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ABSTRACT 
This paper proposes a novel approach for examining rear-end collisions between successive 

vehicles in a traffic stream. In this approach, a new safety measure of the follower driver's 

attentiveness is proposed, referred to herein as instantaneous heeding time (IHT), reflecting the 

subject follower's heeding nature concerning its leader. A safety framework that integrates the IHT 

with the distance gap and the instantaneous follower's speed is presented. The applicability of the 

framework is demonstrated using an Indian-traffic trajectory database (developed in this study) 

and the homogeneous traffic database of the next generation simulation (NGSIM) project 

developed in the United States (U.S.). Five study sections in India and two study sections in the 

U.S. are analyzed for three traffic-flow levels. For Indian traffic, the results show that motorized 

two-wheelers (MTW) have degraded road safety due to the unrestrained lateral crisscross 

movements. Due to the presence of MTW, the Indian-traffic stream operates in a disorderly 

fashion, thereby increasing the probability of rear-end collisions with other vehicle classes. 

Further, the importance of implementing cautioning measures for drivers that reduce the 

probability of collisions is demonstrated. Besides, the NGSIM application results confirmed the 

proposed framework's applicability to both Indian and homogeneous traffic conditions.  In 

practice, the proposed framework can be used in real-time to monitor the driver's aggressive 

instincts. 

 

Keywords: Trajectory data, Safety thresholds, Heeding time, Hysteresis, Rear-end collisions. 
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BACKGROUND 

Over the years, with the increase in modernized high-speed vehicles on existing roadway facilities, 

traffic safety has become a major concern. However, monitoring safe traffic movements in a given 

traffic stream is a mammoth challenge. Initially, researchers related safety with the stability of the 

calibrated car-following models over a given road section (Brackstone & McDonald, 1999; 

Herman, Montroll, Potts, & Rothery, 1959; Wang, Daamen, Hoogendoorn, & van Arem, 2016; 

Zhang & Jarrett, 1997), but due to data constraints and limitations in the mathematical formulation, 

those methodologies have not progressed to the desired level of developing safety thresholds, 

particularly focusing on rear-end collisions. Further, previous studies (Deffenbacher, 

Deffenbacher, Lynch, & Richards, 2003; Hochnadel & Beymer, 1998; Hoffmann & Mortimer, 

1994; Milakis, Van Arem, & Van Wee, 2017; Van Der Horst & Hogema, 1993) relied heavily on 

experimental setups for understanding the responses of drivers. Then, the responses were 

correlated with the test conditions and lastly related to safety over a given road section. Based on 

these experiments, safety measures such as driver reaction time (Balmer, Nagel, & Raney, 2004; 

Johansson & Rumar, 1971; Triggs & Harris, 1982) was assessed for computing highway geometric 

elements, such as stopping, passing, and decision sight distance.  

Further, with the technological and computer advances, conducting experiments using 

simulated traffic conditions for assessing drivers' responses became possible. Numerous studies 

have been conducted for different applications, such as the use of the mobile phone (Byon, 

Abdulhai, & Shalaby, 2009; WOO & LIN, 2001), driving stress levels (Y. Chen, 2013), gap 

acceptance (Winter & Spek, 2009), age difference (Lambert, 2013), road geometry (Bella & 

D’Agostini, 2010), potential impacts(Olia, Abdelgawad, Abdulhai, & Razavi, 2016) and weather 

conditions (Hofman et al., 2012). While such studies have provided a better understanding of 

driver behavior, the practical applicability of the approaches was doubtful due to calibration issues 

related to driving simulators in assessing safety over the road sections considering real field 

conditions. Besides, for safety assessment, Lee (1976) proposed the time-to-collision (TTC) 

concept to estimate driver attentiveness and modeled safety thresholds. The basic logic behind 

TTC is the time available to apply to brake and decelerate to avoid a collision, based on which 

safety regimes were proposed. With the help of advanced tools, researchers used the TTC concept 

over varied traffic conditions (Cavallo & Laurent, 1988; R. Chen, Sherony, & Gabler, 2016; 

Kiefer, Flannagan, & Jerome, 2006; Kiefer, Leblanc, & Flannagan, 2005; Stewart, Cudworth, & 

Lishman, 1993) and proposed a collision-avoidance system for vehicles. The TTC concept's main 

limitation is that it provides the same TTC value and, in turn, the same probability of rear-end 

collisions for situations that exhibit a difference in safety levels. For example, distance gaps of 10 

m and 20 m that are associated with relative speeds of 5 m/s and 10 m/s, respectively, would yield 

the same TTC of 2 s. 

