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Abstract 
The assessment of potential evaporation or reference combined evaporation and 

transpiration is among the most important components for many hydro-climatic projects, for 
example, irrigational networks’ design and management, water-cycle balance assessment 
studies, and assessment of aridity classification indices. Aridity classification indices such as 
UNEP, Thornthwaite and others are usually employed at large scale applications and require 
respective estimations of potential or reference combined evaporation and transpiration. The 
major problem in such applications is not only the limited availability of stations per se but also 
the limitation of many stations to provide data for a complete set of parameters such as rainfall 
(P), temperature (T), solar radiation (Rs), wind speed (u) and relative humidity (HR). A complete 
set of climate parameters is prerequisite for accurate estimations of potential or reference 
combined evaporation and transpiration using the most advanced methods, which are 
expressions of energy balance (e.g., ASCE-standardized method, successor method of Penman-
Monteith FAO-56). Unfortunately, large scale applications of aridity indices suffer from this 
limitation and the common solution is to use temperature-based formulas. The most popular 
and historical temperature-based formula is the one of Thornthwaite, which was developed to 
support the respective aridity classification index. The popularity of this formula is highly 
connected to a minimum requirement of average temperature per month and latitude at the 
location of interest. Considering the above, this study aims to develop a global database of local 
correction factors for the original Thornthwaite formula that will better support all hydro-
climatic applications but mostly to support large scale applications of aridity indices, which are 
highly prone to data limitations. The hypothesis that is tested in this work is that a local 
correction factor that integrates the local mean effect of aforementioned climate parameters (Rs, 
HR, u) can improve the performance of the original Thornthwaite formula and to convert it at 
the same time to a formula of reference combined evaporation and transpiration for short 
reference crop. The global database of local correction factors was developed using gridded 
climate data of the period 1950-2000 with grid size ~1 km at the equator which corresponds to 
30 arc-sec spatial resolution from freely available climate geodatabases. The correction factors 
were produced as partial weighted averages of monthly ratios between the benchmark ASCE-
standardized method for short reference crop versus the original formula of Thornthwaite by 
giving more weight to the warmer months and by excluding colder months of Epr<45 mm 
month-1 where monthly ratios are highly unstable with unrealistic values. The validation of the 
correction factors was made using raw data from 525 stations of Europe, California-USA and 
Australia that cover periods mostly after 2000 and up to 2020. The validation procedure showed 
significant improvement in the estimations of reference combined evaporation and transpiration 
using the corrected Thornthwaite formula that led to a 19.4% reduction of RMSE for monthly 
and a 55% reduction of RMSE for annual estimations compared to the original formula. The 
variation of the correction factor was also investigated in different major Köppen climate 
classes and it was found that tends to increase in drier and warmer territories. The five major 
Köppen groups were ordered as follows B > C > A > D > E considering the magnitude of the 
correction factors values. The corrected and original Thornthwaite formulas were also 
evaluated by their use in UNEP and Thornthwaite aridity indices using as a benchmark the 
respective indices estimated by the ASCE-standardized method. The analysis was made using 
the validation data of the stations and the results showed that the corrected Thornthwaite 
formula increased by 18.3% the accuracy of detecting identical aridity classes with ASCE-
standardized method for the case of UNEP classification, and by 10.4% for the case of 
Thornthwaite classification in comparison to the original formula. The performance of the 
corrected formula was extremely improved especially in the case of non-humid classes of both 
aridity indices. The overall results revealed that the correction factors derived in this study can 
improve the performance of the original Thornthwaite formula providing better estimations of 
the aridity classification indices. 
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Introduction  
1. Introduction 

The current discussion about climate change focuses often on how much the 
temperature will rise over the coming century. However, climate change cannot be described 
only by temperature since also precipitation and other climate parameters (e.g., humidity, 
radiation, wind speed) all together affect the climate. Additionally, their changes should not be 
analyzed separately, because together they affect the evaporation, and many theoretical climatic 
fields (e.g., climate classification methods, aridity indices etc.) in order to detect any possible 
changes. One of the basic problems in climate analysis methods is that they are based on 
evaporation, which is a complex process that is regulated by many factors such as temperature, 
relative humidity, solar radiation and wind speed. In most cases, climate databases or individual 
stations cannot provide a complete set of these parameters but what they can provide is at least 
temperature and precipitation. Evaporation is a process where the liquid water is changing state, 
using specific energy and becomes water vapour (vaporization). Three types of evaporation 
will be discussed to determine the differences: actual, potential and reference evaporation. The 
actual evaporation is the summary of all direct evaporation processes (open water evaporation, 
soil evaporation, interception evaporation and snow or ice evaporation), it is an important term 
of the water balance equation and is constrained by the water availability. Actual evaporation 
is difficult to be measured, so instead, the potential evaporation is calculated, because it can be 
calculated without the constrain of water availability. The relationship between actual and 
potential evaporation is that the actual is a proportion of the potential and the potential is setting 
the upper limit of the possible evaporation (Luxemburg & Coenders A., 2017). For the first 
time, the term combined evaporation and transpiration was introduced in the early 80s to 
incorporate the properties of an ideal grass crop in specific conditions and it is calculated using 
the potential evaporation multiplied with the crop factor of each specific crop (Brouwer & 
Heibloem, 1986; Irmak, 2008). Hereinafter, the reference combined evaporation and 
transpiration will be referred to as reference evaporation (Er), for the sake of convenience. 
Many research studies have been done to derive empirical equations for the reference 
evaporation with reduced climate parameters; some of them are considered temperature-based, 
some of them are radiation-based and others are mass-transfer based. 

Table 1.1: Different models for the calculation of the reference evaporation. 
Model Formula Climate 

data 

Alexandris 
et al. (2006) 

𝐸𝐸𝑟𝑟   = 0.057 + 0.227 ∙ 𝐶𝐶2 + 0.634 ∙ 𝐶𝐶1 + 0.0124 ∙ 𝐶𝐶1 ∙ 𝐶𝐶2 

where:   𝐶𝐶1 = 0.6416 − 0.00784 ∙ 𝐻𝐻𝑅𝑅 + 0.372 ∙ 𝑅𝑅𝑆𝑆 − 0.00264 ∙ 𝑅𝑅𝑠𝑠 ∙ 𝐻𝐻𝑅𝑅 

                𝐶𝐶2 = −0.0033 + 0.00812 ∙ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 0.101 ∙ 𝑅𝑅𝑆𝑆 + 0.00584 ∙ 𝑅𝑅𝑠𝑠
∙ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

Tmean, Rs, 
HR 

Baier and 
Robertson 

(1965) 

𝐸𝐸𝑟𝑟   = 0.09 ∙ (1.67021 ∙ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 1.68085 ∙ 𝑇𝑇𝑇𝑇 + (1.159575 ∙ 𝑅𝑅𝑎𝑎)
− 57.3404) Tmax, Tmin 
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Camargo et al. 
(1999) 

𝐸𝐸𝑟𝑟   = 16 ∙ �10 ∙
0.36 ∙ (3 ∙ 𝑇𝑇𝐷𝐷)

𝐽𝐽 �
𝑎𝑎

∙
𝑁𝑁 ∙ 𝑛𝑛
365  

𝐽𝐽 = �𝑗𝑗𝑖𝑖

12

𝑖𝑖=1

  

𝑗𝑗𝑖𝑖 = �
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑖𝑖

5 �
1.514

 

𝛼𝛼 = (6.75 ∙ 10−7) ∙ 𝐽𝐽3 − (7.71 ∙ 10−5) ∙ 𝐽𝐽2 + (1.79 ∙ 10−2) ∙ 𝐽𝐽 + 0.492 

Tmax, Tmin 

Droogers and 
Allen (2002) 

𝐸𝐸𝑟𝑟   = 0.00102 ∙ (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 16.8) ∙ 𝑅𝑅𝑎𝑎 ∙ (𝑇𝑇𝑇𝑇)0.5 Tmean, Tmax, 
Tmin, 

Droogers and 
Allen (2002) 

𝐸𝐸𝑟𝑟   = 0.000530 ∙ (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 17.0) ∙ (𝑇𝑇𝑇𝑇 − 0.0123 ∙ 𝑃𝑃)0.76 Tmean, Tmax, 
Tmin, P 

Hargreaves and 
Samani (1982, 

1985) 
Aschonitis et al. 

