
Technische Universiteit Delft
Faculteit Elektrotechniek, Wiskunde en Informatica

Delft Institute of Applied Mathematics

Measuring the riskiness of financial assets

Verslag ten behoeve van het
Delft Institute of Applied Mathematics

als onderdeel ter verkrijging

van de graad van

BACHELOR OF SCIENCE
in

TECHNISCHE WISKUNDE

door

YOBEN MAHAFFEY

Delft, Nederland
Mei 2012





BSc verslag TECHNISCHE WISKUNDE

“Measuring the riskiness of financial assets”

YOBEN MAHAFFEY

Technische Universiteit Delft

Begeleider

Dr.ir. R.J. Fokkink

Overige commissieleden

Prof.dr.ir. K.I. Aardal Dr. J.G. Spandaw

Dr. J.A.M. van der Weide

Mei, 2012 Delft





Abstract

Measuring and managing risk is one of the foundations of the financial in-
dustry. This report formulates the basic terminology and tools for under-
standing the process of evaluating risk. For this purpose, financial assets can
be represented mathematically as discrete and finite random variables called
gambles. In order to see their wealth grow, investors devise strategies to al-
locate their resources among gambles depending on valuations of risk. Risky
strategies open the possibility of bankruptcy, while safe strategies guarantee
no-bankruptcy in the long run. Dean Foster and Sergiu Hart have devel-
oped a safe strategy based on an objective measure of riskiness for gambles.
This measure can be interpreted operationally as the minimum wealth an
investor should possess in order to be able to purchase the measured asset
safely, if this strategy is used consistently in the long run. Several properties
of this critical wealth are presented, as well as a comprehensive proof of the
Critical Wealth Theorem that determines this wealth for every gamble. The
important concepts of conditional expectations and of martingales, as well
as the Convergence Theorem for martingales, are explored in the process of
providing the aforementioned proof.
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1 Introduction

Since the global financial crisis started in the year 2008, the price of almost
every type of asset in the developed economies has dropped. It started with
the American real-estate market, followed by most stock indexes worldwide.
Currently, sovereign bond markets in the European Union are experiencing
a decline in value. By bankrupting numerous banks, pension funds, hedge
funds and private investors, the effects of this financial crisis have in turn
propagated to the real economy through the depressing effect of limited credit
and widespread deleveraging.

The business of institutional investors is to forecast extreme and risky de-
velopments, or at the very least build portfolios that can weather them and
maintain their value in every scenario. But the development of the current
crisis shows widespread misjudgement of the riskiness and value of financial
assets. While the explanation of why so many institutions made such bad risk
misjudgements lies beyond the scope of this report, these developments illus-
trate the importance of measuring and managing risk in financial markets,
given the important effects it can have on the economy and on society.

This report will give the fundamental tools needed to understand the
riskiness of assets and the decision-making that is based on it. The first
part will model the assets as random variables and present the terminology
that will further be used to describe the riskiness of assets and the strategies
followed by investors to build portfolios. In the second part, we will present
the Operational Measure of Riskiness developed by Foster and Hart and
give some of their accompanying results. The last part will be dedicated
to proving the results that Foster and Hart have derived, by exploring the
concept of martingales.
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2 The concept of risky assets

2.1 Gamble model

An asset can be described as an object that generates cash flows for its owner
at given periods of time. Real estate will for instance generate monthly rents
or capital gains upon resale, while shares in a firm can provide yearly dividend
payments. Most assets generate their cash flows with a degree of uncertainty,
as the real estate’s rents might have to be pre-empted for unexpected repairs
and the firm could run into trouble and decide to reduce or eliminate the
dividend paid.

We will start by looking at the most basic assets, which are purchased for
a given price at a given time and generate a stream of cashflow at a single
time in the future. To reflect the uncertainty of such an asset’s cashflow, we
will model the asset as a discrete and finite random variable X character-
ized respectively by a set of possible outcomes and a corresponding set of
probabilities

{X = x1, X = x2, . . . , X = xn} or {x1, x2, . . . , xn}

{P (X = x1), P (X = x2), . . . , P (X = xn)} or {p1, p2, . . . , pn}

together forming the random variable’s probability distribution. We will
consider the probability distribution to be fully known in advance.

In a further attempt to simplify reality, both the price paid to purchase
the asset and the cashflow generated at a later time are consolidated into a
single outcome. Similarly, despite the continuous nature of assets, we have
approximated these with discrete valued variables, as the concepts involved
will not change fundamentally, while the amount of calculations involved will.

Based on these considerations, we can now give a proper definition of the
random variable mathematically representing the asset and which we will
call a gamble.

Definition 2.1.1. A gamble g is a discrete random variable characterized
by its finite probability distribution. We call G the collection of all possible
gambles and G0 ∈ G a finite subset from which the gambles under study are
chosen.

Definition 2.1.2. The maximum possible loss of a gamble g is the number
L(g) = −minxi. The maximum possible gain is the number M(g) = max xi.
When the gamble to which they refer is made obvious from the context, the
simpler notations L and M , may also be used.

5



For each gamble, the expectation E[g] can be interpreted as the average
outcome of g if the gamble were taken repeatedly. It is computed using the
definition E[g] =

∑n
i=1 xi P (X = xi).

To further illustrate the way we model assets, we will now describe a few
concrete examples.

Example 2.1.3. Consider a one-year corporate bond with a face value of
$220, a coupon of 0% and a purchase price of $100. These terms mean that,
if all goes normally, after a year the bond issuer promises to pay its holder
the face value of $220 augmented by the coupon percentage 220$× 0% = 0$.
The randomness of this seemingly deterministic asset is introduced by the
risk of default. If the firm that issues the bond cannot make the payment
after a year and defaults on it, the holder in our example receives nothing.
The rating agencies consider that there exists a 50% chance that the firm will
default on its payment and to keep our example simple, we will assume that
their evaluation is correct. Figure 1 illustrates the cashflows that occur in
each of these scenarios.

Figure 1: Cashflows scenarios for one-year bond

According to our model, the bond is a gamble g ∈ G0 characterized by the
following probability distribution: set of outcomes {x1 = −100, x2 = 120} and
set of probabilities {p1 = 0, 5, p2 = 0, 5}, where x1 equals the consolidated sum
of the default scenario and x2 equals the consolidated sum of the repayment
scenario. The gamble’s maximum loss L(g) = −x1 = 100 occurs in case
of default, the investor losing exactly the price he paid for the asset. The
gamble’s maximum gain equals M(g) = 120 and its expectation E[g] = 10.
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Example 2.1.4. Consider a stock priced $100 whose owner could sell after
a year in order to make a profit. Financial analysts consider that there exists
a 80% chance that this stock will be priced $115 after a year and a 20%
chance that it will only be worth $90. Furthermore, this firm is known not to
distribute dividends to its shareholders.

