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Scan-Based Immersed Isogeometric Flow 
Analysis 

Clemens V. Verhoosel, E. Harald van Brummelen, Sai C. Divi, 
and Frits de Prenter 

Abstract This chapter reviews the work conducted by our team on scan-based 
immersed isogeometric analysis for flow problems. To leverage the advanta-
geous properties of isogeometric analysis on complex scan-based domains, various 
innovations have been made: (i) A spline-based segmentation strategy has been 
developed to extract a geometry suitable for immersed analysis directly from scan 
data; (ii) A stabilized equal-order velocity-pressure formulation for the Stokes 
problem has been proposed to attain stable results on immersed domains; (iii) 
An adaptive integration quadrature procedure has been developed to improve 
computational efficiency; (iv) A mesh refinement strategy has been developed to 
capture small features at a priori unknown locations, without drastically increasing 
the computational cost of the scan-based analysis workflow. We review the key ideas 
behind each of these innovations, and illustrate these using a selection of simulation 
results from our work. A patient-specific scan-based analysis case is reproduced to 
illustrate how these innovations enable the simulation of flow problems on complex 
scan data. 

1 Introduction 

The rapid developments in the field of scientific computing have opened the 
doors to performing computational analyses on data obtained using advanced 
scanning technologies (e.g., tomography or photogrammetry). Such analyses are 
of particular interest in applications pertaining to non-engineered systems, which 
are common in, for example, biomechanics, geomechanics and material science. 
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For scan-based simulations, the data sets from which the geometric models are 
constructed are typically very large, and the obtained models can be very complex 
in terms of both geometry and topology (see Fig. 1). In the context of standard 
finite element analyses (FEA), scan-based simulations require image segmentation 
and meshing techniques to produce high-quality analysis-suitable meshes that fit 
to the boundaries of the domain of interest. The construction of a FEA-suitable 
computational domain can be an error-prone and laborious process, involving 
manual geometry clean-up and mesh repairing and optimization operations. Such 

Fig. 1 Illustration of the developed scan-based simulation workflow, considering a sintered glass 
specimen [28] as a typical example. The grayscale scan data is shown in panel (a). A smooth 
reconstruction of the geometry (representing the void space) based on a spline segmentation is 
shown in panel (b.1), along with the computational mesh in which the geometry is submersed. The 
directly segmented voxel image, which is used to assess the topological correctness of the spline 
segmentation, is shown in panel (b.2). A typical immersed isogeometric analysis result is shown in 
panel (c)
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operations can account for the majority of the total computational analysis time and 
form a bottleneck in the automation of scan-based simulation workflows [1]. 

The challenges associated with the simulation workflow for complex problems 
sparked the development of the isogeometric analysis (IGA) paradigm by Hughes 
and co-workers in 2005 [2]. The pivotal idea of IGA is to directly employ the 
geometry interpolation functions used in computer-aided design (e.g., B-splines 
and NURBS [3]) for the discretization of boundary value problems, thereby 
circumventing the problems associated with meshing. Besides the advantage of 
avoiding the meshing procedure and eliminating mesh-approximation errors, the 
use of higher-order continuous splines for the approximation of the solution has 
been demonstrated to yield accurate results using relatively few degrees of freedom 
for many (smooth) problems (see Ref. [4] for an overview). While isogeometric 
analysis has been successfully applied to complex three-dimensional problems 
based on (multi-patch) CAD objects (see, e.g., Refs. [5–10]), its application to 
scan-based simulations is hindered by the absence of analysis-suitable spline-based 
geometry models. Although spline preprocessors have been developed over the 
years for a range of applications [11–13], the robust generation of analysis-suitable 
boundary-fitting volumetric splines for scan-based analyses is beyond the scope of 
the current tools on account of the geometrical and topological complexity typically 
inherent to scan data. 

To still leverage the advantageous approximation properties of splines in scan-
based simulations, IGA is often used in combination with immersed methods. 
In immersed methods, a non-boundary-fitting mesh is considered, in which the 
computational domain is submersed. Since the immersed domain does not align 
with the computational grid, some of the elements in the grid are cut by the 
immersed boundary and require a special treatment. The immersed approach has 
been considered in the finite element setting in the context of the Finite Cell Method 
(FCM) [14–16] and CutFEM [17–19], amongst others. The immersed concept has 
also been used in combination with IGA [20–22], a strategy which is sometimes 
referred to as immersogeometric analysis [23, 24]. The versatility of immersed 
isogeometric analysis techniques with respect to the geometry representation—in 
the sense that the analysis procedure is not strongly affected by the complexity of the 
physical domain—makes it particularly attractive in the scan-based analysis setting. 
Applications can nowadays be found in, for example, the modeling of trabecular 
bone [25–27], porous media [28], coated metal foams [29], metal castings [30] and 
additive manufacturing [31]. 

Over the past decade our team has developed an analysis workflow using the 
immersed isogeometric analysis paradigm. This workflow is illustrated in Fig. 1. 
In this chapter we review the key research contributions that made this analysis 
workflow applicable to scan-based flow simulations: 

• A spline-based geometry segmentation technique was proposed in Verhoosel et 
al. [25], with further improvements being made by Divi et al. [32, 33]. The pivotal 
idea of the developed segmentation strategy is that the original scan data, which 
is usually non-smooth (i.e., a voxel representation), is smoothed using a spline
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approximation. A segmentation procedure able to provide an accurate explicit 
parametrization of the smoothed geometry then provides a geometric description 
of the scan object which is suitable for immersed isogeometric analysis. 

• A stabilized immersed isogeometric analysis formulation for flow problems 
was proposed by Hoang et al. [28]. The key idea of the proposed formulation 
is to use face-based stabilization techniques to make immersed simulations 
robust with respect to (unfavorably) cut elements, preventing the occurrence of 
oscillations in the velocity and pressure approximations. The stabilization terms 
also enable the consideration of equal-order discretizations of the velocity and 
pressure fields, which would otherwise cause inf-sup stability problems even in 
boundary-fitting finite elements [34]. 

• An adaptive integration procedure was developed by Divi et al. [32] to  
reduce the computational cost involved in the evaluation of integrals over 
cut elements, thereby improving the computational efficiency of the immersed 
analysis workflow. Based on Strang’s lemma [35], an estimator for the integration 
error is derived, which is then used to optimally distribute integration quadrature 
points over cut elements. 

• An error-estimation-based adaptive refinement procedure has been developed 
by Divi et al. [36] to capture small features without drastically increasing the 
computational cost of the scan-based workflow. Residual-based error estimators 
are constructed to perform local basis function refinements to increase the 
resolution of the spline basis in regions where this is particularly beneficial from 
an accuracy point of view, without prior knowledge of the locations of these 
regions. 

Our scan-based immersed isogeometric analysis workflow has been applied to a 
range of real world data problems, mainly in the context of . μCT-scans. In this 
chapter we illustrate the capabilities of our workflow in the context of patient-
specific arterial flow problems. The analysis of porous medium flows as presented 
in Ref. [28], and illustrated in Fig. 1, forms another prominent application of our 
method. 

This chapter is organized as follows. The essential innovations regarding each 
of the research contributions listed above are reviewed in Sects. 2–5. A typical 
application of the developed workflow will then be discussed in Sect. 6. We will 
conclude this chapter in Sect. 7 with an assessment of our scan-based analysis 
workflow, discussing its capabilities and current limitations. 

2 Spline-Based Geometry Segmentation 

In this section we review the spline-based image segmentation procedure that 
we have developed in the context of scan-based immersed isogeometric analysis 
[25, 32, 33]. In Sect. 2.1 we first discuss the spline-based level set construction 
to smoothen scan data. In Sect. 2.2 we review the algorithms used to construct
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an explicit parametrization of the scan domain. An example is finally shown 
in Sect. 2.3, illustrating the effectivity of the topology-preservation procedure 
developed in Ref. [33]. 

