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Human motion classification using a particle
filter approach: multiple model particle
filtering applied to the micro-Doppler
spectrum
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In this article, a novel motion model-based particle filter implementation is proposed to classify human motion and to esti-
mate key state variables, such as motion type, i.e. running or walking, and the subject’s height. Micro-Doppler spectrum is
used as the observable information. The system and measurement models of human movements are built using three par-
ameters (relative torso velocity, height of the body, and gait phase). The algorithm developed has been verified on simulated
and experimental data.
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I . I N T R O D U C T I O N

Automatic detection of humans is an important part of some
security and surveillance applications. Compared to other
sensors, radar sensors present advantages for human detection
and identification because of their all-weather and day and
night capability, as well as the fact that they detect targets at
a potentially large range. Time-varying micro-Doppler spec-
tral features due to breathing or walking gait can be used for
detection of humans [1, 2]. The micro-Doppler frequency
shifts originate from the moving body parts of a breathing,
walking or running person. To measure the micro-Doppler
spectrum low-cost and low-power consuming sensors, such
as small K-band continuous wave (CW)-radar modules, can
be used.

The main objective of this research is to develop a reliable
classifier between human walking, human running and
motions of other origin based on micro-Doppler information
only. Based on micro-Doppler analysis of simulated and
measured target spectrograms, estimations of motion par-
ameters like velocity, height, and phase of the gait cycle to
provide motion classification are proposed. A particle filter
in combination with a model-based approach is proposed to
analyze and classify human motion (Section II) [3]. The
Thalmann model [4] is used for human walking, while the

Vignaud model [5] is chosen for human running (Section
III). Based on, among others, the movements of some
animals, an estimated spectrum for the null-hypothesis was
developed. The particle filter implementation for classification
and analysis of human motion is treated in Section IV. The
classification and parameter estimation results of the
implemented particle filter are presented; the developed algor-
ithm performance is evaluated based on both simulated and
measured data (Section V). Finally, conclusions are drawn
in Section VI.

I I . P A R T I C L E F I L T E R F O R H U M A N
M O T I O N A N A L Y S I S

Target classification based on the information obtained from
time-varying Doppler spectral data is a state estimation
problem. In state estimation problems, the state of a
dynamic system is estimated recursively using a sequence of
noisy measurements made on that system [6]. In the
Bayesian approach to state estimation, one attempts to con-
struct the posterior probability density function (pdf) of the
state based on all available information, including all the
measurements received up to that time instant [7]. Often a
recursive filter is used to estimate the state, since a new esti-
mate is required every time a new measurement becomes
available.

A) Dynamic system analysis with particle filter
In order to analyze a dynamic system at least two models are
required [7]. The first model involved in state estimation is the
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system model fk. The system model describes the evolution of
the state with time. Consider the evolution of the state
sequence {xk, k [ N} which is given by

xk+1 = fk(xk, wk), (1)

where fk: Rnx × Rnw � Rnx is a function of the state xk, wk is
the system process noise that is an independent and identi-
cally distributed (i.i.d.) process noise sequence with pdf
p(wk), nx, nw are dimensions of the state and process noise
vectors respectively and N and R are the sets of natural and
real numbers, respectively.

Secondly, a measurement model is required, which gives
the relation between the noisy measurements and the state
variables. In radar applications, it models the relationship
between the underlying physical process and the received
radar signals. The objective is to recursively estimate xk

from measurements

zk = h(xk) + nk, (2)

where h: Rnx � Rnz is a possibly non-linear function, nk is an
i.i.d. measurement noise sequence, and nz is the dimension of
the measurement vector.

Particle filtering is a technique to implement a recursive
Bayesian filter by Monte Carlo (MC) simulations. The main
idea is to represent the required posterior density by a set of
random samples with associated weights and to compute esti-
mates based on these samples and weights [5]. Suppose a set of
particles {xk21

i , i ¼ 1, . . ., Ns} is available that represents the
pdf p(xk21|Zk21), where Zk21 ¼ {Zk21, . . ., Z1}. The particle
filter basically propagates and updates these samples to
obtain a new set of samples {xk

i , i ¼ 1, . . ., NS}, which are
approximately distributed according to p(xk|Zk) [8]. This is
done in two basic steps: a prediction step and an update step.