(2017) 

𝐸𝐸𝑟𝑟  = 𝑐𝑐 ∙ 0.408 ∙ (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 17.8) ∙ 𝑅𝑅𝑎𝑎 ∙ (𝑇𝑇𝑇𝑇)0.5 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒: 𝑐𝑐 =  0.0023 (𝑜𝑜𝑜𝑜𝑖𝑖𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

               𝑐𝑐 = 𝑐𝑐𝐻𝐻𝐻𝐻 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) 

Tmean, Tmax, 
Tmin, 

Hammon 
(1961) 

𝐸𝐸𝑟𝑟   = 13.97 ∙ �
𝑛𝑛

12�
2
∙
𝑒𝑒𝑜𝑜(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

1000  Tmean 

Hammon 
(1963) 

𝐸𝐸𝑟𝑟   = 0.1651 ∙
𝑛𝑛

12 ∙
21.67 ∙ 𝑒𝑒𝑜𝑜(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 273.3  Tmean 

Makkink  
(1957) 

𝐸𝐸𝑟𝑟   = 0.61 ∙
𝛥𝛥

𝛥𝛥 + 𝛾𝛾 ∙
𝑅𝑅𝑠𝑠
λ − 0.12 Tmean, Rs 

Malmström 
(1969) 

𝐸𝐸𝑟𝑟   = 0.409 ∙ 𝑒𝑒𝑜𝑜(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) Tmean 

McCloud 
(1955) 

𝐸𝐸𝑟𝑟   = 0.254 ∙ 1.071.8∙T𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  Tmean 

Papadakis 
(1962) 

𝐸𝐸𝑟𝑟  = 0.5625 ∙ (𝑒𝑒𝑜𝑜(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) − 𝑒𝑒𝑜𝑜(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − 2)) Tmin, Tmax 

Allen et al. 
(2005) 𝐸𝐸𝑟𝑟 =

0.408 ∙ 𝛥𝛥 ∙ (𝑅𝑅𝑛𝑛 − 𝐺𝐺) + 𝛾𝛾 ∙ 𝑢𝑢2 ∙ (𝑒𝑒𝑠𝑠 − 𝑒𝑒𝑎𝑎) ∙ 𝐶𝐶𝑛𝑛
(𝑇𝑇mean + 273.16)

𝛥𝛥 + 𝛾𝛾 ∙ (1 + 𝐶𝐶𝑑𝑑 ∙ 𝑢𝑢2)
 

Tmean, Rs, 
HR, u2 

Priestley and 
Taylor (1972), 

Aschonitis et al. 
(2017) 

𝐸𝐸𝑟𝑟   = 𝑎𝑎 ∙
0.408 ∙ 𝛥𝛥
𝛥𝛥 + 𝛾𝛾 ∙ (𝑅𝑅𝑛𝑛 − 𝐺𝐺) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒: 𝑎𝑎 =  1.36 (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

               𝑎𝑎 = 𝛼𝛼𝑃𝑃𝑃𝑃 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑔𝑔𝑖𝑖𝑑𝑑) 

Tmean, Tmax, 
Tmin, Rs 

Oudin et al. 
(2005) 

𝐸𝐸𝑟𝑟  = 0.408 ∙ 𝑅𝑅𝑎𝑎 ∙ 0.01 ∙ (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 5) 𝑖𝑖𝑖𝑖 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 > 5 °𝐶𝐶 

𝐸𝐸𝑟𝑟  = 0 𝑖𝑖𝑖𝑖 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 5 °𝐶𝐶 
Tmean 

Oudin et al. 
(2005) 

𝐸𝐸𝑟𝑟 = �
𝑛𝑛

12�
2
∙ exp �

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

16 � Tmean 

Thornthwaite 
(1948) 

𝐸𝐸𝑝𝑝 = 16 ∙ �
10 ∙ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛

𝐽𝐽
�
𝑎𝑎

∙
𝑁𝑁 ∙ 𝑛𝑛
365

 

𝐽𝐽 = ∑ 𝑗𝑗𝑖𝑖12
𝑖𝑖=1  , 

𝑗𝑗𝑖𝑖 = �
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑖𝑖

5
�
1.514

 

𝛼𝛼 = (6.75 ∙ 10−7) ∙ 𝐽𝐽3 − (7.71 ∙ 10−5) ∙ 𝐽𝐽2 + (1.79 ∙ 10−2) ∙ 𝐽𝐽 + 0.492 

Tmean 

Turc (1961) 

𝐸𝐸𝑟𝑟  = 0.013 ∙ �
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 15� ∙
23.88 ∙ 𝑅𝑅𝑠𝑠 + 50
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Er: is the reference crop evaporation (mm d-1), Tmean, Τmax, Τmin: Mean, maximum and minimum 
temperature (oC), TD: difference between maximum and minimum temperature (oC), Rs: 
incident solar radiation (MJ m−2 d−1), Rn: the net radiation at the crop surface (MJ m-2 d-1), u2: 
the wind speed at 2 m height above the soil surface (m s-1), Ra: extraterrestrial solar radiation 
(MJ m−2 d−1), HR: relative humidity (%), Δ: slope of the saturation vapor pressure-temperature 
curve (kPa oC−1), γ: psychrometric constant (kPa oC−1), G: the soil heat flux density at the soil 
surface (MJ m−2 d−1), es: the saturation vapor pressure (kPa), ea: the actual vapor pressure (kPa), 
eo(T): saturation vapor pressure at air temperature T (kPa), φ: absolute value of latitude (rads), 
P: precipitation (mm month−1), n: number of days in the month, N: mean length of daylight of 
the days of the month (hours), J: annual heat index, ji: monthly heat index, α: the function of 
the annual heat index, λ is the latent heat of vaporization in MJ kg−1 (λ = 2.45 MJ kg−1 at a 
temperature of 20 °C). Cn and Cd: are constants, which vary according to the time step and the 
reference crop type and describe the bulk surface resistance and aerodynamic roughness. Eq.4 
can be applied for two types of reference crop, this study focuses on the short reference crop 
(ASCE-short), which corresponds to clipped grass of 12 cm height and surface resistance of 70 
s m-1 where the constants Cn and Cd have the values 900 and 0.34, respectively (Allen et al., 
2005). 

For the estimation of evaporation, there are many empirical equations (Table 1.1). The 
selection of the appropriate method, considering also climate data availability, has received 
considerable attention and has triggered remarkable debate (Trenberth, et al., 2014; Tegos, 
Malamos, & Koutsoyiannis, 2015; Rezaei, Valipour, & Valipour, 2016; Zhang, et al., 2016; 
Valipour, Gholami Sefidkouhi, & Raeini−Sarjaz, 2017; Feng, Trnka, Hayes, & Zhang, 2017). 
One of the most widely used potential evaporation models that were developed in the previous 
century is Thornthwaite’s formula (Thornthwaite, 1948). This specific model requires only 
mean monthly temperature data and is a viable solution for a climatologist/hydrologist in case 
of reduced data. Estimations of global trends under climate change cause an argument due to 
the differences between the Penman-Monteith concept and Thornthwaite concept of reference 
evaporation assessments (Sheffield, Wood, & Roderick, 2012; Van Der Schrier, Barichivich, 
Briffa, & Jones, 2013; Trenberth, et al., 2014; Yuan & Quiring, 2014). 

