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ABSTRACT Visual Place Recognition (VPR) is the ability to correctly recall a previously visited place using
visual information under environmental, viewpoint and appearance changes. An emerging trend inVPR is the
use of sequence-based filtering methods on top of single-frame-based place matching techniques for route-
based navigation. The combination leads to varying levels of potential place matching performance boosts at
increased computational costs. This raises a number of interesting research questions: How does performance
boost (due to sequential filtering) vary along the entire spectrum of single-frame-based matching methods?
How does sequence matching length affect the performance curve? Which specific combinations provide
a good trade-off between performance and computation? However, there is lack of previous work looking
at these important questions and most of the sequence-based filtering work to date has been used without
a systematic approach. To bridge this research gap, this paper conducts an in-depth investigation of the
relationship between the performance of single-frame-based place matching techniques and the use of
sequence-based filtering on top of those methods. It analyzes individual trade-offs, properties and limitations
for different combinations of single-frame-based and sequential techniques. The experiments conducted in
this study demonstrate the benefits of sequence-based filtering over the single-frame-based approach using
various VPR techniques. We found that applying sequence-based filtering to a lightweight descriptor can
enable higher VPR accuracy than state-of-the-art methods such as NetVLAD, while running in shorter time.
For example, matching a sequence of 16 images, CALC descriptor outperforms NetVLAD on Campus Loop
dataset while taking about 22% less time to perform VPR.

INDEX TERMS Sequence-based filtering, visual localization, visual place recognition.

I. INTRODUCTION
The goal of a visual place recognition (VPR) system is to
determine if a currently observed place has been previously
visited by a robot/human. Despite the efforts made by the

The associate editor coordinating the review of this manuscript and

approving it for publication was Wen Chen .

research community, the VPR process remains perfectible.
Dynamic environments and different poses of a robot’s cam-
era cause a place to change its appearance, rendering VPR a
challenging task, as seen in Fig. 1.

In recent years, it has been shown that sequence-based
VPR systems such as [1]–[4] and [5] can achieve good per-
formance in changing environments. Thus, an almost parallel
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track has emerged where sequence-based techniques have
been shown to outperform single-frame-based techniques.
More importantly, the benefits presented by sequential infor-
mation are generally extendable to most non-learning and
learning-based VPR techniques albeit at varying levels and
costs. Therefore, it is critical to understand the properties of
sequential-based filtering, its trade-offs and how to deploy
them on single-frame-based VPR techniques for designing
better VPR systems.

To the best of our knowledge, there is no previous work
that has examined this important problem in a systematic
way (such as performance boost variations due to sequen-
tial filtering along the entire spectrum of single-frame-based
VPR methods, the effects of sequence length on perfor-
mance, performance-computation trade-off etc). To bridge
this research gap, this paper investigates the relationship
between the performance of single-frame-based, learnt and
non-learnt VPR methods, and the use of sequence-based
filtering on top of these methods. In particular, this paper
introduces sequential information into a number of VPR
techniques to improve conditional invariance and shows
that sequence matching takes a poorly performing single-
frame-based VPR technique and improves its performance.
While sequence matching has a positive effect on VPR accu-
racy, it increases the time required to perform VPR. This
paper examines the effects of different sequence lengths on
the resulting performance boost and determines the opti-
mal combinations between different VPR techniques and
sequence lengths, taking into consideration both the perfor-
mance and computational load of each system. We found
that high-precision VPR systems sightly improve their per-
formance from introducing sequential-based filtering. On the
contrary, less accurate but lightweighted techniques can
receive a significant boost in their VPR accuracy, whilst
in some cases also keeping the matching time shorter than
state-or-the-art techniques. For example, CALC outperforms
NetVLAD on Campus Loop dataset using a sequence of
16 images while taking about 78% of the time to perform
VPR.

In summary, ourwork provides the following contributions:

• The application of sequence-based filtering on top of
single-frame-based methods is investigated. In particu-
lar, we analyzed the VPR performance improvement and
the computational effort required to execute VPR using
a sequence compared with single-frame approach.

• The trade-off between VPR accuracy and computational
efficiency is examined, showing how lightweight tech-
niques can replace state-of-the-art descriptors to perform
VPR more efficiently, without any loss in accuracy.

The remainder of this paper is organised as follows:
Section II presents an overview of the literature regard-
ing VPR. Section III presents our implementation of
sequential-based filtering on top of single-frame-based meth-
ods. Section IV describes the experimental setup for perform-
ing the analysis on trade-offs of sequential filtering for VPR.

FIGURE 1. Sample sequence of images taken from each of the 4 datasets:
Campus Loop, Gardens Point (day-to-day), Gardens Point (day-to-night)
and Nordland (summer-to-winter).

