Learning Drivers’ Preferences in
Delivery Route Planning

an Inverse Optimization Approach

Master of Science Thesis

Delf
U De I ft Uﬁivtersity of
I Technology Delft Center for Systems and Control

Learning Drivers’ Preferences in
Delivery Route Planning

an Inverse Optimization Approach

MASTER OF SCIENCE THESIS

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Piet van Beek

November 2, 2022

Faculty of Mechanical, Maritime and Materials Engineering (3mE) - Delft University of
Technology

Delft
e t University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

Optimizing delivery routes is a well-researched topic, however, most of the classical approaches
do not incorporate preferences of drivers, as those approaches focus on minimizing the time
or distance of the routes. As a result, the actual driven route of an experienced driver often
deviates from the proposed route since the drivers have tacit knowledge about the real-life
conditions of the road network. Amazon proposed a challenge to learn a delivery route
planning strategy from historically driven routes and thus incorporate this tacit knowledge.
In this thesis, we will tackle the challenge using data-driven inverse optimization to learn the
zone sequencing patterns of drivers. The zone sequences of expert drivers are assumed to
be the solutions to a traveling salesman problem (TSP) in which the weights represent the
preference of a driver to use a certain edge. The values of the weights will be learned through
inverse optimization. Our final approach achieves a score that ranks 4th out of the 48 models
that qualified for the final round of the challenge.

Keywords: Amazon Last Mile Routing Challenge, Inverse Optimization, Traveling Salesman
Problem, Weights Optimization

Master of Science Thesis Piet van Beek

Piet van Beek Master of Science Thesis

Table of Contents

Acknowledgments v

1 Introduction 1
1-1 TSP State-of-the-Art Methods 2
1-2 Learning Drivers' Preferences 2
1-3 Notation L 3

2 Amazon Challenge 5
2-1 Amazon Data)
2-2 Evaluation Criterium 7
2-3 Technical Proceedings & Research Proposal 7

3 Preliminaries 9
3-1 Inverse Optimization 9
3-1-1 Mathematical Formulation 10

3-1-2 Loss Functions 11

3-1-3 Hypothesis Functions L Lo 12

3-2 Traveling Salesman Problemo 12
3-2-1 Mathematical Formulation00 12

3-2-2 Asymmetrical TSP to Symmetrical TSP 14

3-2-3 Open TSP 14

4 Methodology 17
4-1 Overview 17
4-2 Extract Expert Zone Sequence 18
4-3 Inverse Optimization to Find Zone Weights 19
4-3-1 Inverse Optimization Applied to TSP Formulation 19

4-3-2 Solution Method 21

4-4 Evaluation Phase 23

Master of Science Thesis Piet van Beek

Table of Contents

iv

5 Results 25
5-1 Implementation 25
5-2 Validation of Approach 26
5-3 Amazon Score 28
5-4 Comparison of Routes 29

6 Conclusions 31

A Exponentiated Gradient Descent & Generalized Suboptimality Loss 33
A-1 Generalized Suboptimality Loss oL 33
A-2 Exponentiated Gradient Descent L. 34
A-3 Preliminary Results 35
Bibliography 37

Piet van Beek

Master of Science Thesis

Acknowledgments

I would like to thank my supervisor Peyman Mohajerin Esfahani for his assistance during the
writing of this thesis, his enthusiasm about the subject and his critical feedback. Furthermore,
I would like to thank my daily supervisor Pedro Zattoni Scroccaro for his guidance, time and
enjoyable discussions. His enthusiasm and knowledge about the subject greatly improved my
interest and understanding of the topic.

Delft, University of Technology Piet van Beek
November 2, 2022

Master of Science Thesis Piet van Beek

vi

Acknowledgments

Piet van Beek

Master of Science Thesis

Chapter 1

Introduction

Last-mile delivery refers to the last stage of post and package delivery in which drivers bring
packages from depots to customers. A lot of research has been conducted into the optimization
of delivery routes. Most of the existing approaches focus on minimizing the time or distance
of a proposed route. In practice, however, the drivers’ actual driven routes appear to diverge
from the suggested routes. This is a result of the drivers’ many preferences, such as finding
good parking spaces and avoiding curvy or slow-moving streets. In traditional optimization
strategies, it is hard to account for those preferences. Hence, the tacit knowledge of the
experienced drivers, potentially resulting in more convenient routes in real-life operational
conditions, is not taken into consideration. Amazon proposed a challenge that encouraged
contestants to develop learning techniques that use the historical route data of experienced
drivers to determine safer and more efficient routes. This challenge with the provided data
set will be the focus of this thesis (https://routingchallenge.mit.edu/).

In most cases, last-mile delivery can be described by a vehicle routing problem (VRP). Dantzig
et al. [1] introduced VRP by proposing a routing method for a fleet of trucks delivering
gasoline from a depot to several service stations while attempting to minimize the total
number of miles covered by the fleet. Due to the rapid growth of the logistics industry, a
lot of research has been conducted in this field [2]. Efficient route planning could result in a
significant reduction of costs for companies like Amazon.

The goal of a VRP is to optimize the route of drivers from one or more depots to multi-
ple customers in different locations under certain constraints [2]. There are two important
specifications of a VRP. First of all, each customer should be visited only once by a vehicle.
Secondly, all vehicles start from a certain depot and return to the same depot after finishing
their task.

A special case of the VRP is the traveling salesman problem (TSP). In the case of a TSP,
a single driver leaves from and finishes at a single depot. Again, the driver has to visit all
customers once and once only. For the Amazon challenge, the problem can be classified as a
TSP since only one driver has to visit a predefined set of stops leaving from a certain depot
in which it has to finish its route as well. A typical example of a solution diagram to a TSP
is given in Figure 1-1.

Master of Science Thesis Piet van Beek

https://routingchallenge.mit.edu/

2 Introduction

O o
O o)
® o
0 o)
(a) Example problem. (b) Example solution.

Figure 1-1: Example of a TSP diagram.

1-1 TSP State-of-the-Art Methods

The TSP is one of the most studied problems in combinatorial optimization. Although the
problem is simple to state, the TSP is known to be an NP-hard problem. Throughout the
years, several approaches have been proposed to solve the TSP, both exact solutions and
heuristics. Laporte et al. [3] give a review of some of the most promising exact and heuristic
methods.

Exact methods to solve a TSP are computationally expensive as they (implicitly) have to check
all solutions to find the optimal solution [4]. Most exact approaches rely on the formulation
of an integer linear program (ILP). Other exact approaches include dynamic programming,
branch and bound algorithms and cutting plane methods [5]. On the other hand, heuristics
can identify a close-to-optimal solution more efficiently but cannot ensure optimality. These
techniques include genetic algorithms, tabu search, simulated annealing, greedy methods and
ant colony algorithms [6].

1-2 Learning Drivers’ Preferences

The state-of-the-art methods for solving a TSP mentioned in the previous section are able to
find (close-to-)optimal solutions for a basic TSP, in which the time or distance of a proposed
route is minimized. However, the actual driven routes of drivers often differ from the proposed
routes, since the proposed routes do not account for preferences of drivers such as wide streets,
good parking spots and support facilities along the route. Including the tacit knowledge of
the experienced drivers may improve the efficiency of the routes, because the theoretically
estimated costs of traveling may not represent the costs under real-life operational conditions
due to stochasticity and time dependency. The knowledge of experienced drivers could account
for those suboptimalities and result in safer and more efficient routes [7].

An alteration of the VRP capable of capturing those preferences is called rich VRP. This
alteration includes multi-objective optimization programs and the addition of multiple con-
straints which relate to several real-life factors, such as inventory, scheduling and preferences
of drivers or companies [8]. The TSP version of this alteration is called multi-objective TSP
(MOTSP) [9]. Both alterations, however, increase computation times and heavily depend on

Piet van Beek Master of Science Thesis

1-3 Notation 3

human input as companies have to construct the constraints and objective functions manu-
ally. The information from historical routing data, in which the drivers drove according to
their preferences, could provide a solution to this problem.

In literature, several methods aimed to learn from historical routing data in the planning of
routes. Some of those methods use a discrete choice model in which the trajectories of the
drivers are used to determine a transition probability matrix [10, 11]. Other methods use
inverse reinforcement learning to determine a policy that matches the historical data [12, 13].

In this thesis, we will apply the concept of inverse optimization to incorporate the preferences
of experienced drivers. In inverse optimization, a learner agent aims to imitate the behavior
of an expert agent. The expert agent is assumed to compute an action given a certain signal
by solving an optimization program with an unknown objective function. The goal of inverse
optimization is for the learner agent to approximate this unknown objective function, given
a sample set of signals and corresponding expert actions.