In the prediction step, each sample is passed through the
system model fk(.) to predict samples for time step k + 1
based on the samples from the previous time step. This predic-
tion step is also described by

x̃i
k+1 = fk(xi

k, wi
k), i = 1, . . . , Ns, (3)

where x̃i
k+1 denotes the predicted samples, wk

i is a sample
drawn from p(wk) and Ns represents the number of particles.
When at time k a new measurement zk becomes available, for
each particle a normalized weight is obtained based on the
likelihood of that sample:

vi
k =

p(zk|x̃i
k)

S
Ns
j=1 p zk|x̃j

k

( ) , (4)

where vk
i denotes the weight of particle i. The particle cloud is

resampled to prevent impoverishment.

B) Classification
The classification of human motion can be interpreted as a
state estimation problem with different modes of operation,
based on the target class. These types of problems are often
referred to as jump Markov or hybrid-state estimation pro-
blems, involving both a continuous valued target state and a

discrete-valued mode variable [6, 9]. The continuous state
variables can, for example, include the walking velocity and
the phase of the gait cycle, while the discrete mode indicates
different target class and corresponding models. For different
discrete modes, different physical processes link the continu-
ous state variables to the measured spectra. These physical
processes are, for example, a walking human or a running
human, but also the modeling of the motion from other
origin.

I I I . M O D E L I N G H U M A N M O T I O N

In this section, the selected models for a walking and a
running human are shortly presented. In Section III.A, the
Thalmann model used for modeling of human walking is
explained. In Section III.B, the Vignaud model used for the
modeling of human running is introduced.

A) Thalmann model
Human walking is a complex motion of swinging arms and
legs. Walking is a periodic activity, in which one single gait
cycle is defined as the successive contacts of the heel of the
same foot, i.e., one step from both the left and the right leg.
During a single gait cycle each leg undergoes two phases. In
the stance phase, the corresponding foot is on the ground.
The stance phase occupies approximately 60% of the gait
cycle. In the swing phase, the foot is lifted from the ground
with an acceleration or deceleration [10]. A schematic over-
view of a single walking cycle is depicted in Fig. 1.

Thalmann and Boulic developed a model for human
walking based on empirical mathematical parameterizations
derived from experimental data [4]. The influence of person-
alized motion is minimized by averaging the parameters from
experimental data [10]. The model consists of two aspects.
The first aspect concerns the kinetics of the modeled body
parts, hence describing the time-varying positions of the
body during a gait cycle. The second aspect models the size
and shape of the body parts of a human.

B) Vignaud model
There are some fundamental differences between a walking
human and a running human. First of all, the stance phase
is shortened, which means that the swing phase is lengthened.
Secondly, there is no double support, which means that during
the entire gait cycle the situation where both feet are on the
ground does not occur. Finally, a new phase is introduced:
the non-support phase. In this phase neither leg is weight
bearing (i.e. a double float period).

Fig. 1. Schematic overview of a human walking cycle.
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In contrast to human walking analysis in radar appli-
cations, a detailed running human model is not available. In
the work of Vignaud and Ghaleb, the kinematic behavior of
40 points of a running human are measured [5]. From these
measurements the radial velocity as a function of average
running velocity and time are modeled. In order to use the
same model for the size and shape of the body parts as for a
walking human, the same 17 reference points as in the
Thalmann model are selected out of the 40 points available
in the Vignaud model.

I V . P A R T I C L E F I L T E R
I M P L E M E N T A T I O N

The underlying physical process of human motion is modeled
by the Thalmann model for human walking and the model of
Vignaud for a running human. Both models require the same
three input parameters:

† the relative velocity v̄k in m/s, which is a scaled version of
the average velocity by a dimensionless value equal to the
height of the thigh of the person,

† the height h of the person in m, and,
† the phase of the gait cycle fk, which is a dimensionless

value that satisfies fk [ [0,1).

These three input parameters are equal to the motion par-
ameters that need to be estimated. Combined with a variable
indicating the different target classes the state vector xk is con-
structed as follows:

xk = [ mk �vk hk fk ]T , (5)

where k denotes the discrete time and mk [ T, with the target
class T [ {0, 1, 2}. Each integer of the set T corresponds to one
of the hypotheses corresponding to the three motion model
classes:

† H0: the null-hypothesis, used for motions of other origin
and no motion at all,

† H1: the hypothesis for a walking human,
† H2: the hypothesis for a running human.