2.1 B-spline Smoothing of the Scan Data 

The spline-based level set construction is illustrated in Fig. 2. We consider a .d-
dimensional scan domain, .�scan = [0, L1] × . . . × [0, Ld ] with volume . Vscan =∏nd

i=1 Li , which is partitioned by a set of .mvox voxels, as illustrated in Fig. 2a. 
We denote the voxel mesh by .T�

scan, with . � the voxel size in each direction. The 
grayscale intensity function is then defined as 

.g : T�
scan → G , (1) 

with . G the range of the grayscale data (e.g., from 0 to 255 for 8 bit unsigned 
integers). An approximation of the object . � can be obtained by thresholding the 
grayscale data, 

.� ≈ {x ∈ �scan|g(x) > gcrit} ⊂ �scan, (2) 

where .gcrit is the threshold value. As a consequence of the piecewise definition of 
the grayscale data in Eq. (1), the boundary of the segmented object is non-smooth 
when the grayscale data is segmented directly. In the context of analysis, the non-
smoothness of the boundary can be problematic, as irregularities in the surface may 
lead to non-physical features in the solution to the problem. 

The spline-based segmentation procedure developed in Refs. [25, 32, 33] enables 
the construction of a smooth boundary approximation based on voxel data. The 
key idea of this spline-based segmentation technique is to smoothen the grayscale 

100 

50 

0 

50 

100 

Fig. 2 A two-dimensional illustration of the spline-based segmentation procedure. (a) Grayscale 
data on a .32×32 voxel mesh, .T�

scan, as in  (1). (b) The voxel segmentation obtained by thresholding 
the grayscale data as in (2). (c) The smooth level set function obtained using a THB-spline basis 
constructed on the voxel mesh with local refinements as in (3). The exact immersed boundary, 
which is in principle unknown, is shown in red for reference
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function (1) by convoluting it using an n-dimensional spline basis, .{Ni,k(Th
scan)}ni=1, 

defined over a mesh, .Th
scan, with element size, .h = (h1, . . . , hd) (note that 

the mesh size can differ from the voxel size). The order k of the spline basis 
functions is assumed to be constant and isotropic. We consider THB-splines [37] 
for the construction of locally refined spaces. By considering full-regularity (.Ck−1-
continuous) splines of degree .k > 1, a smooth level set approximation of (1) is 
obtained by the convolution operation 

.f (x) =
n∑

i=1

Ni,k(x)ai, ai =
∫
�scan

Ni,k(x)g(x)dx
∫
�scan

Ni,k(x)dx
, (3) 

where .{ai}ni=1 are the coefficients of the discrete level set function. The smoothed 
domain then follows by thresholding of this level set function: 

.� ≈ {x ∈ �scan|f (x) > fcrit} ⊂ �scan. (4) 

The spline level set function corresponding to the voxel data in Fig. 2a is  
illustrated in Fig. 2c for the case of a locally refined mesh .Th

scan and second order 
(.k = 2) THB-splines. As can be seen, the object retrieved from the convoluted level 
set function more closely resembles the original geometry in Fig. 2a compared to the 
voxel segmentation in Fig. 2b. Also, as a consequence of the higher-order continuity 
of the spline basis, the boundaries of the domain are smooth, which is in closer 
agreement with reality. 

The convolution operation (3) is computationally efficient, resulting from the fact 
that it is not required to solve a linear system of equations (in contrast to a (global) 
.L2-projection) and the restricted support of the convolution kernel. Moreover, the 
convolution strategy has various properties that are advantageous in the context of 
scan-based immersed isogeometric analysis (see Refs. [25, 33] for details): 

Conservation of the Gray Scale Intensity 
Under the condition that the spline basis, .{Ni,k(Th

scan)}ni=1, satisfies the partition of 
unity property (e.g., B-splines, THB-splines), the smooth level set approximation 
(3) conserves the gray scale intensity of the original data in the sense that 

.
1

Vscan

∫

�scan

f dV = 1

Vscan

∫

�scan

g dV = 1

mvox

∑

K∈T�
scan

g(K). (5) 

This property ensures that there is a direct relation between the threshold value, 
. fcrit, for the smooth level set reconstruction (4) and that of the original data, . gcrit, in  
Eq. (2). 

Local Boundedness by the Original Data 
On every voxel .K ∈ T�

scan, the level set function (3) is bound by the extrema of the 
voxel function over the support extension [38], . K̃ , i.e.,
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.min
x∈K̃

g(x) ≤ f (x) ≤ max
x∈K̃

g(x) ∀x ∈ K. (6) 

These bounds preclude overshoots and undershoots, which indicates that no spuri-
ous oscillations are created by the smoothing procedure (contrasting the case of an 
.L2-projection). 

Approximate Gaussian Blurring 
The spline-based convolution operation (3) can be written as an integral transform 

.f (x) =
∫

�scan

K(x, y)g(y) dy, K(x, y) =
n∑

i=1

Ni,k(x)Ni,k(y)
∫
�scan

Ni,k(z) dz
, (7) 

where .K(x, y) is the kernel of the transformation. 
The integral transform (7) acts as an approximate Gaussian filter [39]. We 

illustrate this behavior for the case of one-dimensional voxel data, which is 
smoothed using a B-spline basis defined on a uniform mesh, .Th

scan, with mesh size h. 
Following the derivation in Ref. [25]—in which the essential step is to approximate 
the B-spline basis functions by rescaled Gaussians [40]—the integration kernel (7) 
can be approximated by 

.K(x, y) ≈ κ(x − y) = 1

σ
√
2π

exp

(

− (x − y)2

2σ 2

)

, (8) 

where the width of the smoothing kernel is given by .σ = h

√
k+1
6 . Next, we consider 

an object of size . �, represented by the grayscale function 

.g(x) =
{
1 |x| < �/2

0 otherwise
. (9) 

This object and the corresponding approximate level set function (3) are illustrated 
in Fig. 3 for various feature-size-to-mesh ratios, .�̂ = �/h = 2, 1, 1

2 , and B-spline 
degrees, .k = 2, 3, 4. Following the (Fourier) analysis in Ref. [33], the value of the 
smoothed level set function at .x = 0 follows as 

.f̂1(0) = �̂

√
3

π(k + 1)
exp

(

− 3�̂2

16(k + 1)

)

, (10) 

which conveys that the maximum value of the smoothed level set depends linearly 
on the relative feature size . �̂ (for sufficiently small . �̂), and decreases with increasing 
B-spline order. 

Figure 3a shows the case for which the considered feature is twice as large as the 
mesh size, i.e., .�̂ = 2, illustrating that the sharp boundaries of the original grayscale
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Fig. 3 Smoothed level set approximation (3) of a geometric feature in the spatial domain, with 
.x̂ = x/h, for various feature-size-to-mesh ratios, .�̂ = �/h, and B-spline degrees. (a) .�̂ = �

h
= 2. 

(b) .�̂ = �
h

= 1. (c) . �̂ = �
h

= 1
2

function are significantly smoothed. The decrease in the maximum level set value 
as given by Eq. (10) is observed. When the level set function is segmented by a 
threshold of .gcrit = 0.5, a geometric feature that closely resembles the original 
one is recovered. Figure 3b-c illustrate cases where the feature length, . �, is not 
significantly larger than the mesh size, h. For the case where the feature size is equal 
to the size of the mesh, the maximum of the level set function drops significantly 
compared to the case of .�̂ = 2. When considering second-order B-splines, the 
maximum is still marginally above .gcrit = 0.5. Although the recovered feature is 
considerably smaller than the original one, it is still detected in the segmentation 
procedure. When increasing the B-spline order, the maximum value of the level set 
drops below the segmentation threshold, however, indicating that the feature will 
no longer be detected. When decreasing the feature length further, as illustrated in 
Fig. 3c, the feature would be lost when segmentation is performed with .gcrit = 0.5, 
regardless of the order of the spline basis. 

The implications of this smoothing behavior of the convolution operation (3) in 
the context of the spline-based segmentation will be discussed in Sect. 2.3.
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Fig. 4 Illustration of the octree-based tessellation procedure to acquire an explicit parametrization 
of the immersed computational domain. The number of element subdivisions is indicated by . �, 
which is equal to the octree depth at the lowest level of bisectioning 

2.2 Octree-Based Tessellation Procedure 

Our scan-based isogeometric analysis approach requires the construction of an 
explicit parametrization of the implicit level set domain (4). In this section we 
outline the segmentation procedure that we use to obtain an explicit parametrization 
of the domain and its (immersed) boundaries. This procedure, which is based on the 
octree subdivision approach introduced in the context of the Finite Cell Method 
in Ref. [15], is illustrated in Fig. 4. In Sect. 2.2.1 we first discuss the employed 
octree procedure, after which the tessellation procedure used at the lowest level 
of subdivision is detailed in Sect. 2.2.2. Without loss of generality, in the remainder 
we will assume that the level set function f is shifted such that .fcrit = 0. 

