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Abstract 

Wavelet Packet based Multi-Carrier Modulation (WPM) offers an alternative to the well-established 

Orthogonal Frequency Division Multiplexing (OFDM) as an efficient multicarrier modulation 

technique. It has strong advantage of being generic transmission scheme whose actual characteristics 

can be widely customized to fulfill several requirements and constraints of advanced communication 

systems. In the last decades wavelets have been favorably applied in signal and image processing 

fields but they just recently attracted attention of the telecommunication community. Therefore, some 

research questions remain to be addressed before novel WPM can be used in practice. One of the 

major concerns involves the performance of WPM transceivers under various synchronization errors. 

In this thesis we analyze the interference in WPM transmission caused by the carrier frequency offset 

and time synchronization errors. Using standard wavelets, the sensitivity of WPM transceivers to 

these errors is evaluated through simulation studies and their performances are compared and 

contrasted to OFDM. To alleviate the WPM„s vulnerability to time synchronization errors, a method 

of synchronization is proposed. The proposed time synchronization method in WPM is based on 

already published feed-forward decision-directed approach which uses correlation method in the 

wavelet domain (after processed by the analysis filter bank in the receiver side), with lower 

implementation complexity and improved stability. The proposed method can be considered as 

“coarse” time synchronization, suitable for estimating large time offset but with less precision. 

Through computer simulations the performance of the proposed method is proven and further its 

performance is compared for different parameters of wavelet filters. 
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1 INTRODUCTION  

 

 

 

 

elecommunication market has progressed rapidly in the last decades, creating a need for new 

techniques that can accommodate high data rates. Many digital communications services has 

been deployed with constantly growing data rates like digital radio, digital television, and 

mobile Internet. In conventional single-carrier (SC) communication systems, the data is transmitted 

sequentially and therefore the data rate Rs is inversely proportional to the duration of each symbol, 

this means higher data rates will result in shorter symbol duration. The problem arises in dispersive 

channels when the duration of transmitted symbols becomes shorter compared to the delay introduced 

by the channel. As a result, the received symbols are widely spread in time and causing Inter Symbol 

Interference (ISI). The amount of ISI in a given channel increases for growing data rate Rs limiting the 

connection speed. Today, WCDMA is one of the fastest single carrier solutions on the market that can 

operate in dispersive environments at a rate of 3.84 Mchips/s. 

1.1 OFDM and WPM 

The problem of ISI in SC can be solved by using Multi-Carrier Modulation (MC) technique. MC 

systems divide the total bandwidth in N narrow channels, which are transmitted in parallel. The 

original data stream at rate Rs is divided into N streams each having data rate of Rs/N and therefore N 

times longer symbol duration, i.e. TMC = NT. Each data symbol in SC systems occupies the entire 

available bandwidth while an individual data symbol in MC system only occupies a fraction of the 

total bandwidth. Therefore, narrow band interference or strong frequency band attenuation can cause 

SC transmission to completely fail but in MC they only affect subcarriers located at particular 

frequencies.  

One of the most popular MC implementation is Orthogonal Frequency Division Multiplexing 

(OFDM), due to its spectrally efficient transmission. OFDM has caught a lot of attention since the 

growth of high data rate applications has caused spectrum to become scarce. Because of its efficient 

bandwidth utilization, OFDM is now the most commonly used MC modulation technique and is 

widely adopted across the world. 

T 
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Figure 1-1: SC vs MC Modulation 

 

Among the systems which employ OFDM techniques are European Digital Audio Broadcasting 

(DAB), Digital Video Broadcasting (DVB), WiFi (IEEE 802.11a/g/j/n), and most recently WiMAX 

(IEEE 802.16). The high spectral efficiency of OFDM is due to its orthogonal subcarriers which allow 

their spectrums to overlap. Adjacent subcarriers do not interfere with each other as long as they 

preserve their orthogonality. Figure 1-2 illustrates this with the spectrum of OFDM for 8 subcarriers. 

 

 

Figure 1-2 : OFDM spectrum with 8 subcarriers 

 

But even with all of its advantages, OFDM doesn‟t solve the problem of radio spectrum scarcity as 

popularity of the wireless services keep increasing every day. Currently, most spectrum has been 

allocated and it is becoming increasingly difficult to find frequency bands that can be made available 
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either for new services or to expand existing ones. Even while available frequency bands appear to be 

fully occupied, a FCC study conducted in 2002 revealed that much of the available spectrum lies 

fallow most of the time (20% or less of the spectrum is used) and that spectrum congestions are more 

due to the sub-optimal use of spectrum than to the lack of free spectrum [1]. 

One possible solution to this problem is introduced in the late 90„s as an intelligent communication 

system that estimates the channel and adaptively reconfigures to maximize resource utilization, 

known as Cognitive Radio [2]. MC modulation is recognized as a good platform for Cognitive Radio 

as the subcarriers located in the frequency bands occupied by legitimate users can be easily cancelled. 

OFDM with desirable properties like spectral efficiency and robustness against channel fading and 

dispersion is one of the possible candidates. However, OFDM employ static subcarriers offering little 

flexibility and moreover each subcarrier has large side-lobes requiring meticulous filtering and 

sufficient guard bands. 

Recently Wavelet Packet based Multi-Carrier Modulation (WPM) has been propounded as an 

alternative to the OFDM [3]-[6]. Also similar to OFDM, WPM employs orthogonal subcarriers which 

spectra is overlapping each other, resulting in high spectral efficiency. But the greatest motivation for 

pursuing WPM system lies in the flexibility they offer and excellent frequency selectivity. Because 

WPM can be efficiently implemented by an iterative method the number of subcarriers and their 

bandwidth can be easily changed. Furthermore the specifications of WPM can be tailored according to 

the engineering requirement by just altering the filter coefficients. Using frequency selective filters 

subcarriers with much lower side-lobes than those of OFDM can be obtained allowing better 

mitigation of interference [7].  

