
DELFT UNIVERSITY OF TECHNOLOGY
- COMPUTER GRAPHICS -

TI3800 BSc. Project Report

DEPTH AND MOTION
INFORMATION FOR 2D IMAGE

SEQUENCES

Authors:
G.A. Kolpa 4009886

M.Y. Santokhi 4093968
J.R.J. Vincendon 1312774

Exam committee:
Project Coördinators: M. A. Larson, H. G. Gross

Supervisor: Prof. Dr. E. Eisemann
Client: M. Holländer

July 18, 2013

Contents

Preface i

Summary ii

1 Introduction 1

2 Problem definition 2

3 Diffusion Curves 3
3.1 Analysis of different techniques 3
3.2 Choice of algorithm . 5
3.3 Implementation . 5

4 User interaction design 7
4.1 Application layout . 7
4.2 Color coding . 9
4.3 Minimalism as design philosophy 11
4.4 Program usability . 13

5 Editor 14
5.1 Tools . 14

5.1.1 Input . 14
5.1.2 Storage . 15
5.1.3 Coloring . 15

5.2 Context based . 16

6 Interpolation 17
6.1 Analysis of different techniques 17

6.1.1 Contour tracking . 17
6.1.2 Blob tracking . 17
6.1.3 Optical Flow . 18

6.2 Algorithm selection . 18
6.3 Integration . 19

7 System design 21
7.1 Chosen design pattern . 21
7.2 Structure of the system . 22
7.3 Extensibility of the system . 24

8 System testing 25
8.1 Testing strategy . 25
8.2 NUnit framework . 26
8.3 Rhino Mocks . 26
8.4 Unit testing . 26
8.5 Integration testing . 27

8.6 Regression testing . 28

9 Requirements Evaluation 29

10 Conclusion 32

11 Recommendations 33
11.1 Improvements . 33
11.2 Unmet requirements . 33

References 35

Appendix A Project Proposal 39

Appendix B Plan of Action 41

Appendix C Requirements Analysis Document 49

Appendix D Test Plan 66

Appendix E SIG Feedback
E.1 First Feedback .
E.2 Second Feedback .

Preface

In order to complete the Bachelors programme of Computer Science and Engi-
neering at TU Delft, students are required to do a Bachelors project in the end
of their third academic year. The authors of this paper, Alex Kolpa, Maniek
Santokhi and Jérôme Vincendon, chose to research and implement a diffusion
curves creation system.

This report describes the result of the endeavor to create the system. It
discusses theory and application with argumentation.

We want to thank our supervisor Prof. Dr. E. Eisemann and the client M.
Holländer for giving us the chance to work on this project and for their input.

Delft, July 2013

i

Summary

The problem presented to the authors was to build an application which could
be used for constructing diffusion curves to augment 2D image sequences. To
achieve this, the application needed to contain a system to construct and show
the diffusion curves, some system to reuse these curves to prevent repetition,
and a friendly user interface to make creation an easy process.

Diffusion curves are defined as a “vector-based primitive for creating smooth-
shaded images”. They are Bézier curves defined by a set of control points, each
with an assigned ’left’ and ’right’ color. This creates a colored division of the
screen space through which the Bézier curves run.

Several different implementation techniques can be used, namely those of:
Orzan et al., Jeschke et al. and Bezerra et al. Orzan et al. describe diffusion
curves as cubic Bézier splines defined by a set of anchor points, each augmented
with two color control points, and a blur value. The diffusion is achieved by
iteratively sampling the colors along the line and averaging them. Jeschke et al.
show that this process can be sped up by finding the closest anchor point for each
pixel, allowing fast calculation of the diffusion process. Bezerra et al. focuses
on controllability of the diffusion curves, and achieves this by introducing soft
constraints which limit flow directions for each pixel.

The technique described by Jeschke et al. was chosen to implement. The Dif-
fusionCurves system centers on usability, which favors speed and large datasets
to work with, something that is provided by their implementation.

How the user interacts with the system has been a focus point of the project.
Two extremes of possible users have been defined to design the system for: the
computer scientist and the artist. To create an intuitive user interface, existing
design principles have been used as much as possible.

The layout of the applications centers on a canvas area to accommodate for
curves creation possibilities. Every function that frequently gets used is placed
around this canvas. Other less used features are hidden away in the menu bar.

Colors have been used to communicate to the user in what state one is. So
called flat colors, which are brighter more saturated versions of primary and
secondary colors, in combination with a black tinted background accommodate
that.

Minimalistic design tries to create a distraction less environment for the user.
This includes: diminishing the number of options to the bare minimum, the use
of lines and spacing for grouping and text as clarification.

Keyboard shortcuts reduce the need to travel long distances with the mouse
to activate certain states or functions. It also removes the ambiguity of using the
mouse as diffusion curves creation method and function activator. The natural
position of the hands for someone who types with ten fingers has been taken
into account.

The editor represents the canvas area. It provides a context sensitive tool

ii

to create diffusion curves and to edit them when in the Create state. Assigning
color to each control point is done in conjunction with the Color state.

Interpolation in the system is necessary to prevent the user from doing ex-
cessive work. This means having a good way to transform diffusion curves from
one frame to the next. In the application, this is achieved by using a pyramidal
implementation of the Lucas-Kanade optical flow algorithm. To allow auto-
matic interpolation over many frames, some kind of error estimate is necessary.
This is achieved by finding the Mean Squared Error of all the separate tracking
errors.

A good system design contributes to a stable and extensible system. The cho-
sen design pattern was a combination of the Model-View-View-Model (MVVM)
and the Model-View-Controller (MVC) principle. A separation is created by
using events and direct object references as communication mean. Extensibility
is reached by unused space in GUI areas and the code modularity, which allows
for new subsystem inclusions.

Via continuous unit testing, integration testing and regression testing a cer-
tain kind of code quality guarantee has been made.

Improvements for this system can be made by adding cyclic paths creation
to the editor, by adding a diffusion process to each layer, by using different
algorithms for diffusion curves and by using a separate feature detection algo-
rithm for interpolation. Several requirements were not met that could also be
implemented as improvements.

iii

1 Introduction

The assignment given by the Computer Graphics & Visualization group of the
TU Delft was to develop a tool that would enable users to augment sequences
of 2D images with depth and motion vectors, using a unified framework.

In order to do this, the user should be given the possibility to define con-
straints on images, which would then spread diffusion of user-defined colors over
every image and in this way spread depth and motion information [22]. Inter-
polation would play a big part in this as well, in order to automate the process
of defining constraints over a large number of consecutive images.

In this paper the process of engaging in this task will be discussed, what
kind of problems were encountered and how the final goal was achieved.

The structure of the paper will be as follows: Section 2 will kick off by
analyzing and defining the problem as was done in the first weeks of the project.

Section 3 will talk about the Diffusion Curves used for the diffusion. In this
section primary focus will be on the analysis of different techniques, the chosen
algorithm by Jeschke et al. and the implementation of this algorithm.

In Section 4 it will be explained how the authors tried to make the user
interaction as smooth as possible. The main topics in this section will be the
layout, color coding, minimalism of the application and program usability.

Section 5 will follow with a discussion of the context based Editor that was
created, and the tools it contains to let user work on creating diffusion curves.

In Section 6 the interpolation will be discussed, explaining the research that
was done on different interpolation techniques, the chosen Pyramidal Lucas-
Kanade Optical Flow implementation and the overall implementation and inte-
gration.

Section 7 will elaborate on the software architecture developed during the
course of this project as well as the easy nature of extensibility built right into
the tool.

Section 8 will explore the testing that was done right from the start of this
project, including the chosen testing strategy, the frameworks that were used
and the different testing techniques that were used.

To wrap up the discussion about the tool itself, Section 9 will look back at
the requirements that were decided upon at the beginning of the project and
discuss what made it, what did not, and especially the reasons why things were
moved forward, postponed or eventually rejected.

In conclusion of this paper, Section 10 will summarize everything that was
discussed, followed by suggested future work in Section 11. In this last section,
recommendations will be made about possible improvements as well as any
possibly unmet requirements

1

2 Problem definition

In an earlier stage of the project the problem posed to the authors was to
construct an application for creating Diffusion Curves. More specifically, the
application would be able to construct depth and motion information over image
sequences (Appendix A). In practice, this would result in the use of diffusion
curves to add information to already existing pieces of film, represented as a
sequence of images. This information could then be used to produce interesting
effects such as high-refresh frame rates, stereoscopy, or artistic emphasis.

During the process, the focus shifted from the depth and motion information
to the actual construction of diffusion curves as an augmentation for the image
sequences. At first, the focus lay with the implementation of an interesting
effect such as described above, but after several meetings with the client, this
was changed.

Currently, the project focuses on the construction of a tool for creating Dif-
fusion curves without the extra depth and motion information. So the problem
statement is defined as follows:

The client requires a single, unified application to construct dif-
fusion curves over image sequences, through an intuitive and fast
implementation.

No current system exits that provide diffusion curves creation to accommo-
date these kinds of applications. So this project is centered on building a system
that provides such a technique. It is called DiffusionCurves and its focus points
are to create:

• An intuitive interface for users to work with;

• A stable and extensible system;

• An efficient diffusion calculation.

This document describes the result, the methods used and the research that
has been done.

2

3 Diffusion Curves

Diffusion curves are defined as a “vector-based primitive for creating smooth-
shaded images”.[36] The primitive is defined as follows: the actual curve is a
Bézier curve, defined by a set of control points, with each assigned two colors
determining the ’left’ and ’right’ color of the control point. This creates a
colored division of the screen space through which the Bézier curves run. Both
the control points as well as the colors are defined by the user, giving them
almost complete control of the resulting image. The actual image can then be
constructed by solving a Poisson equation with constraints as given by the colors
of the Bézier curve. Such a result can be seen in figure 1. Designed by Orzan
et al. in 2008, several adaptations of its implementation have been made since
then.

In the next section, the approaches will be analyzed, after which the preferred
approach will be selected, and a description will be given of the implementation
into the system.

Figure 1: Diffusion primitives (left) Image after diffusion of primitives (right)

3.1 Analysis of different techniques

In this section, several different implementations are analyzed and discussed.
First, the original implementation by Orzan et al. will be examined, then several
implementations which improve in some way upon the original implementation.

Orzan et al. As explained in section 5, Orzan et al. described the diffusion
curve as a cubic Bézier spline defined by a set of control points, each augmented
with two color control points, and a blur value. The resulting image is achieved
by the diffusion of colors on each side, and the smoothness of the transition
across the boundary is defined by the blur value.

3

Their implementation is phased in three steps: first, the rasterization of the
control points to a color source image, then the diffusion of this color source
image, which is similar to heat diffusion as it is an iterative process that slowly
spreads the colors of the source across the resulting image. Finally, the result is
blurred using the blur map constructed from the blur values in a similar fashion
to the diffusion of the colors.

This intuitive approach proves to be relatively slow, requiring approximately
20,000 iterations for a 512x512 pixel image.[29] Even though this process runs
almost entirely on the GPU, significantly speeding up the fully parallel process,
it can still take up to several seconds to generate a satisfying result.

Jeschke et al. To improve upon this performance issue, several new ap-
proaches were taken. One of which is introduced by Jeschke et al.[29] They
observed that the Jacobi iterations as used by Orzan et al. proved to be slow
because of their low convergence rate. As they described it themselves:“... color
cannot quickly travel from one part of the image to another.”[29] To solve this
problem, they presented their solution in the form of a varying stencil size. This
solution works because the Jacobi iterations converge, no matter the stencil size.
For optimal size, they have shown that it should be set to the distance to the
closest fixed boundary point.

To construct this solution, they applied a GPU-based implementation. To
find the distance to the closest fixed boundary point for each pixel, some form
of space division was required. This is easily achieved using a Voronoi diagram.
Using this diagram, the stencil size can be determined. By reducing the stencil
size each iteration, convergence of the diffusion can be achieved relatively fast.
Jeschke et al. give two strategies for shrinking, namely “shrink always” (SA) and
“shrink half” (SH). With SA, the stencil size is reduced linearly each iteration.
For SH, the stencil size is halved each iteration. Compared, SH converges faster,
but artifacts remain visible for more iterations.

Bezerra et al. One of the limitations of diffusion curves as defined by Orzan
et al. is that they do not allow occlusion of the curves, meaning that only
one side of the curve should diffuse its values. In many images, this results in
unwanted artifacts, or they require extra curves to be added that were otherwise
unneeded.

Bezerra et al. [15] describe a method of constructing diffusion curves with
this occlusion, as well as giving control over the strength of the diffusion, and
giving control over the diffusion orientation.

They achieve the first effect by giving each pixel a soft constraint, limiting
diffusion from certain pixels into others. These constraints can then be used to
give the user control over the orientation of the diffusion, by constructing the
soft constraints similar to a flow field, giving some control over the orientation.

The color strength is achieved through different means. Bezerra et al. de-
scribe the strength control as an interpolation process of all sampled colors
involved in a diffusion iteration. They achieve the result by using homogenous

4

colors, where the r, g, and b channels are multiplied with the color strength a,
which is stored in the alpha channel. This way, the colors can be interpolated,
through which the strength of the diffusion can be controlled.

3.2 Choice of algorithm

Before the implementation, the direction of the diffusion system needed to be
decided. Either the system would get a large amount of control, by using the
implementation by Bezerra et al., or it would gain a decent amount of speed,
by using the implementation by Jeschke et al. Unfortunately, due to time con-
straints, constructing a novel method which would possibly combine both ap-
proaches was impossible.

Going with increased control meant that the user would get a better expe-
rience whilst designing and drawing the curves. Giving them full control over
almost every aspect of the diffusion would also mean the images would most
likely become more visually pleasing.

Going for increased speed meant that the user would get a better experience
whilst drawing as well as exporting the images. Because of the increased speed,
alterations to the image would be visible faster, and constructing many images
for export would be significantly faster than the slower approach.

In the end, it was decided to go for the implementation by Jeschke et al., since
the DiffusionCurves system will be designed for large image sets, meaning that
exporting the diffusion curves for every image in such a set would require several
minutes or more. Jeschke’s approach allows for real-time rendering, meaning
each image should take less than 100ms to construct. Extrapolating this over
a 1000 images (from a movie, this would be about 41 seconds of material), it
would take less than two minutes to export. Besides this, the implementation
by Jeschke et al. allows for some flexibility, meaning that in future adaptations
of the system, other approaches can be integrated as well.