2.2.1 Octree Subdivision 

In our analysis framework we consider a regular mesh .Th
scan that conforms to the 

scan domain .�scan. Each element in this mesh is a hyperrectangle (i.e., a line in one 
dimension, a rectangle in two dimensions, and a hexahedron in three dimensions) 
with size .h = (h1, . . . , hd) in each direction. Elements, K , that are intersected by 
the immersed boundary are trimmed, resulting in a partitioning, . PK , of a cut element 
(see Fig. 4). 

We employ the octree-based trimming procedure outlined in Algorithm 1. This  
procedure follows a bottom-up approach [41] in which the level set function (3)
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Algorithm 1 Function that trims an element based on an evaluate level set function 
Input: array of level set values, octree  depth, dimension of the element to be trimmed 
Output: element of type Hyperrectangle ∪ Void ∪ WithChildren ∪ Mosaic 

1: function TRIM_ELEMENT(values, depth, dimension) 
2: if all values > 0 then # All level set values are positive 
3: return Hyperrectangle(dimension) 
4: else if all values ≤ 0 then # All level set values are non-positive 
5: return Void(dimension) 
6: else # Both positive and non-positive level set values 
7: if depth > 0 then # Recursively trim the element when depth > 0 
8: withchildren_element ← GET_WITHCHILDREN_ELEMENT(dimension) 
9: for child in withchildren_element do 
10: child_values ← GET_CHILD_VALUES(child, values) 
11: child ← TRIM_ELEMENT(child_values, depth − 1, dimension) 
12: end for 
13: return withchildren_element 
14: else # Terminate the recursion when depth = 0 
15: return GET_MOSAIC_ELEMENT(values, dimension) 
16: end if 
17: end if 
18: end function 

is sampled at the .2depth + 1 vertices of the octree in each direction for each 
element, where .depth is the number of subdivision operations performed to detect 
the immersed boundary. 

The trimming procedure takes the evaluated level set values, the subdivision 
depth and the dimension of the element as input arguments. If all level set values 
are positive (L2), the TRIM_ELEMENT function retains the complete element in the 
mesh. If all level set values are non-positive (L4), the element is discarded. When 
some of the level set values are positive and some are non-positive (L6), this implies 
that the element is intersected by the immersed boundary. In this case, the element 
is subdivided (bisected) into . 2d children (L8). For each child a recursive call to the 
TRIM_ELEMENT function is made (L11). 

The recursive subdivision routine is terminated at the lowest level of subdivision, 
i.e., at .depth = 0 (L14). Since our analysis approach requires the evaluation of 
functions on the immersed boundary, it is convenient to also obtain an explicit 
parametrization of this boundary. To obtain this parametrization, at the lowest level 
of subdivision we consider a tessellation procedure based on the level set values. 
The function GET_MOSAIC_ELEMENT that implements this procedure is discussed 
in Sect. 2.2.2. 

2.2.2 Midpoint Tessellation 

At the lowest level of subdivision of the octree procedure, we perform a tessellation 
based on the . 2d level set values at that level. In the scope of our work, an important
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requirement for the tessellation procedure is that it is suitable for the consideration 
of interface problems. Practically, this means that if the procedure is applied to the 
negated level set function, a partitioning of the complementary part of the cell is 
obtained, with an immersed boundary that matches with that of the tessellation 
based on the original level set function (illustrated in Fig. 5i). Standard tessellation 
procedures, specifically Delaunay tessellation [42], do not meet this requirement, as 
the resulting tessellation is always convex. When an immersed boundary tessellation 
is convex from one side, it is concave from the other side, meaning that it cannot 
be identically represented by the Delaunay tessellation. Another complication of 
Delaunay tessellation is its lack of uniqueness [43], which in our applications results 
in non-matching interface tessellations. 

Algorithm 2 Function that constructs a mosaic element based on level set values 
Input: array of level set values, dimension of the element to be constructed 
Output: element of type Mosaic ∪ Hyperrectangle ∪ Void 

1: function GET_MOSAIC_ELEMENT(values, dimension) 
2: hyperrectangle ← GET_HYPERRECTANGLE(dimension) 
3: if all values > 0 then # All level set values are positive 
4: return hyperrectangle 
5: else if all values ≤ 0 then # All level set values are non-positive 
6: return Void 
7: else # Both positive and non-positive level set values 
8: boundaries ← GET_BOUNDARIES(hyperrectangle) 
9: for boundary in boundaries do 
10: boundary_values ← GET_BOUNDARY_VALUES(boundary, values) 
11: boundary ← GET_MOSAIC_ELEMENT(boundary_values, dimension − 1) 
12: end for 
13: zero_points ← GET_ZERO_POINTS(boundaries) 
14: midpoint ← AVERAGE(zero_points) 
15: mosaic_element ← EXTRUDE_TO_POINT(boundaries, midpoint) 
16: return mosaic_element 
17: end if 
18: end function 

To overcome the deficiencies associated with Delaunay tessellation, we have 
developed a dedicated tessellation procedure that suits the needs of our immersed 
analysis approach [32]. We refer to the developed procedure as midpoint tessel-
lation, which is illustrated in Figs. 5 and 6 for the two-dimensional and three-
dimensional case, respectively. The GET_MOSAIC_ELEMENT function outlined in 
Algorithm 2 implements our midpoint tessellation procedure. This function is called 
by the octree algorithm at the lowest level of subdivision (Algorithm 1, L15), 
taking the . 2d level set values at the octree vertices as input. The function returns 
a tessellation of the octree cell that (approximately) fits to the immersed boundary. 

To explain Algorithm 2, we first consider the two-dimensional case, 
which is illustrated in Fig. 5. The midpoint tessellation procedure commences 
with looping over all the edges of the element and recursively calling the 
GET_MOSAIC_ELEMENT function to truncate the edges that are intersected by
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Fig. 5 Schematic representation of the midpoint tessellation procedure for a two-dimensional case 

the immersed boundary (L8–L12, Fig. 5c). A set of zero_points is then computed 
by linear interpolation of the level set function across the diagonals between the 
centroid of the rectangle and its vertices (L13, Fig. 5d), and the arithmetic average 
of these points is defined as the midpoint (L14, Fig. 5e). The tessellation is then 
created by extruding the (truncated) edges toward this midpoint (Fig. 5g–h). Note 
that if this procedure is applied to the negated level set values, a tessellation of 
the complementary part of the rectangular element with a coincident immersed 
boundary is obtained (Fig. 5i).
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Fig. 6 Schematic representation of the midpoint tessellation procedure for a three-dimensional 
case
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Since the tessellation algorithm recursively traverses the dimensions of the 
element, it can directly be extended to the three-dimensional case, as illustrated 
in Fig. 6. In three dimensions, all six faces of the element are tessellated by calling 
the GET_MOSAIC_ELEMENT function (L8–L12, Fig. 6e). Based on the diagonals 
between the centroid of the element and its vertices, zero level set points (L13) 
and a corresponding midpoint (L14) are then computed. The three-dimensional 
tessellation is finally constructed by extrusion of all (truncated) faces toward the 
midpoint (Fig. 6g–h). As in the two dimensional case, a conforming interface is 
obtained when the procedure is applied to the negated level set values. 

Remark 1 (Generalization to Non-rectangular Elements) The algorithms presented 
in this section are presented for the case of hyperrectangles, i.e., a rectangle in two 
dimensions and a hexagon in three dimensions. The algorithms can be generalized 
to a broader class of element shapes (e.g., simplices, similar to Ref. [41]). For 
the algorithms to be generalizable, the considered element must be able to define 
children (of the same type). Moreover, the element and its faces must be convex, so 
that the midpoint is guaranteed to be in the interior of the element. Note that this 
convexity requirement pertains to the shape of the untrimmed element, and not to 
the trimmed element. 

