).

In fact, if one looks very carefully at Fig. 4.16b, there is also a very faint triply-detuned peak visible
when the detuning is small. This could also be related to an interference between the signal and the
pump.

Finally, to gain insight in the gain and bandwidth of our JPA in 4-wave mode, we determine the height
of the signal peak for various detunings. This is shown in Fig. 4.17. The gap near 6.121 GHz is due to
the pump peak overlapping with the signal/idler peaks, so their height cannot be determined accurately.
The bandwidth appears to be 10 MHz. Note the frequency difference between the measurements of
Fig. 4.14b and 4.17. They were taken from different cavities on the sample chip.

The signal peak strength could also be tracing out the cavity transmission, instead of the amplifier trans-
mission. However, we have seen earlier in the characterization of our cavities that the linewidth of the
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Figure 4.16: 4-wave amplification gain and signal-pump interference. a) Gain of our amplifier in 4-wave mode
for various signal strengths, for a pump strength of -70 dBm. The error bars are calculated as the upper and lower
limits as described in the main text, except when the nominal signal strength is lower than the average (-92 dBm)
noise level. Then, the nominal gain is taken to be the average between the upper and lower limits. b) For higher
signal strengths, an additional peak at twice the detuning of the signal with respect to the pump is seen (white line
from top left to bottom right). The idler (from top right to bottom left) is visible, but weaker than for lower signal
strengths.

cavities is on the order of 50 MHz. Due to the difference of this number with the measured linewidth of
the dip in the signal peak strength of Fig. 4.17, we attribute the linewidth to the bandwidth of the amplifier.

6.116 6.118 6.12 6.122 6.124 6.126

Frequency (GHz)

-91

-90.5

-90

-89.5

-89

-88.5

-88

-87.5

-87

-86.5

-86

S
2

1
 A

m
p

lit
u
d

e
 (

d
B

m
)

Figure 4.17: 4-wave amplifier bandwidth. Plot of the signal peak strength versus the detuning traces the cavity.
The gap near the middle is where the pump peak is. The width of the dip shows the bandwidth of our amplifier,
approx 10 MHz if we extrapolate the trends linearly.
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5
Conclusion

5.1 Josephson junctions

5.1.1 Fabrication
We have attempted to use a new method to fabricate superconductor-insulator-superconductor Joseph-
son junctions. This bridge-less shadow method works based on the shadow generated by pre-patterned
electrodes connecting the Josephson junction. This method allows more flexibility in the design of junc-
tions, and does not require a suspended bridge of resist, which could collapse of be susceptible to
damage.

We have found and solved several issues in the fabrication procedure of these Josephson junctions.
The fabrication procedure has two important steps that require tuning, the etching step and the evap-
oration step. Our etch process step is susceptible to over-etching, but this problem can be avoided by
monitoring the reflection of the sample with a laser. The etching of the MoRe layer provides a predictable
curve in the reflectance. The second issue related to the etching step is the electrode side-wall angle.
If the etch is isotropic, the side-walls of the electrode are rounded and can not form a shadow required
to create the junction in the evaporation step. This can be solved by fine-tuning the etching parameters,
or partially solved by evaporation at a higher incidence angle.

We have also found fabrication issues related to the evaporation of the Aluminium for the junctions.
Firstly, the two layers of the junction must conform to the electrode side-walls, and if the layers are too
thin, they might be disconnected. This can be avoided by evaporating a thicker layer of Aluminium. The
second issue relates to this, because if the bottom layer is too thick, it could also create a shadow to
disconnect the top layer. This can be avoided by making the top layer thicker than the bottom layer, of
evaporating the top layer at a lesser angle. These issues share a common factor in that Aluminium can
move around somewhat after deposition on the sample. This could be avoided by cooling the sample
down during evaporation.

We have two other issues that required tuning of specific fabrication steps. The evaporated Aluminium
films of the contact pads show (partially) popped bubbles. We suspect this is related to one of the later
steps in the fabrication process causing a gas-producing reaction with contaminants present at the in-
terface of the MoRe and the Aluminium. These bubbles do not appear to be present in small-area films,
such as our Josephson junctions. If the origin of the bubbles is as we expect, the issue can be avoided
by taking additional cleaning steps as described in [62].

