
A methodological approach for
optimisation of product devel-
opment processes by application
of design automation
Master of Science Thesis

A. Mulder BSc

D
elf

t
Un

iv
er

sit
y

of
Te

ch
no

lo
gy

A METHODOLOGICAL APPROACH FOR

OPTIMISATION OF PRODUCT DEVELOPMENT

PROCESSES BY APPLICATION OF DESIGN

AUTOMATION

MASTER OF SCIENCE THESIS

by

A. Mulder BSc

in partial fulfillment of the requirements for the degree of

Master of Science
in Aerospace Engineering

at the Delft University of Technology

Thesis registration number: 037#15#MT#FPP

CONFIDENTIAL
Under no circumstances should this report or information contained therein be distributed, reprinted or

reproduced in any form without the written consent of the author.
An electronic version of this thesis is available at http://repository.tudelft.nl/ 5 years after

publication date.

http://repository.tudelft.nl/

DELFT UNIVERSITY OF TECHNOLOGY
FACULTY OF

AEROSPACE ENGINEERING
DEPARTMENT OF

FLIGHT PERFORMANCE AND PROPULSION

The undersigned hereby certify that they have read and recommend to the Faculty of Aerospace Engineering
for acceptance a thesis entitled "A methodological approach for the optimisation of product development
processes by application of design automation" by A. Mulder B.Sc. in partial fulfillment of the requirements
for the degree of Master of Science.

Dated: 14th of August, 2015

Head of department:

Prof. dr. ir. L. Veldhuis

University Supervisor:

Dr. ir. G. La Rocca

Industry Supervisor:

Dr. ir. E.J. Schut

Reader:

Dr. ir. W. Verhagen

ACKNOWLEDGEMENTS

This thesis is the final deliverable concluding my time as a graduate student. The past seven years I have
learned a lot of things, but most importantly I enjoyed it. From the first year lectures to the Design Synthesis
Exercise and from the internship assignments to writing this thesis. Besides learning a lot about aerospace
engineering, I learned a lot of other things. I think this is the power of the Delft University of Technology,
to provide high quality education in combination with the academical freedom to explore other areas inside
and outside of the curriculum.

Although solely my name is written on the cover of this thesis it does not mean I did everything by myself.
Quite the opposite actually, I could not have achieved this goal without the help of many others. I want to
express my gratitude to all of you who supported me in the past seven years. I also would like to thank some
people in particular due to their substantial contribution to either my academical work, my mental state or
both.

First of all, I would like to thank my supervisors Gianfranco La Rocca and Joost Schut. Although the both
of you have packed schedules you always managed to free up time for discussions and feedback. I think it is
a good sign that most of the meetings ran overtime. They were both useful and cheerful. Gianfranco, thank
you for your sharp analysis and detailed feedback on deliverables and especially the conference paper. Joost,
many thanks for guiding me on a daily basis and your seemingly unlimited optimism.

Thanks to Wim Verhagen for multiple discussions from the very start of this research until the end. I am
thankful for these discussions and your review of the conference paper. I am glad you were willing to join the
thesis committee to assess my work. Thanks to Leo Veldhuis for being the chairman of the committee and
assessing my work.

Most of the working hours were spent at the KE-works office in a pleasant working environment. Thanks
to all the colleagues for all their help. The discussions on product development were helpful but also the great
supply chain management of coffee and relaxation with fußbal or table tennis increased the quality of this
thesis. I would like to thank Wilco Schoneveld in particular for his help in getting familiar with the Python
language and SimPy package.

I owe many thanks to various people for reviewing my work over the past seven months. Thank you Rob,
Max, Jaap, Wieger and Kevin.

And last but certainly not the least I would like to thank my friends and family. Whenever I was down you
always cheered me up and when I was happy you shared this joy with me. I know this sound cheesy, but the
process of writing this thesis was one with many personal highs but unfortunately some lows. It is great to
see what friends and family mean at these moments. I want to thank Ruth in special, you have been, without
a doubt, the best motivator in the past years and will be for the coming year. Thank you!

A. Mulder BSc
Delft, August 2015

iii

SUMMARY

In the past decades a clear transition can be seen from fully human-based production techniques towards
more automated systems. With the Product Development Process (PDP) being a potential source of com-
petitive advantage, the same trend of adopting more automation can be seen in the PDP. The application of
automation can lead to large reductions in process lead time. The reduced lead time can be used to enhance
product performance by assessing more design options in the same time, or to reduce the cost-of-delay and
obtain a larger market share. It is clear that a reduction in lead time is worth an investment for companies
and therefore automation can be adopted to improve the PDP performance.
Both industry and academia acknowledge the lack of a quantitative method to assess the effect of the appli-
cation of automation on the performance of a given process. Furthermore no methods are available to assess
the effect of incremental automation. Another limitation is that most models investigating automation in the
PDP, only take into account a binary type of automation: either fully human or fully automated.
This research aims at addressing these gaps of knowledge and the goal of this research is to develop a tool
that provides more insight in the costs and benefits of automation in the PDP taking into account incremen-
tal automation and various levels of automation.
To achieve the objectives a novel methodology is developed i) to model any PDP as a combination of a pre-
defined set of specific activities and ii) to define different levels of automation for these activities. Subse-
quently, metrics are developed to measure the impact of different levels of automation on different activities,
both in terms of activity lead time reduction and implementation cost. A simulator using Discrete Event Sim-
ulation (DES) is developed which utilises the proposed process model and metrics to analyse, among others,
the lead time, automation investment cost and process cost for the overall process (for a given process ar-
chitecture). Finally, the simulator is connected to an optimiser which tries to find the most convenient level
of automation for each of the PDP activities, in order to generate the Pareto front qualitatively illustrated in
Figure 1. Here each Pareto optimal solution corresponds with a process architecture where each activity has
a specified level of automation as illustrated in Figure 2.

Feasible

region

min investment cost

min lead time

Automation investment cost

Pr
oc

es
s l

ea
d

tim
e

Pareto front

Q

Figure 1: Qualitative representation of a Pareto front trading
off lead time and investment cost

P1

P2

P3

P4 P5

Legend: levels of automation

1 2 3 4

Configuration Q

Figure 2: Simplified illustration of the process architecture Q
on the Pareto front

The proposed methodology is extensively verified. Verification is performed for both the simulator and the
optimiser. Based on this verification it can be concluded that with appropriate settings the optimiser man-
ages to find Pareto optimal solutions for different levels of automation. Due to scarce validation data, the
methodology has been validated based on expert judgement.
The proposed methodology and the analysis and optimisation framework are demonstrated by application
to an industrial case study. The case study concerns the conceptual design phase of an aircraft component,
performed by a multinational aerospace enterprise. The case study successfully demonstrates the feasibility
and applicability of this methodology and accompanying frameworks. Multiple Multi-Objective Optimisa-
tions (MOOs) are performed to trade off various objective functions. In this case study, specific activities in
the process are identified to be more effective to automate. Results show that, compared to the status quo,

v

vi SUMMARY

an investment in the lug sizing tasks of 7,1% of the investment cost of full process automation can lead to a
potential lead time reduction of more than 40%. The proposed methodology proves to be successful in ob-
jectively quantifying the costs and benefits of automation in the PDP and subsequently selecting the optimal
automation level.

CONTENTS

Acknowledgements iii

Summary v

List of Figures xi

List of Tables xiii

List of acronyms xiii

Nomenclature xv

1 Introduction 1
1.1 The need for automation in product development . 1
1.2 Challenges in the application of automation . 2
1.3 Research objective, approach and scope . 3

1.3.1 Research objective . 3
1.3.2 Research approach. 4
1.3.3 Research scope. 4
1.3.4 Research assumptions . 5

1.4 Research partners . 5
1.4.1 Delft University of Technology . 5
1.4.2 KE-works . 5
1.4.3 Noesis Solutions . 5
1.4.4 Fokker Technologies . 5

1.5 Thesis structure . 5

2 Background 7
2.1 The product development process . 7

2.1.1 General product development processes. 7
2.1.2 Complex aerospace products . 8
2.1.3 PDP characteristics . 8

2.2 Performance in the product development process . 9
2.2.1 Cost . 9
2.2.2 Time . 10
2.2.3 Quality . 10

2.3 Information Quality. 10
2.4 PDP Modelling and analysis. 11

2.4.1 PDP modelling . 11
2.4.2 PDP analysis . 12

2.5 Automation . 13
2.5.1 Definition of automation . 13
2.5.2 Levels of automation. 13
2.5.3 Types of automation . 13
2.5.4 Effects of automation . 14
2.5.5 Potential for automation application. 14

3 PDP modelling approach 17
3.1 Philosophy . 17
3.2 Process modelling. 17

3.2.1 Process granularity. 17
3.2.2 Activity types. 18
3.2.3 Activity interdependency . 20

vii

viii CONTENTS

3.3 Levels of automation modelling. 20
3.4 Activity duration estimation method . 23
3.5 Process lead time estimation method . 24
3.6 Process cost estimation method . 24
3.7 Automation investment cost estimation method . 25

3.7.1 Activity automation cost attributes. 25
3.7.2 Total automation investment cost . 29

3.8 Integral modelling approach . 29

4 Simulation 31
4.1 Discrete Event Simulation. 31
4.2 Simulation structure . 32
4.3 Behaviour . 33

4.3.1 Iteration . 33
4.3.2 Rework. 34
4.3.3 Collaboration . 35
4.3.4 Resource allocation . 35

4.4 Simulation outputs . 35
4.5 Simulation activity sequence . 37

5 Optimisation strategy 39
5.1 Optimisation problem . 39
5.2 Multi-Objective Optimisation (MOO) . 40
5.3 Need for optimisation. 40
5.4 Algorithm requirements . 40
5.5 Non-dominated Sorting Differential Evolution Algorithm. 41

6 Integrated simulation and optimisation framework 43
6.1 Definition and configuration platform . 43
6.2 Simulation and analysis platform . 44
6.3 Optimus platform . 44
6.4 Integrated framework performance . 45

7 Framework verification and validation 47
7.1 Simulation verification . 47
7.2 Optimisation verification . 47

7.2.1 Test case 1: Iteration . 48
7.2.2 Test case 2: Parallelisation . 49
7.2.3 Test case 3: Resource cost . 49

7.3 Optimisation reliability . 50
7.3.1 Optimisation settings . 50
7.3.2 Sensitivity analysis of optimisation settings . 51
7.3.3 Optimisation consistency . 53
7.3.4 Optimisation convergence . 54

7.4 Discussion on methodology validation . 55

8 Case study: Rudder hinge connections 57
8.1 Hinge connection design process . 57

8.1.1 Product description . 57
8.1.2 Process description . 57

8.2 Case study input parameters . 58
8.3 Optimisation results . 59
8.4 Discussion of optimisation results . 61
8.5 Analysis of automation scenario’s . 64

8.5.1 Implementation of KE-chain. 65
8.5.2 Implementation of specific KBE application . 65
8.5.3 Maximum level automation . 65

8.6 Input parameter sensitivity . 65

CONTENTS ix

9 Conclusions, limitations and recommendations 67
9.1 Conclusions. 67
9.2 Limitations . 68
9.3 Recommendations . 69

A CEAS Conference Technical Paper 71

B PDP optimisation steps 91
B.1 Step 1: Initial knowledge acquisition . 91
B.2 Step 2: Process re-structuring . 91
B.3 Step 3: Process analysis and optimisation . 92
B.4 Step 4: Concept selection . 92
B.5 Step 5: Re-structure the process architecture . 92
B.6 Step 6: Development and implementation . 92
B.7 Step 7: Evaluation . 92

C Non-dominating Sorting Genetic Algorithm 93
C.1 Fast non-dominated sorting procedure . 93
C.2 Diversity preservation approach . 93
C.3 Algorithm main loop . 94

D Case description: Optimisation reliability 97
D.1 Resource parameters . 97
D.2 Process parameters . 97
D.3 Optimisation settings . 99

E Optimisation results: Robustness analysis 101

F Case description: Optimisation convergence 103
F.1 Process flowchart . 103
F.2 Resource parameters . 103
F.3 Process parameters . 103
F.4 Optimisation settings . 105

G Case description: Hinge connection 107
G.1 Simulation settings . 107
G.2 Methodology parameters . 107
G.3 Resource parameters . 110
G.4 Process parameters . 110

H Optimisation results: Hinge connection 117

I Optimisation settings: Hinge connection 121

Bibliography 123

LIST OF FIGURES

1 Qualitative representation of a Pareto front trading off lead time and investment cost v
2 Simplified illustration of the process architecture Q on the Pareto front v

1.1 Qualitative representation of the "knowledge paradox". Solid lines represent the case of tra-
ditional development techniques and the dashed lines represent the need to bring knowledge
forward in the process and increase the span of design freedom. [1] 2

1.2 Current trade-off between investment cost and lead time in a Product Development Process . . 3
1.3 Improved trade-off between investment cost and lead time in a Product Development Process . 3
1.4 Steps involved in process improvement . 4

2.1 Illustration of simple and complex engineering systems [2] . 8
2.2 Example workflow demonstrating the principle of planned iteration 8
2.3 Example workflow demonstrating the principle of unplanned iteration 8
2.4 Overview of Design Structure Matrix (DSM) (adjusted from [3]) . 12

3.1 Example of process decomposition in tasks and activities . 18
3.2 Example task X decomposed in activities with corresponding durations 19
3.3 Example task Y decomposed in activities with corresponding durations 19
3.4 Basic example of an activity-based DSM . 20
3.5 Grid with various automation initiatives plotted . 21

4.1 High level overview of the simulation concept . 31
4.2 High-level UML class diagram of the developed simulation method 33
4.3 Workflow illustrating the rework modelling policy . 34
4.4 DSM and flowchart to illustrate the principle of rework and reset signals as used in the simulation 34
4.5 UML sequence diagram for the developed simulator . 37
4.6 UML activity diagram for the PDP simulator . 38

5.1 Pareto front trading off lead time and investment cost . 39
5.2 Simplified illustration of the process architectures P and Q on the Pareto front 39
5.3 High level example of the optimisation system . 41

6.1 Overview of the integrated simulation and optimisation framework 43
6.2 Workflow as displayed in the Optimus GUI . 44
6.3 Overview of input parameters as displayed in the Optimus GUI . 45

7.1 Flowcharts of the test cases for optimisation verification . 48
7.2 Pareto front for the lead time and investment cost for the base case and iterative case 48
7.3 Average level of automation per task for the iterative case . 48
7.4 Pareto front for the lead time and investment cost for the base case and parallelisation case . . . 49
7.5 Selection of architectures on the Pareto front for Scenario II with average levels of automation

per task . 49
7.6 Average level of automation per task for the base case . 49
7.7 Average level of automation per task for test case 3 . 49
7.8 Flowchart of the process used for verification . 50
7.9 Pareto plots using the proposed method using various target front sizes 51
7.10 Pareto plots for the optimisation using different start populations 52
7.11 Pareto plots using the proposed method using various weighting factors 52
7.12 Pareto plots using the proposed method for varying inverse crossover probability 53
7.13 Pareto plots using the proposed optimisation for different target front sizes. For each target

front size the experiment is twice to investigate consistency. 54

xi

xii LIST OF FIGURES

7.14 Pareto plot with results of an exhaustive search and results of an optimisation using the pro-
posed optimisation method . 55

8.1 Indication of scope of the hinge in this research (courtesy of Fokker Aerostructures) 58
8.2 Section of a typical fail-safe hinge as used in rudder designs (courtesy of KE-works) 58
8.3 Flowchart of the conceptual design phase of the hinge connections on task level 58
8.4 Normalised Pareto plot for the MOO trading off the lead time and the investment cost (optimi-

sation 1) . 60
8.5 Normalised Pareto plot for the MOO trading off the lead time and the number of projects until

BEP (optimisation 2) . 61
8.6 Simplified overview of the average level of automation on a task level for all Pareto optimal

solutions of optimisation 1 . 62
8.7 Normalised Pareto plot with Pareto optimal solutions of both optimisation 1 and 2. Plotted for

lead time and investment cost . 63
8.8 Normalised Pareto plot with Pareto optimal solutions of both optimisation 1 and 2. Plotted for

lead time and number of projects until BEP . 63
8.9 Normalised Pareto plot for the MOO trading off lead time and investment cost combined with

the alternative scenarios . 64
8.10 Normalised Pareto plot for the MOO trading off lead time and number of projects until BEP

combined with the alternative scenarios . 64

B.1 Steps involved in methodology . 91

C.1 Crowding distance calculation for solution i [4] . 95

D.1 Design Structure Matrix of the process defined on a task level . 97

E.1 Visually enhanced overview of all Pareto optimal design vectors for first run 102
E.2 Visually enhanced overview of all Pareto optimal design vectors for second run 102

F.1 Workflow of the process on a task level with indicated resources 103
F.2 Design Structure Matrix of the process defined on a task level . 104

G.1 Design Structure Matrix of the process defined on a task level . 112

H.1 Summary of the different levels of automation per task for optimisation 1 117
H.2 Profile of optimisation levels for all tasks (columns) and Pareto optimal solutions (rows) of op-

timisation 1 . 118
H.3 Profile of optimisation levels for all activities (columns) and Pareto optimal solutions (rows) of

optimisation 1 . 118
H.4 Summary of the different levels of automation per task for optimisation 2 119
H.5 Profile of optimisation levels for all tasks (columns) and Pareto optimal solutions (rows) of op-

timisation 2 . 119
H.6 Profile of optimisation levels for all activities (columns) and Pareto optimal solutions (rows) of

optimisation 2 . 120

LIST OF TABLES

2.1 Overview of Information Quality Levers as defined by de Vrught [5] 11
2.2 Overview of different PDP modelling constructs used in literature 12

3.1 Comprehensive overview of activity characteristics . 19
3.2 Summary of levels of automation (LoA) for PDP activity types . 21
3.3 Criteria to assist in the identification of the levels of automation per activity type 22
3.4 Example of Duration Matrix (DM) for a fictitious task . 23
3.5 Sample knowledge acquisition effort coefficients (C MK A) . 26
3.6 Classification of integration types with accompanying costs . 27
3.7 Sample license cost coefficients (C Ml i c) . 28

4.1 Overview of computed Key Performance Indicators (KPIs) on a process level 36
4.2 Overview of computed KPIs on an activity level . 36

7.1 Code coverage report for unit testing of developed analyser . 48
7.2 Overview of the optimisation parameters applicable to the proposed optimisation method . . . 50

8.1 Results of process simulation of specific automation scenarios . 64

D.1 Definition of resources as initiated in the simulation . 97
D.2 Parameters for the process description on a task level . 98
D.3 Parameters for the process description on an activity level . 98
D.4 Default parameter settings as used in the optimisation reliability analysis 99

E.1 Optimisation settings to verify the optimisation robustness as discussed in Section 7.3.3 101

F.1 Definition of resources as initiated in the simulation . 103
F.2 Parameters for the process description on a task level . 104
F.3 Parameters for the process description on an activity level . 104
F.4 Default parameter settings as used in the optimisation convergence analysis 105

G.1 Simulation settings input parameters used in case study (redacted) 107
G.2 Methodology input parameters used in case study (redacted) . 108
G.3 Methodology matrix input parameters used in case study (redacted) 109
G.4 Methodology input parameters for the cost of integration in case study 110
G.5 Definition of resources as initiated in the simulation . 110
G.6 Parameters for the process description on a task level . 111
G.7 Parameters for the process description on an activity level . 112

I.1 Optimisation settings for the MOO trading off lead time and investment cost 121
I.2 Optimisation settings for the MOO trading off lead time and number of projects until BEP . . . 121

xiii

LIST OF ACRONYMS

AI Artificial Intelligence.

BEP Break Even Point.

CAD Computer Aided Design.

CATIA Computer Aided Three-dimensional Interactive Application.

CM Cost Matrix.

DA Design Automation.

DES Discrete Event Simulation.

DM Duration Matrix.

DSM Design Structure Matrix.

GA Genetic Algorithm.

IQ Information Quality.

KBE Knowledge Based Engineering.

KPI Key Performance Indicator.

LC Learning Curve.

MDO Multi-Disciplinary Optimisation.

MOO Multi-Objective Optimisation.

NSGA-II Non-dominating Sorting Genetic Algorithm.

PDP Product Development Process.

ROI Return on Investment.

UML Unified Modeling Language.

VBA Visual Basic for Applications.

VT Vertical Tailplane.

WMS Workflow Management Software.

xv

1
INTRODUCTION

In the past decades a clear transition can be seen from fully human-based production techniques towards
more automated systems. This transition is focused on reducing lead time, decreasing process cost and im-
proving product consistency and quality. The same trend of adopting more automation can also be seen
in the Product Development Process (PDP), driven by a growing focus on PDP improvement as a potential
source of competitive advantage [6]. In particular, for many companies lead time duration is the most impor-
tant performance measure of the development process, because a reduced time-to-market (i.e. reduced lead
time) results in a reduction in cost-of-delay and a larger market share [7]. This reduction in lead time can also
be used to increase product quality by investigating multiple design options in the same lead time as without
automation. Because of these benefits a reduction in lead time is worth an investment for companies. De-
sign Automation (DA), Knowledge Based Engineering (KBE), Artificial Intelligence (AI) and Computer Aided
Design (CAD) are examples of computer based technologies adopted to improve the PDP.
This chapter will first provide a brief discussion on the need for automation in product development in Sec-
tion 1.1. Subsequently the current challenges faced in the field of process optimisation by means of automa-
tion are discussed in Section 1.2. Subsequently in Section 1.3 the research objectives, questions, approach
and scope are discussed. Section 1.4 provides a quick summary of the involved research partners. Finally in
Section 1.5 the content of the remainder of this thesis is outlined.

1.1. THE NEED FOR AUTOMATION IN PRODUCT DEVELOPMENT
The way the PDP is executed in industry is constantly evolving. Over the years, a paradigm shift can be ob-
served, where starting from a purely technical process, the PDP is now integrating both technical and busi-
ness process aspects. The overall process or product performance is becoming increasingly important. Hence
the total performance should be taken into account during the PDP and thus more than just the technical dis-
ciplines need to be taken into account. The total life-cycle cost of a product needs to be taken into account as
early as possible. Moreover the need for an optimal design becomes increasingly important, especially in in-
dustries such as the aerospace industry where minor adjustments in the design can lead to major reductions
in total life-cycle cost.
Traditional development techniques lead to a so-called "knowledge paradox" where the designer reduces
design freedom by gaining knowledge on the design [8]. This paradox is also illustrated in Figure 1.1. This
paradox has resulted in product development techniques like concurrent engineering and Multidisciplinary
Design Optimisation. Processes have evolved from stage-gated sequential engineering models to the iterative
concurrent models.
These new process models have proven to reduce lead time and often increase overall process performance
[9]. On the other hand these processes have an increased risk for rework and the amount of iterative loops
increases significantly according to Clark and Fujimoto (as cited by Terwiesch et al. [9, p. 404]). This effect of
iteration and rework leads to more repetitive tasks in the PDP. Automation initiatives, like DA and KBE, have
proven to be valuable for repetitive, non-creative tasks [8]. Computers excel in the execution of repetitive
work. Automation reduces the time spent by a human resource on these repetitive tasks and often results in
shorter lead times and increased productivity [11].
By adopting these processes with an increase in the amount of iterations and rework automation is essential.

1

2 1. INTRODUCTION

Figure 1.1: Qualitative representation of the "knowledge paradox". Solid lines represent the case of traditional development techniques
and the dashed lines represent the need to bring knowledge forward in the process and increase the span of design freedom. [1]

Without automation either too few iterations can be made to deliver an optimised product, or the lead time
increases significantly resulting in a high cost-of-delay and reduced market share [7].
The value of automation does not solely rest in the reduction in lead time due to the computational power
of a computer. Automation also leads to consistent quality; the outcome is based on specific algorithms and
consistent use of the same knowledge. Furthermore, by the application of automation the cost of the human
resources spending time on an activity are reduced or even eliminated. More background information on the
benefits of automation can be found in Section 2.5.4.

1.2. CHALLENGES IN THE APPLICATION OF AUTOMATION
Automation is in literature often regarded as a binary option for process improvement, meaning that a pro-
cess either is fully automated or not at all. This is not a realistic point of view since automation can be seen
as an incremental innovation. In practice it is often not possible, or even desirable to automate a full process
at once due to technology challenges, but also in due to the human side adoption of the automated solution
[12]. Another practical aspect playing in favour of incremental innovation is the available budget of the com-
pany. Often a proof of concept is generated before a whole process can be automated. This proof of concept
is for example a sub-process which is automated, or the process as a whole which is automated to a lower
level of automation than in the full-scale automation initiative. To add to this, the option of different levels of
automation is often not assessed. An activity is either performed by a human or by a computer but the option
of a human with assistance of the computer is in many cases not assessed.
Furthermore, as discussed by Verhagen et al. [13], the cost of automation is not assessed a prio: "There is no
formal method to generate a priori cost estimates of the automation process". It is furthermore acknowledged
that such a method is required to be able to construct objective cost and benefit analysis for automation op-
portunities.
Finally it is difficult and often impossible, to predict the impact of single changes in the configuration of a
process (e.g. by the introduction of automation solutions for specific tasks) of the overall PDP [14].

Before a company can commit to the development or acquisition of automation solutions, management
needs critical information, such as the set of PDP activities to automate first, the expected gain in lead time
reduction, the cost associated to the implementation of different levels of automation or to the reconfigura-
tion of the whole process to a specific level of automation. In other words, the company needs to gain insight
in the costs and benefits of the application of automation initiatives. Figure 1.2 qualitatively displays the
current situation where a company incrementally applies automation without knowledge of the shape of the
Pareto front (i.e. with the optimal lead time-investment cost combinations). Only a perceived Pareto front
(i.e. bold guestimates based on intuition) with a high uncertainty is available. It can also be seen that often
the space of feasible solutions is not known since only specific automation initiatives are investigated; it is
impossible to investigate all automation initiatives on a low process modelling level (i.e. on a task or activity
level).
Figure 1.3 illustrates the desired situation in which a feasible region is known, consisting of many differ-

1.3. RESEARCH OBJECTIVE, APPROACH AND SCOPE 3

ent PDP architectures, each one consisting of the complete sequence of process activities, with their level
of automation and employed resources. Within this feasible region, knowledge is available on the optimal
solutions on the Pareto.

Starting point

Investment cost

Le
ad

 ti
m

e

Perceived possible

pareto fronts
Uncertainty

Figure 1.2: Current trade-off between investment cost and
lead time in a Product Development Process

Feasible region

Starting point

min lead time

Investment cost

Le
ad

 ti
m

e

Pareto front

Figure 1.3: Improved trade-off between investment cost and
lead time in a Product Development Process

For companies the process architectures on the Pareto front are those of highest interest since they represent
optimum combinations of lead time and required investment cost, i.e. PDP architectures for which one of
the two objectives (lead time and investment cost) cannot be improved without deteriorating the other. The
Pareto front can be used to estimate the investment costs necessary to achieve a certain lead time reduc-
tion, or, vice versa, the amount of lead time reduction that can be achieved with a given budget to invest in
automation solutions.

1.3. RESEARCH OBJECTIVE, APPROACH AND SCOPE
This section introduces the research objective and sub-objectives, the approach used to achieve these objec-
tives and the scope for this research.

1.3.1. RESEARCH OBJECTIVE

The goal of this research is to create a tool that provides more insight in the costs and benefits of automation
in the PDP. This is of great relevance since it addresses the challenges as described in the previous section.
The main objective of this research is stated as follows:

Define a methodology to predict the effects of the implementation of automation solutions on the PDP
performance by using simulation

This objective can be defined more specifically; the proposed methodology considers the complete process
in the current state, hence it does not aims at restructuring it. It evaluates the influence of the application of
specific automation initiatives, at single (sub) activity level, on the overall process lead time and investment
cost. This leads to the following sub-objectives supporting the main objective:

a Create a framework to model the process on an activity level with varying levels of automation

b Model the impact of different levels of automation on investment cost and activity lead time

c Develop a model to analyse the performance of specified process architectures by the use of simulation

d Develop a method to optimise the levels of automation on an activity level for multiple objectives

e Verify the methodology by means of application on a representative PDP case study

These objectives are subject to the requirement that the developed methodology should operable in a com-
mercial environment.

4 1. INTRODUCTION

1.3.2. RESEARCH APPROACH

To achieve the objectives a new methodology is developed (i) to model any PDP as a combination of a pre-
defined set of specific activities and (ii) to define different levels of automation for these activities. Subse-
quently, metrics are developed to measure the impact of different levels of automation on different activities,
both in terms of activity lead time reduction and implementation cost. A discrete event simulator is devel-
oped which utilises the proposed process model and metrics to analyse, among others, the lead time and
automation cost for the overall process (for a given process architecture). Finally, the simulator is connected
to an optimiser which tries to find the most convenient level of automation for each of the PDP activities,
in order to generate the Pareto front qualitatively illustrated in Figure 1.3. The proposed methodology and
the analysis and optimisation framework are demonstrated by application to an industrial case study. The
case study concerns the conceptual design phase of an aircraft component (in particular the study of the
rudder-fin connection) performed by a multinational aerospace enterprise. The metrics used in this study
to estimate the cost of automation (for various levels of automation) and associated lead time reduction for
different types of PDP activities are based on the experience gained by KE-works, in various aerospace PDPs.
For the Discrete Event Simulation (DES) and optimisation, SimPy and the Optimus platform are used respec-
tively.

1.3.3. RESEARCH SCOPE

This research is conducted in a limited period of 30 weeks. Therefore scoping of the problem is required, since
not every aspect of the research can be tackled to the fullest. The research therefore focusses on the PDPs of
complex aerospace products. However this does not necessarily mean that the proposed methodology is not
applicable to other industries. The research focusses on a single-company and single-project with multiple
departments, although the proposed methodology can be extended as necessary. Furthermore the trade-off
as stated in the objective is limited to a trade-off between cost and time. The specific performance indicators
are discussed in Section 2.2.

Furthermore, the process of optimisation of the PDP involves many different steps. Based on research by
Schut et al. [15] and Verhagen et al. [13] different steps, as illustrated in Figure 1.4, for process improvement
are identified (discussed in more detail in Appendix B).

Scope

1.

Initial

knowledge

acquisition

2.

Process

restructuring

3.

Process

analysis and

optimisation

4.

Selection of

concept

5.

Process

restucturing

6.

Development

7.

Evaluation

Feedback

Figure 1.4: Steps involved in process improvement

The primary focus of this research is the step of process analysis and optimisation (step 3). Since knowledge
acquisition is required to be able to model the process and subsequently analyse and optimise it, the step of
initial knowledge acquisition (step 1) is also part of the focus of this research.
Step 2, process restructuring, is not taken into account in this research. Hence this research investigates the
optimisation of a given fixed process without adjusting the sequence of activities (restructuring). Further-
more the steps 4, 5, 6 and 7 are deemed important for the optimisation of the PDP but due to the long lead
time of concept selection and subsequent development these steps were not investigated.
Optimisation of a given fixed process without restructuring proves to be of great relevance. Especially in in-
dustries with certified processes it is costly, or even impossible, to modify the structure of their PDP, hence
the application of automation should be evaluated without restructuring the PDP. However, the authors are
aware of the fact that a global and comprehensive optimisation of the PDP cannot be achieved without con-
sidering the synergetic effect of automation solutions deployment and process structure restructuring.

1.4. RESEARCH PARTNERS 5

1.3.4. RESEARCH ASSUMPTIONS
In this research some assumptions are made. Firstly it is assumed that all processes under consideration in
this methodology are recurring and defined processes. Applying this framework is only possible if the process
has been repeated before. Defining a process of a constantly changing process is complex, if not impossible.
Secondly it is assumed that for the highest level of automation a Workflow Management Software (WMS) is
required to integrate the different tasks and activities, replacing the human previously responsible for this
integration. Furthermore it is assumed that the level of automation of activities can only increase or remain
constant (i.e. no reduced level of automation is possible).
It is assumed that a change in an activity always leads to rework for the subsequent activity, hence the rework
probability is equal to 1 for all cases.

1.4. RESEARCH PARTNERS
This research is executed with support of multiple partners in the IDEaliSM project. The IDEaliSM project
aims to drastically improve the time-to-market and development cost of high-tech systems and structures
[16]. Brief profiles of the involved companies are provided in following paragraphs.

1.4.1. DELFT UNIVERSITY OF TECHNOLOGY
The Delft University of Technology is an internationally renowned institute for high quality research and ed-
ucation. The Flight, Propulsion and Performance department of the Faculty of Aerospace Engineering has
a broad experience with different forms of automation in the design process. The department conducts
amongst other research in the application of KBE and Multi-Disciplinary Optimisation (MDO) in different
processes in the aerospace engineering industry.

1.4.2. KE-WORKS
KE-works is a Knowledge Engineering company specialised in the optimisation of engineering intensive
projects in the manufacturing industry. KE-works optimises processes by the application of standardisa-
tion, knowledge re-use and automation. It is their aim to reduce project lead time and overall cost. KE-works
developed a web-based WMS called KE-chain. KE-chain provides actors in the PDP with the required infor-
mation in the right format and at the right time. This actor could be a human resource but also an external
application. Hence the system supports for automation of activities in the process or automation of complete
chains of activities defined by the user.

1.4.3. NOESIS SOLUTIONS
Noesis Solutions N.V. is a Belgian leadering technology provider in the markets of Process Integration and
Automation, MDO, Uncertainty quantification and Robust Design [16]. The company provides an optimisa-
tion platform called Optimus, allowing for the application of different optimisation strategies and workflow
simulations.

1.4.4. FOKKER TECHNOLOGIES
Fokker Technologies is a designer and producer of aerospace structures delivering to the major aerospace co-
operations such as Airbus and Gulfstream. Fokker Aerostructures is the business unit specialised in lightweight
structures and produces structures such as flaps, rudders but also complete tail sections. In this research the
business unit Aerostructures is involved.

1.5. THESIS STRUCTURE
This first chapter has provided a brief introduction in which the need for this research has been identified
and how this research is conducted. In the following chapter (Chapter 2) additional relevant background in-
formation is discussed. It focusses on the PDP and its performance, information quality, PDP modelling and
analysis and automation in the design process. Chapter 3 then discusses the modelling approach as devel-
oped in this research. In the following chapters, Chapter 4 and Chapter 5, the simulation method and opti-
misation strategy are discussed in more detail respectively. The interaction and integration of the different
elements (modelling framework, simulation and optimisation) is then discussed in Chapter 6. Verification
and validation are of importance and therefore are discussed in Chapter 7. This verified framework is applied
on a case study which is discussed in Chapter 8. Finally in Chapter 9 conclusions are drawn and a critical

6 1. INTRODUCTION

view on the research is presented resulting in recommendations.

2
BACKGROUND

In the field of Product Development Process (PDP) research, many definitions are used and multiple view-
points on the same topic exist. The goal of this chapter is to provide a clear overview of these definitions
and viewpoints and indicate how these are used in this research. Furthermore different concepts used in this
research are explained.
First the PDP is discussed in Section 2.1. Next the performance of the PDP as defined in literature is discussed
in Section 2.2, this is also important in determining the objective function in optimisation later on. Next, in
Section 2.3, the quality of information is discussed since many automation initiatives aim at improving this
quality. Following this the modelling and analysis of the PDP is discussed in Section 2.4. And finally in Section
2.5, multiple aspects of automation are discussed.

2.1. THE PRODUCT DEVELOPMENT PROCESS
The PDP is a broad term, applicable to many different processes for a wide variety of products and services.
This section discusses the process and specific characteristics for complex aerospace engineering product.

2.1.1. GENERAL PRODUCT DEVELOPMENT PROCESSES
In this report the PDP, challenges in the PDP and possible solutions are discussed. To discuss this, it is needed
to have a clear definition of the PDP. The PDP is defined in literature in multiple ways. A selection of a few
definitions is given below:

• "The transformation of a market opportunity and a set of assumptions about product technology into
a product available for sale" [17].