2.3 Topology Preservation 

The spline-based segmentation procedure has been demonstrated to yield analysis-
suitable domains for a wide range of test cases (see, e.g., Refs. [25, 28, 32, 33, 36, 44, 
45]). An example from Ref. [33] is shown in Fig. 7. This example shows a carotid 
artery, obtained from a CT-scan. The scan data consists of 80 slices, separated by 
a distance of .400μm. Each slice image consists of .85 × 70 voxels of size . 300 ×
300μm2. 

When the spline-based segmentation procedure is performed using a B-spline 
level set function defined on the voxel grid, the result shown in Fig. 7b is obtained. 
Although the smoothing characteristic of the technique is overall beneficial, in the 
sense that it leads to smooth boundaries, comparison to the original voxel data in 
Fig. 7a shows that in this particular case the topology of the object is altered by the 
segmentation procedure. This can occur in cases where the features of the object 
to be described are not significantly larger in size than the voxels (i.e., the Nyquist 
criterion is not satisfied; see Sect. 2.1). In many cases, the altering of the topology of 
an object fundamentally changes the problem under consideration, and is therefore 
generally undesirable. 

To avoid the occurrence of topological anomalies due to smoothing, a topology-
preservation strategy has been developed in Ref. [33]. The developed strategy 
follows directly from the smoothing analysis presented in Sect. 2.1, which shows 
that features with a small relative length scale, .�̂ = �/h, may be lost upon 
smoothing, cf. Eq. (10). Hence, topological features may be lost when the mesh
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Fig. 7 Example of the spline-based segmentation procedure for a scan-based image of a carotid 
artery. (a) The original voxel data; (b) the spline segmentation based on the voxel mesh, resulting in 
a topologically erroneous domain; and (c) the spline segmentation after application of the topology-
preservation algorithm 

size on which the B-spline level set is constructed is relatively large compared to 
the voxel size. The pivotal idea of the strategy proposed in Ref. [33] is to detect 
topological anomalies by comparison of the segmented image (Fig. 7b) with the 
original voxel data (Fig. 7a) through a moving-window technique. In places where 
topological anomalies are detected, the mesh on which the smooth level set function 
is constructed is then refined locally (using THB-splines [37]). This locally increases 
the relative feature length scale, . �̂, such that the topology is restored (Fig. 7c). 

3 Immersed Isogeometric Flow Analysis 

In this section we introduce an immersed discretization of the Stokes flow problem 
solved on a domain .� ⊂ R

d according to (4), attained through the scan-based 
segmentation procedure outlined above. The boundary, . ∂�, as illustrated in Fig. 8, 
is (partly) immersed, in the sense that it does not coincide with element boundaries. 

The Stokes flow problem reads 

.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∇ · (2μ∇su) + ∇p = f in �,

∇ · u = 0 in �,

u = g on ∂�D,

2μ
(∇su

)
n − pn = t on ∂�N,

(11)
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with velocity . u, pressure p, constant viscosity . μ, body force . f , Dirichlet data . g
and Neumann data . t . The boundary is composed of a Neumann part, .∂�N , and a 
Dirichlet part, .∂�D , such that .∂�N ∪ ∂�D = ∂� and .∂�N ∩ ∂�D = ∅. The vector 
. n in the last line denotes the outward-pointing unit normal to the boundary. 

When discretizing the Stokes problem (11), the immersed setting poses various 
challenges: (i) Since the Dirichlet (e.g., no-slip) boundary is (partly) immersed, 
Dirichlet boundary conditions cannot be imposed strongly (i.e., by constraining 
degrees of freedom) [46, 47]; (ii) stability and conditioning issues can occur on 
unfavorably cut elements [19, 25, 44, 48, 49]; and (iii) elements which are known to 
be inf-sup stable in boundary-fitted finite elements (e.g., Taylor-Hood elements) can 
lose stability when being cut, resulting in oscillations in the velocity and pressure 
fields [34]. 

To enable scan-based immersed isogeometric analyses, we have developed a 
stabilized formulation that addresses these challenges. In this formulation, Dirichlet 
boundary conditions are imposed weakly through Nitsche’s method [46, 47]. Ghost 
stabilization [17] is used to avoid conditioning and stability problems associated 
with unfavorably cut elements, and skeleton-stabilization is used to avoid inf-sup 
stability problems. Skeleton-stabilization also allows us to consider equal-order 
discretizations of the velocity and pressure spaces, simplifying the analysis frame-
work. In Sect. 3.1 we first formalize the immersed analysis setting, after which the 
developed formulation is detailed in Sect. 3.2. 

3.1 Immersed Analysis Setting 

The physical domain is immersed in the (cuboid) scan domain, i.e., .�scan ⊃ �, on  
which a locally refined scan mesh .Th

�scan
with elements K is defined. Locally refined 

meshes can be constructed by sequential bisectioning of selections of elements in 
the mesh, starting from a Cartesian mesh, which will be discussed in Sect. 5. 

Elements that do not intersect with the physical domain can be omitted, resulting 
in the locally refined (active) background mesh 

.Th := {K | K ∈ Th
�scan

,K ∩ � �= ∅}. (12) 

The (active) background mesh is illustrated in Fig. 8b. By cutting the elements that 
are intersected by the immersed boundary . ∂�, a mesh that conforms to the physical 
domain . � is obtained: 

.Th
� := {K ∩ � | K ∈ Th}. (13) 

The tessellation procedure discussed in Sect. 2.2 provides a polygonal approxima-
tion of the immersed boundary . ∂� through the set of boundary faces 

.Th
∂� := {E ⊂ ∂� | E = ∂K ∩ ∂�, K ∈ Th

�}. (14)



Scan-Based Immersed Isogeometric Flow Analysis 493

1 

2 

Ωscan 
Ω 

Ω 

(a) 

1 

2 

Ωscan 

(b) 

h 

h 

h 

h 

hh 

1 

2 

skeleton 

Ωscan 

(c) 

hhhhhhhh 

1 

2 

ghost 

Ωscan 

(d) 

Fig. 8 (a) A physical domain . � (gray), with boundary . ∂� (blue), is embedded in the scan domain 
.�scan (white). (b) The background mesh . Th, which consists of all elements that intersect the 
physical domain, is constructed by locally refining the ambient domain mesh .Th

�scan
. The skeleton 

mesh, .Fskeleton, and ghost mesh, .Fghost, are shown in panels (c) and  (d), respectively 

The considered formulation (see Sect. 3.2) incorporates stabilization terms for-
mulated on the edges of the background mesh, which we refer to as the skeleton 
mesh 

.Fskeleton := {F = ∂K ∩ ∂K ′ | K,K ′ ∈ Th,K �= K ′}. (15) 

Note that the faces .F ∈ Fskeleton can be partially outside of the domain . � and that 
the boundary of the background mesh is not part of the skeleton mesh. This skeleton 
mesh is illustrated in Fig. 8c. 

In addition to the skeleton mesh, we define the ghost mesh as the subset of the 
skeleton mesh with the faces that belong to an element intersected by the domain
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boundary, i.e., 

.Fghost := {F ∩ ∂K | F ∈ Fskeleton,K ∈ G}, (16) 

where .G := {K ∈ Th | K∩∂� �= ∅} is the collection of elements in the background 
mesh that are crossed by the immersed boundary. The ghost mesh is illustrated in 
Fig. 8d. 

3.2 Stabilized Formulation 

To solve the Stokes problem (11) we discretize the velocity and pressure fields using 
truncated hierarchical B-splines [37, 50]. THB-splines form a basis of degree k and 
regularity . α constructed over the locally-refined background mesh, . Th, spanning the 
spline space 

.Sk
α(Th) = {N ∈ Cα(Th) : N |K ∈ Qk(K), ∀K ∈ Th}, (17) 

with .Qk(K) the set of d-variate polynomials on the element K constructed by 
the tensor-product of univariate polynomials of order k. We consider equal-order 
discretizations of the velocity and pressure spaces with optimal regularity THB-
splines, i.e., .α = k − 1: 

.uh ∈ V h = [Sk
k−1]d ⊂ [H 1]d , ph ∈ Qh = Sk

k−1 ⊂ L2. (18) 

Note that the superscript h is used to indicate that these fields are approximations 
obtained on a mesh with (local) element size h. 