In literature, inverse optimization has been applied to transport problems. For example,
several methods update the weights of the edges in a map with the use of inverse optimization.
Burton et al. [14], Andrés et al. [15] and Barmann et al. [16] propose a method to find (a
perturbation in) the original cost matrix of a shortest path problem such that the historic
routes are the optimal solutions of the problem, whereas Chen et al. [17] aim to update the
weights of a cost matrix of a VRP to incorporate preferences of drivers. Chung et al. [18]
provide a general framework to find the minimum perturbation in a cost matrix, such that a
TSP tour is the optimal solution to a TSP-solving algorithm on a given graph.

From those papers, it becomes clear that inverse optimization can be used for learning route
planning strategies from historical routing data. Therefore, we will further investigate the use
of inverse optimization applied to the TSP. Most of the approaches mentioned before mainly
rely on the notion of inverse feasibility or duality, in which they assume there is a perfect
model-data fit. In this thesis, we assume there is no perfect model-data fit. We will focus on
data-driven inverse optimization in which loss functions are used to calculate the mismatch
between the hypothesized objective function and the unknown expert objective function. The
use of the loss functions proposed in this paper, to the best of the author’s knowledge, has
not been applied to real-life data sets of transport problems before.

The thesis is structured as follows. In Chapter 2 the Amazon Challenge and the corresponding
data set will be introduced. Some preliminaries for the proposed method will be introduced
in Chapter 3, after which in Chapter 4 the proposed method will be explained. The results
will be presented in Chapter 5 and finally, the conclusions will be drawn in Chapter 6.

1-3 Notation

Throughout this thesis, we will use several notations. We denote a set of integers {1,...,m}
with [1,m]. An inner product is defined as (-,-). A transpose of a matrix A is denoted as
A’. In the case of elementwise multiplication between two vectors, we use the symbol ®
and in the case of elementwise exponentiation, we use exp{}. Samples of a data set will
be denoted with the "hat" (*) notation. A set of indexed values is compactly denoted by

{:L‘l}i\il ={x1,...,zN}.

Master of Science Thesis Piet van Beek

4 Introduction

Piet van Beek Master of Science Thesis

Chapter 2

Amazon Challenge

In this chapter, the Amazon Last Mile Routing Research Challenge (from here on shortened to
the Amazon Challenge) will be introduced. In 2021, Amazon.com, Inc. has published a data
set of real-life delivery requests and the corresponding actual driven routes. Participants of
the challenge were encouraged to develop learning techniques to build a model which mimics
the routing behavior of the drivers as closely as possible using the provided data. The data
set, the scoring criteria and the already proposed methods will be introduced in separate
sections.

Route information Stop information Package information

* Route ID: unique identifier for any group of stops that has = Stop ID: unique identifier of = Package ID: unique identifier
been / needs to be served on a joint route each stop on a route (unique of each package (unique
< 2 it within each route) across entire data)
= Station Code: unique identifier of the delivery station that a
route starts from = Latitude / Longitude: geo- = Status: categorical variable
coordinates of the stop' denoting the delivery status of
* Date: date of route performance the package
= Type: categorical variable
* Departure Time: time of day at which route departs denoting the type of stop = Time window start and end
* Executor Capacity: volumetric capacity of the delivery stationoncelven) Himes: cenvetycime w'"dknw
7 ; constraints on some packages
vehicle serving a route = Zone ID: unique identifier of e
« Stops to be served on the route the geographical planning = Planned service time: time
area that the stop falls into that serving this package is
= Observed sequence in which stops on the route were served expected to take
= Packages served at each stop
* Route Type: categorical variable denoting the quality of the * Dimensions: maximum width,
observed stop sequence (high, medium, low) ® Distances to any other stop length, height of the package

on the same route

Data from approximately 6,100 routes will be shared in a predefined set of JSON files

Figure 2-1: Information provided by Amazon data set [19].

2-1 Amazon Data

The data set provided by Amazon is described in detail by Merchan et al. [20]. In this section,
we will highlight its most important aspects. The data set contains information about 6112
route instances, in which, for every route instance, a set of stops (possibly with time windows)
has to be visited by a single driver. For each route, information is provided regarding the
stops, the packages and the vehicle. Furthermore, the actual driven route by the experienced

Master of Science Thesis Piet van Beek

6 Amazon Challenge

driver is given. Lastly, Amazon scored every route based on the quality of the observed route
as high, medium or low. Figure 2-1 gives an overview of which features are covered by the
data set. Each of these routes originates at a depot and visits a collection of drop-off stops
assigned to a single driver in advance. Thus, the expert human routes can be interpreted as
the solutions to some kind of TSP (possibly with time windows).

No. of historical routes | No. stops | No. zones | No. depots
High Medium Low

Los Angeles | 1,393 1,438 57| 414,440 12,410 6
Chicago 381 609 12| 162,410 6,939 4
Seattle 542 521 16| 155,781 4,677 3
Boston 306 610 13| 140,622 8,361 3
Austin 96 114 4| 31,214 3,198 1
Total 2,718 3292 102 17

Figure 2-2: Information about the historical observed routes from the Amazon data categorized
per city [7].

The stops are located in five cities in the United States: Los Angeles, Chicago, Seattle, Boston
and Austin. Every city contains at least one depot and consists of multiple zones. Figure 2-2
shows information for each city in the data set. The zones are predefined clusters of stops.
Every stop is given a zone ID which indicates to which zone a stop belongs. Every zone can
just be visited from one depot. An example of all routes leaving from one certain depot is
depicted in Figure 2-3, in which every color defines a certain route. Throughout the data set
stops are generally not visited by more than one route in the data set, which can also be seen
in Figure 2-3. This makes it difficult to learn any meaningful preferences of the drivers at
stop level and is thus one of the main difficulties of this challenge.

42.55 A

i
0
ol
<)

42.45 A

Latitude Coordinates
S
1N
S
o

42.35 A

-71.20 -71.15 -71.10 -71.05 —-71.00
Longitude Coordinates

Figure 2-3: All actual driven routes leaving from depot DBO1 in Boston, every color defines a
route.

Piet van Beek Master of Science Thesis

2-2 Evaluation Criterium 7

2-2 Evaluation Criterium

As previously mentioned, the goal of the challenge is to incorporate the preferences of expe-
rienced drivers into the routing of last-mile delivery vehicles. Thus, rather than coming up
with TSP strategies that minimize time or distance given a set of stops to be visited, the
goal of the challenge is to learn from historical data how to route like the expert drivers. To
this end, Amazon has also provided a data set of 3072 routes which all have a "high" quality,
to evaluate the proposed approaches. Furthermore, Amazon provided a scoring metric that
computes the similarity between the routes proposed by the approach of the participants and
the actual driven routes [21]. The similarity score between a historically driven route A and
an algorithm-produced route B is calculated by

 SD(A, B) - ERPyoim (A, B)
score = ERPQ(A, B) (2'1)

in which SD denotes the sequence (route) deviation of B with respect to A. The other
two terms are related to the measure Edit Distance with Real Penalty (ERP) [22]. ERPyorm
denotes the ERP applied to routes A and B with normalized travel times, while ERP, denotes
the number of edits described by the ERP algorithm on sequence B with respect to A. If ERP
prescribes 0 edits, the whole score becomes 0. The lower the score, the higher the similarity
between the routes. For the final score, the average over the 3072 evaluation route instances
is taken.

2-3 Technical Proceedings & Research Proposal

The already existing approaches proposed to tackle the Amazon challenge are summarized
in a technical proceedings document [7]. Most methods rely on learning a certain pattern
in the sequence of visiting zones. Some of them try to learn constraints based on the zone
sequence and enforce them on a TSP heuristic (e.g., [23] and Article XIV of the proceedings).
Other methods try to adjust the distance matrix based on the sequence of zones visited by
the expert drivers (e.g., Article II, Article X, and Article VI of the proceedings). Inverse
reinforcement learning was also used in order to approximate the routing policy of the expert
drivers (Article IV and Article XVII).

Research proposal: In this thesis we will propose an inverse optimization strategy to learn
the routing behavior of experienced drivers. In particular, given a graph and TSP tours over a
subset of its nodes, we develop an inverse optimization approach that learns the edge weights
that expert drivers are assumed to use while computing their node sequences. Our approach
is based on the concept of minimizing inverse optimization loss functions [24], and we propose
an efficient method to optimize the loss. Our algorithm is specially tailored to learning the
weights of a graph (i.e., nonnegative cost functions). We aim to introduce a systematic and
modular approach that is applicable to the Amazon Challenge but is also easily convertible
to tackle other delivery route planning problems.

