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Abstract
Autonomous surface ships have become increasingly interesting for commercial maritime sectors. Before deep learning (DL) was proposed, 
surface ship autonomy was mostly model-based. The development of artificial intelligence (AI) has prompted new challenges in the maritime 
industry. A detailed literature study and examination of DL applications in autonomous surface ships are still missing. Thus, this article 
reviews the current progress and applications of DL in the field of ship autonomy. The history of different DL methods and their application in 
autonomous surface ships is briefly outlined. Then, the previously published works studying DL methods in ship autonomy have been 
categorized into four groups, i.e., control systems, ship navigation, monitoring system, and transportation and logistics. The state-of-the-art of 
this review paper majorly lies in presenting the existing limitations and innovations of different applications. Subsequently, the current issues 
and challenges for DL application in autonomous surface ships are discussed. In addition, we have proposed a comparative study of traditional 
and DL algorithms in ship autonomy and also provided the future research scope as well.

Keywords  Maritime autonomous surface ships; Deep learning (DL); Artificial intelligence (AI); Review

1  Introduction

Since the end of the last century, autonomous vehicle 

has become a popular research field as a move towards un‐

manned driving and safe operation (Jurgen and Ronald, 
2013). Offshore vehicles, such as surface ships and under‐
water vehicles, also closely follow this autonomous opera‐
tion trend. As compared to ground vehicles (e.g., cars and 
trains) (Weichselbaum et al., 2013; Yin et al., 2017; Jo et 
al., 2015), ships have less maneuverability due to their 
huge sizes, large masses, and complex evolving external 
disturbances. These diverse characteristics of ships cause 
exceptional difficulties in improving their autonomy level. 
Although there have been tests, experiments, and even 
products on ground vehicles, similar applications on sur‐
face ships are still limited.

Most offshore operations and construction are carried 
out by human operators in hazardous environments. Such 
work can be risky due to changing sea environments, 
harsh living conditions, and workplace hazards. This has 
motivated researchers’ interest in the field of autonomous 
ships to obtain better safety and efficiency during sailing 
and operations. As long as the autonomy level onboard is 
improved, human operators can be supported or even re‐
placed by artificial intelligence (AI) systems. Therefore, a 
significant part of offshore work can be replaced by on‐
shore office work. Such a step provides the advantages of 
safer working and living conditions for human operators, 
as well as lower labor costs for companies.

Additionally, autonomy in ships can help reduce human 
errors during offshore operations. Surveys have shown 
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that 80%–90% of shipping accidents happen due to human 
errors, either directly or indirectly (Heij and Knapp, 2018; 
Schroder-Hinrichs, 2010). These human-induced accidents 
may cause damage to ships and sometimes even harm to 
human operators. Thus, it is highly essential to improve 
the autonomy level of ships for safer offshore operations 
and construction.

The majority of available applications related to autono‐
mous ships use traditional model-based algorithms (Gu et 
al., 2020). However, the complicated modeling of different 
types of autonomous ships has limited such applications. 
Furthermore, during sailing, ships have to deal with fre‐
quently changing environmental loads and slowly varying 
operational parameters caused by fuel consumption as 
well as tear and wear conditions. These issues of surface 
ships are difficult to address using traditional model-based 
or signal-based methods. On the plus side, the DL method 
can learn to approximate the model and be generalized to 
the unknown changing environment without a prior model. 
With the implementation of the DL technique, the process 
can reduce the expert-involved knowledge and automate 
the modeling process. Therefore, the development of the 
DL method in the last decade has provided an innovative 
solution to the aforementioned problems.

In recent times, the DL technique has been proven to 
be adaptable in the field of autonomy. The DL technique 
has been extensively used in autonomous vehicles, such 
as car-following (Zhu et al., 2018; Wang et al., 2018a) 
and car detection (Ammour et al., 2017) for autonomous 
cars. It is well known that automobiles are normally ex‐
posed to a more complicated driving environment com‐
pared to surface vessels. Therefore, most DL applications 
in autonomous cars are developed in the field of traffic 
and lane detection and logistics. Similar studies based on 
the application of the DL technique in autonomous surface 
vessels also confirmed its ability to deal with detection, 
control systems onboard, monitoring systems, and trans‐
portation and logistics.

In this paper, we have presented a detailed review of 
current progress in DL methods applied to ship autonomy. 
The first part of this review paper carefully addresses the 
state-of-the-art in surface ship autonomy. This clearly 
gives us deeper insight into the current issues and challeng‐
es encountered by autonomous surface ships. In the next 
part, a detailed discussion of the history and up-to-date the‐
ories of DL methods is provided. Afterward, the last part 
of this review paper deals with the applications and chal‐
lenges of DL methods in autonomous ships.

To our knowledge, a careful analysis of AI literature 
makes it evident that the review studies completely deal‐
ing with DL in autonomous surface ships are still miss‐
ing. Contrary to the existing review studies, a significant 
part of this work contributes to the following potential 
aspects:

• The plausible reasons, which motivated us to adapt 
DL in autonomous surface ships over the traditional 
model-based or signal-based algorithms, and the subse‐
quent level of improvement in automation, achieved by 
DL algorithms.
• A wide range of DL applications in the field of autono‐

mous surface ships, which have been further classified in‐
to four aspects, namely control systems onboard, ship navi‐
gation, fault detection, and transportation and logistics. 
The distinct characteristics of these different DL applica‐
tions have been thoroughly discussed.
• The current challenges of using DL methods in autono‐

mous surface ships are analyzed in detail. In addition, a 
brief note on potential applications of this subject and its 
future research scope is also provided as well.

The remaining parts of this review paper have been or‐
ganized in the following manner. In Section II, the current 
scenario of autonomous surface ships and their recent chal‐
lenges are given. Subsequently, Section III provides a brief 
introduction to DL, including its history and some of its 
most renowned methods. Next, a detailed survey of DL in 
control systems onboard is provided in Section IV, fol‐
lowed by summarizing the applications of various DL 
methods in navigation systems in Section V. Further, Sec‐
tion VI provides the relevant literature review for DL in 
monitoring systems. Subsequently, the DL applications in 
transportation and logistics are added in Section VII. Fur‐
thermore, the research trends of DL in autonomous ships 
are discussed in Section VIII. In Section IX, some of the 
more important points of this review study are readdressed 
as concluding remarks.

2  Autonomous ships and research scope

With the advancement of control systems and artificial 
intelligence (AI), the autonomy of offshore ships has be‐
come apparent in the eyes of the public. This section brief‐
ly discusses the characteristics and development of autono‐
mous ships, followed by current, ongoing challenges.

2.1  Characteristics of the autonomous ship

The term “autonomous ship” has first become a re‐
search subject at the beginning of the 21st century (Stathe‐
ros et al., 2008). Subsequently, global organizations and 
maritime companies have started collaborative research 
works in standardizing “autonomous ships.” The collabora‐
tive research project, MUNIN (Maritime Unmanned Navi‐
gation through Intelligence in Networks), was co-funded 
by the European Commission under its Seventh Frame‐
work Program. This project was majorly proposed to study 
and develop the concept of autonomous ships. Herein, au‐
tonomous ships are first defined as the “next generation 
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modular control systems and communications technology 
that will facilitate wireless monitoring and control func‐
tions for both on and off the board. These features will be 
included in advanced decision support systems to provide 
a capability to operate ships remotely, under semi or fully 
autonomous control” (MUNIN, 2021).