• "Product Development (PD) is the process of transforming customer needs into an economically viable
product that satisfies those needs." [18]

• "Product Development (PD) can be described as a complex web of interactions, some of which precip-
itate a cascade of rework among activities." [19]

• "Product Development is an endeavour comprised of the myriad, multi-functional activities done be-
tween defining a technology or market opportunity and starting production." [20]

• "PDP is a collection of activities which link the engineering techniques, methods, tools and people
together and apply them into the product development practice. PDP involves technology and man-
agement issues." [21]

• "Product development is considered to be a process of transformation of input information about cus-
tomer needs and market opportunities into output information which corresponds to manufacturable
designs, and functional tooling for volume production." [22]

The definitions share some commonality: they all are a definition of a process implying a change in state.
This process starts with an option for a new product (e.g. a new technology or need from a customer) and
ends with a product or service that can be sold to the customer. Technology and/or activities are needed to
facilitate this change in state.

7

8 2. BACKGROUND

The definition of the PDP used in this research is adopted from Krishnan and Ulrich [17]: ”The product devel-
opment process is considered to be a process of transformation of input information about customer needs
and market opportunities into output information which corresponds to manufacturable designs, and func-
tional tooling for volume production.” The goal of the PDP is to deliver a product that meets all technical
requirements, while keeping lead time and development cost as low as possible. Maximizing technical perfor-
mance while minimising development costs and lead time is a great challenge, especially in case of complex
product such as aircraft and aircraft systems. Here the number of interacting systems and involved disciplines
is large, and the type and strength of such interaction is not always easy to grasp and manage effectively.

2.1.2. COMPLEX AEROSPACE PRODUCTS

A complex system is defined by van Tooren et al. as: "systems characterized by the fact that it is difficult, if
not impossible, for one person to understand all the details of its subsystem and all the interactions between
those subsystems. This complexity may be a result of large scale (e.g. many subsystems, very large numbers of
variables), but also interactions between subsystems." [23] The complex product is thus a network of different
components with technical interfaces to function as a whole, as illustrated in Figure 2.1.

Figure 2.1: Illustration of simple and complex engineering systems [2]

The interactions between subsystems is not solely limited to the product itself. The interaction is also present
between process steps in the PDP. Hence a complex process is inherent to a complex product.
This combination of a complex product and a complex process creates challenges in the controllability of
the PDP. Managing the process by setting the right deadlines, budgets, resources, schedules, interactions etc.
becomes extremely difficult in these cases. The effect of a single decision or change can become hard to
predict in the complete PDP. Abdelsalam and Bao [24] state that additional challenges are imposed by the
technical difficulty in complex engineering products but also the managerial complexity imposes difficulties
to manage the interaction between different engineering disciplines.

2.1.3. PDP CHARACTERISTICS

In literature the PDP is often characterised by terms like ’creative’, ’iterative’, ’collaborative’ and ’innovative’
[14, 17, 19, 25, 26]. These PDP characteristics provide specific challenges which generally differ from those
encountered, for example, in the manufacturing process. A selection of the characteristics relevant to this
research is discussed in the following sub-sections.

ITERATION

The causes of iteration can differ; often a distinction is made between planned and unplanned iteration [3].
Planned iterations occur when a task is attempted without a complete set of information and hence assump-
tions are made that need to be verified later on. The concept of planned iteration is illustrated in Figure 2.2.
First, the value of X is estimated and once it can be computed it is fed back and the planned iteration occurs.

Estimate X
Calculate Y

using X
Calculate X

Determine R
Calculate S

using R

Verify S with

requirements

Feedback calculated value of x

Feedback failed requirement
Figure 2.2: Example workflow demonstrating the principle of
planned iteration

Estimate X
Calculate Y

using X
Calculate X

Determine R
Calculate S

using R

Verify S with

requirements

Feedback calculated value of x

Feedback failed requirement

Figure 2.3: Example workflow demonstrating the principle of
unplanned iteration

2.2. PERFORMANCE IN THE PRODUCT DEVELOPMENT PROCESS 9

Unplanned iterations occur when activities are repeated due to unexpected failure, for example due to a (ex-
ternal) change in the requirements or by unexpected failing to meet a requirement. An example is illustrated
in Figure 2.3. Here the value R (e.g. a design vector) is determined. Subsequently a value, S is calculated using
this R and afterwards it is verified if S meets a set of requirements. If not al requirements are met, unplanned
iteration is at hand and a different R should be determined.

REWORK

Repeating or refining a task (i.e. rework) is a consequence of iteration. In many cases, iteration has a second
order effect in terms of rework: if one task changes many subsequent tasks need to be adjusted too. Literature
discusses this effect extensively and methods are proposed to quantify the probability of rework in the case
of a change, and the extent of rework necessary for the whole task (e.g. is it necessary to perform the full task
again or only a selection of the task activities) [27].
Also the concept of the improvement curve is discussed in literature, meaning that the duration of a task
decreases at each iteration performed by a human resource, due to the cumulated experience and increased
ability of the resource [19]. Thus at every iteration the lead time is reduced by a predefined amount based on
the applied relation of the improvement curve. Often this curve flattens out until a certain threshold level (i.e.
the absolute minimum lead time with maximum amount of completions).

COLLABORATION

The PDP of complex engineering products is inherently a multidisciplinary process as discussed by Reed
et al. [28] in the context of the aerospace industry. Multiple disciplines, often clustered in departments, need
to interact and exchange information and trigger each other to start an activity. These collaborative activities
have an influence on the performance of the PDP [29]. For example if one resource finishes a task it triggers
a subsequent task by sending an email. In reality the resource responsible for the subsequent task is not
constantly reading the incoming emails. Furthermore once the resource had read the email it does not mean
that it will directly start working on the task. It could very well be that first another task needs to be finished.
Hence this aspect of collaboration influences the total lead time of the process.

2.2. PERFORMANCE IN THE PRODUCT DEVELOPMENT PROCESS
To be able to optimise a process one needs to be able to measure the performance of the system. This perfor-
mance can be stated in an objective function. This objective function can be a function of just one parameter
or a combination of many (multivariate objective function). Such an objective function can also be created
for the optimisation of the PDP. This optimisation is discussed more elaborately in Chapter 5.
Performance indicators are used to keep track of the systems performance and are of interest in this research.
Often these performance indicators are abbreviated with Key Performance Indicator (KPI). As the word is al-
ready saying, it is a key indicator of the performance. Fitz-Gibon defines a performance indicator as "an item
of information collected at regular intervals to track the performance of a system" [30, p. 1]. Examples of KPIs
can be the number of clients per day of a barber, the weight of a designed product or the cost of a product.
This research focuses on improvement of the PDP. Therefore it is important to define a suitable set of per-
formance indicators and look at strategies to improve them. In literature three common KPIs are based on
time, cost and quality [7, 31–33]. Upon investigating these KPIs, a few interesting observations can be made.
Firstly, most of the authors do not quantify the KPIs. This is in particular the case for product quality, which
is often mentioned, but virtually never quantified to a measurable performance indicator during the PDP.
Secondly, most authors focus on a single KPI. Even when multiple KPIs are addressed in one research, most
of the optimisation studies are performed on a single KPI (i.e. no multi-objective optimisation). Since the
previously mentioned KPIs are very broad the KPIs used in this research are discussed in more detail in the
following paragraphs.

2.2.1. COST
In commercial processes cost is in virtually any case the most important indicator. It can be difficult to deter-
mine the actual cost since many cost attributes are not directly visible (e.g. the re-use of specific developed
knowledge or systems).
In the PDP a distinction can be made between recurring and non-recurring costs. In this research the process
costs is defined as the recurring cost. Process cost is the cost of the resource being occupied by a task and is a
recurring cost in the process each time the task is executed. Investment cost is the total cost for an investment
(e.g. to develop an automation solution for a certain process activity) and is a non-recurring cost. Costs such

10 2. BACKGROUND

as the cost of a license are also seen as an investment cost in this research although it is a yearly recurring
cost.
The difficulty with non-recurring cost is that it often is an investment which can be discounted over multiple
projects. The amount of projects is however often unknown at the start and therefore the cost of an invest-
ment is difficult to directly compare with a reduction in recurring cost.
The actual cost of the product under development in the PDP is not discussed in this research.

2.2.2. TIME

In almost all literature on performance improvement of the PDP time is mentioned as a performance mea-
sure. It differs per source how this time is measured and what aspects are important. Some authors research
a reduction in total lead time whilst others focus on methods to reduce a specific time attribute (e.g. waiting
time).
Two relevant KPIs addressed in this research are lead time and process time. Lead time defines the total time
from the beginning of the project until the end and consists of process time and waiting time [31]. Process
time is defined as the time a resource is occupied by an activity over the course of a process. Other examples
of performance indicators used in literature are waiting time [31, 34], iteration time and time schedule risk
[19].

2.2.3. QUALITY

Product quality is an often mentioned indicator, but in most of the cases in PDP literature it is not defined,
and with high exemption it is converted to a quantitative measurable indicator. Defining the product qual-
ity after it has been created has been done before with methods like Value Engineering and Earned Value
Management. Defining the quality becomes more difficult if it needs to be measured during the process of
development. In literature some examples can be found where quality is qualitatively discussed but is not
used as a measurable indicator [32].
On this product quality alone also multiple views exist. The two most used views are the technical product
performance and the customer product value. The technical product performance is the way an engineer
traditionally refers to performance. It is the way in which the product meets the technical requirements and
required functionalities. The other view is the customer product value and takes into account aspects like
operating cost and on-time delivery.
For both ways of looking at product quality it should be noted that product quality is influenced by the devel-
opment process. On the technical product quality level, the process influences product quality by having a
limited amount of iterations or missing feedback loops. If the process has a longer lead time the product cost
obviously increase and hence customer value decreases, hence the process can also influence the customer
value.
A valid statement would be that the product quality increases with the amount of iterations made. This state-
ment is supported by experts in industry. During an interview it was stated that more iteration loops would
result in a better design (better was in this case lighter). The explanation for this increase in quality was that
more iterations would yield more convergence and reduced margins leading to a lighter (in this case higher
quality) product.
Although this topic is discussed in this background section, quality is not directly taken into account in this
research.

2.3. INFORMATION QUALITY

The concept of Information Quality (IQ) is a relevant concept for this research. In the PDP literature, informa-
tion is defined as the developed product and its corresponding information model. This information model
is generated by multiple departments and/or resources. Hence the information is transferred throughout
different process stages, department, resources and applications. This increases the need for high quality
information, since otherwise it might cause processes to fail.
de Vrught [5] defined seven levers for IQ which are stated in Table 2.1.

Completeness and Correctness address the intrinsic IQ, whilst Currency and Relevance influence the con-
textual IQ. Accessibility and Traceability influence the acquisitional IQ and compliance is concerned with
representational IQ. These levers are discussed in this section since different automation initiatives and lev-
els of automation influence different IQ Levers.

2.4. PDP MODELLING AND ANALYSIS 11

Table 2.1: Overview of Information Quality Levers as defined by de Vrught [5]

Information Quality Lever Description Information Quality
topic

Completeness The extent to which the provided in-
formation is complete.

Intrinsic

Correctness The extent to which the provided in-
formation is inherently correct.

Intrinsic

Currency The extent to which the provided in-
formation is up to date and not obso-
lete.

Contextual

Accessibility The extent to which the provided
information can be retrieved con-
tinuously, autonomously and unob-
structed.

Acquisitional

Traceability The extent to which the provided in-
formation and the decision making
process can be traced over time.

Acquisitional

Relevance The extent to which the provided in-
formation contains information that is
applicable for the execution of a suc-
ceeding process task.

Representational

Compliance The extent to which the provided in-
formation complies with format re-
quirements set by succeeding process
tasks.

Representational

2.4. PDP MODELLING AND ANALYSIS
Modelling and analysing a process can be done in many different ways, a wide variety of process modelling
languages and programs exist. According to van der Aalst and ter Hofstede [35] one of the reasons for this
sprawl of models is the variety of ways in which business processes are described. This section first discusses
modelling of the PDP in Section 2.4.1. Section 2.4.2 subsequently discusses methods to analyse it.

2.4.1. PDP MODELLING
A model is a simplified representation of the reality. "Ambiguities, uncertainties, and interdependencies
among activities, their results, people and their tools make PD processes complex and challenging to model."[32]
Many sources in literature propose modelling methods to model the PDP taking into account, among others,
the characteristics mentioned in Section 2.1.3. All of these methods are based on the observation of specific
behaviours. For example, models are proposed to account for the overlapping of processes [9], iterative loops
[36] and the dynamic and stochastic aspects of the PDP [37].
Most PDP models use an activity network as a fundamental framework [32]. Here the process is viewed as
a group of related activities that work together to create a result of value [38]. The PDP is a heterogeneous
process, meaning that it consists of different types of activities, each having its own characteristics. Many
process models do not make a distinction about the content of a task (i.e. a task is not decomposed into
separate and different types of activities). For an extensive review on activity network-based process model,
the author refers to a review by [32]. According to Browning the process architecture can be defined as the
elements of process activities and their pattern of interaction [19]. This means that the process architecture
not solely defines the elements of the activity itself, but also its interaction with the other activities.
A selection of frequently used modelling constructs is summarised in Table 2.2. In this research the Design
Structure Matrix (DSM) is used to model the process and is therefore discussed in the following paragraphs.

DESIGN STRUCTURE MATRIX

The DSM is a popular modelling tool. A DSM displays the relationship between components of a system in
a compact, visual and analytically advantageous format [39]. A DSM has identical row and column entries
and thus generates a square matrix. The elements on the diagonal have no purpose and are often blacked out
in the standard version. The other off-diagonal items give information on the relation between system ele-
ments. Depending on the sign-convention the upper or lower triangle is the input or output. In this research

12 2. BACKGROUND

Table 2.2: Overview of different PDP modelling constructs used in literature

Modelling construct Description

Information dependency Stating the dependency between tasks
based on their input and output rela-
tions. Often used in iteration and re-
work determination

Sequencing Describing the precedence con-
straints between activities

Triggering and timing Describing starting conditions for an
activity based on for example a spe-
cific time (e.g. 8 o’clock)

Duration Describing the duration of an activity
Cost Used to model cost of resources, in-

vestments or revenue
Resources and capabilities Modelling of specific resources with

specific capabilities and properties
Variability Used to model variability in for exam-

ple duration or cost

the convention is used that marks below the diagonal are considered feed-forward and above the diagonal
are considered to be feedback marks. Generally four types of DSMs are identified: parameter-based, activity-
based, team-based and component based [3]. This research uses the activity-base DSM.
In Figure 2.4 the translation of a graph network of activities and information dependencies into an activity-
based DSM is shown. In Figure 2.4a the graph network with information dependencies is shown but it is hard
to extract the important information from this image. This graph network is translated into a DSM in Figure
2.4b, here the information dependencies can be seen clearly and also sequencing of activities is clear.

(a) Graph (b) DSM

Figure 2.4: Overview of DSM (adjusted from [3])

As one can see in Figure 2.4b the DSM gives a very good overview of feedback loops and sequences of the
process. Due to the matrix notation this model allows for integration with analysis methods as is discussed
in the following section.

2.4.2. PDP ANALYSIS

A PDP model only visualises or formalises a process, but it lacks analysis of the model. It is often of interest
what the performance of the constructed model is (e.g. lead time of the modelled process). This means that a
user wants to evaluate the constructed model. Due to the complex interaction between activities, stochastic
variables and many conditional aspects (e.g. availability of resources) mathematical analysis is often not
possible. In this case simulation is a frequently used method for analysis.
Analysis by means of simulation is, for example, used to determine the total cycle time [24], the cost and
schedule risk for various process architectures and to explore iteration and process structure [19].
Different types of simulation can be used depending on the modelling framework use to describe the process.

2.5. AUTOMATION 13

In the case of modelling by means of a DSM a discrete simulation method is preferred due to the discrete
modelling of separate activities without continuous functions within these activities.

2.5. AUTOMATION
Automation can have a high impact on the performance of a process. Automation is a very broad term and
it is applied in many different industries and processes [40, 41]. It is important to have a clear understanding
of how to see automation in the PDP in this research. This section provides background information on
automation.

2.5.1. DEFINITION OF AUTOMATION
Hart and Valasek [42] define automation as the ability of computer systems to perform a function without
human support. Within the complex structure of any (PD)process, a number of tasks can be identified, each
one implying the execution of a number of activities. In general, each one of these activities offers the op-
portunity to be executed with a different amount of human intervention. In other words, each activity offers
the opportunity to implement a different level of automation. According to the author, design automation is
about the process of transferring domain knowledge, in the broadest sense, from the expert to a computer-
ized system, such that the system can systematically (re)use the captured knowledge to reduce, or eliminate
the human involvement in some or all of the activities involved in the PDP. It appears that different levels of
automation can be established, depending on the granularity level used to decompose a design process.

2.5.2. LEVELS OF AUTOMATION
Levels of automation have been researched in different application fields [42, 43]. Several models are pro-
posed in literature, which differ, also significantly, in the identified number of automation levels and their
granularity. For example, models are proposed with a number of automation level ranging from three [44] up
to ten [45]; models exist that account for the different activities that are included in a task, whilst others see a
task as one block, to which one level of automation can be assigned.
A general limitation of the level of automation metrics found in literature, also of those with higher granu-
larity, is the inability to address the collaborative aspects in the PDP. No existing model, for example, defines
levels of automation for typical PDP tasks such as “triggering next step”, “storing information”, “reporting”,
etc.
Miller and Parasuraman [46] discusses that a task often can be decomposed to a lower level and that the level
of automation on these levels can differ with respect to their parent task. They state that the previous frame-
work of Parasuraman et al. [45] "does not go far enough". Miller and Parasuraman argue that automation
may be applied differently to sub-tasks. They argue that "the profile of automation levels should stretch not
merely over the four information processing phases at one level of decomposition, but over as many subtasks
and levels as we want or need to divide a parent task into". Therefore they proposes to determine the level
of automation for each sub-tasks until the level of detail needed for the problem at hand is reached. Miller
and Parasuraman solely presents this finding but does not come up with a modelling framework solving the
identified issue.
In conclusion, none of the level of automation models available in literature was deemed suitable for the
purpose of this research; thereby a new one was devised, which is elaborated in detail in Section 3.3.

2.5.3. TYPES OF AUTOMATION
Not all automation initiatives are alike. Automation initiatives differentiate from one another in the core of
what type of activity it automates.

INFORMATION FLOW AUTOMATION

In complex PDPs different departments are involved, often at different physical locations. These departments
interact by exchanging information. To be able to work efficiently and effectively it is needed that this infor-
mation is available in the right place, at the right time and in the right format [19]. Research by Brandao and
Wynn [26] estimated that 30% of the development time is spent on searching and interpreting the informa-
tion. This already shows that there is a lot of potential for reducing waste in this information flow by applying
automation [13]. Automation in this case does not add direct value to the development of the information
model of the product at hand, but improves the information flow throughout the process. Referring back to
the discussion on Information Quality in Section 2.3, the automation of the information flow is about im-

14 2. BACKGROUND

proving the contextual and acquisitional IQ. Some examples of information flow automation are knowledge
capture and re-use, product and process management and providing communication and collaboration tools
[26].

INFORMATION VALUE AUTOMATION

The information value automation concerns the automation of the activities directly adding value to the in-
formation model of the product under development. This means it adds information about the product itself
(e.g. the strength of the bolt) but it can also be the activity of determining the settings for a specific analysis.
In the terms of IQ the intrinsic IQ is improved with this type of automation.
Two well known methods for automation in PDP are Design Automation (DA) and Knowledge Based Engi-
neering (KBE). van der Velden et al. [40] discuss the difference between the two technologies. However the
goal of both technologies is similar: improve the PDP by using (information) technology. van der Velden et al.
[40] point out the difference to be the scope of application. Where KBE applications are viewed as an inte-
grated systems solution, Design Automation applications tend to be stand-alone applications to support the
process. Since this research investigates the automation of a PDP by looking at the individual activities in the
process, the term Design Automation is adopted throughout this research when referring to the process of
information value automation.

2.5.4. EFFECTS OF AUTOMATION
Automation potentially has a large effect on the performance of the PDP. The application of automation gen-
erally increases non-recurring cost (investment cost in this research) and reduces the recurring cost (process
cost in this research). Automation often leads to a reduced activity lead time and improved product quality.
van der Velden et al. [40] discusses other intangible benefits of the application of automation:

• Consistency: Dedicated tools with standardised inputs and outputs can provide greater consistency.

• Complexity: Simplification of standardisation of complex processes, minimising possibility for human
error.

• Integration: Custom automation tools can interface directly with existing engineering software, proving
seamless automation and assurance that outputs are derived from previously validated methods and
software.

• Change management: Ability to regenerate results as changes are made throughout the project.

However, also risks exist in the application of automation. For example, automation can negatively influence
the complacency of the engineer and the situational awareness of the engineer [47]. Examples of automation
complacency can be found in literature and reality, an example is the grounding of a cruise ship near the coast
of Nantucket. The accident was caused by a failure of satellite based automatic navigation and because the
crew did not monitor any other source of navigation [48]. Furthermore automation provides an easy option to
generate a design and does not force the designer to think creatively for alternative solutions, hence reducing
innovative and creative ideas. Although these effects are hard, if not impossible, to predict and quantify, they
are important to take into account upon trading off alternative levels of automation.

2.5.5. POTENTIAL FOR AUTOMATION APPLICATION
Not all processes are as suitable as others for the application of automation. Multiple authors have suggested
different criteria and techniques to assess the suitability of a process (on different levels of granularity) for
automation [13, 40, 49]. Both the technical potential for automation and the cultural environment in a com-
pany should be taken into account in making a decision on the application of automation.
A process has a certain technical automation potential based on multiple criteria. Emberey et al. [49] takes
into account if a process step is a routine process step, if it is based on formalised rules and if it is a com-
plex step (i.e. involving multiple independent interacting steps). van der Velden et al. [40] discusses that low
level, repetitive tasks are suitable for automation. Furthermore criteria like the integration with external ap-
plication, amount of reporting and standardisation are indicators of suitability for automation. These factors
influence the cost of automation of an activity in a process and should be taken into account in this research.
Besides these technical aspects, also the cultural aspects are important for a successful application of au-
tomation in a process. van der Velden et al. [40] lists multiple cultural aspects, of which a selection is dis-
cussed here. A cultural aspect could be the perception of the human resource on the automation initiative

2.5. AUTOMATION 15

as a threat to its job security. Furthermore experts acknowledge that, in some cases, an engineer is comfort-
able with the current way of working and is unwilling to change. An organisation might be unwilling to use
automation due to (amongst others) the risks as mentioned in the Section 2.5.4. A company often is also
reluctant in contracting a specific automation company due to the lock-in effect with the companies pro-
prietary software. The last cultural aspect mentioned by van der Velden et al. [40] is that the application of
automation might potentially damage the relationship with suppliers.
These cultural aspects are often applicable on a organisational level and not specific for a certain task or
activity.

3
PDP MODELLING APPROACH

This chapter discusses the Product Development Process (PDP) modelling approach used in this research,
taking into account the background as discussed in the previous chapter. The proposed approach is a core
element of this research since it describes how to model the PDP and its behaviour. Furthermore this ap-
proach suggests novel methods to address the effect of different levels of automation on PDP performance.
First the modelling approach philosophy is stated, this should provide more insight into why this modelling
approach is developed in this proposed way. Subsequently the individual constructs of the approach are dis-
cussed. These constructs can roughly be subdivided in process modelling (Section 3.2), levels of automation
modelling (Section 3.3), activity and process lead time estimation methods (Sections 3.4 and 3.5) and cost
estimation methods (Sections 3.6 and 3.7).

3.1. PHILOSOPHY
As stated in Chapter 1, currently a trade-off between lead-time and development cost on incremental levels
automation is rarely made. Furthermore the available PDP frameworks are not well equipped to estimate the
effect incremental automation. Since this is an important aspect in this research, it is of importance that the
proposed approach is able to model this effect of an incremental application of automation.
In a process multiple tasks are executed and within these tasks multiple different activities can be identified.
These activities within tasks are unlike in their potential lead time reduction and the accompanied cost for
automation. For example the activities querying a database and analyses of structural component can differ
in both lead time reduction and cost of automation. The modelling approach should take into account this
behaviour and be able to identify these different activities and their implications on the process performance.
The aspect of modelling these different tasks and activities is discussed elaborately in Section 3.2.
As discussed in Chapter 2, multiple levels of automation can be identified. These different levels of automa-
tion have different effects on the process performance. This is taken into account in this modelling approach
and it is discussed in Section 3.3. One of the objectives of this research is to develop a method to provide
insight to decision makers in the costs and benefits of the application of automation. Therefore the model
should be able to estimate both the cost of automation of an activity and the difference in lead time due to
the different levels of automation. These methods are discussed in sections 3.4, 3.6 and 3.7.

3.2. PROCESS MODELLING
As stated in Section 3.1 the process needs to be modelled at a specific level of granularity. By modelling a
process on an activity level it is possible to assess the effect of automation on different activities in the PDP.
As was concluded in Chapter 2 the assessed models used in literature do not meet the requirements for this
research and hence a process modelling method is proposed in this section. This method comprises two
important aspects, the process granularity and the modelled activity types.

3.2.1. PROCESS GRANULARITY

A process can be modelled at different levels of granularity. The structure proposed in this research is illus-
trated by the example in Figure 3.1. Since the goal is to investigate the effect of automation on a generic

17

18 3. PDP MODELLING APPROACH

process, the model decomposes any specific process in identifiable specific tasks (the top two levels in Figure
3.1), and, finally, each specific task into a set of generic activities. These activities can be seen as the building
blocks of any PDP.

Acquire Implement Decide Analyse
Pre-

process

Determine bearing

parameters

Post-

process

Determine bolt

parameters

Calculate lug

parameters

Design hinge

connection

Determine bolt

parameters

Determine bolt

parameters

Process level

Task level

Activity level

Increasing level of granularity

Figure 3.1: Example of process decomposition in tasks and activities

The granularity of the tasks still can be ambiguous. If one would for example define a task like ’Design aircraft
landing gear’ the level of granularity would be too big to be able to directly decompose it into the level of
granularity of the proposed activities (see Figure 3.1). Therefore requirements are used to test whether or not
a process is decomposed in tasks with the right level of granularity. These requirements are:

1. Task is executed by one (set of) resource(s). This set should be involved with the task over the full
duration of the task.

2. Task uses one system/device/platform. Meaning no interfaces with multiple platforms. If informa-
tion is transferred between different platforms then this task is not defined at an appropriate level and
should be decomposed in separate tasks.

3. Task can be executed without interruptions. Meaning that no additional information or waiting is re-
quired during the full duration of the task.

If a task meets these requirements it is defined at the required level of granularity and can be decomposed
into the activities. These activities will be discussed in the following section.

3.2.2. ACTIVITY TYPES
Based on extensive literature research and investigation of four industrial cases, five activities were selected
(from now on simply referred to as activities) as essential building blocks for any process:

• Acquire

• (Pre/Post-)Process

• Analyse

• Decide

• Implement

A comprehensive definition of these five activities is given in Table 3.1. It should be noted that no fixed se-
quence or amount of activities is prescribed for a task. As examples, one could model the Task “determining
bearing parameters” in Figure 3.1 as a combination of the activities Acquire, Decide and Implement. The
Task “calculate lug parameters” could be modelled as a combination of the activities Pre-process, Analyse
and Post-process, where both the Pre and Post-process activities are of the same ’Process’ type activity de-
scribed in Table 3.1.
In practice, any process of any type of complexity can be split into tasks and eventually modelled as collec-
tions of these five predefined activities. A task can be defined as a sequence of (some or all of) these activities,
with their relative duration distribution in the given task. The sequence is not predetermined, hence it can
be the case that a decision activity type is followed by an analysis activity type. Two example task decompo-
sitions are given in Figures 3.2 and 3.3. The duration of the acquire activity of task X is defined as 0.2 (20 %)

3.2. PROCESS MODELLING 19

Table 3.1: Comprehensive overview of activity characteristics

Activity type Description Examples

Acquire This type of activity is concerned with acquiring all the start-
ing conditions for a subsequent task from an external source. A
starting condition is for example a trigger, knowledge or a phys-
ical product. These starting conditions are not transformed in
anyway, it is acquired in the raw format as it is available.

Retrieving the database with all available materials and their
properties from the shared environment. Acquire email to start
working on stress analysis.

(pre/post) Process This activity structures the information and represents in such a
way to improve the relevance of the information. Processing in-
formation can also be applied to improve the relevance or com-
pliance of the information. In this task no information is added
to the product model other than transforming units. Structuring
of information can also be done with the output of an activity to
generate a specific report for example.

Filtering the database of all materials for all materials within
budget constraints. Generate margin of safety report.

Analysis In an analysis activity information is transformed and new infor-
mation is created. This information is added to the information
model. Knowledge is used to transform the inputs to outputs.

Calculate bolt strength for cheapest material type. Simulate pro-
cess. Perform FEM analysis. Model product in CATIA.

Decide This activity is a gateway where a decision is made with an im-
pact on the process. At least two alternatives should be present
for a decision. In this task no information is added to the prod-
uct model.

Verify if bolt strength meets requirements. Determine hinge type
philosophy.

Implement This activity accounts for all the interaction with external
(re)sources required to successfully continue the process. No
new information is created but it is stored at a location. This
task also accounts for triggering the next task.

Store stress report in shared environment. Send email to col-
league to order new bolts.

of the Total Duration (TD) of the task. Similarly the analysis and implement task have a duration of 55% and
20% of TD respectively.

Task Y
Duration: TD

Acquire
Duration: 0.2TD

Pre-process
Duration: 0.15TD

Implement
Duration: 0.25TD

Analyse
Duration: 0.4TD

Task X
Duration: TD

Acquire
Duration: 0.25TD

Analyse
Duration: 0.55TD

Implement
Duration 0.20TD

Consists of

Consists of

Figure 3.2: Example task X decomposed in activities with cor-
responding durations

Task Y
Duration: TD

Acquire
Duration: 0.2TD

Pre-process
Duration: 0.15TD

Implement
Duration: 0.25TD

Analyse
Duration: 0.4TD

Task X
Duration: TD

Acquire
Duration: 0.25TD

Analyse
Duration: 0.55TD

Implement
Duration 0.20TD

Consists of

Consists of

Figure 3.3: Example task Y decomposed in activities with cor-
responding durations

For this methodology it is essential to correctly classify the activities in the task to match with the activities
in the framework. Therefore for every activity a few questions can be asked to be able to classify them as the
right type of activity. Based on the following interview questions the activities can be identified to be of a
certain type:

1. Does this activity determine new information to be added to the information model? If yes, this activity
can be an analysis or decide activity. If no, it can be an acquire, structure or implement activity.

Does this activity influence the process flow (i.e. does it potentially lead to rework)? If yes, this
activity should be split up in an analysis and decide activity. If no, the activity is an analyse activity

Does this activity require information, tools or methods? If yes, an acquire activity is required to
precede this activity.

Does this activity require implementation of the new information and corresponding activities? If
yes, an implement activity is required to succeed this activity.

2. Is the data structure of the information altered in this activity without adding new information? If no
information is added and only information is altered in terms of the structure then the activity is of the
type structure

3. Is information added to the working memory in this activity or service? If information is acquired from
a database and is to be used in subsequent activities the activity type is acquire

4. Is information implemented in the information model? If information is implemented in the informa-
tion model the activity is of the implement type

20 3. PDP MODELLING APPROACH

These interview questions only serve as a guide and are not complete. In the processes defined within com-
panies often the steps of acquiring the information, getting triggered and structuring the information is not
stated formally. For this methodology this is however an important aspect to explicitly state in the process to
take into account reductions in lead time due to this automation in the information flow. For the activities
that are identified also their pre- and post processing needs to be added to the process model.

3.2.3. ACTIVITY INTERDEPENDENCY
The interdependency between activities is an essential aspect in modelling of the PDP. As discussed in Chap-
ter 2 the sequencing of the process influences the process performance to a large extent. Furthermore this
interdependency represents the actual case of the PDP in which value is created by receiving, processing and
producing information.
In this framework the activity-based Design Structure Matrix (DSM) (see Section 2.4.1) is used since it is a
powerful method to represent the relationship between activities. Due to its format, as can be seen in Figure
3.4, the difference between feed-forward and feedback relations can be identified easily and hence it quickly
provides insight in the process.

1

1

2

1

1

A1 A2 A3 A4

A1

A2

A3

A4

Feedback Feedforward

Figure 3.4: Basic example of an activity-based DSM

Use is made of a numerical DSM in which the off-diagonal numerical values above the diagonal represent the
amount of iterations. The amount of iterations is the number of times the activity provides feedback to the
row in which the value is stated. A numerical value below the diagonal other than 1 does not have a specific
meaning. A value below the diagonal only indicates that there is a feed-forward relation but any value other
than 1 would not have a meaning.

3.3. LEVELS OF AUTOMATION MODELLING
This section discusses the levels of automation of the activity types as stated in Table 3.1.
Considering the current available scales of levels of automation discussed in Section 2.5.2, they fail to fulfil
the needs of this research due either to a continuous scale or a scale with too many discrete steps to keep
it manageable in the methodology of this research. Another issue with existing models is their inability to
describe a complex PDP. By examining the models mentioned before it can be seen that most models lack
the activities concerning the collaboration in the process and are focussed on human decision making not
taking into account a collaborative environment.
Due to these issues it is decided to develop a custom framework to model the levels of automation to be able
to assess the current level of automation of process activities.
For the development of the scale of levels of automation model, three principles were taken into account:

1. The steps require to be discrete steps

2. The amount of levels should be manageable and is therefore capped of at 4

3. The lowest level always should be the fully human (i.e. non-automated) level and the highest would be
a fully automated task (i.e. no human involvement).

With these principles in mind a variety of automation initiatives are plotted on a grid. On the horizontal axis
the activity types are stated and the vertical axis denotes a continuous scale for the level of automation. This
results in the overview as displayed in Figure 3.5. The automation initiatives plotted on this grid are based on

3.3. LEVELS OF AUTOMATION MODELLING 21

the experiences of KE-works and automation initiatives discussed in literature.

Analyse Decide Implement

Fu
lly

 h
um

an

Fu
lly

 a
ut

om
at

ed

Handbook

methods Procedures Procedures
Document

searching

Decision

support tools

Reference

database

Acquire Process

KBE Applications
Workflow Management

Software: KE-chain
WMS

Cloud storage

Concurrent

editing

Database filtering

Analysis tools

(e.g. excel)

Figure 3.5: Grid with various automation initiatives plotted

Based on the grid of Figure 3.5 and the three principles stated in the previous paragraph the levels of au-
tomation are discretised. It is inherent to a selective amount of discrete steps that some initiatives are on
the boundary between two discrete steps. This leads to some friction when applying a framework, the same
principle holds for this framework. In this research, criteria have been developed to provide means to help to
determine the level of automation of an activity, these criteria are described in Table 3.3.
The proposed framework is summarised in Table 3.2. For each one of the activity types defined in Section 3.2,
four levels of automation are proposed, ranging from level 1, in which the human is the sole resource, to level
4, where full automation is provided by a computer. On the basis of the definitions provided in Table 3.2, each
task owner in the PDP process should be able to describe the current level of automation, hence the type of
resources involved in the execution of the encompassed activities.

Table 3.2: Summary of levels of automation (LoA) for PDP activity types

LoA Acquire Process Evaluate Decide Implement

4 The system is the sole
resource and automati-
cally executes the activ-
ity and acquires the re-
quired items. The sys-
tem is able to acquire
information from differ-
ence sources, hence it is
able to integrate with ex-
ternal software to gather
information.

The computer is respon-
sible to structure the in-
formation in such a way
that the next activity ac-
cepts it to be in the right
format.

Computer is fully re-
sponsible for this activ-
ity. Hence it is able
to interpret the provided
information and deter-
mine how to execute this
activity successfully.

The computer decides
and acts autonomously
without interference of
the human.

The computer is respon-
sible for the correct exe-
cution of the implemen-
tation activity.

3 The activity is defined
and the system sug-
gests what to acquire
and where it can be
acquired. The source
is responsible to ac-
quire the items from the
source. All information
is always available from
a single source of truth.