For convenience the continuous part of the state vector xk

is defined as xc
k = [�vk hk fk ]T .

A) System model
In a particle filter, the system model gives the relation between
the state variables at the next time step k + 1 and the current
time k. For the continuous part of the state vector this relation
is given by:

�vk+1

hk+1

fk+1

⎡
⎣

⎤
⎦ =

�vk

hk

fk + Dt
Tc(�vk)

⎡
⎣

⎤
⎦+ wk, (6)

where Dt is the time between two successive discrete time
indices k, Tc(v̄k) is the time duration of one gait cycle and
wk represents the process noise vector.

This process noise vector contains different elements of
process noise on relative velocity, height, and phase in the
gait cycle where each element has the following meaning:

† The physical origin of process noise on relative velocity is
the acceleration or deceleration of a person in a certain
period of time, changing the velocity of the gait. This
process noise is given by:

vvrel = aDt.

A typical maximal acceleration for human motion is 2 m/s2

[11]. In this case, the acceleration a is modeled as a zero-
mean Gaussian process, where the 3s value is set equal to
the same value as the typical maximal acceleration, hence
ensuring that 99.8% of the Gaussian curve is within these
maximal limits. The zero-mean Gaussian distribution pro-
vides a more likely distribution for no acceleration at all to
a gradually decreasing probability toward maximal accelera-
tion. In summary, the acceleration a is distributed as a zero-
mean Gaussian distribution with s2 equal to 0.44 m/s2.

† The process noise on the height is also modeled as a zero-
mean Gaussian process, with s2 chosen as 0.0025 m.

† The last element of the process noise vector is the process
noise on the phase in the gait cycle. This is modeled as a
uniform distribution between 20.01 and 0.01.

The discrete component of the state vector that represents the
type of motion that is currently applicable is assumed to evolve
according to a Markov chain with transition probability matrix

Pk =
0.98 0.01 0.01
0.01 0.98 0.01
0.01 0.01 0.98

⎡
⎣

⎤
⎦. (7)

B) Measurement model
The measurement model provides translation between the
measured data and the state variables. In the proposed
system, measured data is the Doppler spectrogram. Based
on the value of the discrete part of the state vector two differ-
ent situations occur to translate the state variables to a
Doppler spectrogram.

The first situation is where the discrete state variable esti-
mates the motion to be either a walking or a running human.
In this case, each individual body part induces a particular spec-
trogram that is determined by the particular motion model. The
measured spectrogram is modeled as the sum of all these indi-
vidual components as well as an additive noise term

sk =
∑L

l=1

al
k(xk)hl(xk) + nk, (8)

where L is the number of components in the particular move-
ment model, ak

l (xk) is a complex scalar representing the signal
strength for each part l, which depends on the size of the body
part and its orientation relative to the sensor, where hl (xk) is the
normalized contribution of each individual part to the signal
spectrum, and where nk is the additive, zero mean white
complex Gaussian noise with covariance matrix sn

2I.
The second situation occurs when the state variable esti-

mates the motion to belong to the null-hypothesis, i.e. the
Doppler spectrum needs to model both motion of other
origin and no motion at all. The Doppler spectrum of the
null-hypothesis is modeled as a Gaussian spectrum around
the zero-Doppler velocity, and as noise for the other velocities.
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The Gaussian shape is selected for two reasons. First, the trace
of moving animals is used to choose a suitable shape for the
spectrum of the null-hypothesis. In Fig. 2, different traces
for both a walking duck and a walking dog are depicted.
From these spectra, similarities with a Gaussian shape
around the zero-Doppler velocity are observed. For higher vel-
ocities the spectrum only consists of noise.

Secondly, clutter can be often modeled as a sinc-function
with its center at zero-Doppler [12]. The center part of a sinc-
function has a similar shape to a Gaussian spectrum and
therefore the spectrum of clutter, i.e. no motion, is approxi-
mated by a Gaussian shape. Owing to these two reasons, the
null-hypothesis is modeled as a Gaussian spectrum with
different distributed center frequencies vcenter;null, widths
s2

null, amplitudes Anull, and offsets s0;null:

s̃ = Anull exp
(v − vcenter;null)

2

2s2
null

{ }
+ s0;null. (9)

C) Initial distributions
The following initial distribution for different state variables is
assumed:

† The discrete part of the state vector is selected with an equal
probability:

p(m = 0) = p(m = 1) = p(m = 2) = 1
3
. (10)

† The relative velocity vrel follows a uniform distribution
between 0 m/s and 5 m/s.