On the other hand, driver behavior is significantly different under Indian traffic conditions, 

particularly due to the predominant proportion of motorized two-wheelers (MTW) and weak lane 

discipline. To this end, it becomes extremely complex to monitor safety in traffic streams with a 

higher number of MTW. The present study is an attempt to develop a new measure of safety, 

delineating a safety framework for traffic conditions under lane-based as well as no lane-based 
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traffic conditions. Based on the literature, it is inferred that driving behavior can be a root source 

for investigating safety over the road network. This can be attempted particularly with a better 

understanding of the follower vehicle's attention (or simply follower) to the surrounding vehicle 

instincts, which may help emerge safety guidelines. However, studying driving behavior requires 

high-quality micro-level comprehensive vehicle trajectory data.  

To address this need, as a part of the next generation simulation (NGSIM) project (US 

Department of transportation and federal highway administration, 2007), vehicle trajectory 

datasets were developed over a longer road space, which has been a prime source for building 

better understanding on driving behavior throughout the world. In this direction researchers 

focused on trajectory data for the safety analysis (Calvi, Bella, & D’Amico, 2018; Fitzsimmons, 

Nambisan, Souleyrette, & Kvam, 2013; Haque, Hadiuzzaman, Rahman, & Siam, 2020; Park, 

Chen, & Hourdos, 2011; Wei, Li, & Ai, 2009) from the homogeneous traffic conditions. 

 On the other hand, in Indian traffic conditions prevailing in India and elsewhere, due to 

the deficiency and complexity in developing trajectory data, driving behavior has not been much 

explored. Further, due to the variety of vehicle classes and weak lane dripline, even a well-

established automated image processing tool is not adequate in tracking vehicle positions over 

road segments. For these traffic conditions, very few studies  (Kanagaraj, Srinivasan, Sivanandan, 

& Asaithambi, 2015; Raju, Arkatkar, & Joshi, 2019) were reported that have used trajectory data 

developed using semi-automated image processing tools. After a thorough literature review, it is 

inferred that there is a real need for developing proactive tools for monitoring the safety of traffic 

streams that can help identify blackspots in the network and reduce road collisions. 

In most cases, after a collision, based on investigative reports, measures are taken aftermath 

to curb the number of collisions, such as improving geometric design and installing warning signs. 

However, studying driver behavior to understand the causes of collision is more important as a 

proactive step. This approach necessitates the use of a high-quality vehicle tracking system over 

the road sections to capture the vehicle's responses. The development of such a system is quite 

challenging, particularly for Indian traffic conditions. This study attempts to address this challenge 

by developing a proactive methodology for monitoring traffic safety. 

The next section describes two datasets used in the study: The Indian-traffic dataset and 

the homogeneous-traffic datasets. The following section describes the proposed methodology, 

including investigating vehicle-following behavior and developing a safety framework for 

identifying potential rear-end collisions. Safety analysis of the study sections using the developed 

framework and the two databases are then presented, followed by a summary and conclusions. 

DATASETS 

Considering the importance of trajectory data in understanding vehicle-following behavior, 

driving behavior was evaluated in this study with trajectory data. To better explore vehicle-

following behavior, both Indian traffic and homogenous traffic conditions were considered. For 

Indian traffic conditions, trajectory data from five study sections in India were developed in the 

present study. For homogenous traffic conditions, the NGSIM trajectory dataset was used. Note 
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that the Indian-traffic dataset was used to investigate vehicle-following behavior and observe the 

vehicles' hysteresis phenomenon. The NGSIM dataset was used, along with the Indian-traffic 

dataset, to apply the proposed safety framework. 

Indian Traffic Trajectory Dataset 

From Indian traffic conditions, five different study sections in India were identified. These include 

two sections: Ahmedabad-Vadodara Expressway (AVE) and another along Pune-Mumbai 

Expressway (PME). These are intercity expressways, and the variation in traffic flow over these 

two sections was observed to be marginal. Unlike other Indian roads, MTW was prohibited on 

these road sections. The third section was a bridge section located on Maraimalai Adigal Bridge, 

Chennai. From the Chennai section (CS), open-source trajectory data developed by Venkatesan et 

al.(Kanagaraj, Asaithambi, Toledo, & Lee, 2015) contained two flow conditions and were used for 

analysis in the present study.  

 

The last two sections were located on Western Expressway (WE), Mumbai, India, an intra-urban 

multilane high-speed road. The first section is a 5-lane road, 17.5-m wide (each lane 3.5 m), and a 

trap length of 120 m was considered a base section. The second section was located on a 

construction zone located along the same road, where the road width is narrowed from 17.5 m to 

10.5 m (5-lanes to 3-lanes) for around 500 m. This section has a trap length of 100 m, precisely 

around the mid-portion of the construction zone. Snapshots of the study section are shown in 

Figure 1. Six different vehicle categories were observed over the sections: Motorized three-

wheelers (MThW), MTW, Buses, Cars, Trucks, and Light commercial vehicles (LCV). 