Master of Science Thesis Piet van Beek

8 Amazon Challenge

Piet van Beek Master of Science Thesis

Chapter 3

Preliminaries

Before proposing a methodology to tackle the Amazon challenge we will introduce two main
concepts of our approach, namely, inverse optimization and the traveling salesman problem.

3-1 Inverse Optimization

Traditional mathematical optimization programs aim to find an optimal decision or action
that minimizes or maximizes a certain objective function given a signal. This process can
also be called the forward model [25]. Inverse optimization reverses this process; the action
and signal are given, while the objective function is unknown. A parameterized approximate
version of the objective function is proposed and with inverse optimization the parameters of
the proposed objective function are determined. One could also note that inverse optimization
is very similar to imitation learning in which a learner agent tries to find a policy by mimicking
the behavior of an expert agent [26]. In contradiction to imitation learning, in which the
learner agent tries to find a direct mapping between the signal and action space, inverse
optimization focuses on finding the objective function which the expert agent minimizes to
find its policy.

Within the literature, a distinction exists between classical inverse optimization and data-
driven inverse optimization. The difference between both methods is the notion of inverse
feasibility [25]. In the case of classical inverse optimization, it is assumed that a perfect
model-data fit exists. In other words, the objective function found by the inverse optimiza-
tion program and the original objective function are optimal for the same actions. The focus
in early literature was mainly on classical inverse optimization and how to reformulate the
problem to make it solvable. However, more interest in the data-driven inverse optimization
approach has arisen recently. In case of data-driven inverse optimization, there is no perfect
model-data fit. The learner agent has imperfect information, resulting from one of the fol-
lowing reasons; the real objective function can not be found since it is not in the space of the
set of hypothesis functions, the data is noisy or due to bounded rationality the expert agent
finds a suboptimal solution [24]. To measure the mismatch between the model and data, loss

Master of Science Thesis Piet van Beek

10 Preliminaries

functions are used. Those loss functions are the core of this approach and play an important
role in the optimization of the parameters. In this thesis, we will focus on the data-driven
inverse optimization approach.

3-1-1 Mathematical Formulation

For the mathematical notation of inverse optimization, we follow Akthar et al. [27]. The
expert agent solves a forward optimization problem with the objective function F* in which
a certain signal s € S is given and finds an optimal action z°'(s) out of all possible actions
x € X(s) which minimizes the objective function F*. S denotes the set of all admissible
signals. The mathematical formulation of the statements above is given by

2°(s) € arg min F*(s,x). (3-1)
zeX(s)

Next, in the inverse optimization program, the learner agent wants to find Fy, the approximate
of the objective function F*. Therefore, a set of possible parameterized objective functions is
proposed. This set of functions will be called the hypothesis space F and is given by

F={F : SxX>R, 00}, (3-2)

in which 6 € © define the parameters that have to be learned and X D X(s) denotes the set
of all admissible actions for all admissible signals s € S.

The learner agent can solve a forward optimization problem as well in which the optimal
action

2 (s) € arg min Fy(s,) (3-3)
zeX(s)

can be found by minimizing the parameterized objective function Fy while keeping the known
constraints imposed on the action (z(s) € X(s)) in mind.

Since we deal with data-driven inverse optimization, we assume there is no perfect model-data
fit resulting in a difference between the optimal action calculated by the expert agent and the
optimal action calculated by the learner agent. To measure this difference, a loss function
Lo(2°*(s), ' (s)) is used. This loss function is minimized with respect to @ to find the most
suitable approximate of the objective function. If the learner agent has access to a data set
of T instances of signals with corresponding expert actions { (8¢, Z§') }s<r, the optimization
program

min Z ly (xt ,ap()) (3-4)

0coO

can be used to find the parameters 6.

Piet van Beek Master of Science Thesis

3-1 Inverse Optimization 11

3-1-2 Loss Functions

As stated before, the loss function is a measure to determine the mismatch between the
objective function Fy found by the learner agent and the real objective function F* used by
the expert agent. The most logical way would be to measure this by the identifiability loss

Oh(s,x) := |F*(s,x) — Fy(s,z)|?, (3-5)

since this loss function describes the mismatch ideally [24]. However, this loss function is not
useful since the objective of inverse optimization is to learn the unknown objective function
F* of the expert agent. Since F™* is unknown, the identifiability loss function can not be used.

Another reasonable approach could be to use the squared Euclidean distance from the expert
action z° to learner action ' for the same signal s [28]. This is also called the predictability
loss and the mathematical formulation is given by

lh(s,2%(s), 2™ (5)) = = [|a*!(s) — 2" (s)[3- (3-6)

The predictability loss function does capture the objective of inverse optimization very well,
similar to the identifiability loss. However, Aswani et al. [28] show that the optimization turns
into an NP-hard non-convex bilevel optimization problem. Therefore another loss function
has to be introduced which is computationally more attractive, which is the suboptimality
loss

5(s, 2, ™) : = Fy(s,2°) — min Fy(s,z)
zeX(s) (3_7)
= Fy(s, %) — Fy(s,z™).

The suboptimality loss calculates the difference between the parameterized cost of the learner
action and the expert action [24]. When the suboptimality loss is minimized, the idea behind
the minimization is that it searches for an objective function Fy which best explains the expert
action z°* for a certain input s [27]. The suboptimality loss goes to zero only if the expert
action z° is the optimizer of the parameterized objective function Fy. Figure 3-1 gives a
graphical interpretation of the suboptimality and predictability loss.

Fr (s,

Fo (Sef")%:?/

N L

", -
g ﬁlj

Figure 3-1: Schematic interpretation of the predictability loss ¢4 and the suboptimality loss £5.

Master of Science Thesis Piet van Beek

12 Preliminaries

The suboptimality loss is computationally attractive because the loss function is convex in 6
when the hypothesis function Fy is linear with respect to 6. As mentioned before, this is not
the case for the predictability loss function. The convexity of the suboptimality loss function
can be shown by rewriting the loss function from Equation 3-7 into the maximization problem
[29]

(s, 7)) = max Fy(s,z%) — Fy(s,). (3-8)
zeX(s)

In this thesis, X(s) will be a finite integer set, which converts Equation 3-8 into a maximization
over a finite set of convex functions, which preserves convexity [30]. Since Fj will be chosen
to be linear with respect to 6, the suboptimality loss will be a piece-wise linear function.

3-1-3 Hypothesis Functions

The parameterized objective function has to be chosen from the earlier defined hypothesis
space J. How to define the hypothesis space, depends on the forward expert optimization
program. In general, on the one hand, the space F should be rich enough to capture the
behavior of the expert agent’s objective function F*. On the other hand, it should not be too
complex to ensure tractability of the inverse optimization program [24]. As mentioned in the
previous section, a good choice for a class of hypothesis functions would be to make sure that
Fy is linear with respect to 0, which results in a convex inverse optimization program, when
the suboptimality loss function is used.

A possible hypothesis class that incorporates the objectives mentioned above is the set of
hypothesis functions that are linear with respect to the action x, given by

Fii={Fy(s,2) = (0.2) | 00} (3-9)

The choice of the set of admissible parameters © again depends on the problem but should
definitely not contain § = 0 as this would result in a trivial constant objective function.
Esfahani et al. [24] discuss some examples of how to choose O.

3-2 Traveling Salesman Problem

As mentioned earlier, a traveling salesman problem (TSP) is a combinatorial optimization
program in which an agent has to visit a set of nodes once and once only leaving from and
finishing at a predefined stop (depot). Each of the routes in the Amazon data set can be
thought of as a distinct T'SP. In this section, we will introduce the mathematical formulation
of the TSP and some extensions.

3-2-1 Mathematical Formulation

For the mathematical formulation of the basic TSP, we follow the ILP formulation proposed
by Dantzig et al. [31]. First of all, let us define that the number of the depot is 1 and the

Piet van Beek Master of Science Thesis

3-2 Traveling Salesman Problem 13

number of the other nodes are i = 2,3,...,n. All nodes including the depot are contained in
the set S ={1,2,3,...,n}. Secondly, we denote the following:

vy = { 1, if node j is directly visited after node % (3-10)

0, otherwise.