The Thornthwaite method is a simple and empirical scheme for calculating potential 
evaporation using only air temperature data and the maximum amount of sunshine duration as 
of function of latitude. In the Thornthwaite formula (Thornthwaite, 1948) the monthly mean 
temperature was correlated with evaporation using an exponential relationship, as determined 
from the water balance, for valleys in the central and eastern USA, where there was a supply 
of surface water. A modification of Thornthwaite’s original approach was also presented by 
Willmott et al. (1985) by introducing a parameterization for a range of monthly mean 
temperature varying below zero and above 26.5 degrees Celsius. The Thornthwaite method 
overestimates the evaporation in humid climates and underestimates it in arid climates (Pereira 
& Pruitt, 2004; Castañeda & Rao, 2005; Trajkovic & Kolakovic, Evaluation of reference 
evapotranspiration equations under humid conditions, 2009a), and thus, many efforts have been 
made to amend the parameters or constants of the empirical formula to adapt it to various 
geographical zones (Jain & Sinai, 1985; Pereira & Pruitt, 2004; Castañeda & Rao, 2005; Zhang, 
Liu, Wei, Liu, & Zhang, 2008; Bakundukize, van Camp, & Walraevens, 2011; Yang, Ma, 
Zheng, & Duan, 2017). Jain and Sinai (1985) modified the constant in the general equation of 
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the Thornthwaite formula based on the min-max range of the annual mean air temperature in 
order to calculate the evaporation for semi-arid conditions. Pereira and Pruitt (2004) proposed 
an adaptation of the Thornthwaite scheme to estimate the daily evaporation in two contrasting 
environments in the USA and Brazil. Castaneda and Rao (2005) recalibrated the coefficient of 
the main equation of the Thornthwaite method based on estimations of reference evaporation 
using the FAO Penman-Monteith method in southern California. Zhang et al. (2008) used a 
modified formula to estimate the actual evaporation in cropland, shrubland and forest located 
in the subalpine region of southwestern China. Bakundukize et al. (2011) used two 
modifications and the original Thornthwaite method to groundwater recharge estimations in the 
inter-lacustrine zone of East Africa. Yang et al. (2017) presented a method to quantitatively 
identify the differences in the spatiotemporal variabilities of global drylands between the 
Thornthwaite and Penman-Monteith parameterizations for Er. 

 The climate of an area is playing a key role in the aforementioned spatiotemporal 
variabilities. The first try to classify the climate of a specific area has been done by Köppen at 
the early of the 20th century and the middle of the same century, Geiger updated that 
classification. The aforementioned classification uses precipitation and temperature and 
contains 30 classes (3 tropical classes (A), 4 arid (B), 9 temperate (C), 12 cold (D) and 2 polar 
(E)); each class is coded with a three-digit system, the first element is representing the groups 
of vegetation, the second is representing the rainfall of the area and the last one (where is 
present), stands for the air temperature (Kottek, Grieser, Beck, Rudolf, & Rubel, World map of 
the Köppen-Geiger climate classification updated, 2006).  

The climate change in terms of global warming is having an important impact on arid 
areas (Kimura, 2020) which are covering about the 40% of the continental Earth (Ashraf, 
Yazdani, Mousavi-Baygi, & Bannayan, 2014). The increasing carbon dioxide emissions are 
going to cause an increment of temperature that will result in water scarcity and drought in arid 
areas (Kimura, 2020). The role of aridity indices is very important to apply an integrated climate 
analysis of a region; many popular climate/aridity indices such as those of UNEP (1997), 
Thornthwaite (1948), Holdridge (1967) etc are based on formulas that require data of 
precipitation (P) and evaporation (E). In large scale applications of climate/aridity indices at 
country/continent/global scale, there is always the problem of data limitation for estimating 
evaporation E using methods that require complete data of climate parameters (i.e., 
temperature, solar radiation, relative humidity, wind speed). A solution to this problem is the 
use of temperature-based formulas of E (Alexandris, Kerkides, & Liakatas, 2006; Baier & 
Robertson, 1965; Camargo et al., 1999; Droogers & Allen, 2002; Hargreaves & Samani, 1982; 
Aschonitis, et al., 2017a,b; Hamon W. R., 1963; Hamon W. R., 1963; Makkink, 1957; 
Malmström, 2007; Turc, 1961, WMO, 1966; Thornthwaite, 1948; Allen et al. 2002). 

To sum up, the necessity of evaporation calculation lays to the fact that is a key variable 
of the water-cycle; the ASCE standardized Penman-Monteith method, which estimates the 
reference evaporation accurately, is taking four inputs, some of them are not easily measured 
(Rs, u, HR). On the other hand, Thornthwaite’s empirical formula is only using the average 
temperature and the latitude value for the calculation of the potential evaporation; accurate 
measurements of temperature are easy to be done or obtained from open source databases for 
the whole of the world. Considering the above, this study aims to develop a global database of 
local correction factors for the original Thornthwaite formula that will better support all hydro-
climatic applications (irrigation design and management, water balance assessment studies, and 
even climate change assessment (Muhammad et al. 2019; Trajkovic 2007) but mostly to support 
large scale applications of aridity indices, which are highly prone to data limitations. The 
hypothesis that is tested in this work is that a local correction factor that integrates the local 
mean effect of wind speed, humidity and solar radiation can improve the performance of the 
original Thornthwaite formula and to convert it at the same time to a formula of reference 
evaporation for short reference crop. 
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Materials and Methods 
2. Materials and Methods 
2.1. Method 
 

2.1.1. Derivation/calibration of Thornthwaite correction factor 
As it has been mentioned before, the calculation of reference evaporation with Penman-

Monteith is often difficult due to lack of data that is needed; on the other hand, the empirical 
Thornthwaite formula is used for the calculation of the potential evaporation only using 
temperature and latitude. The original Thornthwaite model was calibrated with stations located 
in the east-central United States in humid climate conditions (Thornthwaite, 1948); though, 
many studies have shown that its application can be extended globally, over mid-latitude 
climate (Sepaskhah & Razzaghi, 2009). The following methodology will be applied to express 
the Penman-Monteith reference evaporation as a function of the Thornthwaite using a 
correction factor. The monthly potential evaporation using the Thornthwaite (1948) method is 
estimated as follows: 

where Εp: mean monthly potential evaporation of month i (mm month-1), Tmean,i: mean monthly 
temperature (oC), n: number of days in the month, N: mean length of daylight of the days of 
the month (hours), J: annual heat index, ji: monthly heat index, α: expression of annual heat 
index and dj: Julian day. 

The benchmark method that was used for developing correction factors for the 
temperature-based method of Thornthwaite is ASCE standardized method (former FAO-56), 
which estimates reference evaporation from short clipped grass, and it is estimated using the 
ASCE standardized method as it was proposed by Allen (2005): 
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𝐸𝐸𝑟𝑟 =
0.408 ∙ 𝛥𝛥 ∙ (𝑅𝑅𝑛𝑛 − 𝐺𝐺) + 𝛾𝛾 ∙ 𝑢𝑢2 ∙ (𝑒𝑒𝑠𝑠 − 𝑒𝑒𝑎𝑎) ∙ 𝐶𝐶𝑛𝑛

(𝑇𝑇mean + 273.16)
𝛥𝛥 + 𝛾𝛾 ∙ (1 + 𝐶𝐶𝑑𝑑 ∙ 𝑢𝑢2)

 (4) 

where Er: is the reference crop evaporation or reference evaporation (mm d-1), Δ: is the slope 
of the saturation vapour pressure-temperature curve (kPa oC-1), Rn: is the net radiation at the 
crop surface (MJ m-2 d-1), G: is the soil heat flux density at the soil surface (MJ m-2 d-1), γ: is 
the psychrometric constant (kPa oC-1), u2: is the wind speed at 2 m height above the soil surface 
(m s-1), es: is the saturation vapour pressure (kPa), ea: is the actual vapour pressure (kPa), Tmean: 
is the mean daily air temperature (oC), Cn and Cd: are constants, which vary according to the 
time step and the reference crop type and describe the bulk surface resistance and aerodynamic 
roughness. Eq.4 can be applied for two types of reference crop, this study focuses on the short 
reference crop (ASCE-short), which corresponds to clipped grass of 12 cm height and surface 
resistance of 70 s m-1 where the constants Cn and Cd have the values 900 and 0.34, respectively 
(Allen et al., 2005).  