Section V presents the detailed results and analysis. Finally,
the conclusions are presented in Section VI.

II. LITERATURE REVIEW
A thorough review of existing research, current challenges
and the application of Visual Place Recognition (VPR) are
presented by Lowry et. al in [38]. Table 1 presents the high-
lights and limitations for some of the methods discussed in
this section.

Early techniques used in the field of VPR were based
on handcrafted feature descriptors [39], [40] which can be
categorised into either local or global feature descriptors
depending on how they extract the information from an
image [38]. Local feature descriptors, such as Scale-Invariant
Feature Transform (SIFT) [6] and Speeded-Up Robust Fea-
tures (SURF) [7] have been used to solve VPR problem
such as in [8]–[11] and [12]. FAB-MAP (Frequent Appear-
ance Based Mapping) [41] is a VPR system that represents
visual places as words and uses SURF for feature detec-
tion. The system is successfully able to deal with perceptual
aliased images and can perform loop-closure detection. CAT-
SLAM [42], extends the work of FAB-MAP by including
odometry information. Center Surround Extremas (Cen-
SurE) [43] performs real-time detection and matching of
image features and has been employed by FrameSLAM
in [44]. The Bag-of-Words model (BoW) [13] has been used
for VPR tasks such as in [45]. Another important handcrafted
technique is the Vector of Locally Aggregated Descriptors
(VLAD) [14]. Both [13] and [14] are used to partition the
feature space in a fixed number of visual words, that enables
more efficient image matching. A popular whole-image
descriptor is Gist [15], [16] which has been used in [21], [22]
and [18] for image matching. BRIEF has been paired with
Gist by the authors of [18]. Histogram-of-Oriented-Gradients
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TABLE 1. Summary of the highlights and limitations of a selection of VPR methods available in the literature.

(HOG) [19], [20] is another whole-image descriptor used
by the authors of [23]. Zaffar et al. [24] present a hand-
crafted VPR technique which employs HOG feature descrip-
tors to achieve state-of-the-art place matching performance
in changing conditions. The proposed approach has zero
training requirements and low encoding times, hence it is a
great alternative to more resource-intensive VPR techniques,
especially for deployment on resource constrained robotic
platforms. The use of complementary of VPR techniques is

an emerging approach to address VPR. The work presented
in [46] examines the strengths and weakness of various VPR
approaches and optimal combinations of methods are pro-
posed for different environmental conditions. SwitchHit [47]
relies on complementary to propose a switching system to
select the optimal VPR algorithm in dynamic environments.

Convolutional Neural Networks (CNNs) have been widely
explored by researchers (such as in [48] and [49]) in VPR.
Chen et al. [50] used the spatial filter of SeqSLAM together
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with all the layers of the Overfeat Network [51]. The authors
of [25] created two neural-network based VPR techniques.
The first architecture, entitled HybridNet, used weights
learnt from the top 5 convolutional layers of CaffeNet [52],
while the second architecture, AMOSNet, was trained from
scratch on the SPED dataset. The authors of NetVLAD [27]
presented a new Vector-of-Locally-Aggregated-Descriptors
(VLAD) layer that can be incorporated in any neural net-
work architecture, drastically enhancing the performance in
VPR related scenarios. Merrill et al. [28] showed that con-
volutional auto-encoders are suitable for VPR tasks. The
resulting CNN, CALC, is lightweight as well as robust to vari-
ations in both illumination and viewpoint. However, CALC
has low accuracy when compared to other CNN-based VPR
techniques. Cross-Region-Bow [53] achieves viewpoint tol-
erance by building an image representation from a pre-trained
CNN. First, it searches for local maxima in a pre-trained
CNN’s feature map to identify regions of interest (ROI).
Then, the features underlying the selected ROIs are pooled
to form an image descriptor using BoW. RegionVLAD [54]
is based on the same approach as Cross-Region-BoW but
employs VLAD for feature pooling. [55] and [56] present
computationally efficient and compact binary neural net-
works (BNN) for VPR achieving comparable performance in
changing environments with full-precision systems such as
HybridNet. However, BNNs require dedicated hardware or
an inference engine that enables an efficient computation of
bitwise operations. Bio-inspired algorithms are considered as
well to address VPR efficiently. Arcanjo et al. [57] proposed
a lightweight network inspired by Drosophila neural system
consisting in a pre-processing stage to compute a compact
binary image representation, followed by a classifier to pre-
dict the current location of a robot.