Lastly, we denote a cost matrix C' which on every entry c;; stores the cost to travel from node
1 to j. The basic TSP can then be mathematically formulated as

min E E CijTij

i€S jes
st Y wij=1 0<i<n
JeSs
S =1 0<j<n (3-11)
i€S
zi; €{0,1} 0<j<n 1<i<n
oD g <|VI-1 YW CS V#D V£,
i€V jev

in which the optimization program minimizes the total cost of visiting all nodes once and once
only. The first two constraints imposed on the optimization make sure that every node is
visited only once. The third constraint imposes that the action space only consists of binary
variables. Finally, the last constraint prohibits subtours; tours visiting less than n nodes (an
example is given in Figure 3-2). V is any nonempty subset of S and V is the complement
of V; a set that contains all nodes in S which are not in V. The constraint is very intuitive
since if there would exist a subtour containing a subset of nodes V' € S, the left-hand side of
the equation would be equal to |V|. This would violate the constraint of being smaller than
or equal to |V|—1 [4].

(a) Without subtours. (b) With subtours.

Figure 3-2: Example solutions to a TSP.

Master of Science Thesis Piet van Beek

14 Preliminaries

3-2-2 Asymmetrical TSP to Symmetrical TSP

In this and the following section, we will introduce two adjustments with respect to the basic
TSP which will be used in our method. First of all, for some TSP solvers, we need to make
sure that the cost matrix is symmetrical. This will not always be the case and thus we have
to make a transformation of the cost matrix from asymmetrical to symmetrical. We will
do this following the approach proposed by Jonker et al. [32]. In this approach for each
node ¢, a dummy node d; is added which is visited directly after the corresponding node is
visited. The transformation works as follows: we define a weight matrix C' which is equal to
C except for the elements ¢;. Those elements are set to ¢;; = —M in which M is a sufficiently
large number. Furthermore, we define the matrix U in which u;; = oo Vi,j € S. The new
symmetrical TSP problem has the symmetrical weight matrix

- U
C_[é U]'

If we would take an example in which the 3 x 3 cost matrix

1 2 3
Ilecin c2 a3
cC= 2 Co21 C22 (23 (3—12)

3lc31 c32 c33

would be transformed into

dl d2 d3 1 2 3

d1 e o0 0.9] —M C21 C31 1
do| 00 00 00 cla —M 39
d3 0,9) o0 o C13 C23 -M
C = (3-13)
1 | —-M ¢ c13 00 00 'e)
2 | co1 —M co3 00 00 00
3 | c31 cza —M o 00 00

The transformation makes sure that a dummy node is visited directly after its corresponding
node. Furthermore, it is impossible to visit a dummy node after a dummy node and impossible
to visit a regular node after a regular node. A solution for example could be 1 = d; — 2 —
dys — 3 — d3 — 1. This can easily be converted to the solution of the original asymmetric
TSP by removing the dummy nodes.

3-2-3 Open TSP

In a basic TSP formulation, the agent has to finish its route at the depot it started from and
thus a cycle is driven. In some cases, however, we would like to solve an open-loop TSP in
which the agent does not have to come back to the depot. This can easily be achieved by
setting the costs from all nodes to the depot equal to zero ¢;; =0 Vi € S. We will refer to
this as Open TSP.

Piet van Beek Master of Science Thesis

3-2 Traveling Salesman Problem 15

It might be the case that we do not know beforehand at which stop we want to start an open
loop TSP. In this case, there is no predefined depot but we want to optimize the route such
that the location of the starting stop is part of the minimization of the costs. This can be
achieved by adding a dummy node d to the cost matrix which will function as the depot. The
costs from and to the dummy node will both be zero

cg=0 Vies

. (3-14)
cgj =0 VjeS

resulting in an open loop TSP with an optimized starting location. From now on we will refer
to this as Open TSP with Unknown Depot.

Master of Science Thesis Piet van Beek

16 Preliminaries

Piet van Beek Master of Science Thesis

Chapter 4

Methodology

To tackle the Amazon challenge we will propose an approach in which we use inverse op-
timization to learn the weights between zones using historical routing data, after which we
propose an algorithm to transform the zone sequence into a stop sequence. In this chapter,
we will give a general overview of our method and discuss all sub-parts of the method in more
detail.

4-1 Overview

47.640 A

47.635

47.630

47.625 A

Lartitude coorainates

47.620 A

-0.100 —-0.095 —-0.090 -0.085 -0.080
Longitude coordinates —1.2220000000e2

Figure 4-1: Expert route in which all stops are depicted by dots and every zone is represented
by a color.

From analyzing the data of the Amazon challenge, it becomes clear that the data is not
rich enough to learn patterns at stop level because in general every stop is just visited once
throughout the complete data set. However, from the data analysis, it becomes clear that
there is a pattern in the experienced driver routes. In most cases, drivers visit all stops in a

Master of Science Thesis Piet van Beek

18 Methodology

zone before entering another zone. Figure 4-1 shows this pattern.! In the figure every color
defines the stops belonging to a certain zone. The first stop in the sequence is indicated with
a black circle around it. Clearly, the expert driver visits all stops in a certain zone before
entering another zone. Since those zones, in contrast to stops, are visited multiple times
throughout the data set, we will propose a method using inverse optimization to derive a
policy that imitates the zone sequencing of experienced drivers. Subsequently, we propose a
method to derive a stop sequence based on the zone sequences.

Our method consists of a learning phase and an evaluation phase. In the learning phase,
the expert stop sequence is transformed into a zone sequence, after which we use inverse
optimization to find weights that represent the preference of the driver to travel between a
pair of zones. In the evaluation phase, a zone sequence can be estimated on an unseen data
set using the weights found in the training phase. Lastly, we have developed an algorithm
that computes the sequence of stops based on the zone sequence. Figure 4-2 gives an overview
of the proposed method. In the following sections, we will explain the subparts of the method

in more detail.
. Extract zone Inverse optimization to
Training data .
sequence find zone weights

Weights between zones 6

4

Evaluation data =[Find zone sequence]

Zone sequence x'"

A

[Compute stop sequence]

Figure 4-2: Overview of the proposed method.

4-2 Extract Expert Zone Sequence

As mentioned in the previous section, our goal is to learn the preferences of drivers at zone
level. Therefore, we have to transform the expert stop sequences into expert zone sequences.
Suppose we have a route as shown in Figure 4-1, we can transform this stop sequence into a
zone sequence by replacing the cluster of stops with one node representing the zone, as shown
in Figure 4-3.

In this example, all stops in a zone are visited before entering another zone, which is the case
for most routes. However, in certain routes, it might be the case that a zone is visited, left
and visited again by an experienced driver. In that case, we consider that a zone is visited at
the time the most consecutive stops in that zone are visited. To illustrate this, consider the
case when a driver visits 7 stops belonging to zones A, B, C, where the sequence of visited
stops, in terms of zones,is A - B —+ B - A — A — C — C. In this case, we will consider
the sequence of zones to be B - A — C.

!The depot is very far away from all other stops and thus cut off the figure.

Piet van Beek Master of Science Thesis

4-3 Inverse Optimization to Find Zone Weights 19

(@) Expert stop sequence. (b) Expert zone sequence.

Figure 4-3: Example route showing the expert stop sequence and the corresponding zone se-
quence.

4-3 Inverse Optimization to Find Zone Weights

After a zone sequence is extracted from the data, we want to learn the zone sequencing behav-
ior of the experienced driver. We therefore apply inverse optimization on the training data
to receive a weights matrix 6 between the different zones, which scales the weight according
to the preference of the experienced drivers to use that certain edge. Since every zone can
only be visited from one particular depot, we will consider every depot separately, and thus
construct a weight matrix per depot. All routes leaving from that particular depot will form
a learning data set for that certain depot’s weight matrix. In this section, we will discuss the
inverse optimization approach more thoroughly.

4-3-1 Inverse Optimization Applied to TSP Formulation

Formally, let G be a complete directed graph with m nodes and, consequently, m? directed
edges, in which m defines the number of zones that can be visited from a certain depot. For
every route instance in the training data set, only a subset of zones has to be visited. We thus
define the signal s € R™, where the i’th component of s equals 1 if zone ¢ has to be visited,
and 0 otherwise. The same information is encoded by the set S, where 7 € S if zone ¢ has to
be visited, and ¢ ¢ S otherwise.