The computer supports
the user in processing
the information. Hence
the knowledge for pro-
cessing the information
is in the system but the
resource needs to de-
cide on how to apply this
knowledge (i.e. no auto-
matic execution).

Computer supports the
execution of the activity
by providing tools and
methods to perform cal-
culations. Human inter-
action is still needed to
determine intermediate
steps or to verify the re-
sult.

Human is assisted by
the system which inter-
prets the data and shows
and ranks all alterna-
tives. Possibly the sys-
tem suggests the best
alternative for specific
performance measures.

The human executes the
implementation activity.
The computer system
supports the human
and provides informa-
tion on what to do and
how to do it. System is
actively involved by pre-
venting certain actions
or promoting others.

Continued on next page

22 3. PDP MODELLING APPROACH

Table 3.2 – Continued from previous page

LoA Acquire Process Evaluate Decide Implement

2 The activity is defined
and the system suggests
what items need to be
acquired and where to
find them. The re-
source is responsible to
acquire the items from
the source.

The human is respon-
sible to process the in-
formation. It is defined
how to process the infor-
mation for example by
using templates.

The human is responsi-
ble for this activity and
is assisted by handbook
methods and proce-
dures. Hence part of the
knowledge base is in the
handbook methods and
procedures. The human
remains the main source
for the analysis.

Human is still respon-
sible but the system
assists in interpreta-
tion of the information
and shows all relevant
alternatives.

Human is responsible
for the implementation
activity but is supported
by the system. System
provides relevant in-
formation on who to
contact and where to
store information for
example.

1 The human is the sole
resource for the activ-
ity. Hence no assistance
is provided by a system,
manuals or procedures.

The human is responsi-
ble for processing the in-
formation. A computer
or other system with ba-
sic features can be used
to enhance information
relevance.

Human is the only
source for the methods
and knowledge used in
this task.

The human is responsi-
ble for the decision and
the system does not pro-
vide assistance.

Human is fully respon-
sible for the implemen-
tation activity. No as-
sistance offered by the
computer.

Different criteria are available to determine the current level of automation as discussed in Section 3.3. The
information in Table 3.3 provides a means for the user (of the methodology) to determine the level of automa-
tion. The level of automation of an activity is determined based on compliance with specific criteria. These
criteria differ per activity type and can be found in Table 3.3. It should be noted that this is not an exclusive
list but it serves as guidance in determining the level of automation. The expert judgement of a knowledge
engineer remains more valuable than these specific requirements.

Table 3.3: Criteria to assist in the identification of the levels of automation per activity type

LoA Acquire Process Analyse Decide Implement

4 Is the activity automati-
cally started? Is no inter-
action with the system re-
quired? Is the informa-
tion acquired from single
source of truth? Is the
activity able to integrate
with other applications?
Is the subsequent activity
requiring the information
automatically triggered?

Is all information auto-
matically processed by the
system? Is the output of
this activity in the prede-
fined currency? Is the out-
put of this step of a higher
level of relevance or com-
pliance?

Is the system able to au-
tomatically transform the
inputs to the correct out-
puts? Does the system op-
erate autonomously? Can
the system automatically
start without user interfer-
ence?

Is the system responsible
to make a decision? Is this
decision not presented to
the user for verification?

Is the system responsible
for correct implementa-
tion of the preceding task?
Does the system imple-
ment potential informa-
tion in the dedicated lo-
cation? Is versioning of
implemented information
available? Does the sys-
tem signal the subsequent
activities and resources?

3 Does the system provide
information on what in-
formation is required for
the subsequent activity?
Does the system provide
information on where to
acquire the information?
Is a single source of truth
available?

Is a system available to
process the information of
this task by means of spe-
cific user inputs? Is the
system developed specifi-
cally for this activity? Is
information available on
how to process the infor-
mation? Is information
available on requirements
of the outputs of this task?

Is the system unable to au-
tomatically transform the
inputs to the correct out-
puts? Is the majority of
the knowledge and rules
captured in a system and
applied in a framework?
Is minor user interaction
required to interface and
make small adjustments
for example?

Is the user responsible to
make a decision? Does the
system interpret the infor-
mation and rank different
alternatives? Does the sys-
tem interpret the informa-
tion?

Is the user supported by
the system in determining
what to implement and
where to do this? Does the
system provide means to
ensure correct implemen-
tation? Is a single source
of truth available?

2 Does the system provide
information on what
information is required?
Does the system provide
information on where to
acquire the information?

Is a system available to
assist the user to process
the information? Is infor-
mation available on how
to process this informa-
tion? Is information avail-
able on the required out-
puts of this system?

Is a system available with
information on how to
perform the analysis (e.g.
handbooks or guides)? Is
the user responsible for
the application of these
knowledge rules?

Is the human responsible
to make the decision? Is
the human supported by
tools to interpret the in-
formation?

Is the user supported by
information on the activ-
ities to undertake to en-
sure correct implementa-
tion? Is information avail-
able on what the subse-
quent activities are?

Continued on next page

3.4. ACTIVITY DURATION ESTIMATION METHOD 23

Table 3.3 – Continued from previous page

LoA Acquire Process Analyse Decide Implement

1 Is the human the sole
source to find the infor-
mation? Is no system
available with informa-
tion on what information
is required? Is the infor-
mation on how to perform
this activity merely tacit
knowledge of the human?

Is the human the sole re-
source to process the in-
formation? Is no infor-
mation available on the
output requirements? Is
the information on how
to perform this activity
merely tacit knowledge of
the human?

Is no information doc-
umented on how to
perform the analysis? Is
no system available in this
process to execute the
analysis? Is the human re-
sponsible for transferring
the inputs to the outputs?
Is the information on how
to perform this activity
merely tacit knowledge of
the human?

Is the human the sole
source to make a deci-
sion? Is the human unas-
sisted in making this deci-
sion with tools or method?
Is the information on how
to perform this activity
merely tacit knowledge of
the human?

Is the human the sole
source to perform this ac-
tivity? Is the information
on how to perform this ac-
tivity merely tacit knowl-
edge of the human?

3.4. ACTIVITY DURATION ESTIMATION METHOD
The influence of the level of automation on the activity lead time can differ per task and activity type. This
section discusses the method used to estimate the activity lead time for a specified level of automation.
This PDP modelling approach uses deterministic values and hence the activity lead time is a deterministic
value, known for the current situation (i.e. in current conditions at the current level of automation). The pur-
pose is to estimate the consequence on a given activity duration caused by a change of the level of automation
(e.g. going from fully human to fully automated). To estimate this value a method is proposed which assumes
a predetermined reduction in activity lead time taking into account:

• Current activity lead time

• Activity type

• Current level of automation

• Proposed level of automation

This predetermined reduction is captured in a coefficient. This coefficient represents the percentage of the
time a task would take, measured with respect to the time of the given activity at a level of automation equal
to 1.
The coefficients are given in the Duration Matrix, DMi j , and used in determining the estimated activity du-
ration at another level of automation. In this matrix the subscript i is the task activity type (e.g. acquire) and
subscript j is the level of automation. A sample DM is shown in Table 3.4. Here it can be seen that all activity
types are at 100 % of their duration if they are at a LoA of 1. For higher levels of automation their relative
reduction in lead time differ per activity type and per level of automation. Hence it is possible that for an
acquire type of activity a step from LoA 1 to LoA 2 has a relatively smaller effect on lead time than for a decide
activity.

Table 3.4: Example of Duration Matrix (DM) for a fictitious task

Level of Automation

1 2 3 4

Acquire 100% 80% 50% 10%
Process 100% 70% 40% 20%
Analyse 100% 90% 60% 15%
Decide 100% 65% 40% 30%
Implement 100% 60% 30% 5%

The activity lead time is calculated by using Equation 3.1. In this equation t∗ and j∗ indicate the estimated
time and proposed level of automation respectively. The parameter t is the current activity lead time.

t∗ = DM i j∗ · t

DM i j
(3.1)

The values of DMi j are essential and influence the estimated activity lead time reduction to large extent. A
correct determination of the coefficients is essential to the prediction capability of the proposed method. It

24 3. PDP MODELLING APPROACH

will be crucial for any company that is willing to adopt the proposed method to properly estimate such values
and continuously improve and update them, based on internal project knowledge. Furthermore the values
of the DM might differ per project, company or industry. The sensitivity of the values of the DM is discussed
in more detail in Chapter 7.
To determine the values of the DM information is required on how the different activity types in the process
behave at varying levels of automation. The method used in this research to determine these values is by per-
forming a dedicated workshop (specifications of the workshop as executed in this research can be found in
Section 8.2). In this workshop current and future users of the process under consideration execute a demon-
stration project multiple times. It is executed multiple times with varying levels of automation for activities.
The project consists of tasks with similar challenges as the tasks in the process under consideration. Of these
tasks the individual activities need to be monitored, Protocol Analysis (PA) as discussed by Milton [50] is ad-
vised.
Furthermore it is advised to select the response groups carefully, a response group of experts in the process
under consideration are likely to yield different coefficients than a group of employees unfamiliar with the
process. Also the process learning curve could influence the coefficients. If the same process is repeated with
varying levels of automation the respondents become familiar with the process and that is likely to affect the
lead time of the activities. Averaging between groups or averaging over multiple repeated identical experi-
ments could compensate for this effect.
In Chapter 2 the effect of the learning curve was discussed briefly. For this modelling approach it would imply
that the activity duration would also be a function of a learning curve factor and the amount of times an ac-
tivity has been executed. The method as implemented in this research does not take into account this effect
of the learning curve. Adjusting for the Learning Curve is recommended for future research however.

3.5. PROCESS LEAD TIME ESTIMATION METHOD
Calculation of the total process lead time is based on the duration of all activities. A sum of all activity lead
times would however not yield valid results. Processes running in parallel, iterations, interruptions and other
aspects need to be taken into account. Taking into account these aspects, it is not possible to conceive a
mathematical method to estimate the process lead time. Therefore simulation is required, as will be dis-
cussed in Chapter 4.
In this simulation the process lead time is computed. In short, the lead time is equal to the difference between
the starting time and ending time of the simulated process. In that specific simulation, the above mentioned
aspects are taken into account. Hence if activities run parallel then the activity with the longest lead time de-
termines the process lead time. Furthermore it takes into account waiting time induced by limited available
resources, additional waiting time due to collaboration burdens (see Section 4.3.3) and other aspects which
will be discussed in Chapter 4.
A limiting factor in the calculation of the lead time is that no working hours are taken into account. Meaning
that all human resources are simulated to work 24 hours per day. It would be a valuable addition to adjust the
lead time estimation for this effect.

3.6. PROCESS COST ESTIMATION METHOD
Besides the activity duration the process cost is an important aspect in the determination of the benefits of
the application of automation in a PDP. By increasing automation, the process time of a resource is reduced
or potentially omitted leading to reduced process cost of the human resource. This section elaborates on the
method used to estimate the process cost.
The activity process cost of an activity is based on the type of involved resources, the cost of these involved
resources and the activity lead time. The determination of process cost based on the estimated activity lead
time is computed with equation 3.2.

AC = [
j < Lo Amax

] ∑
i∈R

ri · t · (3.2)

Where: AC is the activity process cost, reflecting the cost if the activity is executed for the duration of t . t is
the duration, usually equal to the activity lead time but in the case of an interrupted task this could be lower
than the activity lead time. j is the level of automation. R is the list of involved resources. ri is the hour rate
of a the resource. If multiple resources are involved in an activity the sum of the cost per resource determines
the total activity process cost, the summation in equation 3.2 accounts for this. The activity process cost per

3.7. AUTOMATION INVESTMENT COST ESTIMATION METHOD 25

resource for a specific duration is calculated by multiplying the resource hour rate, ri with the duration t .
In activities without human interaction (i.e. level 4 of automation) the resources are not utilised and hence
the activity process costs are assumed to be zero. Equation 3.2 accounts for this by the term between Iverson
brackets. Here j is the level of automation. If the term in between the Iverson brackets is true it denotes the
value 1, if it is false it denotes the value 0.
The total process cost is calculated by using equation 3.3. Here PC is the total process cost. This total process
cost is the sum of all activity process costs of all performed activities in the complete process lead time. In this
equation x denotes the set of activity costs of all performed activities in the process (e.g. x = [A1,C , A2,C , A3,C]
for a process with three activities).

PC = ∑
i∈x

Ai ,C (3.3)

It should be noted that costs such as Workflow Management Software (WMS) licenses are considered to be
an investment and are accounted for in the investment cost.
The use of automation also enables the use of different (e.g. cheaper) resources. This effect of automation is
not taken into account in the determination of the process cost. It is assumed that for the three lowest levels
of automation identical resources are used, and hence resource hour rates remain constant. It is expected
that this results in conservative process cost estimations.

3.7. AUTOMATION INVESTMENT COST ESTIMATION METHOD
Another metric of importance in this methodology is the investment cost required to automate an activity
to the level of automation as stated in the design vector. In order to provide a meaningful estimation of the
required investment cost, it is necessary to take into account the current level of automation and the type of
activity to be automated. This section discusses the implemented cost estimation method.

3.7.1. ACTIVITY AUTOMATION COST ATTRIBUTES
The current cost estimation technique internally used by KE-works for knowledge engineering business is
therefore adopted and modified for this research. This technique uses a roll-up technique combined with
parametric relations based on empirical data and expert judgement. In this roll-up technique the different
exercises required in the development of automation initiatives are identified. The exercises included in this
roll-up technique are:

• Knowledge acquisition

• Application development

• Integration

• Configuration

• WMS license

• Server

• Training

• Management

For these different activities a cost estimation relationship is developed based on empirical data and expert
judgement. Depending on the task type and level of automation the investment cost is estimated for each
individual activity. In the following paragraphs these exercises are discussed individually.

Knowledge acquisition cost
The knowledge acquisition cost is split into the internal and external knowledge acquisition cost. The inter-
nal knowledge acquisition cost represents the cost of knowledge acquisition for the company conducting the
knowledge acquisition. The external knowledge acquisition cost represents the cost for the company requir-
ing the knowledge acquisition.
The internal knowledge acquisition cost comprises all activities in the full knowledge acquisition process. It
takes for example into account the preparation, document reviews, interviews, knowledge modelling, teach-
back and building a knowledge base. Equation 3.4 displays the formula to estimate the internal knowledge
acquisition cost.

26 3. PDP MODELLING APPROACH

CK Ai ntA
= t̄ · rK A ·kK Ai nt · (C MK Ai j∗ −C MK Ai j) (3.4)

Where CK Ai ntA
is the cost of knowledge acquisition per activity. In this equation 4 terms can be identified

which are multiplied with each other. The first term is the normalised duration: t̄ . This is the lead time
normalised to the lead time if the task would be at a level of automation 1. The lead time of the activity is
normalised by using equation 3.5. The second term is, rK A , represents the hour rate of the knowledge engi-
neer performing the knowledge acquisition. The third term, KK Ai nt , is a coefficient representing the relation
between the activity lead time of an activity and the expected duration of the knowledge acquisition. Based
on expert interviews and empirical data this relationship was determined. Due to confidentiality the value of
this coefficient can not be disclosed. The fourth and last term is the term accounting for the effort required in
the knowledge acquisition and the effort already invested in the available knowledge base. These values are
extracted from the Cost Matrix for knowledge acquisition (C MK A). This matrix provides coefficients for the
effort required to automate an activity type to a specific level of automation. A sample C MK A can be seen in
Table 3.5. The first part of the last term in equation 3.4, C MK Ai j∗ , is the percentage of knowledge acquisition
needed for the proposed level of automation (j∗) and the second part (C MK Ai j) represents the percentage of
knowledge acquisition already performed since the activity has already been automated to the current level
of automation (j).

t̄ = t ·DMi 1

DMi j
(3.5)

Table 3.5: Sample knowledge acquisition effort coefficients (C MK A)

Level of Automation

1 2 3 4

Acquire 0% 30% 70% 100%
Process 0% 40% 80% 100%
Analyse 0% 45% 90% 100%
Decide 0% 30% 60% 100%
Implement 0% 30% 70% 100%

For the external cost of knowledge acquisition the cost of the time required from the domain expert(s) for
interviews and validation is taken into account. Milton [50] provides a ratio between the internal knowledge
acquisition effort and the effort from domain experts. This ratio is represented by KK Aext in equation 3.6.

CK AextA
= t̄ · rK A ·kK Aext · (C MK Ai j∗ −C MK Ai j) (3.6)

The sum of the internal and external knowledge acquisition cost provide the total cost of knowledge acquisi-
tion as can be seen in Equation 3.7.

CK A A =CK Ai ntA
+CK AextA

(3.7)

Development cost
The development cost is a complex cost to determine. Many different cost estimation methods solely for the
development of IT solutions have been proposed in the past decades. As stated before, these models do not
suit the needs of this research due to their applicability on large projects. In this research the development
cost takes into account multiple sub-activities involved in development. In general the software development
process can be broken down into the following sub-activities:

• Define system feasibility

• Create software plans and requirements

• Develop product design

• Develop product detailed design

• Coding

• Integration

3.7. AUTOMATION INVESTMENT COST ESTIMATION METHOD 27

• Implementation

• Operate and manage

All activities except for the last are accounted for in the cost attribute of development cost.
Generating a parametric model to estimate the cost of development is a challenge if one does not have de-
tailed information on the activity itself. Therefore this research proposes to use expert judgement to estimate
the cost of development. The formula used in this research to estimate the cost of development (Cdev A) can
be seen in equation 3.8.

Cdev A = E · rdev ·Kdev · (C Mdevi j∗ −C Mdevi j) (3.8)

Where E is the required development effort in hours. rdev is the hour rate of the developer. Kdev is used as a
multiplier for other development activities and C Mdevi j∗ and C Mdevi j are the Cost Matrices for development.
In equation 3.8, E , is estimated by the knowledge engineer. The knowledge engineer estimates the total
amount of hours required to perform the coding sub-activity. The total amount of hours spend on all sub-
activities is calculated by multiplying this estimate with a multiplier: Kdev . Based on interviews with devel-
opment experts at KE-works it was concluded that the ratio between actual coding and the complete time
spent by a developer (Kdev) on all sub-activities could be viewed as constant. This is then multiplied with the
hour rate of a developer, hence the estimated effort should thus be estimated for a developer with the skills
and experience matching with the hour rate. Furthermore a similar Cost Matrix (C Mdev) as the one in Table
3.5 is applicable to the development cost with adjusted values for the development activities.
In this proposed methodology the estimation of development effort (E) is based on expert judgement of the
knowledge engineer.

Integration cost
Many activities in the PDP are executed by means of an application (e.g. spreadsheet applications, Computer
Aided Design (CAD) software). Upon the application of high levels of automation these applications require
to be integrated in the process architecture. Hence, at specific levels of automation the cost of integration is
required for the application to function automatically and for the WMS to communicate with the application
and for example start it.
Based on previous projects of KE-works a classification is made of different integration classes. These classes
can be seen in Table 3.6.

Table 3.6: Classification of integration types with accompanying costs

Class 0 Class 1 Class 2 Class 3

Description No integration
needed.

Application has
standard web API
interface. (e.g.
Optimus)

Application has
a COM interface
(e.g. Excel, CATIA)

No API available.
Integration inter-
face needs to be
developed.

Integration cost (IC) [€] 0 4500 11000 35000

Besides the integration class also the experience with the specific application to integrate is of importance. If
a similar application has been integrated before the cost of integration is expected to be lower. In equation
3.9 this effect is accounted for by the Learning Curve (LC). This value is 1 by default but could be adjusted
by the knowledge engineer if a specific application is expected to have a different integration cost based on
previous experiences.

Ci ntA = ICcl ass ·LC · (C Mi nti j∗ −C Mi nti j) (3.9)

A WMS possibly supports integration with specific applications (i.e. the WMS has built-in adapters). In this
case the integration cost is negligible. The same holds for the case in which the same application needs to be
integrated for multiple activities. Therefore equation 3.9 should only be used for the calculation of integra-
tion cost for non-native applications and only one time per project per application.

Configuration cost
With an increasing level of automation, more knowledge is formalised and stored in a knowledge base. The

28 3. PDP MODELLING APPROACH

cost of formalising and storing the knowledge is already captured in the cost of knowledge acquisition. Fre-
quently this knowledge base is not the system used by companies for storage of, for example, product models
and process models. Hence, if a company increases the level of automation by, for example, developing hand-
book methods for the analysis, this knowledge is stored in a specific place. Furthermore if an application is
developed, the knowledge used in this application also should be stored in a place other than in the direct
code of the application itself. Therefore the configuration of the knowledge in the systems used by the com-
pany is required.
The effort required for this configuration again is dependent on the activity type and the current and pro-
posed level of automation. The formula used in this research is presented in equation 3.10. The cost of
configuration is closely related to the cost of knowledge acquisition and therefore the formula is similar. They
differ in the coefficient Kcon f and the coefficients of the Cost Matrix C Mcon f .

Ccon f A = t̄ · rK A ·Kcon f · (C Mcon fi j∗ −C Mcon fi j) (3.10)

WMS license costs
This cost attribute is concerned with the license cost of the WMS, licenses of other applications are not taken
into account. At lower levels of automation this cost is therefore not applicable. In this research it is assumed
that the cost of maintenance and support is included in the license cost.
The cost per activity is determined using equation 3.11. The cost is based on the activity type (i), current level
of automation (j), proposed level of automation (j∗) and cost of a license (Cl i c).

Cl i cA =Cl i c · (C Ml i ci j∗ −C Ml i ci j) · [l i c = 0] (3.11)

The Cost Matrix (C Ml i c) has a more binary nature for the cost of the license. The license is only applicable if
the process is automated to such a level that a WMS is desired. In the case of the sample matrix in Table 3.7
the WMS license is only required for a level of automation 4.

Table 3.7: Sample license cost coefficients (C Ml i c)

Level of Automation

1 2 3 4

Acquire 0% 0% 0% 100%
Process 0% 0% 0% 100%
Analyse 0% 0% 0% 100%
Decide 0% 0% 0% 100%
Implement 0% 0% 0% 100%

Furthermore the last term in 3.11, [l i c = 0], means that the license cost is only applicable if the the license has
not been purchased before. If the knowledge engineer configures a process in which initially no license has
been purchased, this license needs to be purchased for the first activity with a level of automation of 4 (using
C Ml i c of Table 3.7). For all subsequent activities the license cost is not added any more since the license has
already been purchased. Resulting in one activity with license cost while possibly many other activities also
use the license. In reality this cost of the license would be discounted over all tasks.
The cost of the license should be determined by the knowledge engineer and should be provided as an input
variable. The license cost is based on multiple factors like the amount of users and the capabilities used by
its customer.

Server costs
The third level of automation is defined in Table 3.2 as "The activity is defined and the system suggests what
to acquire and where it can be acquired. The source is responsible to acquire the items from the source. All
information is available from a single source of truth." For this single source of truth a server is required and
therefore the accompanying costs need to be taken into account. To determine the server cost an equation
similar to the equation for license costs is used and can be seen in Equation 3.12.

Cser v A =C · (C Mser vi j∗ −C Mser vi j) · [ser v = 0AN Dli c = 0] (3.12)

Hence the knowledge engineer determines if a server is already available in the current process state. If this
is true then no server costs will be made during the process. If it is false then, depending on the C Mser vi j

3.8. INTEGRAL MODELLING APPROACH 29

the costs of a server is added. The term [ser v = 0AN Dli c = 0] assures that no server cost is made if a WMS
license or server already has been purchased. This is because the WMS license often includes single source
of truth online storage.

Training costs
In reality it can not be expected that the users of a system can start working without any form of training
(no matter how intuitive the developed tools or WMS). Therefore the cost of training is an important cost
attribute. The training cost is, based on the current KE-works cost model, a fixed percentage of the sum of
the other above mentioned costs. This percentage (Ktr g) is determined by the Knowledge Engineer. The
formula is presented in Equation 3.13 and the cost (Ctr gP) is determined for the full process (denoted with
the subscript P).

Ctr gP = Ktr g ·
[∑

i∈z
CK A +Cdev +Ci nt +Ccon f +Cl i c +Cser v

]
(3.13)

In Equation 3.13 the vector z is a vector of all activities in the process.

Management costs
The process of developing and implementing the automation initiatives requires management effort. The
technical aspects needs to be managed to increase the likelihood of project success. But also management
of the cultural aspects as explained in Section 2.5.5 is required. In this framework it is proposed that the
management cost of the process can be modelled as a fixed percentage of the total project costs. This per-
centage needs to be determined by the Knowledge Engineer, based on experience and information on both
technical and cultural challenges in the project. The equation used to determine the management cost of the
innovation process (Cmg tP) is shown in Equation 3.14.

Cmg tP = Kmg t ·
[∑

i∈z
CK A +Cdev +Ci nt +Ccon f +Cl i c +Cser v

]
(3.14)

3.7.2. TOTAL AUTOMATION INVESTMENT COST
The total automation investment cost (Ci nvtot al)is the sum of all the cost attributes summed up for all activi-
ties in the process plus the cost of training and management. This is also displayed in equation 3.15

Ci nvtot al =
[∑

i∈z
CK A A +Cdev A +Ci ntA +Ccon f A +Cl i cA +Cser v A

]
Cmg tP +Ctr gP (3.15)

In this research some cost attributes were purposely left out of scope. These cost include for example travel
and stay costs when working out of the office. Upon using this framework the user should take them into
account but they are hard to assess based on the process architecture.

3.8. INTEGRAL MODELLING APPROACH
By combining all elements as discussed in this chapter, a PDP can be modelled on an activity level with
varying levels of automation. Therefore the following steps can be identified:

1. Analyse the PDP based on available documentation and interviews.

2. Construct a workflow on task level.

3. Determine the available resources and resource properties such as hour rate and availability.

4. Per task, determine the task lead time and define the activities performed in this task with their relative
durations.

5. Per activity determine the current level of automation, required resources, development effort and op-
tionally the integration application.

6. Assess the need for determining methodology matrices. If no matrices are available, or if matrices are
not applicable to the process under investigation:

Define the Duration Matrix for the process under investigation.

Define the Cost Matrices for the process under investigation.

30 3. PDP MODELLING APPROACH

If all steps are successfully executed the PDP is modelled and can then be analysed. The analysis of the PDP
based on the modelling approach as discussed in this chapter is the topic of the next chapter.

4
SIMULATION

The previous chapter discussed how to model the Product Development Process (PDP) and the methods
used to analyse the performance of the PDP. This chapter explains how this model can be analysed for per-
formance, taking into account PDP specific behaviour. In Section 4.1 the core concepts of Discrete Event
Simulation (DES) are explained and why this simulation model is used. In Section 4.2, the structure of the
simulation program is discussed. Finally, in Section 4.3, the behaviour of the simulation for specific PDP
characteristics is discussed.

On a high level the simulation concept is illustrated in Figure 4.1. Here it can be seen that by means of the
estimation methods, input parameters and the current levels of automation, by means of simulation, the
process performance is analysed in terms of amongst others lead time, process cost, investment cost and
other Key Performance Indicators (KPIs). Features are implemented in the simulator to account for important
PDP characteristics, such as (number of) iterations, interruption, resource constraints and waiting time.

Outputs

𝒛 =

𝑧1
𝑧2
𝑧3
…
𝑧𝑛

=

𝑙𝑙𝑙𝑙 𝑡𝑡𝑡𝑙
𝑝𝑝𝑝𝑝𝑙𝑝𝑝 𝑝𝑝𝑝𝑡

…
…

𝑡𝑖𝑖𝑙𝑝𝑡𝑡𝑙𝑖𝑡

Design Vector

𝒙 =

𝑥1
𝑥2
𝑥3
𝑥4

Simulation

Activity 1

LoA: 𝑥1

Lead time

Process cost

Investment cost:

…

Activity 4

LoA: 𝑥4

Lead time

Process cost

Investment cost:

…

Activity 3

LoA: 𝑥3

Lead time

Process cost

Investment cost:

…

Activity 2

LoA: 𝑥2

Lead time

Process cost

Investment cost:

…

Optimiser

Estimation

Methods

Input Parameters

𝐲 =

𝑦1
𝑦2
…
𝑦𝑛

Figure 4.1: High level overview of the simulation concept

4.1. DISCRETE EVENT SIMULATION
DES is a process-oriented simulation method, often used in modelling processes with discrete steps (e.g.
warehouse inventory over time). In DES, state variables only change at specified points in time, referred to as
events. The simulation jumps from event to event and skips the time when no events occur, hence no state
variables are changed (similar to a mathematical step function). This is different from continuous simulation
where the simulation makes small steps in time and adjusts for the changes occurring over this time. In this

31

32 4. SIMULATION

research only discrete steps are of interest (i.e. only the starting and ending time), and therefore the DES is
selected. An advantage of DES is the low computing power required, even in the case of processing multiple
events in parallel.
The logic for the discrete event simulation engine is visualised in the pseudo code in Algorithm 1.

Algorithm 1 Pseudo code of discrete event simulation logic

Ensure: Ending Condition = false
Ensure: t = 0

1: Initialise state variables
2: Start all valid events
3: while Ending Condition is false do
4: Set t to next event
5: Start next event
6: Update system variables
7: if All events processed AND (no events awaiting OR no possibility to process) then
8: Ending Condition is true
9: end if

10: end while
11: return All requested process information

During the simulation (i.e. in the while loop) the system variables are updated. This means that new events
can be started or stopped for example.
In Algorithm 1 the Ending Condition is set to false initially and the simulation stops once this condition be-
comes true. The only reasons for the Ending Condition to become true is if either all events have been pro-
cessed and no more events are awaiting or, if no events can ever be processed any more (e.g. a required
resource for a process does not exist and hence the event will never meet its starting condition).

4.2. SIMULATION STRUCTURE
A similar algorithm as described above is used in the research at hand. This section will discuss the structure
of the simulation as developed for this research. Note that this section only discusses the simulation itself
and not the complete sequence (including constructing the workflow etc.) of the developed code, this full
sequence is discussed in 4.5.
To allow a discussion of this simulation method a high-level Unified Modeling Language (UML) class diagram
is presented in Figure 4.2. This is an indicative class diagram and does not fully represent the actual code
structure but provides insight in the working principles of the simulation. The detailed diagram van not be
shown due to confidentiality. In this section the two main elements of the simulation will be discussed, the
environment and the activities.
The main element of this simulation is the Environment. This is the virtual environment in which the pro-
cesses take place. Elements such as the resources, matrices for calculations, activities and containers are
initiated in this environment. The elements need to be in the Environment to be able to communicate with
each other, use each other and for the environment to be able to keep track of the event queue. All elements
are initiated based on values provided by the user.
The Environment class has specific settings determining how the model should behave once a simulation is
started. This includes, for example, settings on how to deal with iteration (as discussed in Section 4.3.3) or
the hour rate of the knowledge engineer as defined by the user.
As can be seen in the class diagram the environment has function run(). This function starts the simulation
process by stepping from event to event. At the start of the simulation the property now is equal to the start-
ing time (default is zero). With every step this property is adjusted to match the artificial lead time.

The model uses a class (Activity) to model the activities in the workflow. These activities can be regular activ-
ities (i.e. implement, process, analyse, implement) or a gateway activities (i.e. decide), from now on referred
to as an Activity instance and Gateway instance respectively. An Activity instance is modelled as a super-class
and the Gateway instance inherits from this super-class. It can be seen in Figure 4.2 that the Gateway class
has additional and adjusted properties and functions. The instances are subject to multiple constraints. Re-
source constraints and precedence constraints are the main constraints. At the start of the simulation (t=0,

4.3. BEHAVIOUR 33

Activity

-time
-cost
-resources
-task type
-loa
-new loa
-next task
-previous task
-signal
-completions counter
-interruptions counter

-reset()
-connect()
-start()
-stop()
-respond()
-run task()
-callback()

Gateway

-feedback task

-reset()
-connect feedback()
-start()
-stop()
-respond()
-callback()

is a
1

Resource

-users
-queue
-count

request()
release()
cancel()

requires
0..*

Environment

-now
-settings

step()
run()

Matrix definition

-kvalues
-duration matrix
-cost matrices
-integraton class matrix

Container

-name
-level

put(amount)
get(amount)

Simpy process

-callback
-triggered
-processed

Method

-lead time()
-investment cost()
-normalise time()
-convert to hours()
-calculate collaboration penalty()

is a
1

uses
0..*

uses
0..1

uses
1..*

has
1..*

has
0..*

has
1

has
17

-Activity

Figure 4.2: High-level UML class diagram of the developed simulation method

unless otherwise defined) all instances assess if all their constraints are met; the process of assessing this is
referred to as responding. Once all constraints are met the instance starts and is completed after the duration.
This duration is determined based on the inputs and by means of the method explained in Chapter 3. During
the full duration the instance uses the required resources from the resource pool, hence no other instance
can use the same resource at the same time. Upon completion it interacts with other Activity and Gateway
instances by sending a signal to the succeeding instance, or instances, triggering them to respond.
The instances use methods to calculate the properties like lead time and investment cost. Due to the multi-
tude of methods these have been placed in a separate utility toolbox in the program to enhance code structure
(See Method class in Figure 4.2).

4.3. BEHAVIOUR

The developed DES algorithm distinguishes from other algorithms by the way it deals with complex PDP
properties like iteration, rework and collaboration. These aspects are addressed in the following subsections.

4.3.1. ITERATION

During the initialisation, based on the inputs, the model determines whether an instance causes feedback.
Determination is straight-forward: if an activity has an entry above the diagonal in the Design Structure Ma-
trix (DSM), it provides feedback. If that is the case, the instance is of the class Gateway. The value of the entry
above the diagonal is equal to the amount of iterations. The decision whether or not to feedback is made
in the model based on the current state of the instance. The Gateway instance checks the total times it has
been completed and verifies if that is below the set amount of iterations. If this is the case then the Gate-
way instance sends a reset signal to the predefined feedback instances, accompanied with a reference of the
sender (i.e. the current Gateway instance). The instances receiving this reset signal stop their process if they
are running. How the instances receiving the signal deal with this feedback is discussed in the next paragraph
on rework modelling.

34 4. SIMULATION

4.3.2. REWORK

Rework is modelled by sending reset signals between activities (i.e. Activity or Gateway instances). If an activ-
ity receives a reset signal, the activity is stopped and resets the progress of the activity to zero. Subsequently
the activity forwards the signal to its succeeding activities to cause a trickle-down effect. This trickle-down
effect accounts for the successive feed-forward rework as discussed by Cho and Eppinger [14]. This policy has
been illustrated in Figure 4.3. As soon as the Gateway instance triggers the feedback, all the work performed
by completed activities 1, 2, 3 and 4 is reset. Also the work in progress in activity 5 is stopped and reset to
zero (i.e. the task is interrupted). It is important to note that it is assumed that rework in an activity always
leads to rework in its succeeding tasks if the succeeding task has started or has already been completed before
the reset signal. A reset signal will thus always trickle-down in the workflow. In reality this might not always
be the case since rework of one task (e.g. increasing the bolt diameter) not necessarily leads to rework of a
succeeding task (e.g. select bolt supplier).

Just after feedback Right before feedback

Activity 1

Activity 5

Activity 4

Activity 3

Activity 2

Activity 6 Gateway

Activity 1

Activity 5

Activity 4

Activity 3

Activity 2

Activity 6 Gateway

 Task completed Task reset Task in progress Task unprocessed

Iteration count: 0
Iteration count: 1

Figure 4.3: Workflow illustrating the rework modelling policy

In the case of a Gateway the reset signal is not unconditionally forwarded. The Gateway assesses the sender
of the reset signal. If the signal is sent by itself the reset signal is not forwarded. If the reset signal is sent by
another gateway the reset signal is forwarded and the internal counter of the gateway assessing the amount
of iterations is then set back to zero.
This results in specific behaviour for processes with nested iterative loops. An example of such a process is
provided in Figure 4.4. The behaviour of the example would yield that P2 and P3 are executed four times since
the counter of the amount of iterations of P3 is set to zero by the reset signal of P4. The author acknowledges
that this is not representative for every process but is the closest to reality taking into account the assumption
on rework stated in Section 1.3.4.