In 2018, International Maritime Organization (IMO) 
defined Maritime Autonomous Surface ships (MASS) as 
“ships to a varying degree, which can operate indepen‐
dently of human interaction”, and also defined four levels 
of autonomy for MASS (IMO, 2021). Similarly, Llyod’s 
Register (2015) has defined six autonomy levels for 
ships. It can be noted that the defined autonomy levels 
by IMO, as well as Lloyd’s Register, are summarized in 
Tables 1 and 2, respectively. Both entities defined the au‐
tonomy levels in a gradual manner, with the low level re‐
ferring to the low autonomy with human operations, 
while the high level presents high autonomy with few or 
no human operations.

Currently, most surface ships’ autonomy levels are still 
low (i.e., under autonomy level 1, as defined by IMO, or 
autonomy levels 1 and 2, as defined by Lloyd’s Register). 
The majority of decisions and subsequent operations on‐
board are carried out by human operators.

Under such circumstances, autonomous surface ships 
have been widely discussed and studied in the past de‐
cades in the marine industry. In 2012, the first autonomous 
ship project in the marine industry was initiated in Europe 
(Munim, 2019). Earlier to this project also, there have 
been many research investigations were carried out on au‐
tonomous ships. Such research work includes the follow‐
ing essential aspects, investigation of control systems on‐
board (Wu and Yang, 2014), transportation and logistics 
(Davarzani et al., 2016), offshore navigation (Crisp, 2004; 
Han and Chong, 2004; Noel et al., 2019; Ozturk and 

Cicek, 2019), and fault detection (Howard, 1994).

2.2  Challenges in autonomous ship

Similar to most advanced technologies, the major chal‐
lenges encountered by autonomous ships arise from two 
aspects. They are given as research and applications. Re‐
search of autonomous ships lies in an interdisciplinary sub‐
ject. So, this not only needs massive effort in each subject 
topic but also requires collaboration between different sci‐
entific communities. On the other hand, a variety of appli‐
cations for autonomous ships are also facing challenges in 
terms of legislation and regulations (Perera, 2018), design, 
operation, maintenance, and management. Although the 
Maritime Safety Committee (MSC) has approved Interim 
guidelines for MASS trials (IMO, 2019) at its 101 session 
in June 2019, the details of autonomous ship guidelines 
still need to be further consummated.

With the development of maritime technology, the struc‐
ture and engines onboard the ships are getting increasingly 
complicated to fulfill the various tasks. In such circum‐
stances, the traditional model-based control methods face 
challenges in adapting these complex models. All these ad‐
verse conditions open up a new window for DL-based al‐
gorithms to provide solutions without precise modeling. 
Thus, researchers have adapted it to improve the autono‐
my of surface ships.

2.3  Research scope

It is natural that when we first read the term “autono‐
mous ship,” what comes to our mind is auto-pilot, as sim‐
ilar to auto-driving in autonomous cars. Yet we know that 
autonomous ships are far away from auto-pilot technolo‐
gy. Unlike auto-pilot or auto-driving, ship autonomy is a 

Table 1　Autonomy levels defined by IMO (2021)

Autonomy 
Level

Level 1

Level 2

Level 3

Level 4

Description

Ship with automated processes and decision 
support: Humans are onboard to operate and control 
the ship; some operations may be automated and 
occasionally unsupervised, but human operators are 
always online, and they are ready to take action.

Remotely controlled ship with seafarers onboard: 
The ship is remotely controlled; however, human 
operators are onboard and ready to take control.

Remotely controlled ship without seafarers 
onboard: The ship is remotely controlled; human 
operators are onshore, and they take actions remotely.

Fully autonomous ship: No human operators are 
involved. The operating system onboard can make 
decisions and determine actions by itself.

Table 2　Autonomy levels defined by Lloyd’s Register (2015)

Autonomy 
Level

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Description

Onboard decision support: Human operators are 
responsible for all actions with minor support from 
digital systems.

Onboard and offboard decision support: Human 
operators are responsible for all actions. They can get 
assistance from and be influenced by digital systems.

Active human-in-the-loop: Digital systems are 
responsible for making decisions and actions under 
the supervision of human operators.

Human-in-the-loop: Most decisions and actions are 
taken by digital systems. High impact decisions can 
be overturned by human operators.

Autonomous: Most decisions and actions are taken 
by digital systems under the supervision of human 
operators.

Fully autonomous: No human actions are involved.

586



J. Ye et al.: Deep Learning in Maritime Autonomous Surface Ships: Current Development and Challenges

complex field that has relations to many different subjects. 
A fully autonomous ship requires research and applica‐
tions of various potential aspects, majorly including ship 
design, control systems, auto-pilot and route planning sys‐
tems, navigation systems, and monitoring systems in com‐
bination with system integration. Such work can be rough‐
ly divided into three categories: onboard, in port, and on‐
shore. In this paper, we will focus on research work on 
more efficient usage of DL methods in autonomous sur‐
face ships, applied to systems onboard and in port.

As shown in Figure 1, a fully autonomous surface ship 

needs monitoring systems, such as control and navigation 
systems onboard, logistics control in port, and remote con‐
trol, as well as supervisory onshore. In this paper, we will 
only consider the autonomy of a single ship and complete‐
ly excludes control of multiple ships. As most up-to-date 
applications of DL of autonomous surface ships lie in the 
field of onboard and in-port systems, we will classify such 
applications into the following two aspects:
• Onboard systems that include three main parts: control 

systems, navigation systems, and monitoring systems.
• Systems in port, such as transportation and logistics.

3  DL introduction

This section briefly describes the development of DL-
related methods in recent years, as well as some of the 
classical algorithms that are broadly adopted in the DL 
domain.

3.1  Introduction to machine learning (ML)

Humans have been dreaming of building machines that 
can “think” ever since ancient Greece. This “dream” is no 
longer a fantasy now with the invention of high-speed 
computers and the development of ML algorithms. For 
decades, ML has been an active research area with its ex‐
cellent performance and wide range of applications in 
miscellaneous engineering fields. Nowadays, researchers 
in various fields are seeking opportunities to incorporate 
ML methods to solve the difficulties encountered in their 
respective fields.

In general, there are three different types of ML princi‐
ples, supervised learning, unsupervised learning, and rein‐
forcement learning (Figure 2).
• Supervised learning uses labeled datasets to train mod‐

els to obtain the desired output. The applications of super‐
vised ML can be concluded in two folds: they are regres‐
sion to understand the relations between different variables 
and classification to assign data into multiple categories.
• Unsupervised learning, on the contrary, uses unlabeled 

datasets for training. It is normally used to solve clustering 
or association problems.
• Reinforcement learning (RL) is coined as another 

powerful ML algorithm. This deals with how intelligent 
agents should make decisions in a particular environ‐
ment. The essence of RL is to make decisions based on 
different observations (environmental state) in the envi‐
ronment through the agent and to continuously interact 
with the environment to obtain different reward signals, 
as shown in Figure 3.

Figure 1　Various systems involved in an autonomous ship
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3.2  Brief history of DL

When ML was first introduced in the public domain, 
people were trying to use it to solve their problems. But 
such an end use of ML requires intensive computation, 
which is normally difficult for humans but easy for comput‐
ers. The real challenge for ML, however, is to solve prob‐
lems that are difficult to formulate into mathematical mod‐
els, such as the awareness of different faces and different 
sounds. However, these experience-based tasks are easy for 
human beings, as they are challenging to machines. Artifi‐
cial Neural Network (ANN) was introduced under such a 
background. Instead of describing the problems with for‐
malized mathematical models, ANN discovers feature rep‐
resentations of data by combining the low-level features to 
form more abstract high-level representations.