 

 

Figure 1-3 : WPM spectrum with 8 subcarriers 
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However, some key research questions remain to be addressed before WPM can become practically 

implemented. One of the major concerns involves sensitivity and vulnerability of WPM transceivers 

to the synchronization errors, since it is known that those types of errors can destroy orthogonality in 

spectral efficient multicarrier systems and cause interference. Unlike OFDM, wavelets have just 

recently emerged as a MC modulation technique there is little known about their sensitivity to 

synchronization errors and local oscillators„ imperfections. This has motivated us to investigate the 

effect of synchronization errors on WPM transmission, as well as the way to mitigate those problems. 

1.2 Synchronization in WPM 

Due to delay spread of the channel, MC symbols could overlap one another in time, a phenomenon 

known as Inter-Symbol Interference (ISI), and perfect reconstruction in the receiver may not be 

possible. To decrease amount of ISI in dispersive channels, OFDM insert guard intervals between its 

symbols. Usually in OFDM the cyclic prefix (CP) is used as it makes the OFDM signal appear 

periodic and therefore avoid the discrete time property of the convolution.  

The cyclic prefix is a copy of last NCP samples of OFDM symbols which is appended to the front of 

each symbol. The effect of the dispersive channels can be efficiently mitigated if the length of a cyclic 

prefix is set longer than the span of the channel. Figure 1-4 illustrates an OFDM symbol with cyclic 

prefix. 

DataCP

NCP N
 

Figure 1-4 : OFDM symbol with CP 

 

The use of CP has been very beneficial in developing synchronization techniques for OFDM. Not 

only increase the robustness against channel spreading, CP also become the basic foundation in many 

OFDM synchronization techniques. Unfortunately WPM can‟t have any of this luxury due to the 

nature of its overlapping symbols in time domain. But from WPM perspectives, the absence of CP 

also give certain benefit; because cyclic prefix doesn„t contain any useable data it decreases the 

spectral efficiency in OFDM, while WPM without CP can fully utilize its spectral efficiency. 
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1.3  Objectives and Novelty of the Thesis 

The primary objectives of the this thesis work are:  

 To study the characteristics of WPM and its possible synchronization techniques. 

 To evaluate the performance degradation of WPM transceiver in the presence of carrier 

frequency offset and symbol time synchronization error.  

 To devise suitable algorithms to estimate time and frequency offsets and maintain the 

transceiver synchronization. 

 To evaluate the performance of the proposed synchronization algorithm.  

1.4 Outline of the Thesis 

This chapter 1 provide a brief introduction to OFDM and WPM synchronization. Theoretical 

foundation of wavelet transformation is described in chapter 2. The first section of chapter 2 discusses 

the history of wavelet, continued by the basic idea of continuous and also discrete wavelet transform, 

in order to work in finite time domain. Using the underlying principle of multi resolution analysis the 

discrete wavelet transform is practically realized by the filter banks. At this stage the wavelet packed 

are introduced and their composition and decomposition is discussed using analysis and synthesis 

filter banks, respectively. After discussing all theoretical elements, the block diagram of WPM is 

illustrated for the transmitter and receiver. Furthermore, in this chapter we show some standard 

wavelets that can be used in WPM transceivers and give their specifications.  

The synchronization impairments like time offset and frequency offset are discussed in chapter 3. For 

each of these synchronization errors a model is presented and theoretical analysis is given for both 

WPM and OFDM. The Bit Error Rate (BER) performance under time offset and frequency offset is 

investigated by means of simulations studies. The simulations are performed for WPM with different 

types of parameters and compared to OFDM.  

After analyzing the synchronization impairments, the mitigation methods are addressed in chapter 4. 

Recent works in WPM synchronization are discussed in the beginning of this chapter, followed by the 

discussion about algorithms in time offset and frequency offset estimation. The performance of WPM 

with utilization of synchronization algorithm is examined by simulations with various parameters.  

Finally, chapter 5 gives a short summary of the work done and concludes the thesis. The 

recommendations for the further work on WPM can also be found at the end of chapter 5. 
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2 WAVELET THEORY 

 

 

 

 

he wavelet theory is very much related to Fourier analysis. In fact, it can be viewed as an 

extension of Fourier analysis because the basic idea of both transformations is the same: 

representing a function by a set of other functions. In 1800s Joseph Fourier discovered that 

he could superpose sinusoidal functions to represent other functions. Since then Fourier analysis has 

been used extensively by scientists and engineers for all kind of problems and applications. However, 

Fourier analysis does not work equally well for each problem. Fourier analysis is much more useful to 

solve linear problem and observe stationary signals, while it is rendered almost ineffective when 

dealing with brief, unpredictable and non-stationary signals. This is where the Wavelet Transform 

enter the stage. 

The wavelets are a relatively new concept that has been introduced in the 1980s although some 

pioneering work had been done earlier. Since the 1980s wavelets have attracted considerable interest 

from the theoreticians and engineers where wavelets have promising applications. Because of the 

large interest, the wavelet theory has been well developed over the past years and several books on 

this subject have appeared as well as a large volume of research articles. 

2.1 The History of Wavelet 

In the history, wavelet analysis shows many different origins. Much of the work was performed in the 

1930s, and, at the time, the separate efforts did not appear to be parts of a coherent theory.  

Pre-1930 

Before 1930, the main branch of mathematics leading to wavelets began with Joseph Fourier (1807) 

with his theories of frequency analysis, now often referred to as Fourier synthesis. He asserted that 

any 2 -periodic function )(xf  is the sum of its Fourier series: 

 

T 
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Fourier's assertion played an essential role in the evolution of the ideas mathematicians had about the 

functions. He opened up the door to a new functional universe.  

After 1807, by exploring the meaning of functions, Fourier series convergence, and orthogonal 

systems, mathematicians gradually were led from their previous notion of frequency analysis to the 

notion of scale analysis. That is, analyzing ( )f x  by constructing a function, shifting it by some 

amount, and changing its scale. Then applying that structure in approximating a signal and repeating 

the procedure. It turns out that this sort of scale analysis is less sensitive to noise because it measures 

the average fluctuations of the signal at different scales.  

The first mention of wavelets appeared in an appendix to the thesis of A. Haar (1909). One property 

of the Haar wavelet is that it has compact support, which means that it vanishes outside of a finite 

interval. Unfortunately, Haar wavelets are not continuously differentiable which somewhat limits their 

applications.  