1

1

1

1

1

P1 P2 P3 P4

P1

P2

P3

P4

P1 P2 P3 P4

x
x

x
x

x

P2 P3 P1 P4

P2

P3

P1

P4

P2 P3 P1 P4

P1
P2

P3
P4

Reset signal

Reset signal

Figure 4.4: DSM and flowchart to illustrate the principle of rework and reset signals as used in the simulation

In computing the recurring cost (process cost), all time spent by resources on activities is taken into account.
Hence the time spent on rework and interrupted activities all add to process cost.

4.4. SIMULATION OUTPUTS 35

4.3.3. COLLABORATION
Collaboration is modelled by using penalties for transactions between different resources. This penalty is a
delay before starting the actual activity and is determined by the user as a standard penalty, constant over the
full process. This constant, ttost ar t , is set by the user in the setting input parameters as can be seen in Table
G.2. The penalty is not applicable to every activity since such a delay is not realistic for every activity. Each
activity verifies if the resources of the previous activities are a subset of its current resources, if this is not the
case then the penalty is accounted for. This applies in the case human resources are involved. In case of fully
automated activities, no delay is applied based on the assumption that the automated system has always a
computer resource available.
This approach for modelling of collaboration by using penalties is strict. It could be the case that of 3 sub-
sequent activities the second one is fully automated but has a negligible duration. This would result in a
penalty for the third task. In reality the resource responsible for the first and last activity would "wait" the
negligible time for the automated activity but no significant waiting time would be required. The strictness
of this approach could be viewed upon as a downside of this way of modelling the collaboration, therefore in
recommendations in Section 9.3 adjustments are suggested to reduce penalty strictness.

INFINITE ITERATIONS

By using the policies described above, it would be possible to configure a process with an infinite iterative
loop. To cope with this behaviour the user is able to define the settings to be able to deal with this issue.
Detection of this infinite loop is not possible before starting the simulation. Therefore the system assesses for
each Gateway instance if the amount of completions of the instance does not exceed a given amount, defined
by the user. If the amount of completions exceeds this value two options for model behaviour are provided to
the user:

1. The simulation stops and displays an error.

2. The instance under consideration, a Gateway instance, is transformed to an Activity instance and hence
is not able to provide feedback any more.

Another option is to select a third option. Here no infinite loop detection is used, the system behaves as such
that infinite loops can never be configured.

3. If a Gateway instance receives a reset signal not provided by the itself (i.e. sender is not the current
Gateway instance), then the amount of iterations of the instance is lowered by 1. Eventually resulting
in 0 required iterations and hence the Gateway instance becomes a Activity instance.

4.3.4. RESOURCE ALLOCATION
In the PDP, and many other processes involving human resources, the number of resources is limited to a
certain capacity. In most cases this is a monetary trade-off for a company. Due to this capacity it could
happen during the process that the resource required for a specific activity is occupied at that moment in
time. This would result in waiting time for the activity and could result in a longer lead time. Therefore it is
important to take the limited amount of resources into account in the simulation process.
As can be seen in Figure 4.2, the Resource class has a property count, this is set at an initial value as defined
by the user. Upon requesting, the count value is lowered by the amount of requested resources by a task. If
the count is not at a sufficient value to provide the requested amount of resources for a process, the process
needs to wait until another process releases its resources, hence inducing waiting time in the simulation.

4.4. SIMULATION OUTPUTS
By means of the described simulation multiple KPIs are computed for the configured process. These KPIs are
calculated on an activity level and on process level (see Figure 3.1). The following indicators are calculated
on a process level:
These indicators in Table 4.1 are stored in the Containers as indicated in Figure 4.2.
Furthermore a number of indicators are calculated on an activity level and are stored in the Activity instance
itself1:

1Illustrated in Figure 4.2 by the properties cost and time

36 4. SIMULATION

Table 4.1: Overview of computed KPIs on a process level

Parameter Description

Total lead time Total lead time from starting first activity to the finish of the
last.

Total process time Total amount of man hours invested during the process.
Time awaiting resources Total time activities can not start due to resource constraints.
Time waiting to start Total time added to the process due to collaboration penalty

(see Section 4.3.3).
Total interrupted time Total time activities have started but are interrupted before

completing.
Cost of interrupted time Cost of resources during total interrupted time.
Total process cost Total cost of all resource utilisation during the process.
Number of projects until Break Even Point
(BEP)

Number of project before the investment paid back itself.

Total investment cost Total investment cost to achieve levels of automation of sim-
ulated process architecture.

- Total internal knowledge engineer-
ing cost
- Total external knowledge engineer-
ing cost
- Development cost
- Integration cost
- License cost
- Server cost
- Configuration cost
- Management cost
- Training cost

Table 4.2: Overview of computed KPIs on an activity level

Parameter Description

Activity lead time Total lead time from starting the activity till it is finished for a
single cycle (hence no iteration).

Activity process time Total amount of man hours invested during the process, tak-
ing into account iteration and interruption.

Time awaiting resources Total time the activity can not start due to resource con-
straints.

Time waiting to start Total time added to the activity due to collaboration penalty
(see Section 4.3.3).

Interrupted time Total time an activity has started but was interrupted before
completing.

Cost of interrupted time Cost of resources during total interrupted time.
Activity process cost Cost of the utilised resources by the activity.
Activity investment cost Total investment cost to achieve the configured level of au-

tomation of the activity.
- Total internal knowledge engineer-
ing cost
- Total external knowledge engineer-
ing cost
- Development cost
- Integration cost
- License cost
- Server cost
- Configuration cost
- Management cost
- Training cost

Amount of completions Number of times the activity is completed.
Amount of interruptions Number of times the activity is interrupted.

4.5. SIMULATION ACTIVITY SEQUENCE 37

4.5. SIMULATION ACTIVITY SEQUENCE
In previous sections the simulation of a single simulation experiment is discussed (i.e. only one process ar-
chitecture is analysed). Before starting this actual simulation of the process, it needs to be defined, imported
and constructed in the SimPy environment. During this research a first prototype to assist the user in con-
figuration, verification, simulation and interpreting the results is developed. This section is solely concerned
with the activities inside the Python environment. The sequence of these steps in the program are displayed
in Figure 4.5. The first header is the user of the system, starting the simulation. The remaining four headers
are classes in the prototype. The last header, Simulation environment, refers to the Environment in Figure
4.2.

User ManagerManager Importer
Workflow

builder
Simulation

environment

Send I/O file locations

Run simulation

Start importing

Return definitions

Build workflow

Create environment and add workflow

Return simulation output

Figure 4.5: UML sequence diagram for the developed simulator

It can be seen in Figure 4.5 that the user first sends the Manager information on the input and output file
locations. The Manager subsequently uses the Importer to interpret the inputs and retrieves the process def-
initions. Based on these process definitions the Workflow builder starts to build a workflow, verifies if all
inputs are valid and returns it to the Manager. This workflow is provided to the Simulation environment and
performs the simulation as discussed in this chapter.

As stated in Section 1.3.1, it is the objective to develop an optimisation method. The simulator has the ability
to perform an exhaustive search (discussed in more detail in Chapter 5). This is indicated in the activity dia-
gram for the developed simulator, as can be seen in Figure 4.6. Furthermore the verification of provided input
is performed right after creating the environment. In further development of this code one could consider
replacing it to right before the decision on whether or not to perform an exhaustive search.

38 4. SIMULATION

User provides I/O file
locations

Initiate and clear
logging file

Import process
definitions

Import simulation
settings

Initiate all activities
with properties

Perform exhaustive search?

Create environment

Run simulation

Store results

All inputs valid?

Generate all possible
process architectures

Create environment

Run simulation

Store results

All inputs valid?

All permutations simulated?

Display results file
location

Display results file
location

No Yes

No

No

No

y

Start

End simulation

User should provide
information on where the
input and output files are
located.

Store results in the
containers and write
to output file

Import definitions on
current process

architecture

Import definition on
simulation settings
(e.g. iteration
behaviour)

Generate all possible
permutations of
process architectures
(i.e. all possible
design vectors)

Figure 4.6: UML activity diagram for the PDP simulator

5
OPTIMISATION STRATEGY

The simulator described in the previous chapter is able to analyse any given process architecture and output
important process Key Performance Indicators (KPIs) like lead time and investment cost. The goal of this
research is to provide insight in the trade-off between costs and benefits for the use of different levels of
automation. The trade-off of these costs and benefits results in a Multi-Objective Optimisation (MOO). The
optimisation of these multiple objectives is the main topic of this chapter.
First the optimisation problem is explained in Section 5.1. In Section 5.2, the concept of MOO is discussed and
defined more elaborately. Subsequently it is discussed why an optimiser is needed in Section 5.3. Following
this, in Section 5.4, the requirements for a MOO algorithm for the problem at hand are discussed. The selected
algorithm is then briefly introduced in Section 5.5.

5.1. OPTIMISATION PROBLEM
In making a trade-off between costs and benefits multiple objectives can be identified. Some users would
like to reduce the lead time, no matter what while others might want to reduce process cost but only until a
specific investment cost. Since no information is present on the relative importance of the different objectives
it is not possible to determine one single solution to be the optimal solution for the problem at hand. A set
of optimal solutions is determined, also referred to as the Pareto front. These Pareto optimal solutions are
the process architectures located on the Pareto front as indicated in Figure 5.1. Each process architecture is
unique and varies in the level of automation of the activities, resulting in an optimum value of the objective
functions at hand. Two example process architectures can be seen in Figure 5.2.

Feasible

region

min investment cost

min lead time

Automation investment cost

Pr
oc

es
s l

ea
d

tim
e

Pareto front

Q

P

Figure 5.1: Pareto front trading off lead time and investment
cost

P1
P2

P3
P4 P5

Legend: levels of automation

1 2 3 4

Configuration Q

P1
P2

P3
P4 P5

Configuration P

Figure 5.2: Simplified illustration of the process architectures
P and Q on the Pareto front

It can be seen in Figure 5.2 that the process structure is identical and solely the levels of automation on an
activity level are adjusted. This illustrates the optimisation problem in this research: defining the process
architectures (i.e. level of automation of each activity) such that they result in a Pareto optimal solution. This
Pareto front can then be used in trading-off different process architectures.
In the example above the objectives lead time and investment cost are selected but any combination of KPIs

39

40 5. OPTIMISATION STRATEGY

listed in Table 4.1 can be used. The optimisation of the combination of these KPIs is defined as a MOO and is
discussed in the following section.

5.2. MULTI-OBJECTIVE OPTIMISATION (MOO)
In MOO more than one objective function needs to be optimised simultaneously. These objective functions
might conflict with each other, as is the case in the MOO in this research. As discussed in Section 2.2 cost,
time and quality compete with one another. A higher level of automation generally leads to a lower lead time
but also to higher investment cost.
A Multi-Objective Optimisation problem is mathematically defined as in equation 5.1.

minimize
x∈ℜn

−→
f (x) = (f1(x), . . . , fk (x))t

subject to:g (x) ≥ 0 wher e :g : ℜn →ℜ
h(x) = 0 h : ℜn →ℜ
xl ≤ x ≤ xu xl , xu ∈ℜn

(5.1)

Here x is the design vector, in the case of this research the levels of automation of the various Product Devel-

opment Process (PDP) activities.
−→
f (x) is the vector containing multiple objective functions to be minimised.

This optimisation is subject to specific inequality and equality constraints and lower and upper limits of the
design vector. In this research the design vector is limited for each variable (i.e. activity level of automation)
by a lower bound on the level of automation as the current level of automation. The upper bound is con-
strained by either the maximum level of automation or a level of automation as provided by the user.
The goal of the MOO is to find the design vectors leading to Pareto optimal solutions taking into account the
constraints and boundaries on the design vector. An example of a Pareto front can be seen in Figure 1.3, the
Pareto front is in this case represented by a solid continuous line. In this research the Pareto front will not
be a continuous line due to the discrete nature of the variables in the design vector. A design vector is called
Pareto optimal if no other −→x ∈ ℜn such that fi (−→x) ≤ fi (−→x ∗) for all i = 1, . . . ,k and f j (−→x) ≤ f j (−→x ∗) for at least
one j.

5.3. NEED FOR OPTIMISATION
In order to generate this Pareto front, a possibility is to perform an exhaustive search (brute-force search); this
would imply assessing all possible permutations of the design vector, hence all the possible combinations
of levels of automation for each activity of the process. The total amount of possible permutation experi-
ences a combinatorial explosion with an increasing number of activities. To give an indication an exhaustive
search for 20 activities with 4 levels of automation to assess for each activity would result in 420 experiments
(1099511627776). Even with a simulation times per experiment of 1 millisecond this would still result in over
17 years of computational time using a single computer! Therefore it is clear that exhaustive search would re-
sult in too long computational time for the proof of concept purpose of this framework; hence a MOO search
algorithm is preferred.

5.4. ALGORITHM REQUIREMENTS
The MOO search algorithm needs to be able to assess different design vectors and intelligently search in the
right direction for the process architectures resulting in optimal architectures (i.e. Pareto optimal solutions).
This intelligent searching algorithm should take into account the constraints and assess aspects like the con-
vergence criteria after each evaluation. Due to the discrete modelling of the levels of automation a gradient-
based search method can not be used. Evolutionary algorithms are a type of meta heuristic search method
able to escape from a local optimum. These algorithms are deemed suitable to solve the MOO because they
can deal with multiple solutions per iteration. Therefore per iterations multiple Pareto optimal solutions can
be found whereas traditional mathematical optimisation methods would require multiple runs. Furthermore
the evolutionary algorithms are less sensitive to the shape of the Pareto front and are able to deal with discon-
tinuous and concave shapes for example. Therefore an evolutionary algorithm is suggested. Many different
algorithms are available, in this research a Non-dominated Sorting Genetic Algorithm is selected which is
discussed in the following section.

5.5. NON-DOMINATED SORTING DIFFERENTIAL EVOLUTION ALGORITHM 41

Outputs

𝒛 =

𝑧1
𝑧2
𝑧3
…
𝑧𝑛

=

𝑙𝑙𝑙𝑙 𝑡𝑡𝑡𝑙
𝑝𝑝𝑝𝑝𝑙𝑝𝑝 𝑝𝑝𝑝𝑡

…
…

𝑡𝑖𝑖𝑙𝑝𝑡𝑡𝑙𝑖𝑡

 Design vector

𝒙 =

𝑥1
𝑥2
𝑥3
𝑥4

Simulation

Activity 1

LoA: 𝑥1

Lead time

Process cost

Investment cost:

…

Activity 4

LoA: 𝑥4

Lead time

Process cost

Investment cost:

…

Activity 3

LoA: 𝑥3

Lead time

Process cost

Investment cost:

…

Activity 2

LoA: 𝑥2

Lead time

Process cost

Investment cost:

…

Estimation Methods

Input Parameters

𝐲 =

𝑦1
𝑦2
…
𝑦𝑛

Optimiser

Optimisation settings Optimal design vector

Figure 5.3: High level example of the optimisation system

In Figure 5.3 the implementation of an optimiser using a algorithm is illustrated on a high level. The opti-
miser is coupled to the simulator and hence the optimiser is able to adjust the design vector and to interpret
the outputs. Based on the output the Genetic Algorithm (GA) determines the design vector for the coming
iteration. This GA is discussed in the following section.

5.5. NON-DOMINATED SORTING DIFFERENTIAL EVOLUTION ALGORITHM
The algorithm used in this research is based on the NSGA-II algorithm developed by [4]. The Non-dominated
Sorting Genetic Algorithm (NSGA) as developed by [51] received some criticism due to the high computa-
tional complexity, the lack of elitism and the need for specifying the sharing parameter. Therefore [4] pro-
posed an improved version of the NSGA called NSGA-II.
This improved algorithm differentiates itself from the predecessor with three main aspects. Firstly it uses
a fast non-dominated sorting procedure, secondly an elitist-preserving approach and thirdly by a modified
main loop. The first two aspects will be discussed briefly in the following paragraph. A more detailed discus-
sion the algorithm can be found in Appendix C.
A fast sorting algorithm is implemented to be able to sort all experiments and assess their domination. With
a large number of experiments this algorithm reduces computational complexity. The elitist preserving ap-
proach is used to give priority to the reuse (in the genetic algorithm) of experiments in less crowded regions
(i.e. with few other experiments in proximity). This increases the spread of experiments throughout the de-
sign space.

6
INTEGRATED SIMULATION AND

OPTIMISATION FRAMEWORK

Previous chapters discussed all individual elements used in the proposed methodology. In this chapter the
integration of the elements in a framework is discussed. It is discussed how the elements interact with each
other and how the user interacts with the framework.
The elements discussed in previous chapters have been implemented in the integrated framework illustrated
in Figure 6.1. The integrated framework assists in the knowledge acquisition, structuring, simulation and
optimisation of the process architecture. It can be seen in Figure 6.1 that multiple software applications are
used in this framework. In the following paragraphs the elements are discussed.
Section 6.1 discusses the part of the framework in which the process and simulation are configured. Section
6.2 discusses the implementation of the simulation in the framework. Next, in Section 6.3, the optimisation
is discussed. Finally, in Section 6.4, the performance of the integrated framework is reviewed.

Outputs

𝒛 =

𝑧1
𝑧2
𝑧3
…
𝑧𝑛

=

𝑙𝑙𝑙𝑙 𝑡𝑡𝑡𝑙
𝑝𝑝𝑝𝑝𝑙𝑝𝑝 𝑝𝑝𝑝𝑡

…
…

𝑡𝑖𝑖𝑙𝑝𝑡𝑡𝑙𝑖𝑡

 Design vector

𝒙 =

𝑥1
𝑥2
𝑥3
𝑥4

Simulation

Activity 1

LoA: 𝑥1

Lead time

Process cost

Investment cost:

…

Activity 4

LoA: 𝑥4

Lead time

Process cost

Investment cost:

…

Activity 3

LoA: 𝑥3

Lead time

Process cost

Investment cost:

…

Activity 2

LoA: 𝑥2

Lead time

Process cost

Investment cost:

…

Estimation Methods

Input Parameters

𝐲 =

𝑦1
𝑦2
…
𝑦𝑛

Optimiser

Optimisation settings Optimal design vector

Simulation:

Python & SimPy

Configuration:

Excel & VBA

Outputs & results:

Optimus

Optimisation:

Optimus

Figure 6.1: Overview of the integrated simulation and optimisation framework

6.1. DEFINITION AND CONFIGURATION PLATFORM
In the first step the Product Development Process (PDP) is defined and its specific settings are stated. To this
purpose, Microsoft Excel in combination with custom Visual Basic for Applications (VBA) scripts is used to
provide a user friendly, and partly automated, interface to define the process to be analysed and optimized.
The Excel file provides a structured method to capture all the process information. It is developed as such
that it provides visual feedback on invalid or missing information. VBA scripts are used to automatically
transform the high-level task overview (i.e. list of tasks with relative time distributions of activities) to a list of
all activities in the process. The scripts also automatically create a Design Structure Matrix (DSM) based on
task order in the Excel file, here the user is solely responsible for the definition of task precedence constraints.

43

44 6. INTEGRATED SIMULATION AND OPTIMISATION FRAMEWORK

The Excel interface also allows the user to directly run the simulation for the process as defined in the sheets.
Using this method the user does not need to interact with the simulator (code) itself. Once the run is com-
pleted the interface prompts information on the process and the location of more detailed process analysis.

6.2. SIMULATION AND ANALYSIS PLATFORM
The PDP simulator is developed using the open-source language Python and uses a Discrete Event Simula-
tion (DES) library named SimPy [52]. SimPy is an open-source library for process-oriented DES; it is written
in Python and also being called from Python. SimPy exploits generators (i.e. specific type of Python iterator)
to yield specific events in time. This specific library is chosen due to the high adjustability and processing
speed. This adjustability allows to connects with frameworks of partners involved in this research.
The simulator is provided with process information and settings by the Excel file. The file contains all infor-
mation regarding the process but also settings for the simulator itself. Therefore no settings are hardcoded in
the simulator itself to improve maintainability and clarity for current and future users of the tools.
In the settings the user can determine to perform one experiment or to perform an exhaustive search. This
provides the user with the option to also generate a Pareto front without the use of an external optimiser. But
as discussed in the Section 5.3 an exhaustive search quickly yields a high computational time and therefore
the use of an optimiser is advised.
The simulator stores the results in project dictionaries. To improve usability of the information, the results
are also exported to a .txt file and and .xls file. The .xls file is mainly of added value in the case of an exhaustive
search without the use of an external optimisation platfrom (e.g. Optimus).
If no optimisation platform is available the simulator can still be used to perform single experiments. This is
of use in analysing a specific process architecture without the need of optimisation.

6.3. OPTIMUS PLATFORM
For the optimisation the Optimus platform developed by Noesis Solutions is used. This platform allows for
the integration of multiple software tools such as Microsoft Excel and Python in this case. As can be seen in
Figure 5.3 the optimiser interacts with the inputs and outputs of the simulator. The Optimus platform is able
to interact with the configuration platform and adjust the design vector and is able to retrieve and interpret
the results of the simulator. In the Optimus platform a workflow is generated for each specific process. An
example workflow can be seen in Figure 6.2. The elements of this workflow are identical for each optimisation
in this research but the content differs per process.

Input variables

Array containing the design vector

Excel

Excel file with configured PDP process

Action

Element starting simulation tool

Output file

Text file with results on process level

Output variables

Array with results based on text file

Figure 6.2: Workflow as displayed in the Optimus GUI

Within this workflow, five elements can be identified. An input variables element, an Excel element, an ac-
tion element, an output file element and an output array element respectively from left to right. In the input
variables element the design variables of the design vector are listed. For each item in the design vector in-
formation is provided on for example boundaries. The interface in which this information is displayed and
possibly adjusted can be seen in figure 6.3. It can be seen that the type of variable (integer or real) and bound-
aries are displayed.

The elements in the design vector have a mapping on the second element, the Excel element. The platform
adjusts the actual values in the cells in the Excel file that correspond with the design vector. For every exper-
iment the Excel file with unique design vector values is provided to the action block which runs the Python
application with a specific design vector and other parameters as provided in the Excel file. The outcomes

6.4. INTEGRATED FRAMEWORK PERFORMANCE 45

Activity Name Nominal LoA LoA lower bound LoA upper bound

Figure 6.3: Overview of input parameters as displayed in the Optimus GUI

are then exported to the fourth element, the output file element. A specific mapping is defined to be able to
identify the output variables and to map them on the right elements in the fifth element (the output array
element). With this mapping the optimiser is able to assess the value of the different objective functions as
defined by the user and is able to use this information in a subsequent iteration.
The optimisation algorithm as discussed in Section 5.5 is able to handle more than two objective functions.
Using the Optimus platform it is thus possible to also perform a Multi-Objective Optimisation (MOO) using
for example lead time, investment cost and other objective functions. It should be noted that computational
times increase significantly with the number of objective functions, therefore the MOO is limited to two ob-
jective functions in this research.

6.4. INTEGRATED FRAMEWORK PERFORMANCE
It should be noted that the integration between the elements has an negative influence on the framework
computational performance. The interfaces between the three elements lead to an increase in computa-
tional time. For every experiment the framework constructs the simulation environment and therefore ex-
tracts this information from the Excel file. The (re)construction of the process and environment has a sig-
nificant effect on experiment lead time. Since the Optimus interface can only be used in combination with
the non-exhaustive search setting in the simulator this (re)construction is required every experiment. This
results in an experiment lead time of roughly 2 seconds for the integrated framework1 whereas the experi-
ment lead time is close to 0,1 second for the exhaustive search solely using the simulator2. This difference
can be explained due to the absence of an optimisation algorithm in the exhaustive search and only a single
communication with the Excel interface.
Hence room for improvement exists to improve the computational performance of the integrated frame-
work. Therefore the simulator should be adjusted to be able to store the extracted information from Excel in
the Python environment and hence eliminate the need to interface with Excel for each experiment.

1For an optimisation with 500 experiments
2For an exhaustive search with 70000 experiments

7
FRAMEWORK VERIFICATION AND

VALIDATION

This chapter discusses the verification and validation of the simulation and optimisation framework pro-
posed in the previous chapters. Verification is the process of verifying that the developed solution meets the
requirements and specifications. Hence this step is concerned with assessing the performance of the out-
come of the framework with the specifications for this framework. It checks whether the inputs correspond
with the outputs based on the used methods. Validation is concerned with checking if the results match with
the known (reference) values. For example by comparing results with experiments or mathematical formula-
tions.
First in Section 7.1 the simulation itself is verified by means unit testing the developed code. Subsequently in
Section 7.2 the optimisation itself is verified by means of multiple test cases. Next in Section 7.3 the reliability
and consistency of the optimisation is treated. Finally in Section 7.4 the validation of the framework is dis-
cussed. Due to scarce validation data this section is of a qualitative nature and is more a discussion on how
to validate then a real validation of the framework based on reference data.

7.1. SIMULATION VERIFICATION
In this section the results of the analyser are verified. It is of vital importance that each simulation experiment
provides correct results as expected based on the theory discussed in Chapter 3.
The simulation algorithm can handle many different process architectures. Factors of influence are the con-
straints of precedence, resource availability, iterative behaviour, collaborative behaviour and the settings of
the process as determined by the user. The combination of these factors leads to a large amount of test cases
of which a selection is discussed in this section.
The simulation is verified by means of unit tests. This means that all blocks of code are independently tested
on a function or method level. Hence all methods used to calculate costs or (lead)time durations are verified
on a functional level.
Besides verification on a function level also the behaviour of the simulation as a whole has been verified. This
is done by means of simulation of specific process architectures which consist of a comprehensible amount
of activities (i.e. below 10 activities) of which the expected outcome under varying inputs can be mathemat-
ically calculated. These specific process architectures are determined as such that the set of these processes
cover the expected architectures during real simulation. An overview of the code coverage report of the unit
tests is provided in Table 7.1. This table shows that using the tests on average over all statements, 92% of the
code is evaluated by testing without errors. .
The statements remaining uncovered (8 %) during the unit tests are merely conditional statements with the
purpose of returning error messages. These are not encountered during the tests since the tests are all per-
formed without errors.

7.2. OPTIMISATION VERIFICATION
Previous section verified the separate experiments by using the developed simulation algorithm. This section
will use this verified simulation algorithm in the integrated framework including optimisation. A number of

47

48 7. FRAMEWORK VERIFICATION AND VALIDATION

Table 7.1: Code coverage report for unit testing of developed analyser

Module statements missing excluded coverage

Create Environment 48 4 0 92%
DSM Interaction 108 7 0 94%
Gateway Class 57 6 0 89%
Importer 10 0 0 100%
Input validation 67 27 0 60%
Logging 15 0 0 100%
Methods 134 4 0 97%
Task Class 180 26 0 86%
Tests 388 6 0 98%
Create Workflow 31 0 0 100%

1038 80 0 92%

simple test cases are discussed here to illustrate the functionality of the framework. A much more complex
test case from an industrial application is discussed later in Chapter 8.
The following test cases are all based on the same process configuration, referred to as base case. In each test
case, one characteristic (e.g. resource cost, amount of iterations) is adjusted to demonstrate the difference in
behaviour of the system. Flowcharts of the test cases are illustrated in Figure 7.1. All tasks have a duration of
20 hours and consist of all activity types (i.e. task 1 can be split up in 16,6% acquire, 16,6% pre-process etc.).
Hence the total amount of activities equals 24 (4x6).

1 4
3

2

1 4 3 2 1 4 3 2

1 4 3 2

Base case Case 1: Iteration

Case 2: Parallelisation Case 3: Expensive resource

€ € € € €

3

Figure 7.1: Flowcharts of the test cases for optimisation verification

7.2.1. TEST CASE 1: ITERATION
This case displays the effect of iteration in a process on the optimisation outcome. One iterative loop, of two
iterations, is added in which activity 3 feedbacks to activity 2. In Figure 7.2 it can be seen that the Pareto
front has shifted. Due to the iteration the process has a longer lead time. The slope of the Pareto front also
has changed, implying that a larger lead time reduction than the base case can be obtained for a certain
investment in automation solutions. This slope eventually matches with the slope of the base case when the
iterative tasks have been fully automated.

Figure 7.2: Pareto front for the lead time and investment cost
for the base case and iterative case

Figure 7.3: Average level of automation per task for the itera-
tive case

7.2. OPTIMISATION VERIFICATION 49

Upon inspection of the levels of automation on the various activities in Figure 7.3 it can be seen that the
points on the Pareto front correspond to process architectures with increasing levels of automation of the
tasks involved in the iteration. These results match the expectations of the interviewed experts. In Figure 7.3
the points on ‘vertical lines’ correspond to a process architecture in Figure 7.2.

7.2.2. TEST CASE 2: PARALLELISATION
In this case the precedence constraints on activities are changed and activities 2 and 3 can be processed in
parallel. This case is investigated for two different scenarios since resource availability influences the results.
In scenario I only one resource is available, scenario II has two resources. In Figure 7.4 it can be seen that
the Pareto front of scenario I is similar to the base case. This is as expected since with only one resource
the process is not able to process parallel activities. For scenario II, however, a different front can be seen.
The Pareto front flexes at a lead time of 30 hours. Upon investigation of the automation initiatives this can
be explained. In Figure 7.5 the average levels of automation at different points on the Pareto of scenario II
are plotted. Here it can be seen that at longer lead times (i.e. on the lower right side of the Pareto front) the
non-parallel activities are first automated. Once these non-parallel activities have been (fully) automated the
parallel activities (2 and 3) subsequently increases the level of automation. This is in accordance with the
expectations since a higher level of automation for a parallel activity only becomes effective for a lower lead
time if the other parallel task is also automated.

Figure 7.4: Pareto front for the lead time and investment cost
for the base case and parallelisation case

Figure 7.5: Selection of architectures on the Pareto front for
Scenario II with average levels of automation per task

7.2.3. TEST CASE 3: RESOURCE COST
In this case one task utilises a different resource with a higher cost (in this fictitious case 100%). In this case
it would be of no use to perform the Multi-Objective Optimisation (MOO) for lead time and automation
investment cost since resource cost has no effect on lead time and only a relative small effect on automation
investment cost. Therefore a MOO for the lead time and the number of projects needed until Break Even
Point was performed.

Figure 7.6: Average level of automation per task for the base
case

Figure 7.7: Average level of automation per task for test case 3

Figure 7.6 displays a selection of architectures on the Pareto front where it can be seen that all tasks are
incrementally automated. When the cost of the resource of Task 3 is increased, a different graph is generated.
This is illustrated in Figure 7.7, where it can be seen that Task 3 (using the expensive resource) is always fully

50 7. FRAMEWORK VERIFICATION AND VALIDATION

Table 7.2: Overview of the optimisation parameters applicable to the proposed optimisation method

Optimisation parameter Description

Target front size Total desired number of points on the Pareto
front.

Population size Number of experiments per iteration.
Start population Design vectors used in the first population.
First population size Number of experiments in the first iteration.
Random seed Number used to initialize a pseudorandom

number generator.
Weighting factor Weighted differences of the variables of ran-

domly selected designs from the previous
generation. Low value leads to longer process
but with a higher probability of global conver-
gence.

Inverse crossover probability Probability that genes are taken from prede-
cessors without adjustments. Low values in-
crease the risk of getting trapped in a local op-
timum.

Maximum number of iterations Number of iterations before solution needs to
be converged.

automated. Hence, as expected, the optimization framework suggests automating first the task with high
resource cost, ceteris paribus.

7.3. OPTIMISATION RELIABILITY
In this research the optimisation method described in Chapter 5 is used. The method uses NSGA-II which
includes tournament selection, recombination and mutations. These elements contain stochastic variables
and therefore the Pareto front as generated might differ based on the optimisation settings but also under
the same settings the Pareto front might differ due to these probabilistic elements. Reliability is the extent
to which a measurement instrument yields consistent, stable, and uniform results over repeated observation
or measurements under the same conditions each time [53]. This section will discuss the reliability of the
optimisation. It does not discuss the correctness of the generated solutions but solely the reliability of these
results. This will be discussed using an extended version of the base case as described above. This extended
case is illustrated on a high level in Figure 7.8 and detailed process configurations can be found in Appendix
D.

2 5
4

3

1 6

2
Resource 1
Resource 2

Figure 7.8: Flowchart of the process used for verification

Using this case the sensitivity of the optimisation settings are discussed in Section 7.3.2 and subsequently
robustness is discussed in Section 7.3.3. The elements to vary and influence the optimisation (i.e. the opti-
misation settings) are first discussed in Section 7.3.1.

7.3.1. OPTIMISATION SETTINGS
In the optimisation method used in this research several settings are available to adjust the optimisation. The
settings available in the optimisation platform as discussed in Section 6.3 are listed in Table 7.2.
Some of these settings will be adjusted in the following paragraph to assess the influence of these parameters
on the optimisation process and outcome (i.e. the Pareto front). In this analysis of optimisation reliabil-
ity the maximum total amount of experiments (i.e. the product of the maximum number of iterations and

7.3. OPTIMISATION RELIABILITY 51

population size) is limited to 2500 due to computational complexity.

7.3.2. SENSITIVITY ANALYSIS OF OPTIMISATION SETTINGS

The optimisation settings can be adjusted to influence the search for Pareto optimal solutions. In this section
the effect of these settings on the results (in this case mainly the Pareto front) are discussed. This is limited to
the MOO trading off lead time and investment cost.

Target front size
The desired total amount of Pareto optimal solutions influences the optimisation. In Figure 7.9 the generated
Pareto front at varying target front sizes are displayed. With a low target front size the optimisation meets the
convergence criteria earlier and does not assess as many solutions as with a larger target front size. Therefore
a MOO with a low target front size requires less computational time but as can be seen it misses many Pareto
Optimal solutions found in MOOs with a larger target front size.

0

50

100

150

200

250

300

350

0 20000 40000 60000 80000 100000 120000 140000

Le
ad

 ti
m

e

Investment cost

T=15

T=20

T=25

T=40

T=60

T=70

Figure 7.9: Pareto plots using the proposed method using various target front sizes

It can be seen that with an increasing target front size the Pareto front shape remains more constant. There-
fore it is important to select a target front size with a sufficiently high value for the problem at hand upon
using this optimisation method. Insufficient data is available to determine a relation between the number of
parameters in the design vector and the minimal target front size to yield consistent results.

Start population
The optimisation method combines populations to create an offspring population (see Appendix C). There-
fore the start population influences the results. In Figure 7.10 three Pareto fronts can be identified. The first
is based on a starting population with all activities at a level of automation equal to the lower bound, the
second with intermediate levels of automation (level 2 and 3 alternately) and the third with all activities at
a level of automation equal to its upper bound. These three settings are refered to as "Start = low", "Start =
intermediate" and "Start = high" in the legend of Figure 7.10 respectively.

52 7. FRAMEWORK VERIFICATION AND VALIDATION

0

50

100

150

200

250

300

350

0 20000 40000 60000 80000 100000 120000 140000 160000

Le
ad

 ti
m

e

Investment cost

Start = Low

Start = Intermediate

Start = High

Figure 7.10: Pareto plots for the optimisation using different start populations

In Figure 7.10 it can be seen that the population influences the results. The starting populations with low,
intermediate an high levels of automation are more successful in finding Pareto optimal solutions in the re-
gions of low, intermediate and high investment cost respectively. This is in accordance with the expectations
since this method uses the start population and generates new populations partially based on them.
It can be concluded that the start population influences the found Pareto front. The Pareto fronts find so-
lutions in the same order of magnitude, but depending on the start population outliers are found. Hence if
for an optimisation problem the "low lead time - high investment cost" solutions are of particular interest,
then a start population with all variables set at their upper bound would provide more results in this region
of interest.

Weighting factor
The weighting factor influences the change in the variables from selected previous experiments. The value
should range between 0,5 and 1,0 according to the algorithm theoretical documentation [53].

0

50

100

150

200

250

300

350

0 20000 40000 60000 80000 100000 120000 140000 160000

Le
ad

 ti
m

e

Investment cost

W100, I=8

W70, I=11

W50, I=11

Figure 7.11: Pareto plots using the proposed method using various weighting factors

In Figure 7.11 the same optimisation is performed for different weighting factors. In the legende W100, W70

7.3. OPTIMISATION RELIABILITY 53

and W50 use a weighting factor of 1,0 0,7 and 0,5 respectively. The I in the legend indicates the total amount of
iterations before the solutions converged. No significant distinctions can be observed in the resulting Pareto
fronts other than the outlier Pareto optimal solution for a weighting factor of 0,50. Since no significant devi-
ations could be discovered for the different settings the default setting of 0,7 is used in the remainder of this
research.