The concept of DL originated from the investigation of 
ANN models in ML theory. The first ANN-related model, 
originating in 1943, came from McCulloch and Pitts’ at‐
tempts to model nerve cells (McCulloch and Pitts, 1943). 
Hereafter, the so-called MP model was introduced in the 
research. Figure 4 shows the structure of an MP model. 

The model consists of linear weightings of input signals, 
summation, and nonlinear activation. With the application 
of the MP model, the first ANN model was proposed in 
1958 by Rosenblatt (1958), and later it was used for com‐
pleting simple classification tasks. This model was named 
“perceptrons.” The convergence of the perceptrons was 
proven in 1962 (Rosenblatt, 1962). Not long after the per‐
ceptron rule was introduced, it was proven by Minsky that 
it only adapts to linear systems (Minsky, 1968). Thus, re‐
search on perceptrons came to a standstill.

Afterward, another major extension of the ANN took 
place in the late 20th century, when Werbos developed a 
backpropagation algorithm to train multilayer neural net‐
works (Werbos, 1988). Such a mechanism is shown in 
Figure 5. In a study by Rumelhart et al. (1986), the origi‐
nal network structure is replaced with multiple hidden lay‐
ers, and subsequently, the Sigmoid function was intro‐
duced for nonlinear mapping. Meanwhile, the backpropa‐
gation algorithm is used to train the model for nonlinear 
classification and learning. In 1989, LeCun et al. (1989) in‐
vented the convolutional neural network (CNN) by using 
the backpropagation algorithm to recognize handwriting in 

Figure 2　Three different types of machine learning: supervised learning, unsupervised learning, and reinforcement learning

Figure 3　Schematic diagram demonstrating the reinforcement learning

Figure 4　Schematic diagram illustrating the MP (McCullon and Pits, 
1943) model
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post office systems. However, as a heuristic optimization 
strategy, the backpropagation algorithm encountered prob‐
lems with gradient vanishing (Vandeginste et al., 1998). 
Since 2006, such gradient vanishing problems can be ef‐
fectively prevented by deep belief net with fine-tuning 
mechanism (Hinton, 2009) and Rectified Linear Unit as an 
activation function (Nair and Hinton, 2010). The afore‐
mentioned research outcomes have laid the foundation for 
DL. Afterward, the theoretical research and applications of 
DL stepped into a period of rapid development.

In 2011 and 2012, Deep Neural Network (DNN) mod‐
els were adopted in speech recognition by Microsoft and 
Google, with considerable achievement (Senior et al., 
2012; Dahl et al., 2011). In the computer vision field, 
AlexNet, with dropout techniques accelerated by Graph‐
ics Processing Unit, won first place in the famous Ima‐
geNet Challenge in 2012 (Krizhevsky et al., 2012). Since 
then, DL, especially CNN, has drawn tremendous interest 
among all disciplines of global scientific communities, 
and soon it became one of the most popular ML methods.
Later in 2014, Dauphin et al. proved that the local minima 
problem of neural networks is generally not a serious 
problem and removing the local minima haze hanging 
over neural networks [Dauphin et al., 2014]. From then 
on, the development of DL has received an explosive peri‐
od, where the relevant techniques were going through as‐
tounding growth.

On the plus side, DL shows powerful information per‐
ception capabilities in supervised learning fields, such as 
image recognition, audio recognition, and natural language 
processing. In addition to supervised learning, DL exhibits 
superior performance in the field of RL as well. As said 
earlier, RL is another class of ML algorithms in the field of 
AI. The learning mechanism of RL requires learning from 
the collected interactive trajectories (learning experience), 
modification, and subsequent improvement in decision-
making ability so as to obtain larger cumulative rewards.

Eventually, the emergence of DL methods has greatly 
improved the agent’s information-extracting ability from a 

series of observations (e. g., visual/sound observations) in 
RL algorithms. With the addition of DL algorithms, deep 
RL shows that its control does not lose or sometimes even 
exceed the human-expert level in many fields. Therefore, 
deep RL algorithms were widely used in the field of games 
(Vinyals et al., 2019), robot control (Chen et al., 2018), and 
unmanned driving vehicles (Sallab et al., 2017). One of the 
most famous cases happened in 2016 when deep RL-based 
AlphaGo defeated the best Go players in Asia and became 
the best Go player (Silver et al., 2017).

Research on DL is still moving forward. Nowadays, in 
addition to the above fields, DL has also been applied to 
fields such as medical science (Albarqouni et al., 2016), 
praxeology (Phan et al., 2017), transportation (Lv et al., 
2015). We believe that there will be more scientific disci‐
plines that are involved in collaboration with ML, especial‐
ly DL, in the near future. Much more effort will be expend‐
ed to solve the problems that are difficult to formulate by 
mathematical representations with the attempt to use DL.

The combination of DL and autonomous ships is a new 
trend in the field of maritime and offshore engineering. 
Since the late 20th century, a series of research studies have 
shown their variety of approaches to recognize the ship in 
graphics using neural network models (Inggs and Robin‐
son, 1995). In the next section, we provide a detailed re‐
view of the applications of DL methods in autonomous 
ships. This part of the discussion will further focus on four 
disciplines: control systems onboard, transportation and lo‐
gistics, navigation, and monitoring system.

4  Control systems onboard

Control systems of surface ships have always been a 
popular research field in ships and shipping autonomy. 
Control systems onboard normally include the following 
essential aspects: position control, motion prediction and 
detection, power management, and thrust control. Current‐
ly, most these control systems are still based on PID con‐
trollers to ensure the robustness and reliability of offshore 
structures (Roberts, 2007). Although PID controllers have 
proven to be trustworthy in the industry for decades, the 
traditional PID controllers have shown unsatisfactory per‐
formance under certain circumstances, e.g., when the con‐
trolled plant has a time-varying model or when the tuning 
process is difficult to proceed.

Under such an inevitable background, new control meth‐
ods are proposed to deal with the performance difficulties 
encountered during offshore construction. DL is one of the 
most popular methods, especially attributed to its approxi‐
mating ability to solve black box problems. Most DL appli‐
cations with respect to marine control systems are known 
to be related to deep RL. But the use of DL in thrust con‐
trol is still missing. Such applications mainly focus on 

Figure 5　The functional features of the backpropagation algorithm
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three fields: position control, motion prediction and detec‐
tion, and power management. In this section, we discuss 
applications of DL in these fields with respect to autono‐
mous surface ships.

4.1  Position control

Position control refers to the systems that track and ad‐
just the position of the controlled plants. For autonomous 
surface ships, position control systems can be divided into 
three aspects: auto-berthing and steering control, tracking 
and trajectory control, and dynamic positioning. In the last 
decade, numerous efforts have been made to control the 
ship position using DL.