The 1930s 

In the 1930s, several groups working independently researched the representation of functions using 

scale-varying basis functions. Those are basis functions that varies in scale by chopping up the same 

function or data space using different scale sizes. For example, imagine we have a signal over the 

domain from 0 to 1. We can divide the signal with two step functions that range from 0 to ½ and ½ to 

1. Then we can divide the original signal again using four step functions from 0 to ¼, ¼ to ½, ½ to ¾, 

and ¾ to 1. And so on. Each set of representations code the original signal with a particular resolution 

or scale. 

By using a scale-varying basis function called the Haar basis function Paul Levy, a 1930s physicist, 

investigated Brownian motion, a type of random signal. He found the Haar basis function superior to 

the Fourier basis functions for studying small complicated details in the Brownian motion.  

Another 1930s research effort by Littlewood, Paley, and Stein involved computing the energy of a 

periodic signal f: 

 

2

0

2
)(

2

1
energy dxxf  (2.2) 
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The computation produced different results if the energy was concentrated around a few points or 

distributed over a larger interval. This result disturbed the scientists because it indicated that energy 

might not be conserved. The researchers discovered a function that can vary in scale and can conserve 

energy when computing the functional energy. Their work provided David Marr with an effective 

algorithm for numerical image processing using wavelets in the early 1980s. This work was very 

influential in computational neuroscience area. 

1960-1980 

Between 1960 and 1980, the mathematicians Guido Weiss and Ronald R. Coifman studied the 

simplest elements of a function space, called atoms, with the goal of finding the atoms for a common 

function and finding the "assembly rules" that allow the reconstruction of all the elements of the 

function space using these atoms. In 1980, Grossman and Morlet, a physicist and an engineer, broadly 

defined wavelets in the context of quantum physics. These two researchers provided a way of thinking 

for wavelets based on physical intuition.  

Post-1980 

In 1985, Stephane Mallat gave wavelets an additional jump-start through his work in digital signal 

processing. He discovered some relationships between quadrature mirror filters, pyramid algorithms, 

and orthonormal wavelet bases. Inspired in part by these results, Y. Meyer constructed the first non-

trivial wavelets. Unlike the Haar wavelets, the Meyer wavelets are continuously differentiable; 

however they do not have compact support. A couple of years later, Ingrid Daubechies used Mallat's 

work to construct a set of wavelet orthonormal basis functions which perhaps become the cornerstone 

of wavelet applications today. 

2.2  Continuous Wavelet Transform 

By using different scaling factors we can stretch or compress the wavelet accordingly, and by 

changing translation parameter we can cause delay or hastening to the wavelet position in time. The 

Continuous Wavelet Transform (CWT) is defined as a sum of a signal multiplied by scaled and 

shifted version of wavelet basis function.  

The value of translation parameter affects only the location of the wavelet and has no influence on 

wavelet duration or bandwidth. For increasing scale, wavelet becomes more dilated and considers the 

long time/low frequency behavior of the input signal while for the decreasing scale wavelet becomes 

more compressed and considers short time/high frequency behavior of the input signal. Therefore the 

scale parameter is inversely proportional to frequency, i.e. low scales correspond to high frequencies 

and high scales correspond to low frequencies.  
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The equation of CWT is given in (3), where an input function )(tf  is decomposed into a set of 

wavelet coefficients ),(  . The complex conjugate of the wavelet is given by 
 . The parameters 

  and   denote scale and translation respectively, and they represent new dimensions of the wavelet 

transform. 

 




 dtttf )()(),( ,  (2.3) 

The wavelets functions used in (2.3) are generated using single mother wavelet by changing the 

scaling parameter and translating the wavelet along the time axes by amount of  : 

 






 








 

t
t

1
)(,  (2.4) 

As majority of the transforms, CWT is also reversible. Under suitable assumptions about )(tf  and 

 , the original signal can be reconstructed from wavelet coefficients by applying the formula for 

inverse wavelet transform: 

 








 

dd
t

c
tf 







 
   2

1
),(

1
)(  (2.5) 

where 

2
ˆ ( )

c d

 



   and )(ˆ  denotes the Fourier transform of )( . 

2.3 Discrete Wavelet Transform 

The CWT is less useful for practical problems because the wavelet coefficients are highly redundant 

to be found and they have to be calculated analytically. Moreover, the calculation of the wavelet 

transform can take a lot of time and computational power. Therefore the discrete wavelets are more 

practical to use. 

As the name already indicates the discrete wavelets does not use continuously scalable and 

translatable wavelets but ones that are scaled and translated in discrete steps. The equation for mother 

wavelet (2.4) can be rewritten for discrete scale and translation as: 

  000, )(  
  tt  (2.6) 
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In equation (2.6) 0 stands for fixed dilation step and 0 is translation factor. The integers   and 

denote scale and translation indices respectively. The most natural choice for dilation step is 2 as this 

result in octave bands, also known as dyadic scales. In this case for each subsequent value of scale 

index, wavelet is compressed in frequency domain by a factor 2 and consequently stretched in time 

domain by the same factor. The translation factor is usually set to 1 in order to get dyadic sampling of 

the time axes as well.  

The output of wavelet transform when discrete wavelets are utilized would be series of wavelet 

coefficients: 

 




 dtttf )()(),( ,  (2.7) 

In order to reconstruct the original signal from wavelet coefficients following condition should be 

satisfied [2]. 

 
22

,

2
, fBffA 

 

  (2.8) 

Equation (2.8) indicates that the energy of the wavelet coefficients should be bounded by two positive 

bounds )0( A  and )( B  where 
2

f denotes the energy of input signal )(tf . 

The wavelets functions )(, t  with ,    should form a frame bounded by A and B. If the 

bound A is not equal to the bound B the decomposition wavelet differs from the reconstruction 

wavelet and we speak of a dual frame. More favorable situation is obtained for so-called tight frame 

where two bounds are equal to each other. Furthermore if A = B = 1 the tight frame becomes an 

orthogonal basis.  