Inverse crossover probability
The inverse crossover probability influence the chance that in the next generation unadjusted genes are used.
The value can range between 0 and 1. With a low inverse probability more genes are reused in subsequent
iterations. A low value hence leads to a higher probability of getting trapped in a local optimum. On the other
hand however a very high value might lead to not reusing "healthy genes", therefore a intermediate value is
often suggested.

0

50

100

150

200

250

300

350

0 20000 40000 60000 80000 100000 120000 140000

Le
ad

 ti
m

e

Investment cost

C=0, I=6

C=25, I=13

C=50, I=16

C=85, I=11

C=100, I=7

Figure 7.12: Pareto plots using the proposed method for varying inverse crossover probability

In Figure 7.12 the effect of different settings for the inverse crossover probability is illustrated. It can be seen
that the settings have a distinct influence on the results. The lower values of the inverse crossover probability
lead to more clustered Pareto optimal solutions. At higher values of the crossover probability the Pareto op-
timal solutions are located more scatter with an optimum at 0,85. The Pareto front for the inverse crossover
probability of 0,50 is located the closest to the origin. It is expected that this is not necessarily due to the
crossover probability but due to higher amount of iterations required in this run. This should be investigated
more thorough however.
In the remainder of this research the value of 0,85 is used for the inverse crossover probability for its coverage
of a large part of the design space and relatively low amount of iterations required to generate this solution.

7.3.3. OPTIMISATION CONSISTENCY

From the sensitivity analysis in the previous chapter it can be concluded that the optimisation settings influ-
ence the results. It is of importance that the optimisation eventually is reliable and hence that it yields con-
sistent and stable results. This section discusses the stability of optimisation without adjusting the settings.
Hence it investigates if the results of an optimisation, using identical settings, yield results with reliability and
uniformity. This provides information to select the settings for a reliable optimisation in future applications.
In the previous section it became apparent that the results are especially sensitive for the settings of the target
front size. A higher value of the target front yields more iterations and a Pareto front with, on average, more
solutions closer to the origin (and hence more optimal) than optimisation with a smaller target front.
For this research a consistent and stable solution is desired and hence it is of interest at what settings the
results display consistent behaviour. Therefore the optimisation is executed multiple times with identical

54 7. FRAMEWORK VERIFICATION AND VALIDATION

settings. This process is executed for three different values of the target front size. The results of the ex-
periments are displayed in Figure 7.13. It can be seen that with an increasing target front size more similar
solutions are found and hence more similarity is expected between the results.

0

50

100

150

200

250

300

350

0 20000 40000 60000 80000 100000 120000 140000

Le
ad

 ti
m

e

Investment cost

T=15, run 1

T=15, run 2

T=40, run 1

T=40, run 2

T=60, run 1

T=60, run 2

T=70, run 1

T=70, run 2

Figure 7.13: Pareto plots using the proposed optimisation for different target front sizes. For each target front size the experiment is twice
to investigate consistency.

Upon closer inspection of the design vector of the Pareto optimal solutions it is seen that the process archi-
tectures on the two Pareto fronts do differ however. Due to the large amount of options for automation (432

or 1,8 ·1019 in this example) of which multiple automation initiatives have similar effects (e.g. automation of
a specific task might have a similar impact on lead time and cost as another task) the optimisation exchanges
these solutions on the Pareto front. By investigation of the actual design vectors of the Pareto optimal solu-
tion of the two fronts in Figure 7.13 no identical design vectors are found.
A profile of the Pareto front with corresponding design vectors is provided in Appendix E. This dataset has
been enhanced to provide information on the found solutions. From this information it can be seen that the
solutions on the Pareto fronts show similarities in the selection of activities to first optimise. Differences are
still present however, especially at the solutions with a lower investment cost. It is expected that reliability
increases with target front size. For 100% identical Pareto fronts and hence complete reliability an exhaustive
search is required.

7.3.4. OPTIMISATION CONVERGENCE

Besides the consistency of the optimisation it obviously is also of high importance that eventually the actual
optimal solutions are found. To verify that the optimisation algorithm is able to select the optimal design
vectors (i.e. process architectures), optimisation results are validated with data of an exhaustive search. As
explained in Section 5.3 an exhaustive search quickly becomes computationally expensive and therefore a
case with specific constraints is used with an exhaustive search time of less than two hours. Specifications of
the configured process can be found in Appendix F
The exhaustive search consists of 73728 feasible solutions, taking 119:35 minutes1. Upon inspection of the
front, 52 Pareto optimal solutions are identified. The same process is also optimised using the optimisation
algorithm. The settings of the optimisation are shown in Table F.4. This resulted in 11 iterations with in total
520 experiments performed in 17:22 minutes leading to 50 Pareto optimal points. Both the results of the
exhaustive search and the optimisation are illustrated in Figure 7.14.

Based on these results it can be concluded that the actual Pareto based on an exhaustive search is closely
approximated by the solution of the optimiser using a suitable large target front size.

1Using a i5-3380M CPU @ 2.90 GHz

7.4. DISCUSSION ON METHODOLOGY VALIDATION 55

0

50

100

150

200

250

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Le
ad

 ti
m

e

Investment cost

Feasible solutions

Optimisation solutions

Figure 7.14: Pareto plot with results of an exhaustive search and results of an optimisation using the proposed optimisation method

7.4. DISCUSSION ON METHODOLOGY VALIDATION
In work of Smith and Morrow [54] the validity of Product Development Process (PDP) models is discussed.
According to them four levels of validity of PDP models can be identified. Firstly the "face" validity, secondly
validity with retrospective data, thirdly by using it in an experimental setting and finally by using it in the real
world. Based on this classification of validity the methodology in this research is discussed in this section.
According to the described criteria the proposed methodology has "face" validity. The proposed methodol-
ogy and all underlying assumptions, theories and outcomes of test cases have been discussed with experts
and according to their judgement the methodology is valid. It should be noted that the amount of experts
consulted for validation is limited and therefore it is suggested to consult an additional range of experts for
validation of the generated results in the next chapter (Chapter 8).
Smith and Morrow define the next level of validation as the application of the methodology on existing but
retrospective data in industry. The case study in the following chapter shows that the methodology is success-
fully applied. But the validation is incomplete since no full set of retrospective data is available. Acquiring
such a set of data is a challenge since it would require information on many different automation initiatives.
Of these initiatives information such as the development cost (split up in multiple cost attributes) and their
effect on total lead time would be required. The author is uncertain if such a dataset is available and secondly
if it is publicly available.
Therefore the third level of validity of Smith and Morrow is deemed more suitable for the validation of this
methodology. Therefore an experimental set-up is required in which a process is modelled consisting of the
PDP specific behaviour. In this experiment the different activities should be automated at different levels
of automation and subsequently the process should be executed using different combinations of the auto-
mated activities. Also the effort required to automate different activities should be monitored to be able to
validate the cost estimation of the proposed methodology. It should be noted that the proposed experiment
is expensive in terms of required (human) resources.

8
CASE STUDY: RUDDER HINGE

CONNECTIONS

In the previous chapters the complete methodology has been explained and all different elements have been
discussed in detail. The framework has been verified as discussed in the previous chapter (Chapter 7). This
chapter will present the capabilities of the model by applying it to a real Product Development Process (PDP)
of the hinge connections of a rudder of a business-jet sized aircraft. Due to non-disclosure agreements the
inputs and outputs in this chapter have been normalised.
First in Section 8.1 the case study is introduced by discussing the product and process. Next, the in Sec-
tion 8.2, the inputs used in the case study are discussed. Following this, the results op the optimisation are
presented in Section 8.3. A discussion on these results can be found in Section 8.4. Analysis of different au-
tomation scenarios are discussed in Section 8.5. Finally, in Section 8.6, the sensitivity of the input parameters
is discussed.

8.1. HINGE CONNECTION DESIGN PROCESS
The proposed methodology and optimization framework is applied to an industrial PDP. The selected case is
the conceptual design process of the hinge connections of a rudder assembly on the vertical tail of a business
jet aircraft. This case provides a representative case of complex PDP, featuring many interesting characteris-
tics: iterative loops resulting in rework, many involved departments and a mix of creative and repetitive tasks
to name just a few.

8.1.1. PRODUCT DESCRIPTION
Since not every reader is familiar with the concept of a hinge connection the product under consideration in
this case is briefly discussed. A hinge connection is a movable mechanism connecting multiple objects. The
hinge connection in this research is the interface between the Vertical Tailplane (VT) and the rudder. This
interface, depending on aircraft size, consists of multiple hinges which are aligned on a virtual hinge line.
Typically 4-6 hinges are present for the VT and rudder interface. Also hinges to connect the control mecha-
nism (actuator for fly-by-wire) are present but these hinges are out-of-scope for this research.

An example of a hinge can be seen in Figures 8.1 and 8.2. Different elements can be identified such as a bolt,
sleeves, bushes, clevis lugs, center lug, nut, bearing and a locking mechanism. Furthermore in the isometric
view two brackets can be seen, these brackets are out of scope. Solely the coloured section in the isometric
view of Figure 8.1 is part of the design scope of this research.

8.1.2. PROCESS DESCRIPTION
The design of the hinge connections is a sub-process of the total PDP of a rudder. The process of the design
of the hinge connections can be subdivided in the conceptual design and the detailed design. In terms of
man-hours of work the conceptual design requires around 60% of the work and the detailed design around
40%. Due to the iterative nature of the conceptual design and labour intensive work with strong interaction
between departments this phase was selected as the process scope of this research.

57

58 8. CASE STUDY: RUDDER HINGE CONNECTIONS

Figure 8.1: Indication of scope of the hinge in this research
(courtesy of Fokker Aerostructures)

Clevis bracket lug Center lug Bearing

Washer

Nut

Bush Sleeve

Fail-safe sleeve

Bolt

Figure 8.2: Section of a typical fail-safe hinge as used in rud-
der designs (courtesy of KE-works)

The conceptual design phase consists of 14 tasks decomposed into 65 activities. The involved departments
are stress engineering, design engineering, cost engineering and weight engineering. In total eight resources
are involved, ranging from cost engineers to the project manager. An overview of the different tasks and iter-
ative loops in this process can be seen in Figure 8.3. Here it can be seen that two iterative loops are present.
The first loop encountered during the process is due to unplanned iteration if the conceptual design fails to
meet the requirements regarding stress and geometrical constraints. The second iterative loop is encoun-
tered if stress and geometrical requirements are met but when cost and/or weight requirements are not met.
The different resources involved in the process are indicated by means of the numbers below the tasks.

CA

Preparation

Determine

bolt

diameter

Determine

bearing

type

Bush radial

sizing

Sleeve

radial

sizing

Clevis lug

sizing

Center lug

sizing

Estimate

bolt length

Generate

CATIA

model

Analyse

margins of

safety

Analyse

geometrical

constraints

Analyse

hinge cost

Analyse

hinge

weight

Compliant

to stress

and design?

Compliant

to cost and

weight?

2 iterations

2 iterations

Resource legend

PM

CE

DL

SL

DE

SE

CA

WA

Program manager

Chief engineer

Design lead

Stress lead

Design engineer

Stress engineer

Cost analyst

Weight analyst

PM PM CE CE

WA DE

SE

DE DL SL SL SL DL DL DL

DE

DE

SE

SE

SE

SE DE

DE

Figure 8.3: Flowchart of the conceptual design phase of the hinge connections on task level

8.2. CASE STUDY INPUT PARAMETERS
As discussed in Chapter 3 this methodology requires multiple input parameters besides the design vector.
These input parameters are constant throughout the process of optimisation. The input parameters can
roughly be split up in 4 parameter sets:

• Simulation settings: settings to determine the behaviour of the simulation.

• Methodology parameters: parameters used by the methods for the calculation of time durations and
costs.

• Resource parameters: parameters used to model the resources.

• Process parameters: parameters to model the process on an activity level.

These input parameter sets will be discussed individually in the following paragraphs to provide qualitative
information on the inputs used in this case study. Unfortunately quantitative can not be made publicly avail-

8.3. OPTIMISATION RESULTS 59

able for confidentiality reasons.

Simulation settings
The simulation is using specific settings for the process at hand. The resource costs of the developers and
knowledge engineers are similar to those of KE-works employees. Furthermore no shared server and Work-
flow Management Software (WMS) license are assumed to be present in the current state. Initial process cost
(required for Return on Investment (ROI) calculations) are set to the process cost as calculated by the simu-
lator using the current process architecture. In Appendix G in Table G.1 an indicative overview is provided of
the input parameters of the simulation settings.

Methodology parameters
This is the first case study on which the methodology is applied. The Cost Matrices and Duration Matrix (DM)
as discussed in Chapter 3 are developed for this case study.
As discussed in Section 3.4 in this research the DM is determined by performing a dedicated workshop. This
workshop is dedicated to this case study and therefore the process in the workshop consisted of similar ac-
tivities as the activities performed in the PDP in this case study. Three response groups with varying levels
of expertise participated. Each group consists of four participants of different departments within Fokker
Aerostructures. In total 18 experiments were conducted at varying levels of automation. Although this work-
shop already required a substantial amount of time from experts, the author recommends a more detailed
workshop with better time-tracking on activity granularity level to increase relevance of the DM.
The Cost Matrixs (CMs) used in this case study are based on expert judgement in combination with empirical
data of previous projects executed by KE-works. C MK Ai nt and C MK Aext are exceptions and the values in these
matrices are based on research of Milton [50].

Resource parameters
During an interview with the lead designer of different hinge connection designs the resources assigned to
a typical hinge connection PDP were discussed. This includes the amount of available resources and their
wages. Currently in the process only one resource is used for the lug sizing. From the flowchart in Figure 8.3
it can be seen that these tasks could be performed in parallel if sufficient resources are available. It is decided
to limit the resource to one (and hence no parallel processing of the lug sizing is possible) due to cost im-
plications. In this case the company rather has one resource fully utilised on one project than two resources
partially utilised on the project.

Process parameters
The process as can be seen in Figure 8.3 is decomposed to an activity level. During multiple interviews with
experts, familiar with the design process of hinge connections, these activities and their relative durations
were formalised. Of all activities the required resources are determined. Furthermore the process is modelled
in a Design Structure Matrix (DSM) to correctly model the precedence constraints.
For each activity the current level of automation and the maximum level of automation is determined. The
current level of automation is determined using the criteria discussed in Section 3.3. The default maximum
level of automation is set at a level of automation of 4. If due to complexity or any other reason the automation
level is limited the maximum level of automation is capped. This is for example the case with the decision
at the task to verify the compliance with cost and weight. The activity of the decision making itself involves
too many tacit and human procedures, furthermore the expert expressed that human control is desired for
this activity. The remainder of the activities in this task can be automated however to support the decision
making process.
The Knowledge Engineer estimated per activity the required development effort in hours. This estimate was
verified with a former estimate of KE-works regarding development effort in automation of hinge connection
design.
Furthermore information was elicitated on the required applications per activity. Of these applications the
integration class is determined and this information is submitted in the dedicated Excel configuration file.

8.3. OPTIMISATION RESULTS
The simulation of the current process architecture results in a total process time less than 5% different from
the total process time estimated by the experts during interviews. While the estimation provided by the sim-

60 8. CASE STUDY: RUDDER HINGE CONNECTIONS

ulation framework is a bottom-up estimation, the one provided by the experts was top-down. The simulation
thus matches with the expected total process time. Comparison of process lead time is not discussed since
the methodology does not take into account the rhythm of working hours of human resources.
A Multi-Objective Optimisation (MOO) is applied to the process with inputs as described in Section 8.2. The
result of the MOO can be seen in Figure 8.4, here a clear Pareto front can be identified. For this optimisation in
total 5560 experiments were performed during 70 iterations leading to a total of 62 Pareto optimal solutions.
Details of the optimisation settings can be found in Appendix I in Table I.1. This optimisation will be referred
to as optimisation 1 from now on.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

N
or

m
al

is
ed

 le
ad

 ti
m

e
[-

]

Normalised investment cost [-]

Feasible solutions

Pareto optimal solutions

Figure 8.4: Normalised Pareto plot for the MOO trading off the lead time and the investment cost (optimisation 1)

The MOO in Figure 8.4 represents a trade-off between lead time and investment cost. This provides the user
with information on the investment of specific process architectures and corresponding lead time reductions.
As previously discussed in Section 2.5.4, automation potentially leads to a reduction in process cost. The lead
time and investment cost are marginally influenced by the process cost and therefore the process cost is not
substantially taken into account in the MOO, trading of the lead time and investment cost. For companies
the ROI is often of the highest interest since this provides a quantitative business case. The ROI is the ratio
between the investment and the benefits of this investment. In this chapter the investment is equal to the
calculated investment cost and the benefit is equal to the reduced process cost. It should be noted that as
discussed in Section 2.5.4 multiple other advantages and disadvantages are involved with the application of
automation.
To take into account the ROI in the optimisation a different objective function needs to be defined. The
general formula to calculate the ROI is stated in Equation 8.1. In this research the gain from the investment
is the product of the reduction in process cost and the amount of times the project is executed using the
automation initiatives. Hence the ROI and the Gain from investment are both unknown. The formula is
therefore rewritten to Equation 8.2

ROI = Gain from investment - Cost of investment

Costo f i nvestment
(8.1)

Number of projects until BEP = Cost of investment

Gain from investment per project
(8.2)

In Equation 8.2 the minimum amount of projects (i.e. number of PDP cycles) to achieve the Break Even Point
(BEP) is calculated. This is one of the objective functions for the MOO of which the Pareto front is provided
in Figure 8.5. The other objective function is the project lead time. For this MOO in total 5560 experiments
are performed over 70 iterations leading to a total of 31 Pareto optimal solutions. Details of the optimisation
settings can be found in Appendix I in Table I.2. This optimisation will be referred to as optimisation 2 from
now on.

8.4. DISCUSSION OF OPTIMISATION RESULTS 61

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

N
or

m
al

is
ed

 le
ad

 ti
m

e
[-

]

Number of projects untill BEP [#]

Feasible solutions

Pareto optimal solutions

Figure 8.5: Normalised Pareto plot for the MOO trading off the lead time and the number of projects until BEP (optimisation 2)

The graph in Figure 8.5 provides the user with more information to generate a business case for the imple-
mentation of automation. It differentiates itself from the Pareto front in Figure 8.4 since it takes into account
the (reduced) process cost. Each point in this graph represent a single process architecture. The process ar-
chitectures in this graph differ in the individual levels of automation of the activities.
In the following section the results as presented in Figures 8.4 and 8.5 will be discussed in more detail.

8.4. DISCUSSION OF OPTIMISATION RESULTS
The results as presented in Section 8.3 contain a lot of information but need further analysis. It is of interest
to investigate the different Pareto optimal solutions and their corresponding design vectors to assess trends
in the optimisation and differences between the two MOOs as described in the previous section. First the two
Pareto fronts will be discussed individually, followed by a brief comparison.

Optimisation 1: Lead time - Investment cost
In the graph of Figure 8.4 a Pareto front with different slopes can be identified. Hence it can be concluded that
some automation initiatives lead to a bigger change in lead time reduction for a lower additional investment
than others. Furthermore it can be seen that the density of Pareto optimal solutions is higher at the top left
and middle of the curve. This does not necessarily mean that in this region more Pareto optimal solutions
are present but apparently the algorithm finds most of the solutions here. Furthermore in the graph a gap
can be seen in the Pareto front around a normalised investment cost of about 45. Upon analysis of the results
this gap can be explained by the costly automation initiative for the analyse activity of the task analyse hinge
weight. Automation of this task requires a significant amount of development and therefore causes a large
jump in investment cost. The investment of a little less than 7% resulted in an insignificant increase in lead
time. This clearly shows the use of this methodology, one is able to objectively assess the costs and benefits
of a specific automation initiative.
In Appendix H an overview of the levels of automation per activity for all Pareto optimal solutions is provided.
The levels of automation are indicated with colours to enhance the image to identify patterns. A simplified
graph based on this data, generalised to task level can be seen in Figure 8.6.
It can be seen that the activities belonging to the tasks of lug sizing are fully automated for most of the Pareto
optimal solutions with a low lead time. This can be explained due to the high amount of completions of these
activities. These activities are executed for all hinges and multiple times due to the iterative loops. Therefore
these activities are quickly automated to the highest level of automation.
Besides, it can also be seen that specific activities are not automated at all or solely in the high investment
cost region. These activities are mainly of the analyse activities. This can be explained since these tasks often
require a higher investment due to development and integration costs. An exception is the acquire activity of
the preparation task, this can be explained due to the high development cost of this specific activity.

62 8. CASE STUDY: RUDDER HINGE CONNECTIONS

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Pe
rc

en
ta

ge
 o

f P
ar

et
o

op
tim

al
 so

lu
tio

ns

1<=LoA<=2

2<LoA<=3

3<LoA<=4

Figure 8.6: Simplified overview of the average level of automation on a task level for all Pareto optimal solutions of optimisation 1

Furthermore, based on the detail information in Appendix H, it can be seen that for the low investment cost
Pareto optimal solutions the highest level of automation is not applied. This is due to the high impact of the
license cost on total investment cost. Upon closer inspection it can be seen that in this region of Pareto so-
lutions mainly the information flow automation is applied (i.e. acquire, process and implement activities are
automated).

Optimisation 2: Lead time - Number of projects until BEP
Please note that the value on the x-axis of Figure 8.5 is based on Equation 8.2 and therefore allows for non-
discrete values. In reality it is not possible to perform 0,34 projects and for realistic results the values should
be rounded-up to integer values. This would however flatten the results to a few single lines and therefore
decimal values are used.
The shape of the graph in Figure 8.5 differs significantly from the graph in Figure 8.4. The experiments are
more clustered with very few outliers. For a larger reduction in lead time apparently more projects need to be
executed before BEP.
A gap can be seen around a normalised lead time of 40. In Appendix H an overview of all design vectors for all
Pareto optimal solutions is provided. This overview provides the opportunity inspect the two specific Pareto
optimal solutions at the gap. It can be seen that the optimiser chooses a radical change in the design vector. In
total 24 activities are lowered in their level of automation and 9 activities are increased. Hence more than half
of the variables in the design vector is adjusted around this gap. The lower level of automation of 24 activities
is required to compensate for the high cost of increasing the other 9 activities in their level of automation. In
particular the analyse activity of the generate CATIA model. Automating this task is a costly exercise. It can be
seen that for all Pareto optimal solutions below this gap this activity is fully automated, hence it only becomes
an efficient investment at a higher amount of projects until BEP.
Furthermore one could say that automation shows great potential for the process in this case study. Many
Pareto optimal solutions exist with a low amount of projects until BEP required. The lead time can be re-
duced significantly with an appealing business case. It does lead to the justified question if the model is not
overestimating the ROI. Referring back to Equation 8.2, this overestimation of the ROI could be caused by
either an underestimation of the cost of investment or an overestimation of the gain from investment per
project (reduced process cost). To address a potential underestimation of the investment cost it is advised to
re-discuss the input parameters for the tasks Determine bolt diameter, Clevis lug sizing and Center lug sizing.

8.4. DISCUSSION OF OPTIMISATION RESULTS 63

These tasks strongly influence the lead time reduction, at relatively low costs. The potential overestimation of
the gain from investment per project could be caused by the determination of process cost. This method as-
sumes that a resource is fully occupied by the activity during the activity lead time, while in reality this might
not be the case. Full automation (level of automation 4) would thus overestimate the benefit of automation.
This is a potential cause for the potential over estimation but more research is required to first validate if the
methodology overestimates the benefits and subsequently what causes this overestimation. In the verifica-
tion phase of this research it was observed that the resource cost influenced the Pareto optimal solutions for
the MOO trading off lead time and number of projects until BEP. It is of interest to see if the same holds for
this case study. Upon inspection of the design vectors it can be seen that the activities of the tasks with higher
resource costs (especially compliant to cost and weight? and compliant to stress and design?) are more fre-
quently automated. This holds especially for the activities of the compliant to stress and design? task since it
is completed multiple times due to iteration.

Comparison of MOOs
Upon comparing the two optimisations as analysed above some commonalities and differences are observed.
First some commonalities. Both optimisations show that the activities with multiple completions (i.e. in it-
erative loops) are more effective to increase the level of automation. Furthermore it can be seen that both
optimisations have specific activities of which the level of automation is increased from a specific threshold
(e.g. analyse activity of generate CATIA model task).
Secondly some difference. Optimisation 1 takes into account resource cost in the investment cost but the
contribution is insignificant on the total investment cost. Therefore the activities with higher resource cost
are not treated any different than other activities. This is not the case for optimisation 2 where the resource
cost is strongly reflected in the process cost and hence in the amount of project until BEP. This leads to two
major differences between the optimisations. First of all in optimisation 2 more activities are fully automated
because the highest level of automation gives the lowest lead time but also zero activity process cost. Sec-
ondly it can be observed that in optimisation 2 other tasks are automated, specifically the tasks with a high
resource cost.
Another difference between the two optimisations is the range of solutions in terms of lead time. Optimisa-
tion 2 succeeds in finding lower lead times. This could be the result of the search algorithm; optimisation 1
seeks to minimise investment cost and therefore is less successful in finding design vectors with high invest-
ment cost and low lead times.

If the Pareto optimal solutions of both optimisations are plotted in the same chart another interesting thing
is observed. This can be seen in Figures 8.7 and 8.8.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

N
or

m
al

is
ed

 le
ad

 ti
m

e
[-

]

Normalised investment cost [-]

Optimisation 1

Optimisation 2

Figure 8.7: Normalised Pareto plot with Pareto optimal solu-
tions of both optimisation 1 and 2. Plotted for lead time and
investment cost

0

10

20

30

40

50

60

70

80

90

100

0 0,5 1 1,5 2 2,5

N
or

m
al

is
ed

 le
ad

 ti
m

e
[-

]

Number of projects until BEP [#]

Optimisation 1

Optimisation 2

Figure 8.8: Normalised Pareto plot with Pareto optimal solu-
tions of both optimisation 1 and 2. Plotted for lead time and
number of projects until BEP

Here it can be seen that the results of optimisation 2 all are also close to the Pareto as generated by optimi-
sation 1. Hence the Pareto optimal solutions of optimisation 2 are not just optimal for lead time vs amount
of project until BEP, but also for lead time vs investment cost. The other way around it is not the same. Not
all Pareto optimal solutions of optimisation 1 are on the Pareto as generated by optimisation 2. This can be
explained with the help of Equation 8.2. For the solutions away from the Pareto front the investment cost is
relatively low, and the gain in lead time is acceptable for that investment. But this is not reflected in Equation
8.2, there the reduced process costs are of interest. The reduction in process cost is not sufficient to become

64 8. CASE STUDY: RUDDER HINGE CONNECTIONS

a Pareto optimal solution.

8.5. ANALYSIS OF AUTOMATION SCENARIO’S
The optimisation leads to many different Pareto optimal solution. This provides valuable information on
how to incrementally optimise the PDP. It is also of interest to perform an analysis on this process of the
implementation of specific automation initiatives. In this research the effect of five hypothetical but realis-
tic scenarios are analysed and discussed in the following three sections. The results of these scenarios are
summarised in the charts of Figures 8.9 and 8.10. In these figures the scenarios are compared with the Pareto
optimal solutions obtained in Section 8.3.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

N
or

m
al

is
ed

 le
ad

 ti
m

e
[-

]

Normalised investment cost [-]

Pareto optimal solutions

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Figure 8.9: Normalised Pareto plot for the MOO trading off
lead time and investment cost combined with the alternative
scenarios

0

10

20

30

40

50

60

70

80

90

100

0 0,5 1 1,5 2

N
or

m
al

is
ed

 le
ad

 ti
m

e
[-

]

Number of projects until BEP [-]

Pareto optimal solutions

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Figure 8.10: Normalised Pareto plot for the MOO trading off
lead time and number of projects until BEP combined with
the alternative scenarios

Table 8.1: Results of process simulation of specific automation scenarios

Current
state

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Scenario summary Status quo Implement
KE-chain

Implement
KE-chain
and au-
tomate
structure
activities

KBE appli-
cation Clevis
lug sizing

KBE appli-
cation Clevis
and Center
lug sizing

Highest level
of automa-
tion

Lead time 100 86,1 71,8 81,1 56,2 15,2
Process time1 168,8 132,2 102,5 130,9 91,3 6,9
Time to start2 5,3 12,4 12,5 5,3 4,7 2,0
Process cost3 100 78,5 60,9 78,5 56,9 4,5
Investment cost4 0 9,3 25,0 6,0 7,1 100,0
KA cost 0 42 32 7 12 19
Development cost 0 0 32 6 9 52
Integration cost 0 0 0 25 22 6
License cost 0 29 11 44 38 3
Configuration cost 0 16 12 3 5 7
Training cost 0 6 6 6 6 6
Management cost 0 8 8 8 8 8
Projects until BEP 0 0,60 0,90 0,39 0,23 1,50

1Indexed using lead time current state is 100
2See footnote 1
3indexed using process cost current state is 100
4All following sub costs are measured as a percentage of scenario investment cost

8.6. INPUT PARAMETER SENSITIVITY 65

8.5.1. IMPLEMENTATION OF KE-CHAIN

KE-chain is a WMS assisting the (human) resources in a process and is a good example of information flow
automation. The input parameters as discussed in Section 8.2 applicable to the acquire and implement ac-
tivities are based on the implementation of KE-chain. Therefore it makes sense to analyse the process per-
formance if KE-chain is implemented. It is assumd that KE-chain only automates the acquire and implement
activities in a process. This hypothetical scenario will be referred to as Scenario 1. KE-chain also has the po-
tential of automating the structure steps although this would require an additional investment. This scenario
is referred to as Scenario 2
The implementation of a WMS is simulated by adjusting the level of automation of all acquire and implement
steps to become fully automated. Only the first acquire activity which should interface with external appli-
cations is not automated due to the high development costs. This procedure is also repeated for all activities
improving the information quality relevance and currency (i.e. acquire, implement and structure).
Scenario 1 results in a lead time reduction of 13,9% and also the process time (i.e. total amount of man-hours)
is reduced with 21,7%. The time to start experiences a major increase however. This is due to the strictness
of the collaboration penalty method which was discussed in Section 4.3.3. The license cost (29%) and knowl-
edge acquisition cost (42%) are major contributors to the total investment cost for this scenario.
Scenario 2 has a significant increase in the required number of projects until BEP. This is mainly due to the
almost tripled investment cost. This steep increase in investment cost is mainly due to high knowledge ac-
quisition, development and configuration cost. This scenario shows that the application of the proposed
automation initiatives leads to a reduced lead time but not necessarily to a better business case.

8.5.2. IMPLEMENTATION OF SPECIFIC KBE APPLICATION

It can be seen in the analysis of the optimisation that automation of the block of lug sizing is effective. It
would be a realistic scenario that a company is interested in developing an application fully responsible for
this task. Here two scenarios are interesting to assess, first the development of a Knowledge Based Engineer-
ing (KBE) application for the clevis lug solely without automation of the center lug sizing task (Scenario 3).
Secondly it is of interest to assess the effect of automation of both lug sizing tasks simultaneously (Scenario
4).
It should be noted that for realisation of these scenarios it is required that the information is provided in such
a way that the acquire activity always is able to retrieve the information in the expected location and format.
Scenario 3 shows a good number for the amount of projects until BEP. The lead time is reduced significantly
by automation of this single task since it is in iterative loops. The investment cost consists mainly of the inte-
gration cost (25%) and license cost (48%).
Scenario 4 shows an even better number for the amount of projects until BEP. This configuration even ex-
ceeds the found Pareto optimal solutions for both optimisation 1 and 2. This is due to the fact that the inte-
gration cost is lower for an application which has been integrated before.

8.5.3. MAXIMUM LEVEL AUTOMATION

Another scenario of interest is to investigate the effect of complete automation of the process. This means to
automate all tasks to their individual maximum level of automation (as discussed in Section 8.2).
Scenario 5 shows the highest reduction in lead time but also at the maximal investment cost for this case
study. The lead time is reduced by the application of automation. This results in a lower activity lead time. The
cost of knowledge acquisition (19 %) and development cost (52 %) are with distance the biggest contributors
to the total investment cost.

8.6. INPUT PARAMETER SENSITIVITY
In Chapter 3 it is acknowledged that it is of vital importance to use valid values in determining costs and
time durations. This research requires information on 140 values used in seven matrices (CMs and DM) and
11 values for parameter settings. These parameters are expected to influence the optimisation. Therefore a
sensitivity analysis of these parameters and matrices would be of great added value and would improve the
relevance of this work.
Such a sensitivity study requires an assessment of the sensitivity of the Pareto front and hence multiple op-
timisations need to be performed to assess the sensitivity of each parameter. One can imagine that this is a
costly exercise due to the large amount of parameters involved and different objective functions of interest.
Performing such an extensive sensitivity study is therefore beyond the scope of this research and is recom-

66 8. CASE STUDY: RUDDER HINGE CONNECTIONS

mended for future research.

9
CONCLUSIONS, LIMITATIONS AND

RECOMMENDATIONS

This chapter consists of three separate sections regarding the conclusions, limitations and recommendations
of this research in Sections 9.1, 9.2 and 9.3 respectively.

9.1. CONCLUSIONS
Based on academic and industry sources it can be concluded that there is a strong need for a methodology
to objectively quantify the costs and benefits of the application of automation initiatives, taking into account
incremental automation of a process. The main objective of this research is to define a methodology to pre-
dict the effects of the implementation of automation solutions on the Product Development Process (PDP)
performance by using simulation. To meet this objective, four different sub-objectives were defined in Chap-
ter 1. The following paragraphs will reflect on these sub-objectives.
Firstly, a novel modelling framework is developed to model the PDP on an activity level. In this framework
five types of activities are defined which are the building blocks of tasks. For each activity type four levels of
automation are identified ranging from fully human to fully automated. The first sub-objective was to model
the PDP on an activity level with varying levels of automation and hence this sub-objective was achieved.
Secondly, new methods have been developed to address the impact of changing the level of automation at an
activity level on PDP performance (activity lead time, investment cost and process cost). A combination of
roll-up techniques, parametric estimation and expert judgement are used for the estimations. Hence these
methods successfully address the second sub-objective regarding how to model the effect of automation on
the activity lead time and automation investment cost.
Thirdly, using Discrete Event Simulation (DES) a process simulator has been developed. The modelling
framework and methods to estimate activity performance have been implemented in this simulation tool.
Furthermore this simulator takes into account PDP specific process characteristics such as iteration, rework
and collaboration. The simulation is capable of dealing with resource constraint. By means of this simulation
the third sub-objective was accomplished: a model is developed to analyse the performance of specified pro-
cess architectures by the use of simulation. Finally, an optimisation tool (Optimus) using a Non-dominating
Sorting Genetic Algorithm (NSGA-II) is used in an integrated framework to allow for optimisation of the PDP.
This optimisation finds the combination of levels of automation on an activity level leading to Pareto optimal
solutions.

The developed simulation and optimisation approach have been positively verified. It can be concluded that
the optimisation algorithm proofs to find Pareto optimal solutions if appropriate optimisation settings are
used. Validation proves to be difficult due to scarce validation data, therefore the methodology has been val-
idated based on expert judgement, with a positive result.
Based on the information of the verification and validation it can be concluded that it is possible to optimise
a PDP by the application of different levels of automation. In this research the optimisation has been per-
formed for lead time, investment cost and the number of projects until Break Even Point (BEP). Thereby the
fourth sub-objective to develop a method to optimise the levels of automation on an activity level for multiple

67

68 9. CONCLUSIONS, LIMITATIONS AND RECOMMENDATIONS

objective functions is met.