3.3 Implementation

Though the theory behind the approach of Jeschke et al. sounds complex at
first, it is actually a pretty straightforward technique. As described in section
3.1, it first requires a Voronoi diagram giving the closest points. This diagram is
constructed using the GPU. First, the geometric primitive needs to be written
to buffers for GPU usage. Since the system only stores the anchor points as well
as their control points, the Bézier spline needs to be generated every time the
buffers are invalidated. Though this takes a couple of milliseconds, not every
buffer is invalidated every time, and invalidation only occurs when the primitive
gets altered in some way. These anchor points are constructed into the following
buffers:

Buffers: P [npos]: array of (x, y, z)
Cl[nl]: array of (r, g, b, a)
Cr[nr]: array of (r, g, b, a)

5

These buffer are then drawn with a geometry shader. Inside the geometry
shader, the Voronoi diagram gets constructed. For each 2 points in the buffer, a
line is drawn, and the tangent perpendicular to the screen is constructed. This
tangent is then used to construct two colored planes, colored with the left or
the right color depending on the orientation of the tangent. These planes are
slanted, which lets the GPU’s Z-Buffer generate the Voronoi diagram, which
looks as follows:

Figure 2: Closest point map (constructed by Jeschke et al.)

This image is stored in a RenderTexture, for use as an initial guess for the Jacobi
solver. Besides the color information, the depth information of the Voronoi
diagram is stored in a RenderTexture as well. These two RenderTextures are
then passed along to the Jacobi solver. This solver takes as input the two
textures, as well as the current iteration. It outputs its color-result to a third
texture, which is used to iterate on as well. This way, a Ping-Pong model
between the two color textures is constructed, swapping the output for the
input every time an iteration is completed.

The actual solver itself samples the depth texture to find the sampling offset
for the color image. It then samples the color image at four points that are
in axis-aligned directions using the sampling offset to determine the sample
position. These values are then averaged, producing the color output of the
solver. This solver uses the shrinking strategy SA as described in section 3.1,
though it could be easily adapted to support the SH strategy as well. After the
final iteration, the resulting RenderTexture is then overlaid on the screen and
drawn as a full screen texture inside the viewport of the application to present
to the user.

6

4 User interaction design

How the user interacts with the created system has been a major focus point
of this project. Two extremes of possible users have been introduced in the
Requirements Analysis Document (RAD) –which can be found in Appendix C.
Namely the computer scientist, who wants control over the system and extensi-
bility, and the artist, who likes artistic freedom and ease of use.

Keeping these two in mind while creating and refining the user interface
captures the needs of our target audience and everything within that spectrum,
as argued in the RAD.

The difficulty of creating a graphical user interface lies within creating an
effective, efficient and satisfying environment for the user.[46] These broad terms
allow for many opinions, which makes designing the interface hard. It is not as
quantifiable as computer science where one looks for objective truth.[45] This
also makes it difficult to test.[33] The DiffusionCurves system therefore tries
to build on existing design concepts as much as possible and to introduce new
concept only where good argumentation allows for it. Strong claims as to why
it will work will still be difficult to make.

Discussed will be the overall layout choice of the graphical user interface
(from now on abbreviated as GUI), the choice of color in combination with
its use as state indicator, the minimalism that served as philosophy and the
program usability.

4.1 Application layout

In figure 3 one can see the main window of the system in an inactive state. This
grouping of GUI components creates a certain kind of workflow and simplicity.
Each grouping has been labeled as reference points for clarification later on.

Quite early in the design of the system it became clear that the creation of
the diffusion curves should be the main function of the application. Drawing
the user’s attention to this function therefore became the primary focus. So the
idea came to center a large canvas area in the main window with curves creation
possibilities, and every GUI element around this area would then be in service
of the canvas. The latter is embodied by the Toolbar area, the Layers area, the
Control area, the Timeline area and the Menu bar.

This choice of drawing attention to the canvas by centering sounds trivial,
but some automatic tooling like automatic acquisition of diffusion curves, inter-
esting for computer scientists and described in the RAD, would eliminate the
need to make the canvas the center of attention. The artist however, who want
to have artistic freedom in the curves creation, could be drawn away by this.

Breaking with some conventional layout principles that artists as well as
computer scientists have already been accustomed to would only frustrate the
use of the system and steepen the learning curve.[35] So inspiration for the layout
has been drawn from commercial software that possible users of this application
are already familiar with (e.g. Adobe Illustrator and Visual Studio).[1, 9] This
can be noticed by the use of dialogs for extra functionality, the use of a Menu

7

Figure 3: The main window

bar with familiar naming conventions to hide infrequently used features and the
grouping of functions that will frequently be used in designated areas around
the canvas such as the Toolbar.

The overall workflow of the system is centered on the diffusion curves cre-
ation, which is fairly straightforward. However, at times it is necessary to break
from this workflow to enable features that are not always necessary to be shown
on screen all the time. One such break is the creation of a new project (figure
4a) or to add color to a point in a Bézier curve (figure 4b). For both a dialog is
introduced on the center of the screen that draws the users attention and disal-
lows any other action apart from what’s in the dialog. Letting dialogs appear
is oftentimes in conjunction with clicking on buttons hidden away in the Menu
bar.

One of the designated areas is the Toolbar (figure 3) which contains two
buttons: Create and Color. Both describe a state that directly affects what
the user can do on the canvas. With Create enabled one can create curves
and due to its context sensitivity the user can also select individual points and
manipulate them further. The latter eliminates the use of an extra button that
represents an edit state. The other button is Color. Activating this button will
let the user assign colors to points in the curve aided by the color dialog (figure
4b).

Another designated area is the Timeline area (figure 3). If frames are loaded
into the project, the timeline area (which consists of a slider) allows for easy

8

Figure 4: a New Project dialog b Color dialog

navigation. An earlier implemenation of this area showed individual frames as
thumbnails –equivalent to a video editor– opposed to a slider showing a relative
position, as is the case in the current implementation (figure 5). A project
scenario with many frames would give bad frame management because it is
hard to see in what part of the sequence one is. The user cannot deduce that
from just looking at the thumbnails, as their small size would make it hard to
distinguish frames that all quite look te same.

Figure 5: The Timeline area with frames loaded

The last designated area is the layers bar (figure 3). It allows for curve
management for each frame. If a certain layer is selected then it lightens the
curves in inactive layers so the artist can focus on the current layer without
losing context.

So the doctrine behind the layout of this implementation is to create a
straightforward workflow around the canvas to accommodate diffusion curves
creation. Anything directly related to this curves creation is around the canvas
and anything that is frequented sporadically is hidden away until needed.

4.2 Color coding

Some commercial graphics applications, like Adobe Photoshop, use monochrome
looking buttons which slightly change color tone to indicate a state.[2] What
users might find troubling is not directly knowing what button or layer is active.
It can therefore be hard to keep track what can be done at a particular moment.

9

The system described in this document uses colors to overcome these problems.
In figure 6 below one can see the main window, a project loaded into the

memory that shows a certain state and all GUI elements enabled so that the
user can interact with them.

Figure 6: Main window with a project loaded

The use of colors should be apparent in figure 6. An impression the user
needs to have upon seeing this is directly knowing that he can create curves on
the canvas in the first layer and that color diffusion is not showing (the box on
the left side under the canvas is otherwise light orange).

The toolbar is perhaps the pinnacle of the color coding implementation.
Figure 7 a shows the active and inactive states of both the Create and Color
button. Activating any of them also gives the border around the canvas the
same color (figure 7 b). Not only does the user directly know what he can do
in the context sensitive GUI, but also what this will affect, namely the diffusion
curves in the canvas. So instead of the monochrome use for state indication as
in Adobe Photoshop, the DiffusionCurves system shows a color coded version
of this.

Figure 7: a Activation of buttons b Canvas border changed on activation

The colors chosen are what is called ’flat’. These are brighter, very saturated

10

versions of primary and secondary colors which stand out on the black tinted
background and inactive GUI elements.[19] A choice has been made to only
use colors that have a good contrast between each other to avoid confusion.
Some minor variations to certain flat colors are also used in conjuctions with its
primary flat color for some added subtlety. An example of this is the hovering
over buttons in dialogs seen in figure 8 which shows a lighter tone than when
clicked. This should create constant feedback to the user input.

Figure 8: Different tone use per flat color

Color, or lack thereof, is also used to show whether a GUI element can be
interacted with. For example when no project is loaded, the user should not
be able to create curves or set another layer. So these state buttons should be
disabled as well as look disabled. Figure 9 below shows this inactivity of the
Layers area.

Figure 9: Different tone use per flat color

When disabled the background of the buttons matches the overall background
and the foreground of the buttons is less bright. It should immediately show
that one cannot interact with it nor should it distract.

In conclusion, this color coded model tries to let the user know at any time
in what state the application is and what it can do/affect, without the user
being distracted by other elements.

4.3 Minimalism as design philosophy

Much inspiration has been drawn from existing software to use as reference for
what could work and what could not work for the system described in this
document.

It is common in creative commercial applications like Adobe Photoshop and
Apple Final Cut Pro X to use black tones as GUI background.[3] The idea
behind this is not to distract from the content that is being created. The

11

application described in this document also centers on content creation and
would therefore also benefit from the idea to use black tones as distraction
deterrent. Theses tones also contrast quite heavily with the flat colors used for
color coding, making them stand out to let the user know at all times in what
that he is in.

In for example Adobe Illustrator, with its many features and possibilities, a
window management has been introduced to accommodate it. Since the Diffu-
sionCurves system doesn’t have the same prowess as Adobe Illustrator, it would
only add possibilities that might distract the user. Instead, a fixed layout has
been chosen to give the idea of steadiness, meaning: always knowing where
what is once learned. The system described in this document also uses context
sensitivity to diminish the number of buttons and dedicated overlain dialogs for
some more complex functions. The latter keeps the workflow simple and the
overall GUI minimalistic.

Minimalism is more than diminishing the number of buttons and keeping
the workflow simple. It can also be expressed graphically with spacing, lines
and text.

In general, spacing and lines introduce grouping of elements.[17] In the main
window only one line is used to separate the menu bar from the rest as is usual
with many applications. Grouping for this system is therefore mainly done
by spacing, because it better fits the minimalistic approach compared to lines.
Lines can make the GUI look crowded. Exception to this are the input fields.
In a classic environment –e.g. filling out an application form with pen– people
are already acquainted with writing on lines. This is reflected in figure 10, to
create a familiar surrounding. This further lessens the learning curve.

Figure 10: The use of lines to create familiarity to the real world

The application uses text for multiple purposes. It is used within buttons
with a descriptive text and as description to clarify certain input fields. The
first is viewable in figure 7a. The latter is viewable in figure 4a where labels are
used to let the user know what to do. To distinguish text from state defining
buttons a dot is introduced at the end (e.g. ‘create.’).

This dot is also nicely reflected in the logo of the application as seen below
in figure 11. Notice also the flat purple color, a rectangular shape comparable
to the state buttons and the use of the same font.

Figure 11: The application logo which reflects the GUI design

12

With minimalism as design philosophy a clear and distraction less environ-
ment should be created. With the use of spacing, lines, text and color this has
tried to be met.

4.4 Program usability

Mouse movement can be used for two things: creating diffusion curves and going
to a clickable space like a button to activate a certain state. This idea introduces
two problems. The first is added time and effort by moving the mouse to these
designated clickable places, especially on large screens. The second problem is
the ambiguity as to what a mouse movement can be used for: diffusion curves
creation and movement to certain areas on the screen.

Both problems can be eliminated by introducing shortkeys. These are re-
served keyboard keys or combinations of keyboard keys that activate a state or
let the user jump to another section on the screen.

A few examples are: ’d’ for activating the create state, ’f’ for activating the
color state and pressing the Tab-button in dialog will let you jump to another
input field.

There is a motivation behind the choice of the buttons. For instance, the ’d’
and ’f’ promote a familiar hand position for users that type with ten fingers.
The Tab-button to jump to other input fields is a design choice used in many
applications like Visual Studio. A one-on-one principle is also used with the keys
that correspond to the layers. For instance pressing the ’1’ key will activate the
first layer.

The program is made more usable by keyboard shortkeys to eliminate added
time and effort and to remove certain ambiguity.

13

5 Editor

The editor of the system is the actual part through which the user expresses
control over the resulting diffusion curves. For that reason, it needs to be
well-designed, providing the users with a pleasant experience. Creating this
experience is described in this section.

5.1 Tools

As described, this editor is used to construct diffusion curves. Diffusion curves
are described by Orzan et al. [36] as a Bézier spline defined by a set of control
points, each augmented with two color control points, and a blur value, as
further described in section 3.1. Because of time constraints, it was decided
to leave the blurring out of system. This meant that only three values were
necessary per point on the spline: The position of the point, and the two assigned
color values.

5.1.1 Input

To define a curve, some input by the user is required. It became clear that
several ways of curve construction were possible, which will be discussed below.

Freehand The first and most basic input to be considered was freehand draw-
ing. Freehand drawing means the user can simply click on any part of the screen,
drag the mouse around, and a curve will be constructed. This provides with ease
of control since it becomes relatively easy to trace parts of an image. However,
one of the main problems freehand drawing posed was that the lines that are
drawn are not resolution-independent. This meant that when the user would
zoom in, the drawn line would no longer resemble a smooth curve, but instead
become a jagged line.

Cubic Bézier Curve The cubic Bézier curve is frequently used for vec-
tor graphics in many commercial applications, such as Adobe Photoshop, and
GIMP.[4, 7] It provides control over the shape of the Bézier curve through two
control points at each endpoint, which determine the curvature across a line
section. Because this type of curve can be defined as a continuous mathemati-
cal formula, it is resolution independent. Besides this, only two endpoints and
control points are necessary to draw visually complex lines.

Catmull-Rom spline The Catmull-Rom spline is a vector based graphics
structure as well, but unlike the Bézier curve, it doesn’t require the input of
control points, as these are deduced from the input points. One problem it has
is that it requires at least four input points to construct the spline for the line
segment between the center two.

14

Result It was decided early on that the user should get as much freedom
as possible with the editor, without making usage cumbersome. Though the
freehand drawing does provide that freedom, the lack of resolution-independence
curves was undesired. Cubic Bézier curves have been used for many years now in
many professional applications which support vector graphics. For this reason,
it was decided that it should at least be included in the editor.

After experimenting with an editor with just the cubic Bézier curves, it was
found that constantly defining the control points was rather cumbersome. This
meant some addition or altercation needed to be made to the editor. This
addition was found in a combination of cubic Bézier curves and Catmull-Rom
splines. The points are still stored as cubic Bézier points, with two control
points each, but the calculation of these control points is done automatically,
based on the two neighbors of the cubic Bézier point.[5] This meant that only
three points were necessary to provide a smooth curve, which proved to be
adequate for the system. By allowing the user to decide whether the control
points should be calculated automatically, he or she is given full control over
the system, whilst also providing some feature that prevents the process from
becoming too cumbersome.