The basis function of a wavelet is called orthogonal if the wavelets generated by dilations and 

translations are orthogonal to each other, i.e.: 

 


 




otherwise

randpif
dttt rp

                0

      1 
)()( ,,


   (2.9) 

In the rest of this chapter we will consider in general orthonormal wavelets. The reconstruction of 

original signal for orthonormal wavelet basis function can be simply obtained by: 

 
 

 )(),()( , ttf  
(2.10) 
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2.4 Multiresolution Analysis 

The Multi resolution analysis (MRA) uses a scaling function to create a series of approximations of a 

signal or image, each differing by a factor of 2 from its nearest neighboring approximation. Wavelet 

functions are then used to encode the difference (detail) in information between adjacent 

approximations. MRA defines a set of requirements for the scaling functions. Given a scaling function 

that meets these requirements we define a wavelet function to use. 

The complete representation of a signal )(tf  requires an infinite number of wavelet functions 

)(, t , as each following wavelet at increased scale covers only a part of the remaining spectrum. 

This can be overcome by introducing a low-pass complementary function )(t , called scaling 

function. The extended scaling functions are generated by time shifted version of a single basis 

scaling function, i.e.: 

 22
, ( ) 2 (2 )        t t L




          (2.11) 

2L  in equation (2.11) implies that the integral of the square of the modulus is well defined. 

MRA describes the construction of orthonormal wavelets using family of subspaces that has to satisfy 

certain properties. The closed subspaces spanned by the scaling functions over integers    

are defined by: 

 )}({ )}2({ , tSpantSpanV 






    (2.12) 

The low values of  represent coarse detail of a signal while higher values of   represent the finer 

detail. MRA requires the spanned spaces by scaling functions V  to have finite energy and that they 

are ordered by inclusion as 
2

21012  ...... 0 LVVVVV    [8], i.e.:  

 1   V V     , 





 }0{ V ,  and 
2 ( )V L



  (2.13) 

According to equation (2.13) the space that contains high resolution signal will also contain 

information about lower resolution of the signal, for example 2V  contains 1V  which contains 0V  et 

cetera. The nested vector spaces spanned by the scaling functions are illustrated in figure 2-1. 
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Figure 2-1 : Spaces Spanned by the Scaling Functions 

 

We can express scaling function )(t  which span 0V  as a weighted sum of shifted )2( t  which span 

1V  using refinement equation: 

 ( ) ( ) 2 (2 ),     
n

t h n t n n     (2.14) 

In (2.14) )(nh  denotes the scaling function coefficients. This equation shows that scaling function 

can be constructed by the sum of its half-length translations.  

The wavelets in MRA are defined as orthogonal bases that span the differences between the spaces 

spanned by the scaling functions at various scales. Let the subspace spanned by the wavelet be 1jW  

then spans 1V  and 2V  can be written as: 

 

 




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 
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       
0

1

100112

001

l
l

WWVV

WWVWVV

WVV

  (2.15) 

Nested vector spaces spanned by the scaling function and wavelet vector spaces are illustrated in 

figure 2-2. 
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Figure 2-2 : Spaces Spanned by the Scaling Functions and Wavelets 

 

The space 0W  spanned by a wavelet is actually a subspace of 1V  or 10 VW   mathematically. 

Therefore, similarly to equation (2.14) the wavelet functions can also be represented by a weighted 

sum of shifted scaling function )2( t . 

 ( ) ( ) 2 (2 ),     
n

t g n t n n     (2.16) 

In (2.16) )(ng  denotes the wavelet function coefficients. Because of the orthogonality condition 

WWWV   ... 100  the scaling and wavelet coefficients are related to each other by: 

 LnhnLhng n  )(for        ),1()1()(  (2.17) 

The reconstruction formulae for DWT using finite resolution of wavelet and scaling function can now 

be expressed as [9]: 
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)2(2),()2(2),()( 22
0  

(2.18) 

The parameter 0  in (2.18) sets the coarsest scale which is spanned by the scaling function. The rest 

is spanned by the wavelets which provide the higher resolution details of the signal. Provided that a 

wavelet system is orthogonal, the discrete wavelet transform (DWT) coefficients, which are  ,    

and  ,   , can now be defined as equation (2.19) and equation (2.20) respectively: 

   2
,, ( ), ( ) ( )2 (2 )f t t f t t dt




          

(2.19) 
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  2
,, ( ), ( ) ( )2 (2 )f t t f t t dt




          
(2.20) 

 

2.5 Filter Banks 

The discrete wavelet transform can be efficiently represented by filtering operations. The weights 

( )h n  given by scaling function coefficients in (2.14) can be represented by low-pass filter H . 

Similarly the weights of wavelet function ( )g n  corresponds to high-pass filter G . Therefore the 

equations (2.14) and (2.16) can be viewed as discrete time filtering with filters H  and G  

respectively [3]. In the rest of this thesis we will refer to filter H  as scaling filter and to filter G  as 

wavelet filter. Filtering a signal can be viewed as the convolution of signal with filter„s coefficients. 

For a Finite Impulse Response (FIR) filter H  of length L  and an input signal ( )x n  the filtering 

operation is given by: 

 

1

0

( ) ( ) ( ) ( )
L

k

x n h n x k h n k




    (2.21) 

Due to orthogonality condition wavelet and scaling filter are related to each other according to 

equation (2.17). In frequency domain the spectrum of wavelet filter can be seen as the mirror image at 

frequency of 
2

 of scaling filter„s spectrum. The scaling filter is actually half band Low-Pass Filter 

(LPF) and complementary wavelet filter is half band High-Pass Filter (HPF). The frequency response 

of these orthogonal filters is depicted in figure 3. 

 

 

Figure 2-3 : Frequency response using Daubechies filter with length 8 
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Filtering of a signal with perfect half band pass filter removes exactly half of the frequency 

components from the input signal meaning that the number of samples in the filtered signal has now 

became redundant. In order to remove redundancy we can perform down-sampling. For half band 

pass filter the filtered signal should be down-sampled by 2 in order to remove redundant information. 

If the signal is down-sampled by a larger factor we will lose information and the frequency 

components will be mixed up. The down-sampling by factor 2 can be seen as taking every other 

sample of the input signal and discarding the rest of the samples, i.e.: 

 ( ) (2 )y n x n  (2.22) 

The opposite operation to down-sampling is up-sampling. Up-sampling increases the length of a 

signal by inserting zeros between each pair of samples. In contrast to down-sampling, up-sampling 

does not discard information and therefore it can always be inverted.  