The applicability and feasibility of the proposed methodology is successfully demonstrated by means of an
extensive case study of a complex aerospace PDP. Two Multi-Objective Optimisations (MOOs) are performed
trading of i) lead time and investment cost and ii) lead time and the number of projects until BEP. For the
process under consideration it can be concluded that specific tasks can be identified showing a high poten-
tial for an increase in level of automation. Also the opposite is observed for tasks which show a low potential
for an increase in the level of automation. By means of the methodology specific process architectures are
identified that require a high investment, but not significantly outperform other less expensive alternatives
in lead time.
On a high level the activities in iterative loops show a higher potential for automation. Furthermore the activ-
ities with a high resource cost are more efficient to automate if the Return on Investment (ROI) is taken into
account.
Based on the case study it can also be concluded that the simulation tool provides great aid in assessing pos-
sible automation scenarios without the use of optimisation. The influence of the introduction of a Workflow
Management Software (WMS), specific Knowledge Based Engineering (KBE) apps and full automation of the
process have successfully been estimated using the simulation tool. Resulting in estimated lead time reduc-
tions of 13,9%, 43,2% and 84,8% respectively compared to the current process lead time.
Based on the previous two paragraphs it can be concluded that the feasibility and applicability of this method-
ology has been verified by means of representative case study and hence the fifth sub-objective has been met.
Furthermore the methodology has proven to be applicable in a commercial environment and therefore all re-
quirements are satisfied.

It can be concluded that the novel methodology is successful in objectively quantifying the costs and benefits
of the application of automation. It shows great potential for the identification of optimal process architec-
tures at various levels of automation. It has become possible to provide quantitative insight on the potential
of automation in the PDP and to simulate the implementation of different automation initiatives. Hence the
methodology is useful for decision makers interested in an optimal application of automation. The method-
ology has been applied in a single case study but due to the high customisability of the input parameters it is
expected that it can be applied in many other PDPs.

9.2. LIMITATIONS

Although this research has been conducted with utmost attention and precision, it still has its shortcomings
and limitations. These aspects will be discussed in this section.

• First of all, the Cost Matrices and Duration Matrix are determined based on a limited selection of avail-
able data sets, expert judgement and a dedicated workshop. These input parameters have not been validated
to the desired extent however. The correctness of these parameters is essential for this methodology. The
input parameters would yield a higher validity if more extensive research, using a quantitative approach, is
performed.
• The second limitation is strongly related to the first limitation: although most of the process input parame-
ters are based on quantitative data, some parameters (e.g. development effort) are based on expert judgement
and hence prone to over- or underestimation. Therefore some parameters strongly hinge on the experience
and judgement of the knowledge engineer. Absence of an experienced knowledge engineer would be a lim-
iting factor for the application of this methodology. More formalised guidelines for the estimation of these
parameters could be developed, resulting in more consistent process parameter identification, independent
of the user.
• Third, the applicability of this methodology has been proven for a single case study. More research is re-
quired to determine generalisability of this methodology. Hence currently only a limited applicability is as-
sured.
• Moreover the lead time of a process is determined without taking into account the working hours of human
resources. This leads to optimistic results in terms of lead time for processes. It is also expected that if work-
ing hours are taken into account the effect of automation on lead time will be reinforced. Fully automated
tasks do not require sleep or rest and therefore have 24 working hours per day.
• Finally the model does not take into account the Learning Curve (LC). It is expected that this leads to more

9.3. RECOMMENDATIONS 69

pessimistic duration estimations for non-fully-automated tasks and hence it reinforces the estimated bene-
fits of the application of automation. If the LC would be taken into account, activities with multiple iterations
would yield a lower lead time after the first completion in the non-fully-automated cases. Fully automated
tasks often do not show the behaviour of the learning curve. It is therefore expected that if the LC is taken into
account, that automation would become less attractive compared to the implementation as discussed in this
research.

9.3. RECOMMENDATIONS

This research is a first step into the quantification of costs and benefits of design automation in the PDP. Am-
ple research opportunities are present to improve and extend the research at hand. In this section a selection
of recommendations will be discussed. These recommendations are clustered according to six themes.

Process modelling and analysis
In the developed process and analysis model solely deterministic values are used (apart from the optimisa-
tion algorithm). In reality however the PDP is not a deterministic process and consists of stochastic variables.
For example the duration of activities, amount of iterations and probability of rework all have a stochastic
nature. To enhance the results of the analysis of a PDP, it is recommended to account for these stochastic
events. By means of this stochastic approach one would be able to assess for example schedule risk as dis-
cussed by Browning and Eppinger [19].
Another recommendation to improve the process modelling and analysis is to include the learning curve as
discussed in the limitations. The learning curve reduces the lead time of an activity for each consecutive time
it is performed. This recommendation can be implemented by adjusting the lead time calculation method
and take into account the amount of completions of a specific activity.
As discussed in Section 4.3.3, the method used to determine the collaboration penalty is strict. Meaning that
it often applies a penalty if in reality this would not necessary apply. It is recommended to extend the method
to determine a certain threshold for the penalty to be applied. It is expected that this would yield results that
better suit the PDP behaviour.

Methodology validity
It has been stated before that the validity of this methodology is currently solely based on expert judgement.
Four topics are suggested to improve the validity of this methodology.
First, as discussed in the previous section (Section 9.2), the input parameters for the Cost and Duration Matri-
ces require more extensive research. For the Duration Matrix it is recommended to perform a more extensive
workshop compared to the workshop perform in this research. During this extended workshop it is of impor-
tance to structure the process as such that all activities can independently be identified. If the activities can
be identified it is possible to measure the exact duration per activity for a specific level of automation. This
should then be performed for different levels of automation, using multiple response groups. Furthermore
the Cost Matrices should be validated and appropriately adjusted based on other data of previous projects.
Second, it is of great relevance to perform a sensitivity study on all input parameters. Based on this informa-
tion the uncertainty of the generated Pareto front can be discussed. It should be noted that this sensitivity
study is computationally expensive and requires a vast amount of research. It therefore recommended to first
investigate the sensitivity of the Duration Matrix.
Third, it is advised to perform continue research on the selected case study. A potential overestimation of
the ROI is expected but could not be verified. Additional research is required to assess the different aspects
influencing the ROI.
Finally, it is recommended to apply the methodology on more PDPs in the aerospace industry. Hereby the
feasibility and applicability of this methodology within this industry is demonstrated.

Methodology applicability
Due to the high customisability of the methodology it is expected that it can also serve as an objective trade-
off method in industries other than the industry of the case study. To test this hypothesis it is advised to
perform a case study, similar to the one in this research, in a different industry. A suitable industry would be
the automotive industry for example.
Furthermore it is expected that this tool could also be used in different trade-offs than the ones discussed in
this research. As explained the resource cost is taken into account. Hence an investigation of interest would

70 9. CONCLUSIONS, LIMITATIONS AND RECOMMENDATIONS

be to assess the trade-off between automation and outsourcing activities to low cost countries. This is just
one example of an extended application of this methodology.

Integrated framework
As discussed in Chapter 6, the integrated framework is developed to enhance usability of the developed tools
and methods in this research. Furthermore it discusses that improvements could be made in the computa-
tional performance of the framework. This paragraph discusses recommendations enhancing usability and
computational performance of the integrated framework.
First it is recommended to reduce computational time of the integrated framework by eliminating the in-
teraction with Excel for each experiment. Therefore a different Optimus workflow is required and minor
adjustment to the Python code. It is expected that this adjustment will greatly improve computational time.
In the same line of thought it is advised to integrate a Genetic Algorithm (GA) in the Python code. This will
reduce the dependency on the Optimus platform and hence increase the usability of this methodology for
users without an Optimus license. Furthermore it is expected that this will also lower the computational time
since the interfacing between Optimus, Excel and Python is not required. This effect depends on the compu-
tational performance of the implemented GA however.
To enhance the user experience it is recommended to improve the integration between the different ele-
ments. Meaning that the methodology can be used with only a single application. In the current research this
has been partially achieved by using Excel to integrate Excel and Python. Integration of Excel, Python and
Optimus remained unsuccessful however due to technical limitations. A platform like KE-chain could be the
binding element to eliminate the technical limitations and to achieve this goal.
Finally, it was observed during the analysis of the case study results that interpretation of generated data
was challenging. It is recommended to enhance the interpretation and visualisation of data. The suggested
approach is to develop Visual Basic for Applications (VBA) scripts to interpret and visually enhance the gen-
erated information in Excel.

Business application
This methodology offers a whole new paradigm of quantitative process optimisation consultancy. Up till now
process optimisation advice was mainly qualitative and based on experience and best-practices. One can use
the elements of this research to quickly gain insight in the optimal process architectures and identify tasks
with a higher gain if automated than others.
Furthermore, since the methodology differentiates between the various activities it is possible to estimate
the effect of the implementation of a specific automation application. For KE-works that implies that it is
possible to assess the effect of the implementation of KE-chain for any PDP. It is recommended to use this
methodology in the future sales trajectory to quickly gain estimates for clients of the potential benefits of the
implementation of KE-chain. This is especially the case for a pure KE-chain implementation (i.e. no add-ons
or additional development) due to the low amount of required information.
Finally, it is advised to KE-works to also assess the options of integrating the simulation framework in their
WMS to allow users to upfront simulate their current process. Potentially with a coupled optimiser to directly
show the user the current potential for automation.

Methodology extension
As discussed in Section 1.3.3, this research has a limited scope. This research can be extended in multiple
ways, of which two will be discussed in this paragraph.
The integrated framework has been developed in a modular way and can easily be extended and adjusted
when needed. Process restructuring, as discussed in Section 1.3.3, has not been formally implemented in the
integrated framework. The addition of process restructuring would however improve the significance of this
work and is therefore recommended.
Another valuable extension would be to extend the current research for other performance indicators of im-
portance in PDPs. One could think of integrating product quality as an objective function. Therefore addi-
tional methods are required to relate a process architecture to product quality. These methods are, to the
authors knowledge, not available and thus significant research would be required. It could yield interesting
results if for example sustainability of a product can be taken into account during PDP optimisation.

A
CEAS CONFERENCE TECHNICAL PAPER

A technical paper based on the work performed in this research has been submitted and accepted for presen-
tation at the 5th CEAS Air & Space conference (07 - 11 September 2015, Delft, the Netherlands). In total 200
papers will be presented by aerospace scientists and engineers from 25 different nations around the world.
The integral version of the submitted paper is included in this appendix.

71

CEAS 2015 paper no. 185 Page | 1
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

A METHODOLOGICAL APPROACH FOR THE OPTIMISATION OF THE PRODUCT DEVELOPMENT
PROCESS BY THE APPLICATION OF DESIGN AUTOMATION
Bram Mulder* , ** (bram.mulder@ke-works.com)
Dr. ir. G. La Rocca**, Dr. ir. J. Schut*, Dr. ir. W.J.C. Verhagen** (Delft University of Technology)
*KE-works, Molengraaffsingel 12-14, 2629JD, Delft
**Delft University of Technology, Kluyverweg 1, 2629HS, Delft

ABSTRACT
A short lead time of the Product Development Process (PDP) is an important competitive advantage

for companies. Design automation solutions provide a means to reduce the lead time and improve
quality, but their development requires some investment. Before a company can commit to the
development of an automation initiative, it requires an estimation of the expected costs and benefits. The
objective of this research is the development of a decision support system, based on multi objective
optimization techniques and Discrete Event Simulation, to evaluate the effect of introducing automation
solutions in a given PDP. The system is able to generate Pareto fronts showing optimum combinations of
lead time reductions versus investment cost for automation. For each of the solutions on the Pareto front,
the system provides the suggested list of PDP activities to be automated and their level of automation.
The system functionality has been successfully demonstrated by means of a use case concerning the PDP
of an aircraft component.

1 INTRODUCTION
In the past decades a clear transition can be seen from fully human-based production techniques

towards more automated systems. This transition is focused on reducing lead time, decreasing process
cost and improving product consistency and quality. The same trend of adopting more automation can
also be seen in the Product Development Process (PDP), driven by a growing focus on PDP improvement
as a potential source of competitive advantage [3]. In particular, for many companies lead time duration
is the most important performance measure of the development process, because a reduced time-to-
market (i.e. lead time) results in a reduction in cost-of-delay and a larger market share [17]. Therefore a
reduction in lead time is worth an investment for companies. Design Automation (DA), Knowledge Based
Engineering (KBE), Artificial Intelligence (AI) and Computer Aided Design (CAD) are examples of
computer based technologies adopted to improve the PDP.

Automation is in literature often regarded as a binary option for process improvements, meaning that
a process either is fully automated or not at all. This is not a realistic point of view since automation can
be seen as an incremental innovation. In practice it is often not possible or even desirable to automate a
full process at once due to technology challenges, but also in consideration of the human side adoption of
the automated solution [20]. Another practical aspect playing in favour of incremental innovation is the
available budget of the company. Often concept proof of concept is generated before a whole process
can be automated. Another important challenge is the continuous adjustment in processes and products,
which lead to the need of extremely flexible automation solutions [24]. Furthermore it is difficult and
often impossible, to predict the impact of single changes in the configuration of a process (e.g. by the
introduction of automation solutions for specific tasks) of the overall PDP [7].

Before a company can commit to the development or acquisition of automation solutions,
management needs critical information such as the set of PDP activities to automate first, the expected
gain in lead time reduction, the cost associated to the implementation of different levels of automation or
to the reconfiguration of the whole process to a specific level of automation (LoA). Figure 1 qualitatively
displays the current situation where a company incrementally applies automation without knowledge of

CEAS 2015 paper no. 185 Page | 2
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

the shape of the Pareto front (i.e. the set of optimal lead time-investment cost combinations). Only a
perceived Pareto front (i.e. bold guestimates based on intuition) with a high uncertainty is available.
Figure 2 illustrates the desired situation in which a feasible region is known, consisting of many different
PDP architectures, each one consisting of the complete sequences of process activities, with their level of
automation and employed resources. Within this feasible region knowledge is available on the optimal
solutions on the Pareto.

For companies the process architectures on the Pareto front are those of highest interest since they

represent optimum combinations of lead time and required investment cost, i.e. PDP architectures for
which one of the two objectives (lead time and investment cost) cannot be improved without
deteriorating the other. The Pareto front can be used to estimate the investment costs necessary to
achieve a certain lead time reduction, or, vice versa, the amount of lead time reduction that can be
achieved with a given budget to invest in automation solutions.

Literature addresses aspects of these challenges but lacks two important aspects. Firstly, there are no
models able to predict the cost and benefit of automation on the PDP performance, whilst such
knowledge is of paramount importance for the management that must decide whether is convenient to
invest on the development of automation solutions [25]. Secondly, the automation solutions considered
in PDP literature generally do not take into account the option of selectively applying different levels of
automation on different (sub)activities in the PDP.

This paper proposes a novel methodology to predict the effects in the PDP performance produced by
the implementation of automation solutions. More specifically, the proposed methodology considers the
complete process in the current state (hence it does not aims at restructuring it) and evaluate the
influence of the application of specific automation initiatives, at single (sub) activity level, on the overall
process lead time and investment cost.

To achieve this objective a new methodology is developed (i) to model any PDP as a combination of a
pre-defined set of specific activities and (ii) to define different levels of automation for these activities.
Subsequently, metrics are developed to measure the impact of different levels of automation on different
activities, both in terms of activity lead time reduction and implementation cost. A discrete event
simulator is developed which utilises the proposed process model and metrics to analyse, among others,
the lead time and automation cost for the overall process (for a given process architecture). Finally, the
simulator is connected to an optimiser which tries to find the most convenient level of automation for
each of the PDP activities, in order to generate the Pareto front qualitatively illustrated in Figure 2.

Figure 1: Current trade-off between cost and lead
time in a PDP

Figure 2: Improved trade-off between cost and lead time in a PDP

CEAS 2015 paper no. 185 Page | 3
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

The proposed methodology and the analysis and optimization framework are demonstrated by
application to an industrial case study. The case study concerns the conceptual design phase of an
aircraft component (in particular the study of the rudder-fin connection) performed by a multinational
aerospace enterprise. The metrics used in this study to estimate the cost of automation (for various levels
of automation) and associated lead time reduction for different type of PDP activities are based on the
experience gained by KE-Works during the deployment of KE-Chain, their Workflow Management System,
in various aerospace PDPs. For the discrete event simulation and optimisation, Simpy and the Optimus®
toolkit are used, respectively.

2 BACKGROUND
In this field of PDP research many definitions are used and multiple viewpoints on the same topic

exist. The goal of this section is to provide a clear overview and indicate how these are used in this
research.

2.1 Product Development Processes
The definition of the PDP used in this article is adopted from Krishnan et al. [11]: ”The product

development process is considered to be a process of transformation of input information about customer
needs and market opportunities into output information which corresponds to manufacturable designs,
and functional tooling for volume production.”

In this research the focus is on single company, multiple department projects, although the proposed
methodology can be extended as necessary.

In literature the PDP is often characterised by terms like ’creative’, ’iterative’, ’collaborative’ and
’innovative’ [45, 10, 13, 6]. These PDP specific characteristics provide specific challenges which differ
from those encountered, for example, in the manufacturing process. A selection of the characteristics
relevant to this research is discussed in the following sub-sections.

Iteration: The cause of iteration can differ; often a distinction is made between planned and
unplanned iteration [28]. Planned iterations occur when a task is attempted without a complete set of
information and hence assumptions are made that need to be verified later on. Unplanned iterations
occur when activities are repeated due to unexpected failure, for example due to a change in the
requirements or by failing to meet a requirement.

Rework: Repeating or refining a task (i.e. rework) is a consequence of iteration. In many cases,
iteration has a second order effect in terms of rework: if one task changes many subsequent tasks need
to be adjusted too. Literature discusses this effect extensively and methods are proposed to quantify the
probability of rework in the case of a change, and the extent of rework necessary for the whole task (e.g.
is it necessary to perform the full task again or only a selection of the task activities) [27]. Also the
concept of an improvement curve is discussed, meaning that the duration of a task decreases at each
iteration performed by a human resource, due to the cumulated experience and increased ability [4].

Collaboration: The PDP of complex engineering products is inherently a multidisciplinary process as
discussed by Reed et al. [16] in the context of aerospace industry. Multiple disciplines, often clustered in
departments, need to interact and exchange information and trigger each other to start an activity.
These collaborative activities have an influence on the performance of the PDP [5].

2.1.1 Process	modelling	of	product	development	
Many sources in literature propose methods to model the PDP taking into account, among others, the

characteristics mentioned in Section 2.1. All of these methods are based on the observation of specific
behaviours which attempt to capture. For example, models are proposed to account for the overlapping
of processes [23], iterative loops [21] and the dynamic and stochastic aspects of the PDP [8].

Most PDP models use an activity network as a fundamental framework [6]. Here the process is viewed
as a group of related activities that work together to create a result of value [9]. The PDP is a

CEAS 2015 paper no. 185 Page | 4
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

heterogeneous process, meaning that it consists of different types of activities, each having its own
characteristics. Most process models do not make a distinction about what the content of a task is (i.e. a
task is not decomposed into separate and different types of activity). For an extensive review on activity
network-based process model, see Browning and Ramasesh [6].

According to Browning the process architecture can be defined as the elements of process activities
and their pattern of interaction [4]. This means that the process architecture not solely defines the
elements of the activity itself, but also its interaction with the other activities.

The Design Structure Matrix (DSM) is frequently used to (re)structure a process by adjusting the
sequence of activities, while taking into account the input/output information relation between activities
[28]. Often, it is used to provide precedence constraints in simulations, but lacks the ability to efficiently
describe activity parameters such as activity lead time and resource type). Thereby, in order to perform
process simulation studies, DSMs are often combined with other modelling techniques, such as Business
Process Modelling Notation (BPMN).

2.1.2 Key	Performance	Indicators	
This research focuses on improvement of the PDP. Therefore it is important to define a suitable set of
performance indicators and look at strategies to improve them. In literature three common Key
Performance Indicators (KPI’s) are based on time, cost and quality [2, 12, 16, 33]. Upon investigating
these KPI’s, a few interesting observations can be made. Firstly, most of the authors do not quantify the
KPI’s. This is in particular the case for product quality, which is often mentioned, but virtually never
quantified to a measurable performance indicator during the PDP. Secondly, most authors focus on a
single KPI. Even when multiple KPI’s are addressed in one research, most of the optimization studies are
performed on a single KPI (i.e. no multi-objective optimisation). Since the previously mentioned KPI’s are
very broad the KPI’s used in this research are discussed in more detail in the following paragraphs.

Time: Two relevant KPI’s addressed in this research are lead time and process time. Lead time defines
the total time from the beginning of the project until the end and consists of process time and waiting
time [2]. Process time is defined as the time a resource is occupied by an activity over the course of a
process. Other examples of performance indicators used in literature are waiting time [12], iteration time
and time schedule risk [4].

Cost: Product cost, process cost and development cost are just some examples of cost indicators
discussed in literature. The main focus of this research is on process and investment cost. Process cost is
the cost of the resource being occupied by a task and is a recurring cost in the process. Investment cost
is the total cost for an investment (e.g. to develop an automation solution for a certain process activity)
and is a non-recurring cost.

2.2 Automation in the PDP
Automation can have a high impact on the performance of a process. Automation is a very broad term

and it is applied in many different industries and processes [40, 14]. Therefore it is important to have a
clear understanding of how to see automation in the PDP in this article.

2.2.1 Definition	of	automation	
Hart et al. [10] define automation as the ability of computer systems to perform a function without

human support. Within the complex structure of any (PD)process, a number of tasks can be identified,
each one implying the execution of a number of activities. In general, each one of these activities offers
the opportunity to be executed with a different amount of human intervention. In other words, each
activity offers the opportunity to implement a different level of automation. According to the authors,
design automation is about the process of transferring domain knowledge, in the broadest sense, from
the expert to a computerized system, such that the system can systematically (re)use the captured
knowledge to reduce, or eliminate the human involvement in some or all of the activities involved in the

CEAS 2015 paper no. 185 Page | 5
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

PDP. It appears that different levels of automation can be established, according to the granularity level
used to decompose a design process.

2.2.2 Levels	of	automation	
Levels of automation have been researched in different application fields [22, 17]. Several models are

proposed in literature, which differ, also significantly, in the identified number of automation levels and
their granularity. For example, models are proposed with a number of automation level ranging from
three [1] up to ten [18]; models exist that account for the different activities that are included in a task,
whilst others see a task as one block, to which one level of automation can be assigned.

A general limitation of the level of automation metrics found in literature, also of those with higher
granularity, is the inability to address the collaborative aspects in the PDP. No existing model, for
example, defines levels of automation for typical PDP tasks such as “triggering next step”, “storing
information”, “reporting”, etc. In conclusion, none of the level of automation models available in literature
was deemed suitable for the purpose of this research; thereby a new one was devised, which is
elaborated in detail in section 4.2.

2.2.3 Information	automation	
In complex PDPs different departments are involved, often at different physical locations. These

departments interact by exchanging information. To be able to work efficiently and effectively it is
needed that this information is available in the right place, at the right time and in the right format [4].
Brandao and Wynn [2] estimated that 30% of the development time is spent on searching and
interpreting information. This already shows that there is a lot of potential for reducing waste in this
information flow by applying automation. The automation of the information flow is about improving the
information relevance and currency.

The information value automation concerns the automation of the activities directly adding value to
the information model of the product under development. This can be achieved by the application of
computer Design Automation systems (DA). DA includes all types of dedicated computer applications
ranging from tools to automate calculations (e.g. spreadsheets) to complex KBE applications able to
perform generative design based on a set of input parameters.

2.2.4 Effects	of	automation	
Automation has a lot of potential in improving the performance of the PDP in terms of lead time,

process cost and product quality. However, also risks exist in the application of automation. For example,
automation can negatively influence the complacency of the engineer and the situational awareness of
the engineer [26]. Furthermore automation provides an easy option to generate a design and does not
force the designer to think creatively for alternative solutions, hence reducing innovative and creative
ideas. These effects are important to take into account upon trading off alternative levels of automation,
however they are hard, if not impossible, to predict and quantify.

3 RESEARCH CONTEXT
This research follows the work performed by Schut et al. [19] and Verhagen et al. [41] into

development process optimisation. The research of Schut et al. resulted in a Value Scan for process
improvements by means of reducing wasted time and optimising the information flow. This method was a
very high level scan of the process (i.e. at low granularity). In the succeeding research by Verhagen et al.
the implementation of information flow automation in processes was assessed by using the IMPROVE
method [25].

Based on this research the following methodology for the assessment of the application of automation
in the Product Development Processes is proposed. This methodology consists of several steps and is
visualised in Figure 3.

CEAS 2015 paper no. 185 Page | 6
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

Figure 3: Steps involved in the proposed methodology

The primary focus of this research is the process analysis and optimisation. The objective is to develop
a trade-off method for the optimisation of the level of automation of the product development process by
using process simulation.

Optimisation of a given fixed process without restructuring proves to be of great relevance. Especially
in industries with certified processes it is costly, or even impossible, to modify the structure of their PDP,
hence the application of automation should be evaluated without restructuring the PDP. However, the
authors are aware of the fact that a global and comprehensive optimization of the PDP cannot be
achieved without considering the synergetic effect of automation solutions deployment and process
structure restructuring.

4 PROPOSED MODELLING FRAMEWORK
To be able to analyse and optimise the levels of automation of activities in the PDP a framework is

proposed which is able to transform process specific inputs into corresponding performance outputs, for
different process architectures. In a mathematical format, this is shown in Equation 1.

, (1)

Here is the output vector with the relevant information (KPIs) required to make a trade-off between
different options. These KPIs include, for example, lead time, automation investment cost and process
cost. is the design vector containing all the adjustable process variables, such as the levels of
automation of the single process activities. contains the input parameters used to model a given
process, such as the sequence of the various activities in the process and the parameters to compute the
development cost of different level of automation solutions and their lead time reduction on the process.
The function transforms the design vector and input parameters into the desired output. This is illustrated
in Figure 4, where also the position of the optimizer is shown, which will take care of finding the optimal
vector yielding the best .

Figure 4: Overview of the proposed PDP simulation and optimization framework

CEAS 2015 paper no. 185 Page | 7
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

Sections 4.1 and 4.2 will elaborate on the proposed methods to model a generic process as a network
of five predefined types of activity, and to define the levels of automation. The following sections (4.3,
4.4 and 4.5) describe the KPIs estimation methods used by the simulator. Chapter 5 discusses the set-up
of the PDP simulation system and its implementation in the optimization framework.

4.1 Process activities modelling
A process can be modelled at different levels of granularity. The structure proposed in this research is

illustrated by the example in Figure 5. Since the goal is to investigate the effect of automation on a
generic process, the model decomposes any specific process in identifiable specific tasks (the first two
levels in Figure 5), and, finally, each specific task into a set of generic activities. These activities can be
seen as the building blocks of any PDP.

Figure 5: Decomposition from process level to activity level

Based on extensive literature research and investigation of four industrial cases, five activities were
selected, from now on simply referred to as activities, as essential building blocks for any process. These
are Acquire, (Pre/Post-)Process, Analyse, Decide and Implement. A comprehensive definition of these five
activities is given in Table 1. It should be noted that no fixed sequence or amount of activities is
prescribed for a task. As examples, one could model the Task “determining bearing parameters” in Figure
5 as a combination of the activities Acquire, Decide and Implement. The Task “calculate lug parameters”
could be modelled as a combination of the activities Pre-process, Analyse and Post-process, where both
the Pre and Post-process activities are of the same ’Process’ type activity described in Table 1.

Table 1: Comprehensive description of activity types

Activity type Description
Acquire This type of activity is concerned with acquiring all the starting conditions for a subsequent task from an external source. A starting

condition is for example a trigger, knowledge or a physical product. These starting conditions are not transformed, but acquired and
transmitted in the raw format they were found available.

(Pre/Post‐)
Process

This activity structures the information and represents it in such a way to improve the relevance of the information. In this task no
information is added to the product model other than transforming the units or format of contained information. The selection and
extraction of a subset of the model information is also considered a pre/post process activity.

Analyse In an analysis activity information is transformed and new information is created. This information is added to the information model.
Knowledge is used to transform the inputs into outputs. Examples include modelling, simulating, calculating.

Decide This activity is a gateway where a decision is made with an impact on the process. At least two alternatives should be present to decide
between. In this task no information is added to the product model.

Implement This activity accounts for all the interaction with external (re)sources required to successfully continue the process. No new information is
created but it is stored at a location. This task also accounts for triggering the next task.

In practice, any process of any type of complexity can be split into tasks and eventually modelled as
collections of these five predefined activities. The “owner” of each task can define the given task as a

CEAS 2015 paper no. 185 Page | 8
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

sequence of (some or all of) these activities, with their relative duration distribution in the given task. For
example, the Task “determining bearing parameters” of total duration TD in Figure 5 can be defined as
follows: 0.60TD Acquire, 0.1TD Decide and 0.3TD Implement. By means of a Design Structure Matrix
(DSM) the interaction between the activities of the various tasks can be modelled.

4.2 Levels of automation modelling
In section 2.2 the need for a modelling method for levels of automation was discussed. The proposed

model is summarised in Table 2.

Table 2: Definition of levels of automation for the PDP activity types

LoA Acquire Process Analyse Decide Implement

4 The system is the sole
resource and
automatically executes
the activity and acquires
the required information

The computer is
responsible to structure the
information in such a way
that the next activity
accepts it to be in the right
format.

Computer is fully
responsible for this activity.
It is able to interpret the
provided information and
determine how to execute
this activity successfully.

The computer decides and
acts autonomously
without interference of the
human.

The computer is
responsible for the correct
execution of the
implementation activity.

3 The activity is defined
and the system suggests
what to acquire and
where it can be
acquired. The source is
responsible to acquire
the items from the
source. All information is
available from a single
source of truth.

The computer supports the
user in processing the
information. Hence the
knowledge for processing
the information is in the
system but the resource
needs to decide on how to
apply this knowledge.

Computer supports the
execution of the activity by
providing tools and
methods to perform
calculations. Human
interaction is still needed to
determine intermediate
steps or to verify the result.

Computer supports the
execution of the activity
by providing tools and
methods to perform
calculations. Human
interaction is still needed
to determine intermediate
steps or to verify the
result.

The human executes the
implementation activity.
The computer system
supports the human and
provides information on
what to do and how to do
it. System is actively
involved by preventing
certain actions or
promoting others.

2 The activity is defined
and the system suggests
what items need to be
acquired and where to
find them. Resource is
responsible to acquire
items from the source.

The human is responsible
to process the information.
It is defined how to
process the information for
example by using
templates.

The human is responsible
for this activity and is
assisted by handbook
methods and procedures.
The human remains the
main source for the
analysis.

Human is still responsible
but the computer shows
all relevant alternatives.

Human is responsible for
the implementation activity
but is supported by the
system. System provides
relevant information.

1 The human is the sole
resource for the activity.
Hence no assistance is
provided by a system,
manuals or procedures.

The human is responsible
for processing the
information. A computer or
other system with basic
features can be used to
enhance information
relevance.

Human is the only source
for the methods and
knowledge used in this
task.

The human is responsible
for the decision and the
system does not provide
assistance.

Human is fully responsible
for the implementation
activity. No assistance
offered by the computer.

For each one of the activity types defined in section 4.1, four levels of automation are proposed,

ranging from level 1, in which the human is the sole resource, to level 4, where full automation is
provided by a computer. On the basis of the definitions provided in Table 2, each task owner in the PDP
process should be able to describe the current level of automation, hence the type of resources involved
in the execution of the encompassed activities.

4.3 Activity duration estimation method
The influence of automation on the activity lead time can differ per task and per activity type. This

influence is captured in a coefficient accounting for the activity type and level of automation. This
coefficient represents the percentage of the time a task would take, measured with the normalised time
in a condition of a level 1 of automation.

∗
∗ ∙

 (2)

CEAS 2015 paper no. 185 Page | 9
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

The coefficients are given in the Duration Matrix, , and used in determining the estimated activity
duration at another level of automation. In this matrix the subscript is the task activity type (e.g.
acquire) and subscript is the level of automation. The activity lead time is calculated by using Equation
2 where ∗ and ∗ indicate the time and level of automation in the new case respectively.

Table 3: Example time estimation coefficients (DM)

 Level of automation
 1 2 3 4

Acquire 100% 80% 50% 10%

Process 100% 70% 40% 20%

Analyse 100% 90% 60% 15%

Decide 100% 65% 40% 30%

Implement 100% 60% 30% 5%

Table 4: Example Knowledge Acquisition cost coefficients (CMKA)

Level of automation
1 2 3 4

Acquire 0% 30% 70% 100%

Process 0% 40% 80% 100%

Analyse 0% 45% 90% 100%

Decide 0% 30% 60% 100%

Implement 0% 30% 70% 100%

In this research the coefficients of were determined by performing a dedicated workshop. In this

workshop three response groups executed the same process four times, each time using a different level
of automation. The response groups varied in their level of expertise on the process used in the
workshop. The values provided in Table 3 are representative but fictitious. They are different than those
measured in the workshop, which cannot be published for confidentiality reasons.

The authors are aware that a correct determination of those coefficients is essential to the prediction
capability of the proposed method. It will be crucial for any company that is willing to adopt the proposed
method to properly estimate such values and continuously improve and update them, based on internal
project knowledge.

4.4 Process cost estimation method
The process cost of an activity is based on the cost of employed resources and activity duration. If

multiple resources are involved in an activity the sum of the cost per resource determines the activity
process cost. In activities without human interaction (i.e. level 4 of automation) the resources are not
utilised and hence the activity process costs are assumed to be zero. Here costs such as Workflow
Management System licenses are considered to be an investment and are accounted for in the
investment cost.

In the background section it was discussed that the use of automation also enables the use of
different (e.g., cheaper) resources. No data was available on this topic and hence it is not accounted in
the proposed proof of concept. In the case of iteration some models assume a certain learning curve or
improvement curve, i.e. a human resource is likely to take increasingly less time to perform the same
activity again and again within an iterative process. For simplification, also this effect was not taken into
account in the proposed framework.

4.5 Automation investment cost estimation method
Another metric of importance in this framework is the investment cost required to automate an

activity to the level of automation as stated in the design vector. In order to provide a meaningful
estimation of the required investment cost, it is necessary to take into account the current level of
automation and the type of activity to be automated. Software cost estimation tools assessed in literature
research provided many different methods but remained solely applicable to large projects.

The cost estimation technique internally used at KE-works for knowledge engineering business was
therefore adopted and modified for use in this research. This technique uses both parametric relations
based on empirical data and expert judgement and a roll-up technique. Based on the analysis of several
projects performed by KE-works, the development efforts required to bring a certain process activity to a
target level of automation were defined. The resulting cost estimation method proposed in this research
uses a similar coefficient matrix as the one described in the section 4.3. For each type of activity, and for

CEAS 2015 paper no. 185 Page | 10
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

each delta in level of automation, a cost coefficient value was determined on the basis of the technical
exercises (e.g., knowledge acquisition, KBE applications development, etc.), required to produce and
deploy the given automation solutions. An example of knowledge acquisition cost coefficient matrix (CM1)
is given in Table 4, which was defined on the basis of Milton [13] and adjusted with empirical data
provided by KE-works. For each technical exercise a unique Cost coefficient Matrix (CM) is proposed.

Each coefficient in the matrix describes the percentage of the cost required for the full automation of
the activity. For some activity types at a specific level of automation a cost attribute does not need to be
taken into account, leading to a coefficient matrix with a more discrete nature (e.g. the cost of a software
license purchase is only taken into account at a level 4 of automation). The method takes into account
the current level of automation and estimates the extra cost to increase the current level of automation.

Some activities taken into account for the estimation of the investment cost have a reduced cost in
the case of frequent use of this activity. An example is the cost estimation of the integration of an
external application; this cost reduces if the same application is integrated multiple times in a project.
This effect is also taken into account for license cost and server cost.

5 SIMULATION AND OPTIMISATION FRAMEWORK
The aspects discussed in the previous sections represent the main ingredients of the integrated

framework for PDP analysis and optimization discussed here.

5.1 Simulation algorithm
By means of simulation the process performance is analysed in terms of lead time, process cost and

investment cost. Features are implemented in the simulator to account for important PDP characteristics,
such as (number of) iterations, interruption, resource constraints and waiting time.