5.1.2 Storage

The input generated by the user needs to be stored in some fashion to be drawn
onto the screen. Storing this data takes memory space, which needed to be
taken into consideration. Therefore, the system only stores the bare minimum
of what is required to construct the smooth curves, and rebuilds this every time
the curves are altered.

To do so, a container is required to store all these points. As described in
the previous section, cubic Bézier points are used to construct the curves. This
means that every cubic Bézier points in a path needs the following information
stored with it to construct a diffusion curve:

Diffusion point: Position a vector with (x, y)
LeftControl a vector with (xl, yl)
RightControl a vector with (xr, yr)
LeftColor a vector with (rl, gl, bl, al)
RightColor a vector with (rr, gr, br, ar)

5.1.3 Coloring

Every diffusion curve takes as input two colors, for the left and right side of the
line. Defining this color is also part of the editor. The user can set the mode of
the system to “color selection”, so that when points are selected, a color picker
menu pops up, giving the user full control over what color each side should be.

To provide the user with some extra assistance, the color for the next added
point is automatically copied from the previous point in the path. This is

15

because it can safely be assumed that in a single line, very little color changes
occurs. Even when the user does decide to change the color, it would need to be
done in either case, so it can only be an improvement from the original situation
with no copying.

5.2 Context based

The entire editor is built around a context-sensitive setup. This means that the
user has one tool at his or her disposal, which changes behavior depending on
the context. This context can be manipulated through various means.

The main manipulation is through state modification by using the keyboard.
The editor keeps track of its current state, and depending on the key currently
pressed on the keyboard, that state gets changed. This means that, depending
on the current state, clicking a point on the screen can either mean that the
system will drag any underlying point or its control points, it will add a new
point to the currently active path, or it will construct a new path with this
newly created point.

Currently, the coloring system is considered a separate state, because the
process of coloring the curves is usually one that happens separately from placing
the curves. Switching between coloring and placing curves is handled like a state
machine as well, meaning that both cannot be done at the same time without
a change of internal state.

16

6 Interpolation

One of the features that separates the DiffusionCurves system from others
should be its ability to operate on a sequence of images, and provide an easy
way to apply the diffusion curves. Having the user manually move around the
curves from one frame to the next would be cumbersome and unnecessary. For
this reason, some form of interpolation is needed.

In this next chapter, the different types of interpolation will be analyzed and
compared, the final algorithm will be described in detail as well as the reason
it was chosen, and finally how this algorithm was implemented in the existing
parts of the system to provide the user with a friendly experience when working
on large sequences.

6.1 Analysis of different techniques

For interpolation, it is necessary to do some type of motion tracking or motion
estimation on the frames in order to analyze the images’ movements for several
key points, and to transform these points based on this information. However,
in many situations it proves quite difficult to correctly track motion; rapid
movement, occlusion, image noise, a cluttered background, and all sorts of other
difficulties turn motion tracking into a non-trivial problem. To address these
problems, a multitude of approaches have been formulated, each with its own
strengths and weaknesses depending on the type of sequence it is applied to. In
this next section, several possible motion tracking approaches and algorithms
will be examined.

6.1.1 Contour tracking

Contour tracking algorithms track motion through a sequence of images by
finding the contours in the image. Many contour tracking algorithms use some
adaptation of a Kalman filter [20], which is used to filter out noise and provide
an estimated guess of the movement in the image. Several improvements have
been made on this approach, one of which is the Contracting Curve Density
algorithm.[37] The algorithm takes a sequences of images and a parametric
curve as an input, and tries to find the approximation that best matches the
image data through curve-fitting.

6.1.2 Blob tracking

Blob tracking focuses on finding regions known as blobs in image data that
differ from the surrounding regions through information such as color and in-
tensity. These regions can then be used to track certain features, by finding
similar regions in following images. One such implementation is Block-based
motion estimation, where spatial coherence of small parts of the image are used
to determine the motion.[30] These techniques are commonly applied in video
encoding to reduce file size by storing motion information, instead of the entire
image.

17

6.1.3 Optical Flow

The concept for optical flow is to construct a vector field with the same dimen-
sions as the images that represents estimated motion in the image. Introduced
by Horn and Schunck in 1981, many adaptations have been created which use
some form of this approach.[28],[12] Though many algorithms take a differential
approach to the problem, several algorithms have been constructed which use
a phase based approach.[24] The algorithm by Horn and Schunk constructs the
velocity field by minimizing a differential equation whilst taking into account a
smoothness factor, to allow for some image noise. In a discretized image, this
comes down to iterative equations for the velocity (u, v), by solving the equa-
tion fxu+fyv+ft = 0. This provides for a global solver of optical flow between
two images.

Lucas-Kanade Over the years, several improvements have been made to the
concept of Optical Flow, one of the earliest and most successful methods being
the Lucas-Kanade algorithm.[31] Unlike the Horn-Schunck algorithm, which is a
global solver, the Lucas-Kanade algorithm is a local solver. It assumes that the
optical flow in a small local region is nearly constant, and tries a least squares
approach on the local neighborhood to find an approximation of the optical
flow. Usually some weighted window is applied to favor the pixels closest to
the current pixel, further strengthening the concept of local consistency for the
optical flow.

Pyramidal Lucas-Kanade One very successful adaptation of the Lucas-
Kanade algorithm is the pyramidal Lucas-Kanade algorithm.[16] This algorithm
iterates the Lucas-Kanade algorithm over increasingly downsampled images. By
down sampling the images, it removes high-frequency noise thereby increasing
robustness of the algorithm, while preserving local accuracy at higher sampling
rates.

6.2 Algorithm selection

One of the main concerns for the interpolation algorithm selection for the appli-
cation was the time it would take to implement and integrate it in the existing
system. As described in the previous section, many feasible solutions to this
problem exist, with many different strengths and weaknesses based on the se-
quence it is applied on. This meant that creating a novel algorithm was out of
the question, especially since it is not the goal of this system to demonstrate
a novel technique, but merely to provide a good interpolation to improve user
experience.

The authors of this paper have considered programming an existing algo-
rithm, but it eventually was decided that this would be unattainable. Again,
many implementations already exist, and are available through third party li-
braries. By not building upon existing code, it would also be more error prone,
since there is a lack of experience with these kinds of algorithms in the team.

18

Using third party libraries means the code has been written and used by oth-
ers, giving some guarantee of stability and quality, something which is nearly
impossible to achieve by using own code.

Several libraries exist for image processing, but only a few provide inter-
polation capabilities. Two of the most interesting libraries for this subject are
OpenCV [10] and VTK [11], which are even being recommended as two of the
most interesting libraries available.[43] Seeing as how both are described as
being designed for Computer Vision as well as Computer Graphics and Visu-
alization, these were high on the list of considerations. Of course, many other
image processing libraries are available, however not all as complete as the two
aforementioned. Several others have been examined, but were not picked in the
end: CxImage, ImageMagick, and IM.[6, 8, 43] The main reason they were not
chosen is because they did not contain an interpolation module which satisfied
our system requirements.

Given these two libraries, OpenCV and VTK, which both have a wrapper for
C# -therefore meeting the system requirements- a comparison could be made
between the two for usage in the system. Unfortunately, little information is
available comparing the two libraries, both in usability as well as performance,
two of the main factors determining the final decision. Due to time constraints,
it was impossible to experiment with both and pick the best, since that would
mean integrating the interpolation twice, requiring too much time. In the end,
it was decided to use OpenCV, because of the large amount of documentation
and community support available.

OpenCV provides several interpolation algorithms, most interestingly the
Pyramidal Lucas-Kanade approach, which has been described in section 6.1.3.
Since this approach has a very good performance as well as providing a good
accuracy [44], it was decided that this algorithm would be used for interpolation
in the system.

6.3 Integration

For the integration into the DiffusionCurves system, a separate module was
designed for the interpolation to make the connection of the actual algorithm
and underlying logic easier. This could then be attached using an interface
to the actual system. This way an early version of the user interaction could
be constructed in order to do some use case testing, while the actual module
was still being constructed. Due to this modular implementations, as well as
ease of use from the side of the actual algorithm, integration proved easier than
expected.

The pyramidal Lucas-Kanade algorithm can be used with a sparse feature
set. This means the algorithm already does the actual interpolation, instead
of having to pull the data from the output flow field. However, this posed
a problem, because all the control points were stored in world space, while
the input was expected to be in image space. This meant that some form of
transformation on the control points needed to be done, as well as an inverse on
the result. This transformation was achieved through the RenderState, which

19

kept track of the current state of the rendering module, and could be used to
transform world space coordinates to image-space coordinates and back.

Error estimation Next was the problem of error estimation. Because the
module can run automatically – meaning it will interpolate until the interpola-
tion error becomes too high – some way to determine this error was necessary.
The algorithm already provided the system with some information, most im-
portantly whether it was able to track a control point at all, and if so, what
its estimated pixel error was. This error was determined by comparing the lo-
cal neighborhood of pixels of each control point and its interpolated version.
Though this data was very valuable, it could not be used directly for error es-
timation. For example, by simply summing the errors, one big outlier could
strongly affect the outcome of the set.

One estimator proved to be very useful in this case, namely the Mean
Squared Error.[49] The mean squared error estimator has been used for many
years in statistical analysis and can be used for comparing statistical models.[42]
By implementing this estimator, the user could be asked for the maximum mean
squared error he or she allowed during the interpolation, and then the algorithm
could interpolate until it hit that level.

Using these techniques, a robust interpolation module has been constructed
for the DiffusionCurves system, providing the user with a useful tool to construct
diffusion curves over many consecutive frames. Without it, the user would have
had to draw all lines by hand, making the entire system needlessly impractical.

20

7 System design

One of the objectives of the project was to create a stable and extensible system.
A system that users can rely on and third parties can easily extend from the
same code base. How the system is designed contributes greatly to this.

This chapter goes into detail how the system is blueprinted. First, the chosen
design pattern will be discussed. After that the structure will be detailed.
Lastly, the code base extensibility will be explained.

7.1 Chosen design pattern

In software engineering literature different definitions are given as to what soft-
ware design precisely is.[40, 18] Freeman has broadened this as follows: “.. the
activity following requirements specification and before programming.”[26] Ac-
cording to the Waterfall Model this would be the conceptual phase.[14] However,
due to the Agile approach of this project, which promotes iterative develop-
ment, this phase is spread out more over time.[13] Software requirements (and
therefore the software itself) can change quite often into different directions.
This could negate earlier efforts if too much time has been spent on designing.
Architecting systems in great detail (like in the Waterfall Model) is therefore
avoided. But how does one lay a good foundation to build upon when using an
Agile approach?

The answer to this is to use a Model-View-Controller principle (from now one
abbreviated as MVC) throughout each change. The MVC principle states that
there must be a clear separation between the View (GUI) and Model (the logic
that can be saved) which is bridged by a Controller with a user in between. The
Controller handles the communication between the View and the Model.[41] In
figure 12 MVC is represented graphically.

Figure 12: A graphical representation of the MVC pattern[21]

However, the structure of the system described in this document is not
entirely based on this principle. The use of the .NET framework in combi-
nation with Windows Presentation Foundation allows for an extension to the

21

MVC principle called Model-View-View-Model. With MVVM (abbreviation of
Model-View-View-Model) one layer is introduced which contains the Controller
and adds capabilities. This layer is called the View Model which is responsible
for exposing the data objects from the Model in such a way that those objects
itself are easily managed, converted and consumed.[25] In figure 13 a graphical
representation shows the MVVM principle.

Figure 13: A graphical representation of the MVVM pattern[32]

The MVVM model is an interesting concept for applications that rely heavily
on user input. To put it differently, MVVM is an event-based design principle
that can handle the fast pace of change in the model (due to heavy user input)
and updates the GUI accordingly. With the possibility of creating diffusion
curves, which fires a lot of events, the DiffusionCurves system would benefit of
the MVVM design pattern.

The DiffusionCurves system actually takes a middle route between MVC
and MVVM. Any change in the Model by user input will be notified. Then
the right objects will be exposed by the View Model and converted if necessary.
At the end the GUI gets updated accordingly. As to why the DiffusionCurves
system does not entirely make use of the MVVM principle lies with the View
Model. The View in the DiffusionCurves system adds the role of the View
Model to its own arsenal. This is done to keep complete control over what
should change in the GUI. Updating the Graphical User Interface would other-
wise be abstracted away from the View by data binding possibilities in Windows
Presentation Foundation on standard defined elements. So, with the strict sep-
aration of View and Model and the use of a View Model principle within the
View class, this system still fits the MVC pattern as well as the MVVM pattern,
making the DiffusionCurves system a compromise between MVC and MVVM.

The added control over what should change in the GUI might also be a point
of critique. Extra code that needs to be written, tested and maintained makes
for overhead on the project and system. But that was not a deterrent for using
this compromised approach of MVC and MVVM.

7.2 Structure of the system

In figures 12 and 13 in the previous part an abstraction of the MVC and MVVM
concepts have been given. It is interesting to compare those with how the

22

implementation of the DiffusionCurves system came about, seen in figure 14.
This figure only shows a fraction of the whole system.

Figure 14: A graphical representation of a part of the system

The figure above shows a graphical abstraction of how the system is designed.
As can be seen, there is a separation between the Model classes (FramesCon-
tainer and ProjectState) and the View + View Model class (MainWindow).
There is a direct reference from the MainWindow class to either Models for
communication. The communication consists of reading and writing to either
Model classes and a notification of change from FramesContainer and StatePro-
ject to the MainWindow.

For most other classes that get called, an event system is used to communi-
cate. For instance, the LoadProject class is static and gets called when the user
wants to open an existing project. Right before the call a function that is within
the scope of MainWindow gets injected into LoadProject. Anything that gets
generated can be send back to MainWindow by a call of the injected function
within the LoadProject class. This construction keeps the design separated.

The GLControlHost and DiffusionRenderer both have a direct reference
within MainWindow and they make use of the event system described earlier.
The direct references are to give them a place in the memory while the events
are used as a communication mechanism to update the GUI.

The MVVM principle can be seen in the notification change events that get
called once a Model object has been changed. This in turn gets updated in the

23

MainWindow which functions as View Model as well as View definer. The MVC
principles can be seen in the strict separation of Model defining classes and the
View.