The derivation of a correction factor for Eq.1 using as a benchmark the monthly values 
of Eq.4 (same to FAO-56) is performed based on the same procedure proposed by Aschonitis 
et al. (2017) that has been used before for developing partial weighted annual correction factors 
for Priestley-Taylor and Hargreaves-Samani methods. The procedure starts with the derivation 
of the monthly correction coefficient cth,i for each month i directly by dividing Eq.4 by Eq.1 of 
each month. Applying this procedure, twelve values of monthly cth,i are produced. The 12 
monthly cth,i  coefficients are then used to build mean annual coefficients. As it was mentioned 
in Aschonitis et al. (2017), the efficiency of mean annual correction factors is mainly associated 
with the fact that they are corresponding better for larger evaporation levels (i.e., the values of 
Er during summer/hot months) and not the smaller values where the absolute errors (ei = Eri - 
Epi) are smaller. In that scope, the use of weighted annual averages based on the monthly cth,i 
coefficients are estimated considering the participation weight of each month in the annual Er; 
the weight of each month was calculated by diving the reference evaporation of each month 
into the annual reference evaporation.  

Under cold conditions, reference evaporation is very low and sensitive to climate 
parameters (e.g., wind speed) a fact which means that the aforementioned division can lead to 
unrealistic monthly coefficients cth,i that may cause a negative impact on the averaged 
coefficients and led to nonrealistic coefficients (one order of magnitude deviation from 1). The 
solution of that situation came by setting a low limit of Ep and Er before the inclusion of their 
cth,i in the weighted average estimations. In order to set this limit, a preliminary analysis was 
done by a trial-and-error method, this methodology led to the rejection of values lower that 1.5 
millimeter per day which is equal to 45 millimeters for the whole month. 

The derivation of the partial weighted average is based on monthly cth,i values after 
excluding the cth,i values of those months with Er and/or Ep ≤ 45 mm month-1:  

𝑐𝑐𝑡𝑡ℎ,𝑖𝑖 =
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If 𝐸𝐸𝑟𝑟𝑟𝑟  >  45 mm  month−1   then   𝐹𝐹𝑟𝑟𝑟𝑟 = 1 else = 0 (6) 
If 𝐸𝐸𝑝𝑝𝑝𝑝  >  45 mm month−1   then   𝐹𝐹𝑚𝑚𝑚𝑚 = 1 else = 0 (7) 
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where cth,i: is the monthly correction coefficient, Fri and Fmi: are corresponding to Eq.1 and Eq.4 
and are having a binary form in order to apply a filtering on the evaporation values, 𝐸𝐸𝑟𝑟𝑟𝑟

𝑎𝑎𝑎𝑎𝑎𝑎: is 
the adjusted monthly value of Eri from Eq.4, 𝐴𝐴𝐸𝐸𝑟𝑟

𝑎𝑎𝑎𝑎𝑎𝑎: is the sum of the monthly 𝐸𝐸𝑟𝑟𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎adjusted 

values, 𝐶𝐶𝑡𝑡ℎ: annual partial weighted average of the monthly cth,i coefficients and i: is each 
month’s index 

 
Considering the above, the final corrected Thornthwaite formula for monthly calculations is 
given by the following equation:  

𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐶𝐶𝑡𝑡ℎ · 𝐸𝐸𝑝𝑝𝑝𝑝  (11) 
where Epsi: is the corrected temperature-based short crop evaporation (mm month-1) of each 
month i. 

 
The above led to the adjustment of the annual Cth (Eq.10) for every location during the period 
1950-2000 on the globe based on mean monthly Er and Ep taking: 

• the gridded mean monthly data for the temperature Hijmans et al. (2005) that were further 
used to estimate the mean monthly gridded original Thornthwaite Ep (Eq.1) for the period 
1950-2000 (in the form of 12 raster datasets of Ep for each month), 

• the respective mean monthly grids of Er based on ASCE-standardized method (Eq.1) 
(Aschonitis et al. (2017)) (in the form of 12 raster datasets of Er for each month). 

2.1.2. Variation of Thornthwaite correction factor in major climate groups of Köppen-
Geiger climate classification 

Aiming to investigate variations of the final values in the global map of the Cth factor 
concerning climate, the major groups of Köppen-Geiger climate classification were used. A 
total number of 114,065 randomly generated sampling points, with the density of 1000 stations 
per million km2, was used to extract the Cth factor and the 12 mean monthly values of T and P 
from Hijmans et al. (2005) project. Using the monthly average precipitation and temperature, 
the Köppen-Geiger climate classification was assessed for each sampling position based on the 
criteria of Table 2.1 obtained from Peel et al. (2007). The Cth values were divided into A, B, C, 
D, E groups of Köppen-Geiger, and their distribution within each group was analysed using a 
faction to investigate the distribution of the correction factor. Due to Bernardo (2005), the 
implementation of the module p.interval which is part of the LaplacesDemon in R statistic 
language, is able also to reveal the modality of the distribution and apply specific confidence 
level for the sample (e.g., 2.5 to 97.5 %). The aforementioned climate classification was 
followed as it was described from the paper of Peel et. al 2007.   

2.1.3. Validation of Cth based on stations data 
The validation procedure with the data of the 525 stations was performed by comparing 

the mean monthly and the mean annual values of Er of ASCE (Eq.4) versus the original Ep 
(Eq.1) and versus the modified Eps Thornthwaite formula (Eq.11) for short reference crop taking 
into account the annual partial weighted average coefficients Cth. The validation was made 
separately for each database of stations (ECAD, AGBM, CIMIS) but also all together using the 
following five statistical criteria were applied to the results to assess their accuracy. 
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𝑑𝑑 = 1 −
∑ (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ (|𝑆𝑆𝑖𝑖 − 𝑂̄𝑂𝑖𝑖| + |𝑂𝑂𝑖𝑖 − 𝑂̄𝑂𝑖𝑖|)2𝑁𝑁
𝑖𝑖=1

 (16) 

where MAE: is the mean absolute error (mm month-1), ME:  is the mean error (mm month-1), 
RMSE:  is the root mean square error (mm month-1), RSqr: is the coefficient of determination (-
) and d: is the index of agreement (-), Ο: is the observed value (i.e., Er) (mm month-1), S: is the 
simulated value from the model (i.e., Ep or Eps) (mm month-1), Ν: is the number of observations, 
i: is the subscript referred to each observation. 
 