We consider the stabilized Bubnov-Galerkin formulation 

. 

⎧
⎪⎪⎨

⎪⎪⎩

Find uh ∈ V h and ph ∈ Qh such that:

a(uh, vh) + b(ph, vh) + snitsche(u
h, vh) + sghost(u

h, vh) = f (vh) ∀vh ∈ V h

b(qh,uh) − sskeleton(p
h, qh) = g(qh) ∀qh ∈ Qh

(19) 

where the bilinear and linear operators are defined as (see Ref. [28] for details) 

. a(uh, vh) := 2μ(∇suh,∇svh)

− 2μ
[
〈(∇suh)n, vh〉∂�D

+ 〈(∇svh)n,uh〉∂�D

]
. (20a) 

b(ph , vh ) := −(ph ,∇ ·  vh ) + 〈ph , vh · n〉∂�D
. (20b) 

f (vh ) := (f , vh ) + 〈t, vh〉∂�N − 2μ〈(∇s vh )n, g〉∂�D
. (20c)
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g(qh ) := 〈qh , g · n〉∂�D
. (20d) 

snitsche(u
h , vh ) := 〈βμh−1(uh − g), vh〉∂�D

. (20e) 

sghost(u
h , vh ) :=

∑

F∈Fghost

∫

F 
γgμh2k−1 

F �∂k 
nuh� · �∂k 

nvh� dS. (20f) 

sskeleton(p
h , qh ) :=

∑

F∈Fskeleton

∫

F 
γsμ

−1h2k+1 
F �∂k 

nph��∂k 
nqh� dS (20g) 

where .(·, ·) denotes the inner product in .L2(�), .〈·, ·〉∂� denotes the inner product 
in .L2(∂�), and . �·� denotes the interface jump operator. The parameters . β, . γg , and 
. γs denote the penalty constants for the Nitsche term, the ghost-stabilization term, 
and the skeleton-stabilization term, respectively. 

To ensure stability and optimal approximation, the Nitsche stabilization term 
(20e) scales with the inverse of the (background) mesh size parameter, h [19]. The 
Nitsche stability parameter . β should be selected appropriately, being large enough 
to ensure stability, while not being too large to cause locking-type effects (see, 
e.g., Refs. [48, 49, 51]). The ghost-penalty operator in (20f) controls the kth-order 
normal derivative jumps over the interfaces of the elements which are intersected 
by the domain boundary . ∂�. Since in this contribution splines of degree k with 
.Ck−1-continuity are considered, only the jump in the kth normal derivative is non-
vanishing at the ghost mesh. The ghost-stabilization term scales with the size of 
the faces as .h2k−1

F . Appropriate selection of the parameter . γg corresponding with 
the Nitsche parameter, . β, assures the stability of the formulation independent of the 
cut-cell configurations. To avoid loss of accuracy, the ghost-penalty parameter, . γg , 
should also not be too large [52]. 

The skeleton-stabilization operator (20g), proposed in Ref. [28], penalizes jumps 
in higher-order pressure gradients. This ensures inf-sup stability of the equal-order 
velocity-pressure discretization, and resolves spurious pressure oscillations caused 
by cut elements. This spline-based skeleton-stabilization technique can be regarded 
as the higher-order continuous version of the interior penalty method proposed in 
Ref. [53]. To ensure stability and optimality, the operator (20g) scales with .h2k+1

F . 
The parameter . γs should be selected such that oscillations are suppressed, while the 
influence of the additional term on the accuracy of the solution remains limited. It 
is noted that since the inf-sup stability problem is not restricted to the immersed 
boundary, the skeleton stabilization pertains to all interfaces of the background 
mesh. 

In our scan-based analysis workflow it is, from a computational effort point of 
view, generally impractical to evaluate the (integral) operators (20) exactly. The 
error of the Galerkin solution with inexact integration, .uh

Q = (uh
Q, p

h
Q), is then 

composed of two parts, viz.: (i) the discretization error, defined as the difference 
between the analytical solution, .u = (u, p), and the approximate Galerkin solution 
in the absence of integration errors, .uh = (uh, ph); and (ii) the inconsistency error 
related to the integration procedure, which is defined as the difference between
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the approximate solution in the absence of integration errors, . uh, and the Galerkin 
solution with integration errors, . uh

Q. In practice, one needs to control both these 
error contributions in order to ensure the accuracy of a simulation result. From the 
perspective of computational effort, it is in general not optimal to make either one 
of the contributions significantly smaller than the other. 

The decoupling of the geometry description from the analysis mesh provides the 
immersed (isogeometric) analysis framework with the flexibility to locally adapt 
the resolution of the solution approximation without the need to reparametrize the 
domain. To leverage this flexibility in the scan-based analysis setting, it is essential 
to automate the adaptivity procedure, as manual selection of adaptive cut-element 
quadrature rules and mesh refinement regions is generally impractical on account of 
the complex volumetric domains that are considered. 

In our work we have developed error-estimation-based criteria that enable adap-
tive scan-based analyses. In Sect. 4 we first discuss an adaptive octree quadrature 
procedure used to reduce the computational cost associated with cut element 
integration. In Sect. 5 we then discuss a residual-based error estimator to refine the 
THB-spline approximation of the field variables only in places where this results in 
substantial accuracy improvements. 

4 Adaptive Integration of Cut Elements 

From the perspective of computational effort, a prominent challenge in immersed 
finite element methods is the integration of the cut elements. While quadrature 
points can be constructed directly on all octree sub-cells (Sect. 2.2.1), this generally 
results in very expensive integration schemes, especially for three-dimensional 
problems [32]. A myriad of techniques have been developed to make cut-element 
integration more efficient, an overview of which is presented in, e.g., Refs. [32, 54]. 
In the selection of an appropriate cut element integration scheme one balances 
robustness (with respect to cut element configurations), accuracy, and expense. 

In the context of scan-based analyses, we have found it most suitable to leverage 
the robustness of the octree procedure as much as possible. To improve the 
computational efficiency of the resulting quadrature rules, we have developed a 
procedure that adapts the number of integration points on each integration sub-cell, 
similar to the approach used in Ref. [55], as lower-order integration on very small 
sub-cells does not significantly reduce the accuracy. 

4.1 Integration Error Estimate 

The pivotal idea of our adaptive octree quadrature procedure is to optimally 
distribute integration points over the sub-cells using an error estimator based on
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Strang’s first lemma [35] (see also [56, Lemma 2.27]). In the immersed analysis 
setting, this lemma provides an upper bound for the error .u − uh

Q. Following the 
derivation in Ref. [32] (to which we refer the reader for details), this error bound 
can be expressed in abstract form as 

. 

∥
∥
∥u − uh

Q

∥
∥
∥

W(h)
≤

(

1 +
∥
∥ah

∥
∥

W(h),V h

αh

)
∥
∥
∥u − Ihu

∥
∥
∥

W(h)
+ 1

αh

∑

K∈Th
�

(
ea
K + e

f
K

)
,

(21) 

where . αh denotes the inf-sup constant associated with the (aggregate) bilinear form 
.ah : Wh × V h → R, with trial and test velocity-pressure spaces .Wh and . V h, 
with .W(h) = span {u} ⊕ Wh the linear space containing the weak solution, u. The  
element-integration-error indicators associated with the (aggregate) bilinear form 
. ah and (aggregate) linear form . f h are respectively elaborated as 

ea 
K = sup 

vh 
K∈V h 

K

∣
∣
∣
∣
∣

∫
K A

h
�(Ih u, vh 

K)(xK) dV − 
lK∑

l=1 
ωl 

KAh
�(Ih u, vh 

K)(xl 
K)

∣
∣
∣
∣
∣

∥
∥vh 

K

∥
∥

V h 
K 

, (22a) 

e f 
K = sup 

vh 
K∈V h 

K

∣
∣
∣
∣
∣

∫
K F

h
�(vh 

K)(x) dV − 
lK∑

l=1 
ωl 

KFh
�(vh 

K)(xl 
K)

∣
∣
∣
∣
∣

∥
∥vh 

K

∥
∥

V h 
K 

, (22b) 

where .Ah
� and . Fh

� are the integrands corresponding to the volumetric terms in 
the bilinear form and linear form in the Galerkin problem, respectively, and where 
for each element K , the  set  .{(xl

K , ωl
K)}lKl=1 represents a quadrature rule. The norm 

.‖ · ‖V h
K
corresponds to the restriction of the space . V h to the element K . We note 

that it has been assumed that integration errors associated with the boundary terms 
in the Galerkin problem are negligible in comparison to the errors in the volumetric 
terms, which is in line with the goal of optimizing the volumetric quadrature rules 
of cut elements. 