Further, it can be noted that, in the case of CS, WE, and WE-C, traffic is mixed with the dominant 

proportion of MTW, cars, and MThW. Unlike the other three sections of mixed traffic, a large 

traffic flow variation was observed on the WE section. Therefore, the trajectory data were 

developed at three flow conditions on both sections. It can be noted that driving behavior over the 

road sections is stochastic. Further recent studies in this direction highlighted the variation in 

driving behavior over the flow conditions. With this idea, in the present study, trajectory data over 

various traffic flow conditions at different volume to capacity ratios is used from the study sections. 
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Figure 1 Snapshots of the five study sections 

To explore Indian traffic behavior, like NGSIM datasets, high-quality trajectory data was 

essential. In mixed traffic, the numerous vehicle categories and ensuing lane discipline can result 

in complex interactions among vehicles. As a result, automation of trajectory data development 

has not been successful. Even the well-established image processing tools did not perform well in 

developing trajectory data. A semi-automated image processing tool called traffic data extractor 

(Vicraman, Ronald, Mathew, & Rao, 2014), was used to overcome this challenge. In this process, 

using computer mouse clicks, a given vehicle was tracked over the road section with an update 

interval. Also, smoothening techniques are applied to limit the noise in trajectory data (Raju, 

Kumar, Reddy, Arkatkar, & Joshi, 2017). Details of the trajectory data for the five study sections 

are shown in Table 1.  

In the case of semi-automated trajectory data extraction from AVE, PME, WE, and WE-

C, initially, the study sections are georeferenced. Later with a predefined time update (say 0.1s, 

0.3s, 0.5s, 1s), a given vehicle will be tracked over the study section with a unique Id along with 

its vehicle category. In the AVE and PME, all the vehicles are tracked without much occlusion 

problems, given the lesser variation in the traffic flow conditions. Simultaneously, inflow 1 and 2 

from WE and WE-C, the images' occlusion effect was also minimal due to a vantage position of 

the installed camera. As a result, all the vehicles in those flow conditions are tracked. Whereas in 

the case of congested phase, flow 3 from WE, and WE-C some vehicles are found to be hidden 

behind the other heavy vehicles. Particularly, this is observed, when the trucks are present in the 

traffic stream; by virtue of its larger dimensions, there may be an occlusion effect. Mainly the 

occlusion phenomenon is observed with MTW following a truck. However, given the lower 

composition of trucks (less than 3 percent), the occlusion effect is marginal in affecting the 

trajectory data's overall accuracy even from the WE and WE-C study locations. 
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TABLE 1 Details of the trajectory data for Indian traffic conditions 

Study 

Section 

Type 

of 

Road a 

Trap 

Length 

(m) 

Road 

Width 

(m) 

Traffic Flow 

Classification 

(V/C Ratio) 

Traffic 

Composition 

(%)c 

No. of 

Vehicles 

Tracked 

Duration of 

Trajectory 

Data 

(minutes) 

AVE 1 120 11 (0.35) 0, 0, 3, 92, 5, 0 359 20 

PME 1 100 12.5 (0.67) 0, 0, 8, 82, 10, 0 804 20 

CS 2 250 11.2 
Flow 1 (0.71) 23, 26, 3, 46, 2, 0 1514 15 

Flow 2 (0.63) 20, 29, 4, 40, 5, 2 1491 15 

WE 3 120 17.5 

Flow 1 (0.35) 15, 35, 5, 40, 2, 3 1080 15 

Flow 2 (0.71) 20, 29, 2, 45, 1, 3 1715 15 

Flow 3b 17, 25, 5, 45, 3, 4 660 10 

WE-C 3 100 10.5 

Flow 1 (0.42) 15, 27, 8, 42, 5, 3 870 15 

Flow 2 (0.68) 13, 30, 6, 45, 3, 3 1218 15 

Flow 3 (0.91) 10, 35, 5, 45, 2, 3 1312 15 

a 1= Intercity Expressways, 2 = Urban Arterial, and 3 = Multilane Urban uninterupted faciltiy.    b Congested conditions;           
c Traffic composition: MThW, MTW, buses, cars, trucks, LCV.  

 

 

NGSIM Trajectory dataset 

The trajectory data of I-80 and US-101 intercity expressways from the NGSIM project were used 

in this study. Note that the trajectory data were available for three traffic flow conditions for both 

sections, and they were referred to herein as Flow 1, Flow 2, and Flow 3 in increasing order of the 

flow level. On both sections, a high proportion of cars was observed with lane-disciplined 

movements of vehicles. 

 

METHODOLOGY  

Using NGSIM and Indian-traffic trajectory datasets and considering existing research gaps, the 

present study is carried in two steps. First, the vehicle-following behavior is investigated, and the 

hysteresis phenomenon among vehicles are identified. Second, based on the hysteresis analysis, a 

safety framework for identifying potential rear-end collisions is developed and involved three 

tasks: 

1. Identifying the need for modeling follower attention 

2. Formulating a new safety measure to understand the attention of the follower better 

3. Integrating the new safety measure with distance gap and follower speed 

  

Investigating Vehicle-Following Behavior 

To understand vehicle-following behavior, distance gap versus relative speed (follower minus 

leader speeds) between successive vehicles are plotted for a sample basis from the study sections. 