SeqSLAM [1] performs visual place recognition in chang-
ing environments by comparing sequences of camera frames
instead of the conventional single-image approach, in order
to decide whether the place has been previously visited.
To achieve sequence matching, SeqSLAM uses a set of
pre-defined constant velocity search lines through the dif-
ference matrix in order to break the map into multiple
places. SMART [29] extended SeqSLAM by incorporating
the odometry into its calculations. The authors of [30] pro-
posed a new sequence-based VPR system for aerial robots.
This method uses Bayes estimation to perform sequential
image matching and it does not require that the sequence
of query images to be organised in the same order as the
stored map. In [32], a fast and compact VPR pipeline is
presented where sequence matching is used to resolve the
collisions in the hash space. Johns et al. [33] show a new
method for appearance-based localisation, namely Feature
Co-occurrence Maps. The performance of this technique
does not degrade during severe changes in illumination,
thus place matching is performed at high precision/recall.
Co-occurrence Maps outperforms both FAB-MAP [41] and
SeqSLAM [1]. The authors of [31] propose a sequence-based
VPR system with robust localisation that can deal with sub-

Algorithm 1 Query and Reference Descriptor Comparison
Given: Query Descriptor (QF )
Given:Map of Reference Descriptors (RM )
INITIALISE (array of 0s): score_array[length(RM )]
iterator = 0
for RF in RM do

score = Cosine_Similarity(QF , RF )
score_array[iterator] = score
iterator = iterator + 1

Best_Match =Max(score_array)

stantial seasonal changes. More recently, in [5], the authors
have presented a sequence-based VPR system based on HOG
descriptors that is able to perform place matching in chal-
lenging conditions, using adaptive sequence-based matching
to tackle VPR in dynamic environments. DeepSeqSLAM [3]
is a trainable CNN+RNN system that is successfully able
to complete VPR related tasks in challenging environments.
The authors of [34] propose a VPR algorithm that matches
sequences of query and reference frames. A matrix of low-
resolution, contrast-enhanced image similarity values are
computed in order to perform sequence matching and a Hid-
denMarkovModel (HMM) framework is used to find the best
sequence alignment. STA-VPR [35] is a sequence-basedVPR
technique that uses an adaptive dynamic timewarping (DTW)
algorithm in order to improve its robustness to changes in
appearance and viewpoint. Furthermore, to achieve image
sequence matching based on temporal alignment, a local
matching DTW (LM-DTW) algorithm is used, thus achieving
a linear time complexity. Both [34] and [35] are suitable to
deal with non-linear changes in velocity, whereas [1] does
not perform well with variable velocities.

III. METHODOLOGY
This section presents the approach taken for evaluat-
ing the boost in performance resulted from introducing
sequential-based filtering on top of single-frame-based tech-
niques. To enable the comparison of different VPR descrip-
tors, the sequence filtering schema presented in [5] has
been employed, as it is agnostic to the underlying single-
frame technique. This approach combines the outcome of
single-frame matching operations into a scalar symbolizing
the similarity between sequences of images representing the
places to match. The below sub-sections provide details on
sequential-based filtering and the evaluation criteria used to
assess the impact of sequential filtering on single-frame-
based VPR techniques.

A. SINGLE-BASED IMAGE MATCHING
For any given query image (e.g. a frame taken from a robot’s
camera), the main goal of a VPR technique is to retrieve
the most representative reference image (the matching place)
from the database. This is done by comparing each query
image with all the stored database images in such a way that
each time a query and reference image are matched together,
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a similarity score is computed. For any given query image,
the reference image with the highest score is chosen as the
best match.

The feature descriptor computed by a VPR technique for
a query image Q is denoted as QF , for a reference image
R as RF whilst the list containing the reference descriptors
for the entire map as RM . The similarity between two image
descriptors (QF and RF ) is determined using the cosine [53]:

s =
QF ṘF

||QF || ∗ ||RF ||
(1)

The single frame-matching schema requires that QF is
compared with every RF from RM . Thus, for any N images
in a dataset, a set of similarity scores S is created as follows:

S = {s1, s2, s3, . . . , sN } (2)

where s ∈ R and s in range [0,1]. Higher the score, higher the
similarity between two image descriptors.

For each query image Q, a new set of similarity scores
S is created containing the values for that particular frame.
Once the similarity coefficients have been computed, the
reference image with the highest value (s ∈ S) is regarded
as the matching place for QF .
Algorithm 1 presents the entire matching process for a

query image descriptor QF and the map, RM . The matching
score (calculated as in equation (1)) of each query-reference
pair is stored in a 1D array entitled score_array. Once a sim-
ilarity score has been generated for every RF (from RM ), the
maximum value from the score_array is retrieved, and thus,
the most representative reference image for QF is selected as
the best match.