The simulation PDP framework developed in this research is based on SimPy, a Discrete Event
Simulation library, in combination with Object Oriented Programming (OOP) in Python[15]. In Discrete
Event Simulation (DES) state variables only change at specified points in time, referred to as events. The
simulation jumps from event to event and skips the time when no events occur and hence no state
variables are changed. Furthermore DES is able to process parallel events without yielding a high
computing power. The simulation ending condition is when no events are to be executed or when no
event can be executed any more.

The model uses a class to model the activities in the workflow. These activities can be a regular
activity (i.e. implement, process, analyse, implement) or a gateway activity (i.e. decide), from now on
referred to as an entity and gateway entity respectively. In the case of a gateway entity it has a feedback
loop to another entity or multiple entities. Before the simulation starts an environment is created in
which the entities with corresponding properties and states are initiated based on the provided inputs.
Within this environment the entities are allowed to interact by for example sending signals as will be
discussed in section 5.1.2.

The entities are subject to multiple constraints. Resource constraints and precedence constraints are
the main constraints. At the start of the simulation (t=0, unless otherwise defined) all entities assess if all
their constraints are met; the process of assessing this is referred to as responding. Once all constraints
are met the entity starts and is completed after the duration. This duration is determined based on the
inputs and by means of the method explained in section 4.3. During the full duration the entity has
claimed the required resources from the resource pool, hence no other entity can claim the same
resource at the same time. Upon completion it interacts with other entities by sending a signal to the
succeeding entity, or entities, triggering them to respond.

The adopted DES simulation algorithm distinguishes from other algorithms by the way it deals with
complex PDP properties like iteration, rework and collaboration. These aspects are addressed in the
following subsections.

CEAS 2015 paper no. 185 Page | 11
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

5.1.1 Iteration	modelling	
During the initialisation, based on the inputs, the model determines whether an entity causes

feedback. If that is the case, the entity is of the type gateway. The decision whether or not to feedback is
made in the model based on the current state of the entity. The entity checks the total times the entity
has been completed and verifies if that is below the set amount of iterations. If this is the case then the
gateway entity sends a reset signal to the entities in the list of feedback accompanied with the ID of the
sender (i.e. the current gateway entity). The entities receiving this reset signal stop their process if they
are running. How this entity receiving the signal deals with this feedback is discussed in the next
paragraph on rework modelling.

5.1.2 Rework	modelling	
Rework is modelled by sending reset signals sent between entities. If an entity receives a reset signal

the entity is stopped and resets the progress of the activity to zero. Subsequently the entity forwards the
signal to its succeeding activities to cause a trickle-down effect. This trickle-down effect accounts for the
successive feed-forward rework as discussed by Cho and Eppinger [7]. This policy has been illustrated in
Figure 6. As soon as the gateway entity triggers the feedback, all the work performed by completed
activities 1, 2, 3 and 4 is reset. Also the work in progress in activity 5 is stopped and reset to zero. It is
important to note that it is assumed that rework in a task always leads to rework in its succeeding tasks if
the succeeding task has started or has already been completed before the reset signal.

Figure 6: Illustration of rework policy

5.1.3 Collaboration	modelling	
Collaboration is modelled by using penalties for transactions between different resources. This penalty

is a delay before starting the actual activity and is determined by the user. The penalty is not applicable
to every activity. Each activity verifies if the resources of the previous tasks are a subset of its current
resources, if this is not the case then the time to wait is accounted for. This applies in the case human
resources are involved. In case of fully automated tasks, no delay is applied because of the assumption
that the automated system has always a computer resource available.

5.2 Optimisation strategy
The simulator described in the previous section is able to analyse any given process architecture and

output results important process KPIs like lead time and investment cost. The goal of this research is to
provide insight in the trade-off between costs and benefits for the use of automation. Because of the
multiple objective functions of interest, lead time and investment cost, a Multi-Objective Optimisation
(MOO) problem is at hand. As illustrated in Figure 5, the process simulator is connected with an
optimizer, with the final objective of finding the set of possible process architectures resulting in an

CEAS 2015 paper no. 185 Page | 12
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

optimal outcome for the multi-objective problem. These process architectures are those located on the
previously discussed Pareto front of Figure 2.

In order to generate such a Pareto front, a possibility is to perform an exhaustive search; this would
imply assessing all possible permutations of the design vector, hence all the possible combinations of
level of automation for each activity in each task of the process. The total amount of possible
permutation experiences a combinatorial explosion with an increasing number of activities. An exhaustive
search would therefore result in too long computational time for the proof of concept purpose of this
framework; hence a search algorithm is preferred.

Due to the discrete modelling of the levels of automation a gradient-based search method cannot be
used. An evolutionary or genetic algorithm is proposed, specifically a Non-dominant Sorting Evolution
algorithm. The algorithm from the OPTIMUS software application is used for implementation.

6 FRAMEWORK TECHNICAL IMPLEMENTATION AND FUNCTIONAL VERIFICATION
The elements discussed in previous paragraphs have been implemented in the integrated framework

illustrated in Figure 7. This integrated framework assists in the knowledge acquisition, structuring,
simulation and optimisation of the process architecture. In this case, the KE-chain tool was used for two
purposes: as a systems integrator and Workflow Management System (WFS). It integrates the system by
allowing all different modules and applications to exchange information. Furthermore it assists the user
as a WFS by guiding through the different phases of the full methodology (see Figure 3).

Figure 7: Integrated framework overview as part of the full methodology illustrated in Figure 3

In the first step the process is defined and its specific settings stated. To this purpose, Microsoft Excel in
combination with custom Visual Basic for Application (VBA) scripts was used to provide a user friendly,
and partly automated, interface to define the process to be analysed and optimized. In the second step
the process is analysed and optimised using the simulation algorithm and optimisation strategy discussed
earlier.
A number of simple test cases are discussed here to illustrate the functionality of the framework. A much
more complex test case from an industrial application is discussed later in section 6.
The following test cases are all based on the same process configuration, referred to as base case. In
each test case one characteristic is adjusted to demonstrate the difference in behaviour of the system.
Flowcharts of the test cases are illustrated in Figure 8. All activities have an initial duration of 20 hours.

CEAS 2015 paper no. 185 Page | 13
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

Figure 8: Flowcharts of multiple test cases

6.1.1 Test	case	1:	Iteration	
This case displays the effect of iteration in a process. One iterative loop is added where task 3

feedbacks to task 2. In Figure 9 it can be seen that the Pareto front has shifted. Due to the iteration the
process has a longer lead time. The slope of the Pareto front also has changed, implying that a larger
lead time reduction than the base case can be obtained for a certain investment in automation solutions.
This slope eventually matches with the slope of the base case when the iterative tasks have been fully
automated.

Upon inspection of the levels of automation on the various activities in Figure 10 it can be seen that
the points on the Pareto front correspond to process architectures with increasing levels of automation of
the tasks involved in the iteration. These results match the expectations of the interviewed experts. In
Figure 10 the points on ‘vertical lines’ correspond to a process architecture in Figure 9.

6.1.2 Test	case	2:	Parallelisation	
In this case the precedence constraints on activities are changed and 2 and 3 can be processed in

parallel. This case is investigated for two different scenarios since resource availability influences the
results. In scenario I only one resource is available, scenario II has two resources. In Figure 11 it can be
seen that the Pareto front of scenario I is similar to the base case. This is as expected since with only one
resource the process is not able to process parallel activities.

For scenario II, however, a different front can be seen. The Pareto front flexes at a lead time of 30
hours. Upon investigation of the automation initiatives this can be explained. In Figure 12 the average
levels of automation at different points on the Pareto of scenario II are plotted. Here it can be seen that
at higher lead times (i.e. on the lower right side of the Pareto front) the non-parallel activities are first
automated. Once these non-parallel activities have been (fully) automated the parallel activities (2 and 3)
subsequently increases the level of automation. This is in accordance with the expectations since a higher

50

70

90

110

130

150

170

190

0 5000 10000 15000 20000 25000

Le
ad

 ti
m

e
[H

ou
rs

]

Investment cost [EUR]

Iterative
case

Base case

Config. i

1

2

3

4

50 100 150 200

A
ve

ra
ge

 ta
sk

 L
oA

Lead time [Hours]

Task 1

Task 2

Task 3

Task 4

Config. i

Figure 9: Pareto front for the lead time and investment
cost for the base case and iterative case

Figure 10: Average level of automation per task

CEAS 2015 paper no. 185 Page | 14
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

level of automation for a parallel activity only becomes effective for a lower lead time if the other parallel
task is also automated.

6.1.3 Test	case	3:	Resource	cost	
In this case one task utilises a different resource with a higher resource cost (in this fictitious case
100%). In this case it would be of no use to perform the multi-objective optimisation (MOO) for lead time
and automation investment cost since resource cost has no effect on lead time and only a relative small
effect on automation investment cost. Hence a MOO for lead time and investment cost would yield a
similar Pareto front. Therefore a MOO for the lead time and the number of projects needed until Break
Even Point was performed.

Figure 13 displays a selection of architectures on the Pareto front where it can be seen that all tasks
are incrementally automated. When the cost of the resource of Task 3 is increased, a different graph is
generated. This is illustrated in Figure 14, where it can be seen that Task 3 (using the expensive
resource) is always fully automated. Hence, as expected, the optimization framework suggests
automating first the task with high resource cost, ceteris paribus.

6.2 Industrial application case
The proposed methodology and optimization framework is applied to an industrial Product

Development Process (PDP). The selected case is the conceptual design process of the hinge connections
of a rudder assembly on the vertical tail of a business jet aircraft. This case provides a representative
case of complex PDP, featuring many interesting characteristics: iterative loops resulting in rework, many
involved departments and a mix of creative and repetitive tasks to name just a few.

0

20

40

60

80

100

0 10000 20000 30000 40000

Le
ad

 ti
m

e
[H

ou
rs

]

Investment cost [EUR]

Base case

Scenario I

Scenario II

1

2

3

4

15 25 35 45 55 65
A

ve
ra

ge
 ta

sk
 L

oA
 [-

]
Lead time [Hours]

Task 1

Task 2

Task 3

Task 4

1

2

3

4

20 40 60 80

A
ve

ra
ge

 ta
sk

 L
oA

 [-
]

Lead time [Hours]

Task 1

Task 2

Task 3

Task 4

1

2

3

4

20 40 60 80

A
ve

ra
ge

 ta
sk

 L
oA

 [-
]

Lead time [hours]

Task 1

Task 2

Task 3

Task 4

Figure 11: Pareto front for lead time and investment cost for
parallelisation cases and base case

Figure 12: Selection of architectures on the Pareto
front for Scenario II with average levels of automation

Figure 13: Average level of automation per task for base case
for configuration on the Pareto front

Figure 14: Average level of automation per task for
test case 3 for configurations on the Pareto front

CEAS 2015 paper no. 185 Page | 15
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

The process consists of 14 tasks for a total of 65 activities. The involved departments are stress
engineering, design engineering, cost engineering and weight engineering. In total eight resources are
involved, ranging from cost engineers to the project manager.

A summary of the inputs defining the process is provided in Figure 15 and 16. A full description of the
input data is not relevant to this discussion, but can be found in [14].

The simulation of the process architecture in the current state results in a lead time and total process

time less than 5% different from the lead time and total process time estimated by the experts during
interviews. While the estimation provided by the simulation framework is a bottom-up estimation, the one
provided by the experts was top-down.

The result of the MOO can be seen in Figure 17, where a clear Pareto front is identified.

Figure 17: Pareto front for the Multi-Objective Optimisation for lead time and total investment cost

 The outcome of three different process architectures on the Pareto front (indicated with A, B and C)
is displayed in Table 5.

Table 5: Normalised overview of KPI’s of selected architectures

 Architecture A Architecture B Architecture C

Lead time [Hours] 100 62,35 31,93

Process time {Hours} 100 49,75 22,27

Process cost [EUR] 100 51,45 23,28

Investment cost [EUR] 0 10,1 57,87

A

B

C30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

N
or

m
al

is
ed

 le
ad

 ti
m

e
[E

U
R

]

Normalisedinvestment cost [hours]

Feasible
solutions

Pareto front

Figure 15: High level task inputs of the case study Figure 16: Activity-based Design Structure
Matrix of the case study

CEAS 2015 paper no. 185 Page | 16
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

By investigating all the process architectures on the Pareto front some interesting findings can be
done. Some tasks are not increased in their level of automation, whilst others are on a higher level of
automation in most of the Pareto points. It can be seen that the iterative tasks are automated more
frequently and the tasks outside the iterative loops (e.g. preparation) are only automated in the upper
left region of the Pareto front (i.e. high investment cost, low lead time). Furthermore it can be observed
that the ”Process” activities are the most frequently automated in the architectures on the Pareto front.

7 DISCUSSION
The results show that the proposed methodology is able to analyse a given process architecture and

perform a multi-objective optimisation. The simulator is able to provide an estimation of the total lead
time and investment cost for any process architecture, including different levels of automation on an
activity level. A Pareto front trading off lead time and investment cost is generated by using a Non-
dominant Sorting Evolution Algorithm.

The research has shown that the impact of automation can be estimated a priori, thereby offering the
possibility to estimate the effect of automation in terms of lead time reduction and investment cost, on a
given process architecture.

The methodology shows the potential for incremental innovation. It is able to simulate automation
initiatives on different activities with different levels of automation. This methodology assists in
determining what tasks and activities show the highest potential for this incremental innovation.

7.1 Limitations of the methodology
The authors are aware of some limitations of the presented methodology. Firstly, the model assumes

deterministic activity durations, whilst in reality activity durations in the PDP are stochastic. Unfortunately,
the computational cost would severely increase when accounting for stochastic effects.

This research uses deterministic rework modelling, hence a change always leads to rework in
subsequent tasks. Rework probability, being the chance of a change leading to rework, is thus not taken
into account. Furthermore it is assumed that rework has a constant duration equal to the initial duration,
hence no learning effect is taken into account in the case studies. For this research it has been decided
that the activities causing iterations and the number of times they cause iteration are predetermined in
order to be able to have a deterministic model.

7.2 Model validity
Smith and Morrow [22] use the term ’face validity’ as a measure of validity of a PDP model. According

to the described criteria this methodology would have high face validity. The proposed methodology and
all underlying assumptions, theories and outcomes have been discussed with experts and according to
their judgement the methodology is valid. Smith and Morrow define the next level of validation as the
application of the methodology on existing but retrospective data in industry. The case study has shown
that the methodology is applicable and can be used but due to insufficient retrospective data this was not
validated completely.

7.3 Future research
The integrated framework has been developed in a modular way and can easily be extended and

adjusted when needed. Process restructuring, as discussed in section 3, has not been formally
implemented in the integrated framework. This topic will be addressed in research following this article.

Furthermore it is of great relevance to perform a sensitivity study on the input parameters. Based on
this information the uncertainty of the generated Pareto front can be discussed.

Finally, time and cost coefficients for the proposed framework have been estimated using expert
opinion, an inherently subjective approach. Quantitative approaches to determination of coefficients are
currently being investigated.

CEAS 2015 paper no. 185 Page | 17
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

REFERENCES
[1] Balogh, I., Ohlsson, K., Hansson, G. Å., Engström, T., & Skerfving, S. (2006). Increasing the degree
of automation in a production system: consequences for the physical workload. International Journal of
Industrial Ergonomics, 36(4), 353-365.

[2] Brandao, R., & Wynn, M. (2009, February). Improving the New Product Development Process through
ICT Systems in the Aerospace Industry–a Report on Case Study Research. In Information, Process, and
Knowledge Management, 2009. eKNOW'09. International Conference on (pp. 147-152). IEEE.

[3] Brown, S. L., & Eisenhardt, K. M. (1995). Product development: Past research, present findings, and
future directions. Academy of management review, 20(2), 343-378.

[4] Browning, T. R., & Eppinger, S. D. (2002). Modeling impacts of process architecture on cost and
schedule risk in product development. Engineering Management, IEEE Transactions on, 49(4), 428-442.

[5] Browning, T. R. (1998). Use of Dependency Structure Matrices for Product Development Cycle Time
Reduction. Paper presented at the Proceedings of the 5th ISPE International Conference on Concurrent
Engineering: Research and Applications (Japan), Tokyo, July 15-17, pages 1–8.

[6] Browning, T. R., & Ramasesh, R. V. (2007). A survey of activity network-based process models for
managing product development projects. Production and Operations Management, 16(2), 217-240.

[7] Cho, S. H., & Eppinger, S. D. (2005). A simulation-based process model for managing complex design
projects. Engineering Management, IEEE Transactions on, 52(3), 316-328.

[8] Ha, S., & Suh, H. W. (2008). A timed colored Petri nets modeling for dynamic workflow in product
development process. Computers in industry, 59(2), 193-209.

[9] Hammer, M. (2001, March). Seven insights about processes. Paper presented at the Proceedings of
the Conference on Strategic Power Process Ensuring Survival Creating Competitive Advantage, Boston,
MA, US.

[10] Hart, J. J., & Valasek, J. (2010). Methodology for prototyping increased levels of automation for
spacecraft rendezvous functions. Texas A&M University.

[11] Krishnan, V., & Ulrich, K. T. (2001). Product development decisions: A review of the
literature. Management science, 47(1), 1-21.

[12] Millson, M. R., Raj, S. P., & Wilemon, D. (1992). A survey of major approaches for accelerating new
product development. Journal of Product Innovation Management, 9(1), 53-69.

[13] Milton, N. R. (2007). Knowledge acquisition in practice: a step-by-step guide. London, England:
Springer Science & Business Media.

[14] Mulder, B. (2015). A methodological approach for the optimisation of the product development
process by the application of design automation. Unpublished MSc thesis, Delft University of Technology,
Delft, Netherlands

[15] Muller, K., & Vignaux, T. (2003). Simpy: Simulating systems in python. ONLamp. com Python
Devcenter.

CEAS 2015 paper no. 185 Page | 18
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

[16] Reed, J. A., Follen, G. J., & Afjeh, A. A. (2000). Improving the aircraft design process using Web-
based modeling and simulation. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 10(1), 58-83.

[17] Reinertsen, D. G. (2009). The principles of product development flow: second generation lean
product development (Vol. 62). Redondo Beach, Canada: Celeritas.

[18] Sheridan, T. B., & Verplanck, W. L. (1978). Human and computer control of undersea teleoperators.
Man-machine Systems Lab. Dept. of Mech. Eng.

[19] Schut, E. J., Kosman, S., & Curran, R. (2013). A Value Scan Methodology to Improve Industrial
Operations. In Concurrent Engineering Approaches for Sustainable Product Development in a Multi-
Disciplinary Environment (pp. 411-423). Springer London.

[20] Sheridan, T. B., & Parasuraman, R. (2005). Human-automation interaction.Reviews of human factors
and ergonomics, 1(1), 89-129.

[21] Smith, R. P., & Eppinger, S. D. (1997). A predictive model of sequential iteration in engineering
design. Management Science, 43(8), 1104-1120.

[22] Smith, R. P., & Morrow, J. A. (1999). Product development process modeling.Design studies, 20(3),
237-261.

[23] Terwiesch, C., Loch, C. H., & Meyer, A. D. (2002). Exchanging preliminary information in concurrent
engineering: Alternative coordination strategies. Organization Science, 13(4), 402-419.

[24] Van der Velden, C., Bil, C., & Xu, X. (2012). Adaptable methodology for automation application
development. Advanced Engineering Informatics, 26(2), 231-250.

[25] Verhagen, W. J., de Vrught, B., Schut, J., & Curran, R. (2015). A method for identification of
automation potential through modelling of engineering processes and quantification of information
waste. Advanced Engineering Informatics.
[26] Wickens, C. D., Li, H., Santamaria, A., Sebok, A., & Sarter, N. B. (2010, September). Stages and
levels of automation: An integrated meta-analysis. Paper presented at the Proceedings of the Human
Factors and Ergonomics Society Annual Meeting(Vol. 54, No. 4, pp. 389-393). SAGE Publications.

[27] Wu, Z., Li, L., & Zhao, H. (2010, June). Simulation and analysis of schedule and cost of product
development. Paper present at the Proceedings of the Mechanic Automation and Control Engineering
(MACE), 2010 International Conference on (pp. 228-233). IEEE.

[28] Yassine, A., & Braha, D. (2003). Complex concurrent engineering and the design structure matrix
method. Concurrent Engineering, 11(3), 165-176.

B
PDP OPTIMISATION STEPS

The work presented in this thesis follows the work performed by Schut et al. [15] and Verhagen et al. [13]
into development process optimisation. Both researches were conducted in close collaboration between the
Faculty of Aerospace Engineering at the Delft University of Technology and the company KE-works. The re-
search of Schut et al. resulted in a Value Scan for process improvements by means of reducing wasted time
and optimising the information flow. This method was a very high level scan of the process (i.e. at low process
granularity). In the succeeding research by Verhagen et al. the implementation of information flow automa-
tion in processes was assessed by using the IMPROVE method [13].
The steps as proposed in this appendix are based on these previous research projects and an analysis of cur-
rent and past projects in which optimisation of the PDP is assessed by means of automation. As stated in
Section 1.3.3, multiple different steps are involved in the optimisation of the PDP by the use of automation.
In the process from start (e.g. request from a client) to the end (e.g. evaluation of the project) multiple steps
were identified based on the previous research and analysis of three previous commercial projects by KE-
works. These steps are illustrated in Figure B.1 and are discussed in more detail in the following paragraphs.

Scope

1.

Initial

knowledge

acquisition

2.

Process

restructuring

3.

Process

analysis and

optimisation

4.

Selection of

concept

5.

Process

restucturing

6.

Development

7.

Evaluation

Feedback

Figure B.1: Steps involved in methodology

B.1. STEP 1: INITIAL KNOWLEDGE ACQUISITION
At the start of a project an initial knowledge acquisition should be performed to gather the information about
the process under consideration. This knowledge acquisition is focussed on what, how, when and by whom it
happens. What is concerned with what tasks are executed in the process and what activities this task consists
of. How is about the supporting tools and systems provided for the activities. When is about the timing of the
task, when it is executed (e.g. what are the preceding tasks). By whom accounts for the resources used and
the availability of resources within a project.

B.2. STEP 2: PROCESS RE-STRUCTURING
A process as elicitated during the knowledge acquisition often is not consistent and complete. In many cases
it represents the way of working but the actual precedence constraints applicable to the project are incom-
plete. This step should complement the process and deliver a complete an consistent process (i.e. a process

91

92 B. PDP OPTIMISATION STEPS

in which input and output relations comply with precedence constraints). Additionally the process could be
improved by re-structuring the complete process and hence change the sequencing of tasks. Hereby adjust-
ing the relations between the tasks.

B.3. STEP 3: PROCESS ANALYSIS AND OPTIMISATION
In this step the process is analysed and optimised for the actual content of the activities in the tasks. The
process is optimised for multiple objectives resulting in information to assist in making an informed decision
on the optimal solution for the current problem under current constraints (e.g. budget, resources).

B.4. STEP 4: CONCEPT SELECTION
The previous step generates information on optimal solutions. A decision should be made on the new process
architecture taking into account all constraints applicable to the new process architecture. Also the expert
judgement should be taken into account in this step since the optimisation might not account for certain
aspects leading to significant alterations in for example lead time or investment cost.

B.5. STEP 5: RE-STRUCTURE THE PROCESS ARCHITECTURE
Upon increasing the levels of automation in a process different activities might become fully automated.
Restructuring of the process might be of use to cluster tasks based on their level of automation. Clustering
the automated tasks to create large automated blocks might lead to lower overall lead time since no working
hours need to be taken into account for fully automated chains of activities.

B.6. STEP 6: DEVELOPMENT AND IMPLEMENTATION
This is the step of actually developing and implementing the process architecture as determined in the pre-
vious steps. Also the aspects of testing and training are part of this step.

B.7. STEP 7: EVALUATION
Once the new process architecture has been implemented the new process architecture should be evaluated
and benchmark tests should be performed. The information acquired in this evaluation should then feedback
to the methods used during process analysis to update and improve the analysis and optimisation methods.

C
NON-DOMINATING SORTING GENETIC

ALGORITHM

Three important aspects in NSGA-II are discussed in the following subsections. First the fast non-dominated
sorting procedure, secondly then diversity preservation and finally the main loop of the algorithm. For a full
discussion on the algorithm the author refers to [4].

C.1. FAST NON-DOMINATED SORTING PROCEDURE
First for each solution (p) two entities are calculated: the domination count (np) and the set of solutions that
the solution p dominates (Sp).
The solutions in the first non-dominated front have a domination count equal to zero (np = 0). For all so-
lutions in the first non-dominated front each member (q) in the set Sp . Of each q the domination count
is reduced by one, if the domination count of a member becomes zero it is stored in a separate list: Q. The
members in Q belong to the second front. This procedure continues until all fronts have been identified. This
sorting procedure is also shown in Algorithm 2.

C.2. DIVERSITY PRESERVATION APPROACH
As discussed in previous sections an evolutionary (or genetic) algorithm is able to deal with complex Pareto
front shapes. It is desirable that the full shape (and design space) is discovered by the algorithm and therefore
a sustainable diversity in the population is required.
The approach to obtain this diverse population in the NSGA-II is by means of a density estimation and a
crowded-comparison operator.

Density estimation To get an estimate of the density of solutions around a specific solution a cuboid is gen-
erated around this solution. This has been illustrated for the solution i in Figure C.1. This cuboid is based
on the distance from i to two Pareto solutions on either side in the directions of the objectives. The average
side-length of this cuboid is defined as the crowding distance (idi st ance).
The example in Figure C.1 displays the cuboid for two objective functions. The approach is however not
limited to two objectives, it can handle any number of objectives. Therefore the population is sorted for an
objective, and the boundary values are assigned as the infinite values. Using this infinite value the crowd-
ing distance is calculated with normalised values. This procedure is executed for all objectives. The nor-
malised crowding distances per objective per solution are accumulated resulting in an overall crowding dis-
tance value.
This overall crowding distance value provides an indication of the relative proximity to other solutions and is
used by the crowded-comparison operator discussed in the following paragraph.

Crowded-comparison operator To generate a uniformly spread-out Pareto front the crowded-comparison
operator is applied. This operator guides the algorithm during the decision in the main loop if two equal
solutions are present. Every individual solution i has the following two attributes: 1) a non-domination rank
(ir ank) and 2) a crowding distance (idi st ance).

93

94 C. NON-DOMINATING SORTING GENETIC ALGORITHM

Algorithm 2 Fast non-dominated sort [4]

1: for each p ∈ P do
2: Sp =;
3: np = 0
4: for each q ∈ P do
5: if p ≺ q then
6: Sp = Sp ∪q
7: else if q ≺ p then
8: np = np +1
9: end if

10: end for
11: if np = 0 then
12: pr ank = 1
13: F1 = F1 ∪p
14: end if
15: end for
16: i = 1
17: while Fi 6= ; do
18: Q =;
19: for each p ∈ Fi do
20: for each q ∈ Sp do
21: nq = nq −1
22: if nq = 0 then
23: qr ank = i +1
24: Q =Q ∪q
25: end if
26: end for
27: end for
28: i = i +1
29: Fi =Q
30: end while

The partial order ≺n is defined in Algorithm 3.

Algorithm 3 Crowded-comparison operator [4]

1: i ≺n j
2: if (ir ank < jr ank)
3: or((ir ank = jr ank) and (idi st ance > jdi st ance))

Meaning that if two solutions are compared first the domination rank is checked. The solution with the lower
(better) rank is selected. If the non-domination rank is equal the solution with the larger crowding distance
(solution in less crowded region) is selected.

C.3. ALGORITHM MAIN LOOP
With the knowledge of the above described elements of the algorithm the main loop can be discussed. The
optimisation starts with a random population, P0. This initial population is sorted based on non-domination
and a fitness value is assigned based on the non-domination level.
Based on tournament selection, recombination and mutation operators of the algorithm the offspring popu-
lation (Q0) of size N is created. With these two population (P0 and Q0) the following generations are created.
The algorithm for the following generations is discussed in the following paragraphs.
For the following generations (tth+1 generation) the algorithm as state in Algorithm 4 is used. First a com-
bined population (Rt) is made based on Pt and Qt , the size of Rt is thus 2N . These solutions are now sorted
using the non-dominated sort multiple sets of non-dominated fronts with F1 being the best non-dominated
set. The population of Pt+1 is filled with the best solutions from the sorted fronts starting with solutions from
F1, subsequently F2 and so forth until Pt+1 consists of N solutions. Lets say that Fl ast is the last set to be
added but that the total count of solutions in F1 to Fl ast is larger than N . In this case the set Fl ast is sorted

C.3. ALGORITHM MAIN LOOP 95

Figure C.1: Crowding distance calculation for solution i [4]

using the crowded-comparison operator.
The new population Pt+1 is then used for tournament selection, recombination and mutation operators to
generate the population of Qt+1.

Algorithm 4 NSGA-II main loop [4]

1: Rt = Pt ∪Qt
2: F = f ast −non −domi nated − sor t (Rt)
3: Pt+1 =; and i = 1
4: while |Pt+1|+ |Fi | ≥ N do
5: cr owdi ng −di st ance −assi g nment (Fi)
6: Pt+1 = Pt+1 ∪Fi
7: i = i +1
8: end while
9: Sort(Fi ,≺n)

10: Pt+1 = Pt+1 ∪Fi [1 : (N −|Pt+1|)]
11: Qt+1 = make −new −pop(Pt+1)
12: t = t +1

D
CASE DESCRIPTION: OPTIMISATION

RELIABILITY

In Section 7.3 a case is described on a high level as illustrated in Figure 7.8. This case is used in the opti-
misation reliability analysis. This appendix provides the detailed information on the inputs as used in the
simulation algorithm. Solely the resource and process parameters are discussed the simulation settings and
methodology parameters are as discussed in Appendix G. Furthermore the default optimisation settings are
provided in Table D.4.

D.1. RESOURCE PARAMETERS
Information regarding the cost of the resources can be seen in Table D.1.

Table D.1: Definition of resources as initiated in the simulation

Resource type Available amount Hour rate

Dummy resource 1 1 50
Dummy resource 2 1 70

D.2. PROCESS PARAMETERS
The parameters describing the process are provided in the following tables and figure. First in Table D.2
the parameters describing the process on a high level are provided. This information matches with the data
structure of the input files for the simulator. Subsequently in Figure D.1 the Design Structure Matrix (DSM)
on task level is provided. Next in Table D.3 the parameters for the process on an activity level are provided.

Figure D.1: Design Structure Matrix of the process defined on a task level

97

98 D. CASE DESCRIPTION: OPTIMISATION RELIABILITY

Table D.2: Parameters for the process description on a task level

Percentages of duration

Task name Duration Resources Acquire Pre-
process

Analyse Decide Post-
process

Implement

Task 1 10 dummy re-
source 1

10 20 30 0 20 20

Task 2 20 dummy re-
source 2

20 30 15 0 25 10

Task 3 30 dummy re-
source 1

10 20 20 20 20 10

Task 4 40 dummy re-
source 2

10 20 30 0 20 20

Task 5 30 dummy re-
source 1

20 30 15 0 25 10

Task 6 20 dummy re-
source 2

10 20 20 20 20 10

Table D.3: Parameters for the process description on an activity level

Name Duration Current
LoA

Max
LoA

Resources Type of
activity

Develop-
ment
effort

Integra-
tion
appli-
cation

Integra-
tion
class

Integra-
tion
experi-
ence

Acquire - Task 1 1 1 4 dummy re-
source 1

acquire 0 0 N/A

Pre-process - Task
1

2 1 4 dummy re-
source 1

process 0 0 N/A

Analyse - Task 1 3 1 4 dummy re-
source 1

analyse 10 FEM 3 1

Post-process - Task
1

2 1 4 dummy re-
source 1

process 0 0 N/A

Implement - Task 1 2 1 4 dummy re-
source 1

implement 0 0 N/A

Acquire - Task 2 4 1 4 dummy re-
source 2

acquire 0 0 N/A

Pre-process - Task
2

6 1 4 dummy re-
source 2

process 0 0 N/A

Analyse - Task 2 3 1 4 dummy re-
source 2

analyse 5 CATIA 2 1

Post-process - Task
2

5 1 4 dummy re-
source 2

process 0 0 N/A

Implement - Task 2 2 1 4 dummy re-
source 2

implement 1 ERP 1 1

Acquire - Task 3 3 1 4 dummy re-
source 1

acquire 0 0 N/A

Pre-process - Task
3

6 1 4 dummy re-
source 1

process 0 0 N/A

Analyse - Task 3 6 1 4 dummy re-
source 1

analyse 0 0 N/A

Decide - Task 3 6 1 4 dummy re-
source 1

decide 1 CRM 0 1

Post-process - Task
3

6 1 4 dummy re-
source 1

process 0 0 N/A

Implement - Task 3 3 1 4 dummy re-
source 1

implement 0 0 N/A

Continued on next page

D.3. OPTIMISATION SETTINGS 99

Table D.3 – Continued from previous page

Name Duration Current
LoA

Max
LoA

Resources Type of
activity

Develop-
ment
effort

Integra-
tion
appli-
cation

Integra-
tion
class

Integra-
tion
experi-
ence

Acquire - Task 4 4 1 4 dummy re-
source 2

acquire 0 0 N/A

Pre-process - Task
4

8 1 4 dummy re-
source 2

process 0 0 N/A

Analyse - Task 4 12 1 4 dummy re-
source 2

analyse 5 ERP 1 1

Post-process - Task
4

8 1 4 dummy re-
source 2

process 0 0 N/A

Implement - Task 4 8 1 4 dummy re-
source 2

implement 0 0 N/A

Acquire - Task 5 6 1 4 dummy re-
source 1

acquire 0 0 N/A

Pre-process - Task
5

9 1 4 dummy re-
source 1

process 0 0 N/A

Analyse - Task 5 4,5 1 4 dummy re-
source 1

analyse 6 CATIA 2 1

Post-process - Task
5

7,5 1 4 dummy re-
source 1

process 0 0 N/A

Implement - Task 5 3 1 4 dummy re-
source 1

implement 0 0 N/A

Acquire - Task 6 2 1 4 dummy re-
source 2

acquire 0 0 N/A

Pre-process - Task
6

4 1 4 dummy re-
source 2

process 0 0 N/A

Analyse - Task 6 4 1 4 dummy re-
source 2

analyse 2 CRM 1 1

Decide - Task 6 4 1 4 dummy re-
source 2

decide 0 0 N/A

Post-process - Task
6

4 1 4 dummy re-
source 2

process 0 0 N/A

Implement - Task 6 2 1 4 dummy re-
source 2

implement 0 0 N/A

D.3. OPTIMISATION SETTINGS

Table D.4: Default parameter settings as used in the optimisation reliability analysis

Optimisation parameter Value

Target front size 25
Population size 25
Start population No method selected
First population size 25
Random seed 52
Weighting factor 0,7
Inverse crossover probability 0,85
Maximum number of iterations 50

E
OPTIMISATION RESULTS: ROBUSTNESS

ANALYSIS

In Section 7.3.3 the robustness of the optimisation algorithm is discussed. Therefore multiple optimisations
are performed using different settings. In this appendix the results of two optimisations using identical opti-
misation settings are displayed.
The optimisation results in different Pareto optimal solutions for that specific optimisation. Two profiles with
pareto optimal solutions and corresponding design vectors are shown in Figure E.1 and Figure E.2. The op-
timisation settings for the two optimisations are identical, except for the random seed, and can be found in
Table E.1.
In Figures E.1 and E.2 the design vectors for Pareto optimal solutions are plotted per row. Each column is an
activity in the process. Hence the figure provides an overview of the different process architectures on the
Pareto front. The rows are sorted on lead time (highest lead time on top).