Table 2.1: Description and characteristics of statistical criteria 
Statistical criterion Abbreviation Range Value of perfect fit 

Mean Absolute  
Error MAE 0 and +∞ 0 

Mean Error ME -∞ and +∞ 0 
Root Mean  

Squared Error RMSE 0 and +∞ 0 

RSqr statistic (Coefficient of 
Determination) RSqr 0 and 1 1 

Index of Agreement d -∞ and 1 1 

2.1.4. Evaluation of Cth use in aridity and aridity/humidity indices based on stations 
data 

The role of the new corrected version of Thornthwaite (Eq.11) as an internal parameter 
of aridity indices was also evaluated against the original method (Eq.1). For this purpose, the 
AIUNEP (UNEP, 1997) and AITH (Thornthwaite, 1948) climate/aridity indices were used. The two 
indices estimated based on the Er of ASCE (Eq.4) were used as a benchmark in order to compare 
the respective indices calculated with the original Thornthwaite (Eq.1) and the corrected one 
(Eq.11) for the stations' data. The comparative analysis was performed using the same metrics 
of Eqs.12-16 and through % similarity comparisons in the derivation of aridity code classes. 
The AIUNEP is the simplest method for hydroclimatic analysis and it is given by the following 
equation: 

𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
𝑃𝑃𝑦𝑦
𝐸𝐸𝑦𝑦

 (17) 

where Py: mean precipitation (mm y-1) and Ey: mean annual potential evaporation (mm y-1).  

Applying the Eq.16, the characterization of the area is corresponding to five classes (UNEP, 
1997; Cherlet, 2018): 

• 0.05 > AIUNEP  → Hyper-arid 
• 0.05 ≤ AIUNEP < 0.2  → Arid 
• 0.2 ≤ AIUNEP < 0.5  → Semi-arid 
• 0.5 ≤ AIUNEP < 0.65  → Dry subhumid 
• 0.65 ≤ AIUNEP  → Humid 
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It is also popular to merge the classes > 0.65 to a humid one. The UNEP index does not consider 
the effect of seasonal variation of precipitation and potential evaporation. The AITH aridity – 
humidity index is calculated as follows:  

𝑆𝑆 = �(𝑃𝑃𝑖𝑖 − 𝐸𝐸𝑖𝑖)     𝑎𝑎𝑎𝑎𝑎𝑎       𝐷𝐷 = �(𝐸𝐸𝑖𝑖 − 𝑃𝑃𝑖𝑖) 
12

𝑖𝑖=1

12

𝑖𝑖=1

 (18a,b) 

𝐴𝐴𝐼𝐼𝑇𝑇𝑇𝑇 = 100 ·
𝑆𝑆 − 0.6𝐷𝐷

𝐸𝐸𝑦𝑦
 (19) 

where S (mm y-1) is the positive difference between evaporation and precipitation (Pi - Ei) >0, 
(if negative S = 0), D (mm y-1), is the positive difference between precipitation and evaporation 
(Pi - Ei) >0 (if negative D = 0).  

The various climatic types according to AITH values are the following: 

• -60 >AITH   → Hyper-arid 
• -60 ≤ AITH < -40  → Arid 
• -40 ≤ AITH < -20  → Semi-arid 
• -20 ≤ AITH < 0   → Dry sub-humid 
• 0 ≤ AITH < 20   → Moist sub-humid 
• 20 ≤ AITH < 40   → Humid 
• 40 ≤ AITH < 60   → Humid 
• 60 ≤ AITH < 80   → Humid 
• 80 ≤ AITH < 100   → Humid 
• 100 ≤ AITH   → Hyper-humid 

2.2. Data 
In this study, global gridded data from two databases were used.  The first Hijmans et al. 

(2005) supplies open-source gridded data of average precipitation P and temperature T per 
month for the period 1950-2000 (WorldClim version 1.2) with a resolution of ~1 km grid 
resolution. The described data is presented in the Fig. 2.2a, b. The second database is the one 
of Aschonitis et al. (2017), which provides gridded data of mean monthly reference evaporation 
Er of the period 1950-2000 at 30 arc-sec (~1×1 km) spatial resolution (Fig.2.2c). The method 
used for estimating Er is the one of ASCE-standardized method (former FAO-56), which 
estimates reference evaporation from short clipped grass (Allen et al., 2005). The database of 
Er was built using temperature from the first raster of Hijmans et al. (2005) and for this reason, 
the two gridded databases are compatible for being used and combined in the common analysis. 

For the validation of the correction factors, it was necessary to compare its performance 
with in-situ data; the use of meteorological data obtained from ground stations was important. 
The network of California, USA (CIMIS) was the first option based on the geometry and the 
high density of the network. The advantage of the specific area in USA is its climate variability 
and the rich landscape. In total 60 stations (Fig.2.1a) were used from CIMIS database that has 
at least 15 years of observations with a significant part of their observations after 2000 (some 
stations, that do not follow the first rule were selected due to their special climate Köppen class 
or the high altitude of their location). From the total stations, it has been excluded these that are 
located in extreme climates or/and high elevation. 

The large variability that also presenting in the Australian continent (from tropical to 
desert) such as the well distributed and enough dense network, made it adequate to be included 
in the study. The second stations’ network is the AGBM and consists of  80 stations (Fig.2.1b), 
that have at least 15 years of observations with a significant part of their observations after 2000 
(the same filtering that was done for the CIMIS has been done for AGBM also).  
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The third database is the ECAD database (European Climate Assessment & Database, 
https://www.ecad.eu). This database is a network that contains more than 20,000 stations 
throughout Europe and provides daily observations of climatological parameters. In this study, 
a final number of 385 stations (Fig.2.1c) was selected because they contained complete data of 
precipitation, temperature, solar radiation, relative humidity and wind speed for a period of at 
least 20 years (with a significant part of their observations after 2000). The total number of 
stations used in the study from the three databases is 525 (Table S1).  

 
Figure 2.1: (a) 60 stations of California from CIMIS database, (b) 80 stations of Australia 

from AGBM database, and (c) 385 stations of Europe from ECAD database. 
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Figure 2.2: (a) Annual average temperature between 1950 and 2000 (Hijmans et al., 2005), 

(b) Annual average precipitation for the period of 1950-2000 (Hijmans et al., 
2005), (c) Annual average reference evaporation of ASCE-standardized method 
for short reference crop between 1950 and 2000 (Aschonitis et al., 2017). 
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Results 
3. Results 
3.1. Derivation of the Cth correction factors and analysis of its variation in major 

Köppen-Geiger groups  
The global map of the Cth correction factor was developed following the procedure 

described in Section 2.1 and it is given in Fig.3.1a. The Cth map is given together with the 
additional map of 114,065 randomly selected sampling points providing information about their 
Köppen-Geiger climate classification (Fig.3.1b), which was identified following the criteria of 
Table 2.1 using Hijmans et al. (2005) database. These points were used to evaluate the variation 
of Cth values inside the major groups as described in section 2.1.2. The HPD distributions of 
Cth values separately for each major climate group but also all groups together are given in 
Fig.3.2a-f, while their respective statistics are given in Table 3.1. Places with Cth = 0 due to 
extreme cold (Tmean always < 0) were not included in the sampling points. According to Table 
3.1, the five major Köppen-Geiger groups are ordered as follows B > C > A > D > E considering 
the magnitude of their mean, median, mode Cth values.  

Considering Cth as an indirect metric of error, it is observed that there are regions in the 
globe mostly belonging to the B group where the original formula of Thornthwaite greatly 
underestimates reference evaporation (Er can be more than double from Ep). On the other hand, 
there are regions mostly belonging to the D and E groups where the original formula of 
Thornthwaite greatly overestimates reference evaporation (Ep can be more than double from 
Er). In general, Ep overestimates reference evaporation in environments of high humidity and 
low water vapour deficit, while it underestimates it in dry environments with high water vapour 
deficit. Finally, Ep is showing the most symmetric behaviour at a global scale considering the 
statistics of all Köppen-Geiger groups of Table 3.1. Finally, it is very interesting to investigate 
the behaviour of Cth through the regions that Thornthwaite originally used for the derivation of 
the Eq.1. Due to Willmott et al. (1985), Thornthwaite used lysimeters at the East part of the 
U.S., the value of Cth in the aforementioned areas is close to neutral (0.9 – 1.1). 
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Figure 3.1: (a) Global map of the annual partial weighted average Cth factors, (b) Köppen-

Geiger climate classification map, (c) sampling points distribution. 