B. SEQUENTIAL-BASED FILTERING
In contrast to the single-image matching process previously
mentioned, sequential-based filtering allows a VPR tech-
nique to match sequences of query and reference frames.
The most important steps for introducing sequential-based
filtering on top of single-frame-based VPR techniques are
presented below:

1) CREATING THE IMAGE SEQUENCE
For any given query image qi, the sequence ofK consecutive
images is built as follows:

qi qi+1 qi+2 . . . qK (3)

where qi is the query image for which the sequence is built,
qK is the last query image that is part of the given sequence,
andK is the total number of images that forms each sequence.

Similarly to (3), the reference images are organised in
sequences (formed with an offset of 1 image) as presented
in equation (4):

r1 r2 r3 . . . rK
r2 r3 r4 . . . rK+1
...

...
...

. . .
...

rN−K+1 rN−K+2 rN−K+3 . . . rN

(4)

Algorithm 2 Creating Query and Reference Sequences
Given: Total Number of Query Images
Given: Total Number of Reference Image
K = image sequence length
for i in range (total_Query_Images − K + 1) do

ref_matching_scores = []
for j in range (total_Ref_Images − K + 1) do

score = perform_VPR(QF , RF , i, j)
ADD score to ref_matching_scores

Best Match =Max (ref_matching_scores)

Algorithm 3 The perform_VPR Function Is Presented Here
Given: List of Query Descriptors (QF )
Given: List of Reference Descriptors (RF )
Given: Query Image Number (i_query)
Given: Reference Image Number (j_ref)
K = image sequence length sequential_score = 0
i = i_query
j = j_ref
while i < i_query + K and j < j_ref + K do

score = Cosine_Similarity(QF [i], RF [j])
sequential_score = sequential_score + score
i = i + 1
j = j + 1

sequential_score = sequential_score / K

The application of equation (4) results in N− K+ 1 image
sequences, where N is the total number of images in the
dataset and K is the sequence length. Using higher sequence
lengths will lead to less images to be searched for, as no
new image sequences of length K can be created when we
approach the end of the dataset. For this reason, the number of
sequences created depends solely on the value of the selected
sequence length (2 ≤ K ≤ N) as shown below:

No. of Seq Created = N − K + 1 (5)

Once the query and reference sequences are created, the
sequence matching is performed.

2) SEQUENCE MATCHING
All query and reference features are initially computed and
stored in two separate 1D lists: QF and RF . perform_VPR
in Algorithm 2 has two main functions, more specifically
creating the query and reference image sequences of constant
length K from QF and RF (presented in sub-section III-B1)
and image sequence matching.

The perform_VPR function firstly takes the indices (i for
query images and j for reference images) fromAlgorithm 2 in
order to determine for which query and reference image the
sequences will be created. Starting from the i-th image, the
perform_VPR function creates sequences by adding consec-
utive images until the required sequence length K has been
obtained. The same process is repeated for every reference
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image, starting with the j-th image. This process is presented
in Algorithm 3, which represents the perform_VPR function.
For every given query image sequence previously cre-

ated, perform_VPR searches for the most representative ref-
erence image sequence. Algorithm 3 presents the process of
matching a sequence of query and reference images, gen-
erating K similarity values (score) for each query-reference
pair that are part of the matched sequences. The similarity
or matching score of any query-reference image sequences
(sequential_score) is calculated as the arithmetic mean of the
matching scores of the pairs within these sequences. Thus,
the matching score for a sequence of images of length K is
computed as:

s′ =

∑K
i=1 si
K

(6)

where si represents the matching score for each query-
reference pair with index i. The matching score s’ has values
in range [0, 1], with a higher score denoting a better similarity
between two sequences of query and reference frames. Thus,
for each query image sequence, the reference sequence with
the highest score is selected as the most representative match.
This can be seen in Algorithm 2, where for any given query
image sequence, the matching scores of all reference image
sequences are stored in a list, namely ref_matching_scores.
The maximum score from this list is taken as the best match
for that given query image sequence.

When analysing a query image qi, we take into account
the sequential information provided from using consecutive
images, thus the next K − 1 images are also analysed as part
of qi’s image sequence. For this reason, the first reference
image that is part of the sequence with the highest score is
retrieved as being the best match for its corresponding query
image.

IV. EXPERIMENTAL SETUP
This section discusses the performance metrics employed,
the VPR techniques utilised to generate our results and the
sequential datasets used in this work.