We assume that the experienced drivers are the expert agents and that they are solving a
minimization

2(s) = arg min F*(s,) (4-1)
zeX(s)

to determine the zone sequence z°%(s). We assume that the objective function they are
minimizing is equal to the TSP formulation and we thus formulate the hypothesis function
as

FQ(S, ZL‘) = Z Z Hija:ij = <9,l’> (4—2)

i=1j=1

Master of Science Thesis Piet van Beek

20 Methodology

The formulation is similar to the TSP formulation except for the fact that the weights are not
based on time or distance. In this case, the weight 6;; depends on the preference of the driver
to use the edge connecting zone ¢ to zone j and is the unknown parameter we aim to retrieve
through inverse optimization. The parameter space © := {# > 0} imposes all weight vectors
to be nonnegative. Similarly to the TSP formulation, z;; is 1 if zone j is visited directly
after zone i and 0 otherwise. A graphical interpretation depicting the nodes of the complete
directed graph G, the signal s and the action z°® is given in Figure 4-4. In this figure, the
square depicts the depot and all other nodes are presented as circles.

O O O
o- o © o e
O O O O
© O
B, o0 o 5 O
O O xet O
o © O o ©
(a) Nodes Graph G. (b) Signal s. (c) Action z*.

Figure 4-4: Graphical interpretation of the nodes of the graph G, the signal s and the action .

The constraint set X

>y =1, vies

JES

Zﬂfz‘j:l, vje s

i€eS

X(s) = xERm2 zi; € {0,1} Vie S,VjeSs 7 (4-3)

SN ay <[VI-1, W CSVAOV#£D

i€V jev

zij =0 Vi ¢ S

ij =0 vj¢s

is very similar to the constraint set of the formulation of the TSP and thus makes sure that
routes are computed in which the driver visits every node once and once only and that no
subtours occur. The last two constraints are added compared to the TSP constraint set.
Those two constraints require to compute a tour over a subset of nodes .S, instead of visiting
all zones in the directed graph G. = € R™* denotes the vector containing all x;;. Notice that
x also contains information about edges from a node to the same node itself z;;. The subtour
elimination constraint, however, imposes that those edges always have a value of zero.

The suboptimality loss will be used to determine the mismatch between the learner action
and expert action because of its computational benefits. Expressing the suboptimality loss
with the hypothesis function results in

Piet van Beek Master of Science Thesis

4-3 Inverse Optimization to Find Zone Weights 21

ly = Fy(s,2) — min_Fy(s,
o = Fo(s,z%) i o(s,z)

05 = (0, 2°") — min (0, 4-4
o= (0,2%) xg;;&() (4-4)

G = (0,2 — ™).

The provided training dataset { (8¢, Z¢') }+<1 gives us a set of zones that has to be visited s and
the corresponding expert zone sequence z° for T route instances. The inverse optimization
program which we want to solve is formulated as

T T
. £SA ~et _ : 0 ety i 0
i 3 et) mmz{<)~ min (,w>}

0cO = z€X(8¢)
T
: et In (4_5)
= Ierélélt:l {(073% -y >}
= min 00),

in which we want to minimize the loss for the set of route instances by optimizing the param-
eterized weights 6.

4-3-2 Solution Method
To solve Equation 4-5, we propose a subgradient descent method with a two-fold update step,

containing an exact solution for the inner minimization and a subgradient descent update
step for the outer minimization. In this section, this will be discussed in more detail.

The subgradient descent approach will update the 6 values according to

o+ =TI(0 — nVL(0)), (4-6)

in which a subgradient of the loss [33] is defined as

Vi) =3 {5t - 2} (4-7)

t=1

The projection

H(@) = max(@ij, 0) VZ,] (4—8)

imposes that all weights keep a nonnegative value. The learner action

In .
= 0, 4-9
z" = arg J&{i)< z) (4-9)

Master of Science Thesis Piet van Beek

22 Methodology

has to be calculated every iteration again since the # values are updated every iteration. To
this end, we use a TSP solver in which the cost matrix is defined as the updated § matrix.?
Any TSP solver that finds an optimal solution can be used in this case. Since we are solving
the problem on a directed graph, the updates of the 6 values may result in an asymmetrical
cost matrix. If a TSP solver is only able to solve symmetrical TSPs, it might be necessary to
transform the asymmetrical TSP into a symmetrical TSP according to the approach discussed
in Section 3-2-2. Furthermore, the zone of the depot is very far away from the other zones on
a route. From the data analysis, it becomes clear that the first visited zone after the depot is
chosen quite arbitrarily by drivers. We therefore want to exclude the depot from the routing
problem and solve an Open TSP with Unknown Depot with the remaining zones as discussed
in Section 3-2-3.

Although the subgradient descent method may yield sufficient results, we can achieve results
more efficiently if we use a stochastic version of the subgradient descent method [34]. In this
case, we take a randomized sample of the complete data set k ~ U[1,T] and calculate the
subgradient considering that specific data point only

VO) = 2t — gln, 4-10
t t

This is done iteratively for all data points k € [1,T]. The amount of computational effort of T'
iterations of the stochastic subgradient descent approach is comparable to the computational
effort of one iteration of the regular subgradient descent approach, because the number of
times the TSP solver has to calculate the learner action, which takes the highest amount of
computation effort, is equal. The performance, however, is higher for the stochastic version.
Algorithm 1 gives an overview of the stochastic subgradient descent algorithm.

Algorithm 1 Stochastic Subgradient Descent Algorithm

. Input: Step-size sequence {np}le, initial weight matrix #; > 0 and dataset {(8;, 28%) }1<7.
:forp=1,...,Pdo
: Sample k sequentially from {1,...,T}

Compute the learner action ™ = arg min,ex(s,)(0p,)

~et _ .In

1

2

3

4 In
5: Compute stochastic subgradient: V£(§) = -
6 Stochastic Subgradient step: 0,41 = 6, — 1, V£(0)
7: Projection step: 0,41 = T1(0,41)

8: end for

9

: Output: 0py;.

The value for 7, is determined as 7, = 11/\/p. The initial § matrix is determined by the
geographical distance between the zone centers. For every zone, we determine the location
of a zone center by taking the mean of the longitudinal and lateral coordinates of all stops
that belong to that particular zone. The initial value 6;; is the Euclidean distance between
the zone center of zone ¢ and the zone center of zone j. Let us repeat, that Algorithm 1 is
applied to every depot separately since every zone can only be visited from one depot. We
will thus construct a separate weight matrix for every depot.

2Notice that regular TSP solvers do normally not solve problems with the last two constraints of the
constraint set given in Equation 4-3. We simply respect those two constraints by ignoring the nodes from
graph G that are not contained in the set s. As such the problem is transformed into a regular TSP.

Piet van Beek Master of Science Thesis

4-4 Evaluation Phase 23

4-4 Evaluation Phase

From the training phase, we retrieve the 6 matrix providing us with weights that should
describe the preference of an experienced driver to use that edge. In the evaluation phase,
we want to compute routes using those weights on unseen evaluation data set {(8;)}¢<p. In
this case, the actual driven routes are not presented to the algorithm but are later on used to
evaluate how similar the actual driven route and the algorithm-computed route are.

First of all, for a new route, we will find the zone sequence '™ by minimizing Equation 4-9
with the 6 values we have found in the learning phase. Again, we can use any TSP solver
that provides an optimal solution.

After that, the zone sequence should be transformed into a stop sequence. To determine the
stop sequence, we propose to solve a TSP with a modified cost matrix C, in which ¢;; defines
the cost to travel from stop i to stop j. The travel times between the different stops are
provided by Amazon. The base of the cost matrix C' will be those travel times. In other
words, ¢;; is defined as the time to travel from stop 7 to stop j. However, we will make two
modifications

5@', if stops 7 and j are in the same zone
Cij 1= 5,']‘ + M/Q, if the zone of stop j should be visited directly after the zone of stop (4-11)
Cij + M, otherwise.

The idea behind the cost matrix modification is that we add a penalty M if two stops are
not in the same zone. If the zone of stop j has to be visited directly after the zone of stop
in the received zone sequence z'™ the penalty is lower, namely %M . If we choose the penalty
M sufficiently big, this cost matrix imposes that a TSP solution will automatically visit all
stops in the same zone before entering the next zone. Furthermore, the sequence of zones will
not be violated.

A regular TSP solver can be used to solve a TSP with cost matrix C. Again the depot will
be excluded from the problem and an open TSP will be solved. In this case, we know that
the first stop has to be a stop from the first zone and thus in this case we solve the Open
TSP introduced in Section 3-2-3. The begin stop and final stop of the TSP solution will be
connected to the depot. The algorithm for computing the stop sequence is given by Algorithm
2.