It is desirable to apply a single integration scheme for all terms in the bilinear and 
linear forms and, hence, to treat the element-integration errors (22) in the same way. 
To do this, we note that the integrals between the absolute bars in the numerators of 
(22) constitute linear functionals on . V h

K . By the Riesz-representation theorem [56], 
there exist functions .T a, T f ∈ V h

K such that 

. 

∫

K

T avh
K dV =

∫

K

Ah
�

(
Ihu, vh

K

)
dV,

∫

K

T f vh
K dV =

∫

K

Fh
�

(
vh
K

)
dV,

(23)
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for all .vh
K ∈ V h

K . Assuming that the difference in applying the integral quadrature to 
the left- and right-hand-side members of (23) is negligible, it then holds that 

ea 
K ≤ ‖T a‖L2(K) sup 

T a,vh 
K∈V h 

K

∣
∣
∣
∣
∣

∫
K T a vh 

K dV − 
lK∑

l=1 
ωl 

K

(
T a vh 

K

)
(xl 

K)

∣
∣
∣
∣
∣

‖T a‖L2(K)‖vh 
K‖V h 

K 

, (24a) 

e f 
K ≤ ‖T f ‖L2(K) sup 

T f ,vh 
K∈V h 

K

∣
∣
∣
∣
∣

∫
K T f vh 

K dV − 
lK∑

l=1 
ωl 

K

(
T f vh 

K

)
(xl 

K)

∣
∣
∣
∣
∣

‖T f ‖L2(K)‖vh 
K‖V h 

K 

. (24b) 

with both . T a (resp. . T f ) and . vh
K in the polynomial space . V h

K , the product . T avh
K

(resp. .T f vh
K ) resides in the double-degree (normed) polynomial space . Q2kK . It then  

follows that 

.ea
K � ‖T a‖L2(K)e

p
K, e

f
K � ‖T f ‖L2(K)e

p
K, (25) 

with the uniformly applicable polynomial integration error defined as 

e p 
K = sup 

pK∈Q2k 
K

∣
∣
∣
∣
∣

∫
K pK(xK) dV − 

lK∑

l=1 
ωl 

KpK(xl 
K)

∣
∣
∣
∣
∣

‖pK‖PK 

=
∣
∣
∣
∣
∣

∫

K 
pK,max(xK) dV − 

lK∑

l=1 

ωl 
KpK,max(x

l 
K)

∣
∣
∣
∣
∣
. (26) 

The supremizer can be evaluated in terms of a polynomial basis . � for the space . Q2kK

as (see Ref. [32] for a detailed derivation) 

.pK,max = �T G−1(ξ − ξ̄)

‖ξ − ξ̄‖G−1

, (27) 

where .ξ = ∫
K

� dV , .ξ̄ = ∑lK
l=1 ωl

K�(xl
K), and . G is the (positive definite) 

Gramian matrix associated with the inner product with which the polynomial space 
is equipped.
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4.2 Quadrature Optimization Algorithm 

The computable error definition (26) and the corresponding computable “worst 
possible” function (27) form the basis of our adaptive integration procedure, which 
we summarize in Algorithm 3 (a detailed version is presented in Ref. [32]). 
The developed optimization procedure is intended as a per-element preprocessing 
operation, which results in optimized quadrature rules for all cut elements in a 
mesh. Besides the partition, . PK , of element, K , the procedure takes the order of the 
monomial basis, . QK , and stopping criterion (e.g., a prescribed number of integration 
points) as input. 

Algorithm 3 Function to optimize the distribution of cut element quadrature points 
Input: element partition, basis function order order, stopping criterion 
Output: optimized quadrature rule 

1: function OPTIMIZE_QUADRATURE(partition, order, criterion) 
2: basis = GET_MONOMIAL_BASIS(order) 
3: xi_exact = EXACT_INTEGRATION(basis, order) 
4: gramian = GET_GRAMIAN_MATRIX(basis, order) 
5: quadrature = INITIALIZE_QUADRATURE(partition) 
6: while not criterion do # Adapt quadrature until the stopping criterion is met 
7: xi_quadrature = QUADRATURE_INTEGRATION(basis, quadrature) 
8: worst_function = GET_WORST_FUNCTION(xi_exact, xi_quadrature, gramian, basis) 
9: indicators = INITIALIZE_INDICATORS(partition) 
10: for subcell, indicator in ZIP(partition, indicators) do # Iterate over the sub-cells 
11: error = GET_SUBCELL_ERROR(worst_function, quadrature) 
12: cost = GET_SUBCELL_COST(quadrature) 
13: indicator = GET_SUBCELL_INDICATOR(subcell_error, subcell_cost) 
14: end for 
15: marking = MARK_SUBCELLS(indicators) # Mark based on marking strategy 
16: quadrature = UPDATE_QUADRATURE(quadrature, marking) 
17: end while 
18: return quadrature 
19: end function 

The procedure commences with the determination of the polynomial basis, . �
(L2), the evaluation of the basis function integrals, . ξ (L3), the computation of the 
gramian matrix, . G (L4), and the initialization of the partition quadrature rule (L5). 
This initial quadrature rule corresponds to the case where the lowest order (one 
point) integration rule is used on each sub-cell in the partition. It is noted that the 
integral computations with full Gaussian quadrature for the basis and gramian are 
relatively expensive, but that the computational efficiency gains from the optimized 
integration scheme outweigh these costs when used multiple times. 

The error-estimation-based quadrature optimization is then performed in an 
incremental fashion (L6), until the stopping criterion is met. Given the considered 
quadrature rule, the approximate basis integrals (L7) and worst possible function 
to integrate (27) (L8) are determined. Subsequently, for each sub-cell, . ℘, in the
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partition (L10), on L11 the sub-cell error indicators 

.ep
℘ =

∣
∣
∣
∣
∣
∣

∫

℘

pK,max(xK) dV −
∑

l∈I℘

ωl
KpK,max(x

l
K)

∣
∣
∣
∣
∣
∣

(28) 

are computed. In this expression, . I℘ , is the set of indices corresponding to 
integration points on the sub-cell . ℘. Note that the sum of the sub-cell errors, . ep

℘ , 
provides an upper bound for the element integration error (26). Sub-cell indicators 
are then computed (L13) by weighing the sub-cell errors with the costs associated 
with increasing the quadrature order on a particular sub-cell, as evaluated on L12 
(see Ref. [32] for details). 

Once the indicators have been computed for all sub-cells in the partition, the sub-
cells with the largest indicators are marked for increasing the number of integration 
points (L15). We propose two marking strategies, viz. a sub-cell marking strategy 
in which only the sub-cell with the highest indicator is marked, and an octree-level 
marking strategy in which all sub-cells in the octree level with the highest error are 
marked. After marking, the quadrature order on the marked sub-cells is increased 
(L16). 

4.3 Optimized Quadrature Results 

A detailed study of the error-estimation-based quadrature optimization scheme 
is presented in Ref. [32]. We here reproduce a typical result for a unit square 
with a circular exclusion, as illustrated in Fig. 9. To assess the performance of 
the developed adaptive integration technique, we study its behavior in terms of 
integration accuracy versus the number of integration points. 