1) Auto-berthing and steering control: Ship auto-berth‐
ing, as well as computer-aided berthing, were proposed in 
the late 20th century to deal with complex environments 
and decrease human errors in ports (Zhang et al., 2022). In 
the 2010s, an adaptive neural network was applied to the 
auto-berthing of underactuated surface ships to handle the 
dynamic uncertainties and external disturbances (Zhang 
and Zhu et al., 2019). Herein, the radial basis function neu‐
ral network is proposed to estimate the nonlinear dynam‐
ics. In order to deal with both external disturbances and 
nonlinear uncertainties, during turn-around-way auto-
berthing, the deep-rooted information (DRI) and Multilay‐
er Perceptron (MLP) models were utilized to estimate the 
parameters in the linearized uncertainty functions.

Then (Kim et al. (2020) applied the DL-based Skip-EN‐
et (Kim et al., 2019) to the vision-based monitoring sys‐
tem to ship berthing. Such an NN-based algorithm was 
used as an encoder and decoder bottleneck to compress the 
representation of image data. The size of the receptive 
field in the dilated convolution is adjusted to segment the 
small objects with an unchanged computation amount. In 
this way, the performance of auto-berthing was improved 
by means of detecting complex marine obstacles.

Later in 2017, the deep RL was first applied to the steer‐
ing control of an underactuated ship using policy-based 
deep RL algorithms, i. e., deep deterministic policy gradi‐
ent (DDPG) and normalized advantage functions (NAF) 
(Tuyen et al., 2017). Herein, the DDPG generates continu‐
ous action using the actor-critic framework to overcome 
the difficulty using Q-learning with continuous action do‐
main, while the NAF deals with the value-function estima‐
tion bias problems. Such a control algorithm could assist 
the ship in sailing past certain locations. However, more 
complex steering control targets could not be achieved by 
relying solely on DDPG and NAF.

2) Tracking and trajectory control: Apart from steering 
control, the deep NN was also applied in tracking and tra‐
jectory control of autonomous ships (Wang et al., 2018b; 
Zhang et al., 2020b; Chen et al., 2019; Guo et al., 2020b; 
Sun and Gao, 2021).

Wang et al. (2018b) combined the DDPG algorithm 

with NN control to deal with uncertain models during 
USV course tracking. Herein, the actor-critic mechanism 
was replaced with one NN with loss functions to simplify 
the training process. The simulation results showed that the 
performance of the course track was significantly improved 
with DDPG, as compared to only NN. However, the track‐
ing error still remained high during sinuous tracking.

Another attempt was made by Sun and Gao (2021) to 
combine the deep NN prediction model with the PID con‐
troller to achieve auto-tuning for trajectory control. Two 
deep NNs were proposed in this paper to evaluate the way‐
point behavior effect and guidance parameters. Evaluation 
is done by using a 6-input-5-output 8-layer deep NN, 
while the parameter valuation model is a 4-input-2-output 
deep NN. Such a system is based on MOOS-IvP (Mission 
Oriented Operation Suite - Interval Programming), a set of 
open-source C++ modules for providing autonomy on ro‐
botic platforms, in particular for autonomous marine vehi‐
cles. Although the overtuning problem has not been solved 
in this application, it is still a bold attempt to use deep NN 
in ship tracking and trajectory.

Further studies using deep RL-based control methods 
were proposed by Chen et al. (2019) and Guo et al. 
(2020b) for intelligent path planning of autonomous ships.

Chen et al. (2019) proposed the q-Learning-based RL 
path planning method while the steering of the rudder was 
controlled. The obstacle avoidance problem was simpli‐
fied with the action space set to limited options. In this 
work, the navigation rules and economic efficiency were 
first modeled as the reward components. Although the pro‐
posed RL method could successfully learn and plan the 
path under different scenarios, it can only be adapted to 
low-speed ships with no dynamic obstacles.

Further studies with RL in path planning were proposed 
by Guo et al. (2020b). This quantified the crew experi‐
ence and COLREGS to ensure the planned path was in 
line with IMO rules and to fulfill the global optimum. 
Based on the experience of relay memory, a deep RL with 
the combination of artificial potential field (APF) and 
DDPG path planning system was proposed. Such an APF-
DDPG-based method has a faster learning time and also 
higher convergence speed compared to DDPG, DQN, and 
Q-learning.

However, none of the above-mentioned studies has 
done research on Lyapunov stability analysis. Overall, Ly‐
apunov stability was difficult to achieve in most ML-based 
control algorithms. Zhang et al. (2020b) combined RL 
with the Lyapunov function and baseline controller in a 
tracking control of the autonomous ship. For the first time, 
overall closed-loop stability was ensured by using deep 
RL, with model uncertainty handled at the same time.

3) Dynamic Positioning: Dynamic positioning systems 
are essential for offshore construction vessels and offshore 
platforms to maintain the position and heading via propul‐
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sion systems in the open sea (Desai, 2015). Traditional DP 
systems, like any other marine control systems, are usually 
based on PID controllers and Kalman filters (García and 
Vázquez, 2008). Such a system is sensitive to sudden 
changes in environmental loads and cannot handle time-
variant models (Ye et al., 2021). In a work by Lee et al. 
(2020), an RL-based adaptive PID controller was proposed 
for DP systems. As compared to the traditional PID con‐
troller, the proposed algorithm by Lee et al. (2020) could 
obtain optimal PID gains from learning, which assists the 
PID controller in coping with the varying environmental 
loads without human input.

4.2  Motion prediction and detection

Ship motion prediction is widely used onboard to navi‐
gate or for special offshore operations (Jose M. and Juan 
F., 2010). With the development of DL methods, deep NN 
has been extensively applied in ship motion prediction sys‐
tems (Liu et al., 2020).

Liu et al. (2020) proposed two RNN-based ship motion 
prediction systems with Long Short Term Memory 
(LSTM) based on impulse response function and auto-cor‐
rection function, respectively. Both algorithms showed 
equivalent performance in training efficiency, but auto-cor‐
rection function-based RNN has displayed slightly better 
prediction accuracy.

Table 3 provides a summary of DL-based applications 
in marine position and motion control systems. In general, 
the current applications of DL methods in maritime con‐
trol systems are mostly based on an NN, and most of them 
use deep RL methods.

5  Ship recognition in navigation

Ship navigation refers to the study of knowing the cur‐
rent position and getting to the destination. The main pur‐
pose of ship navigation systems is to provide the global 
and local location of the target ship and its surroundings 
(Lazarowska, 2019). As shown in Figure 6, traditional nav‐
igation systems use Global Navigation Satellite System 
(GNSS) to locate the ship and to detect obstacles as well. 
Although the GNSS is extensively used in ship navigation, 
it has a few drawbacks. First of all, it cannot support the 
requirements of all phases of ships without augmentation 
systems. Furthermore, the accuracy of GNSS is not suffi‐
cient when it comes to some special ships. Under such cir‐
cumstances, DL-based navigation has been studied to im‐
prove the current systems. Such applications include ship 
detection and identification from Synthetic Aperture Radar 
(SAR) images and photos, traffic prediction, image fusion, 
etc. In this section, we provide a detailed discussion based 
on the aforementioned DL-based navigation systems, espe‐
cially for ship detection.