The up-sampling by a factor 2, doubles the number of samples in a signal by inserting one zero 

between each pair of samples. This can be mathematically illustrated by: 

 
   for   2

( ) 2

0          otherwise

m
x m n

y m

  
  

  



 (2.23) 

2.5.1 Analysis Filter Bank  

The refinement equations given in (2.14) and (2.16) can be rewritten so that the lower scale 

representations of the wavelet and scaling functions can be expressed in those of higher scale as [5]: 
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 (2.24) 
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 (2.25) 

Using derivation carried above for wavelet and scaling function, we can express similarly DWT 

coefficients at scale   by coefficients at the higher scale 1   as follows: 
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 (2.26) 

 

 

  ,

2

1
12

, ( ), ( )

( )2 (2 )

( 2 ) ( )2 (2 )

( 2 ) ( 1, )

m

m

f t t

f t t dt

g m f t t m dt

g m m

 







   

 

 

  






 

  

  



 



 (2.27) 

Equations (2.26) and (2.27) imply that wavelet and scaling DWT coefficients at the certain scale can 

be calculated by taking a weighted sum of DWT coefficients from higher scales. This can be viewed 

as convolution between the DWT coefficients at scale 1   with wavelet and scaling filter 

coefficients and subsequently down-sampling each output with factor 2 to obtain new wavelet and 

scaling DWT coefficients at scale  . Therefore, we can describe equations (2.26) and (2.27) by a 2-

channel filter bank illustrated in figure 2-4. 

 

Figure 2-4 : Analysis Filter Bank 

 

The 2-channel filter bank first splits the input signal in two parts and filters one part with filter H and 

other with filter G. Both filtered signals are then down-sampled by 2 and resulting signals are 

forwarded to the output of the 2-channel filter bank. Each output signal will therefore contain half the 

number of samples and will span half of the frequency band compared to the input signal. It should be 

noticed that the number of samples at the input of the filter bank equals the number of samples at the 

output. 
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The complete representation of the DWT can be obtained by iteration of the 2-channel filter bank and 

taking repeatedly scaling DWT coefficients   as input. The iteration process starts with   at the 

largest scale which is equal to the original signal. The number of stages in iteration process will 

determine the DWT resolution and therefore the number of channels. If the input signal f  has 512 

samples and contains frequencies that lie between 0 and  , the first stage of filter banks will divide 

the input signal into 256 samples in each branches after down-sampling. The second stage filter banks 

will repeat the same process to the previous output and so on. The resulting decompositions together 

will still contain 512 samples and span the same frequency band as the original signal but they are 

decomposed in different DWT coefficients. The subband structure of wavelet decomposition in 

frequency domain can be calculated using Fourier transformation. 
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Figure 2-5 : 3-Stage Analysis Filter Banks 

 

 

 

Figure 2-6 : Frequency Bands for 3-Stage Analysis Filter Banks 
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2.5.2 Synthesis Filter Bank  

The reconstruction formula for DWT is given in equation (2.18). If we now substitute the refinement 

equations for wavelet and scaling function, (2.16) and (2.14) respectively, into reconstruction 

equation (2.18) we get: 
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
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

  

  

 

 
 (2.28) 

Multiplying both side of this equation with 
1(2 ')t    and taking integrals allows us to describe 

the DWT coefficients at higher scales by those of the lower scale as [5]: 

 ( 1, ) ( , ) ( 2 ) ( , ) ( 2 )
m m

m h m m g m               (2.29) 

The equation (2.29) implies that the DWT coefficients at certain scale level   can be reconstructed 

by taking a combination of weighted wavelet and scaling DWT coefficients at previous scale  . This 

process can be described by the 2-channel synthesis filter bank, illustrated in figure 2-7. 

 

 

Figure 2-7 : Synthesis Filter Bank 

 

The 2-channel synthesis filter bank performs exactly opposite operation compared to previously 

discussed analysis filter bank. The wavelet and scaling DWT coefficients are first up-sampled by 

factor 2 and after that the wavelet function DWT coefficients are filtered with HPF G  while scaling 

function DWT coefficients are filtered with LPF H . The two filtered signals are then added to each 

other to construct DWT coefficients at higher scale. The filters H  and G  are according to equation 

(2.28) and equations (2.25) and (2.26) time reversed version of filters H  and G  respectively.  

The decomposition of a signal in terms of coefficients is called discrete wavelet transform. In order to 

reconstruct the original signal from coefficients we can apply inverse wavelet transform, abbreviated 
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IDWT. The IDWT can be efficiently implemented by iterating the 2-channel synthesis filter bank in 

the same manner like we have done in the previous paragraph for the 2-channel analysis filter bank. 

The example of 3-stages synthesis tree is illustrates in figure 2-8. 
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Figure 2-8 : 3-Stage Synthesis Filter Banks 

 

If our primal assumption of orthogonality in equation (2.17) is valid, the reconstructed signal then is 

simply a delayed version of the input signal ( ( ) ( ))x n y n . The filter banks that satisfy this property 

are called perfect reconstruction filter banks. 

2.6 Wavelet Packets  

The resolution of discrete wavelet transform, as described so far, depends on the frequency bands. 

Because we are iterating the 2-channel filter bank only for the low pass output (scaling function 

branch), at the end of decomposition the high frequencies will have wide bandwidths while low 

frequencies will have narrow bandwidths, as seen in figure 2-6.  

The wavelet packet transform on the contrary performs the iteration of the 2-channel filter bank on 

both sides: low pass (scaling function branch) and high pass (wavelet function branch). Because the 

high frequencies are decomposed in the same manner as low frequencies the wavelet packet transform 

has evenly spaced frequency resolution. Figure 2-9 shows the frequency bands for 3-stage wavelet 

packet tree. 
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Figure 2-9 : Frequency Bands for 3-Stage Wavelet Packets Tree 

 

The filter bank structure for wavelet packet transform expands to a full binary tree. In order to make 

clear distinction between different sets of coefficients we will label each wavelet packet   by the 

level l  which corresponds to the depth of the node in the tree and by the current position p  of the 

node at a given level.  