In conclusion, the DiffusionCurves system makes use of a compromised
MVVM and MVC model. This has been achieved by a clear separation be-
tween Model classes and the View merged with a View Model, as well as an
event system to connect separate parts of the system.

7.3 Extensibility of the system

A design goal for this project was to make an extensible system. What is meant
by this is that third parties can easily extend the application with the given
code base. To achieve this, certain decisions have been made.

One of these decisions can be seen in the GUI (figure 6). The placing of
the areas doesn’t allow for much change, but within the areas much can be
extended. An example of this is with the state buttons, where more can be
defined and displayed. This also holds for the Menu bar as well as the Control
Area.

Another decision that has been made is within the code itself. Due to the
separation of Model classes, the View with View Model and dedicated subsys-
tems, any new features and subsystems can be added. This separation also
makes the code portable to other platforms, allowing for an easily extensible
system.

24

8 System testing

The only testing experience any of the team members had is what was taught in
the Software and Quality course given in the second year.[47] This was a great
introduction into testing and introduced concepts like unit testing, integration
testing and mocking.

During the brainstorm and research phase in the first two weeks of the
project, it was very quickly decided that testing would play an important role
throughout the whole project. This was in order to guarantee that the applica-
tion would function exactly as it was intended to, and as the users expected it
to. Even though delivering 100% bug free software would almost certainly be
an impossible task, the main goal was to get as close to this target as possible.

In this phase at the beginning of the project, even before the implementation
started, it was very important to get a good idea of what a good testing strategy
would be. It was soon decided that it would be a good thing to make sure that
there would be a fully functional test environment ready when development
started, in order to ensure that testing would be a profound and fully integrated
part of the process. So the first questions that came to mind when trying to
figure out what the approach was going to be were “What to test?” and “How
to test it?”

It turns out to be easier to answer the second question than the first one.
When nothing has been built yet, it is hard to figure out what to try to break.
In order to achieve this, a Test Plan was written in which all the research that
had been done was explained, and which choices were made and why. Interested
readers can find this document in Appendix D.

8.1 Testing strategy

Thanks to the research done for the test plan, it was soon decided that a combi-
nation of unit testing, integration testing and regression testing would be used.

Unit tests would ensure that every basic, fundamental parts of the devel-
oped software would function as expected and needed. These would mostly be
automated tests, which could be run over and over again without a hassle. This
way every time something was changed or added, it would be very easy to check
that nothing else was accidentally broken in the process.

After this, integration tests would test components built out of small units
and thus containing more functionality. Because the units these components
are made of had been checked using unit tests, integration tests would ensure
that interfaces between these units function correctly. This showed to be less
trivial than the unit tests, as not everything that needed to be tested in the
integration tests can easily be automated. For example, creating a new project
or saving a project is easier tested by hand than automatically, as it greatly
depends upon GUI manipulation. Besides this, it was deemed that the whole
process of checking that a project got properly saved was easier to check by
hand than automatically, as it involves multiple actions and variations.

25

Finally, regression testing pretty much came down to a combination of unit
testing and integration testing. Every time a team member was ready to submit
his newly written code to the version control, he first had to make sure his new
– or revised – code did not break any old tests, as well as passed any new tests.
This made sure that there was a correctly functioning product online at all
times.

8.2 NUnit framework

The next step was to actually set up the testing environment before the start
of development, in order to start testing as soon as the first code was written.
As it was decided that testing would be closely integrated with implementation
during this project, having a fully functional testing environment right from
start could only encourage everyone to make use of tests, and thus keeping the
software as robust and bug free as possible.

It was thus very important to find a testing framework that would best
fit these requirements. As the only experience any of the team members had
had this far involving testing revolved around Java oriented solutions, quite
some research had to be done. It soon came down to two options: the NUnit
framework or Microsofts own MSTest, which was built right into Visual Studio
2012, the IDE that was used during this project. Upon digging further into this
it quickly became clear that NUnit was the better candidate for a wide variety
of reasons; ranging from stability, to user experiences.[23, 34, 48]

8.3 Rhino Mocks

As some classes or methods in a project are dependent upon other classes – or
methods in other classes – to function, it is important to have a way to decouple
this when it comes to testing. Tests should only test the functionality of one
piece of code, and not depend upon other functionality that this specific piece of
code might depend upon itself. In order to achieve this, a mocking framework
was necessary.

An easy choice here would have been to go with the NUnit Mocking project,
however it is no longer being developed, and its author even discourages its use
in production work.[38, 39]

After some discussion with several external sources about the process mock-
ing and stubbing, Rhino Mocks seemed like a good candidate for the job at
hand. And as expected, the few times mocking or stubbing dependencies was
needed; this framework was very helpful and did the job correctly, effectively
lowering dependencies in the written tests.

8.4 Unit testing

When all the above was finally decided upon and development had begun, it
was time to start writing unit tests. From the start, functionality was grouped
into packages, which made it very easy to write appropriate tests for different

26

kinds of functionality. It was also decided soon that there would not be unit
tests for every piece of code, as not everything is easily tested -or needs to be
tested- by means of unit testing. It was deemed that views for example, as well
as several parts of the code that are graphics related and lean a lot on EmguCV,
and therefore OpenCV, are more easily tested by working with the application
and trying to find bugs this way, than by writing unit tests.

However all the logic that is fundamental to the correct functioning of the
application has been thoroughly unit tested. 100% code coverage through test-
ing for these parts of functionality seemed like a good goal, in order to find bugs
in early stages and not be struggling with unexplainable errors in a later stage.

Some parts of the software development heavily depended upon Test Driven
Development (TDD). For example, the implementation of the save and load
mechanism was completely realized using TDD. Let’s look at the Create method,
which gets called when a new project needs to be created. This method it-
self calls four other methods (in the order stated here), each having its own
functionality: Pathstring, CreateFolder, ZipFolderRenameToDCIP and Delete-
OriginalFolder. It is not hard to see that the input to every called method
depends heavily upon the output of the calling method, so it had to be made
sure that methods worked correctly before starting implementation of the next
called method. This is just one of the situations where the TDD methodology
was very welcome.

8.5 Integration testing

For the integration testing, a combination of unit tests and user tests has been
used. As stated earlier, not everything is easily tested by automation, and if it
was felt that a human would perform better at testing one specific functionality,
testing would be done over and over again by hand to make sure that everything
worked as expected.

Let’s take the save and load functionality again as an example. While some
separate units that are used to write projects to disk – and load them back
into memory – can easily be tested through automated unit tests, a human
is way better at determining if the project he just made was correctly saved
and reloaded. This includes the curves he drew, the images he imported, the
diffusion he applied, and the list goes on. So that’s what happened. For the
basic building blocks, automated unit tests were used, and for the bigger picture,
the save/load functionality as a whole, humans were used (the team members).

On the other hand however, there are also big chunks of logic that are easily
tested by automated unit tests. This time, let’s look at the create project
functionality for example. The way a project is created (outside of the call from
the View) is split up in several methods. First, these separate methods are all
unit tested to ensure correct functioning. After this it is very easy to check the
functionality as a whole. A call from the view is faked, and after that all that
has to be checked is that a project was correctly created in a predefined location.
Same goes for locations where there was no write permission, or locations that
could not exist due to invalid characters in the path or filename. The smart

27

usage and combination of these techniques made sure that efficient tests were
run through the whole development process, keeping the code as clean and bug
free as possible.

8.6 Regression testing

In order to check that newly added code – or perhaps changed code in a later
stage of development – didn’t break any functionality, it was agreed upon a
few things in the beginning of the project. First of all there would be two
branches in the version control, one master branch and one development branch.
Everything that was uploaded to version control and wasn’t a new release of
the application would be sent to the development branch. The master branch
would only contain a version of the application that was fully functional, though
be it with a minimum of functionality. If it is not there, it cannot be broken,
meaning that the uploading of small commits of code would always be done to
the development branch.

Besides this, every team member was responsible for checking and testing his
code before commit. Making sure that it would correctly build, and not break
any tests. As code was committed on regular basis, tests were run on regular
basis as well. It was then also necessary to check the manual tests and make
sure that nothing had changed in that area. As the manual testing took place
mostly in the last 2 weeks of implementation, because it had not been necessary
up to before that point, luckily this wasn’t too much of a hassle.

In the end, this testing strategy has made sure that a stable application
was present at all times during development. And even though once in a while
something would break, it never took too long to find out where things were
going wrong, and patching up was always relatively quickly done.

28

9 Requirements Evaluation

In this section, an analysis will be made of the delivered system with regard to
the functional requirements that were decided upon in the Requirements and
Analysis Document (RAD). As is common in an Agile development process,
requirements are likely to change over time in comparison to those described
in the RAD. This can be due to time constraints, client wishes or even budget
cuts. This project is no exception to this principle, so this section will elaborate
on these changes and the motivation behind them. The interested reader can
find the RAD in Appendix C for references.

One thing that immediately stands out when reading the RAD is that the
main focus of the application has completely changed. While it still serves as “a
platform for the Computer Graphics and Visualization Group to use for motion
interpolation research”, the ability “to use interpolation in order to augment a
24p movie sequence to a 48p sequence” has been removed in its entirety. This
is mostly due to a meeting early on in the development process. During this
meeting the client and the coordinator of the project made it clear that their
primary interest was a tool that created the possibility to construct diffusion
curves, interpolate these curves over several images and preferably export them.

The requirements of the application have been grouped in a so-called MoSCoW
model.[27] This model differentiates between must haves, should haves, could
haves, and would haves, must haves being the most important features, would
haves being the least important. In the remainder of this chapter, an overview
of the requirements will be given, explaining why it was chosen not implement
certain things if necessary, or why requirements were slightly changed.

Must haves

1. Easy to use GUI: Everything except the meaningful pictograms and
feedback about slow processes has been implemented. This is due to the
fact that the theme of the application relies on text instead of pictograms,
and that slow processes do not take up enough time to justify giving
feedback about them.

2. Import of single JPEG images: Done.

3. Import of multiple JPEG images: Done.

4. Drawing diffusion curves: Done.

5. Edit diffusion curves: Done.

6. Erase diffusion curves: Done.

7. Snap tool: As this relies heavily upon image processing, it was decided
that due to time constraints the primary focus would be on diffusion,
which is also heavily dependent on image processing.

29

8. Covering parts of an image for exclusion for automatic acquisi-
tion: As automatic acquisition has been removed from the requirements,
it follows logically that this feature was removed as well.

9. Automatic acquiring of curves: not implemented due to time con-
straints and primary focus on other features –such as diffusion.

10. Edit automated curves: Curves can be edited, however automatic
curves are no longer generated as mentioned earlier.

11. Interpolation between frames: Done.

12. Edited interpolated curves: Done.

13. Optimization of existing image sequence interpolation algorithms:
Due to the shift of focus to diffusion, this was not implemented.

14. Labels: Done, however it was chosen to use 3 labels (or layers) instead
of 9, as this showed to be a bit of overkill.

15. Zooming capabilities: Done, from 0.5x to 5x zoom.

16. Save/load functionality: Done.

17. Output frames to JPEG: Done.

Should haves

1. Drawing diffusion curves: Done.

2. Artistical stylization: Done, however this is not the main focus, but it
is possible to do this by drawing curves and coloring them.

3. Coloring of diffusion curves: Done, diffusion curves can be given any
color in the visible color spectrum.

Could haves

1. Import of movie formats: Not implemented due to complexity and not
within the focus of this tool.

2. Output of movie formats: Not implemented for the same reason as
importing movie formats.

3. Switching between interpolation algorithms: Not implemented, the
chosen interpolation algorithm functions correctly. More choices of inter-
polation techniques might become too confusing for the user.

30

Would haves

1. Definition of distribution curve of every interpolation: Not imple-
mented as the focus changed from interpolation to diffusion.

2. Parallel processing of curves: OpenGL takes care of this.

3. Parallel processing of interpolation of diffusion curves: Depends
upon implementation in the used libraries. The tool described here does
not support this in itself.

4. Multithreaded application structure: Done through WPF, .NET and
Windows 8. The tool described here does not support this in itself.

Taking into account the complete change of focus that occurred during de-
velopment, some of the requirements have been changed accordingly and some
have been removed completely. All in all the authors believe that the applica-
tion meets most of the goals that were set by the client and the coordinator of
this project.

31

10 Conclusion

During this project, the authors of this paper have created a unified framework
that facilitates the creation, editing and exporting of diffusion curves, in order
to augment two dimensional images.

The assignment that was given in the beginning was broad, so the team
had to do sufficient research in the field of diffusion curves and interpolation, in
order to gain a clear understanding of the possibilities in this area.

During one of the first meetings with the supervisor and the client, it became
clear that their intentions were to focus on a tool that would let users draw
diffusion curves on a sequence of images, interpolate the drawn curves over
multiple images and give users the possibility to export these curves.

After some intensive research, the algorithm for diffusion that was chosen
was decided to be the fast implementation by Jeschke et al. As designing an
own algorithm would be too intensive and probably not as accurate as existing
ones, it was decided to use one that already existed and had largely proved
itself. The speed and efficiency of the Jeschke et al. solution was found to best
fit the needs this application required.

Besides the diffusion, there was also the need for an interpolation algorithm.
This would allow the user to draw diffusion curves only once, after which the
application would infer these curves over the rest of the image sequence. Here
again, it was decided to make use of existing solutions, as these have proven
themselves to be adequate and tested well enough to give a result that can be
trusted. Through the use of OpenCV, a version of the Pyramidal Lucas-Kanade
was implemented which showed good results in use tests.

In order to make the user experience of the application as smooth as possible,
it was decided that curves should be defined using a combination of cubic Bézier
curves and Catmull-Rom splines. This enables full control over the system, while
making sure the application is easy to use and never gets too confusing. Besides
this, the context based implementation of the editor makes sure that the editor
does not get bloated with too many buttons, possibly confusing users. In order
to keep this confusion as minimal of possible, the application relies heavily on
the use of colors to indicate in what state the application is, clearly showing the
user what he is able to do at any given moment.

In order to keep the application easily extensible and keeping dependencies
low, the system design is based on a compromise between MVC en MVVM. This
ensures an easily extensible system with a clean structure which also proves a
good basis for testing. Running a continuous combination of unit tests, integra-
tion tests and regression testing from the start of development guarantees that
errors were found in early stages, making them easy to fix. This results in a
well tested system to which new features can easily be added in the future.

32

11 Recommendations

In this section, recommendations for possible improvements of the system will
be listed.

11.1 Improvements

Cyclic paths The current editor only allows for non-cyclic paths to be drawn.
Allowing the user to draw cyclic paths allows for more complex shapes that do
not interfere with themselves like what would happen with a non-cyclic path.
Since the current underlying data structure is a linked list, only the logic man-
aging the adding and removal of points to the path would need to be adjusted
for a cyclic path.