5.1  Ship detection with SAR images

Ship detection is essential in marine navigation systems. 
In order to get the position and to plan the trajectory of the 
ship, as well as to plan routes of multiple vessels in port, 
one has to detect the ship from satellite images or from 
camera data. There are generally two types of ship detec‐
tion systems. One is to locate the ships for navigation pur‐
poses, and the other one is to detect other ships to avoid 
collisions. Herein, the ship detection systems based on 

Table 3　Control systems onboard using DL methods

Literature

Zhang and 
Zhu et al., 
2019

Tuyen et al., 
2017

Zhang et al., 
2020b

Guo et al., 
2020b

Sun and 
Gao, 2021

Lee et al., 
2020

Liu et al., 
2020

Methodology

Radial basis function 
NN with DRI and MLP

Deep RL with DDPG 
and NAF

Deep RL with baseline 
controller

Deep RL with DDPG 
and APF

Deep NN prediction 
model with PID 
controller

Deep RL-based adaptive 
PID with DDPG

Deep RNN with LSTM 
based on impulse 
response function and 
auto-correlation function

Advantages

Handling dynamic uncertainty and external disturbances

Handling continuous control tasks using DDPG and dealing 
with value-function estimation bias problems associated with NAF

Ensuring the overall closed-loop Lyapunov stability, and 
handling of model uncertainty

Fast learning time and high convergence speed

Self-tuning of the Line-of-Sight guidance method

Optimized self-tuning PID gains and adaptive to changing 
environment

Improving the computational cost, and adaptation in 
determining the optimal input vector dimensions

Types of applications

Estimating the nonlinear uncertain 
dynamics during turn-around-way 
auto-berthing

Steering control of under-actuated 
ships

Tracking and trajectory control of 
an autonomous ship

Optimized path rules planning and 
assuring IMO

Predictive-based ship trajectory 
control

Dynamic positioning systems

Real time motion prediction of ship
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SAR images are most widely studied. These types of ship 
detection systems focus on locating the ships in the radar 
image. The first part of this section demonstrates the vari‐
ous investigation reports dealing with ship detection sys‐
tems by using SAR images.

With the development of DL algorithms, image and 
sound recognition methods have experienced a fast im‐
provement in the last two decades. Such image and sound 
recognition technology has also been applied to the naviga‐
tion of autonomous surface ships. In recent studies, it has 
been reported that the combination of up-to-date ML tech‐
nology with navigation systems was used to detect and 
classify the different types of ships.

1) Deep NN-based ship detection and classification: Not 
until 2016 the navigation systems based on SAR ship de‐
tection were studied, and multiple DL methods were ap‐
plied to this field (Schwegmann et al., 2016). In Schweg‐
mann et al.’ s study, deep highway networks with LSTM 
were proposed to detect the ships from sub-images of the 
SAR dataset. Such detections are classified into three cate‐
gories: positive, false positive (ship-likes), and negative. 
The proposed method was able to detect the ships with an 
accuracy rate of over 90%. Joseph et al. (2018) also 
achieved high accuracy with morphological-based DNN 
for ship detection and classification, with an accuracy rate 
close to 95%. In their study, the ship detection and classifi‐
cation algorithm has been simplified by comparing it with 
predefined point models.

Apart from the aforementioned methods, the deep NN-
based Reti- naNet was also a popular algorithm in ship de‐
tection and classification, as described elsewhere (Wang et 
al., 2019a), (Gao et al., 2019a). The so-called RetinaNet al‐
so adapts a feature pyramid network to sub-sample the im‐
ages into small-size figures for detection purposes.

2) CNN-based ship detection and classification: On the 
other hand, the aforementioned NN-based SAR ship detec‐
tion and classification systems do not take spacial informa‐
tion into account, leading to an increase in the difficulty of 
learning the procedure of the systems. In order to over‐
come the loss of spatial information with previously pro‐
posed algorithms, as well as to deal with an unbalanced 
and small dataset, the CNN was studied for ship and trajec‐

tory detection (You et al., 2019; Fan et al., 2019). Sharifza‐
deh et al. (2019) integrated the CNN-based ship type clas‐
sification and multiple hidden layers (MLP) to decrease 
the false alarms during their detection with SAR images. 
To achieve better precision, a multiscale rotated bounding 
box was proposed by Li et al. (2018b) to replace the tradi‐
tional horizontal bounding box in CNN-based detection 
systems. In 2018, CNN combined with constant false 
alarm rate (CFAR) was first introduced in ship detection 
by Wang and Li et al. (2018), and such an approach has 
been proven to be better than using CFAR only.

Later, attempts were made to decrease the detection 
time of the system by using grid CNN (Zhang and Zhang, 
2019). Another example of using CNN to decrease detec‐
tion time integrates the concatenation mechanism and the 
anchor box mechanism (Zhang and Zhang, 2019b). Such 
algorithms can be applied to the real-time detection of 
high-speed ships. CNN was proposed in ship classification 
by Li et al. (2018a) to improve the density of datasets. 
Such a method was proposed with data augmentation and 
ratio batching to deal with the unbalanced dataset of differ‐
ent ship types. Another attempt to handle unbalanced data‐
sets was made by Shao et al. (2018) with a weighted dis‐
tance measure loss function.

CNN-based ship detection and classification with fine-
tuning in the top layers was first proposed by Wang et al. 
(2018c) to handle small datasets. All these methods can 
provide high accuracy and sufficient detection time on 
the detection of ships. However, the tuning process is dif‐
ficult. Overfitting may occur during the learning proce‐
dure. For traditional anchor-based CNN, the performance 
depends largely on the tuning of the anchor boxes, which 
can be time-consuming and also complex for objective de‐
tection. To avoid the drawback of such anchor-based 
CNN, an anchor-free CNN was proposed for SAR ship 
detection with improved detection accuracy and speed 
[Gao et al., 2020].

In view of the aforementioned CNN-based studies most‐
ly focus on low-speed ships or static ships. In recent works 
(Zhang et al., 2019; Zhang and Zhang, 2019), a depthwise 
separable CNN and a grid CNN were developed to de‐
crease the detection time, thus tracking and detecting high-
speed ships in real time.

The aforesaid examples only deal with low-resolution 
SAR images. Bentes et al. (2018) showed how CNN can 
handle high-resolution images in TerraSAR-X with nonlin‐
ear data and the development of normalization function in 
preprocessing as well.

3) Regression Convolutional Neural Network (RCNN) 
based, Faster-RCNN based, and master-RCNN based ship 
detection and classification: More advanced DL methods 
were proposed to deal with the overfitting and underfitting 
problems during the learning process, and thereby to im‐
prove the detection speed. Herein, one of the most popular 

Figure 6　Ship navigation system
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algorithms is RCNN. It was first adapted to SAR ship de‐
tection in 2017 (Kang et al., 2017). In 2018, an attention 
module and angle RCNN SAR ship detection algorithm 
was proposed to estimate the orientation of the ship during 
simulations (Wang and Lu et al., 2018). However, the relat‐
ed dataset was not established until 2019 (Wang et al., 
2019b). A dataset was constructed for ship detection by 
Wang et al. (2019b), and subsequently, the RCNN algo‐
rithm was modified to identify ships.

Later, Faster-RCNN was studied to improve the up-to-
date detection speed and accuracy. In 2018, Faster-RCNN 
was first applied to multiscale and multiscene SAR ship 
detection (Jiao et al., 2018), with sensitive negative sam‐
ples that are specifically selected and labeled. In order to 
deal with these negative samples, a large number of nega‐
tive samples containing only land areas were proposed by 
Gao et al. (2019b) based on Faster-RCNN. Such detection 
algorithms were improved by Lin et al. (2019b) using 
squeeze and excitation rank Faster-RCNN.