Table E.1: Optimisation settings to verify the optimisation robustness as discussed in Section 7.3.3

Optimisation parameter Value

Target front size 60
Population size 60
Start population No method selected
First population size 60
Random seed 41 (E.1) and 39 (E.2)
Weighting factor 0,7
Inverse crossover probability 0,85
Maximum number of iterations 50

101

102 E. OPTIMISATION RESULTS: ROBUSTNESS ANALYSIS

Figure E.1: Visually enhanced overview of all Pareto optimal design vectors for first run

Figure E.2: Visually enhanced overview of all Pareto optimal design vectors for second run

F
CASE DESCRIPTION: OPTIMISATION

CONVERGENCE

In Section 7.3.4 the convergence of the optimisation to an actual optimal solution is discussed. Therefore
a specific case is used. Specifications of this case are described in this appendix. First on a high level the
flowchart is presented, followed by more detailed inputs as provided to the simulation and optimisation mod-
ules.

F.1. PROCESS FLOWCHART

In Figure F.1 a flowchart of the process on task level is presented.

1 4

2

3

5

2
Resource 1

6

Figure F.1: Workflow of the process on a task level with indicated resources

F.2. RESOURCE PARAMETERS

Information regarding the cost of the resources can be seen in Table F.1.

Table F.1: Definition of resources as initiated in the simulation

Resource type Available amount Hour rate

Resource 1 2 100

F.3. PROCESS PARAMETERS

The parameters describing the process are provided in the following tables and figure. First in Table F.2 the
parameters describing the process on a high level are provided. This information matches with the data
structure of the input files for the simulator. Subsequently in Figure F.2 the DSM on task level is provided.
Next in Table F.3 the parameters for the process on an activity level are provided.

103

104 F. CASE DESCRIPTION: OPTIMISATION CONVERGENCE

Table F.2: Parameters for the process description on a task level

Percentages of duration

Task name Duration Resources Acquire Pre-
process

Analyse Decide Post-
process

Implement

Task 1 20 resource 1 30 0 50 0 0 20
Task 2 20 resource 1 20 0 0 50 0 30
Task 3 20 resource 1 10 0 80 0 0 10
Task 4 20 resource 1 30 0 50 0 0 20
Task 5 20 resource 1 20 0 0 50 0 30
Task 6 20 resource 1 10 0 80 0 0 10

Figure F.2: Design Structure Matrix of the process defined on a task level

Table F.3: Parameters for the process description on an activity level

Name Duration Current
LoA

Max
LoA

Resources Type of
activity

Develop-
ment
effort

Integra-
tion
appli-
cation

Integra-
tion
class

Integra-
tion
experi-
ence

Acquire - Task 1 6 4 4 resource 1 acquire 0 0 N/A
Analyse - Task 1 10 3 4 resource 1 analyse 5 ERP 0 1
Implement - Task 1 4 3 4 resource 1 implement 0 0 N/A
Acquire - Task 2 4 4 4 resource 1 acquire 0 0 N/A
Decide - Task 2 10 3 4 resource 1 decide 3 ERP 0 1
Implement - Task 2 6 4 4 resource 1 implement 0 0 N/A
Acquire - Task 3 2 3 4 resource 1 acquire 0 0 N/A
Analyse - Task 3 16 3 4 resource 1 analyse 1 CATIA 0 1
Implement - Task 3 2 3 4 resource 1 implement 0 0 N/A
Acquire - Task 4 6 4 4 resource 1 acquire 0 0 N/A
Analyse - Task 4 10 3 4 resource 1 analyse 6 ERP 0 1
Implement - Task 4 4 3 4 resource 1 implement 0 0 N/A
Acquire - Task 5 4 3 4 resource 1 acquire 0 0 N/A
Decide - Task 5 10 4 4 resource 1 decide 2 CATIA 0 1
Implement - Task 5 6 3 4 resource 1 implement 0 0 N/A
Acquire - Task 6 2 4 4 resource 1 acquire 0 0 N/A
Analyse - Task 6 16 3 4 resource 1 analyse 0 0 N/A
Implement - Task 6 2 4 4 resource 1 implement 0 0 N/A

F.4. OPTIMISATION SETTINGS 105

F.4. OPTIMISATION SETTINGS

Table F.4: Default parameter settings as used in the optimisation convergence analysis

Optimisation parameter Value

Target front size 50
Population size 50
Start population No method selected
First population size 20
Random seed 52
Weighting factor 0,7
Inverse crossover probability 0,85
Maximum number of iterations 50

G
CASE DESCRIPTION: HINGE CONNECTION

This appendix includes an overview of the used input parameters by the simulation program. Due to confi-
dentially some values are normalised or redacted and replaced with an indicative value (hence in the order
of magnitude). Normalised values and indicative values are marked with a ? and ¦ respectively.

G.1. SIMULATION SETTINGS
The parameters in Table G.1 are the input parameters used for the settings of the simulation.

Table G.1: Simulation settings input parameters used in case study (redacted)

Name Value Explanation

Iteration behaviour 1 Determines the behaviour in case of an infinite loop. (1=simula-
tion stops if infinite loop is detected, 2= if infinite loop is detected
the gateway under considerations becomes a regular task, 3= iter-
ation counter is lowered each time. More information is available
in guide.

Maximum task runs 50 Maximum number of times a single task can run (completed) be-
fore the simulation is assumed to be in an infinite loop.

multirun False True or False
Maximum level of automation 4 Maximum level of automation as defined by the user
Server False Availability of a shared server within the project in current sate
Server cost 3000¦ Cost of license for server with central storage capabilities in euros
License False Availability of a KE-chain license within the project in the current

state
License cost 4000¦ Cost of license for workflow management system in euros
Project re-use 1 Number of project to discount the total invest over
Time unit hours The time unit of the duration item in the "task definition" sheet
Hour rate knowledge engineer 125¦ Hour rate of a knowledge engineer as charged to client
Hour rate developer 100¦ Hour rate of a developer as charged to client
Initial process cost 100? Process cost of the as-is situation of the process
Python full path name C:\Users\Mulder

\Graduation
\Code

e.g. "C:\Users\John.Doe\Files\Code"

G.2. METHODOLOGY PARAMETERS
This methodology is supported by multiple parameters and matrices. These are listed in the following tables.
First in Table G.2 various parameters used in cost time calculation are listed. Secondly Table G.3 lists the
Duration Matrix and Cost Matrices. Thirdly the cost of integration matrix can be seen in Table G.4.

107

108 G. CASE DESCRIPTION: HINGE CONNECTION

Table G.2: Methodology input parameters used in case study (redacted)

Parameter Value

kK Ai nt 2¦
kK Aext 0,2¦
kdev 3¦
kcon f 1¦
kmg t 1,1¦
ktr ai ni ng 1,07¦
ttost ar t 0,5¦

Continued on next page

G.2. METHODOLOGY PARAMETERS 109

Table G.3: Methodology matrix input parameters used in case study (redacted)

Time¦

acquire 1 0.80 0,50 0,10
process 1 0.70 0.40 0.20
analyse 1 0.90 0.60 0.15
decide 1 0.65 0.40 0.30
implement 1 0.60 0.30 0.05

Knowledge acquisition¦

acquire 0 0.33 0.66 1
process 0 0.33 0.66 1
analyse 0 0.33 0.66 1
decide 0 0.33 0.66 1
implement 0 0.33 0.66 1

Development¦

acquire 0 0 0 1
process 0 0.1 0.6 1
analyse 0 0.4 0,9 1
decide 0 0 0,7 1
implement 0 0 0.2 1

Integration¦

acquire 0 0 0 1
process 0 0 0 1
analyse 0 0 0 1
decide 0 0 0 1
implement 0 0 0 1

Configuration¦

acquire 0 0,3 0,7 1
process 0 0,3 0,7 1
analyse 0 0,3 0,9 1
decide 0 0,3 0,7 1
implement 0 0,3 0,7 1

License¦

acquire 0 0 0 1
process 0 0 0 1
analyse 0 0 0 1
decide 0 0 0 1
implement 0 0 0 1

Server¦

acquire 0 0 1 0
process 0 0 1 0
analyse 0 0 1 0
decide 0 0 1 0
implement 0 0 1 0

110 G. CASE DESCRIPTION: HINGE CONNECTION

Table G.4: Methodology input parameters for the cost of integration in case study

Class 0 Class 1 Class 2 Class 3

Integration cost (IC) [€] 0 4500 11000 35000

G.3. RESOURCE PARAMETERS
Information regarding the cost of the resources can be seen in Table G.5.

Table G.5: Definition of resources as initiated in the simulation

Resource type Available amount Hour rate

design lead 1 90?

stress lead 1 90?

stress engineer 1 80?

design engineer 1 80?

program manager 1 100?

chief engineer 1 100?

weight engineer 1 80?

cost engineer 1 80?

G.4. PROCESS PARAMETERS
The parameters describing the process are provided in the following tables and figure. First in Table G.6
the parameters describing the process on a high level are provided. This information matches with the data
structure of the input files for the simulator. Subsequently in Figure G.1 the DSM on task level is provided.
Next in Table G.7 the parameters for the process on an activity level are provided.

G.4. PROCESS PARAMETERS 111

Table G.6: Parameters for the process description on a task level

Percentages of duration

Task name Duration Resources Acquire Pre-
process

Analyse Decide Post-
process

Implement

Preparation 100? design lead,
stress lead

50 20 20 0 0 10

Determine bolt
diameter

30? design lead,
stress lead

10 0 40 30 10 10

Determine
bearing type

10? design lead,
stress lead

10 0 40 30 10 10

Bush radial siz-
ing

2,5? stress engi-
neer, design
engineer

20 0 40 0 30 10

Sleeve radial
sizing

2,5? stress engi-
neer, design
engineer

20 0 40 0 30 10

Estimate bolt
length

1,3? design lead 20 0 60 0 10 10

Clevis lug siz-
ing

10? stress engi-
neer, design
engineer

10 0 60 0 20 10

Center lug siz-
ing

10? stress engi-
neer, design
engineer

10 0 60 0 20 10

Generate CA-
TIA model

10? design engi-
neer

20 0 60 0 10 10

Analyse hinge
margins of
safety

10? stress engineer 20 0 50 0 20 10

Analyse ge-
ometrical
constraints

10? design engi-
neer

20 0 50 0 20 10

Compliant
to stress and
design?

2,5? program man-
ager, chief en-
gineer

20 40 10 25 0 5

Analyse hinge
cost

20? cost engineer 20 20 30 0 20 10

Analyse hinge
weight

30? weight engi-
neer

10 0 60 0 20 10

Compliant
to cost and
weight?

2,5? program man-
ager, chief en-
gineer

20 40 10 25 0 5

112 G. CASE DESCRIPTION: HINGE CONNECTION

Figure G.1: Design Structure Matrix of the process defined on a task level

Table G.7: Parameters for the process description on an activity level

Name Duration? Current
LoA

Max
LoA

Resources Type of
activity

Develop-
ment
effort?

Integra-
tion
appli-
cation

Integra-
tion
class

Integra-
tion
experi-
ence

Acquire - Prepara-
tion

100 1 4 design
lead, stress
lead

acquire 100 0 N/A

Pre-process -
Preparation

40 1 4 design
lead, stress
lead

process 33 0 N/A

Analyse - Prepara-
tion

40 1 4 design
lead, stress
lead

analyse 33 0 N/A

Implement -
Preparation

20 1 4 design
lead, stress
lead

implement 0 0 N/A

Acquire - Deter-
mine bolt diameter

6 1 4 design
lead, stress
lead

acquire 0 0 N/A

Analyse - Deter-
mine bolt diameter

24 2 4 design
lead, stress
lead

analyse 12 0 N/A

Decide - Deter-
mine bolt diame-
ter

18 1 3 design
lead, stress
lead

decide 0 0 N/A

Post-process - De-
termine bolt diam-
eter

6 1 4 design
lead, stress
lead

process 0 0 N/A

Implement - De-
termine bolt diam-
eter

6 1 4 design
lead, stress
lead

implement 0 0 N/A

Acquire - De-
termine bearing
type

2 1 4 design
lead, stress
lead

acquire 0 0 N/A

Continued on next page

G.4. PROCESS PARAMETERS 113

Table G.7 – Continued from previous page

Name Duration? Current
LoA

Max
LoA

Resources Type of
activity

Develop-
ment
effort?

Integra-
tion
appli-
cation

Integra-
tion
class

Integra-
tion
experi-
ence

Analyse - De-
termine bearing
type

8 1 4 design
lead, stress
lead

analyse 12 0 N/A

Decide - Deter-
mine bearing type

6 1 4 design
lead, stress
lead

decide 0 0 N/A

Post-process -
Determine bearing
type

2 1 4 design
lead, stress
lead

process 0 0 N/A

Implement - De-
termine bearing
type

2 1 4 design
lead, stress
lead

implement 0 0 N/A

Acquire - Bush ra-
dial sizing

1 1 4 stress en-
gineer,
design
engineer

acquire 0 0 N/A

Analyse - Bush ra-
dial sizing

2 1 4 stress en-
gineer,
design
engineer

analyse 6 0 N/A

Post-process -
Bush radial sizing

1,5 1 4 stress en-
gineer,
design
engineer

process 2,5 0 N/A

Implement - Bush
radial sizing

0.5 1 4 stress en-
gineer,
design
engineer

implement 0 0 N/A

Acquire - Sleeve ra-
dial sizing

1 1 4 stress en-
gineer,
design
engineer

acquire 0 0 N/A

Analyse - Sleeve ra-
dial sizing

2 1 4 stress en-
gineer,
design
engineer

analyse 6 0 N/A

Post-process -
Sleeve radial sizing

1,5 1 4 stress en-
gineer,
design
engineer

process 2,5 0 N/A

Implement -
Sleeve radial sizing

1 1 4 stress en-
gineer,
design
engineer

implement 0 0 N/A

Acquire - Estimate
bolt length

1 1 4 design lead acquire 0 0 N/A

Analyse - Estimate
bolt length

1.5 1 4 design lead analyse 6 0 N/A

Post-process - Esti-
mate bolt length

0,25 1 4 design lead process 2,5 0 N/A

Implement - Esti-
mate bolt length

0,25 1 4 design lead implement 0 0 N/A

Continued on next page

114 G. CASE DESCRIPTION: HINGE CONNECTION

Table G.7 – Continued from previous page

Name Duration? Current
LoA

Max
LoA

Resources Type of
activity

Develop-
ment
effort?

Integra-
tion
appli-
cation

Integra-
tion
class

Integra-
tion
experi-
ence

Acquire - Clevis lug
sizing

2 1 4 stress en-
gineer,
design
engineer

acquire 0 0 N/A

Analyse - Clevis lug
sizing

12 3 4 stress en-
gineer,
design
engineer

analyse 6 TH3
tools

1 1

Post-process - Cle-
vis lug sizing

4 1 4 stress en-
gineer,
design
engineer

process 2,5 0 N/A

Implement - Clevis
lug sizing

2 1 4 stress en-
gineer,
design
engineer

implement 0 0 N/A

Acquire - Center
lug sizing

2 1 4 stress en-
gineer,
design
engineer

acquire 0 0 N/A

Analyse - Center
lug sizing

12 3 4 stress en-
gineer,
design
engineer

analyse 6 TH3
tools

1 1

Post-process -
Center lug sizing

4 1 4 stress en-
gineer,
design
engineer

process 1,5 0 N/A

Implement - Cen-
ter lug sizing

2 1 4 stress en-
gineer,
design
engineer

implement 0 0 N/A

Acquire - Generate
CATIA model

4 1 4 design en-
gineer

acquire 0 0 N/A

Analyse - Generate
CATIA model

12 2 4 design en-
gineer

analyse 100 CATIA 2 0,8

Post-process -
Generate CATIA
model

2 2 4 design en-
gineer

process 3 0 N/A

Implement - Gen-
erate CATIA model

2 1 4 design en-
gineer

implement 0 0 N/A

Acquire - Analyse
hinge margins of
safety

2 1 4 stress engi-
neer

acquire 0 0 N/A

Analyse - Analyse
hinge margins of
safety

10 2 4 stress engi-
neer

analyse 17 TH3
tools

1 1

Post-process -
Analyse hinge
margins of safety

2 2 4 stress engi-
neer

process 1,5 0 N/A

Implement - Anal-
yse hinge margins
of safety

2 1 4 stress engi-
neer

implement 0 0 N/A

Continued on next page

G.4. PROCESS PARAMETERS 115

Table G.7 – Continued from previous page

Name Duration? Current
LoA

Max
LoA

Resources Type of
activity

Develop-
ment
effort?

Integra-
tion
appli-
cation

Integra-
tion
class

Integra-
tion
experi-
ence

Acquire - Anal-
yse geometrical
constraints

4 1 4 design en-
gineer

acquire 0 0 N/A

Analyse - Anal-
yse geometrical
constraints

10 1 4 design en-
gineer

analyse 30 CATIA 2 0,8

Post-process -
Analyse geometri-
cal constraints

4 2 4 design en-
gineer

process 1 0 N/A

Implement - Anal-
yse geometrical
constraints

2 1 4 design en-
gineer

implement 0 0 N/A

Acquire - Compli-
ant to stress and
design?

1 1 4 program
manager,
chief engi-
neer

acquire 0 0 N/A

Pre-process -
Compliant to
stress and design?

2 1 4 program
manager,
chief engi-
neer

process 1,5 0 N/A

Analyse - Compli-
ant to stress and
design?

0,5 1 4 program
manager,
chief engi-
neer

analyse 13 0 N/A

Decide - Compli-
ant to stress and
design?

1,25 1 3 program
manager,
chief engi-
neer

decide 0 0 N/A

Implement - Com-
pliant to stress and
design?

0,25 1 4 program
manager,
chief engi-
neer

implement 0 0 N/A

Acquire - Analyse
hinge cost

6 1 4 cost engi-
neer

acquire 0 0 N/A

Pre-process - Anal-
yse hinge cost

6 2 4 cost engi-
neer

process 9 0 N/A

Analyse - Analyse
hinge cost

12 3 4 cost engi-
neer

analyse 25 Excel 1 0,5

Post-process -
Analyse hinge cost

8 3 4 cost engi-
neer

process 3 0 N/A

Implement - Anal-
yse hinge cost

4 1 4 cost engi-
neer

implement 0 0 N/A

Acquire - Analyse
hinge weight

6 1 4 weight en-
gineer

acquire 0 0 N/A

Analyse - Analyse
hinge weight

36 2 4 weight en-
gineer

analyse 33 CATIA 2 0,8

Post-process -
Analyse hinge
weight

12 1 4 weight en-
gineer

process 3 0 N/A

Implement - Anal-
yse hinge weight

6 1 4 weight en-
gineer

implement 0 0 N/A

Acquire - Com-
pliant to cost and
weight?

1 1 4 program
manager,
chief engi-
neer

acquire 0 0 N/A

Continued on next page

116 G. CASE DESCRIPTION: HINGE CONNECTION

Table G.7 – Continued from previous page

Name Duration? Current
LoA

Max
LoA

Resources Type of
activity

Develop-
ment
effort?

Integra-
tion
appli-
cation

Integra-
tion
class

Integra-
tion
experi-
ence

Pre-process -
Compliant to cost
and weight?

2 1 4 program
manager,
chief engi-
neer

process 1,5 0 N/A

Analyse - Com-
pliant to cost and
weight?

0,5 1 4 program
manager,
chief engi-
neer

analyse 13 0 N/A

Decide - Compli-
ant to cost and
weight?

1,25 1 3 program
manager,
chief engi-
neer

decide 0 0 N/A

Implement - Com-
pliant to cost and
weight?

0,25 1 4 program
manager,
chief engi-
neer

implement 0 0 N/A

H
OPTIMISATION RESULTS: HINGE

CONNECTION

The figures below show the optimisation profiles for the optimisations of the case study. First in Figure H.1 a
summary is given of the levels of automations per task for optimisation one. Next in Figure H.2 the profiles
of levels of automation for optimisation 1 are plotted on a task level for all Pareto optimal solutions. Here
the average level of automation of a task is used. This is determined by taking the average of the different
activities in the task. Next in Figure H.3 a similar profile is displayed but on an activity level.
Next in Figures H.5 and H.6 similar profiles are plotted for optimisation 2.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Pe
rc

en
ta

ge
 o

f P
ar

et
o

op
tim

al
 so

lu
tio

ns

1<=LoA<=2

2<LoA<=3

3<LoA<=4

Figure H.1: Summary of the different levels of automation per task for optimisation 1

117

118 H. OPTIMISATION RESULTS: HINGE CONNECTION

Figure H.2: Profile of optimisation levels for all tasks (columns) and Pareto optimal solutions (rows) of optimisation 1

Figure H.3: Profile of optimisation levels for all activities (columns) and Pareto optimal solutions (rows) of optimisation 1

119

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Pe
rc

en
ta

ge
 o

f P
ar

et
o

op
tim

al
 so

lu
tio

ns

1<=LoA<=2

2<LoA<=3

3<LoA<=4

Figure H.4: Summary of the different levels of automation per task for optimisation 2

Figure H.5: Profile of optimisation levels for all tasks (columns) and Pareto optimal solutions (rows) of optimisation 2

120 H. OPTIMISATION RESULTS: HINGE CONNECTION

Figure H.6: Profile of optimisation levels for all activities (columns) and Pareto optimal solutions (rows) of optimisation 2

I
OPTIMISATION SETTINGS: HINGE

CONNECTION

The results of the case study are obtained using the Optimus platform. The optimisation settings for the two
optimisations presented in Section 8.3 are displayed in Table I.1 and I.2 for the MOO of lead time vs invest-
ment cost and lead time vs number of projects until BEP respectively.

Table I.1: Optimisation settings for the MOO trading off lead time and investment cost

Optimisation parameter Description

Target front size 80
Population size 80
Start population No method selected
First population size 40.
Random seed 60
Weighting factor 0,7
Inverse crossover probability 0,85
Maximum number of iterations 70

Table I.2: Optimisation settings for the MOO trading off lead time and number of projects until BEP

Optimisation parameter Description

Target front size 80
Population size 80
Start population No method selected
First population size 40
Random seed 55
Weighting factor 0,7
Inverse crossover probability 0,85
Maximum number of iterations 70

121

BIBLIOGRAPHY

[1] W. Verhagen, P. Bermell-Garcia, R. E. van Dijk, and R. Curran, A critical review of Knowledge-Based Engi-
neering: An identification of research challenges, Advanced Engineering Informatics 26, 5 (2012).

[2] A. Tripathy and S. D. Eppinger, Organizing Global Product Development for Complex Engineered Systems,
IEEE Transactions on Engineering Management 58, 510 (2011).

[3] A. Yassine and D. Braha, Complex Concurrent Engineering and the Design Structure Matrix Method, Con-
current Engineering 11, 165 (2003).

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: Nsga-
ii, IEEE Transactions on Evolutionary Computation 6, 182 (2002).

[5] B. de Vrught, A value modelling method to assess the operational impact of automation within industry:
IMPROVE, Master’s thesis, Delft University of Technology (2014).

[6] S. Brown and K. Eisenhardt, Product development: past research, present findings, and future directions,
Academy of management review 20, 343 (1995).

[7] D. Reinertsen, The Principles of Product Development Flow: Second Generation Lean Product Develop-
ment (Celeritas, 2009).

[8] G. La Rocca, Knowledge Based Engineering techniques to support aircraft design and optimization, Ph.D.
thesis, Delft University of Technology (2011).

[9] C. Terwiesch, C. H. Loch, and A. D. Meyer, Exchanging preliminary information in concurrent engineer-
ing: Alternative coordination strategies, Organization Science 13, 402 (2002).

[10] K. B. Clark and T. Fujimoto, Product development performance: Strategy, organization, and management
in the world auto industry (Harvard Business Press, 1991).

[11] E. J. Schut, Conceptual design automation, Ph.D. thesis, Delft University of Technology (2010).

[12] T. B. Sheridan and R. Parasuraman, Human-automation interaction, Reviews of human factors and er-
gonomics 1, 89 (2005).

[13] W. J. Verhagen, B. de Vrught, J. Schut, and R. Curran, A method for identification of automation po-
tential through modelling of engineering processes and quantification of information waste, Advanced
Engineering Informatics (2015).

[14] S. Cho and S. Eppinger, A Simulation-Based Process Model for Managing Complex Design Projects, IEEE
Transactions on Engineering Management 52, 316 (2005).

[15] E. J. Schut, S. Kosman, and R. Curran, A value scan methodology to improve industrial operations, in
Proceedings of the 19th ISPE international conference on concurrent engineering (2013) pp. 411–423.

[16] Idealism project page, ("2015"), accessed: 2015-01-07.

[17] V. Krishnan and K. T. Ulrich, Product Development Decisions: A Review of the Literature, Management
Science 47, 1 (2001).

[18] N. Joglekar and A. Yassine, Performance of coupled product development activities with a deadline, Man-
agement Science 47, 1605 (2001).

[19] T. Browning and S. Eppinger, Modeling impacts of process architecture on cost and schedule risk in prod-
uct development, Engineering Management 49, 428 (2002).

123

http://dx.doi.org/10.1016/j.aei.2011.06.004
http://dx.doi.org/10.1109/TEM.2010.2093531
http://cer.sagepub.com/cgi/doi/10.1177/106329303034503
http://cer.sagepub.com/cgi/doi/10.1177/106329303034503
http://amr.aom.org/content/20/2/343.short
http://dx.doi.org/ 10.1109/TEM.2005.850722
http://dx.doi.org/ 10.1109/TEM.2005.850722
https://itea3.org/project/idealism.html
http://dx.doi.org/ 10.1287/mnsc.47.1.1.10668
http://dx.doi.org/ 10.1287/mnsc.47.1.1.10668
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.47.12.1605.10240
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.47.12.1605.10240
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1176870

124 BIBLIOGRAPHY

[20] D. Reinertsen, Lean thinking isn’t so simple, Electronic design 47, 48H (1999).

[21] M. Li, Y. Yang, J. Bai, and X. Qin, A framework for integrated optimization of Product Development Pro-
cess, in proceedings of the international Conference on Research and Practical Issues of Enterprise Infor-
mation Systems, Vol. 255 (2008) pp. 1325–1334.

[22] V. Krishnan, S. D. Eppinger, and D. E. Whitney, Model-Based Framework to Overlap Product Development
Activities, Management Science 43, 437 (2014).

[23] M. van Tooren, G. La Rocca, and T. Chiciodean, Advanced Design Methodologies (University Press, 2009).

[24] H. Abdelsalam and H. Bao, A simulation-based optimization framework for product development cycle
time reduction, IEEE Transactions on Engineering Management 53, 69 (2006).

[25] Q. Yang, T. Yao, T. Lu, and B. Zhang, An Overlapping-Based Design Structure Matrix for Measuring Inter-
action Strength and Clustering Analysis in Product Development Project, IEEE Transactions on Engineer-
ing Management 61, 159 (2014).

[26] R. Brandao and M. Wynn, Improving the New Product Development Process through ICT Systems in the
Aerospace Industry: A Report on Case Study Research, in proceedings of the 2009 International Conference
on Information, Process, and Knowledge Management (2009) pp. 147–152.

[27] Z. Wu, L. Li, and H. Zhao, Simulation and analysis of schedule and cost of product development, in
proceedings of the 2010 International Conference on Mechanical Automation and Control Engineering,
Wuhan, China (2010) pp. 2–7.

[28] J. A. Reed, G. J. Follen, and A. A. Afjeh, Improving the aircraft design process using Web-based modeling
and simulation, ACM Transactions on Modeling and Computer Simulation 10, 58 (2000).

[29] T. R. Browning, Use of Dependency Structure Matrices for Product Development Cycle Time Reduction, in
Fifth ISPE International Conference on Concurrent Engineering: Research and Applications, Tokyo, Japan
(1998) pp. 1–8.

[30] C. T. Fitz-Gibon, Performance Indicators (WBC Print Ltd, Bristol, 1990).

[31] P. Adler and A. Mandelbaum, Getting the most out of your product development process, Harvard Business
Review March-April, 1 (1996).

[32] T. R. Browning and R. V. Ramasesh, A Survey of Activity Network-Based Process Models for Managing
Product Development Projects, Production and Operations Management 16, 217 (2007).

[33] S. D. Eppinger, D. E. Whitney, R. P. Smith, and D. A. Gebala, A model-based method for organizing tasks
in product development, Research in Engineering Design 6, 1 (1994).

[34] M. R. Millson, S. P. Raj, and D. Wilemon, A Survey of Major Approaches for Accelerating New Product
Development, Journal of Product Innovation Management 9, 53 (1992).

[35] W. van der Aalst and A. ter Hofstede, YAWL: Yet Another Workflow Language, Information Systems 30,
245 (2005).

[36] R. Smith and S. Eppinger, A predictive model of sequential iteration in engineering design, Management
Science 43, 1104 (1997).

[37] S. Ha and H.-W. Suh, A timed colored Petri nets modeling for dynamic workflow in product development
process, Computers in Industry 59, 193 (2008).

[38] M. Hammer, Seven insights about processes, in Proceedings of the Conference on Strategic Power Process
Ensuring Survival Creating Competitive Advantage, Boston, MA, US (2001).

[39] T. Browning, Applying the design structure matrix to system decomposition and integration problems: a
review and new directions, IEEE Transactions on Engineering Management 48, 292 (2001).

[40] C. van der Velden, C. Bil, and X. Xu, Adaptable methodology for automation application development,
Advanced Engineering Informatics 26, 231 (2012).

http://link.springer.com/chapter/10.1007/978-0-387-76312-5_61
http://link.springer.com/chapter/10.1007/978-0-387-76312-5_61
http://dx.doi.org/10.1109/TEM.2005.861805
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6549128
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6549128
http://dx.doi.org/10.1109/eKNOW.2009.31
http://dx.doi.org/10.1109/eKNOW.2009.31
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5535675
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5535675
http://dx.doi.org/ 10.1145/353735.353739
http://www-bcf.usc.edu/~padler/research/HBR_prod_dev_proc.pdf
http://www-bcf.usc.edu/~padler/research/HBR_prod_dev_proc.pdf
http://dx.doi.org/10.1111/j.1937-5956.2007.tb00177.x
http://dx.doi.org/ 10.1007/BF01588087
http://dx.doi.org/ 10.1111/1540-5885.910053
http://dx.doi.org/10.1016/j.is.2004.02.002
http://dx.doi.org/10.1016/j.is.2004.02.002
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.43.8.1104
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.43.8.1104
http://dx.doi.org/10.1016/j.compind.2007.06.016
http://dx.doi.org/10.1109/17.946528
http://dx.doi.org/10.1016/j.aei.2012.02.007

BIBLIOGRAPHY 125

[41] K. Clark, W. Chew, and T. Fujimoto, Product development in the world auto industry, Brookings Papers
on Economic Activity 1987, 729 (1987).

[42] J. J. Hart and J. Valasek, Methodology for prototyping increased levels of automation for spacecraft ren-
dezvous functions (Texas A&M University, 2010).

[43] Å. Fasth, J. Stahre, and K. Dencker, Measuring and analysing levels of automation in an assembly system,
in Manufacturing Systems and Technologies for the New Frontier (Springer, 2008) pp. 169–172.

[44] I. Balogh, K. Ohlsson, G.-Å. Hansson, T. Engström, and S. Skerfving, Increasing the degree of automa-
tion in a production system: consequences for the physical workload, International Journal of Industrial
Ergonomics 36, 353 (2006).

[45] R. Parasuraman, T. Sheridan, and C. Wickens, A model for types and levels of human interaction with
automation, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 30,
286 (2000).

[46] C. A. Miller and R. Parasuraman, Beyond levels of automation: An architecture for more flexible human-
automation collaboration, in Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
Vol. 47 (SAGE Publications, 2003) pp. 182–186.

[47] C. Wickens, Stages and Levels of Automation: An Integrated Meta-analysis, in The human factors and
ergonomics society 54th annual meeting, Vol. 4 (2010) pp. 389–393.

[48] R. Parasuraman, Designing automation for human use: empirical studies and quantitative models, Er-
gonomics 43, 931 (2000).

[49] C. L. Emberey, N. Milton, J. Berends, M. Van Tooren, S. Van der Elst, and B. Vermeulen, Applica-
tion of knowledge engineering methodologies to support engineering design application development in
aerospace, in proceedings of the 7th AIAA Aviation Technology, Integration and Operations Conference
(ATIO) (2007).

[50] N. R. Milton, Knowledge acquisition in practice: a step-by-step guide (Springer Science & Business Media,
2007).

[51] N. Srinivas and K. Deb, Multiobjective optimization using nondominated sorting in genetic algorithms,
Evolutionary computation 2, 221 (1994).

[52] K. Müller and T. Vignaux, SimPy: Simulating Systems in Python, (2003).

[53] Optimus Theoretical Background, Noesis Solutions, 10th ed. (2014).

[54] R. P. Smith and J. A. Morrow, Product development process modeling, Design Studies 20, 237 (1999).

http://www.jstor.org/stable/2534453
http://www.jstor.org/stable/2534453
http://dx.doi.org/ 10.1109/3468.844354
http://dx.doi.org/ 10.1109/3468.844354
http://www.onlamp.com/pub/a/python/2003/02/27/simpy.html?page=2
http://dx.doi.org/ 10.1016/S0142-694X(98)00018-0

	Acknowledgements
	Summary
	List of Figures
	List of Tables
	List of acronyms
	Nomenclature
	Introduction
	The need for automation in product development
	Challenges in the application of automation
	Research objective, approach and scope
	Research objective
	Research approach
	Research scope
	Research assumptions

	Research partners
	Delft University of Technology
	KE-works
	Noesis Solutions
	Fokker Technologies

	Thesis structure

	Background
	The product development process
	General product development processes
	Complex aerospace products
	PDP characteristics

	Performance in the product development process
	Cost
	Time
	Quality

	Information Quality
	PDP Modelling and analysis
	PDP modelling
	PDP analysis

	Automation
	Definition of automation
	Levels of automation
	Types of automation
	Effects of automation
	Potential for automation application

	PDP modelling approach
	Philosophy
	Process modelling
	Process granularity
	Activity types
	Activity interdependency

	Levels of automation modelling
	Activity duration estimation method
	Process lead time estimation method
	Process cost estimation method
	Automation investment cost estimation method
	Activity automation cost attributes
	Total automation investment cost

	Integral modelling approach

	Simulation
	Discrete Event Simulation
	Simulation structure
	Behaviour
	Iteration
	Rework
	Collaboration
	Resource allocation

	Simulation outputs
	Simulation activity sequence

	Optimisation strategy
	Optimisation problem
	Multi-Objective Optimisation (MOO)
	Need for optimisation
	Algorithm requirements
	Non-dominated Sorting Differential Evolution Algorithm

	Integrated simulation and optimisation framework
	Definition and configuration platform
	Simulation and analysis platform
	Optimus platform
	Integrated framework performance

	Framework verification and validation
	Simulation verification
	Optimisation verification
	Test case 1: Iteration
	Test case 2: Parallelisation
	Test case 3: Resource cost

	Optimisation reliability
	Optimisation settings
	Sensitivity analysis of optimisation settings
	Optimisation consistency
	Optimisation convergence

	Discussion on methodology validation

	Case study: Rudder hinge connections
	Hinge connection design process
	Product description
	Process description

	Case study input parameters
	Optimisation results
	Discussion of optimisation results
	Analysis of automation scenario's
	Implementation of KE-chain
	Implementation of specific KBE application
	Maximum level automation

	Input parameter sensitivity

	Conclusions, limitations and recommendations
	Conclusions
	Limitations
	Recommendations

	CEAS Conference Technical Paper
	PDP optimisation steps
	Step 1: Initial knowledge acquisition
	Step 2: Process re-structuring
	Step 3: Process analysis and optimisation
	Step 4: Concept selection
	Step 5: Re-structure the process architecture
	Step 6: Development and implementation
	Step 7: Evaluation

	Non-dominating Sorting Genetic Algorithm
	Fast non-dominated sorting procedure
	Diversity preservation approach
	Algorithm main loop

	Case description: Optimisation reliability
	Resource parameters
	Process parameters
	Optimisation settings

	Optimisation results: Robustness analysis
	Case description: Optimisation convergence
	Process flowchart
	Resource parameters
	Process parameters
	Optimisation settings

	Case description: Hinge connection
	Simulation settings
	Methodology parameters
	Resource parameters
	Process parameters

	Optimisation results: Hinge connection
	Optimisation settings: Hinge connection
	Bibliography