Algorithm 2 Compute stop sequence for the evaluation data set

Input: 6, M and dataset {(8;)}i<r.
forp=1,...,T do
Compute zone sequence z = arg min,exs,)(0, *)
Determine cost matrix C' as shown in Equation 4-11
Solve TSP for stops with cost matrix C
Connect TSP solution to the depot
end for
Output: Stop sequences for dataset {(5;) }r<7.

In

Master of Science Thesis Piet van Beek

24 Methodology

Notice that in our approach we did not take time window constraints into consideration.
Some participants of the Amazon challenge (e.g. articles VI and XXI of the proceedings
[7]) observed that the constraints are often trivially satisfied and if they are ignored it has a
minimal impact on the score. For that reason, we decided to ignore the constraints as well.

Piet van Beek Master of Science Thesis

Chapter 5

Results

In this chapter, we will validate our method and compare the score we have retrieved with the
scores on the Amazon leaderboard along with some other benchmark scores. Furthermore,
we will show an algorithm-proposed route compared with the actual driven route.

5-1 Implementation

The proposed approach has been implemented in a python code and numerically evaluated
on an Intel Xeon Gold 5218 CPU with a 2.30GHz clock speed and 32GB of RAM. In the
code, two different TSP solvers have been used. The Gurobi ILP solver has been used to
solve Equation 4-9 and calculate the learner action ' [35]. This solver has been chosen since
it gives an optimal solution, which is necessary to guarantee convexity of the suboptimality
loss. On the other hand, to determine the sequence of stops we used a TSP heuristic solver,
which gives close-to-optimal solutions. The heuristic developed by Google OR tools is used
[36] to find the stop sequence as this solver is computationally faster than the Gurobi ILP
solver.

In the learning phase, we removed all routes qualified as "low" from the training data set since
the evaluation data set only consists of routes that are qualified as "high". The percentage of
"low" routes was much lower than the percentage of "medium" and "high" routes. Therefore,
after removing the "low" routes, the data set was still sufficiently large to use for training.

Algorithm 1 iterates uniformly over all data points of the data set {(8;,2¢%) }s<r. We define
an epoch as T (the length of the data set) iterations in which every data point has been used
once. As explained previously, we apply our inverse optimization approach separately to each
depot of the dataset, and each depot has a different number of examples. Thus, since we have
to combine the results from all the depots for our final score, we decided to run the algorithm
with a number of iterations proportional to the size of their respective datasets, and combine
the result per epoch, instead of per iteration of Algorithm 1. The number of epochs is chosen
to be 50. The other parameters have been chosen to be n; = 0.01 and M = 1000, as those
gave the best score for a predefined number of epochs.

Master of Science Thesis Piet van Beek

26 Results

5-2 Validation of Approach

To validate the proposed approach in this thesis, we, first of all, want to check whether the
total suboptimality loss' computed on the training data set decreases along with the number
of epochs of the stochastic subgradient descent algorithm and converges to the optimal value
for . Figure 5-1 demonstrates that the loss indeed decreases and seems to converge to an
optimal value. We thus conclude that the stochastic subgradient descent algorithm works as
intended.

175 1

150 4

125 4

100 1

Loss

75 A

50 A

25 A

0 10 20 30 40
Number of epochs

Figure 5-1: The sum of the loss per epoch.

Although the loss is minimized, we still want to check our hypothesis that by minimizing the
loss, the similarity between routes proposed by the algorithm and the actual driven routes
increases. To do so, after a certain number of epochs, we compute the routes with the weight
matrix 0 retrieved at that point and calculate the score. This is done for a predefined number
of intervals. We plot the score along with the loss, to see if the score indeed decreases if the
loss decreases. We also compute the score with the initial weight matrix. Figure 5-2 shows the
in-sample results, that is, the results when we evaluate our method using the same dataset of
6,112 routes used for training. This result shows that optimizing the weights with the use of
inverse optimization improves the similarity between the algorithm-proposed routes and the
actual driven routes.

To see if our algorithm is able to capture the preferences of drivers on unseen delivery requests,
we will be using the evaluation data set to compute the score. Figure 5-3 shows the out-of-
sample results of our approach, that is, the results when we train our model using the 6,112
training routes but evaluate it using the testing data set of 3072 unseen routes. Again, we can
see that if the weights are optimized in training, the score on the evaluation data set decreases,
although naturally, not as low as the in-sample score. We can thus conclude that with the use

!The total loss shown in the figures is calculated slightly differently than stated in Equation 4-5 in order
to decrease the computational effort. We approximate the loss by computing the loss after every iteration of
the stochastic subgradient descent algorithm shown in Algorithm 1 for one data point only. The sum of the
loss over all iterations in an epoch, and thus over all data points, is the one depicted in the graphs.

Piet van Beek Master of Science Thesis

5-2 Validation of Approach 27

175
- 0.05
150
125 - 0.04
@ 100 qg
S £ 0.03 S
75 1 o
501 L 0.02
25 -
e e e - 0.01

0 10 20 30 40
Number of epochs

Figure 5-2: The sum of the loss per epoch and the in-sample Amazon score.
of inverse optimization we are able to increase the similarity between our algorithm-proposed

routes and actual driven routes and we are thus able to capture (some of) the zone sequencing
behavior of experienced drivers.

175 4 - 0.070
1501 - 0.065
125 4

- 0.060

» 100 A v

g L 0.055 2

= 75 P e

50 - I 0.050
25 1 - 0.045
0 S
. . . . 0.040
0 10 20 30 40

Number of epochs

Figure 5-3: The sum of the loss per epoch and the out-of-sample Amazon score.

Master of Science Thesis Piet van Beek

28 Results

5-3 Amazon Score

The final score retrieved with our approach on the evaluation data set is 0.0429. To indicate
whether this score is promising, we have a closer look at the scoring metric. As discussed in
Section 2-2, the Amazon score indicates the similarity between an algorithm-proposed route
and an actual driven route. Some benchmark scores give us an insight into the meaning of the
score. First of all, for a completely random sequence of stops, the score is typically between
0.8 and 1.2. Secondly, Cook et al. [23] computed the score using a TSP solver without
any extra information. The score retrieved in that case was 0.07030. Lastly, Amazon has
published a leaderboard with the scores of all 48 participants of the Amazon Challenge. Our
score in comparison with the top 10 contestants is shown in Figure 5-4.

0,0552

0,0504
00484 00485 0498 00499
0,0429 0,0436
0,0391
0,0353
0,0248 I
1 2 3 On 4 5 6 7] 9 10

ur Score

Score

Ran’king
Figure 5-4: Our score compared to the Amazon Score Leaderboard of the top 10 contestants.

The first score in the leaderboard is derived by Cook et al. [23]. Their score is very impressive
but our approach has some advantages compared to their method. Since their method consists
of an in-depth analysis of the encoding of zones (the Zone ID), after which they derive
constraints based on this encoding, their heuristic is very problem dependent. Our approach,
however, is easily adaptable in two ways. First, the encoding of the zones has no influence
on our approach, as such our method can also be applied to a similar problem with another
encoding of the zones. If a data set is rich enough, we could even apply the zone sequencing
strategy directly to stop sequencing. Secondly, if new data becomes available the weights 6
could easily be updated. If there would be a constant supply of new data, the method could
be transformed into an online inverse optimization learning method as proposed by Barmann
et al. [16].

The disadvantage of our implementation is that the learning time is high. This results from
the structure of our method. For every iteration, an exact TSP solver has to compute the
learner action z'™, which approximately takes 0.5 seconds with the exact Gurobi ILP solver
[35]. Since the number of iterations is high, due to the size of the data set, the learning phase
might take a lot of computational effort.

Piet van Beek Master of Science Thesis

5-4 Comparison of Routes 29

5-4 Comparison of Routes

To give an interpretation of the routes proposed by our method, Figure 5-5 shows an expert
route and an algorithm-proposed route from the evaluation data set.? From the comparison,
we can remark that, in this route, the expert route does not always visit all stops in a zone
before entering another zone. For the algorithm-proposed route, however, this will always be
the case, since this is obliged by our approach. Considering the transformation of an expert
route from a stop sequence to zone sequence discussed in Section 4-2, we can conclude that
the zone sequences of both routes are almost similar.

41.888 41.888

41.886 1 41.886 -

41.884 1 41.884 -

Latituae coorainates
Latituae coorainates

) |

41.882 - I/L T\ 41.882 4
418801 /I 41.880 1

/ N\

\
41.878 41.878

—87.810-87.805-87.800—87.795-87.790-87.785-87.780-87.775 —~87.810-87.805-87.800—87.795-87.790-87.785-87.780-87.775
Longitude coordinates Longitude coordinates
(a) Expert route. (b) Algorithm proposed route.