In the same way as we did for the bond in the previous example, we can
model the stock as a gamble g ∈ G0 characterized by the following probability
distribution: set of outcomes {x1 = −10, x2 = 15} and set of probabilities
{p1 = 0, 2, p2 = 0, 8}. The gamble’s maximum loss L = −x1 = 10 occurs
when the stock’s price drops to $90 towards the time that the investor sells it,
after one year. The maximum gain and expectation are respectively M = 15
and E[g] = 10.

Example 2.1.5. Consider an apartment priced $100,000 which can be rented
out for twelve months before being sold again after a year. A quick market
research reveals that there exists an equal chance of any of the four following
events to unfold:

1. the apartment is sold for $105,000 and the cumulative rent for the
twelve months equals $6,000

2. the apartment is sold for $105,000 but no tenants are found

3. the apartment is sold for $80,000 and the cumulative rent equals $6,000

4. the apartment is sold for $80,000 and no tenants are found

We assume that no other costs will have to be borne in either of the sit-
uations. We can model the real estate as a gamble g ∈ G0 characterized by
the following probability distribution: set of outcomes {x1 = −20, 000, x2 =
−14, 000, x3 = 5, 000, x4 = 11, 000} and set of probabilities {p1 = 0, 25, p2 =
0, 25, p3 = 0, 25, p4 = 0, 25}. The gamble’s maximum loss L = −x1 = 20, 000
is suffered if event 4 occurs. The maximum gain and expectation are respec-
tively M = 11, 000 and E[g] = −4, 500.

Example 2.1.6. Consider an ounce of gold priced $1,000 which can be resold
after one year, for either $1,000 or for $1,030, each situation being considered
equally likely to happen. We now have a gamble g ∈ G0 characterized by the
following probability distribution: set of outcomes {x1 = 0, x2 = 30} and set
of probabilities {p1 = 0, 5, p2 = 0, 5}. The gamble’s maximum loss, maximum
gain and expectation are respectively L = 0, M = 30 and E[g] = 15.
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2.2 Wealth levels

Investors allocate their capital between various assets in order to try to realize
profits, or at least not suffer losses. This reflects the fact that there are usually
more investment opportunities than capital available to invest and that, as
such, the players are faced with a choice for each asset they encounter. They
can decide either to buy it or not to buy it, in other words, they may either
accept the gamble or reject the gamble.

Definition 2.2.1. To each gamble g we associate a variable d such that it
equals 0 if gamble g is rejected by the gambler and equals 1 if the gamble is
accepted.

As these decisions represent the only way the gambler can exert influence
on the effects produced by the gamble, our research will focus on finding
when and why a gamble is or should be accepted.

The next step in constructing our mathematical model is to acknowledge
the fact that most investors hold their assets for some period of time, instead
of systematically selling after a year, as our above examples implied. For
practical purposes, we will divide the total time that an asset is held into
several discrete periods of time t = 1, 2, . . . and will model a new gamble for
each period.

Definition 2.2.2. At the start of each period t = 1, 2, . . . , the gambler is
offered a gamble gt ∈ G0. We call (gt)t=1,2,... the resulting sequence of gambles.
There are no restrictions on the stochastic dependence between consecutive
gambles, or on the choice and order of gambles that are drawn from G0 to
constitute the sequence.

An investor could, for example, buy the same one-year bond from example
2.1.3 every year after having liquidated the previous one, so that the sequence
this represents consists of the same gamble repeating itself. He could buy the
stock from example 2.1.4 in year 1 and hold it several years before reselling
it. According to our model, this would have the same effect as a resell after
one year and an immediate repurchase of the differently priced stock which
is then modelled by the same initial gamble but rescaled to denote the new
purchasing price. Here the gambles in the sequence are similar in nature but
not equal. Finally, whether actually selling and repurchasing or holding the
initial asset, the more realistic sequence of gambles follows no pattern and is
therefore totally unpredictable, past the current gamble on offer.

Assets hold value in the eyes of the investor insofar as the cashflow which
they might generate can influence their wealth, where the concept of wealth is
defined as follows as the cumulative result of all previously accepted gambles
added to the initial wealth.
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Definition 2.2.3. The gambler’s wealth at the beginning of period t is given
by the stochastic process Wt where t = 1, 2, . . . . The process is characterized
by an initial wealth W1 > 1 and the recurrence formula

Wt+1 = Wt + dtgt (1)

for all t = 2, 3, . . . .

The graph shown in figure 2 describes one possible evolution (unlucky in
this case!) of the wealth of a gambler who starts with $400 and is repeatedly
offered and accepts the bond from example 2.1.3 for ten years.

Figure 2: Graph of the development of wealth in time

Another way of looking at the wealth evolution is to measure the growth
or decline of the wealth for every period of time. For this purpose, we will
define a new random process that outputs the ratio of the change in wealth
after the gamble is either accepted or rejected, by the wealth before the
gamble was offered.

Definition 2.2.4. We call growth factor the random variable Yt defined by
Yt = logWt+1 − logWt This factor is well defined for all t for which both
Wt > 0 and Wt+1 > 0.
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A positive growth factor implies that Wt+1 ≥ Wt, whereas similarly the
wealth decreases if and only if the growth factor is negative.

We conclude this section by noting that the overall money and asset
supply being limited, the wealth Wt for every t is bounded by that total
supply, i.e. an investor can’t possess more than what is available in the world.
The bounded character of the growth factors follows directly from that of the
wealth and from the finite character of the gambles. In mathematical terms,
this property translates to the following proposition.

Proposition 2.2.5. There exists a finite K such that |Yt| < K for all t.

2.3 Strategies

The investor will accept gambles if he feels that doing so might influence his
wealth positively and will reject them if the perceived effect is negative. In
taking these decisions, the gambler judges the degree to which the influence
of the gamble on his wealth could be positive or negative and sets his strategy
accordingly.

Definition 2.3.1. We call strategy s any set of rules followed by the gambler
to make decisions, in other words to determine the value of each dt.

It is natural to ask ourselves what criterion an investor can or should use
to determine his strategy, whether there exist any objective measurements
and conditions to be fulfilled for a gamble to have a positive influence on
wealth. The worst negative impact on wealth is that which leads the wealth
to vanish completely. As we will assume that no money can be borrowed,
reaching the situation where Wt ≤ 0 or where Wt is close to zero means that
the investors not only has no wealth left but also doesn’t have the means to
invest in and accept any new gamble in order to recover his losses and try
to accumulate new wealth. This situation of bankruptcy is a sinkhole from
which there is no escape. We can define it formally as follows.

Definition 2.3.2. A gambler is said to be bankrupt if limt→∞Wt = 0 and in
particular if at some period t, we have Wt ≤ 0.

This definition of bankruptcy in turn enables us to isolate strategies that
can lead to bankruptcy under some scenarios.