Mask Region Convolution Neural Network (Mask-RCNN) 
has also been widely studied to improve classification ac‐
curacy under complicated backgrounds (Lin et al., 2019a). 
This algorithm was compared with F-RCNN and was 
proven to be more dominant than F-RCNN (Zhang et al., 
2020a).

4) YOLO-based ship detection and classification: Anoth‐
er widely used CNN-based method in ship detection and 
classification is YOLO (You Only Look Once). A CNN 
model named YOLOv2 with a reduced number of layers 
was proposed by Chang et al. (2019) to achieve short detec‐
tion time and high accuracy. Similar applications were also 
developed by other researchers (Chen et al., 2020b; Zou et 
al., 2020). Chen et al. (2020b) combined YOLOv2 with a 
modified generative adversarial network. Such CNN-based 
detection systems have an accuracy rate of 97.2% during 
simulations. Zou et al. (2020) adapted YOLOv3 with multi‐
scale Wasserstein distance and gradient penalty in ship de‐
tection to improve the accuracy of target detection.

5) Ship detection in the Arctic area: More complicated 
ship detection and recognition applications using ship de‐
tection can be found in the Arctic area, where floating ice 
can influence the accuracy of classification and detection. 
In 2016, CNN was first applied to ship-iceberg discrimina‐
tion in SAR images (Bentes et al., 2016). The result was 
compared to Support Vector Machine (SVM) and was 
proven to be better at classification accuracy with large 
training data. In 2019, pseudolabeling was presented by 
Rane and Sangili (2019) to deal with the insufficient 
amount of training data. In 2020, YOLOv3 was proposed 
in iceberg-ship discrimination to increase classification ac‐
curacy [Hass and Arsanjani, 2020]. The above-mentioned 
algorithms only consider the SAR data while detecting 
ships from icebergs. Heiselberg (2020) took into account 
both the SAR data and multispectral satellite images 

(MSI) data to increase the accuracy of ship classification 
in the Arctic area.

A summary of SAR ship detection and classification 
systems using DL can be found in Table 4. Most methods 
are either based on different types of neural networks or 
combine neural networks with other DL methods.

5.2  Other ship detection systems

DL is widely studied in the field of ship detection and 
classification. The studies related to ship detection systems 
from images other than SAR images can be traced back 
to 1995 when NN was first investigated and applied in 
radar ship target recognition [Inggs and Robinson, 1995]. 
In this study, three types of neural networks were studied 
in detail, namely, the feedforward network with back 
propagation, Kohonen’s supervised learning vector quanti‐
zation network, and Simpson’s fuzzy min-max NN. All 
these three methods provided classification accuracy of 
over 85%. The aforementioned algorithms require a large 
range of radar image data to achieve better performance.

1) Detection from high-resolution optical images: For 
the detection of ships from high-resolution images with in‐
terference, such as clouds and waves, the NN-based DL 
method was proposed and tested (Huang et al., 2020). Sim‐
ilar applications were applied for ship identification from 
optical images using CNN. Gallego et al. (2018) proposed 
to use a CNN for feature extracting, with a k-nearest neigh‐
bor to classify the ships from the dataset. CNN with fine 
tuning is applied to deal with small datasets (Shi et al., 
2018; Zhao et al., 2020). Huang et al. (2019) adopted simi‐
lar applications using Resnet and feature pyramid net‐
works. Another attempt has been made by Jiang et al. 
(2019) and Chen et al. (2020a) to classify ships in high-res‐
olution images. Jiang et al. (2019) trained and transferred 
high-resolution optical images to low-resolution infrared 
images before classification. In comparison, Chen et al. 
(2020a) applied a coarse step and fine-tuned step to CNN to 
obtain a short classification time. Relevantly, in a study by 
Wang et al. (2021), high-resolution images went through 
a Gaussian heatmap regression before being classified 
using CNN.

One of the commonly faced difficulties in ship detection 
from images is the rotation of the ship. In [Fu et al., 2018], a 
deep RL-based aerial optical image ship rotation detection 
system was proposed with a feature fusion pyramid network.

2) Detection from real-time cameras: Ship detection 
from photos and from real-time cameras was also a popu‐
lar application of DL since the beginning of this century. 
In another study, three multi-modal early, middle, and late 
fusion CNN-based architectures were adapted to image fu‐
sion before ship detection (Farahnakian and Heikkonen, 
2020). The NN-based detection and classification systems 
were also proposed for real-time cameras under different 
weather conditions (Zhao et al., 2019). Later, a coarse-to-
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fine cascaded CNN was introduced to obtain the short clas‐
sification time (Chen et al., 2020a). The CNN-based YO‐
LOv2 and YOLOv3 were also applied onboard for ship de‐
tection and tracking to achieve short detection time and re‐
al-time tracking as well (Liu et al., 2019; Li et al., 2020]. 
For ship detection in video surveillance, a k-nearest neigh‐
bor-based SVM was proposed by Cao et al. (2020), with a 
CNN-based ship feature extraction.

3) Detection using acoustic data: With the development 
of DL methods and the increasing demand for ship type 
recognition in the deep sea for both military and commer‐
cial purposes, the NN-based ship classification has be‐
come an essential subject topic in both research and indus‐
try. In 2017, a new ship classification method based on 
feedforward NN and SVM was proposed by Niu et al. 
(2017). Such a method is able to detect the different types 

Table 4　SAR ship detection using DL

Literature

Schwegmann et al., 
2016; [Joseph et al., 2018

Wang et al., 2019a; Gao 
et al., 2019a

You et al., 2019; Fan et 
al., 2019; Sharifzadeh et 
al., 2019

Li et al., 2018b

Wang and Li et al., 2018

Zhang and Zhang, 2019

Zhang and Zhang et al., 
2019b

Li et al., 2018a

Shao et al., 2018

Wang et al., 2018c

Gao et al., 2020

Kang et al., 2017; Wang  
et al., 2018

Wang and Lu et al., 2018

Jiao et al., 2018; Gao et 
al., 2019b; Lin et al., 
2019b

Lin et al., 2019a; Zhang 
et al., 2019a

Chang et al., 2019 Chen 
et al., 2020b; Zou et al., 
2020

Bentes et al., 2018

Bentes et al., 2016; Rane 
and Sangili, 2019

Hass and Arsanjani, 2020

Heiselberg, 2020

Methodology

DNN with LSTM

NN-based RetinaNet with
feature pyramid network

CNN

CNN with multiscale rotated 
bounding boxes

CNN CFAR

Grid CNN

CNN with integrated con-
catenation mechanism and anchor box 
mechanism

CNN with a weighted distance 
measure loss function

CNN with data augmentation and 
ratio batching

CNN with fine-tuning in
top layers

anchor-free CNN

RCNN

RCNN

Faster-RCNN

Mask-RCNN

YOLO or YOLOv2 or
YOLOv3

CNN with nonlinear data 
normalization function in 
preprocessing

CNN

YOLOv3

CNN

combined with

Advantages

Detection rates of over 90%

Detection rates close to 95%

Overcome the loss of spatial 
information, dealing with unbalanced 
and small datasets

Increased detection rates

Increased detection rates

Fast detection, applicable to high-speed 
ships

Fast detection, applicable to high-speed 
ships

Handling unbalanced dataset with 
different ship types

Handling unbalanced dataset

Handling small dataset

Simplifies the tuning procedure and 
overcomes the overfitting problem

Handling the overfitting and underfitting 
problems during the training procedure