The second issue pertaining to other steps in the fabrication is the with lift-off. The initial procedure
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for lift-off was not always (fully) successful, and left parts of the sample still covered in Aluminium. Using
an ultrasonic cleaner, and a pipette to blow away the Aluminium flakes using 80◦, proved sufficient to
remove the Aluminium from the sample completely.

The last, and most fundamental issue with the fabrication is the usage of Molybdenum-Rhenium as
a base material for the parametric amplifier. This material grows Rhenium-oxide crystals under normal
atmospheric conditions, which can affect the conductivity of the material. This process was not an issue
for our samples, as they were kept mostly under a nitrogen-atmosphere when not in use, and the forma-
tion of Rhenium-oxide crystals happens over a time-span of days. However, for practical applications
of the JPAs designed and fabricated in this thesis, the oxidation process is undesirable.

A clear path to avoid this oxidation issue is to switch to a different material for the base layer of the
JPA design. For example, NbTiN (Niobium Titanium Nitride) could be used, or Aluminium. Both are
materials accessible in our cleanroom facilities. However, switching to a different base layer material
would involve fine-tuning the process parameters of all the steps in the fabrication process. Due to time
and machine access constraints, we have chosen not to switch to either of the two mentioned materials
as alternative to MoRe. However, for future projects that strive to create a practical JPA, both NbTiN
and Al are viable options.

5.1.2 Characterization
One of the goals of this thesis was to characterize the Josephson junctions we have fabricated using
the bridge-less shadow method. We have first attempted to measure their resistance at room tempera-
ture, Sec. 4.1.1, but we must conclude that we have not succeeded in measuring the room-temperature
resistance of the Josephson junctions. We have found a correlation between the measured resistance
and the designed electrical path length. The resistivity of our MoRe we can derive from this appears
lower than the literature value, though the uncertainty is considerable. The geometry of the junctions and
contact pads is not suitable for determining the junction resistance at room temperature, mostly due to
the resistance in the leads. This could be overcome by using a four-terminal geometry very close to the
junction, but due to the sheet resistance of approximately 8.0 Ω/sq, it would require careful calibration
of the sheet resistance to see the junction resistance.

From Sec. 4.1.2, we find that the fabricated structures have to qualitatively different types of behaviour
in the I-V curve. One type appears in three junctions that share a common critical current of 130 µA.
However, this critical current is not affected by the junction size, and is too large for the Aluminium
junctions following the Ambegaokar-Baratoff relation. From the lack of resistance below this current, it
is a critical current, and we suspect it is related to a different structure on our sample. If this structure
was a cylindrical Aluminium constriction, it would be approximately 2.6 nm in radius, which is much
smaller than any of the expected junction size. We have attempted to find a conclusive origin for this
phenomenon, but have been unable to find a suitable one.

The second type of behaviour in the I-V curve is a series of steps. We have proposed multiple ex-
planations for the origin of these steps. They could be Shapiro steps, but would require driving at a
frequency of 130 GHz to create steps of 270 µV. We do not send in such a frequency. They could also
be (zero-field) Fiske steps, but do not behave as Fiske steps would in a magnetic field. They could be
photon-assisted tunnelling steps, but this would require sending in a signal at a frequency of 65 GHz,
which we do not.

We suspect the origin of these steps to be the thermoelectric effect. Having different cabling materi-
als connected at different temperatures can create a thermal voltage, which might be sufficient to cause
one of the Josephson junctions to emit radiation at the frequency required to induce Shapiro steps in a
nearby junction. As our junctions are close together, we think this is the most likely explanation for the
step-like behaviour.

In Sec. 4.1.3, we have measured SQUIDs with a critical current that is modulated by an applied mag-
netic field. Despite experimental error causing most of the magnetic field to be applied in-plane instead
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of out-of-plane, the modulation is clearly visible. There are also 270 µV steps observed that are not
modulated by the magnetic field, and appear in both SQUIDs and in single junctions.

From these results, we can conclude that we have fabricated Josephson junctions. Characterization
of the junctions at room temperature requires a different geometry, and characterization at 250 mK
was limited due to the Shapiro steps. Due to machine access issues, it was not possible to continue
fabrication of the junctions.

5.2 JPA

5.2.1 Simulation
We have simulated a general parametric amplifier with an additional Duffing non-linear term. The goal of
these simulations was to gain qualitative insight in how the parameters used in simulation (loss rate and
quality factor of the oscillator, the phase and strength of the input signal and strength of the pump, and
the sign and size of the Duffing parameter) affect the behaviour of the parametric amplifier. Although
the model was simple and the simulation method not particularly optimized for accuracy, the qualitative
behaviour of the simulated parametric amplifier matched expectations.