Layers Though the current system has some layer support, at the moment it
is only used for interpolation. Implementing a proper layer system that would
separate the diffusion process between layers could be used to improve the visual
quality of images. We believe the layered system, combined with transparent
colors for the diffusion could result in an effect similar to the occluding bound-
aries as described by Bezerra et al.

Diffusion Curves The diffusion curves as they currently stand are based on
the implementation of Jeschke et al. Several other implementations are available
that provide improved control over the current implementation. Though no
current approach is known to the authors at the time of writing, finding a
combination of the controlability of Bezerra et al. and the speed of Jeschke et
al. would greatly improve the current system as a tool for constructing diffusion
curves.

Interpolation The interpolation algorithm as it currently stands uses the
points of the path as sparse feature set for the interpolation. However, the
underlying features of these points might not always be the most useful to track.
Imagine for example a uniform field that gets translated, with a path point in its
center. The algorithm would produce little offset for the point, though in reality
a translation is taking place. Using a separate feature-detection algorithm would
produce much more interesting points to be tracked, which can then in turn be
used to determine the transformation of the path points -for example through
bi-linear interpolation of the closest four points. The authors expect that this
would produce fewer visual errors with the interpolation.

11.2 Unmet requirements

One feature that was originally in the requirements but didn’t make it into the
final product was the snapping tool. Since the system is mainly designed for
image sequences, and thus as an augmentation tool, the authors believe such a
functionality would provide the user with an extremely useful automation tool.

33

Besides this, the ability to automatically generate curves based on edge
detection could prove to be of great value. This way, large sequences of images
can automatically be augmented with diffusion curves, allowing the user to later
on edit eventual errors that occurred during this process. This would relieve
the user of doing a lot of work and could greatly enhance the workflow.

Another feature that is still missing from the application is the ability to
blur parts of the diffusion curve. Though technically not a requirement itself,
it is part of the definition of a diffusion curve. At the time, it was not added
due to time constraints and because the added value was too low compared to
the complexity of its implementation. However, since it is part of the diffusion
curve definition, it should definitely be included.

34

References

[1] Adobe illustrator. http://www.adobe.com/en/products/illustrator.

html, july 2013.

[2] Adobe photoshop. http://www.adobe.com/en/products/photoshop.

html, july 2013.

[3] Apple final cut pro x. https://www.apple.com/finalcutpro/, july 2013.

[4] Bezier pen tool — flash professional cs5. http://helpx.adobe.com/

flash/kb/bezier-pen-tool-flash-professional.html, july 2013.

[5] C# - xna catmullrom curves. http://stackoverflow.com/questions/

14915849/xna-catmullrom-curves, july 2013.

[6] Cximage. http://www.xdp.it/cximage.htm, july 2013.

[7] Gimp - bezier selections. http://www.gimp.org/tutorials/Bezier_

Selections/, july 2013.

[8] Imagemagick: Convert, edit, and compose images. http://www.

imagemagick.org/script/index.php, july 2013.

[9] Microsoft visual studio. https://www.microsoft.com/visualstudio/

eng, july 2013.

[10] Opencv — open source computer vision. http://opencv.org/, july 2013.

[11] Vtk - the visualization toolkit. http://www.vtk.org/, july 2013.

[12] John L Barron, David J Fleet, and Steven S Beauchemin. Performance of
optical flow techniques. International journal of computer vision, 12(1):43–
77, 1994.

[13] Kent Beck. Embracing change with extreme programming. Computer,
32(10):70–77, 1999.

[14] Herbert D Benington. Production of large computer programs. Annals of
the History of Computing, 5(4):350–361, 1983.

[15] Hedlena Bezerra, Elmar Eisemann, Doug DeCarlo, and Joëlle Thollot. Dif-
fusion constraints for vector graphics. In Proceedings of the 8th Interna-
tional Symposium on Non-Photorealistic Animation and Rendering, pages
35–42. ACM, 2010.

[16] Jean-Yves Bouguet. Pyramidal implementation of the affine lucas kanade
feature tracker description of the algorithm. Intel Corporation, 5, 2001.

35

http://www.adobe.com/en/products/illustrator.html
http://www.adobe.com/en/products/illustrator.html
http://www.adobe.com/en/products/photoshop.html
http://www.adobe.com/en/products/photoshop.html
https://www.apple.com/finalcutpro/
http://helpx.adobe.com/flash/kb/bezier-pen-tool-flash-professional.html
http://helpx.adobe.com/flash/kb/bezier-pen-tool-flash-professional.html
http://stackoverflow.com/questions/14915849/xna-catmullrom-curves
http://stackoverflow.com/questions/14915849/xna-catmullrom-curves
http://www.xdp.it/cximage.htm
http://www.gimp.org/tutorials/Bezier_Selections/
http://www.gimp.org/tutorials/Bezier_Selections/
http://www.imagemagick.org/script/index.php
http://www.imagemagick.org/script/index.php
https://www.microsoft.com/visualstudio/eng
https://www.microsoft.com/visualstudio/eng
http://opencv.org/
http://www.vtk.org/

[17] Dempsey Chang, Keith V Nesbitt, and Kevin Wilkins. The gestalt principle
of continuation applies to both the haptic and visual grouping of elements.
In EuroHaptics Conference, 2007 and Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems. World Haptics 2007. Sec-
ond Joint, pages 15–20. IEEE, 2007.

[18] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers,
Reed Little, Paulo Merson, Robert Nord, and Judith Stafford. Documenting
software architectures: views and beyond. Pearson Education, 2010.

[19] Carrie Cousins. Making it work: Flat design and color trends. http:

//designmodo.com/flat-design-colors/, july 2013.

[20] Klaus Dorfmüller-Ulhaas. Robust optical user motion tracking using a
kalman filter. In 10th ACM Symposium on Virtual Reality Software and
Technology. Citeseer, 2003.

[21] Wikipedia editors: Wdror-wsu ap and Regis Frey. Mvc-process.png, july
2013. [Online; accessed 13-July-2013].

[22] Prof. Dr.Elmar Eisemann. Test and motion information for 2d image se-
quences. http://blackboard.tudelft.nl/, 2013.

[23] Aaron Evans. Thoughts on nunit and mstest. http://fijiaaron.

wordpress.com/2013/02/05/thoughts-on-nunit-and-mstest/, july
2013.

[24] David J Fleet and Allan D Jepson. Computation of component image
velocity from local phase information. International Journal of Computer
Vision, 5(1):77–104, 1990.

[25] Martin Fowler. Presentation model. http://martinfowler.com/eaaDev/

PresentationModel.html, july 2013.

[26] Peter Freeman and David Hart. A science of design for software-intensive
systems. Communications of the ACM, 47(8):19–21, 2004.

[27] Duncan Haughey. Moscow method, july 2013.

[28] Berthold KP Horn and Brian G Schunck. Determining optical flow. Arti-
ficial intelligence, 17(1):185–203, 1981.

[29] Stefan Jeschke, David Cline, and Peter Wonka. A gpu laplacian solver
for diffusion curves and poisson image editing. In ACM Transactions on
Graphics (TOG), volume 28, page 116. ACM, 2009.

[30] Lurng-Kuo Liu and Ephraim Feig. A block-based gradient descent search
algorithm for block motion estimation in video coding. Circuits and Sys-
tems for Video Technology, IEEE Transactions on, 6(4):419–422, 1996.

36

http://designmodo.com/flat-design-colors/
http://designmodo.com/flat-design-colors/
http://blackboard.tudelft.nl/
http://fijiaaron.wordpress.com/2013/02/05/thoughts-on-nunit-and-mstest/
http://fijiaaron.wordpress.com/2013/02/05/thoughts-on-nunit-and-mstest/
http://martinfowler.com/eaaDev/PresentationModel.html
http://martinfowler.com/eaaDev/PresentationModel.html

[31] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration tech-
nique with an application to stereo vision. In IJCAI, volume 81, pages
674–679, 1981.

[32] Microsoft Developers Network (MSDN). Implementing the mvvm pat-
tern. http://msdn.microsoft.com/en-us/library/gg405484(v=pandp.
40).aspx, july 2013.

[33] Brad A Myers. Why are human-computer interfaces difficult to design and
implement. Technical report, DTIC Document, 1993.

[34] Editor of Nexussharp.com. Showdown: Mstest vs
nunit. http://nexussharp.wordpress.com/2012/04/16/

showdown-mstest-vs-nunit/, july 2013.

[35] Reinhard Oppermann. User-interface design. In Handbook on information
technologies for education and training, pages 233–248. Springer, 2002.

[36] Alexandrina Orzan, Adrien Bousseau, Holger Winnemöller, Pascal Barla,
Joëlle Thollot, and David Salesin. Diffusion curves: a vector representation
for smooth-shaded images. In ACM Transactions on Graphics (TOG),
volume 27, page 92. ACM, 2008.

[37] Giorgio Panin, Alexander Ladikos, and Alois Knoll. An efficient and ro-
bust real-time contour tracking system. In Computer Vision Systems, 2006
ICVS’06. IEEE International Conference on, pages 44–44. IEEE, 2006.

[38] Charlie Poole. Nunit.mocks 2.6.2, july 2013.

[39] Charlie Poole. Posted 05-08-09. https://groups.google.com/forum/#!

msg/nunit-discuss/n37XzCE2Sss/3DbllJDl9VUJ, july 2013.

[40] Paul Ralph and Yair Wand. A proposal for a formal definition of the design
concept. In Design requirements engineering: A ten-year perspective, pages
103–136. Springer, 2009.

[41] Trygve Reenskaug and James O Coplien. The dci architecture: A new vi-
sion of object-oriented programming. An article starting a new blog:(14pp)
http://www. artima. com/articles/dci vision. html, 2009.

[42] Louis L Scharf. Statistical signal processing, volume 98. Addison-Wesley
Reading, 1991.

[43] Antonio Escao Scuri. Image representation, storage, capture and process-
ing. http://www.tecgraf.puc-rio.br/im/, july 2013.

[44] Tobias Senst, Brigitte Unger, Ivo Keller, and Thomas Sikora. Performance
evaluation of feature detection for local optical flow tracking. In ICPRAM
(2), pages 303–309, 2012.

37

http://msdn.microsoft.com/en-us/library/gg405484(v=pandp.40).aspx
http://msdn.microsoft.com/en-us/library/gg405484(v=pandp.40).aspx
http://nexussharp.wordpress.com/2012/04/16/showdown-mstest-vs-nunit/
http://nexussharp.wordpress.com/2012/04/16/showdown-mstest-vs-nunit/
https://groups.google.com/forum/#!msg/nunit-discuss/n37XzCE2Sss/3DbllJDl9VUJ
https://groups.google.com/forum/#!msg/nunit-discuss/n37XzCE2Sss/3DbllJDl9VUJ
http://www.tecgraf.puc-rio.br/im/

[45] Scott Stevenson. Implementing the mvvm pattern. http://theocacao.

com/document.page/513, july 2013.

[46] Debbie Stone, Caroline Jarrett, Mark Woodroffe, and Shailey Minocha.
User interface design and evaluation. Morgan Kaufmann, 2005.

[47] Prof. dr. A. van Deursen. Softwarekwaliteit & testen. http://studiegids.
tudelft.nl/a101_displayCourse.do?course_id=26879, july 2013.

[48] Jerome Vincendon. Unit test, nunit or visual stu-
dio? http://stackoverflow.com/questions/1554018/

unit-test-nunit-or-visual-studio, july 2013.

[49] D Wallach and B Goffinet. Mean squared error of prediction as a crite-
rion for evaluating and comparing system models. Ecological Modelling,
44(3):299–306, 1989.

38

http://theocacao.com/document.page/513
http://theocacao.com/document.page/513
http://studiegids.tudelft.nl/a101_displayCourse.do?course_id=26879
http://studiegids.tudelft.nl/a101_displayCourse.do?course_id=26879
http://stackoverflow.com/questions/1554018/unit-test-nunit-or-visual-studio
http://stackoverflow.com/questions/1554018/unit-test-nunit-or-visual-studio

18/09/2012 BachelorprojectTI-EWI@tudelft.nl TU Delft

A few diffusion curves can define a complete image. Information

is diffused out of the curves into the surrounding space

An anglyph stereo image produced from a

single 2D image. The second view was created

in a warping process derived from the associ-

ated depth information.

Although not perfect, the illusion of depth is

quite convincing because the human visual

system is relatively tolerant with respect to

depth artifacts.

Project Proposal
BSc Technische Informatica

offered by

CGV Group

Mekelweg 4

graphics.tudelft.nl
+31 (0)15 27 82528
e.eisemann@tudelft.nl

Project description

Depth and Motion Information for 2D Image Sequences

This project aims at the aug-

mentation of a 2D image se-

quence by depth and motion

vectors in a unified frame-

work. Hereby, it will be possi-

ble to interpolate between im-

ages to produce high-refresh

rate movies, to compute stereo

images, or to perform artistic

emphasis (adding motion blur,

depth-of-field, stylized stereo etc.).

Initially the idea is to rely on a diffusion process leaking out a few user-defined con-

straints (curves, points etc.), which will spread depth information over the image. As a

starting point, diffusion curves will be used, whose correspondences will allow us to

define motion. This additional information could be easy to compress and store and

users might be able to download this additional information to integrate it in their

standard video codecs to benefit from high-quality 3D and frame interpolation.

Technische Informatica

Bachelor Project

Faculty of Electrical Engineering, Mathematics
and Computer Science, Mekelweg 4, 2628 CD
Delft, The Netherlands

bachelorprojectTI-EWI@tudelft.nl
TI3800 (15 ECTS)

Contact and Coordination

Martha A. Larson
M.A.Larson@tudelft.nl
http://homepage.tudelft.nl/q22t4/

Hans-Gerhard Gross
H.G.Gross@tudelft.nl
http://swerl.tudelft.nl/bin/view/GerdGross/WebHome

18/09/2012 BachelorprojectTI-EWI@tudelft.nl TU Delft

There are many research questions involved in this project:

 Primitives - What are the right primitives to allow a quick augmentation of a

standard 2D movie?

 Interface - What is an intuitive and easy-to-use interface? How to help the user?

 Diffusion - How to (efficiently) compute the diffused information based on the

constraints?

 Sequences – How to transfer information from one frame to the next?

 Compression - How to compress information and approximate the user input to

reduce file size ?

 Applications – What applications are possible? (Artistic) Stereo, emphasis, seg-

mentation…

Depth-based artistic modifcations: Depth-of-field and sharpening, saturation and color hue.