Wavelet packet decomposition recursively splits each parent node in two orthogonal subspaces 
p

lW  

located at the next level:  

 
2 2 1

1 1

p p p

l l lW W W 

    (2.30) 

The subspaces given in equation (2.30) are those spanned by the basis functions of wavelet packets: 

 2 {2 (2 )}p l p l

l lW Span t    (2.31) 

Wavelet packet coefficients   at a certain level are calculated by convolving the wavelet and scaling 

filter with wavelet packets coefficients from previous level. This action is performed repeatedly for all 

wavelet packets until the full binary tree is obtain with desired depth. The equation (2.30) shows the 

recursive equation for wavelet packets generation. The wavelet packets coefficients 
2

1( )p

l 
 are 

generated using the scaling filter and coefficients 
2 1

1 ( )p

l 


 are created using the wavelet filter. 
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(2.32) 
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In the regular DWT decomposition for each additional level we need only to perform single iteration 

of 2-channel filter bank while in wavelet packet transform the number of iterations is exponentially 

proportional to the number of levels. Therefore, the wavelet packet transform has higher 

computational complexity when compared to regular DWT. By utilization of fast filter bank algorithm 

wavelet packet transform requires ( log( ))O N N operation, similar to FFT while DWT needs only 

( )O N  calculation [10]. Figure 2-10 and 2-11 illustrates the full binary tree for the 3-stages wavelet 

packet analysis and synthesis, respectively. 

The reconstruction of wavelet packets is also performed in an iterative method. For each pair of 

wavelet packets coefficients at level l  of the tree we can calculate wavelet packets coefficients at the 

previous level 1l   by: 

 
2 2 1

1 1( ) ( ) ( 2 ) ( ) ( 2 )p p p

l l l

m m

m h m m g m     

       (2.33) 

 

 

Figure 2-10 : 3-Stage Wavelet Packets Analysis Tree [11] 
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Figure 2-11 : 3-Stage Wavelet Packets Synthesis Tree [11] 

 

2.6.1 Wavelets Families 

Each wavelet has some distinguishing characteristics that make it more suitable for one application 

than other. Therefore during design of a system the careful consideration of different wavelet 

properties should be made with respect to the system requirements. The selection of wavelets is 

generally made on certain wavelet properties, such as: Compact Support, Orthogonality, Symmetry, 

and K-Regularity/Vanishing Moments. 

Compact support is defined by the length of the filter. In order to decrease computational complexity 

we prefer shorter filters however, filter length is closely related to other wavelet properties like 

orthogonality or regularity. This means by setting other wavelet properties we automatically define 

minimum filter length.  

Orthogonality ensures perfect reconstruction making it one of the most vital wavelet properties. For 

communication purposes we absolutely require orthogonal wavelets but for other applications 

orthogonality is occasionally too restrictive.  

Symmetrical wavelets have as feature that transform of the mirror of an image is the same to the 

mirror of the wavelet transform. None of the orthogonal wavelets except Haar wavelet is symmetric. 

Although, requiring symmetric wavelets involuntarily means that wavelets are not orthogonal there 
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are some applications that prefer symmetric wavelets above orthogonal ones. For instance image 

compression techniques like JPEG2000 uses biorthogonal symmetric wavelets. Because by 

compression of an image we discard one part of the wavelet coefficients containing high detail, the 

perfect reconstruction has become impossible anyhow. The fulfillment of symmetry property in 

JPEG2000 on the other hand results in more natural, smooth images.  

K-regularity is also an important measure for wavelets because it helps reduce the number of non-

zero coefficients in the high-pass sub-bands and it is one of the easiest ways to determine if a scaling 

function is fractal. Usually the more a wavelet has zero wavelet moments the smoother the scaling 

function is. However this is not a tight condition. The smoothness is actually defined by the 

continuous differentiability of the scaling function. There are two ways in which smoothness can be 

defined: local by the Hölder measure and global by the Sobolev measure [11].  

The following are some of the popular wavelets and their general properties [12]: 

Haar Wavelets: Compactly supported wavelet, the oldest and the simplest wavelet. 

 

Figure 2-12 : Haar Wavelets 

 

Daubechies Wavelets: Compactly supported wavelets with extremal phase and highest number of 

vanishing moments for a given support width. Associated scaling filters are minimum-phase filters. 
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Figure 2-13 : Daubechies Wavelets 

 

Biorthogonal Wavelets: Compactly supported biorthogonal spline wavelets for which symmetry and 

exact reconstruction are possible with FIR filters (in orthogonal case it is impossible except for Haar). 

 

Figure 2-14 : Biorthogonal Wavelets 

 

Coiflets Wavelets: Compactly supported wavelets with highest number of vanishing moments for 

both   and   for a given support width. 
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Figure 2-15 : Coiflets Wavelets 

 

Symlets Wavelets: Compactly supported wavelets with least asymmetry and highest number of 

vanishing moments for a given support width. Associated scaling filters are near linear-phase filters. 

 

 

Figure 2-16 : Symlets Wavelets 

 

It can be seen that each wavelet has some distinguishing characteristics that make it more suitable for 

one application than other. The differences these wavelet properties is summarized in Table 2.1. The 

Nr and Nd notations for biorthogonal wavelet are the length of reconstruction scaling filter and length 

of decomposition scaling filter, respectively. 
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Table 2-1 : Wavelet Families Properties 

Family Name Haar Daubechies Biorthogonal Coiflets Symlets 

Order N - N strictly 

positive 

Various 

Nr and Nd 

N = 1, 2, ... , 

5 

N = 2, 3, ... 

Orthogonal yes yes no yes yes 

Biorthogonal yes yes yes yes yes 

Compact 

Support 

yes yes yes yes yes 

DWT possible possible possible possible possible 

CWT possible possible possible possible possible 

Support 

Width 

1 2N-1 2Nr+1 for rec., 

2Nd+1 for dec. 

6N-1 2N-1 

Filters Length 2 2N max(2Nr,2Nd)+2 6N 2N 

Regularity Haar is not 

continous 

about 0.2 N 

for large N 

for psi rec.: Nr-1 & 

Nr-2 at knots 

-  

Symmetry yes far from yes near from near from 

  Vanishing 

Moments 

- - - 2N - 

  Vanishing 

Moments 

1 N Nr 2N-1 N 

 

2.6.2 Wavelet Packet based Multicarrier Modulation  

Wavelet Packet based Multi Carrier Modulation (WPM) is a multiplexing method that makes use of 

orthogonal wavelet packets waveforms to combine a collection of parallel signals into single 

composite signal. Fundamentally OFDM and WPM have many similarities as both use orthogonal 

waveforms as subcarriers and they achieve high spectral efficiency by allowing subcarriers„ spectra to 

overlap one another. The adjacent subcarriers do not interfere with each other as long as the 

orthogonality between subcarriers is preserved.  