From the analysis, the hysteresis phenomenon between vehicles, which represents vehicle-

following behavior, was observed. For better understanding, plots of six pairs (as examples) from 

the NGSIM I-80 section are presented in Figure 2. In general, when a vehicle follows its leader 

vehicle, it tries to match the leader vehicle speed and maintains a constant distance gap from the 
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leader vehicle. Further due to human activity and lag will lead to fluctuations in distance gaps and 

relative speeds. To demonstrate this nature, arrows are presented in hysteresis diagrams. In the 

case of Pairs 1 and 2, the vehicles are showing following good interaction and preferred to maintain 

a constant distance gap between them. Whereas in Pair 3 and 5, there is a closing process, and 

giving up behavior can be observed between vehicles, where the distance gap between vehicles 

varied over 50 m and 25 m, respectively. In Pair 4, the follower initially shows some 

aggressiveness, which results in decreasing the distance gap. As the follower is closing up, the 

heeding nature of the follower is depicted and resulted in a decrease in the magnitude of the relative 

speed. 

 

Figure 2 Hysteresis phenomenon between leader-follower pairs 

Further, to better understand this hysteresis phenomenon, a python code is scripted. In this code, 

the lateral overlaps with the subsequent vehicles over the road space are computed. If a vehicle 

pair is found to have a lateral overlap, the pair will be considered as a leader-follower pair. Then, 

the distance gaps and relative speeds are computed for the leader-follower pairs and are aggregated 

for the available traffic flow levels over all study sections, as shown in Figure 3. 
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Figure 3 Aggregated hysteresis over the study sections 

From the aggregated hysteresis plots, it is observed that in the case of free-flow conditions 

(mainly Flow 1), a partial hysteresis phenomenon is observed with a wide range of distance gaps 

and relative speeds. This indicates fewer following interactions among vehicles in free-flow 

conditions. On the other hand, in Flow 2 over the study sections, a substantial hysteresis 

phenomenon between vehicles is observed. In Flow 3, which reflects congested (stop-and-go) 

conditions, the variation in the relative speed in the hysteresis plots is reduced, along with a 

decrease in the distance gap. Further, the variation of the hysteresis phenomenon exemplifies the 

variation in driving behavior concerning the change in the traffic-flow level for a given study 

section. 

In Indian-traffic conditions, on intercity expressways (the AVE and PME sections), the 

variation in the plots is observed in terms of distance gap and relative speed as a traffic flow 

function. This was higher for the PME section compared with the AVE section.  On the other hand, 

in the WE section, the hysteresis plots become constricted about the y-axis, as traffic flow varies 

from free-flow to congested-flow conditions. Interestingly, in the WE-C section, since traffic flow 

is mostly near capacity due to the bottleneck effect, the hysteresis phenomenon has not been 
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visualized much for Flows 1 and 2,  as shown in Figure 3 (WE-C). Similar observations are also 

made in the case of the bridge section. 

Developing Safety Framework 

New Safety Measure: IHT 

Based on the hysteresis analysis over the study sections, a new safety measure was developed. It 

is visualized that, when a subject follower is closing toward its leader due to its comparative 

relative speed, at some point time over the space, the follower realizes that he/she is moving closer 

to the leader and can have a rear-end collision the same speed is maintained. To avoid this, the 

follower starts matching the leader speed. The time gap available for the follower to mimic its 

leader to avoid a rear-end collision is termed as instantaneous heeding time (IHT). The definition 

of IHT is depicted in Figure 4a. In this context, to compute the IHT, hysteresis plots were examined 

in detail. It was observed that at the time of heeding, point a, the follower just tends to start 

decreasing its speed, where (VF – VL) decreases, to match the leader speed. In this phase, the 

difference in speed between the vehicles is maximum (positive side). Considering this difference, 

the IHT available for a driver is computed as the slope of the tangent to Point a, as shown in Figure 

4a. if follower has not paid attention will result in drop of distance gap and end up a rear end 

collision as depicted with a red line in Figure 4a 

Let VF be the speed of follower at which the follower has perceived its leader that is moving 

at VL at a distance gap of D. It is noted that, at the time of paying attention, the follower 

immediately starts dropping its speed, and at that time the follower will have zero acceleration 

rate. Further in the case of hysteresis at heeding, the relative speed (VF - VL) will be positive and is 

likely to experience a local-maxima as observed in real-field conditions. The time gap, tg, between 

the vehicles will be positive. In general, IHT is a time gap between the leader-follower pairs 

defined, along with specific conditions, as follows, 

IHT(s) =
𝐷

0.278 ∗ (𝑉𝐹 − 𝑉𝐿)
; when

{
 
 
 