Figure 5-5: Comparison between expert route and algorithm proposed route.

2The depot is very far away from all other stops and thus cut off the figure.

Master of Science Thesis Piet van Beek

30

Results

Piet van Beek

Master of Science Thesis

Chapter 6

Conclusions

In this thesis, we have shown that data-driven inverse optimization can be used to learn
routing patterns from historical routing data. The zone sequences performed by experienced
drivers have been assumed to be the solutions of a TSP, in which the weights represent the
preference of the drivers to use a certain edge. Those weights were the unknown parameters
in the inverse optimization program. Due to the way we formulated the inverse optimization
program, using the suboptimality loss in combination with a hypothesis function linear with
respect to @, the convexity of the program allows us to use a stochastic subgradient descent
method. Our results show that by minimizing the suboptimality loss, the similarity between
the algorithm-proposed routes and the actual driven routes increases.

Regarding the Amazon Challenge, to which we applied our inverse optimization approach,
we have been able to achieve a score of 0.0429, which scores 4th on the leaderboard of all
48 contestants. Furthermore, compared to the highest-scoring approach, our approach is
systematic and does not depend on the encoding of the zones. This makes our approach
applicable to other data sets. The inverse optimization approach, which learns the zone
sequencing behavior of expert drivers, could even be applied directly at stop level, if the data
is rich enough, meaning stops are visited multiple times throughout the data set. Furthermore,
our approach is modular, in the sense that, any TSP solver, that gives an optimal solution,
can be used in Algorithm 1. As such, if designers have preferences for certain solvers or
developments occur in the field of TSP solution methods, it is easy to implement those
solvers in our approach.

The inverse optimization approach proposed in this thesis is applied to a basic TSP. However,
the tools described to use inverse optimization can easily be applied to other routing problems
such as the VRP by adjusting the hypothesis function, shown in Equation 4-2, and the
constraint set, shown in Equation 4-3, such that those are consistent with standard VRP
modeling as an integer optimization problem [37]. Similar modifications could be used to
handle other common scenarios, such as routing problems with time windows, backhauls,
pickup and delivery, etc, which highlights the flexibility of our inverse optimization framework.

Master of Science Thesis Piet van Beek

32 Conclusions

The main drawback of our implementation is its high computation time. Due to the structure
of the approach, we have to solve a TSP for every iteration of the stochastic subgradient
descent method in the learning phase. In our implementation, the Gurobi ILP solver takes
approximately 0.1-0.5 seconds to solve a TSP instance. Due to the size of the data set, the
computation time of the learning phase is high.

Even though we have already achieved promising results, there are several modifications to
our approach that could lead to improvements in our final score.

e The use of an exponentiated gradient descent update step instead of a subgradient
descent update step could improve the loss minimization. Preliminary results and a
more detailed discussion on this topic can be found in Appendix A.

e To prevent overfitting to the training data, a generalized version of the suboptimality
loss, in which we can include distance penalization, could be tested. Again, preliminary
results and a more detailed discussion on this topic can be found in Appendix A.

¢ As explained in Section 4-1, human drivers tend to visit all stops within a zone before
moving to another zone. It turns out that from the Zone ID provided by Amagzon, we
can define various levels of zones. That is, we have zones that comprise a set of stops;
we have areas, which comprise a set of zones; and regions, which comprise a set of areas.
Moreover, in the same way, drivers tend to visit all stops within a zone before moving
to another zone, the same behavior is observed at the area and region levels. Thus, a
promising idea is to modify our inverse optimization approach to use this assumption.

e The main drawback of our current implementation is the high computation time in the
learning phase. The use of state-of-the-art TSP solvers, such as the Concorde solver
[38], could decrease this.

Piet van Beek Master of Science Thesis

Appendix A

Exponentiated Gradient Descent &
Generalized Suboptimality Loss

In this appendix, we will introduce two concepts that could improve our method and show
some preliminary results.

A-1 Generalized Suboptimality Loss

First of all, the generalized suboptimality loss function can be used instead of the subopti-
mality loss function, which in theory should prevent overfitting to the training data [39]. A
generalized version of the suboptimality loss

(s, 2, a) = Fos,a) = min {Fy(s,) —d(a,2)} (A-1)

includes a distance penalization term, where v defines the penalization parameter and the
function d(z°', x) denotes a distance function between the expert action x°* and the optimizer
x. If v is chosen to be zero, the generalized suboptimality loss is again equal to the regular
suboptimality loss.

Our choice for a distance function is the L1 norm
d(xet, r) = ||z — 2. (A-2)

Since the action x in our problem only consists of binary variables, the distance function can
be rewritten to

Master of Science Thesis Piet van Beek

34 Exponentiated Gradient Descent & Generalized Suboptimality Loss

m2

o — 2%y =D (1 — zp)af + (1 — 2k
k=1 (A-3)

2
= Z 3+ (1 — 22502y,
k=1

If this is plugged into the generalized suboptimality loss it will result in

m2
Eg: 6 et _ : 9 et 1_2
(6,2%) xre%if§>{< K (Zx’“+ o))}

k=1

:<9’xet>— min { Z’yx Z’yl—%c }

zeX(s)
(A-4)

)+ Z s — mln) {(9,x> — (12 — 2xet,x)}

zeX

= <(0 + ’Y]—m2)7 &z t) - $I€I§?s)<(6 - 7(1m2 - 2xet))’ $>

= {(6 +7Lp2), %) — (0 = 7(Lp2 — 22°)), ™).

If a data set {(5¢, 2¢%) }4<7 is provided and the generalized suboptimality loss function is used,
the inverse optimization program can be written as

0cO zeX(s)

T
manfg (3,2, = Igrélélz {((0 +1,,2), %) — min (6 — (1,2 — Qxet)),a:>} . (A-5)
t=1

This means we can still solve the inner minimization with an exact TSP solver, however,
we have to adjust the weights with the term ~(1,,2 — 22°"). We can apply the stochastic
subgradient descent algorithm in a similar fashion, since the gradient of this loss with respect
to 6 is still equal to the gradient for the suboptimality loss, as described in Equation 4-10.
However, the learner action z'™ is the outcome of a different minimization program.

A-2 Exponentiated Gradient Descent

Secondly, the stochastic subgradient descent update step could be replaced by an exponenti-
ated gradient descent update step

67 =00 exp{—nVI}
o (80
167 |1
introduced by Kivinen et al. [40]. The advantage of this update step is that no projection

is needed to make sure all 0;; values are nonnegative since they stay positive by definition

Piet van Beek Master of Science Thesis

A-3 Preliminary Results 35

if the initial value of § > 0. This strategy is specially designed for problems in which the
optimization variable is constrained to the simplex plane. As such, we define a parameter
space © = {0 > 0,]|0||1 = ¢}, in which ¢ is an arbitrary constant, which guarantees that the
trivial solution # = 0, will not be reachable. For the subgradient descent algorithm, we can
not guarantee this. Although in practice the chance that the subgradient descent algorithm
would reach the trivial solution is very small since in that case all m? # values should become
equal to zero, the advantage of the exponentiated version is that we can guarantee this will
not happen.

A-3 Preliminary Results

Some preliminary results on the two introduced concepts have been retrieved. First, the
exponentiated gradient descent method has been tested on the training data set and the
evaluation data set. The results are shown in Figure A-1. We can see that the relative
difference between the initial and final loss is bigger than the one we achieved using the
subgradient descent approach. The final score using the training data set is also slightly lower
than the one retrieved with the subgradient descent method. However, the score retrieved
using the evaluation data set is slightly higher. A possible explanation could be that from
a certain point, minimizing the loss for the training data set, results in overfitting to the
training data set.

0.06

F0.070
200 + F0.05 200 A
I 0.065
150 L 150
0.04 I 0.060
g g ” o
Q S 8 15}
~ 100 1 3 S S
F0.03 1004 F0.055
501 L0.02 50 1 I 0.050
lereeeetrrere/—/—/—/——eeed e T/ F0.045
0 T T T T F0.01 0 T T T T
0 10 20 30 40 0 10 20 30 40
Number of epochs Number of epochs
(a) In-sample results. (b) Out-of-sample results.

Figure A-1: The loss and score of the exponentiated gradient descent method with v = 0 and
n =0.3.