† The height of the person follows a Gaussian distribution
with a mean mh of 1.7 m and a variance s2

h of 0.07 m [11].
† The phase is selected from a uniform distribution between

0 and 1.

D) Derivation of the likelihood function
The likelihood function is used to assign weights to the par-
ticles used in the particle filter. For each particle a spectrum
is estimated based on the models explained above. The
relation between the measured spectrum s and the estimated
spectrum s̄ is the following:

�s = s + n, (11)

where n is an i.i.d. measurement noise process, which follows
a zero-mean complex–normal distribution with variance sn

2.
Both vectors have the same length, corresponding to the
number of Doppler bins Nbins. Suppose that for each
Doppler bin the error between the measured spectrum si

and the estimated spectrum s̄i is an i.i.d. variable and
follows a zero-mean distribution with variance sn

2. This
results in the following likelihood function:

p(s|s̃)=P
Nbins
i=1 exp −1

2
si − s̃i

sn

( )[ ]
1������

2ps2
n

√
{ }

(12)

Maximizing the likelihood of this equation is equivalent to
maximizing its logarithm, or minimizing the negative of its
logarithm. This means that the maximum likelihood is

Fig. 2. Traces for different animals.
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obtained when:

∑Nbins

i=1

(si − s̃i)
2

2s2
n

[ ]
− Nbins log

1������
2ps2

n
√

( )
(13)

is minimized. This expression is minimized when for all
Doppler bins si ¼ s̄i holds, i.e. when the estimated spectrum
is equal to the measured spectrum. Therefore, a least
squares fit can be used as a maximum likelihood estimator.
This maximum likelihood estimator is subsequently used to
assign weights to the particles, as follows:

wj = 1∑Nbins
i=1 (si − s̃i)

2 for j = 1, 2, . . . , Ns (14)

In this case, Ns represents the number of particles used in
the implementation. In this research a total number of 500
particles were used.

V . C L A S S I F I C A T I O N A N D
P A R A M E T E R E S T I M A T I O N
R E S U L T S

A) Simulated data
Using the human movement models described in Section III
micro-Doppler spectrograms have been synthesized. Three
different inputs are considered. The first two inputs consider

Fig. 3. Simulated spectrogram for a walking human and its classification results.

Fig. 4. Parameter estimation for simulation with a walking human.
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two types of walking. One where the person walks without
swinging his or her arms, the so-called “strolling gait” [7].
The other walking hypothesis does consider the swinging of
the arms. The third input considers a running person.

In the top part of Fig. 3, a simulated spectrogram for a
walking human with swinging arms is depicted. This person
has a height of 1.9 m and is walking with a relative velocity
of 1.5 m/s. At t ¼ 0 the person starts moving, i.e. at that
time the phase in the gait cycle is 0. In the bottom part of
Fig. 3, the classification results are indicated. The classification
is performed correctly.

The estimation of the motion parameters is given in Fig. 4.
These results are indicated after the last iteration of the filter,
i.e. at t ¼ 9.86 s. Considering the distribution of the particles
the posterior distribution of these three motion parameters is
assumed to be Gaussian. The mean and the standard deviation
of the estimated parameters are given in Table 1, together with
the true values of the parameters. The true value of the phase
is evaluated by first determining the time duration of a single
cycle TC. Next, the time duration of the gait cycle is used to
evaluate the phase using the measurement time at this iter-
ation, given that the phase was 0 at t ¼ 0.

A similar simulation was performed for a running person.
In the top part of Fig. 5, a simulated spectrogram of a person

of 1.8 m, running with a constant relative velocity of 3.0 m/s is
depicted. The bottom part of Fig. 5 shows the correct classifi-
cation of this running person and the parameter estimation
results are given in Table 1.