Definition 2.3.3. A strategy s is called risky if it leads to decisions that
can cause bankruptcy, in other words if as a result of the decisions prescribed
by the strategy we have P (limt→∞Wt = 0) 6= 0 for at least one sequence of
gambles (gt)1,2,.... A strategy that is not risky is called a safe strategy and this
kind of strategy guarantees non-bankruptcy for any sequence of gambles.
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A good strategist will therefore develop and use objective criterion to
distinguish risky strategies from safe strategies and make the gambler either
follow only the safe kind or follow the risky kind with full knowledge of the
degree of riskiness of his behaviour.

The two simplest strategies would be either to accept or to reject all
gambles. The latter case is of little interest for our research. The graph in
figure 3 depicts the results of a simulation in which a gambler starting with
W1 = 600 is offered the bond from example 2.1.3 repeatedly for 20000 periods
of time and follows the strategy of accepting all of them. The histogram in
figure 4 records the final wealth when the previous simulation is run 100
times. The histogram shows that there exist runs for which the gambler
becomes bankrupt, the graph illustrating one such instance. We can therefore
say that the strategy that was followed is risky. We emphasize that the
expectation of the gambles was positive and yet this characteristic did not
prevent bankruptcy from occurring.

We have repeated the simulation, changing only the type of gamble on
offer to the golden ounce from example 2.1.6. The distribution of final wealth
is given by the histogram in figure 5. It appears that for this sequence of
gambles, the strategy of accepting all of them does not lead to bankruptcy,
in fact it doesn’t even lead to any losses below the initial wealth.

Figure 3: Graph of development of wealth in time, sequence of bonds from
example 2.1.3
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Figure 4: Histogram of final wealth, sequence of bonds from example 2.1.3

Figure 5: Histogram of final wealth, sequence of gold from example 2.1.6
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This last example illustrates one of three basic criteria that help narrow
the field of strategies that can be deemed safe. They are directly implied
by the definition of bankruptcy and by equation (1). The first acknowledges
the fact that if the gamble has no negative outcomes, the gambler’s wealth
can never decline, whatever the outcome. Since the initial wealth is always
positive, there can in particular be no bankruptcy and therefore all safe
strategies should lead to the gambler always accepting such gambles. The
second recommendation derives from the fact that the gambler must at the
very least “survive” the result of the gamble currently on offer, in other words,
he must be certain not to go bankrupt immediately if the lowest outcome
occurs. The third considers the gamble’s expectation: consistently accepting
gambles with a negative expectation means the wealth is more likely to drop
than to grow and in particular in means that there exists a time T in the
long run for which the gambler’s wealth reaches or comes close to zero.

Proposition 2.3.4. Any safe strategy should include or lead to the following
prescriptions:

accept all gambles g for which L(g) ≤ 0 (2)

reject all gambles g for which E[g] < 0 (3)

reject all gambles g for which L(g) ≥ Wt (4)

According to these rules, every offer of the ounce of gold from example
2.1.6 must be accepted as the gamble has no negative outcomes. The his-
togram in figure 5 offers a clear illustration for this first rule. Similarly, every
offer of the gamble representing the apartment from example 2.1.5, which has
an expectation of E[g] = −4500, must be rejected. Based on its expectation
of E[g] = 10, we cannot yet conclusively reject or accept the bond from ex-
ample 2.1.3, unless the gambler’s wealth is W ≤ 100 = L(g), in which case
it should be rejected according to condition (4).

The three rules of proposition 2.3.4 are necessary for safe strategies but,
as the inconclusive bond example illustrate, they need to be complemented
by or generalised into a new set of rules that would be both necessay and
sufficient.

Rule (2) says that all gambles without negative outcomes should be ac-
cepted, but this does not necessarily mean that a gambler should reject all
gambles with at least one negative outcome. This should be made evident
by looking at the example of a gamble with outcomes {−0.01, 1000} and
respective probabilities {0.001, 0.999}: it is hard to imagine going bankrupt
given such a good deal, except if one starts with an initial wealth that is of
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the order of a few cents, and in particular if W1 ≤ 0.01, in which case rule
(4) would be broken.

Rule (3) says that all gambles with negative expectation should be re-
jected. Again, the complementary rule that prescribes to accept all gambles
with non-negative expectation does not follow naturally from it. The nature
of random events is such that we can’t reject the possibility of bad luck in the
form of a long series of ”bad” outcomes that would deplete the initial wealth
of the gambler and make him bankrupt, even if the expectation is positive.
Unless the gambler somehow possesses infinite wealth to start with.

Fortunately, rule (4) does provide us with fertile grounds to build upon,
as it involves the gambler’s wealth as well as characteristics from the gamble
itself. Also we have seen in our short study of the other two rules that
the wealth of the gambler is always indirectly involved: the only way the
advantageous gamble from the first example could be ruinous was if the
initial wealth was below a certain threshold, the complement of the third
rule could only hold if in some way the gambler’s wealth could be considered
infinite. We recall that rule (4) requires a gambler to reject all gambles on
offer when their current wealth does not exceed the maximum loss of that
gamble. We can ask ourselves if a strategy that accepts gambles whenever the
gambler’s wealth exceeds the maximum loss of the gamble is a safe strategy.

In order to examine this question, it is useful to define a more general
kind of strategy which we will call simple strategies.

Definition 2.3.5. Let Q(g) be a function that associates with each gamble
g a number Q(g) in [0,∞]. We then call simple strategy with critical wealth
function Q(g) a strategy that rejects gamble gt when Wt < Q(gt) and accepts
it when Wt ≥ Q(gt). Such a simple strategy is denoted sQ.

The number Q(g) represents the lowest wealth which the gambler must
possess in order to be able to accept gamble g. If Q(g) = 0, the gamble is
always accepted and if it is infinite then the gamble is never accepted. We
can now reformulate our previous question using the nomenclature of simple
strategies: is the simple strategy sQ with critical wealth Q(g) = L(g) a safe
strategy?

To answer this question, we have run a simulation of a gambler starting
with W1 = 600 and faced with a sequence of 20000 bonds from example 2.1.3
and using the simple strategy Q(g) = L(g) = 100. The simulation was then
repeated 100 times and the results are shown in the histogram in figure 6.

Unfortunately, even though we notice that there are fewer bankruptcies
in this example than in the example pictured in figure 3, where Q(g) = 0,
the histogram indicates that there exist sequences of gambles that do lead a
gambler to bankruptcy whenever he uses the aforementioned simple strategy.

14



Figure 6: Histogram of final wealth, simple strategy Q(g) = L(g)

The simple strategy sQ with Q(g) = L(g) therefore is a risky strategy. We
do note that rule (4) can be restated as follows: any simple strategy must at
least satisfy Q(g) > L(g) in order to be qualified as safe.