We have simulated the gain of the amplifier dependent on the phase difference of the input signal and
the pump, and found the expected π-periodic function. We have found the gain to increase exponentially
with pump strength, up to a point where the maximum amplitude of oscillation is limited by the Duffing
term. We have found the expected three different regimes for the gain depending on signal strength.

For low input signal strength, the gain is linear. For higher signal strengths, the gain saturates. If the
pump strength is above a certain value, the oscillator enters the self-oscillation regime, and oscillates
independently of the input signal. The signal amplitude at which the saturation regime starts is deter-
mined by the Duffing term, for higher non-linearity the regime sets in at lower signal strength.

We have also studied the bandwidth of the parametric amplifier. For low pump strength, the gain is
low and the bandwidth is large. For higher pump strengths, the gain increases and the bandwidth
decreases, as expected from an amplifier with a constant gain-bandwidth product. However, for suffi-
ciently high pump strength, the amplifier enters the saturation regime, which causes the gain-bandwidth
product to increase by increasing the bandwidth. For a sufficiently high pump amplitude, we enter the
self-oscillation regime, where we see a flat gain over a certain bandwidth. The slope of this gain plateau
is determined by the Duffing term.

5.2.2 Characterization
SQUID cavities
We have a sample with seven SQUID cavities, five of which have a released mechanical element and
two which do not. These cavities are the ones with a center frequency of 6.19 and 6.70 GHz respectively,
and external quality factors Qext of 129 and 162. We have shown that we can bias the SQUID cavities to
0.998 times their zero-field resonance frequency in an automated, repeatable and controllable manner.
For higher fields, the cavities can jump between different flux arcs. This can be remedied by going down
in field to make the cavities jump back to their original arc.

We have studied the limits in terms of pump- and signal power of our SQUID cavities. The cavities can
take 9.4 and 11.9 dBm signal power (generator output) before their transmission dip becomes asym-
metric. The cavities are prone to jump between flux arcs for higher signal powers if they are biased.
With respect to pump powers (in the 3-wave process, so pumped at twice their resonance frequency),
we see peaks related to the pump at the resonance frequency, and 6 MHz detuned from that. These
appear for pump powers of 1.6 dBm (generator output).

We have so far not been able to find a good explanation for this second peak. We see it appear for
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sufficiently high pump powers regardless of cavity, biasing, microwave source, clock-synchronization
between the detector and the source or frequency used in measuring.

Transmission amplitude versus pump strength
We have attempted to measure the gain of our amplifier directly from the depth of the dip in the cavity
transmission. We do not see the cavity transmission change significantly for experimental parameters
(signal and pump strength) or measurement parameters (frequency resolution, integration time). The
range of pump strengths over which we have measured, -80 to -10 dBm, is sufficiently large that we
expect this is not the issue.

To check if the frequency resolution of our measurements was the cause of the lack of visible gain
of our amplifier, we have performed a measurement where we detuned half the pump frequency from
the cavity resonance, and varied the detuning. In this measurement, we see four peaks in the trans-
mission that change in frequency matching the change in detuning. We suspect that these four peaks
share their origin with the two peaks seen in earlier measurements.

The set of four peaks only shows up periodically (that is, in the first our of every three measurements).
The fact that these peaks do not show up in the other two of every three measurements leads us to
suspect that the frequency resolution of our measurement is the limiting factor here. This could then
also explain why we did not see transmission change with pump power.

Gain versus phase
To determine the gain without being affected by the frequency resolution of our measurement, we can
measure the amplifier gain by measuring how the transmission changes when we change the phase
difference between the input signal and (half) the pump. We do this by sending in the input signal as a
slightly (0.1 Hz) lower frequency than half the pump. This way, we get a 2π phase shift every 10 seconds.

We have analysed the data obtained via this method with two different models. The first is a rather
straightforward model that gives the gain of a parametric amplifier as a function of the phase [42]. This
model fits very well to the data, but the gain (16 dB maximum) we can derive from this does not behave
as expected. A possible reason for this is that the resonance frequency of the cavity shifts with input
signal power, which can affect the measured transmission amplitude that we fit our model to. The sec-
ond reason is that we measure a side-coupled cavity in transmission, and this is not taken into account
in this model.