A possible way to prevent overfitting to the training data could be the use of the generalized
suboptimality loss. In Figure A-2 the results are shown for the exponentiated gradient descent
method including a distance penalty term v = 0.01. From the results, it becomes clear, that
indeed, the results using the training data set worsen while the results using the evaluation
data set are not that much worse. In future research, the tuning of the distance penalty term
7 could result in an improvement in results.

Master of Science Thesis Piet van Beek

36 Exponentiated Gradient Descent & Generalized Suboptimality Loss

2000 4

1500 -

Loss

1000 1

500

Number of epochs

(a) In-sample results.

r0.16

ro0.14

ro0.12

Loss

2000

1500 A

1000 4

500

r0.070

r0.065

0.060

Score

r 0.055

F0.050

r 0.045

0 10 20 30 40

0.040

Number of epochs

(b) Out-of-sample results.

Figure A-2: The loss and score of the exponentiated gradient descent method with v = 0.01

and n = 0.3.

Piet van Beek

Master of Science Thesis

[1]
2]

Bibliography

G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,” 1959.

H. Zhang, H. Ge, J. Yang, and Y. Tong, “Review of vehicle routing problems: Models,
classification and solving algorithms,” Archives of Computational Methods in Engineer-
ing, vol. 29, pp. 195221, 1 2022.

G. Laporte, “The traveling salesman problem: An overview of exact and approximate
algorithms,” 1992.

J.-Y. Potvin, “Genetic algorithms for the traveling salesman problem,” 1996.
S. Goyal, “A survey on travelling salesman problem,” 2010.

S. Sangwan and C. Dahiya, “Literature review on travelling salesman problem interna-
tional journal of research literature review on travelling salesman problem,” 2018.

M. Winkenbach, S. Parks, and J. Noszek, “Technical proceedings,” 2021.

J. Caceres-Cruz, P. Arias, D. Guimarans, D. Riera, and A. A. Juan, “Rich vehicle routing
problem: Survey,” ACM Computing Surveys, vol. 47, 12 2014.

T. Lust and J. Teghem, “The multiobjective traveling salesman problem: A survey and
a new approach,” 1970.

R. Canoy and T. Guns, “Vehicle routing by learning from historical solutions,” vol. 11802
LNCS, pp. 54-70, Springer, 2019.

M. Fosgerau, E. Frejinger, and A. Karlstrom, “A link based network route choice model
with unrestricted choice set,” Transportation Research Part B: Methodological, vol. 56,
pp- 70-80, 2013.

S. Liu, H. Jiang, S. Chen, J. Ye, R. He, and Z. Sun, “Integrating dijkstra’s algorithm
into deep inverse reinforcement learning for food delivery route planning,” Transportation
Research Part E: Logistics and Transportation Review, vol. 142, 10 2020.

Master of Science Thesis Piet van Beek

38 Bibliography

[13] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner, “Large-scale cost func-
tion learning for path planning using deep inverse reinforcement learning,” International
Journal of Robotics Research, vol. 36, pp. 1073-1087, 9 2017.

[14] D. Burton and P. L. Toint, “On an instance of the inverse shortest paths problem,” 1992.

[15] A. Farago, Aron Szentesi, and B. Szviatovszki, “Inverse optimization in high-speed net-
works,” 2003.

[16] A. Béarmann, S. Pokutta, and O. Schneider, “Emulating the expert: Inverse optimization
through online learning,” 2017.

[17] L. Chen, Y. Chen, and A. Langevin, “An inverse optimization approach for a capacitated
vehicle routing problem,” European Journal of Operational Research, vol. 295, pp. 1087—
1098, 12 2021.

[18] Y. Chung and M. Demange, “On inverse traveling salesman problems,” JOR, vol. 10,
pp. 193209, 2012.

[19] M. Winkenbach, “Pre-competition informational = webinar.” https://
routingchallenge.mit.edu/challenge-live-event-pre-competition-informational/,

2021. [Online; accessed 20-April-2022].

[20] D. Merchéan, J. Arora, J. Pachon, K. Konduri, M. Winkenbach, S. Parks, and J. Noszek,
“2021 amazon last mile routing research challenge: Data set,” Transportation Science, 9
2022.

[21] “Amazon scoring metric” https://github.com/MIT-CAVE/rc-cli/tree/main/
scoring, 2021. [Online; accessed 16-May-2022].

[22] L. Chen and R. Ng, “On the marriage of lp-norms and edit distance,” 2004.

[23] W. Cook, S. Held, and K. Helsgaun, “Constrained local search for last-mile routing,” 12
2021.

[24] P. M. Esfahani, S. Shafieezadeh-Abadeh, G. A. Hanasusanto, and D. Kuhn, “Data-driven
inverse optimization with imperfect information,” 12 2015.

[25] T. C. Y. Chan, R. Mahmood, and I. Y. Zhu, “Inverse optimization: Theory and appli-
cations,” 9 2021.

[26] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters, “An algo-
rithmic perspective on imitation learning,” Foundations and Trends in Robotics, vol. 7,
pp- 1-179, 2018.

[27] S. A. Akhtar, A. S. Kolarijani, and P. M. Esfahani, “Learning for control: An inverse
optimization approach,” 2021.

[28] A. Aswani, Z.-J. M. Shen, and A. Siddiq, “Inverse optimization with noisy data,” 2015.
[29] M. Dankovic, “Learning parametric integer programming via inverse optimization,” 2021.

[30] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

Piet van Beek Master of Science Thesis

https://routingchallenge.mit.edu/challenge-live-event-pre-competition-informational/
https://routingchallenge.mit.edu/challenge-live-event-pre-competition-informational/
https://github.com/MIT-CAVE/rc-cli/tree/main/scoring
https://github.com/MIT-CAVE/rc-cli/tree/main/scoring

39

[31]

[32]

G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale traveling-salesman
problem,” Journal of the Operations Research Society of America, vol. 2, no. 4, pp. 393—
410, 1954.

R. Jonker and T. Volgenant, “Transforming asymmetric into symmetric traveling sales-
man problems,” 1983.

D. P. Bertsekas, Nonlinear programming. Athena Scientific, 2008.

S. Bubeck, Convex Optimization: Algorithms and Complexity. Foundations and Trends
in Machine Learning, Now Publishers, 2015.

“Traveling salesman problem, Gurobi ILP solver”” https://gurobi.github.io/
modeling-examples/traveling_salesman/tsp.html, 2021. [Online; accessed 28-
October-2022].

“Traveling salesperson problem | OR-tools | google developers.” https://developers.
google.com/optimization/routing/tsp, 2021. [Online; accessed 28-October-2022].

P. Toth and D. Vigo, The vehicle routing problem. STAM, 2002.

D. Applegate, R. Bixby, V. Chvéatal, and W. Cook, TSP Cuts Which Do Not Conform
to the Template Paradigm, pp. 261-303. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001.

P. Zattoni Scroccaro, B. Atasoy, and P. Mohajerin Esfahani, “Inverse optimization: Ge-
ometry, loss functions and algorithms,” preprint, 2022.

J. Kivinen and M. K. Warmutht, “Additive versus exponentiated gradient updates for
linear prediction.”

Master of Science Thesis Piet van Beek

https://gurobi.github.io/modeling-examples/traveling_salesman/tsp.html
https://gurobi.github.io/modeling-examples/traveling_salesman/tsp.html
https://developers.google.com/optimization/routing/tsp
https://developers.google.com/optimization/routing/tsp

40

Bibliography

Piet van Beek

Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	Acknowledgments

	Main Matter
	Introduction
	TSP State-of-the-Art Methods
	Learning Drivers' Preferences
	Notation

	Amazon Challenge
	Amazon Data
	Evaluation Criterium
	Technical Proceedings & Research Proposal

	Preliminaries
	Inverse Optimization
	Mathematical Formulation
	Loss Functions
	Hypothesis Functions

	Traveling Salesman Problem
	Mathematical Formulation
	Asymmetrical TSP to Symmetrical TSP
	Open TSP

	Methodology
	Overview
	Extract Expert Zone Sequence
	Inverse Optimization to Find Zone Weights
	Inverse Optimization Applied to TSP Formulation
	Solution Method

	Evaluation Phase

	Results
	Implementation
	Validation of Approach
	Amazon Score
	Comparison of Routes

	Conclusions

	Appendices
	Exponentiated Gradient Descent & Generalized Suboptimality Loss
	Generalized Suboptimality Loss
	Exponentiated Gradient Descent
	Preliminary Results

	Back Matter
	Bibliography