Construct dataset for ship detection

Select, label, and handle negative 
samples

High detection rates

Detection rates of over 97%

Handling high-resolution images

First-time detection of ships in the 
Arctic area

Increased detection accuracy

Combined usage of MSI data and SAR 
data

Types of applications

Low-speed ship detection from 
sub-images of the SAR dataset

Low-speed ship detection from 
sub-images of the SAR dataset

Low-speed ship and trajectory 
detection

Low-speed ship detection

Low-speed ship detection

High-speed ship detection

High-speed ship detection

low-speed ship detection

Low-speed ship detection

Low-speed ship detection and 
classification

Low-speed ship detection and 
classification

Low-speed ship detection

Low-speed ship detection

Low-speed ship detection

Low-speed ship detection with 
complicated background

Low-speed ship detection

Low-speed ship detection 
using high-resolution SAR 
images

Ship-iceberg classification

Ship-iceberg classification

Ship-iceberg classification
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of ships using acoustic data. The classifiers perform well 
up to the 10 km range. In 2020, CNN was proposed to 
classify surrounding ship types with acoustic data (Shen et 
al., 2020). Such a classification system was robust to ship 
operative conditions during simulations. In 2018, a ship 
type classification system was first introduced with CNN 
via auditory detection (Shen et al., 2018).

A summary of non-SAR-based ship detection, and clas‐
sification systems, using the DL method can be found in 
Table 5. Such applications can be divided into three cate‐
gories: radar image detection, camera image detection, and 
auditory data detection. All the above-mentioned detection 
and classification systems are based on different types of 
neural network models, while some of these applications 
are combined with neural networks and SVM.

5.3  Other ship navigation systems

Apart from the applications mentioned above, there are 
a few other systems using DL methods for ship navigation 
systems, including navigation-based image fusion (Guo et 
al., 2020a), inland ship navigation (Zhong et al., 2019), 
and traffic prediction for navigation purpose (Kim and 
Lee, 2018).

A deep NN-based data fusion system was proposed by 
Guo et al. (2020a) to merge marine radar and electronic 
chart data. Such applications can support navigation with 
comprehensive information.

Inland ship navigation can be even more challenging 

due to the complex environment and interfering noise. For 
inland ship trajectory restoration and AIS (Automatic Iden‐
tification System) data repairing, RNN was proposed to 
improve the ship navigation systems (Zhong et al., 2019).

Safety and sea-port operational efficiency are noted to 
be the main concern in crowded harbors. Kim and Lee 
(2018) investigated such problems using CNN-based DL 
algorithms. Herein, ship movement and ship attribute fea‐
tures are retrieved by using CNN and fully-connected NN, 
respectively. The extracted data are subsequently analyzed 
in another NN for the prediction of the number of ships in 
the interested area.

A summary of DL in other ship navigation systems is 
provided in Table 6.

6  Transportation and logistics

It is well known that offshore transportation and logis‐
tics play an important role in the global economy. Com‐
pared to the control of a single ship, controlling multiple 
ships and regulating the stowage onboard are more chal‐
lenging tasks for maritime engineering. Herein, the nonlin‐
ear and time-varying model of such systems makes it diffi‐
cult to control via traditional Lyapunov-based control algo‐
rithms. DL has been applied to such problems to deal with 
their complicated models. These aforementioned applica‐
tions are mostly related to obstacle avoidance (Cheng and 
Zhang, 2018; Zhao and Roh, 2019).

Table 5　Application of DL methods for ship detection and classification (not sar-based)

Literature

Inggs and Robinson, 
1995

Huang et al., 2020

Gallego et al., 2018

Shi et al., 2018; Zhao 
et al., 2020

Jiang et al., 2019; 
Wang et al., 2021; 
Chen et al., 2020a

Farahnakian and 
Heikkonen, 2020

Zhao et al., 2019

Liu et al., 2019; Li et 
al., 2020

Cao et al., 2020

Niu et al., 2017

Shen et al., 2020; Shen 
et al., 2018

Methodology

Feedforward NN with backpropagation, 
supervised learning vector quantization 
network, and fuzzy min-max NN

NN

CNN method with k-nearest neighbor

CNN with fine-tuning

CNN

CNN

NN

YOLOv2 or YOLOv3

CNN and k-nearest neighbor-based SVM

Feedforward NN and SVM

CNN

Required data

Radar images

High-resolution aerial remote 
sensing images

High-resolution optical aerial images

Optical images

Optical images

Real-time camera images

Real-time camera images

Real-time camera images

Real-time video surveillance

Acoustic data

Acoustic data

Types of applications

Radar ship target recognition

Ship detection with interference

Ship identification 
aerial images

Ship classification 
dataset

Ship classification

Ship detection

Ship detection and classification

Real-time ship detection and 
tracking

Real-time ship detection

Surrounded ship detection

Surrounded ship type 
identification/classification

from

with

optical

small
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DL methods have been applied to such fields since 
2018. Particularly for obstacle avoidance, the unknown dy‐
namics of ships and environmental loads have always been 
known to be a challenging task. By using the traditional 
control algorithms, robust control was adapted to deal with 
such unknown characteristics. However, these algorithms 
are mostly complex in nature and require detailed model 
data. In a study by Cheng and Zhang (2018), deep RL was 
first introduced to handle the aforementioned unknown en‐
vironmental dynamics for obstacle avoidance on an under‐
actuated unmanned marine ship. This is the so-called 
CDRLOA (concise deep reinforcement learning obstacle 
avoidance) system, and it was tested in simulations. It can 
be noted that the real-life applications of a system like 
CDRLOA still remain worth exploring.

On the other hand, collision avoidance for multiple 
ships is much more complex relative to single-ship colli‐
sion avoidance due to the increased number of degrees of 
freedom. In 2019, the deep Q-learning (DQN) system and 
deep NN in the multiship collision avoidance system were 
combinedly used (Zhao and Roh, 2019). In the study, the 
path following and collision avoidance reward functions 
are considered separately in DQN-based collision avoid‐
ance systems. The proposed method is able to avoid colli‐
sion in simulations of complex situations, e.g., four ships 
heading to the center point. But the model uncertainties 
were not considered in this work.

The amount of literature on the effective utilization of 
the DL technique in marine transportation and logistics is 
limited. According to the details summarized in Table 7, 
the deep NN and DQN systems can be adapted to collision 
avoidance.

7  Comparing DL over the traditional methods 
in autonomous surface ships

Traditional model-based or model-free methods were 
known to be widely studied in autonomous surface ships 
prior to the development of DL.

7.1  Control systems onboard

Traditional control systems onboard are either usually 
based on model-free PID controllers or model-based Ly‐
apunov control algorithms (Shi et al., 2017). These meth‐
ods have been widely applied for construction vessels to 

improve shipping autonomy, and some of them have prov‐
en to be reliable in the marine industry. However, these tra‐
ditional systems don’t require fine-tuning or precise 
knowledge of controlled plant models. Under certain cir‐
cumstances, e.g., for construction vessels with complex dy‐
namics, these methods are difficult to apply onboard due 
to their time-varying controlled plant models.

7.2  Ship navigation

Before DL was proposed, most ship recognition systems 
were based on support vector machines (Morillas et al., 
2015). As compared to the DL-based methods, this algo‐
rithm has a shorter training time and is less likely to be 
overturned. However, SVM-based methods are less com‐
petitive in classification relative to DL, while DL is better 
at handling large datasets.