A. EMPLOYED PERFORMANCE METRICS
Area-under-the-Precision-Recall-Curve (AUC) is widely
used in VPR research for evaluation purposes [17] due to the
fact that it performs well on unbalanced data, which is also
the case for VPR applications. Thus, it is also employed in
this work utilizing (7) and (8):

Precision =
True Positives

True Positives+ False Positives
(7)

Recall =
True Positives

True Positives+ False Negatives
(8)

Another important metric utilised in our work is the accu-
racy [5] with the following definition:

A =
No. of Correctly Matched Query Images
Total No. of Query Images in Database

(9)

The authors of [28], [54], [58] and [59] determined that the
feature encoding time (te) of a VPR system to be an impor-
tant performance indicator. In [24], the authors evaluated a
system’s performance using Performance-per-Compute-Unit
(PCU). This is defined by combining precision at 100% recall
(PR100) with te as in equation (10):

PCU = PR100 × log
(
te_max
te
+ 9

)
(10)

In this equation, the maximum feature encoding time
(te_max) is used to represent the most resource intensive VPR
technique, while te represents the feature encoding times
for each of the remaining techniques (where te < te_max).
It is worth mentioning that without the scalar 9 in equa-
tion (10), the VPR technique with te = te_max will always
result in a PCU of 0. Techniques with higher precision and
lower feature encoding time generally lie towards the higher
spectrum of PCU, while compute-intensive and less precise
techniques converge towards lower PCU values. Thereby,
this addition provides a more interpretable range. Because
PCU is a relative performance metric, it serves us value in
this study.

B. UTILISED VPR TECHNIQUES
In this work, sequence-based filtering is introduced into
a number of state-of-the-art VPR techniques, namely
HOG [20], CALC [28], AMOSNet [25], HybridNet [25]
and NetVLAD [27]. Single-frame-based implementation of
Zaffar et. al [17] is used for all 5 aforementioned VPR tech-
niques. In Section V, comparative results based on the
above-mentioned performance metrics for these VPR tech-
niques are presented along with discussion of the benefits and
trade-offs of sequence-based filtering.

C. UTILISED SEQUENTIAL DATASETS
For this study, four sequential VPR datasets are used. The
first dataset is Campus Loop dataset [28], which contains
100 query and 100 reference images. It poses challenges to
any VPR system due to the high amount of viewpoint vari-
ation, seasonal variation and also the presence of statically-
occluded frames. The second and third datasets are part of
Gardens Point dataset [26] which contains both day and
night images, that are divided as follows: 200 query images
(day left) and 400 reference images (equally split into day
images (day right) and night images (night right)). Nordland
dataset [60] is the fourth dataset used which captures the dras-
tic visual changes that seasonal variation can have on a place
(spring, summer, autumn and winter). Since the most notable
differences between seasons are seen during the summer and
winter seasons, each VPR technique is tested here on the
summer-to-winter traverses of the Nordland dataset. Fig. 1
shows sample images taken from each dataset.

V. RESULTS AND ANALYSIS
In this section, we focus our attention on understanding
how and when to use sequence-based localisation/place
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FIGURE 2. The performance boost (%) of sequence matching performance in comparison to the single-frame-matching
performance of all VPR techniques on the datasets mentioned in sub-section IV-C.

matching, its strengths/downsides and the most appropri-
ate performance metrics that can be used in order to test
the efficacy of such VPR systems. We present the results
for sequence-based filtering when used on top of the VPR
techniques mentioned in sub-section IV-B. We also present
the computational effects of sequential-based filtering and
discuss the benefits and trade-offs. For all experiments pre-
sented below, we have used a PC equipped with an Intel
Core i7-4790k CPU.

A. PLACE MATCHING PERFORMANCE
Fig. 2 presents the performance boost provided by sequence
matching for several sequences lengths. The upper limit of
K shown in Fig. 2 is determined by reaching 100% accuracy
by every method. Those K values are summarized in Table 2
for every VPR technique and dataset. The performance boost
in Fig. 2 is calculated as the percentage increase between the
accuracy of the sequence-based and the single-image version
of the same VPR technique. It is evident from Fig. 2 that the
addition of sequential filtering to a given single-frame-based
VPR technique mostly improves the overall place match-
ing performance of that technique. This suggests that by
increasing the sequence length of a VPR technique, we will

achieve better place matching performance. HOG achieves
the highest performance boost on all datasets except Gar-
dens Point day-to-night. VPR techniques such as AMOSNet
and HybridNet have a substantial increase in performance
using a considerable shorter sequence length (K) than simpler
VPR techniques, such as CALC or HOG, on Gardens Point
day-to-night and Nordland. The reason behind this is that
CNN-based VPR techniques such as AMOSNet and Hybrid-
Net are designed and trained to deal with drastic changes in
the environment, while simpler techniques such as HOG are
only able to deal with moderate viewpoint and illumination
changes. We further discuss this topic in sub-section V-B.
However, VPR techniques which already achieve close-to-
ideal matching performance, such as NetVLAD, do not
benefit much from using an increased sequence length on
certain datasets, such as on the Campus Loop and Gardens
Point day-to-day dataset, where the performance boost of
the system is negligible. This is mainly because CNNs such
as NetVLAD, are successfully able to handle the viewpoint,
seasonal and illumination variations that can be found in these
datasets, without requiring an increased sequence length.
This observation is important as using sequences instead of
single images has computational drawbacks and should be
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FIGURE 3. The single-frame matching performance compared to the sequence matching performance for all 5 VPR techniques
on all 4 datasets.