B) Measured data
Measurements of humans (walking and running) and animals
were performed in order to test the correct working of the
algorithm on measured data. A schematic overview of the
used measurement setup is depicted in Fig. 6. From this
figure one can be note that the radar was positioned 0.5 m
above the ground. Also, the target moves in a radial position
away from the radar, starting from a known position. The
radar used for the measurements is a continuous wave
(CW)-radar which transmits a signal with a frequency of
24 GHz. The effective isotropic power of the transmit
antenna was 210 dBW. The radar video signal is sampled
with a sample frequency of 8820 Hz. After some post-
processing (e.g. correcting the I-Q balance) the STFT is
performed on the radar video signal in order to obtain the spec-
trogram. In the STFT a sliding window of 512 samples is used.

Fig. 6. Schematic overview of the measurement setup.

Fig. 5. Simulated spectrogram for a running human and its classification results.

Table 1. Parameter estimation results in a simulation performed for both
a walking and a running person.

Walking Running

Parameters Estimated True Estimated True

m s m s

vrel (m/s) 1.497 0.014 1.5 2.823 0.068 3.0
h (m) 1.893 0.068 1.9 1.792 0.089 1.8
wgc 0.479 0.008 0.47 0.653 0.075 0.65
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In the top part of Fig. 7, the measured spectrogram of a
walking person is given. The walking person has a length of
1.85 m. Looking at the velocity of the torso, the average
walking velocity can be extracted from the spectrogram and
is assumed to be constant at 1.55 m/s. The bottom part of
Fig. 7 shows the classification result. From this figure one
can see that the part of the spectrogram, which contains the
motion of the walking human (up to about 5.5 s), is classified
correctly as human walking. When the person stops moving,
the algorithm classifies this part also correctly as the null-
hypothesis. The estimation results of the motion parameters
at t ¼ 5.18 s are given in Fig. 8. The results of the estimation
of the motion parameters are indicated in Table 2.

A similar test is performed with measurement of a running
person. The spectrogram of this person is indicated in the top

part of Fig. 9. In the first 0.5 s of the measurement, the person
is accelerating toward running, and this part of the measure-
ment is classified as the null-hypothesis. Between around 0.5
and 2.5 s, the motion of a running person can be visually
noticed in the spectrogram. The algorithm classifies this part
correctly, as is observed in the bottom part of Fig. 9. After
2.5 s the person is slowing down and no human motion is
recognized by the algorithm. Estimated parameters at t ¼
2.21 are indicated in Table 2.

Last, to test whether the filter is classifying motion not orig-
inating from humans correctly, measurements on moving
animals were performed. In Fig. 10, the spectrogram of a
duck is depicted. Since a duck is bipedal like humans, a
walking duck shows some similarities to human walking.
Especially the peaks coming from the feet and the torso

Fig. 7. Measured spectrogram for a walking human and its classification results.

Fig. 8. Parameter estimation for measurement with a walking human.
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component are similar to human walking. On the other hand,
a duck makes shorter and quicker steps, and therefore explains
the more spike-like nature of the spectrogram.

After 4.5 s the duck stops moving and hence no motion
occurs anymore. This allows the same spectrogram to be
used for testing when no motion is classified correctly. In
the bottom part of Fig. 10 the classification results are indi-
cated. From this figure one can observe that both the move-
ment of the duck and the part containing no motion are
classified correctly.

Table 2. Parameter estimation results in a measurement performed for
both a walking and a running person.

Walking Running

Parameters Estimated True Estimated True

m s m s

vrel (m/s) 2.91 0.04 1.71 2.91 0.03 2.97
h (m) 1.66 0.04 1.87 1.66 0.02 1.7
wgc 0.10 0.03 0.14 0.10 0.05 0.11

Fig. 9. Measured spectrogram for a running human and its classification results.

Fig. 10. Measured spectrogram of a duck and its classification results.
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V I . C O N C L U S I O N

A model-based classification of human movement using
micro-Doppler spectrograms as inputs was demonstrated.
The joint estimation of motion parameters and the classifi-
cation between human motion and motion of other origin
was successfully performed with a particle filter implemen-
tation. This novel approach showed that the unique signature
of human motion in the spectrogram can be used for jointly
detecting and classifying human motion as well as for esti-
mation of motion parameters. Next, the classification
between human walking and human running was investigated
and the classification proved to be successful on both simu-
lated and measured data. With both types of data, the algor-
ithm showed correct classification results for walking as well
as for running persons. The estimation of the three motion
parameters showed satisfactory results in both cases.
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