Project team

Supervision

Elmar Eisemann, e.eisemann@tudelft.nl, +31 (0)15 27 82528

Student team

 Jerome Vincendon

 Maniek Santokhi

 Alex Kolpa

DELFT UNIVERSITY OF TECHNOLOGY

Plan of Action

DEPTH AND MOTION
INFORMATION FOR 2D IMAGE

SEQUENCES

Authors:
G.A. Kolpa
M.Y. Santokhi
J.R.J Vincendon

Abstract

This document will describe how the Bsc. project Depth and Motion
Information for 2D Image Sequences for the Computer Graphics and Vi-
sualization Group will be approached by the authors. It will contain any
agreements between the authors and the client and will state how all the
requirements will fit into the available time for this project.

May 17, 2013

1 Introduction

This project was set up by Elmar Eisemann to address the lack of a unified
framework to augment 2D image sequences with depth and motion vectors. This
information can then be used to apply further processing on the image sequence
like image enhancement, convert it to a stereographic sequence or performing
artistic emphasis.

1.1 Motivation

The motivation from this project came from discussions with the Computer
Graphics and Visualization Group about possible Bsc. projects. The project
was formulated as such because there is no unified framework for creating depth
and motion vectors on image sequences, which could prove to be a useful tool for
the Computer Graphics and Visualization Group and possible future research.

1.2 Approval and adjustments

This plan of action will be signed by the authors as well as the client. Any
changes that need to be made to this document will be discussed, and a new
version will be released.

1.3 Document structure

This document is split up into four sections. Firstly, the project assignment
is described. Secondly, a schedule is given where a weekly plan will be laid
out for the project. Thirdly, the project plan is used to structure and organise
this project. Finally, the quality assessment of our product and process will be
detailed.

2 Project assignment

2.1 Project situation

The standard frame rate in the film industry is 24 frames per second, for a variety
of reasons [1]. However, several studios have recently started experimenting
with recording films at 48 frames per second, most notably Peter Jackson The
Hobbit [2]. Though the increased frame rate has some drawbacks at this point
of time, many believe the standard has a future in film [3][4]. Many older films
have been recorded in 24 frames per second, and there has been an interest in
converting these to 48 frames per second. Several techniques exist to make this
transformation, such as Twixtor and Optical Flow, but there are cases where
they provide less than optimal quality [5].

1

2.2 Project goals

This project aims to improve existing techniques such as the ones described in
the previous section with the input from a user. This user input is provided
through diffusion curves, which can then be used to improve the visual quality
of the interpolated frames.

2.3 Assignment description

The assignment description is specified in the document Depth and Motion
Information for 2D Image Sequences as created by Elmar Eisemann. The main
focus of this project will be on creating an application to apply interpolation
between multiple frames of an image sequence to create a frame rate that is
higher than that of the original content.

2.4 Final product

The final product will be a single, stand-alone application, where the user can
overlay curves on an image sequence. These curves can be manipulated in the
image itself as well as transformed over time. This information can then be
used to interpolate the image as defined by the curves to create an artificially
increased frame rate. The output could either be an edited sequence with the
new information directly applied to it, or a special encoding of the sequence,
perhaps added as part of a special container for the sequence.

2.5 Demands and restrictions

The main demand for the application is to provide an intuitive interface for
the user to create augmented image sequences at a high speed. This means
the process should run real-time or at least at an interactive rate, to make
it possible for the user to quickly provide feedback to the process. This also
means that any feedback provided by the user can be made relatively fast,
to keep the workflow going. Because part of the project is a code evaluation
by the Software Improvement Group, there is a large focus on quality of code
and testing. This means both unit tests as well as user tests should be done
regularly, to guarantee a product of high quality. The concept of this project is
to incorporate diffusion curves into an existing technique, so no completely new
techniques will be created.

2.6 Conditions

Because the product uses a technique that is relatively new [6], the authors
will need to get a deep understanding of the underlying techniques as specified
in the assignment description, as well as a clear understanding of the existing
techniques used for interpolation.

2

3 Approach and schedule

To come to a proper conclusion of the project, several steps need to be taken,
which have partially been described by E. Eisemann in the proposal. Based on
these steps, a division has been made to allow for a partial parallel approach of
the problem. This has been planned as followed:

Alex : Primitives, Diffusion, Compression
Jerome : Techniques
Maniek : Interface, Sequences, Storage

Possible further subdividing of these problems might prove to be necessary
in a later stage. This document should be updated accordingly. For the imple-
mentation planning of the final product an agile approach will be maintained.
This allows there to be a working prototype at all times, as well as giving ease
of testing. The approach will start off with the construction of an emergent
architecture design. Based on this design several spike solutions will be made
by the project member to test possible implementations of the different compo-
nents. These spike solutions are then combined into a single application which
will be the prototype of the final product. After the creation of the prototype,
it will be iterated upon through several sprints

4 Project plan

This section will detail the plans that will lead to the successful conclusion of
this project, as well as any agreements that need to be made.

4.1 Organisation

The responsibilities of each group member have been partially described in sec-
tion 3. At this stage of the project, each group member is responsible for the
implementation of his own research field. He is also the main focal point, mean-
ing that he is the one to address issues to concerning certain responsibilities.
An extension to the list described in section 3 is provided below for each group
member. This way, a team of experts is created, each with knowledge about a
specific section. This should provide for a fast implementation, a clear group
structure as well as an in-depth project report. The responsibilities as defined
at this point are distributed based on the different research questions as well as
the SCRUM roles:

Alex : Primitives, Diffusion, Compression, Product owner
Jerome : Applications, Quality Engineer
Maniek : Interface, Sequences, Storage, Scrum master

At the beginning of each week a specific task distribution will be created,
based on the other tasks and responsibilities each project member has.

3

4.2 Participants

Each member of the project is expected to be present according to verbal agree-
ments made by the project group. Due to the lack of a fixed workplace, work-
sessions will be planned based on the availability of project rooms in the TU
Delft library. The project members will get together as often as possible to
provide a productive environment, as well as allowing for quick feedback. Each
project member is expected to have extensive knowledge in the field he has been
assigned to, as well as a proper understanding of the fields of the other project
members. This way, every member has knowledge of the entire project and can
supply feedback where needed.

4.3 Administrative procedures

A daily meeting will be held where each member will be asked what he did,
what he is going to do and what problems did he face. This will take 15 minutes
maximum. A biweekly meeting will be held to make sure the project is up to
date, as well as plan out the coming iteration. This plan will detail the tasks
at hand and the person responsible for these tasks. Every two weeks a progress
report will be filed and sent to the client. This provides them with an update
of the project, and the project members with a better overview of the progress
so far.

4.4 Financing

For this project, financing is not deemed necessary to result in a finished prod-
uct.

4.5 Reporting

As described in section 4.3, both minutes as well as progress reports are made
available to the client. Frequent meetings with the client will be held as well to
update them on the progress and get feedback about the current situation of
the project.

4.6 Resources

The resources available to the project members at this point in time consist of
non-fixed room which is reserved weekly at the TU Delft Library. Every group
member is expected to bring his own laptop to work on the project, and that
this laptop is adequately powerful enough to develop the product.

4

5 Quality assurance

For this project, several measures to assure the quality of both the product as
well as the project have been taken. Firstly, there will be the frequent meetings
with the client to assure the product is functioning as desired and that the
project is not falling behind. Secondly, biweekly progress reports are sent to
the client to give a progress update of the project. Thirdly, the product will be
submitted for code evaluation to the Software Improvement Group to guarantee
a good code base. Lastly, the product will be thoroughly user tested as well as
unit tested, to provide a proper experience for the user and to make sure the
product is stable.

5

References

[1] Ilya Shlyakhter, Max Rozenoer, Julie Dorsey, and Seth Teller. A tutorial on
magic numbers for high definition electronic production. In 132nd SMPTE
Technical Conference, Preprint No. 132-119, page 1. SMPTE, 1996.

[2] Warner Bros. The hobbit: Unexpected journey, 2013.

[3] Wesley Fenlon. 48 fps and beyond: How high frame rate films affect percep-
tion, 2013.

[4] Brendan Bettinger. 2013, 2013.

[5] Mitch Payne. Twixtor vs optical flow fcpx, 2012.

[6] Alexandrina Orzan, Adrien Bousseau, Holger Winnemoller, Pascal Barla,
Joelle Thollot, and David Salesin. Diffusion curves: A vector representa-
tion for smooth-shaded images. In Proceedings of ACM SIGGRAPH 2008,
volume Volume 27 Issue 3. SIGGRAPH, 2008.

6

A Planning

The following weekly schedule shows a broad planning.

Table 1: Weekly planning

Project week Date Tasks Notes
1 22-04 Picking platform

Setting up platform
Reading on subject
Working on Plan of Action

2 29-04 Working on Requirements Analy-
sis Document

Queensday

Reading on subject
3 06-05 Turn in Requirements Analysis

Document
Hemelvaartsdag

Turn in Plan of Action
Working on Preliminary Report
Setting up testing system
Setting up Sprints

3 13-05 Turn in Preliminary Report
Start of Sprint 1

5 20-05 Sprint 1
6 27-05 Start of Sprint 2
7 03-06 Sprint 2
8 10-06 Start of Sprint 3
9 17-06 Sprint 3
10 24-06 Start of Sprint 4 Exams

End of Sprint 4
11 01-07 Turn in finished product Exams

Turn in finished report

Note that this schedule is subject to change due to the agile approach of the
project. Also note the broadly defined ’Sprints’. For each Sprint a document is
created which details what needs to be done, what went right the previous time
and what can be done better.

7

DELFT UNIVERSITY OF TECHNOLOGY

Requirements Analysis

DEPTH AND MOTION
INFORMATION FOR 2D IMAGE

SEQUENCES

Authors:
G.A. Kolpa
M.Y. Santokhi
J.R.J. Vincendon

Abstract

This document describes the system requirements for the Bsc. project
Depth and Motion Information for 2D Image Sequences for the Computer
Graphics and Visualization Group. It covers the proposed system through
functional and non-functional requirements. The first details verifiable
functions on an importance scale. The latter encompasses requirements
regarding quality, platform and process. Also the system model will be
discussed which describes the system components and architecture as well
as the graphical user interface, use cases and testing of the system.

May 9, 2013

Contents

1 Introduction 2
1.1 Purpose of the system . 2
1.2 Scope of the system . 2
1.3 Project objectives . 2
1.4 Document structure . 3

2 Current system 3

3 Proposed system 3
3.1 Functional requirements . 4

3.1.1 Stakeholders . 4
3.1.2 Target audience . 4
3.1.3 System requirements . 5

3.2 Non-functional requirements . 7
3.2.1 Quality requirements . 7
3.2.2 Platform requirements . 8
3.2.3 Process requirements . 9

3.3 Verifying the requirements . 9
3.4 System model . 10

3.4.1 Component design . 10
3.4.2 System architecture . 11
3.4.3 Use cases . 12
3.4.4 Graphical User Interface 13
3.4.5 Testing the system . 15

1

1 Introduction

This document provides insight in the requirements of the product to be made.
This product is a piece of software that acts as a complete system to interpolate
images via diffusion curves. It contains all the functional and non-functional re-
quirements of the product as well as the system model and serves as a contract
between the project members and the client.

This chapter describes the purpose of the system, the scope of the system and
the project objectives to give an overview of what needs to be done product and
project wise.

1.1 Purpose of the system

The purpose of this system is mainly to create a platform for the Computer
Graphics and Visualization Group to use for motion interpolation research, as
well as to provide an answer to the following questions: ”In what way can dif-
fusion curves be used to improve the visual quality of existing image sequence
interpolation algorithms?” and ”In what way can the interface be made as in-
tuitive as possible for the user with this new system?”

1.2 Scope of the system

The main focus of the application is to use interpolation in order to augment a
24p movie sequence to a 48p sequence, while we want keep the possibility open
of using other frame speeds as well.

This will be done by either letting the user draw diffusion curves on sin-
gle frames after which the application will interpolate a new frame between
2 existing (key)frames, or by letting the system automatically draw diffusion
curves over frames, as discussed by Orzan et al [1]. A combination of these 2
approaches is a possibility as well, e.g. a user could be able to edit the auto-
matically generated diffusion curves should the application have inferred wrong
edges.

The other focus is on building an intuitive interface for the user. Since this
system will be used by the Computer Graphics and Visualization Group as a
tool for future use, providing them with an interface that is easy to use is an
important part of this system. How this will be achieved, will be explained in
the function requirements.

If there is enough time, the application could be extended to support artistic
stylisation of movie sequences such as basic color manipulations (hue/saturation)
and rotoscoping.

1.3 Project objectives

The objectives for this project can be ordered into three distinct goals: personal,
team-wise and system-wise.

2

Personal objectives include more experience in designing and implementing
a software system that pushes the boundary in its domain. The team objectives
are making sure that the dynamic and cooperation in the group for such an
undertaking are good. The system objectives are to create a system that not
only is reliable and intuitively to use but also pushes the boundary with it’s
newness.

The overall objective is to create a final product that is better and easier to
use than existing systems. This coincides with our previously stated research
question. This requires a thorough analysis of existing systems, as well as a
proper analysis of the requirements and the implementation to give the user a
high quality product. How we want to achieve this is detailed in this document.

1.4 Document structure

This document will focus on the proposed system. Firstly, the currently avail-
able systems will be detailed, which will be used for reference in our system.
After that, the proposed system will be described.

The proposed system consists of several parts. The first part will be the
functional requirements, which will also detail the stakeholders for this system.
After that, the non-functional requirements will be elaborated. Thirdly, the way
these requirements will be verified will be determined. Finally, several system
models will be constructed to describe the proposed system.

2 Current system

Though no current unified framework for the interpolation of image sequences
with diffusion curves exists at this point, several techniques which interpolate
image sequences do already.

Of those, most focus on the automatic interpolation in television, such as
Philips Natural Motion, Sony Motion Flow and Samsung Auto Motion Plus
[?] due to the upped framerate in modern television models (120Hz). Other
techniques that are widely used as well are Optical Flow [?] and Twixtor [?].

Though these techniques are continuously improved, they still contain arti-
facts, meaning there is room for improvement. This is where our project steps
in and it will be discussed at length in the following chapter.

3 Proposed system

This chapter documents the requirements for the proposed system that is going
to be created for the BSc. project Depth and Motion Information for 2D Image
Sequences for the Computer Graphics and Visualization Group.