avoided where unnecessary. We expand on this further in
sub-section V-C1 and V-D.

B. PERFORMANCE-BOOST VARIATIONS
Fig. 3 shows the performance boost provided by sequence
matching (y-axis) compared to the single-frame accuracy,
which is reported on the x-axis for each of the considered
VPR techniques. The values are reported only up to the
sequence length that enables a perfect score. For exam-
ple, HOG achieves 100% accuracy on Campus Loop for a
sequence length of 19 images.

A common observation in existing literature has been
that sequential-filtering mostly helps with introducing
conditional-invariance [1], however, the results obtained on
Gardens Point day-to-day shown in Fig. 3 demonstrate that
it also greatly helps in viewpoint-variant, conditionally-
invariant scenarios. The performance boost of each VPR
technique is directly linked to the intensity of conditional
variations (and their effects on the scene appearance) in

the dataset. The benefits of sequential-filtering are clearly
enjoyed extensively by most techniques on datasets (Campus
Loop and Gardens Point day-to-day) with less conditional
changes than datasets (Nordland and Gardens Point day-
to-night) with extreme conditional changes. Fig. 6 shows a
sequence of correctly matched query and reference images
taken from each of the 4 datasets.

In contrast to the observations made above, the perfor-
mance improvement of HOG (refer to Fig. 2) is incon-
sistent on the Gardens Point day-to-night dataset (for
sequence lengths of 2≤K≤20), where the single-frame per-
formance of this technique achieves similar or better place
matching performance compared to that of the sequence
matching performance. The presence of extreme viewpoint
variation, illumination variation and also the presence of
statically-occluded frames in the Gardens Point day-to-night
dataset may affect the performance of this technique. Simi-
larly, the improvement in the performance gained by using
sequential-based matching for CALC is more limited (thus
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FIGURE 4. The PCU values for each VPR technique on all 4 datasets is reported here. For every VPR technique, we only plot up
to the value of the sequence length (K) that is required to reach 100% accuracy (reported in Table 2).

requiring a longer sequence length K to reach maximum
accuracy) when compared to other techniques on the Nord-
land dataset due to the presence of viewpoint and seasonal
variation, as seen in Fig. 3. On this dataset, even with the
addition of sequential-based matching, both HOG and CALC
achieve lower results than more complex VPR techniques
such as NetVLAD. These results are primarily due to the
nature of the dataset, which contains a large number of con-
fusing features, primarily coming from trees and vegetation.
On the other hand, the night images from Gardens Point con-
tain a lot of noise (pepper noise) which drastically decrease
the place matching performance of light-weight systems such
as HOG. We show in Fig. 7 some sequences of incorrectly
matched query and reference images taken from bothGardens
Point day-to-night and Nordland datasets. In such scenar-
ios, evidently it is better for a system to switch to more
sophisticated and invariant techniques, such as NetVLAD
and HybridNet, even at the expense of higher computational
needs.

In summary, some example cases where using a higher
sequence length for a trivial VPR technique (such as HOG)
is beneficial are laterally viewpoint variant and seasonally
variant (but under similar illumination) scenes, e.g. driv-
ing a car in a different lane on a previously visited road
in a different season. The increasing trend in performance
of the HOG technique can be clearly seen in both Fig. 2
and Fig. 3, for the Campus Loop and Gardens Point day-
to-day datasets. However, for platforms that can have 3D
or 6-DOF viewpoint changes, e.g. drones, UAVs etc, deep-
learning-based techniques should be used instead of trivial
techniques with high sequence length, which is also the case
for highly illumination/conditionally variant scenes such as
those found in the Gardens Point (day-to-night) and Nord-
land datasets. Our data supports the fact that deep-learning-
based VPR techniques are better equipped to deal with these
variations, and that they should be used in these scenarios
instead of more simple VPR systems. Thus, we propose that
having this prior knowledge can lead a system based on an
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FIGURE 5. The matching time in seconds of each VPR technique on all 4 datasets is presented here. For every VPR technique, we only plot up to the
value of the sequence length (K) that is required to reach 100% accuracy (reported in Table 2).