Figure 10a displays the integration error as evolving during the optimization 
procedure when using the sub-cell marking strategy. The non-optimized case in 
which the same integration scheme is considered on each sub-cell is displayed for 
reference. As can be seen, the error associated to the same number of integration 
points is substantially lowered using the adaptive integration procedure. For exam-
ple, for the case where 144 integration points are considered, the error corresponding 
to the non-optimized second-order Gauss scheme is equal to .2.52× 10−2, while the 
error corresponding to the optimized quadrature is equal to .1.00×10−3, i.e., a factor 
25 reduction in error. Figure 9 displays the distribution of the integration points 
over the sub-cells for the equal-order Gauss scheme and the optimized case, which 
clearly demonstrates that the significant reduction in error is achieved by assigning 
more integration points to the larger sub-cells before introducing additional points in 
the smaller sub-cells. From Fig. 10a it is also observed that when the optimization 
algorithm is terminated at a fixed error of, e.g., .ep

K ≈ 1 · 10−2, the number of 
integration points N using the optimized integration scheme is reduced substantially
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Fig. 9 Distribution of integration points over a cut element with 144 points, comparing the case 
of (a) an equal-order Gauss scheme, and (b) optimally distributed Gauss points using the sub-cell 
marking strategy. Note that the error is reduced by a factor of 25 by using the sub-cell marking 
strategy. (a) Equal-order Gauss. (b) Optimal integration 

Fig. 10 Integration error vs. the number of integration points. (a) Comparison of the optimized 
quadrature results with (non-optimized) equal-order integration. (b) Comparison of the sub-cell 
and octree-level marking strategies. 

(in this case from 303 to 83, i.e., a factor of almost 4). Even substantially bigger 
gains are observed in three-dimensional cases [32]. 

From the quadrature updating patterns that emerge from the sub-cell marking 
strategy it is observed that, as a general trend, integration orders are increased on 
a per-octree-level basis. This is explained by the fact that the indicators scale with 
the volume of the sub-cells. Based on this observation it was anticipated that an 
octree-level marking strategy could be very efficient, in the sense that it would 
yield a similar quadrature update pattern as the sub-cell marking, but that it would 
need fewer iterations by virtue of marking a larger number of sub-cells per step. 
Figure 10b compares the marking strategies, conveying that the octree-level marking 
indeed closely follows the sub-cell marking.
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Although the computational effort of the quadrature optimization algorithm is 
worthwhile when one wants to re-use a quadrature rule multiple times, considerable 
computational effort is involved. In addition, one has to set up a suitable code to 
determine the optimal distributions for arbitrarily cut elements. Considering this, 
one may not be interested in obtaining the optimized distributions of the points, 
but may instead want a simple rule of thumb to select the quadrature on a cut 
element; see, e.g., Refs. [55, 57]. Using our quadrature optimization algorithm, 
in Ref. [32] we studied the effectivity of rules of thumb in which the order of 
integration is lowered with the octree depth. Although the rule-of-thumb schemes 
are, as expected, outperformed by the optimized schemes, they generally do provide 
an essential improvement in accuracy per integration point compared to equal-order 
integration. This observed behavior is explained by the fact that the rules of thumb 
qualitatively match the results of the optimization procedure. 

5 Adaptive THB-spline Refinement 

To leverage the flexibility of the immersed simulation paradigm with respect to 
refining the mesh independent of the geometry, an automated mesh adaptivity 
strategy is required. Various adaptivity strategies have been considered in the 
context of immersed methods, an overview of which is presented in, e.g., Ref. [36]. 
These refinement strategies can be categorized as either feature-based methods 
(refinements are based on, e.g., sharp gradients in the solution or high-curvature 
boundary regions) or methods based on error estimates (e.g., residual-based or goal-
oriented methods). 

To develop a generic adaptive procedure for scan-based analyses, we have con-
structed a residual-based a posteriori error estimator. In our isogeometric analysis 
approach we employ truncated hierarchical B-splines (THB-splines) [37, 50] to  
locally refine the (volumetric) background mesh. 

5.1 Residual-Based Error Estimation 

On account of the immersed boundary terms in the formulation (Sect. 3), it is not 
well-posed in the infinite dimensional setting. Upon appropriate selection of the 
stabilization parameters, the (mixed) Galerkin formulation of the Stokes problem is 
well-posed with respect to the mesh-dependent norm (see Ref. [36] for details) 

.

∣
∣
∣
∣
∣
∣
∣
∣
∣vh

∣
∣
∣
∣
∣
∣
∣
∣
∣
2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣(vh, qh)

∣
∣
∣
∣
∣
∣
∣
∣
∣
2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣vh

∣
∣
∣
∣
∣
∣
∣
∣
∣
2

u
+

∣
∣
∣
∣
∣
∣
∣
∣
∣qh

∣
∣
∣
∣
∣
∣
∣
∣
∣
2

p
, (29) 

with



Scan-Based Immersed Isogeometric Flow Analysis 503

. 

∣
∣
∣
∣
∣
∣
∣
∣
∣vh

∣
∣
∣
∣
∣
∣
∣
∣
∣
2

u
:= ‖μ 1

2 ∇svh‖2
L2(T)

+ ‖β− 1
2 h

1
2 μ

1
2 ∂nv

h‖2
L2(∂�D)

+ ‖β 1
2 h− 1

2 μ
1
2 vh‖2

L2(∂�D)
+

∑

F∈Fghost
‖γ

1
2

g h
k− 1

2
F μ

1
2 �∂k

nvh�‖2
L2(F )

, . 

(30a)
∣
∣
∣
∣
∣
∣
∣
∣
∣qh

∣
∣
∣
∣
∣
∣
∣
∣
∣
2 

p 
:= ‖μ− 1 

2 qh‖2 
L2(T) +

∑

F∈Fskeleton
‖γ 

1 
2 

s h k+ 1 
2 

F μ− 1 
2 �∂k 

nqh�‖2 
L2(F ) . (30b) 

We refer to this mesh-dependent norm as the energy norm and use it to construct an 
a posterior error estimator for the discretization error, .u − uh. 

Since, in the considered immersed setting, stability can only be shown in the 
discrete setting, we define the solution error with respect to the solution in the order-
elevated space .̂uh ∈ V̂ h. The space . ̂V h is defined on the same mesh and with the 
same regularity as the space . V h, but with the order of the basis elevated in such a 
way that .V̂ h ⊃ V h. It is then assumed that 
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We note that additional stabilization terms are required to retain stability in the 
order-elevated space. In principle this means that the operators (20) need to be 
augmented, but we assume that for the solution in the order-elevated space these 
terms are negligible. Similar assumptions, referred to as saturation assumptions, 
have been considered in, e.g., Refs. [58–60]. Note that the refined space is only 
used to provide a proper functional setting for the error estimator and that it is not 
required to perform computations in this space. 

To construct an estimator for the error (31), it can be bound from above by
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where the aggregate residual (i.e., the combined velocity-pressure residual) is 
defined as 

. rh(̂vh) := rh(uh)(̂vh) := f h(̂vh) − ah(uh, v̂h), (33) 

with aggregate operators . ah and . f h (see Ref. [36] for details). 
We propose an error estimator pertaining to the background mesh, . Th, which 

bounds the error in the energy norm (32) as 
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where the element-wise error indicators, . ηK , will serve to guide an adaptive 
refinement procedure. 

To derive the error indicators, the residual (33) is considered with the operators 
defined as in (20). Following the derivation of Ref. [36], the indicators are defined 
as 

.
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where 
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The error indicator (35) reflects that the total element error for all elements that 
do not intersect the boundary of the domain is composed of the interior residuals 
associated with the momentum balance and mass balance, and the residual terms 
associated with the derivative jumps on the skeleton mesh. For elements that 
intersect the Neumann boundary, additional error contributions are obtained from 
the Neumann residual and the ghost penalty residual, while additional Nitsche-
related contributions appear for elements intersecting the Dirichlet boundary.
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5.2 Mesh Adaptivity Algorithm 

The residual-based error estimator (34) is used in an iterative mesh refinement 
procedure, which is summarized in Algorithm 4. The procedure takes the stabilized 
immersed isogeometric model as outlined in Sect. 3 as input, as well as an initial 
mesh and stopping criterion. Once the stopping criterion is met, the algorithm 
returns the optimized mesh and the corresponding solution. 