15



3 Foster and Hart’s measure of riskiness

3.1 Critical Wealth Theorem

While a simple strategy using the maximum loss L as its critical wealth was
shown to be risky, Foster and Hart have developed a critical wealth function
Q(g) that does guarantee no-bankruptcy. They interpret their function R(g)
as a measure of riskiness of gambles. In our terminology, the function repre-
sents the lowest critical wealth which ensures the safety of a simple strategy.
Hence it gives us an objective rule that, we will see later, is both necessary
and sufficient to design any safe strategy. Their main result is given in the
following theorem.

Theorem 3.1.1 (Critical Wealth Theorem). There exists for every gamble
g ∈ G a unique number R(g) > 0 such that, when faced with an infinite
sequence (gt)t=1,2,... of gambles, following the simple strategy sQ with critical
wealth function Q(g) guarantees non-bankruptcy if and only if Q(g) ≥ R(g)
for every gamble g in the sequence. This R(g) is determined by the equation

E
[

log
(

1 +
g

R(g)

)]
= 0 (5)

In accordance to our previous interpretation of the critical wealth involved
in simple strategies, R(g) represents the minimum wealth level at which g
may be accepted. In can also be seen, intuitively, as a kind of buffer needed
to withstand some degree of bad luck and still have enough wealth to accept
new gambles and rebound. To give some insight into the measure introduced
by Foster and Hart, we have computed the critical wealth for the bond from
example 2.1.3.

Example 3.1.2. We start by rewriting equation (5), where for simplicity we
use R instead of R(g):

(5)⇐⇒
n∑
i=1

pi log
(

1 +
xi
R

)
= 0 (6)

⇐⇒ log
n∏
i=1

(
1 +

xi
R

)pi
= 0 (7)

⇐⇒
n∏
i=1

(
1 +

xi
R

)pi
= 1 (8)
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We now subsitute the outcomes and probabilities of g and solve for R:

(8)⇐⇒
(

1− 100

R

)(
1 +

120

R

)
= 1

⇐⇒ 20

R
− 12000

R2
= 0

⇐⇒ 20R− 12000 = 0

⇐⇒ R = 600

We will later give the proof for the Critical Wealth Theorem, but first
we have chosen to explore the effect of the R(g) boundary on the gambler’s
wealth. For this purpose, we have once more produced simulations of a
gambler with W1 = 600 faced with a sequence of 20000 gambles g ∈ G0 where
G0 is the set of gambles that equal the bond from example 2.1.3 or multiples
kg of it, with k ∈ (0, 1) chosen randomly. The simulation is repeated 100
times for each of the following strategies. The histograms in figures 7 and 8
show the final wealth when the gambler follows a simple strategy with critical
wealth respectively Q(g) = R(g), Q(g) = 9R(g) and Q(g) = 0.9R(g).

These histograms give strong indications that a simple strategy based
on critical wealth R(g) guarantees no-bankruptcy, as none of the 100 runs

Figure 7: Histogram of final wealth, simple strategy Q(g) = R(g)
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Figure 8: Top: histogram of final wealth, simple strategy Q(g) = 9R(g).
Bottom: histogram of final wealth, simple strategy Q(g) = 0.9R(g)

18



that led to figure 7 ended in bankruptcy. In fact, all of those runs led to an
important increase in the gambler’s wealth, all ending above 4000 and most
between 8000 and 12000. The top histogram in figure 8 in turn indicates
that a more conservative simple strategy is also safe, in accordance with
the Critical Wealth Theorem. The average final wealth of the gambler does
appear to suffer from such a strict strategy, as many gambles that would have
been perfectly safe to accept according to the theory are rejected, forsaking
an opportunity to add wealth. Finally, the third histogram reminds us that
any simple strategy that is even slightly less conservative than the one based
on critical wealth R(g) contains the seeds of potential bankruptcy.

One last graph, in figure 9, showing the development of wealth for one of
the previous runs with critical wealth R(g), sheds more light on the way that
such a simple strategy can avoid bankruptcy in the long run. After 20000
runs, we previously saw that the gambler never goes bankrupt. However,
around the 700th run in the example pictured here, the gambler would have
still found himself with less wealth than the wealth with which he had started,
thus giving the appearance of near-bankruptcy. The simple strategy with
critical wealth R(g) therefore does not mean that bankruptcy may not seem
close at times, only that it will always be far away enough to be able to

Figure 9: Graph of wealth in time, simple strategy Q(g) = R(g)

19



take advantage of a series of lucky outcomes to rebuild a safer situation and
eventually escape the pull of bankruptcy completely. The graph indicates
that, while non-bankruptcy is guaranteed in the long run, a long time horizon
may indeed be needed in order for this effect to materialize with certainty.

3.2 Existence and uniqueness

The first step in proving the important result from the Critical Wealth The-
orem will be to examine in turn the properties of the two related functions
φg(λ) = E[log(1 + gλ)] and ψg(r) = E[log(1 + g

r
)] and use those properties to

show that for every gamble g, the critical wealth R(g) is uniquely determined
as the solution of the equation ψg(r) = 0. In the following, we will denote
R(g) simply as R whenever it is obvious to which gamble it refers.

Lemma 3.2.1. For every gamble g, the function φg :
[
0, 1

L

)
−→ R with

φg(λ) = E[log(1 + gλ)] is concave.

Proof. Using the definition of the function φg, the concavity of the logarithm
and the linearity of the expectation, we can say that for every λ1, λ2 ∈

[
0, 1

L

)
:

φg

(λ1 + λ2
2

)
= E

[
log
(

1 +
g(λ1 + λ2)

2

)]
= E

[
log
(1 + gλ1

2
+

1 + gλ2
2

)]
≥ E

[1

2
log(1 + gλ1) +

1

2
log(1 + gλ2)

]
=

1

2

(
E[log(1 + gλ1)] + E[log(1 + gλ2)]

)
=

1

2

(
φg(λ1) + φg(λ2)

)
which proves the concavity of the function φg.

Lemma 3.2.2. For every gamble g, the function φg :
[
0, 1

L

)
−→ R with

φg(λ) = E[log(1 + gλ)] is smooth.

Proof. We know that polynomials are smooth on R, which includes
[
0, 1

L

)
.

We also know that the logarithm is a smooth function on (0,∞), which in-
cludes (0, 1]. From this we can say that each function f(λ) = log(1 + gλ)
is also smooth on

[
0, 1

L

)
. Moreover, any linear combination of smooth func-

tions is itself smooth, hence taking the expectation preserves the smoothness,
which proves that the function φg is smooth on its domain.
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Lemma 3.2.3. For every gamble g, the function φg :
[
0, 1

L

)
−→ R with

φg(λ) = E[log(1 + gλ)] has the following properties:

1. φg(0) = 0

2. φ′g(0) = E[g]

3. limλ→ 1
L
φg(λ) = −∞

Proof. Using the definition of the function φg, the fact that the logarithm
vanishes at 1 and the fact that the expectation of a non-random variable
equals that variable, it is obvious that φg(0) = E[log(1 +g.0)] = E[log 1] = 0,
which proves the first property.