 
 
 
𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟 𝑑𝑟𝑜𝑝𝑠 𝑖𝑡𝑠 𝑠𝑝𝑒𝑒𝑑, 𝑉𝐹(𝑡𝑛) > 𝑉𝐹(𝑡𝑛+1);

𝜕(𝑉𝐹)

𝜕(t)
= 0;

𝑉𝐹 − 𝑉𝐿 > 0;

𝜕(𝑡𝑔)

𝜕(𝑡)
= 0 (𝑙𝑜𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑎)

𝑡𝑔 > 0;

(1) 

 

 

where:  

IHT   = instantaneous heeding time (s), 

tg  = time gap (s) 

VF  = speed of the follower (kph) 

VL  = speed of the leader (kph) 

D  = distance gap (m) 
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𝑉𝐹(𝑡𝑛)  = speed of the follower at time tn 

𝑉𝐹(𝑡𝑛+1) = speed of the follower at time tn+1 

Considering this as a governing principle, an algorithm was developed in the present study and 

scripted in python based on Equation 1. The variable IHT between vehicles was determined using 

the hysteresis phenomenon derived from the trajectory data over all the study sections. 

Need for Considering Follower Speed  

From the IHT analysis, it can be inferred that the leader-follower pairs with larger IHT (more time 

gap) demonstrate that the follower is more attentive toward the leader instincts and vice-versa. 

Further, it can be observed that along with IHT, the distance gap between the leader-follower pair 

plays a vital role as an important parameter in assessing potential rear-end collisions. Similarly, 

the IHT considers the relation between the action points in following conditions and the safety 

distance in a collision condition (Brackstone & McDonald, 1999; Gipps, 1981). For example, 

consider Figure 4b which arbitrary boundaries for low, medium, and high probabilities of rear-end 

collisions. As noted, the probability of rear-end collision is more for pairs with small IHT and 

small distance gaps than that for pairs with the same IHT and larger distance gaps. Further, the 

speed at which the follower decides to decelerate (Point a) plays a key role in assessing potential 

rear-end collisions.  For example, consider the following two scenarios: 

 

(a) Definition of IHT from the hysteresis phenomenon 

 
(b) Importance of distance gap and IHT for rear end collisions 

Figure 4 Fundamental relation of IHT and distance gap for rear end collisions 
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Scenario 1: The leader and follower are maintaining speeds of ,   𝑉𝐿 = 80 kph and 𝑉𝐹 =100 kph at 

the time of heeding, at a distance gap D = 20 m. Therefore, 

𝐼𝐻𝑇 =
𝐷

0.278(𝑉𝐹−𝑉𝐿)
=

20

0.278(100−80)
= 3.59 𝑠  

Scenario 2: The leader and follower are maintaining speeds of 𝑉𝐿  = 20 kph and 𝑉𝐹 = 40 kph at the 

time of heeding, at a distance gap D = 20m. Then, 

𝐼𝐻𝑇 =
𝐷

0.278(𝑉𝐹 − 𝑉𝐿)
=

20

0.278(40 − 20)
= 3.59 𝑠 

It is noted that in the preceding scenarios that both IHT and D are the same, indicating a similar 

probability for rear-end collisions, according to Fig. 4b. Clearly, there is a limitation to this concept 

if rear-end collisions are evaluated based only on these two parameters. That is, it is argued that 

the state at which the follower pays attention to the leader is a key variable in assessing probable 

rear-end collision. In the present case, the state of the vehicle is represented by the speed of the 

follower VF. The conditional probability concepts are used next to formulate the probable rear-end 

collision using three safety measures IHT, D, and VF. Simultaneously, when the leader vehicle 

moves at high speed, the follower vehicle may tend to maintain a higher distance gap to 

comprehend the leader vehicle decelerations. In a general context, under a safe scenario, the 

follower vehicle may decide on a large distance gap. On the other hand, in the case of an unsafe 

scenario, the follower may end up deciding this with a lesser distance gap. 

 

Integrating Three Safety Measures 

Suppose that the critical follower speed, IHT, and distance gap for rear-end collisions are given. 