TABLE 2. The sequence length (K) required for each VPR technique to reach maximum place matching performance (100% accuracy) on each of the
4 datasets.

ensemble of sequentially-filtered VPR techniques, which are
switched accordingly dependent upon the environmental vari-
ation cues. This criteria will ensure that the most appropriate
VPR technique is selected in each scenario, thus increasing
the place matching performance, possibly at much lower
computational costs as discussed in sub-section V-C1.

C. BENEFITS AND TRADE-OFFS OF SEQUENTIAL
FILTERING
This sub-section presents the benefits and trade-offs of
sequential filtering while also answering key questions.

1) COMPUTATIONAL EFFECTS OF SEQUENTIAL-FILTERING
Due to the fact that we are matching sequences of images
instead of the traditional single-frame approach, the feature
encoding time for each VPR technique will be increased
by K folds. Table 3 shows the feature encoding time of
the 5 VPR techniques used in this work without sequen-
tial filtering and Fig. 5 presents the matching time of each
technique. Because neural network-based VPR techniques,
such as HybridNet, AMOSNet and NetVLAD already have
increased feature encoding times, the addition of sequential
filtering will lead to a drastic increase in processing time.
Fig. 4 shows the Performance-Per-Compute-Unit (PCU) of
each VPR technique and the computational effects of using
multiple sequence lengths. Thus, in both Fig. 4 and 5, for each
VPR technique, we only plot up to the sequence length values
(K) that are required to achieve 100% accuracy (see Table 2).
It is important to note that a significant increase in the PCU
curves occurs when there is a notable increase in precision
compared to the increase in encoding time. HOG achieves
high PCU values due to both its low encoding times and high
increase in precision when adding sequential filtering.

Apart from the computational downsidesmentioned above,
the latency in getting a match as it need to build up sequence

has to be considered. Furthermore, shifting between two
different routes that have not been traversed in that order in
the map (switching latency) as well as the difficulties with
variable velocities (solved partially with more sophisticated
search or using odometry information) can lead to further
computational constraints. This is especially important for
resource constrained platforms as it may restrict its applica-
bility in real world scenarios, due to the high amount of visual
information that has to be processed.

2) SEQUENCE-BASED FILTERING VS. SINGLE-IMAGE-BASED
VPR
The data shows that for a VPR system that has poor per-
formance on a dataset, the addition of sequence-based fil-
tering may greatly improve its performance. Using a longer
sequence length will have a higher impact in place matching
performance. This is the case for HOG and CALC, which
greatly benefit from the addition of sequence-based filtering.
On the other hand, the single-image version of NetVLAD
already achieves almost perfect results on both Campus
Loop and Gardens Point (day-to-day) datasets and thus, the
increased computational effects of sequential filtering for just
a small gain in placematching performancemay not evidently
be desirable, as shown in Fig. 4. Empirically, increase of
sequence length does not cause any reduction in the place
matching performance but mostly yields better performance
and therefore, given computational power, it may be desirable
to use sequence-based techniques instead of single-image-
based techniques.

3) PERFORMANCE BENEFITS BASED ON SEQUENTIAL
FILTERING
As shown in Fig. 2 and Fig. 3, an increased sequence length
for a given VPR technique will lead to higher performance on
most datasets tested. However, different VPR techniques will
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TABLE 3. Feature encoding times of different VPR techniques.

require different sequence lengths (see Table 2) depending
on the performance of the system on a given dataset. When
using sequence-based filtering, the boost in performance can
be attributed to several reasons. Primarily, using an increased
sequence length increases the chances of finding the best ref-
erence image for any given query image which also translates
to reduced perceptual aliasing. The increased sequence length
also improves the conditional-invariance of a VPR technique
as shown by our results.

4) LIGHT-WEIGHT VS. DEEP-LEARNING-BASED VPR
TECHNIQUES BLENDED WITH SEQUENTIAL-BASED
FILTERING
It is evident that it is indeed possible to use a much simpler,
light-weight VPR technique, paired with sequential filter-
ing in order to match or even outperform the effectiveness
of deep-learning-based VPR techniques on certain datasets.
We have shown that the performance of a simpler VPR tech-
nique, such as HOG, can be drastically increased when using
sequence-based filtering with a longer sequence length. The
same can be said about CALC, which achieves good results
when paired with sequential filtering. Moreover, both VPR
techniques have a low feature encoding time, thus greatly
benefiting from a PCU standpoint. Using the best VPR tech-
niques (simpler systems with longer sequence lengths or
deep-learning-based systems with smaller sequence length)
for the right dataset will result in an overall better place
matching performance, as discussed in sub-section V-B.