To prove the second, we first need to determine the derivative of φg. We
do this by using in turn the definition of the derivative, the linearity of the
expectation, the finiteness of the random variable g, which expresses itself
in the finiteness of the sum involved in the expectation and enables us to
interchange the limit and the expectation. Finally, we use the chain rule and
recognize the derivative of the logarithm:

φ′g(λ) = lim
h→0

E[log(1 + g(λ+ h))]− E[log(1 + gλ)]

h

= lim
h→0

E
[ log(1 + g(λ+ h)− log(1 + gλ)

h

]
= E

[
lim
h→0

log(1 + g(λ+ h)− log(1 + gλ)

h

]
= E

[ g

1 + gλ

]
Now we can easily determine that

φ′g(0) = E
[ g

1 + g.0

]
= E[g]

Finally, we prove the limit by interchanging the order of the expectation
and of the limit once more. We then split the sum implied by the expectation
in two parts, one with limit to minus infinity, following the limit to minus
infinity of the logarithm towards zero, and the other a sum of finite limits,
before adding the limits back together:
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lim
λ→ 1

L

φg(λ) = lim
λ→ 1

L

E[log(1 + gλ)]

= E[ lim
λ→ 1

L

log(1 + gλ)]

=
n∑
i=1

pi lim
λ→ 1

L

log(1 + xiλ)

= pL lim
λ→ 1

L

log(1− Lλ) +
n∑
i=1

xi>−L

pi lim
λ→ 1

L

log(1 + xiλ)

= pL lim
λ→ 1

L

log(1− Lλ) +
n∑
i=1

xi>−L

ki

= −∞

where ki ∈ R for every i and pL denotes the probability which corresponds
to the maximum loss.

Lemma 3.2.4. For every gamble g for which E[g] > 0, the function φg :[
0, 1

L

)
−→ R with φg(λ) = E[log(1 + gλ)] has exactly one zero λ0 on

(
0, 1

L

)
.

For every gamble g for which E[g] ≤ 0, the function φg has no zeros on(
0, 1

L

)
.

Proof. Where the expectation is positive, we know from lemma 3.2.3 that
φg(0) = 0 and φ′g(0) > 0. Combining these two pieces of information enables
us to determine that there exists λ1 such that |λ1 − 0| < ε1 for any ε1 > 0
and that φg(ε1) > 0. Similarly, lemma 3.2.3 tells us that φg has a negative
limit towards 1

L
, so there exists a λ2 such that | 1

L
− λ2| < ε2 for any ε2 > 0

and that φg(λ2) < 0.
Thanks to the smoothness and therefore the continuity of φg, given by

lemma 3.2.2, we can now apply the Intermediate Value Theorem to function
φg on interval [ε1, ε2] to show that there exists at least one zero for φg on the
given interval. Taking the limits as ε1 → 0 and ε2 → 1

L
yields the result that

there exists at least one zero for φg on its domain. Finally, the concavity of
φg, demonstrated in proposition 3.2.1, indicates that the function can have
at the most one zero on the given interval. Combining these two results
proves the existence and uniqueness of the zero, for gambles with positive
expectation.

Where the expectation is non-positive, a similar reasoning proves the
absence of zeros on the interval.
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Lemma 3.2.5. For every gamble g for which E[g] > 0, the function ψg :
(L,∞) −→ R with ψg(r) = E[log(1 + g

r
)] has exactly one zero R on (L,∞).

For gambles g for which E[g] ≤ 0, the function ψg has no zeros on (L,∞).

Proof. From lemma 3.2.4 we know that the function φg has a unique zero λ0
if the expectation of g is positive. If we now set λ = 1

r
, then φg(λ) = E[log(1+

g
r
)] = ψg(r) has a zero in 1

λ0
which we define as R. A similar reasoning proves

that there are no zeros when the expectation is non-positive.

This concludes the proof of the part of theorem 3.1.1 which states that
equation (5) uniquely determines the critical wealth R.

3.3 Properties of the critical wealth

We will now present useful properties of the critical wealth R(g), starting
with the shape of the φg and ψg functions on their domains, in cases where
the expectation of g is positive.

Lemma 3.3.1. For every gamble g for which E[g] > 0, the function φg :[
0, 1

L

)
−→ R with φg(λ) = E[log(1 + gλ)] has the following properties:

1. φg(λ) > 0 for 0 < λ < λ0

2. φg(λ) < 0 for λ0 < λ < 1
L

where λ0 is the function’s unique zero on interval [0, 1/L).

Proof. From lemma 3.2.3 we know that φg(0) = 0 and φ′g(0) = E[g] > 0, so
the function has positive values starting after λ = 0). From lemma 3.2.4 we
also know that there is but one zero on the interval (0, 1

L
), so φ is positive on

(0, λ0) and changes sign once at the most. Since lemma 3.2.3 also indicates
a negative limit towards 1

L
, we can now conclude that the function indeed

changes signs once and becomes negative on the interval (λ0,
1
L

).

This first result can be used directly to derive the following lemma for
the function ψg.

Lemma 3.3.2. For every gamble g for which E[g] > 0, the function ψg :
(L,∞) −→ R with ψg(r) = E[log(1 + g

r
)] has the following properties:

1. ψg(r) < 0 for L < r < R

2. ψg(r) > 0 for R < r

where R is the function’s unique zero on interval (L,∞).
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Proof. From lemma 3.3.1 we know that the function φg is positive on the
interval (0, λ0) and negative on the interval (λ0, 1/L). If we now set λ = 1

r

and λ0 = 1
R

, then φg(λ) = E[log(1 + g
r
)] = ψg(r) has the properties that we

wish to prove.

Following the result from lemma 3.3.2, we are left to ask ourselves what
shape the function ψg has when the expectation of the gamble is non-positive,
knowing from lemma 3.2.5 that it has no zeros. More generally, we will
research the effect on the critical wealth R(g) of a variation in the expectation
E[g] of the gamble, all else being equal.

We have plotted in figure 10 several graphs of the function ψg for the
bond from example 2.1.3. These differ only by their expectation, obtained
by varying the probability of the maximum loss occurring and adjusting the
probability of the maximum gain accordingly. We observe that the higher
the expectation, the closer critical wealth R(g) becomes to the maximum loss
L(g) = 100. On the other hand, the closer the critical wealth comes towards
the maximum loss, the less beneficial effect a further gain in expectation
has on lowering the critical wealth, as it obviously cannot drop below L(g)
according to lemma 3.2.5.

We further notice that the bottom graph, corresponding to a probability
of 0.55 for the maximum loss and a negative expectation, does not have a zero.
In this situation, by convention we will set the critical wealth R(g) =∞, in
accordance to the asymptotic behaviour of ψg(r) when r −→∞.