Then, let P(VF) be the probability that the follower speed is greater than the critical follower speed, 

P(IHT) be the probability that IHT is lesser than its critical IHT, and P(D) be the probability that 

the distance gap is less than the critical distance gap. Let P(VF
c), P(IHTc), and P(Dc) be the 

complementary probabilities of the respective events. Further, the probability of each event from 

the sample space is depicted in the tree diagram shown in Figure 5. 
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Figure 5 Tree diagram explaining the probability of events in the sample space 

The probable rear-end collision between the leader-follower vehicle will be categorized when the 

IHT is less than the threshold limit, VF greater than critical speed, and D less than the threshold 

distance gap. In a mathematical form, these three variables fall under the conditional probability 

proposition. In line with this, the probability of rear-end collisions is given as 𝑃(𝑉𝐹 ∩ 𝐼𝐻𝑇 ∩ 𝐷). 
Using the conditional probability concepts, then 

                                  𝑃(𝑉𝐹 ∩ 𝐼𝐻𝑇 ∩ 𝐷) = 𝑃((𝑉𝐹 ∩ 𝐼𝐻𝑇) ∩ 𝐷)  

                          = 𝑃(𝑉𝐹 ∩ 𝐼𝐻𝑇) ∗ 𝑃 (
𝐷

𝑉𝐹 ∩ 𝐼𝐻𝑇
) 

                             = 𝑃(𝐼𝐻𝑇) ∗ 𝑃 (
𝑉𝐹

𝐼𝐻𝑇
) ∗ 𝑃 (

𝐷

𝑉𝐹∩𝐼𝐻𝑇
)     (2) 

 

 𝑃(𝑉𝐹 ∩ 𝐼𝐻𝑇 ∩ 𝐷) = 𝑃(𝐼𝐻𝑇) ∗ 𝑃 (
𝑉𝐹

𝐼𝐻𝑇
) ∗  𝑃 (

𝐷

𝑉𝐹∩𝐼𝐻𝑇
)  (3) 

Where,  

𝑃(𝐼𝐻𝑇) = {
1     ∀   𝐼𝐻𝑇 ≤  𝐼𝐻𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
0     ∀   𝐼𝐻𝑇 >  𝐼𝐻𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

             (4)      

  𝑃 (
𝑉𝐹

𝐼𝐻𝑇
) = {

1     ∀   𝐼𝐻𝑇 ≤  𝐼𝐻𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙     𝑎𝑛𝑑  𝑉𝐹 ≥  𝑉𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
0     ∀   𝐼𝐻𝑇 ≤  𝐼𝐻𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙     𝑎𝑛𝑑  𝑉𝐹 <  𝑉𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
0                                 ∀   𝐼𝐻𝑇 >  𝐼𝐻𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙                 

                 (5) 
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 𝑃 (
𝐷

𝑉𝐹∩𝐼𝐻𝑇
) = {

1     ∀   𝐼𝐻𝑇 ≤  𝐼𝐻𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙     𝑎𝑛𝑑  𝑉𝐹 ≥  𝑉𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙     𝑎𝑛𝑑  𝐷 ≤ 𝐷𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
0     ∀   𝐼𝐻𝑇 ≤  𝐼𝐻𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙     𝑎𝑛𝑑  𝑉𝐹 ≥  𝑉𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙     𝑎𝑛𝑑  𝐷 > 𝐷𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
0     ∀   𝐼𝐻𝑇 ≤  𝐼𝐻𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙     𝑎𝑛𝑑  𝑉𝐹 <  𝑉𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙                                       
0                                 ∀   𝐼𝐻𝑇 >  𝐼𝐻𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙                                                       

        (6)          

SAFETY ANALYSIS 

Application of the probability concepts in assessing rear-end collisions between vehicles requires 

critical limits for the parameters. In the available literature, there are no clear findings related to 

critical limits of VF, IHT, or critical D with respect to rear-end collisions. Therefore, according to 

Shi et al. (Shi, Wong, Li, & Chai, 2018) TTC of 2.5 s was regarded as a critical value, and therefore 

this limit was considered as the critical limit for IHT. In addition, based on driving behavior studies 

(Li, Liu, Wang, & Xu, 2014; Polders et al., 2015), a follower speed of 30 kph and a distance gap 

of 10 m were taken as the critical limits. Thus, in this study, for a given leader-follower interaction, 

IHT ≤ 2.5 s, D ≤ 10 m, and VF ≥ 30 kph will be considered for probabilistic rear-end collisions. 

Based on these critical limits, the developed framework was tested over the study sections of the 

NGSIM and Indian-traffic datasets, and the results are shown in Table 2. 

From Table 2, it can be noted that the potentiality of rear-end collisions on NGSIM I-80 and US-

101 road sections is less, and the traffic stream is found to be safe with negligible rear-end collision 

instincts. This can be explained as in homogeneous traffic, vehicles maintain enough distance gap 

and good IHT between them, even though they are moving at a higher speed. Similar results are 

also obtained for the AVE, PME (intercity expressways), and Chennai road (urban arterial) 

sections. 

On the other hand, in the WE and WE-C sections, rear-end collision points are observed. For the 

WE section, 25 and 59 rear-end collision points are observed at Flows 1 and 2. Interestingly at 

Flow 3 conditions, no rear-end collision instincts are observed. To better visualize the probable 

collisions on the study section, the probable collisions are mapped over the study section (WE) for 

entire flows 1 and 2 individually. Based on the collision points' density, the severity clusters are 

depicted in terms of contours, as shown in Figure 6. Further, the visualization analysis helps in 

identifying the risk zones over the study sections, with a reasonable duration of trajectory data. 