 
Figure 3.2: HPD distributions of Cth per each major Köppen-Geiger group and f) for all 

Köppen-Geiger groups (excluding places where Cth=0) 

Table 3.1: General statistics and 2.5% and 97.5% thresholds of HPDs given in Fig.4 for 
the Cth values of each major Köppen-Geiger group and all groups. 

Parameter 
Köppen-Geiger Groups 

A B C D E All Groups 
Number of samples 18151 31179 12992 40785 10958 114065 

Mean 1.14 1.63 1.38 0.84 0.54 1.14 
Median 1.09 1.59 1.34 0.79 0.43 1.07 
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Parameter 
Köppen-Geiger Groups 

A B C D E All Groups 
Mode 0.90 1.66 1.05 0.80 0.24 0.80 

Minimum 0.70 0.76 0.43 0.28 0.09 0.09 
Maximum 2.25 3.33 2.89 2.80 2.98 3.33 

2.5% HPD threshold* 0.78 0.93 0.69 0.33 0.13 0.17 
97.5% HPD threshold* 1.58 2.38 2.11 1.43 1.37 2.07 

Standard Error 0.002 0.002 0.004 0.001 0.004 0.001 
Standard Deviation 0.234 0.385 0.425 0.292 0.394 0.506 
Sample Variance 0.055 0.148 0.180 0.085 0.155 0.256 

*Represent the central 95% of HPD even for the HPD of Fig.3.2e. The two multimodal intervals 
presented in Fig.3.2e are defined by these two ranges, respectively:  0.1-0.8 and 1.0-1.47. 

3.2. Validation of the Cth correction factors  
The validation of the derived Cth factors (Fig.3.1a) was performed for each of the three 

datasets of stations (California-CIMIS, Australia-AGBM, Europe-ECAD), separately, by 
comparing in 1:1 plots the performance of mean monthly values of original Thornthwaite Ep 
(Eq.1) and mean monthly Eps (Eq.11) versus the benchmark values of Er (Eq.4) (Fig.3.3a-f). 
The same comparisons were also performed using the mean annual values of the respective 
methods (Fig.3.4a-f). The statistical criteria (Eqs.12-16) for both monthly and annual 
comparisons for each one of the three datasets of stations are given in Table 3.2. The respective 
monthly and annual comparisons after merging all the stations from the three datasets are also 
presented in Fig.3.5a-d. From the results shown in Figs.3.3, 3.4, 3.5 and Table 3.2, it is observed 
that Eps much better performance compared to the original Thornthwaite formula Ep in all cases 
providing not only better monthly but also better annual reference evaporation estimations that 
approximate the values of ASCE for short reference grass.  
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Figure 3.3: Left side: 1:1 plots of mean monthly Ep (Eq.1) versus mean monthly Er (Eq.4) 

(a) for 60 CIMIS stations of California, (c) for 80 AGBM stations of Australia 
and (e) for 385 ECAD stations of Europe, and Right side: 1:1 plots of mean 
monthly Eps (Eq.11) versus mean monthly Er (Eq.4) (b) for 60 CIMIS stations 
of California, (d) for 80 AGBM stations of Australia and (f) for 385 ECAD 
stations of Europe. 

 



  

 



 

 
Figure 3.4: Left side: 1:1 plots of mean annual Ep (Eq.1) versus mean annual Er (Eq.4) (a) 

for 60 CIMIS stations of California, (c) for 80 AGBM stations of Australia and 
(e) for 385 ECAD stations of Europe, and Right side: 1:1 plots of mean annual 
Eps (Eq.11) versus mean annual Er (Eq.4) (b) for 60 CIMIS stations of 
California, (d) for 80 AGBM stations of Australia and (f) for 385 ECAD stations 
of Europe. 

Table 3.2: Statistical metrics (Eqs.12-16) for the comparisons between Ep vs. Er and Eps 
vs. Er for CIMIS-California, AGBM-Australia and ECAD-Europe stations for 
(a) mean monthly and (b) mean annual analysis. 

  California Australia Europe 
  Ep vs. Er Eps vs. Er Ep vs. Er Eps vs. Er Ep vs. Er Eps vs. Er 

(a) Metrics based on mean monthly values 
No. Records [-] 720 720 960 960 4620 4620 
MAE [mm month-1] 40.3 22.6 64.6 45.2 14.5 11.9 
ME [mm month-1] -39.7 4.1 -60.5 17.3 -7.4 -6.9 
RMSE [mm month-1] 46.4 31.0 74.2 63.7 20.1 15.3 
RSqr [-] 0.852 0.858 0.624 0.746 0.824 0.919 
d [-] 0.847 0.948 0.743 0.867 0.945 0.972 
(b) Metrics based on mean annual values 
No. Records [-] 60 60 80 80 385 385 
MAE [mm month-1] 476.2 142.1 730.5 256.8 116.6 101.6 
ME [mm month-1] -476.2 49.8 -726.5 208.0 -89.3 -83.1 
RMSE [mm month-1] 500.1 177.9 800.2 317.0 184.7 126.0 
RSqr [-] 0.717 0.603 0.526 0.812 0.785 0.879 
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  California Australia Europe 
  Ep vs. Er Eps vs. Er Ep vs. Er Eps vs. Er Ep vs. Er Eps vs. Er 

d [-] 0.501 0.845 0.571 0.906 0.728 0.94 


 

 
Figure 3.5: 1:1 plots of (a) mean monthly Ep (Eq.1) versus mean monthly Er (Eq.4), (b) 

mean monthly Eps (Eq.11) versus mean monthly Er (Eq.4), (c) mean annual Ep 
(Eq.1) versus annual monthly Er (Eq.4), (d) mean annual Eps (Eq.11) versus 
annual monthly Er (Eq.4), using the data of all 525 stations from the three 
databases of CIMIS, AGBM, ECAD. 

3.3. Evaluating the use of Cth factor in aridity indices 
The use of derived Cth factors (Fig.3.1a) in AIUNEP and AITH aridity indices was evaluated 

considering all 525 stations (California-CIMIS, Australia-AGBM, Europe-ECAD) that were 
included in the validation procedure of the previous analysis. The evaluation was performed 
both by using statistical metrics (Eqs.12-16) for comparing the values of the indices or by 
converting their values to aridity classes in order to compare their correspondence. The 
statistical metrics of Eqs.12-16 for the evaluation between Ep vs. Er and Eps vs. Er when they 
are applied in the AIUNEP and AITH aridity indices considering only non-humid or humid classes 
based on the data of all 525 stations are given in Table 3.3. 

For the case of AIUNEP, the analysis was made by comparing the performance of the 
index when estimated using the original Thornthwaite Ep (Eq.1) and using the mean monthly 
Eps (Eq.11) versus the AIUNEP benchmark values estimated using Er (Eq.4) in 1:1 log-log plots. 
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The results of the analysis are given in Figs. 3.6a,b for Ep and Eps, respectively. The 1:1 plots 
were visualized with log-transformed axes in order to optimize the visualization of high AIUNEP 
deviations based on Ep for AIUNEP values <0.65, which is the minimum threshold value of the 
last Humid class of AIUNEP classification. The visual comparison clearly shows that Eps 
outperforms the Ep in the range of 0-0.65 where there are all the divisions of AIUNEP classes 
(Table 3.3). Considering the full set of 5 classes of the AIUNEP index and the complete set of 
stations, the AIUNEP of Eps provided 93% of identical codes with the AIUNEP of Er, while AIUNEP of 
Ep provided 76% of identical codes. For the case of AITH, the analysis was made in the same 
way as AIUNEP. In order to visualize the negative values of AITH in 1:1 log-log plots, a constant 
value was added (+70) to all the AITH values. The results of the analysis are given in Figs. 3.7a,b 
for Ep and Eps, respectively. The 1:1 plots were again visualized with log-transformed axes in 
order to optimize the visualization of high AITH deviations based on Ep for AITH values < 20, 
which is the minimum threshold value of the Humid B and A classes of AITH classification. The 
comparison again shows that Eps outperforms the Ep in the AITH range of < 20 (Table 3.3). The 
AITH of Eps provided 58% of identical codes, while the AITH of Ep provided 52% of identical 
codes with the AITH of Er according to the 10 aridity-humidity classes of the index.  