We have also plotted graphs of the function ψg, for the bond from example
2.1.3, to isolate the effect on the critical wealth of varying the value of L(g)
while keeping the value of the maximum gain and of the expectation constant.
To achieve this result, we adjust the probability p1 along with the value of
x1 = −L. These graphs can be found in figure 11. The higher the maximum
loss, the higher the critical wealth needed to manage it, which always includes
a substantial buffer R− L.

In the particular situation where the maximum loss is not in fact a loss
(L = 0), which is represented by the top graph, there is no zero. By conven-
tion, we will set the critical wealth R(g) = 0, in analogy to the behaviour
of the graph for L = 6 and in general for graphs of values of L close to 0.
These graphs appear to go up towards ∞ before turning abruptly towards
−∞, crossing the r-axis very close to r = 0.

The conventions of setting R =∞ for gambles with non-positive expecta-
tion and R = 0 for gambles without negative outcomes allows us to integrate
rules (2), (3) and (4) into the general framework of Foster and Hart’s Critical
Wealth Theorem. Consequently, a gamble with negative expectation will be
associated with an infinite critical wealth, such that no gambler will possess
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Figure 10: Graph of functions ψg(r) according to values of p1
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Figure 11: Graph of functions ψg(r) according to values of L
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enough wealth to accept the gamble, which will always be rejected, as was
mandated by rule (3). Similarly, a gamble without negative outcomes has a
critical wealth that equals zero, such that this gamble can always be accepted
by all gamblers, even bankrupt ones, in accordance with rule (2). We have
already established that the critical wealth of any gamble cannot equal or be
lower than the maximum loss of the gamble, so that gambles can never be
accepted by gamblers with a wealth equal to or lower than this maximum
loss, as required by rule (4).

We conclude this section with the homogeneity property of the critical
wealth.

Lemma 3.3.3. For every gamble g, the critical wealth R(g) is homogeneous,
i.e. R(kg) = kR(g).

Proof. The critical wealth R(g) of gamble g is uniquely determined by the

equation E
[

log
(

1 + g
R(g)

)]
= 0. We can therefore rewrite this equation as

E
[

log
(

1 + kg
kR(g)

)]
= 0. The latter expression can be seen as the equation

determining the critical wealth of gamble kg to be kR(g).

The latter result will be used later in our proof for theorem 3.1.1, but
it also has a direct financial interpretation. Homogeneity means that if the
gamble is scaled then the critical wealth is scaled by the same amount. It
feels appropriate that an asset should be as risky in dollars as it would be if
first converted in euros, barring the exchange rate riskiness itself which really
is an added gamble.
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4 Proof of the Critical Wealth Theorem

4.1 Conditional expectations

Before we return to giving a proof of theorem 3.1.1, we will make a short
aside to explore the concepts of conditional expectation and of martingales,
which will be essential in understanding and developing the proof.

Let X and Y be two random variables with probability distributions given
respectively by {x1, . . . , xn}, {p(X = x1), . . . , p(X = xn)} and {y1, . . . , ym},
{p(Y = y1), . . . , p(Y = ym)}. For such variables, we recall that the condi-
tional probability of an outcome xi of X given that an outcome yj of Y is
known to have occurred is given by

p(X = xi|Y = yj) =
p((X = xi) ∩ (Y = yj))

p(Y = yj)

where p((X = xi) ∩ (Y = yj)) is the probability of both outcomes occurring
simultaneously. We are now able to define conditional expectations as follows.

Definition 4.1.1. The conditional expectation E[X|Y = yj] of X knowing
that the outcome Y = yj has occurred for Y is defined as the number

E[X|Y = yj] =
n∑
i=1

xi p(X = xi|Y = yj)

We note that in case X and Y are independent random variables, then
p((X = xi) ∩ (Y = yj)) = p(X = xi)p(Y = yj) and so p(X = xi|Y = yj) =
p(X = xi) and E[X|Y = yj] = E[X]. We can also go a step further in
defining conditional expectations:

Definition 4.1.2. The conditional expectation E[X|Y ] of X knowing the pre-
ceding random variable Y , is itself a random variable. It denotes a function
f(Y ) of Y which attains the value E[X|Y = yj] for every Y = yj. In other
words, its probability distribution is characterized by outcome set {E[X|Y =
y1], . . . ,E[X|Y = ym]} and probabilities {p(Y = y1), . . . , p(Y = ym)}.

The following example illustrates the concepts and calculations involved.

Example 4.1.3. Take two random variables X and Y , where Y precedes X.
Their probability distributions are respectively given by x1 = 0, x2 = 2 and
p(X = x1) = 0.6, p(X = x2) = 0.4 for X and by y1 = −5, y2 = 0, y3 = 5 and
p(Y = y1) = 0.2, p(Y = y2) = 0.5, p(Y = y3) = 0.3 for Y . The detail of their
combined probabilities is shown in the table from figure 12. Another way to
presenting this information is by drawing the diagram from figure 13.
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Figure 12: Combined probability distribution of X and Y

Figure 13: Probability tree for X and Y
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We compute, for example, the conditional probability p(X = 2|Y = 5) =
0.2/0.3 = 2/3 = 0.66, as reported directly in figure 13. Next we compute the
following conditional expectations:

E(X|Y = −5) = 2 · 0.5 + 0 · 0.5 = 1

E(X|Y = 0) = 2 · 0.2 + 0 · 0.8 = 0.4

E(X|Y = 5) = 2 · 0.66 + 0 · 0.33 = 1.33

Using these latter results, we are able to construct the probability distri-
bution for the random variable E[X|Y ], summarized in figure 14. Visually,
we can construct this latter diagram by reproducing the part of figure 13 rep-
resenting the random variable Y , on which the conditional variable is con-
ditioned, and then replacing its outcomes with the corresponding conditional
expectation of X.

Figure 14: Probability tree for E[X|Y ]

Definition 4.1.2 of conditional expectation can also be applied to E[X|Y, Z]
or even situations where the expectation of X is conditioned on more than
two random variables. In such a case, we just have to remember that we can
build a new random variable A which has outcomes (Y = yj, Z = zk) with
j = 1, 2, . . . ,m and k = 1, 2, . . . , l. Then we can define E[X|Y, Z] = E[X|A].
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4.2 Martingales

The concept of conditional expectation will now be used to define a special
type of random processes called martingales and give some of their most
important properties.

Definition 4.2.1. A martingale is a random process (Mt)t=1,2,... for which
each Mt has conditional expectation E[Mt+1|M1,M2, . . . ,Mt] = Mt.

Such an object can be seen as a fair random process. Indeed, we recall the
fact that E[E[X|Y ]] = E[X] and apply it to the defining property of martin-
gales, restated as E[Mt+1 −Mt|M1, . . . ,Mt] = 0. This leads to the following
expression E[E[Mt+1−Mt|M1, . . . ,Mt]] = E[Mt+1−Mt] = 0. Another way to
express this property of martingales is to say that E[Mt+1] = E[Mt] = · · · =
E[M1] = M1.