This can be considered as one of the possible pertinent applications for monitoring traffic 

operations towards enhancing the traffic safety on roadway classes having higher speeds. This is 

even more important in most of the developing economies due to the presence of different vehicle 

categories (having varying static and dynamic characteristics) sharing the same space on a given 

roadway condition.  

   

Whereas in the WE-C section 31, 27, and 15, collision instincts are observed at Flows 1 to 

3, respectively. Further, to understand the degradation of safety on the WE and WE-C sections, an 

investigation was carried out. In both study sections, a predominant portion of MTW was observed. 

Besides, most of the time, MTW maintained a minimum distance gap from the leaders in the traffic 

stream. However, due to their size and maneuverability, MTW tended to accept smaller gaps in 

the traffic stream, and as a result, they were exposed to lesser IHT from their followers. 
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TABLE 2 safety analysis of the study sections based on the demarcated thresholds 

Study 

Section 

Flow 

Level 

Rear-End Collision 

Points 

No. of Leader-Follower 

Interactions 

(a) Safety analysis: NGSIM homogeneous lane-based conditions 

I-80 

 

Flow 1 0 954 

Flow 2 0 1857 

Flow 3 0 2674 

US-101 

 

Flow 1 2 1154 

Flow 2 0 1958 

Flow 3 4 2876 

(b) Safety analysis: Indian traffic conditions 

AVE -a 0 529 

PME - 2 897 

CS 
Flow 1 2 1254 

Flow 2 0 1159 

WE 

Flow 1 25 1205 

Flow 2 59 1689 

Flow 3 0 984 

WE-C 

Flow 1 31 950 

Flow 2 27 1243 

Flow 3 15 1469 

a No traffic flow data are available for this section.  

 

Figure 6 Number of rear-end collision points over the road space on the WE section at Flows 

1 and 2. Note: Flow 3 has no rear-end collisions.  

From the analysis, it is observed that WE and WE-C tend to have a greater number of probable 

rear-end collisions than other study sections.  This can be attributed to numerous factors, such as 

road geometry, ongoing construction activity, the proportion of MTWs, etc. Interestingly, from the 

congested traffic conditions, no probable rear end collisions are observed. In the case of congested 

conditions in the WE section, both longitudinal and lateral movements of the vehicles were 

constrained, and as a result, MTW and other vehicles tended to follow their leaders and reduced 

their speeds. For this reason, Flow 3 of the WE section was found to be safer with no probable 
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rear-end collision. On the WE-C is of bottleneck section. Due to this, the traffic never flows beyond 

its capacity, resulting in no congested traffic conditions in WE-C. As a result, even in flow 3, 

around 15 probable collision points are observed.  

To understand the vehicles' lateral movement in WE and WE-C, lateral amplitude (Raju, Arkatkar, 

Easa, & Joshi, 2021) analysis is performed over the vehicle categories and the descriptive statistics 

as reported in table 3. Lateral amplitude is the measure of lateral weaving of the vehicle over the 

study sections. From the analysis, it is observed that smaller vehicles, MTW tend to display higher 

lateral movement when compared to other vehicle categories. Further, in the case of WE, the 

vehicles' lateral movement increases with the increase in flow conditions. At near stop and go 

conditions, a downward trend is observed.  On the other hand, in the case of WE-C, the lateral 

amplitude is found to be increased over the flow conditions.   
 
 

Table 3 Lateral amplitude (m) of vehicles over WE and WE-C study sections 

Vehicle 

category 
Parameter 

WE WE-C 

Flow 1 Flow 2 Flow 3 Flow 1 Flow 2 Flow 3 

MTW 
Mean (m) 0.9 2.1 1.4 1.1 2.0 2.1 

Std (m) 0.7 1.5 0.9 0.8 1.5 1.3 

MThW, CAR 
Mean (m) 0.8 1.4 1.1 1.0 1.4 1.5 

Std (m) 0.8 1.2 1.1 0.9 1.0 1.3 

BUS, 

TRUCK, 

LCV 

Mean (m) 0.5 1.4 1.7 0.8 1.3 1.8 

Std (m) 0.2 0.7 1.1 0.5 0.4 1.3 

 

SUMMARY AND CONCLUSIONS 

Driving behavior is one of the most sensitive parameters that can be affected by numerous factors 

and can decisively influence the road network's performance. However, analytical tools for 

assessing driving behavior in the traffic stream are limited. Given this gap, this study has presented 

a framework for monitoring safety in the traffic stream, including a new safety measure, and 

demonstrated the importance of trajectory data in providing a better understanding of driver 

behavior. Based on this study, the following comments are offered: 

• From the individual leader-follower pairs in NGSIM data, a comprehensive hysteresis 

phenomenon is observed between the leader-follower pairs (Figure 2). This can be mainly 

attributed to the trap lengths of the NGSIM trajectory data. On the other hand, in the case of 

Indian trajectory data sets, given the limited trap lengths, the hysteresis phenomenon is 

witnessed in the aggregated hysteresis plots (Figure 3) for those study sections. Interestingly, 

with the change in traffic flow conditions, the hysteresis nature between the vehicles is varied. 