Table 3.3 verifies the better performance of Eps compared to Ep in both AIUNEP and AITH 
aridity indices for the non-humid classes. On the other hand, the statistics showed that Ep 
showed better performance in both AIUNEP and AITH aridity indices for humid classes, but this 
result is of less importance and not so robust for the following reasons:  

• In the case of AIUNEP > 0.65, there is only one Humid class and thus there is no 
point to compare the performance of Ep and Eps in AIUNEP from a statistical point 
of view since their values will always lead to the same classification 
code/characterization (i.e. Humid).  

• In the case of AITH >20, the detailed division of five humid classes (B1, B2, B3, 
B4, A) provided by AITH was proposed for the alternative use of the index as 
“humidity index” (Thornthwaite, 1948). Merging the B and A classes to one 
Humid class, as in the case of AIUNEP, the successful identical codes are raised 
to 76% for Eps and 63% for Ep indicating in both cases (merging or no merging 
of humid AITH classes) the better performance of Eps compared to Ep despite the 
worst statistical metrics. 

 
Figure 3.6: 1:1 log-log plots of (a) AIUNEP using mean monthly Ep (Eq.1) versus AIUNEP using 

mean monthly Er (Eq.4), (b) AIUNEP using mean monthly Eps (Eq.11) versus 
mean monthly Er (Eq.4) using the data of all 525 stations from the three 
databases of CIMIS, AGBM, ECAD. 
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Figure 3.7: 1:1 log-log plots of (a) AITH using mean monthly Ep (Eq.1) versus AITH using 

mean monthly Er (Eq.4), (b) AITH using mean monthly Eps (Eq.11) versus mean 
monthly AITH (Eq.4) using the data of all 525 stations from the three databases 
of CIMIS, AGBM, ECAD. 

Table 3.3: Statistical metrics (Eqs.12-16) for the evaluation between Ep vs. Er and Eps vs. 
Er when they are applied in the (a) AIUNEP and (b) AITH aridity indices 
considering only non-humid or humid classes based on the data of all 525 
stations from the three databases of CIMIS, AGBM, ECAD. 

  Ep vs. Er Eps vs. Er Ep vs. Er Eps vs. Er 
(a) AIUNEP ≤ 0.65 (non-humid) AIUNEP > 0.65  (humid) 

No. stations 197 197 328 328 
MAE 0.169 0.036 0.151 0.264 
ME 0.169 0.003 0.035 0.233 

RMSE 0.194 0.056 0.264 0.376 
RSqr 0.867 0.893 0.875 0.932 

d 0.773 0.969 0.963 0.950 
(b) AITH  ≤ 20 (non-humid) AITH  > 20 (humid) 

No. stations 257 257 268 268 
MAE 12.8 6.3 14.9 26.7 
ME 12.7 3.6 3.0 24.2 

RMSE 15.1 10.0 26.6 39.4 
RSqr 0.842 0.882 0.872 0.928 

d 0.855 0.939 0.962 0.945 
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Discussion 
4. Discussion 
4.1. The validity of the derived Cth of 1950-2000 for periods after 2000 

The calibration of local Cth factors at a global scale was performed using the mean 
monthly grid datasets for the period of 1950-2000 doing the assumption of relevant stable 
climate, on the other hand, the procedure of the validation was performed using stations data 
from California and Australia that are expanded up to 2016 and data from Europe that are 
expanded up to 2020 (Table S1). The reasons for choosing the grid datasets for calibration of 
Cth factors are the following: 

• They are in the form of high-resolution grids, which have been developed using 
interpolation techniques that include the effects of latitude, longitude and elevation. 
These grids allow deriving more representative Cth values for every position even when 
weather stations do not locally exist.  

• They cover a large period of time (i.e., 1950-2000) so they can provide more 
representative mean annual partial weighted average Cth values. The upper threshold 
of the year 2000 of these grids also allows the validation dataset of stations to be more 
valid since the larger part of their data is after 2000 and this reduces the possibility of 
having been used in grids’ development.   

On the other hand, several works have shown climate differences after 2000 (Hansen 
et al., 2010; McVicar et al., 2012a,b; Wild et al., 2013; Willet et al., 2014; Sun et al., 2017) a 
situation that is crucial for the performance and the validity of the correction factor Cth. The 
overall effect of all possible changes in climate parameters would impact the final estimated 
values of Er, which uses the complete set of climate parameters, and of course the final 
estimated Cth values. In order to evaluate the impact of such possible changes after 2000, the 
mean monthly Er values of the grids (from the calibration set of Aschonitis et al. 2017) 
(Fig.2.2c) and the derived Cth values of the period 1950-2000 (Fig.3.1a) were extracted from 
the positions of the stations used for validation. These values were compared with the respective 
values of Er and Cth that were computed with the station's raw data and correspond to posterior 
periods after 2000. The results of this comparison are given in Fig.4.1a, b. From Fig.4.1a, it is 
observed a correlation of 98% between the Er values from grids of 1950-2000 and the Er values 
from the stations using data from posterior periods. Similarly, a correlation of 98% was 
observed in the respective values of Cth in Fig.4.1b. In the case of Cth, there is a distinct 
deviation of a station where the derived Cth of the period 1950-2000 (value equal to 1.37) is 
almost half from the one observed in the station (value equal to 2.44) using its raw data. The 
specific station is an exceptional case since it belongs to the Centro de Investigación 
Atmosférica de Izaña and it is at the top of a mountain at 2371 m above sea level in Tenerife 
island. The specific deviation is fully justified by the fact that the Cth value of the grid 
corresponds to an area of 1 km while the specific position of the station is at a very unique 
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position, which can be described as the most extreme position within this pixel. There are also 
3 stations in Tenerife island where the derived Cth of 1950-2000 are in good correspondence 
with those estimated by the stations. The case of Izana station in Tenerife was the perfect 
example for triggering further investigation for the possible effects of scale in similar 
environments with extremely variable topography. Investigating the individual stations with 
the larger % deviation of Eps from Er and the respective topography of their surrounding 
environment, it was observed a similar case in the CIMIS database of California stations. In 
this case, the larger deviations were observed in stations, which are all concentrated in the 
coastline between Los Angeles and San Diego. The specific region is a narrow (~20-30 km) 
highly urbanized coastal zone of ~200 km, which is enclosed between the coastline and a 
hilly/mountainous zone. In the specific stations, the average of Cth values of the period 1950-
2000 from the position of these stations was 1.85, while the average of Cth values using their 
raw data from the validation procedure was estimated at 1.46. Apart from the large topographic 
variation, another reason for the Cth differences in these stations could be the bias that has been 
removed by clearing extreme flagged meteorological parameters (e.g., wind speed) in the data 
of California stations of CIMIS database, which are probably associated with a hurricane or 
other extreme events in this region. The filtering by the Sheffield et al. (2006) of the 
measurements during usual extreme phenomena (e.g., hurricanes) in the area of California, is 
in question for the derivation of the wind grids that were used by Aschonitis et al. (2017) to 
build the Er grids. This could justify the fact that the gridded Cth values of 1950-2000 at the 
positions of the stations are greater than the Cth values estimated by their raw data from CIMIS. 