To remedy both points, we have characterized background signal and the change in cavity resonance
frequency and quality factor for all the combinations of pump and signal powers used. We have used
this characterization to subtract the background from the cavity signal. Furthermore, we have refined
our model based on the derivations done in the theory chapter, Sec. 2.3.2, for a side-coupled cavity
measured in transmission.

We have re-analysed the data from these measurements with this new model. It also provides a good fit
to the measured data, but we were unable to translate the fitting parameters to the gain of our amplifier.
We have attempted to do so via the derivation of the model, but there is a large difference between the
obtained fit parameters and what is expected for a parametric amplifier based on the simulations done
in Sec. 3.5.

Noise Temperature
The main benefit of using a JPA over other types of amplifiers is the lower noise temperature. We have
attempted to characterize the noise temperature of the fabricated amplifier, but were quite limited in
ways to achieve this accurately. There are several reasons for this. The first is that we want to know the
noise temperature of the first amplifier in our chain of amplifiers. However, without accurate calibration
of the other amplifiers in the chain, and knowledge of the gain of our amplifier, we are very limited in
determining the noise temperature of the amplifier.
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Another limiting factor was due to the set-up available in the fridge. To determine the noise temper-
ature of the amplifier, we need to know accurately the noise temperature of the input to the amplifier.
We could either measure this, using a qubit or using a switch to bypass our JPA, or control this, using a
resistor with a heater. However, we have none of these options available, as the hardware is not present
in our fridge.

We have attempted to determine the noise temperature of the JPA using the thermal noise of our fridge.
By pumping the amplifier to achieve a sufficient gain, the cavity noise should be amplified, which we
have observed (340 mK outside the cavity, 360 mK inside the cavity). We also saw a peak with a small
linewidth (<1 MHz) that at first appeared to be an artefact of the pump. However, we operate the JPA
in 3-wave mode, i.e. we pump at 12.3 GHz and measure at 6.15 Ghz. It is unlikely that this peak is
caused by the pump leaking into our output line. Instead, we attribute it to the gain of our parametric
amplifier.

We could have determined the noise temperature of our amplifier, had we measured at the amplified
frequency for a certain amount of time. By comparing the noise at this frequency to the noise at different
frequencies, we can calculate the difference in noise temperature. However, we have only come to this
conclusion during the analysis of the data, when no further measurements could be performed.

4-wave mixing
We have shown that our JPA can also be operated in 4-wave mixing mode. For several combinations
of signal and pump powers, we see a gain of between 2 and 6 dB. The amplifier is limited in the pump
strength by the pump side-bands that become stronger than the idler peak we use to characterize the
gain. In signal strength, the JPA is limited by what appears to be an interference process between the
signal and pump tones, which causes a peak with twice the detuning from the pump as the signal. For
this case, the idler disappears almost completely.

We have characterized the amplifier bandwidth by plotting the intensity of the signal peak with respect to
the detuning. The bandwidth we obtain from this is 10 MHz, which is more than the bandwidth observed
in the previous section, but sufficiently less than the cavity linewidth that we do not attribute it to that.
As we operate the JPA in a different mode and at different pump and signal strengths, we do not see
a major issue in the difference between the bandwidth measured here (10 MHz) and earlier (1 MHz).
Both values are comparable to the bandwidths of other JPAs used in research applications (Table 2.1).

We conclude that the JPA can be operated in 4-wave mode, but only in a limited regime of signal- and
pump strengths. This could be remedied by changing the design to enhance amplification, for example
by operating it in reflection mode.

Outlook
There are several avenues available for follow-up research. There are some fabrication issues remain-
ing that were not (fully) resolved, which could be the subject of a future project. An important factor for
this is that MoRe oxidises when left exposed to air, which could affect the functionality of an amplifier.
Other superconducting materials could be considered as a base material for the amplifier, such as NbTiN
or Aluminium.

We have also described fabrication issues related to the bridge-less shadow method of fabricating
Josephson junctions. A major issue here appears to be the Aluminium moving around after deposi-
tion. We have suggested that this could be avoided by cooling the sample down during the evaporation,
but have not actually done so. This could also be the subject of a future research project, albeit more
materials science-oriented than this project.