This property enables seemingly complex problems to be solved simply
if a martingale process can be recognized, as can be seen in the following
example.

Example 4.2.2. Consider a casino player starting with M1 = 100$. He
participates in a series of gambles Xt which make the player either lose or
add half of the money he currently possesses. We define the random process
(Mt)t=1,2,..., representing the amount of money owned by the gambler at time
t, with initial wealth M1 and recurrence formula Mt+1 = Mt · Xt, where Xt

has outcomes 0.5 and 1.5, each with probability 0.5. We are now interested
in knowing how much money the gambler is expected to end up with if he
gambles 1000 times.

One way to look at this problem is to draw a diagram recording all possible
outcomes and their respective probabilities. When confronted with large num-
bers of gambles, it is clear that drawing such a graph is impractical. A faster
and more elegant way to solve this problem is to notice that for all t, the
gambles have expectation E[Xt] = 1, so that E[Mt+1|M1,M2, . . . ,Mt] = Mt

and therefore (Mt) is a martingale. This characteristic enables us to con-
clude that E[M1000] = E[M1] = 100. The player can expect to come out of
the casino as rich as when he was entering it.

There is a specific type of martingale called the martingale with bounded
increments.

Definition 4.2.3. A random process for which there exists a finite K such
that |Mt+1−Mt| ≤ K for all t ≥ 1 is called a process with bounded increments.

In practice, all martingales encountered in this report and in most fi-
nancial problems are of the bounded increments type, so this requirement
represents no big hurdle for what follows.
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We can now present an important result for the convergence of martin-
gales, as stated in the following theorem.

Theorem 4.2.4 (Convergence Theorem). If Mt is a martingale with bounded
increments, then either of the following situations is true:

1. limt→∞ Mt exists

2. lim inft→∞ Mt = −∞ and lim supt→∞ Mt =∞
The formal proof of this theorem lies beyond the scope of this report,

but the intuitive idea is illustrated by the drawing in figure 15. Let Xt

be a martingale representing winnings per gamble and Yt be the cumulated
winnings. The strategy used here is to start accepting gambles whenever the
outcome of Xt has been under a predetermined level a and to stop accepting
them when it is above a predetermined b. Black circles in the drawing stand
for the result of accepted gambles.

In this situation, the number UN [a, b] of upcrossings of interval [a, b] made
by Xt by time N is the number of times that the outcome of Xt has gone
from under a to above b. In figure 15, there have been two such upcrossings.
This number enables us to give an approximation of the cumulative winnings
YN at time N , since YN is at least the product of the interval width by the
number of upcrossings of that interval by definition, minus the maximum
possible loss of the last running sequence of accepted gambles for which XN

has not yet reached b:

YN ≥ (b− a)UN [a, b]− [XN − a]− (9)

where [XN−a]− equals zero if its argument is non-negative and equals minus
the argument if it is negative. Since X is a martingale, we can expect the
cumulative winnings E[YN ] to equal zero. Using this fact and taking the
expectation of equation (9), we can establish the result of Doob’s Upcrossing
Lemma:

(b− a)E[UN [a, b]] ≤ E[[XN − a]−] (10)

Assuming now that the increment XN is bounded for every N then, as
N goes to infinity, we can conclude that the expected number of upcrossings
is smaller than a bounded number and thus is finite. In other words, the
probability that the number of upcrossings becomes infinite as N tends to
infinity is zero. This provides us with the result needed to prove the theo-
rem as, if the number of upcrossings of Xt is finite, we know for sure that
limt→∞ Xt 6=∞, which leaves only the options of the limit for the martingale
converging to a number or oscillating between ∞ and −∞.

We will use this result in the next section to prove the guaranteed no-
bankruptcy offered by the strategy presented in Critical Wealth Theorem.
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Figure 15: Illustration for upcrossing lemma
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4.3 Guaranteed no-bankruptcy

The following lemmas combined form the proof for theorem 3.1.1. We prove
first that the strategy described in the theorem does in fact guarantee no-
bankruptcy and then that such a strategy is the simple strategy with the
lowest critical wealth that guarantees no-bankruptcy.

Lemma 4.3.1. If for every gamble gt ∈ G0 a strategy s rejects gt when
Wt < R(g), then the growth factors Yt is well defined for all t = 1, 2, . . . and
E[Yt|Y1, . . . , Yt−1] ≥ 0 for all t = 1, 2, . . . .

Proof. We start by recalling that at t = 1 it is assumed that W1 > 0, or else
the gambler would be bankrupt to start with. If the gamble is rejected, then
Wt+1 = Wt. If the gamble is accepted, according to strategy s, it means that
Wt ≥ R(gt) > L and thus Wt+1 = Wt + gt ≥ R(gt) + gt ≥ R(gt) − L > 0.
By induction we can conclude that Wt > 0 for all t, whether the gamble is
accepted or rejected, and therefore growth factor Yt is well defined for all t.

If gamble gt is rejected, then Yt = logWt+1− logWt = logWt− logWt = 0
and so E[Yt|Y1, . . . , Yt−1] = 0. If the gamble is accepted, we have Wt ≥ R(gt)

and according to lemma 3.2.5 we must have E
[

log
(

1+ gt
Wt

)
|Y1, . . . , Yt−1

]
≥ 0.

Moreover Yt = log(Wt + gt)− log(Wt) = log(1 + gt
Wt

) and so combining these
two expressions leads us to the conclusion that E[Yt|Y1, . . . , Yt−1] ≥ 0.

Our next step is to construct a new variable XT , related to the growth
factors Yt, in a way that makes it a martingale with bounded increments.
This method is an example of a more general construction called Doob’s
decomposition.

Definition 4.3.2. The random process (XT )T=1,2,... is defined by the expres-

sion XT =
∑T

t=1(Yt − E[Yt|Y1, . . . , Yt−1]).

Lemma 4.3.3. The random process (XT )T=1,2,... is a martingale with bounded
increments.

Proof. First we prove that the random process is a martingale by showing
that E[XT+1|X1, . . . , XT ] = XT .

E[XT+1|X1, . . . , XT ] = E[XT + YT+1 − E[YT+1|Y1, . . . , YT ]|X1, . . . , XT ]

= XT + E[YT+1|Y1, . . . , YT ]− E[YT+1|Y1, . . . , YT ]

= XT

Next we decompose |XT+1 − XT | into its constituting elements and use
the fact that E[Yt|Y1, . . . , Yt−1] ≥ 0 for all t and that |Yt| < K for every t,
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according to proposition 2.2.5, to prove that the sum of those elements is
bounded by a finite K.

|XT+1 −XT | = |
T+1∑
t=1

(Yt − E[Yt|Y1, . . . , Yt−1])−
T∑
t=1

(Yt − E[Yt|Y1, . . . , Yt−1])|

= |YT+1 − E[YT+1|Y1, . . . , YT−1]|
≤ |YT+1|
≤ K

We can now prove the part of theorem 3.1.1 that says that all strategies
that reject gambles whenever the wealth lies under critical wealth R(g) are
strategies that guarantee no-bankruptcy.