7.3  Transportation and logistics

In particular, control systems with respect to ship trans‐

portation and logistics are mostly based on model-based al‐
gorithms (Do, 2011). Herein, controlling multiple ships is 
more complex than controlling a single ship in the harbor 
due to the increasing degrees of freedom and nonlinearity. 
This makes the modeling of the ships an essential tool in 
controlling systems. On the plus side, the DL technique 
does not require detailed models, except a large amount of 
data is necessary for tuning and training.

8  Trends of DL in autonomous ship

Being one of the most effective tools in perception, cog‐
nition, and control algorithms, DL has shown its beneficial 
features as well as near promising future toward further de‐
velopments in ship autonomy.

As discussed earlier, the DL was known to be most 

Table 6　DL applications for other ship navigation systems

Literature

Guo et al., 2020a

Zhong et al., 2019

Kim and Lee, 2018

Methodology

Deep NN

RNN

CNN and fully connected NN

Types of applications

Data fusion systems to merge marine radar and electronic chart data

Inland ship trajectory restoration and AIS data repairing

Prediction of ship number in crowded harbors

Table 7　Offshore transportation and logistics using DL

Literature

Cheng and 
Zhang, 2018

Zhao and Roh, 
2019

Methodology

Deep NN

DQN

Types of applications

Obstacle avoidance under 
unknown environmental loads

Collision avoidance for multiple 
ships
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widely used in the field of ship localization and naviga‐
tion, especially subjected to object detection and classifi‐
cation by using SAR images. It is mainly owing to the 
strong feature extraction and generalization capability to‐
ward image-like matrix signals (e. g., image and SAR). 
Such a family of algorithms based on the DL technique 
provides great potential in ship detection in ports, open 
seas, and even in arctic areas, including accuracy and 
time efficiency.

Meanwhile, DL is also moved into the applications in 
terms of improving control and fault detection systems on‐
board. These applications vary from position and motion 
control to fault detection and prediction. Among many oth‐
er DL methods, model-free deep RL is the most popular al‐
gorithm. For offshore surface ships, the control plant mod‐
els are usually uncertain due to construction work and 
varying environmental loads. Thus makes greater use of 
model-free DRL.

In conclusion, it can be noted that there are still plenty 
of interdisciplinary research works which can be done in 
the combination of DL and autonomous ships in terms of 
both theoretical and practical significance. Such parts of 
work include:
• Learning procedure. For most marine systems that use 

DL, the learning procedure takes time, good data quality, 
and parameter tuning as well. In the near future, research 
based on the reduction of model training time, the required 
quality of data, and the parameter sensitivity can be exten‐
sively studied for further performance enhancement of DL-
based marine systems.
• Performance. The performance assessment (such as ac‐

curacy and precision) of DL methods has been an impor‐
tant reference tool since the origin of classification/detec‐
tion tasks. Currently, in most applications, autonomous 
surface ships can reach an accuracy of over 90%. Howev‐
er, in consideration of safety and industry requirements, 
these performances still need to be improved to ensure the 
safety and reliability of autonomous surface ships.
• Data collection. Nowadays, the data-driven DL ap‐

proach highly relies on the amount and quality of the data‐
set. Therefore, an effective data collection approach still 
poses a big problem in the case of autonomous surface 
ships due to the mass of data onboard and the high cost of 
data collection, data management, and data processing. In 
such cases, adopting the maritime database is an intuitive 
approach to increase the level of autonomy of marine sur‐
face ships. In addition, the learning efficiency of DL can 
be treated as a supplementary research direction besides 
the existing data collection problem.
• Deployment. Currently, DL-based algorithms are re‐

garded as the most popular algorithms. This can be attrib‐
uted to their ease of application and no requirement for 
detailed modeling of the controlled plant. Such features 
favor researchers working in different scientific fields. 

However, the complicated structure of different neural 
networks, the requirement of a large amount of training 
data, and the long duration of training time make it diffi‐
cult to deploy on ships. Although such DL methods work 
well in simulations and on scaled models, there is still a 
large gap between their performance on real ships and 
simulators. In addition, the subsequent challenges from 
International Regulations for Preventing Collisions at Sea 
(COLREGs) also make it difficult to implement the DL 
algorithms onboard.
• Applications in real ships. In fact, most DL-based algo‐

rithms are tested in simulations. So, the applications of 
such methods in scaled ships or full-scale ships are still 
rarely adopted. This is mainly due to the following essen‐
tial factors. Firstly, DL algorithms require large amounts 
of data, and then the required computing power to process 
the data is still an expensive setting in maritime practice. 
Meanwhile, due to the high maintenance cost and long so‐
lution leading time, shipbuilding manufacturers are still 
cautious toward such novel technologies. In view of these 
aspects, the application of DL methods in ship practice is 
still short and mostly implemented via simulation.
• Regulations. DL in autonomous surface ships also fac‐

es a series of challenges from the industry and government 
sides. The regulations of DL in autonomous surface ships 
and the safe adaptation of such algorithms on real ships are 
still under investigation. On the other hand, how to stan‐
dardize the data collection and learning procedure of DL 
methods in full-scale autonomous surface ships and how to 
assess the overall performance of DL methods are some of 
the questionable aspects that still need to be answered.

Apart from the aforementioned future research tasks, 
there are many other potential applications that can be fur‐
ther investigated in autonomous surface ships by using 
DL, e.g., control systems with complex uncertain models, 
ship maintenance prediction, shipping management, and 
automated ship production. These systems either contain 
internal or external uncertainties that are difficult to model 
via traditional modeling methods or produce a large amount 
of data. Using DL algorithms on such systems, one could 
make the most use of available data and also deal with 
the unknown model at the same time. Furthermore, DL 
can be a useful tool when combined with traditional control 
methods. For example, in the case of complicated marine 
operations, such as auto-berthing and obstacle avoidance, 
using experts’ data to access DL-based high-level control 
decisions could handle the problem of model uncertain‐
ties. At the same time, the low-level control methods can 
still be based on traditional control algorithms to achieve 
a robust control performance. Another example of com‐
bined DL and traditional control algorithms involves DL-
based self-tuning in traditional Lyapunov-based control. 
Such a combination of DL and traditional control algo‐
rithms would be expected to ensure both Lyapunov stabil‐
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ity and optimal tuning in different control applications.

9  Concluding remarks

This review study has provided an outline of DL appli‐
cations in ship autonomy. We first introduced the history 
and basic knowledge of DL and autonomous surface ships. 
Subsequently, some of the most important points collected 
from the marine literature studies are highlighted. In the 
end, a comprehensive discussion on the current progress in 
development and future trends of DL in autonomous sur‐
face ships is provided.

Although many of the DL methods have been applied in 
autonomous surface ships, especially in the field of ship 
detection and classification, further research work on those 
methods is highly essential for further improving the over‐
all performance of such DL-based systems. Some of the 
potential DL applications for complicated maritime sys‐
tems can also be investigated to achieve a higher autono‐
my level. In general, it is always a challenging task to 
make the DL method learn and act in human-like ways. In 
traditional engineering fields, such as marine engineering 
and marine technology, the systematic improvement in au‐
tonomy and reduction of human actions are becoming the 
major subjects of intense scholarly debate. Furthermore, 
the combination of DL and autonomous surface ships can 
be a promising research field, but this needs a great deal of 
effort from experts and researchers working in the fields of 
ship autonomy and ML.
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