In doing the analysis of themeasurement data andwriting up this thesis, we have found several measure-
ments that could have been performed to better describe the characteristics of our JPA. For example,
we could have improved our description of the gain of the amplifier as a function of the phase difference
between the input signal and half the pump. We also could have determined the noise temperature of
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our amplifier from measurements at half the pump frequency and at a sufficiently different frequency.
From the noise amplitude of both measurements, we could have found the noise temperature of the
amplifier, and from the difference in average amplitude, we could have derived the gain of the amplifier.
All these measurements can be done in a follow-up project.

There are also several design aspects that could be changed to benefit the functioning of the JPA,
such as the size of the SQUID loop, the position and length of the flux pump line and the critical current
of the junctions. Taking into account the previous points, a logical step would be to re-design the JPA
and fabricate it. With the measurement methods described here, including the improvements detailed
above, it should be possible to better characterize a JPA.
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A
JPA recipe

For completeness, the latest iteration of the full recipe to create Josephson Parametric Amplifier is given.
The work for this thesis was performed in the cleanroom of the Kavli Nanolab, Delft. Care has been taken
to denote the steps of the recipe such that the could be applied by others or in other labs.

Step 1: Clean the chips.
Start with a 15× 15 mm2 pre-diced square chip of 500 µm Si with polished native oxide on top. Put the
chip in an acetone bath for 30 s, and rinse afterwards. Repeat this two more times, and then repeat it
three times with IPA instead of acetone.

Step 2: MoRe layer.
Sputter 100 nm MoRe on the sample (in our case, using 100 W power, 10 µbar pressure and 4 min 30s).
Then, spin-coat the chip with AR-P 6200.13 at 4000 rpm, and pre-bake for 3 min. Pattern the MoRe
electrodes, transmission lines and MoRe layer using an e-beam with a 180 µC/cm2 dose.

After the exposure, develop the resist using a Pentylacetate bath (60 s), followed by a MIBK:IPA 1:1
bath (60 s) and an IPA bath (60 s). Then, etch with 12.5 sccm SF6 and 10 sccm O2 with 10 µbar pres-
sure and 50 W RF power. In our system, the etching takes approximately 3 min, and the etch progress
can be monitored with a laser. After the etching, strip the remaining resist using a hot (80◦ C) PRS3000
bath for approximately 1 hour, followed by an IPA rinse.

Step 3: Al junctions.
First, we make a double layer of resist to get the required undercut to make the junctions. Spin-coat the
chip with PMGI SF7 at 4500 rpm, and bake it for 15 min at 180◦C. Then, spin-coat PMMA 950K A3 at
5500 rpm, and bake it for 15 min at 175◦ C.

Make the pattern for the junctions, using an e-beam with 2200 µC/cm2 dose. Then, develop the ex-
posed chip with a MIBK:IPA 1:3 bath for 70 s, an IPA bath for 70 s, an MF321 bath for 10 s, followed by
two separate H2O baths of 15 s and finally another IPA bath of 20 s.

Then, perform an additional cleaning step before the evaporation. Clean it with an O2 plasma, 200
W for 30 s with 200 sccm O2. Our system has a Faraday cage, which is important if this recipe is fol-
lowed exactly (otherwise, the O2 plasma damages the sample). Then, perform an HF dip to clean the
surface. We used a BOE (Buffered Oxide Etch) 7:1 dip for 30 s, followed by two H2O baths of 30 s each.

Next, the evaporation of the junctions. This is the most critical step, and it must be performed quickly
after the HF dip to prevent oxidation. After loading the sample, we pump down to 10−7mbar, and evap-
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orate some nm of Ti to trap the remaining gases to the wall of the chamber. We evaporate the first layer
of Al, 35 nm at a 45◦ angle. We let the sample oxidise for 10 minutes in an O2-rich atmosphere at 0.5
mbar, and evaporate the second layer of Al, 45 nm at again a 45◦ angle.

After unloading, we must lift-off the remaining Al from the sample. We do this with a bath of NMP
at 80◦ C for 20 minutes, with a pipette to create extra flow. We follow this by a Acetone bath (30 s) and
an IPA bath (30 s).

Step 4: Dicing and mounting.
The last step involves dicing the chip to size to expose the microwave connectors near the side, and to
mount it to on the PCB for connections to the fridge cables. This was done in our case by glueing the
chip, and wire-bonding the connecting pads.
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