 
Figure 4.1: 1:1 plots of (a) mean monthly Er of grids 1950-2000 (Fig.2.2c) vs. Er of 525 

stations raw data and (b) Cth of grids 1950-2000 (Fig.3.1a) vs. Cth of 525 stations 
estimated by their raw data. The values of grids correspond to the same 
positions of stations. 

4.2. Scale effects on the accuracy of the derived Cth 
An additional analysis based only on the stations of California was made in order to 

show that a regional mean value of Cth factors may present an equivalent or even better 
performance from the respective local high-resolution pixel values used in the validation 
procedure (Figs.3.3b, 3.4b) because it may counterbalance uncertainties by the possible 
variability of the  climatic parameters in the wider area. The reason for such uncertainties could 
be rainfall, which may not present significant seasonal deviations or deviations from the 
expected annual values for a large region but may show different spatial patterns every year 
within the region affecting the accuracy of the coefficients. The results of the specific analysis 
are given in Fig.4.2a,b for the monthly and the annual results respectively using the same value 
of Cth=1.66 for all stations, which is the average value of all Cth factors of 1950-2000 from the 
positions of the stations. The results of this analysis showed that a regional average of Cth values 
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can lead to similar and in some cases better performance from the respective local high-
resolution pixel values used in the validation procedure (Figs.3.3b, 3.4b)  

 
Figure 4.2: 1:1 plots of (a) of mean monthly Eps (Eq.11) versus mean monthly Er (Eq.4) and 

(b) of mean annual Eps (Eq.11) versus mean annual Er (Eq.4) for 60 CIMIS 
stations of California using the average value of their Cth values (i.e., equal to 
1.66 for all stations) for the period 1950-2000. 

4.3. Justifications about the methodology for deriving annual Cth correction 
factors based on partial weighted averages  
The initial trials to derive annual correction factors Cth of this study were made using 

the average value of the twelve-monthly cth,i values. This procedure led to unreasonable values 
due to the extremely high values during winter. An example of this problem is given in the 
following Figure 4.3, which corresponds to a position close to Garda Lake in Italy (10.124o E, 
45.45o N), where it can be seen that the monthly cth,i value of January is equal to 11.89. Based 
on the values of Figure 13, the annual average of monthly cth,i value for this location is equal to 
2.4. Correcting the Ep,i value of July with the factor 2.4 leads to Er,i equal to 338, which is 203 
mm or 2.5 times larger than the respective Er,i of Figure 4.3. Thus, the specific procedure for 
deriving annual Cth factors was rejected.   

A second approach was to use the 12 pairs of monthly Er and Ep for each position on 
the grid to perform regression analysis based on the form y = a·x without intercept since 
reference evaporation Er = Cth·Ep. An example of the specific procedure based on the values of 
Figure 4.3 is given in Figure 4.4, where the annual Cth value was found equal to 0.98. The 
specific procedure provides annual Cth values, which are approaching better the higher 
evaporation months since the build of the methodology was aiming to reduce the error of the 
important/warm (in term of evaporation) months. Despite the fact that the specific procedure 
pays less attention to the monthly cth,i values of colder months, it was considered acceptable 
since most of the hydroclimatic applications require higher accuracy to the larger evaporation 
values rather to the lower ones. A similar approach was performed by Cristea et al. (2013) for 
deriving annual correction factors for the Priestley-Taylor method for 106 stations through the 
United States. The re-adjustment and the improvement of the Priestley Taylor equation based 
on the FAO-56 method for each specific station, only using the warmer semester of the year. 
The obtained optimized values of the correction factors for each station were then interpolated 
to produce a map of the Priestley-Taylor correction factors. For our study, the specific 
procedure was found to be extremely demanding in computing requirements since it was 
impossible to be performed pixel by pixel (777.6 million pixels) with a conventional computer 
unit for the whole globe using as input 24 rasters of extremely high resolution (~1 km) with a 
total size of ~70GB. In order to solve this problem, the method of partial weighted average 
(Eqs.5-10) was developed by Aschonitis et al. (2017), which provides similar results to the 
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regression analysis of y = a·x but allows to perform calculations step by step with a conventional 
computer unit. For the data of Figure 4.3, this method provided a Cth value equal to 0.99, which 
is almost similar to 0.98 of Figure 4.4. The specific method is also extremely efficient since it 
is not restricted only to the warmer semester or any other predefined periods like the case of 
Cristea et al. (2013) but controls all months one by one with the lower boundary of evaporation 
for 1.5 mm per day or 45 per month, which is more appropriate for global applications and 
especially for applications of high-resolution data giving the appropriate weight to the months 
with significant values of evaporation. The threshold of 45 mm month-1 was derived empirically 
after analysing an extremely large number of positions in the globe (results not shown). This 
analysis showed that when monthly Er was falling below 50-40 mm month-1 then there was a 
steep increase of monthly cth,i (e.g. as in Figure 4.3). The reason for this increase is based on 
the fact that the original Ep formula is not including the combined effect of wind speed and 
vapour pressure deficit, which is much larger in colder months compared to the effect of 
temperature (Aschonitis et al., 2015, 2017). In the case where there is a location where all 
months show evaporation values below 45 mm month-1(Cth = 0 according to the procedure of 
Eqs.5-10), it is primarily suggested to use the non-zero Cth value of the closest location in the 
map of Figure 3.1a, or to use directly the original Thornthwaite without correction.  

 

 
Figure 4.3: Monthly values of original Thornthwaite Ep,i and ASCE Er,i method together 

with their respective monthly correction factors for a position close to Garda 
Lake in Italy (10.124o E, 45.45o N). 

 

 
Figure 4.4: Simple linear regression analysis without intercept between monthly values of 

original Thornthwaite Ep,i and ASCE Er,I from Figure 4.3. 
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Conclusions 
5. Conclusions 

A global grid of local correction factors for improving the performance of the 
temperature-based Thornthwaite evaporation method was built using gridded data covering the 
period 1950-2000. The method for developing the correction factors was based on partial 
weighted averages of their respective monthly average values, which were based on monthly 
ratios between the benchmark ASCE-standardized Er method versus the original Thornthwaite 
Ep. This method led to annual values considering the amplitude of Er is considering with more 
gravity to the monthly correction factors for the months with large Er values, which are more 
important for irrigation, aridity and other water-associated procedures. The threshold of the 
study is also achieving to limit the estimation of unrealistic values cthi that will impact a 
movement for the partial weighted correction factor. The values of correction factors extracted 
from the five major Köppen-Geiger groups (A, B, C, D, E) were investigated and showing the 
following order of magnitude B > C > A > D > E. The correction factors were validated using 
raw data from 525 stations of California, Australia and Europe that cover periods beyond 2000. 
The results showed that the corrections factors significantly improved the monthly and annual 
results of original Thornthwaite method Ep. The use of Ep with or without correction factors 
was also evaluated through the use in the aridity indices of Thornthwaite and UNEP versus the 
respective indices estimated based on the benchmark ASCE-standardized Er. The results 
showed again that the correction factors significantly improved the performance of the indices 
compared to the original Thornthwaite method, especially in non-humid environments. 
Uncertainties in the values of correction factors were observed in regions of high topographic 
variability and a possible recommendation for such cases is the use of a regional average 
correction factor. The methods and results presented in this study and the limitations and 
unrealizabilities should be investigated further in future works, by focusing on: (a) the extent 
of the validation procedure in different areas, (b) assessment of the performance of other known 
empirical models that are using reduced parameters (c) use of p. w. a. method for recalibrating 
correction factors using the station or climate models’ data of recent periods.  
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