It will describe the functional aspects that need to be met for the software
to be marked as completed. These are verifiable claims that can be used as
a guide to focus while preserving the flexibility of the project. Also the non-
functional requirements will be taken into account, which detail what needs to

3

be met in terms of quality, but also cover the platform details and the process
requirements. Lastly the System Model will be described. It illustrates the
inner workings of the system in an abstract way as well as the interface users
will interact with.

3.1 Functional requirements

The functional requirements for the system are constructed based on the MoSCoW
Method.[2] The MoSCoW method helps describe what must be met, what should
be met, what could be met and what would be met. It gives focus and flexibility
which fits the agile approach.

The requirements provide the stakeholders (3.1.1) a clear overview of what
needs to be met function-wise and it will meet the needs of the target audience
(3.1.2) and the stakeholders for the final product in this project.

3.1.1 Stakeholders

The stakeholders for this project can be listed as follows:

• the client;

• the advisor;

• the developers.

Each stakeholder has input to and agrees on the functional requirements as
stated in this document.

3.1.2 Target audience

The target audience for our product are those who will benefit the most by
using this system. We can categorize the audience into two sections: the artists
and the computer graphics researchers. It is important to keep their interest
central while thinking of the software requirements.

These two types of audiences differ quite a bit and so profiling these types
gives direction:

1. The artist prefers a certain amount of artistic freedom, good quality output,
new capabilities that traditionally wouldn’t be possible and productivity
gain due to time constraints (deadlines).

2. A computer graphics researcher is purely interested in the general capa-
bilities of the software, the added newness (new to the discipline) and the
reusability of the code or system to further build upon.

We consider these audience types as extremes on the scale of possible users
for our system. By upholding their interest we believe that we can capture
anything in between the scale as well, e.g. a film hobbyist or computer science
student.

4

3.1.3 System requirements

The requirements will follow the MoSCoW method. It categorizes the require-
ments in must haves (must be implemented for this release), should haves (must
be implemented for later releases), could haves (are nice to have) and would
haves (least critical) respectively. Each category down means that it is of lesser
importance to this software release.

The needs listed in the profiling of the target audience will be used as a guide-
line and will be added to every requirement if it fills the need. The functional
requirements are:

Must have

1. Easy to use and intuitive Graphical User Interface (productivity gain,
reusability):

• Only the necessary things visible or active at that moment on the
screen: Context-sensitive User Interface.

• Shortkeys for Tools (defined as: Must have 4, 5, 6, 8, 7, 9, 11 and
Should have 1).

• Shortkeys for general capabilities (Must have 14, 15).

• Meaningful pictograms on Tools and buttons.

• Mark active UI elements.

• Give feedback to the user on slower processes of the system.

2. Ability to import single images: JPEG Part 5 (general capabilities).

3. Ability to import JPEG Part 5 images in a folder at once (general capa-
bilities).

4. Ability to draw diffusion curves (in absolute pixels) on every image from
the sequence that gets converted to bezier curves (artistic freedom, quality
output, newness, reusability).

5. Ability to edit the diffusion curves acquired by 4 with a tool (artistic
freedom, quality output).

6. Ability to erase the diffusion curves acquired by 4 with a tool (artistic
freedom, quality output).

7. Snap Tool. Ability to draw diffusion curves (absolute pixels) and change
their position in real-time to the closest border (defined as edges of the im-
age): Active Contour Model (new capabilities, newness, artistic freedom).

8. Ability to cover parts of the image with a Tool for the user to exclude that
part of the image for automatic diffusion curve acquiring described in 9
(quality output).

5

9. Ability to automate the process of acquiring the diffusion curves of frames
in vector form (productivity gain, newness).

10. Ability to edit the automated diffusion curves from 9 with Tools from 5
and 6 (artistic freedom, quality output).

11. Interpolate diffusion curves on frames/images between the keyframes. A
keyframe is a chosen image/frame of the sequence that already holds dif-
fusion curves (quality output, new capabilities, newness, reusability).

12. Let the user edit the automatically generated diffusion curves caused by
the interpolation with Tools 5 and 6 (artistic freedom, quality output,
newness).

13. Using the newly defined, interpolated curves from 11 to optimise existing
image sequence interpolation algorithms (newness).

14. Ability to use up to 9 labels over each frame/image on the image sequences
to store information (e.g. diffusion curves) (artistic freedom).

15. Ability to zoom in on the canvas that displays the current active frame of
the sequence with a range from 40% to 500% (general capabilities).

16. Ability to save the working project to the disk for later use as a project
file (general capabilities, reusability).

17. Ability to output frames to a series of JPEG Part 5 images in a folder
(general capabilities).

Should have

1. Ability to draw bezier constrained diffusion curves on every image from the
sequence or still from the movie (artistic freedom, quality output, reusabil-
ity).

2. Options to artistically stylize the input sequence using diffusion curves:
rotoscoping (artistic freedom).

3. Ability to give up to 10 colors to diffusion curves (artistic freedom).

Could have

1. Ability to import movie formats:

(a) Raw Video;

(b) RGBA uncompressed 32 bit Alpha, Red, Green, Blue;

(c) MPEG-4 with H.264 codec,

as an image sequence up to 24 frames per second (general capabilities).

6

2. Ability to output the result to formats:

(a) Raw Video;

(b) RGBA uncompressed 32 bit Alpha, Red, Green, Blue;

(c) MPEG-4 format (.mp4, .m4v) with H.264 codec,

for up to 48 frames per second (general capabilities).

3. Switching between available image sequence interpolation algorithms (artis-
tic freedom).

Would have

1. Ability to define the distribution curve of every interpolation between
keyframes that contain diffusion curves per label (new capabilities, new-
ness).

2. Parallel processing of the diffusion curves (newness).

3. Parallel processing of the interpolation of diffusion curves between keyframes
(newness).

4. Multithreaded application structure (newness, productivity gain).

During the creation process of the software, requirements can be added,
removed, changed and moved up or down on the importance list. Any changes
will be documented with a motivation.

3.2 Non-functional requirements

This section focuses on requirements that are not directly related to function-
ality. These requirements are sectioned into quality requirements, platform
requirements, and process requirements and will be discussed below. ??

These non-functional requirements are very generally stated to preserve the
agile approach.

3.2.1 Quality requirements

Because the entirety of the system is based on the improvement of existing algo-
rithms, the quality requirements will be based upon the amount of improvement
over the original system. This includes the items described below

Response time Because of the use of heavy processing (interpolation, gen-
erating diffusion curves etc.) one cannot guarantee a system that takes less
than half a second to complete a task in order to be categorised as responsive.
Therefor no claims will be made by us, not in absolute terms nor relative to
existing systems.

Must have 1 states that there must be user feedback with heavy processing
task and in general too to compromise on this.

7

Throughput We cannot do any claims on the computation throughput per-
formance other than the system needs to work on the developing machines.

Resource usage The system shouldn’t need to use network bandwidth, since
the entire process can be managed locally.

No claims can be made on the memory usage of the system other than that
it needs to be usable on the development computers.

Reliability The reliability can only be guaranteed by regression testing and
endless tryouts of existing image sequences and comparing the results. This will
be discussed in the Testing Plan.

Availability Since this system purely runs locally, it should have no problem
with availability as long as the reliability is good.

Recovery from failure Even with all the testing, the system might crash
occasionally. When this happens the user can restart the application and open
the project the user was working on. Nothing gets saved automatically, the user
is responsible for this.

Maintainability and enhancement The system will be highly modular due
to it’s object oriented approach. Meaning that by the theory of OO, the system
will be highly maintainable and enhanceable. [?]

Reusability As specified in the previous paragraph, the entire system will be
highly modular. Therefor by the OO design, it will be highly reusable for third
parties. This satisfies also one item of the target audience.

3.2.2 Platform requirements

This section specifies all requirements and contraints related to the environment
and the technology used.

Computing platform The software system will be created on and created
for Windows 7 and 8.

Concerning application size, it should not be bigger than 700 Mb so that it
can be burned on a CD.

Technology to be used The focus of this system is to demonstrate a new use
of an existing technique. This means that many of the techniques used in this
system will be from third party programming libraries and systems, to prevent
unnecessary work from being done as well as building on stable and tested code.

The entire system will be built on the .NET framework in C#, though the
use of libraries and existing code from other languages for certain components
is permitted.

8

The use of Windows Presentation Foundation was chosen for the GUI and
graphics because of its flexibility with third party libraries, as well as a relatively
low learning curve.

3.2.3 Process requirements

This section provides constraints for the project plan, as well as the development
process and methods used.

Development process The entire project will be done with an agile ap-
proach. This means that there will be a bi-weekly sprint, resulting in a new
prototype.

For quality assurance, regression testing will be used, assuring that new
components don’t break older ones. More about these approaches can be found
in the Plan of Action as well as the Test Plan.

Cost and delivery date These constraints can be found in the Plan of Ac-
tion.

3.3 Verifying the requirements

This section covers the general approach to verify the functional and non-
functional requirements.

During the analysis phase it is important to have the stakeholders check the
functional and non-functional requirements, and make sure that they agree
with what is stated. In order to achieve this, a meeting with the client will
be held before the start of the implementation. During this meeting, the team
members will go through this Requirements Analysis document to make sure
all requirements are validated by the client.

After every sprint, we check which features have been implemented, if they
have been implemented correctly and if they have been tested correctly. It will
also be the moment to check if our previously stated requirements need fine
tuning in any way. Are we still on schedule with the must haves? Do we have
to remove should haves in order to focus on more important must haves? Are
we ahead on schedule and can we move could haves to should haves?

Also must every quantified claim in the non-functional requirement (neatly
grouped under subsections) be verified in the same manner as the functional
requirements are verified. Are they met already? Are they still relevant?

As this will be checked after every sprint, we will have a constant overview of
the direction in which we are going, making sure that requirements are verified
on a regular basis.

9

3.4 System model

This section describes the technical aspect of the system to be created. From
the most inner workings of the system, to the view the users will see. It builds
on the functional requirements from the previous chapter.

Firstly the component design will be discussed. From there on the system
architecture can be detailed. To make the translation to actual use of the system
by our target audience, use cases are constructed. From that point the a general
GUI can be inferred. Lastly the testing of the system will be discussed.

3.4.1 Component design

By examining the functional requirements one can deduce a natural linear flow
of what the user can do with the software. This flow is visualized in Figure
3. The figure details 6 distinct component. Each component is responsible for
their own set of requirements to fulfil, yet still dependent on each other in a
sequential, linear way by design of the system.

Figure 1: Software components

An exception to this flow is the Internal Storage, which will be detailed below
as well as all other components.

Input The input is the video the user wants to enhance. In order to work
with the video it needs to be converted into an image sequence.

The functional requirements states in the Must Haves that it needs to be
able to handle single JPEG Part 5 images (Must have 2), as well as the JPEG
Part 5 images series in a folder (Must have 3). In the Could haves it states that
there must be movie input (movies can be converted into image sequences),
although it is not urgent for this release of the system (Could have 1).

Tracer The Tracer component encompasses the tools the user can use to draw
curves as well as the transformation into diffusion curves.

The functional requirements state that the curves can be drawn freely, with
bezier curves, with snapping, they can be edited, erased, covered and automated
(Must have 4, 5, 6, 8, 7, 9 and Should have 1).

After acquiring artistic input, the lines can be be transformed into diffusion
curves or can aid in the automatic acquisition of the diffusion curves (Must have
8, 9).

10

This system component solely focuses on the artistic abilities to draw curves
and the transformation to diffusion curves, including the automated processes
around it.

Interpolation After acquiring the diffusion curves on the keyframes, an inter-
polation process will be done. This is controlled by the interpolation component.

Must have 11 defines this interpolation of the diffusion curves and Must have
13 defines the interpolation of the pixels within the curves. The editing of these
automatically generated curves belongs to the Tracer component.

Applications A field in which a lot can be gained is artistic stylization.
Thanks to the use of diffusion curves, its pretty easy to add tools to visually

augment user given inputs to our application. This, for example, could be of
great help in the world of animation, as we can easily define color points on
diffusion curves as stated in Could have 3.

Further development of this technique could give artists a great way – be-
sides the interpolation – to create visually attractive effects, e.g. rotoscoping,
changing hue/saturation or adding depth.

These added applications don’t have a high priority during this release of
the system.

Output The output is the result of how the user wants it to be. There are
several features described for this component in the functional requirements.

In the Must Haves it states that the output can be in images sequences (at
a higher frame rate) in a folder, 17). It would also be nice if the result can be
exported to various video formats as well (Could have 2).

Internal storage The Internal Storage component encompasses the tracer,
the interpolation and the application, because all these system components need
a way to get information from each other and store it.

The Internal Storage consist of two parts: the in-memory storage and the
disk storage. The in-memory storage describes all the elements of the project
that can be edited in an efficient way in the RAM. The disk storage describes
all the elements of the project that can be edited in an efficient way on the
disk. The latter one is described in (Must have 16), the former is implied when
developing the system.

Neither Input nor Output components are part of the internal project stor-
age. They are just the serialization to and from our internal storage respectively.

3.4.2 System architecture

The use of .NET in combination with C# and WPF laid out the system archi-
tecture for us. It makes use of the Model View Controller model. Also it already
has a lot of interfacing components, for instance to do Graphics, to do GUIs, to

11

do networking etc. We will follow the natural flow of .NET, every other path
we take will be documented and motivated.

3.4.3 Use cases

Several use cases will be constructed based on the natural flow of the component
design as seen in 3.4.1. These use cases aid in visualizing a GUI (3.4.4).

It is important to note the generality of these use cases and the incomplete-
ness compared to the functional requirements. We kept it general to preserve
our flexibility while at the same time give an overall idea how the software can
be used.

Use case 1:

Use case Import image sequence

Actor actions System responses
1. Open file browser. 2. Displays native file browser.
3. Select and open image sequence file. 4. Loads image sequence into applica-

tion.

Use case 2:

Use case Trace image to create curves

Actor actions System responses
1. Select pen tool (Must have 4). 2. Updates GUI to make button ‘ac-

tive’.
2. Use pen tool and draw the bounds
on the frame.

2. The GUI renders the lines as ab-
solute position over the frame in real-
time.

Use case 3:

Use case Add diffusion

Actor actions System responses
1. Click button to diffuse the drawn
lines.

2. Checks if there are any line on the
active frame. If there are lines, then it
diffusifies it.

Use case 4:

Use case Interpolate keyframes

Actor actions System responses
1. Select the first keyframe. 2. Checks if it’s a valid keyframe.
3. Select the second keyframe. 4. Checks if it is a valid keyframe.
5. Click a button to interpolate. 6. Interpolates the diffusion curves

and frames to the set number of extra
frames.