Lemma 4.3.4. If for every gamble gt ∈ G0 a strategy s rejects gt when
Wt < R(g), then the strategy guarantees no-bankruptcy.

Proof. We know from lemma 4.3.1 that E[Yt|Y1, . . . , Yt−1] ≥ 0 for all t. There-
fore, we can approximate martingale XT as follows:

XT =
T∑
t=1

(Yt − E[Yt|Y1, . . . , Yt−1])

≤
T∑
t=1

Yt =
T∑
t=1

(logWt+1 − logWt) = logWT+1 − logW1

≤ logWT+1

For bankruptcy to occur would require that limT→∞ WT = 0 with positive
probability, according to the definition, or limT→∞ logWT = −∞. Therefore
it would require that limT→∞ XT = −∞ with positive probability. But
according to theorem 4.2.4, the martingale XT must either have a finite limit
or must oscillate between arbitrarily high and low values, none of these two
cases allowing for the martingale to have the limit required for bankruptcy
to occur. Consequently, bankruptcy occurs with zero probability.

The reciprocal is also true, that only such strategies that reject gambles
when the wealth lies under R(g) guarantee no-bankruptcy, as any strategy
that doesn’t opens the possibility of bankruptcy.
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Lemma 4.3.5. If strategy sQ is a simple strategy for which Q(h) < R(h)
for some gamble h ∈ G0, then there exists a sequence (gt)t=1,2,... such that
limt→∞ Wt = 0. Moreover, all the gambles gt that make up that sequence are
multiples of gamble h.

Proof. In case Q(h) < L(h) it is easy to see that bankruptcy can occur by
accepting h. Now we will further assume that R(h) > Q(h) > L(h) and so by
lemma 3.2.5 we have E[1 + h/Q(h)] < 0. We can now construct a sequence
of gambles (gt)t=1,2,... with the properties that we seek. Take a sequence of
independent and identically distributed gambles with the same distribution
as h and the added characteristic that each gt = Wt

Q(h)
h, to make each the

biggest acceptable gamble possible given the wealth at that moment. If
these conditions are met then, using the homogeneity of the critical wealth,
we have Q(gt) = Q( Wt

Q(h)
h) = Wt

Q(h)
Q(h) = Wt which means that gamble gt is

accepted at wealth Wt and therefore that growth factor Yt = log(1+gt/Wt) =
log(1 + h/Q(h)).

Since all gt are i.i.d there follows that (Yt) also is an i.i.d sequence on
which the Strong Law of Large Numbers can be applied resulting in

lim
T→∞

1

T

T∑
t=1

Yt = E[Yt] = E
[

log
(

1 + gt/Wt

)]
= E

[
log
(

1 + h/Q(h)
)]

< 0

⇐⇒ lim
T→∞

1

T
(logWT+1 − logW1) < 0

⇐⇒ lim
T→∞

logWT+1 = −∞

⇐⇒ lim
T→∞

WT+1 = 0

⇐⇒ lim
T→∞

WT = 0

which means bankruptcy.
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5 Conclusion

We have seen that there exists an objective measure of the riskiness of a
financial asset. This measure has a clear operational interpretation as the
minimum wealth that an investor must hold prior to purchasing the asset if he
wishes to be guaranteed non-bankruptcy in the long term while following this
strategy. We have proved and illustrated that purchasing an asset with any
wealth level under the asset’s critical wealth may lead to bankruptcy. On the
other hand, an investor whose wealth exceeds the critical wealth of the asset
can safely buy it in the knowledge that he is guaranteed non-bankruptcy.

The model that has been developed helps us understand the mechanisms
of risk but it remains a model that cannot be applied to the real world
without refinements and careful interpretation. In the real world, inflation,
time discounting or even the mortality of man mean that the time horizon
is never in fact infinite. Also, the existence of debt and of corporate and
bankruptcy legislation tends to lead to lowering the risk, for the investor, of
assets below the riskiness defined by our model, as they remove the strict
limits of wealth reaching zero.

Finally, one important limitation to our model is that the probability
distribution of the assets is almost never known with certainty, especially
the tail probabilities. Current practices in the financial industry are to make
precise estimates of the probability distributions of non-tail outcomes and
general estimates of the tail probability that some game-changing events oc-
cur. All non-tail risk is thereafter managed by portfolio diversification while
the Basel II Accords require all banks to keep a buffer of unused capital to
survive the unexpected tail hardships. The current financial crisis is proof
that these practices are insufficient to prevent widespread bankruptcies. Ac-
cording to investor Nassim Taleb, the fault lies in the fact that humans have
a psychological tendency to undervalue the risk of rare events. In any case,
the crisis underlies the fact that mainstream economists have insufficient un-
derstanding of their subject, as the rare events come as complete surprises.
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A Appendix: Simulation programs

For our simulations, we have developed Matlab programs. The first program
generates gamble outcomes for a given gamble with two possible outcomes.
It also outputs the minimum outcome and the value of R(g):

function G = Gamble

% compute outcome of gamble

U = unifrnd(0,1);

if U <= 0.5

g = -100;

else

g = 120;

end

% compute extra characteristics

L = 100;

R = 600;

% put together output vector

G(1) = g;

G(2) = L;

G(3) = R;
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Our second program was written to determine the development of the
gambler’s wealth in time, using the output from the Gamble function and
following a simple strategy with critical wealth to be defined:

function [W_T]= Simulation(W_1,T)

% input initial wealth W_1

% input number of time periods T

% outputs final wealth W_T

% displays min W, average W

% displays graph W against t

% creating wealth matrix

W = zeros(1,T);

W(1) = W_1;

for i = 2:T;

k = unifrnd(0,1); % random scaling factor

Ga = k*Gamble; % gamble outcome

Q = Ga(3); % critical wealth for simple strategy

%(Ga(2) = L, Ga(3) = R, 0 = accept all)

if W(i-1) <= Q

W(i) = W(i-1);

else

W(i ) = W(i-1) + Ga(1);

if W(i) <= 0

W(i) = 0;

break

end

end

end

plot(W)

W_T = W(T)

return
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The last program is used to run a simulation and requires the input of
the initial wealth, the number of periods of time and the number of runs:

% requests input and feeds them to the relevant

functions to create a simulation run

clc

clear

% requests input

W_1 = 600; % initial wealth

T = 20000; % number of time periods

X = 100; % number of runs

% initialize final wealth vector

W = zeros(1,X);

% calls Simulation function and feeds it the input

for i = 1:X;

W(i) = Simulation(W_1, T);

end

% graphing the histogram of final wealths

if X ~= 1;

hist(W, 20)

min = min(W)

end
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