The difference between OFDM and WPM is the shape of the subcarriers and in way they are created. 

OFDM makes use of Fourier bases which are static sinusoidal functions while WPM uses wavelets 

which offer much more flexibility. By utilization of different wavelets in WPM we can get different 

subcarriers which lead to different transmission system characteristics. Therefore, it is possible in 

WPM by selection of wavelets to change the bandwidth efficiency, frequency concentration of 

subcarriers, sensitivity to synchronization errors, PAPR, etc. [8].  
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WPM employs Inverse Discrete Wavelet Packet Transform (IDWPT) at the transmitter side and 

Discrete Wavelet Packet Transform (DWPT) at the receiver side, analogous to the IDFT and DFT 

used by OFDM transceivers. The IDWPT is implemented by wavelet packet synthesis tree which 

combines different parallel streams into a single signal. This composite signal is afterwards 

decomposed at the receiver using wavelet packets analysis tree or so called DWPT. The structure 

where synthesis tree is placed prior the analysis tree is called transmultiplexer [9].  

 

 

Figure 2-17 : M-band Transmultiplexer structure 

 

The number of levels in synthesis and analysis trees determines the amount of subcarriers in the WPM 

system by: 

 2lN   (2.34) 

where N  determines the number of subcarriers and l  represents the number of levels in the filter 

bank.  

The wavelet packet synthesis and analysis tree are constructed by iteration of corresponding 2-channel 

filter bank, as explained in equation (2.34). Therefore, the subcarriers of WPM are completely 

determined by the scaling and wavelet filter. The calculation of wavelet packet waveforms is 

performed in a recursive manner using filters coefficients ( )h n  and ( )g n  as: 

 
2

1( ) 2 ( ) ( 2 )p p l

l l

m

t h n t n     (2.35) 
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2 1

1 ( ) 2 ( ) ( 2 )p p l

l l

m

t g n t n 

    

The subscripts l  in equation (2.35) determines the level in the tree structure and superscript p  can be 

seen as subcarrier index at a given tree depth (level l ). The filters in WPM cannot be arbitrary chosen 

and not all scaling and wavelet filters will fit the requirements for a communication system. First of 

all, we will only consider FIR filters because they allow wavelet packet transformation to be 

implemented by described fast recursive algorithm. Furthermore, we require perfect reconstruction 

and hence the orthogonal subcarriers. These can only be generated by filters that fulfill the 

orthogonality constraint. The WPM subcarriers are mutually orthogonal if they satisfy the following 

condition: 

 ( ), ( ) ( ) ( ) ( )p i p i

l l l l

k

t t t t p i        (2.36) 

The transmitted signal for WPM is composed of successively modulated WPM symbols that are built 

from a sum of modulated subcarriers. The WPM transmitted signal in the discrete time domain can be 

expressed as:  

 2

1

, log( )
0

( ) ( )
N

k

u k N
u k

S n a n uN




   (2.37) 

where k  denotes the subcarrier index and u  denotes the WPM symbol index. The constellation 

symbol modulating k -th subcarrier in u -th WPM symbol is represented by ,u ka .  

If we assume that the WPM transmitter and receiver are perfectly synchronized and that the channel is 

ideal, the detected data at the receiver can be given by:  
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 (2.38) 
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In equation (2.38) we have used the fact that different symbols are not interfering with each other and 

that subcarriers with index other than k are not contributing, according to the orthogonality equation 

(2.36).  

One important property of wavelet based transformation is that the waveforms used in general are 

longer than the transform duration of one symbol. This cause WPM symbols to overlap in time 

domain. Thanks to the orthogonality of used waveforms this overlap of the symbols does not 

automatically lead to Inter Symbol Interference (ISI). 

The multicarrier symbols of OFDM are not overlapping each other as IDFT and DFT transform are 

carried out for each group of subcarriers independently. On the other hand, the use of longer 

waveforms in WPM allows better frequency localization of subcarriers while in OFDM the 

rectangular shape of DFT window generates large side lobes. Recall the spectra of WPM and OFDM 

for 8 subcarriers which are illustrated in chapter 1. 

The other non-palatable consequence of time overlap is the inability to use guard interval in WPM 

systems. Although adding a guard interval severely decreases spectral efficiency, an effective and low 

complexity method to cope with dispersive channels and time offset. In contrast to the OFDM, in the 

WPM we will not add cyclic prefix block as it would only lead to the decrease of spectral efficiency 

without giving any benefits. 

2.7 Summary of Wavelet Theory 

In this chapter we discussed the history of wavelet, basics of the theory of the wavelet transform, and 

explained how discrete wavelet transform can be efficiently implemented using filter banks. Due to 

efficient implementation and the freedom they provide, wavelets have emerged in many different 

fields. One of the most recent idea is to propose wavelets as a candidate for multicarrier modulation. 

This is possible because not only wavelet has orthogonal properties like OFDM, which is widely used 

for multicarrier communication, but wavelet also provide more flexibility than OFDM. 
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3 SYNCHRONIZATION IMPAIRMENTS 

 

 

 

 

he principle of multicarrier (MC) modulation is to divide the total bandwidth into several 

parallel narrow subbands, giving multicarrier systems some important advantages, such as 

increased symbol duration and the use of several narrow subbands, when compared to 

single-carrier (SC) communication systems. Increased symbol duration means better performance in 

dispersive channels and by using of several narrow subbands, narrow band interference or strong 

frequency band attenuation only affects particular subcarriers and not the whole system. Because of 

these advantages and the fact that wireless systems in the time-dispersive environments (e.g. home, 

office, etc.) is becoming more and more widely used, MC modulation techniques have gained 

popularity in the last decades.  