12

Use case 5:

Use case Application: Artistic

Stylization

Actor actions System responses
1. Select the type of stylization and
click to apply it.

2. Add the stylization to the image se-
quence.

Use case 6:

Use case Output image sequence

Actor actions System responses
1. Click the export button. 2. Opens native file browser.
3. Type in a name 4. Update GUI.
5. Select output format. 6. Update GUI.
7. Click the save button. 8. Serialize from internal storage struc-

ture to the specified format.

3.4.4 Graphical User Interface

From the requirements and the use cases (3.4.3) one can infer a Graphical User
Interface (GUI).

In order to keep our flexibility during the software creation process, two
extremes of interfaces are described in this section. These extremes take the
role of the two different types described in section 3.1.2 Target audience, that
is: computer graphics researcher and artist. This idea introduces a scale. A
scale of possible users we try to satisfy.

Below these types of GUIs will be detailed in a general manner. It provides
a designers impression on the functional requirements and system model.

Computer graphics researcher
As described in the Target audience (3.1.2) a computer graphics researcher cares
about: general capabilities, newness and reusability. In Figure 2 an impression
is created that kept these keywords in mind while trying to satisfy the functional
requirements.

The general capabilities are the abilities to save, to create a new project
and to export, as well as to view the active frame and to scroll through all the
frames via Next and Previous.

The newness is all in the Controls part. The artistic way to trace parts as
well as the automatic way to do that. The researcher can select the keyframes,
the curves and the amount of added frames.

The reusable part lies in the simplistic separated UI components that can
easily be changed and extended.

The overall look and feel is to support the researcher to just focus on the
algorithms and the control over them (Control part) as well as the result (Canvas
part).

13

Figure 2: Computer graphics researcher

All these features are described in the functional requirements.

Artist
Also described in the Target audience (3.1.2) is what the artist prefers: artis-
tic freedom, quality output, new capabilities and productivity gain. In Figure 3
an impression is created that kept these keywords in mind while also trying to
satisfy the functional requirements.

The artistic freedom lies within the Tools part. The artist can draw absolute
lines as well as bezier curves but can also choose to automatically outline bounds.

The quality output lies with the composition of capabilities this GUI has
(Tools, Interpolate, Frames and the Canvas) to create quality output.

New capabilities are created by the freedom to choose what frames are key
and what kind of interpolation can be used and how many new frames must
be added. The artist can also choose to keep or delete any intermediate frames
that are already part of the image sequence (the checkbox).

The productivity gain is within the automated possibilities of the software.
This includes the interpolation and the automatic selection of boundaries.

The overall look and feel is to support absolute artistic freedom and capa-
bilities and this GUI gives this extreme.

All these features are described in the functional requirements.

Our GUI for the system will lie between the two extremes mentioned above

14

Figure 3: Artist

(Computer graphics researcher and the artist).

3.4.5 Testing the system

As mentioned in the Test Plan, our testing will depend heavily upon unit test-
ing, integration testing and regression testing. This will make sure that our
application runs as it is supposed to without producing unexpected results.

First of all, every smallest component of the application will be tested
through unit testing to make sure that the most low level building blocks work
exactly as they should. Once this is accomplished, integration testing will take
place. This means that we group components together, resulting in the func-
tional requirements which we stated above. We can then test these groups of
previously tested components, making sure that the interfaces between them
work correctly and thus our functional requirements perform as they should.
During the development of the application, regression testing will take place
after every sprint. This ensures that newly added functionality didn’t corrupt
already existing functionality, and that bug fixes didn’t accidentally break some-
thing else.

A full description of the testing methods will be provided in the Test Plan.

15

References

[1] Alexandrina Orzan, Adrien Bousseau, Holger Winnemoller, Pascal Barla,
Joelle Thollot, and David Salesin. Diffusion curves: A vector representa-
tion for smooth-shaded images. In Proceedings of ACM SIGGRAPH 2008,
volume Volume 27 Issue 3. SIGGRAPH, 2008.

[2] Kevin Brennan et al. A guide to the Business Analysis Body of Knowledge
(BABOK guide), version 2.0. Iiba, 2009.

16

DELFT UNIVERSITY OF TECHNOLOGY

Test Plan

DEPTH AND MOTION
INFORMATION FOR 2D IMAGE

SEQUENCES

Authors:
G.A. Kolpa
M.Y. Santokhi
J.R.J Vincendon

Abstract

To make sure the application we develop matches the standards we en-
vision, we present our test plan. The purpose of this plan is to make sure
that we will always have a working, bug free prototype of our application
and that new releases can quickly be tested to see if newly developed fea-
tures dont cause problems, or interfere with already implemented features
that ran bug free in the previous iteration.

May 20, 2013

1 Introduction

We want to make sure that errors in the system surface early in development,
as common estimates show that a problem that goes undetected and unfixed
during early development can turn out to be 40 – 100 times more expensive to
fix when the application is actually released [1].

Besides this, we want our application to behave exactly as we have described
in our Research & Analysis Document (RAD), as we don’t want our application
to behave unpredictably. In order to achieve this, planning of the testing is
crucial, ensuring tests are not forgotten or duplicated unnecessarily.

In our Requirements Analysis Document, we have already made sure that the
requirements are written with the following guidelines in mind:

• All requirements should be unambiguous and interpretable only one way.

• All requirements should be testable in a way that assures the applications
functionality.

• All requirements should be binding because the customer demands them.

This test plan will show an overview of our testing process including: the
objectives of testing and tasks for the team (section 2), and our testing strategy
(section 3) consisting of Unit testing (section 3.1), Integration testing (section
3.2) and Regression testing (section 3.3).

The Quality Engineer, a team role specifically designed for our project, will
make sure that coverage of the code through testing is thorough, while tests are
not being repeated unnecessarily.

2 Objectives & tasks

2.1 Objectives

This document will serve as a guideline for testing during development of the
application. In order to ensure continuous integration during this process, one
of the team members is assigned the role of Quality Engineer (QE). He will be
responsible for the overall quality of the project and testing of the application.
His task is described in more detail in section 2.3.

Testing throughout development will consist of a combination of unit testing,
integration testing and regression testing.

2.2 Tasks

While writing code, every team member will be responsible for writing tests for
his code. The Quality Engineer will check these tests in order to make sure that
everything is covered and works as it should. If this is not the case, the Quality

1

Engineer will notify the responsible team member about this in order to resolve
issues together as soon as possible.

Bugs can be reported in TFS by any team member, and be assigned to the
appropriate team member. If the bug is specific to a piece of code developed
by one person, the bug fixing will be assigned to that person, else the Quality
Engineer will look into it and take appropriate measures. This can range from
fixing the bug himself to working together on it in order to repair it.

2.3 Quality Engineer

One of the key parts during development will be to always have a working
version of the application in the master branch. Development will be done in
the development branch that will be copied to the master branch after every
sprint, when it has been made sure through regression testing that no new
features have broken already implemented functionality.

The QE will be responsible for writing the Unit tests and Integration tests,
as well as for the regression testing. A part of the testing will be done through
user testing, by letting users go through special developed use cases. This is
especially necessary for testing of the GUI of the application.

In order to ensure that everything has properly been tested, code coverage
will be an important measure to find parts of the application that could be
tested more thoroughly.

3 Testing Strategy

To make sure that the application is fully functional at all times, we will be
making use of Evolutionary testing [1]. This means that every unit of the
application is tested until it is deemed functional, after which new features can
be added to the application. The two units can then be tested as an integrated
component, adding to the overall complexity as we proceed.

This way of work ensures that we will always have a functional application
that could be released at any time if requirements are added in priority order.
The modular approach ensures that we dont have to start with a huge test plan
right away, but can compose our final test plan from the units that are tested
piece by piece. This approach fits our agile way of development as well.

In order to test the GUI, use tests will be written. These will consist of
scenario’s that thoroughly test every part of the GUI. and will look a lot like
what a user would actually do when using our application.

3.1 Unit Testing

With unit testing we take the smallest testable piece of code, test it and make
sure it behaves exactly as we want it to [2]. Each unit of the application is
tested this way, after which they can be merged into modules and we can test
the interfaces between these modules.

2

As testing attention is given to each unit of the application, this will greatly
boost the code coverage and help discovering errors in even the more complex
parts of our system.

3.1.1 Drivers & stubs

In order to efficiently use unit tests, drivers and stubs will have to be written. A
driver simulates a calling unit while the stub simulates the called unit [3]. The
investment of developer time to write these cannot demote the usage of unit
testing to a lower level of priority, as this testing provides undeniable advantages,
as mentioned above.

In order to reduce the cost of writing drivers and stubs, we will reuse them
so that constant changes to our application can easily and frequently be tested
without writing large amounts of test code.

3.2 Integration Testing

Integration testing follows logically from unit testing. During this phase, com-
ponents consisting of two or more tested units are tested to make sure that the
interfaces between are working correctly. After this, these components can even
be grouped into larger parts of the program, while making sure the interfaces
between are doing what they are supposed to.

By using integration testing, we want to make sure that we can easily identify
problems that can occur when units are combined. By testing each unit, making
sure that it behaves exactly as we want it, we know that errors that occur when
we combine these are likely to come from the interfaces connecting them.

The strategy we will adopt for integration testing is the bottom-up approach
[4]. This means we test the lowest-level modules first through unit tests, followed
by a more integrated test of combined modules resulting in components with
actual functionality as described in the RAD.

3.3 Regression Testing

Every time a new iteration of our application will be released, we will test it
using regression testing. This means we will be running existing tests to check if
implemented changes might have broken anything that was working before [5].
New tests will also be added to make sure that the new functionality works as
required. An important thing we have to keep in mind while doing regression
testing is to spend as little time as possible doing it, without reducing the
probability of finding new failures in existing, already tested code.

In order to be as efficient as possible, we will be using a library of tests that
can be run every time we build a new version of our application. This library
will mostly consist of automated tests, test cases involving boundary conditions
and timing. Besides this, the library will be reviewed after each sprint, in order
to remove unnecessary or redundant tests.

3

Finally, here are some strategies to consider during regression testing:

• Fixed bugs should be tested fast, as the symptoms might have been han-
dled while the underlying cause is still present.

• Look out for side effects of fixes, as these fixes might introduce other bugs
in other parts of the application.

• A regression test should be written for each fixed.

• Remove similar tests, keeping the most effective.

• Trace the effects of changes on program memory.

References

[1] msdn.com. Testing overview. [Online; accessed 17-May-2013].

[2] Tom McFarlin. The beginners guide to unit testing: What is unit testing?
[Online; accessed 17-May-2013].

[3] Amit Badola. Drivers and stubs. [Online; accessed 17-May-2013].

[4] msdn.com. Integration testing. [Online; accessed 20-May-2013].

[5] webopedia.com. Regression testing. [Online; accessed 17-May-2013].

4

E SIG Feedback

E.1 First Feedback

[Aanbevelingen] De code van het systeem scoort bijna 4 sterren op ons onder-
houdbaarheidsmodel, wat betekent dat de code bovengemiddeld onderhoudbaar
is. De hoogste score is niet behaald door een lagere score voor Component
Independence.

De code bevat een duidelijke component-indeling, die in zowel de productie-
als testcode is doorgevoerd. Dit maakt het makkelijk om na een aanpassing
aan de productiecode de bijbehorende tests te vinden. Daarnaast geeft het
enig inzicht in de mate waarin de verschillende componenten getest worden.
Dat er berhaupt unit tests aanwezig zijn is bijzonder positief, hopelijk lukt het
jullie om de hoeveelheid testcode verder te laten stijgen op het moment dat er
functionaliteit wordt toegevoegd.

Voor Component Independence wordt er gekeken naar de hoeveelheid code
die alleen intern binnen een component wordt gebruikt, oftewel de hoeveelheid
code die niet aangeroepen wordt vanuit andere componenten. Hoe hoger het
percentage code welke vanuit andere componenten wordt aangeroepen, des te
groter de kans dat aanpassingen in een component propageren naar andere com-
ponenten, wat invloed kan hebben op toekomstige productiviteit. Deze meting
zegt dus iets over de grootte van de interface versus de grootte van de imple-
mentatie.

Bij jullie project is er met de component-indeling zelf niet zoveel mis, de lage
score voor Component Independence komt doordat te veel bestanden binnen een
component door andere componenten worden aangeroepen. Bij ”model” zou je
dat ook verwachten, maar het is niet direct logisch dat de helft van ”diffusion”
vanuit de views wordt gebruikt. Het diffusion-component lijkt ook voor de helft
uit een datastructuur te bestaan (Path.cs, BezierPoint.cs) en voor de andere
helft uit een OpenGL view. Het is aan te raden deze indeling nogmaals kritisch
te bekijken en waar mogelijk helderder te maken.

Maar over het algemeen scoort de code dus bovengemiddeld, hopelijk lukt
het om dit niveau te behouden tijdens de rest van de ontwikkelfase.

E.2 Second Feedback

[Hermeting] In de tweede upload zien we dat het codevolume is gegroeid terwijl
de score van onderhoudbaarheid ongeveer gelijk is gebleven.

Wat betreft de component-indeling valt het op dat jullie, zoals in de vorige
analyse werd voorgesteld, het model-gedeelte en het view-gedeelte van Diffu-
sion gesplitst hebben. Dit zorgt voor een lichte toename in de deelscore voor
Component Independence, maar de totaalscore blijft 4 sterren.

Het is goed om te zien dat het volume van de testcode net als het volume
van de productiecode is gestegen.

Uit deze observaties kunnen we concluderen dat de aanbevelingen van de
vorige evaluatie zijn meegenomen in het ontwikkeltraject.

	Preface
	Summary
	Introduction
	Problem definition
	Diffusion Curves
	Analysis of different techniques
	Choice of algorithm
	Implementation

	User interaction design
	Application layout
	Color coding
	Minimalism as design philosophy
	Program usability

	Editor
	Tools
	Input
	Storage
	Coloring

	Context based

	Interpolation
	Analysis of different techniques
	Contour tracking
	Blob tracking
	Optical Flow

	Algorithm selection
	Integration

	System design
	Chosen design pattern
	Structure of the system
	Extensibility of the system

	System testing
	Testing strategy
	NUnit framework
	Rhino Mocks
	Unit testing
	Integration testing
	Regression testing

	Requirements Evaluation
	Conclusion
	Recommendations
	Improvements
	Unmet requirements

	References
	Appendix Project Proposal
	Appendix Plan of Action
	Appendix Requirements Analysis Document
	Appendix Test Plan
	Appendix SIG Feedback
	First Feedback
	Second Feedback