D. COMPUTATIONAL BUDGET
In a real-word scenario where robotic platforms are computa-
tionally restrained, it is imperative to achieve the highest VPR
performance given computational constraints. In this sense,
we show a performance comparison between the best per-
forming single-frame-based VPR technique and the sequence
length obtainable by each VPR technique in a given time
frame. By adding together the encoding time (te) with the
matching time (tm), we obtain the VPR time for any technique
as follows:

tVPR = te + tm (11)

Using equation (11) allows us to make a fair compari-
son between the performance of each VPR technique and
the effects that sequence length (K) has on tVPR. For this
reason, tVPR is used as a criterion that helps us determine
whether the best performing single-frame-based VPR tech-
nique (NetVLAD - refer to Fig. 3) can be outperformed by
a sequence-matching filtering implementation of other VPR
techniques presented in this work. As such, given the tVPR

FIGURE 6. Some correctly matched sequences of query and reference
images taken from each of the 4 datasets used.

FIGURE 7. Some incorrectly matched sequences of query and reference
images taken from Gardens Point day-to-night and Nordland datasets.

of NetVLAD as computational budget, we present in Table 4
the maximum sequence length (K) obtainable by each VPR
technique in regards to the given time. In case where a VPR
technique reaches 100% accuracy before the computational
budget is expended, the respective sequence length (K) is
reported instead. Apart from the accuracy of a VPR system,
we also present the AUC values and the precision at 100%
recall (PR100) for that particular sequence length (K).

HOGhas the lowest encoding time te of all VPR techniques
presented. However, due to its increased matching time tm,
it is unable to achieve a sequence length of K > 1 in less
tVPR than NetVLAD. On the other hand, CALC has an overall
low tVPR, thus being able to compute a longer sequence
length than every other technique. We show in Table 4 that,
on Campus Loop dataset, CALC is able to achieve better
performance than NetVLAD, in less tVPR. However, due to
the low single-frame matching performance of CALC on
datasets such as Gardens Point (day-to-night) and Nordland
(as shown in Fig. 3), a much longer sequence length K than
the one obtained in the given tVPR would have been required
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TABLE 4. A comparison between the best performing single-frame-based VPR technique (NetVLAD) and the maximum sequence length that can be
reached by the sequence-based implementation of the remaining VPR techniques within the given computational budget (refer to sub-section V-D). In the
case where a VPR technique reaches 100% accuracy before the computational budget is expended, the performance for the obtained sequence length is
presented instead. The values presented in bold represent the VPR technique that has the highest accuracy and the technique that has the lowest tVPR
(refer to equation (11)). The comparison is performed on all 4 datasets.

to achieve the same or better levels of performance as other
CNN-based VPR techniques such as NetVLAD, AMOSNet
or HybridNet.

This experiment concludes that, on Campus Loop dataset,
CALC with a sequence length (K) of 16 images can
achieve better and faster place matching performance within
the computational budget represented by the tVPR of the
single-frame-based implementation of NetVLAD. For this
reason, we propose that the sequence-based implementation
of CALC (with a sequence length of K = 16 images) is
selected as an alternative to the single-based implementation
of NetVLAD (K = 1) on this dataset, as presented in our
experiment.

VI. CONCLUSION
To bridge the gap of lack of a systematic study on
sequence-based filtering for visual route-based navigation,
this paper has conducted an in-depth investigation on the
benefits and trade-offs of sequence-based filtering on top of
single-frame-based VPRmethods. This analysis is performed
on 4 public sequential VPR datasets, that pose difficulties
in place matching (appearance changes, viewpoint variations
etc), using a variety of widely used performance metrics,

such as Performance-per-Compute-Unit (PCU). Sequential
filtering is introduced into a number of contemporary single-
frame-based VPR methods in order to present the findings.
The results show the effects of various sequence lengths on
performance boost and suitable combinations of different
VPR techniques and sequence lengths are determined, taking
into consideration the computational effects of sequential-
filtering, for the best place matching performance in different
scenarios.

This work uses a simple matching schema to highlight
the benefits of using multiple images for VPR. A natu-
ral extension of this work is comparing different matching
schema.While we demonstrated that VPR accuracy generally
benefits from using a sequence of images to find a place,
sequence matching has some more strict requirements than
single-matching approaches. The most relevant requirement
is in regards to the velocity of the traverses. If the veloc-
ity of the reference sequence if too different from that of
the query, the matching might fail [1]. Thus, the analysis
proposed in this paper could be extended to more complex
sequence-based matching techniques to understand whether
the trade-off between the sequence length, VPR performance
and computational cost are affected by the matching method.
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