Algorithm 4 Function to perform residual-based error estimation and adaptivity 
Input: immersed isogeometric model, initial background mesh, stopping criterion 
Output: optimized mesh and solution 

1: function ERROR_ESTIMATION_AND_ADAPTIVITY(model, mesh, criterion) 
2: while not criterion do # Adapt the mesh until the stopping criterion is met 
3: solution = SOLVE(model, mesh) # Immersed IGA formulation of Sect. 3 
4: indicators = INITIALIZE_INDICATORS(mesh) 
5: for element, indicator in ZIP(mesh, indicators) do # Iterate over the elements 
6: indicator = GET_ELEMENT_INDICATOR(element, model, solution) 
7: end for 
8: marking = MARK_ELEMENTS(indicators) # Dörfler marking 
9: marking = ENSURE_REFINEMENT(marking, mesh) 
10: mesh = UPDATE_MESH(mesh, marking) 
11: end while 
12: return mesh, solution 
13: end function 

For each step of the adaptivity procedure, for the given mesh the solution of 
the Galerkin problem (19) is computed (L3). For each element (L5), the error 
indicator (35) is then evaluated (L6). Dörfler marking [61]—targeting reduction of 
the estimator (34) by a fixed fraction—is used to select elements for refinement (L8). 
For THB-splines, refining elements does not necessarily result in a refinement of the 
approximation space [50, 62]. To ensure that the approximation space is refined, an 
additional refinement mask is applied to update the element marking (L9). 

In our implementation the geometry approximation is not altered during mesh 
refinement. A consequence of this implementation choice is that an element can 
only be refined up to the octree depth. Elements requiring refinement beyond this 
depth are discarded from the marking list, and the adaptive refinement procedure 
is stopped if there are no more elements that can be refined. We refer the reader to 
Ref. [36] for details. 

5.3 Mesh Adaptivity Results 

Before considering the application of the developed residual-based error estimation 
and adaptivity procedure in the context of scan-based analysis in Sect. 6, we here



506 C. V. Verhoosel et al.

(a) (b) 

Fig. 11 Evolution of the mesh using the adaptive refinement procedure for the Stokes problem on 
a re-entrant corner domain using .k = 2. (a) Initial mesh. (b) Step 5  

Fig. 12 Error convergence results for the Stokes problem on a re-entrant corner domain under 
residual-based adaptive refinement (solid) and uniform refinement (dashed) for linear (.k = 1) and  
quadratic (.k = 2) basis functions. (a) .k = 1. (b) . k = 2

first reproduce a benchmark case from Ref. [36]. We consider the Stokes problem 
(11) on a re-entrant corner domain (Fig. 11a) with mixed Dirichlet and Neumann 
boundaries. The method of manufactured solutions is considered with the (weakly 
singular) exact solution taken from Ref. [63]. We refer to Ref. [36] and references 
therein for a full specification of the benchmark. 

Figure 12 displays the error convergence results obtained using uniform and 
adaptive refinements, for both linear and quadratic THB-splines. The convergence 
rate when uniform refinements are considered is suboptimal, limited by the weak 
singularity at the re-entrant corner. Using adaptive mesh refinement results in a 
recovery of the optimal rates in the case of linear basis functions, with even higher 
rates observed for the quadratic splines on account of the highly-focused refine-
ments resulting from the residual-based error estimator as observed in Fig. 11b.
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6 Scan-Based Flow Simulations 

To demonstrate the scan-based analysis workflow reviewed in this work, we 
consider the blood flow (viscosity .μ = 4mPa · s) through the patient-specific 
.μCT-based carotid artery introduced in Sect. 2.3 (Fig. 7). Neumann conditions are 
imposed on the inflow (bottom) and outflow (top) boundaries, with the traction on 
the inflow boundary corresponding to a pressure of .17.3 kPa (130mmHg) and a 
zero-traction condition on the outflow boundary. Homogeneous Dirichlet conditions 
are imposed along the immersed boundaries to impose a no slip condition. The 
presented results are based on second-order (.k = 2) THB-splines. For details 
regarding the simulation setup we refer the reader to Ref. [36], from which the 
results presented here are reproduced. 

We consider an initial scan-domain mesh consisting of .24 × 24 × 24 elements, 
with a scan size of .25.6 × 21.1 × 32.0mm3. The octree depth is set to three. In 
this setting, after two refinements, an element is of a similar size as the voxels. The 
need to substantially refine beyond the voxel size is, from a practical perspective, 
questionable, as the dominant error in the analysis will then be related to the scan 
resolution and the segmentation procedure. In this sense, the constraint of not being 
able to refine beyond the octree depth is not a crucial problem in the considered 
simulations. 

The initial mesh and final refinement result are shown in Fig. 13. The adaptive 
refinement procedure focuses on the regions where the errors are largest, i.e., near 
the stenosed section (i.e., the narrow region at the right artery) and at the outflow 
section of the left artery, such that important details of the solution are resolved. 
After the final refinement step, the adaptive simulation uses .12,816 DOFs, which is 
substantially lower than the approximately .100,000 DOFs that would have resulted 
from uniform mesh refinements up to the same level [33]. 

7 Concluding Remarks 

In this contribution, we have reviewed the four key research contributions of our 
team with respect to scan-based immersed isogeometric flow analysis, viz.: (i)  A  
spline-based image segmentation procedure, encompassing a voxel-data smoothing 
procedure, an octree-based procedure to obtain an explicit parametrization of the 
computational domain and its (immersed) boundary, and a topology-preservation 
strategy to restore smoothing-induced anomalies; (ii) A stabilized immersed formu-
lation for (a.o.) Stokes flow, which ensures robustness with respect to unfavorably 
cut elements and enables the consideration of equal-order velocity-pressure dis-
cretizations without the loss of inf-sup stability; (iii) An adaptive procedure to 
optimize the distribution of integration points over cut elements, based on Strang’s 
first lemma; (iv) A mesh refinement procedure based on rigorous residual-based
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Fig. 13 Initial (a) and  final  (b) mesh (left) and velocity magnitude (right) for the patient-specific 
flow problem. (a) Initial mesh with 3158 #DOFs. (b) Step 3 with 12467 #DOFs 

error estimates to refine the computational mesh in places where this results in 
significant accuracy improvements. 

An important aspect of immersed (finite element) methods is the ill-conditioning 
associated with small (i.e., with a small volume fraction) or unfavorably cut (e.g., 
sliver-like) elements. Although not reviewed in this work, over the past decade 
our team has contributed to solving the challenges associated with ill-conditioning. 
The origin of the ill-conditioning problem was studied in detail by De Prenter 
et al. [44], which led to a scaling relation for the condition number with the 
smallest cut-element volume fraction. Dedicated preconditioning techniques, to be 
used in conjunction with iterative solvers, were developed based on the insights 
from this work, e.g., Refs. [27, 44, 45]. We consider these (preconditioned) solver
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developments an important step in unlocking the potential of high-performance 
computing for immersed finite element methods [30]. Note that the ghost- and 
skeleton-stabilization terms employed in the formulation in this chapter, which 
are primarily added to ensure well-posedness of the weak form, also resolve the 
conditioning problems, such that preconditioning techniques are not essential in this 
work. 

The innovations in computational procedures and problem formulations yield a 
highly robust immersed isogeometric analysis workflow for scan-based analyses. 
Error-controlled simulations can be performed directly based on scan data, without 
the need for extensive user interactions. The effectivity of the framework is not 
fundamentally affected by the geometric and topological complexity of the scan 
data, on account of the decoupling of the geometry and computational mesh in 
immersed methods. The robustness of the framework derives from the rigorous 
mathematical underpinning of the considered methods. 

Further developments to the scan-based workflow are required to enable the 
consideration of more advanced problems/formulations, such as higher Reynolds 
number flows (requiring additional stabilization), fluid-structure interactions and 
complex fluid models. Further improvements are also required to enhance the 
computational performance of the developed workflow. This mainly pertains to 
algorithm and code optimization, which is required to apply the developed workflow 
to, e.g., larger scans, time-dependent problems and non-linear problems. Detailed 
recommendations for specific further developments can be found in our referenced 
work; see Ref. [64] for a summary of these. 
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