This phenomenon was strongly supported by NGSIM homogeneous-traffic (U.S.) and Indian-
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traffic trajectory datasets. The phenomenon has inspired the development of the 

new IHT measure in assessing the attentiveness of the subject vehicle towards its leader. 

• In the AVE and PME sections, the MTW traffic composition was almost nil and provided an 

opportunity for testing safety concerning traffic flow levels. It was observed that both sections 

have very few rear-end collision points. The deterioration in traffic safety in the WE section 

may not be directly proportional to traffic flow levels. In the case of free-flow conditions (Flow 

1) and near-capacity conditions (Flow 2), many data points were observed in the severe and 

moderate regimes. On the other hand, at congested conditions (Flow 3), the occurrence of rear-

end collisions was almost null. The main reason is that in congested conditions, vehicles 

closely follow one after another, which results in less relative speed between vehicles and 

greater IHT values (greater attention). 

• Based on the developed framework, safety in an uninterrupted road section can be monitored 

on a real-time basis using trajectory data, where safety can be quantified over the road network. 

With the better availability of new technologies and usage of advanced image processing 

techniques, the vehicle movement in the traffic network can be monitored, and the trajectory 

data should be possible to be developed on a real-time mode of traffic operations. Further, 

keeping this in view, the safety framework adopted in the study can also be embedded in the 

traffic surveillance systems. Given this, on a real-time basis, the safety over the network could 

be analyzed more comprehensively. This could be even hold good and prove more promising 

in monitoring drivers’ profile and behavior for formulating better enforcement strategies and 

policies. Even necessary protective measures can be taken well in advance before the 

occurrence of any catastrophic event. Further, the study revealed the nature of MTW in 

degrading safety in the traffic stream, which can be attributed to their high degree of lateral 

maneuverability as they can switch lateral positions abnormally to escape delay. The vehicles 

themselves had smaller IHT values and lesser distance gaps. For the WE section, at congested 

conditions, the lateral freedom is arrested, and as a result, safety has improved.  

• The methodology can be applied to real-time surveillance, where traffic stream behavior can 

be monitored and drivers who show aggressive instincts can be easily identified and penalized. 

For future autonomous and connected vehicles, the developed methodology can be well 

applied in modeling collision avoidance systems that can be helpful in coding behavioral 

actions of those vehicles well within the safety limits.  

• The critical limits adopted in this study were assumed based on the literature. This assumption 

may be considered as a limitation of the present work. Future studies to determine appropriate 

thresholds based on roadway and vehicle characteristics are needed. 

 

LIMITATIONS AND FUTURE SCOPE OF THE WORK 

Along with the research findings, the present study has certain limitations, which should be 

considered in the work's future scope. 
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• The safety framework presented in the study is only tested with the available trajectory 

data sets. The present study assumes the thresholds of specific parameters and thereby 

selected SSMs in analyzing safety at selected roadway sections. However, it is implausible 

to demarcate the thresholds with the used trajectory datasets. In this direction, for achieving 

the IHT, VF, and D thresholds, the safety framework must be tested with the historical 

crash trajectory data. This analysis would help calibrate the threshold limits for the 

parameters of the safety framework.  

 

• Further, the collision instincts reported in the study is just an ancillary representation of 

collisions (as a surrogate measure in absence of more reliable historical crash data). It is 

reported that, in some instants, the surrogate safety methodologies may overpredict the 

collision occurrence; this can act as a limitation in the present safety framework as well. 

 

• In the present study for the safety analysis, the study assumed a uniform set of thresholds 

to identify the probable rear end collisions. However, concerning the change in study 

sections and the flow conditions, the threshold parameters will be varied. Due to this, the 

probable collisions reported in some of the study sections may vary.  

 

• Along with this, in the present study, explaining the follower vehicle attentions and 

quantify them, IHT vs. D, are demarcated in a linear form. However, there is no such clear 

findings or supporting analysis to advocate its linear form. Simultaneously the demarking 

can be curvy with possible positive and negative slopes. Still, in this direction, few more 

studies are to be carried in understanding the nature of demarcation.  

 

• Further, the present framework can be explored with a driving simulator experiment. This 

would help in understanding the subject follower vehicles' attentions towards the leaders. 

Given this, the safety framework application can be refined further.  
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