One of the biggest problem in wireless transmission system is the presence of time synchronization 

error. Time synchronization error occurs when the start of the MC symbol is incorrectly detected, 

selecting part of the adjacent symbol while discarding some samples at begin or at end of the useful 

symbol. Due to time synchronization errors the Inter Symbol Interference (ISI) arises as well as the 

Inter Carrier Interference (ICI). The use of guard intervals, like cyclic prefix in OFDM, can 

significantly improve the system performance in case of timing errors. However, the use of guard 

interval is not feasible solution for WPM systems because of time-overlapping nature of wavelet 

packet transform [11]. 

In case of OFDM, the effects of time synchronization errors are well documented in the literature 

[13]-[15] and number of synchronization techniques are reported to estimate and reduce the time 

offset effects [16]-[21]. 

Besides the synchronization errors in form of time synchronization error, the MC transceiver can also 

suffer from frequency and phase misalignment. In OFDM and WPM, the subcarriers have to be 

closely spaced to each other, and overlapping over each other, in order to achieve high efficiency in 

bandwidth utilization.  

T 
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Although both OFDM and WPM have orthogonal subcarriers so that even the subcarriers overlap they 

do not interfere one another, the radio front-end induced impairments as frequency offset and/or phase 

noise. These impairments can cause the subcarriers to lose their mutual orthogonality and to begin 

interfering one with another.  

Similar to the time offset effects on the performance of the system, also for frequency synchronization 

errors the documentation is far more comprehensive for OFDM than for WPM. The sensitivity of the 

OFDM to the frequency synchronization error is reported in [22]-[23] and there are various 

techniques for OFDM frequency synchronization available in the literature [24]-[25]. 

In this chapter we will address different types of synchronization errors for the WPM transceiver, and 

compare the performance of WPM under these errors to OFDM. Each synchronization error will be 

treated separately. First we will treat the time offset between transmitter and receiver, after which 

follows the discussion of frequency offset. We will finalize this chapter with summary of the results. 

 

3.1 Time Offset in Multicarrier Modulation  

One of the major concerns of a multicarrier system is their vulnerability to timing synchronization 

errors, which occur when multi-carrier symbols are not perfectly aligned at the receiver. Because of 

the time offset samples outside a WPM or OFDM symbol get erroneously selected, while useful 

samples at the beginning or at the end of that particular symbol get discarded.  

The time synchronization error is modeled by shifting the received data samples by a time offset value 

tε to the left or right, depending on the sign of the t . If we assume that transmitted signal is given by 

S(n), the received signal R(n) in presence of time synchronization error can be expressed as: 

 ( ( )) ( ) ( )R n t k S n w n    (3.1) 

Without loss of generality, we assume for the moment that w(n) = 0. 

Time offset degrades the performances of multicarrier transceivers for the greatest part by introducing 

inter-symbol interference (ISI) and inter-carrier interference (ICI). WPM and OFDM share many 

similarities as both are orthogonal multicarrier systems but in case of timing error there is a major 

difference that causes different behaviors for each transmission scheme. 

The actual length of the WPM symbols is defined by the wavelet used and in general it is significantly 

longer than the OFDM symbol. This excessive length of WPM symbols does not cause frame size to 

grow by allowing symbols to overlap one another. In case of time offset this overlap of the symbols in 
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WPM causes each symbol to interfere with several other symbols while in OFDM each symbol can 

only interfere with one adjacent symbol. 

The second important difference between the two transmission schemas is the use of the guard 

interval between the symbols. OFDM uses cyclic prefix that significantly improves its performance 

when time errors occur, assuming that time offset is not exceeding the size of cyclic prefix and that 

the direction of time shift is towards the cyclic prefix. The WPM, on the other hand, cannot benefit 

from such guard interval since the WPM symbols overlap one another. 

3.1.1 Time Offset in OFDM 

Adding a Cyclic prefix is an effective and low complexity method to cope with dispersive channels 

and time synchronization errors in OFDM transceivers. Two distinct situations can occur under time 

synchronization errors, depending on the direction of the time offset: 

 Time synchronization error away from own cyclic prefix (to the right). 

 Time synchronization error towards own cyclic prefix (to the left). 

In case of time synchronization error away from CP, the FFT window is misaligned to the right. This 

situation is illustrated by 3 OFDM symbols (u-1, u, u+1) in Fig. 3-1. Each OFDM symbol consists of 

N data samples and an extension of CPN  samples representing cyclic prefix. The FFT window in the 

situation illustrated will contain N t  data samples (( 1),( 2),..., )t t N    of the considered u-th 

OFDM symbol, missing first t  time offset samples. Instead t  samples (1, 2, . . . , t ) of the next (u 

+ 1)-th symbol will be erroneously selected. 

 

 

Figure 3-1 : Timing offset away from CP (to the right) [11] 
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An OFDM system that is affected by timing error and where samples of neighboring symbol are 

wrongly selected experience severe degradation of the performance. The demodulated OFDM signal 

after FFT can be written as: 

 

( )' '1 12 2 2

', ' ', ' ',

0 0; '

Useful Signal ICI

( ) '1 1 2 2

1,

0

ISI

1
ˆ
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k n tk k nN t Nj t j j
N N N

u k u k u k

n k k k

k n N t k nN N j j
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u k

n N t k
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a a e a e e
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a e e
N
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  
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 

   

  

   


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
 



 

 

 (3.2) 

The first component of (3.2) represents useful signal which is attenuated and phase shifted by a term 

proportional to subcarrier index k’. The second component of (1) gives ICI and the third component 

stands for ISI with next symbol. 

In case of time synchronization error towards the CP, the FFT window is misaligned to the left, 

illustrated in Fig. 2. In this case FFT window consists of first N t  samples (1,2,..., ( ))N t  of the 

considered uth OFDM symbol and the last t  samples of the own cyclic prefix. We assume for the 

convenience that CPt N  .  

 

 

Figure 3-2 : Timing offset towards the CP (to the left) [11] 

 

The demodulated OFDM signal affected by time offset in the direction of symbol‟s own cyclic prefix 

is given in Eq. (2), for case when CPt N  . 
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Because of the cyclic prefix‟ presence, the orthogonality is preserved and ISI and ICI terms have 

disappeared. The timing error towards the cyclic prefix results therefore in pure phase shift. 

3.1.2 Time Offset in WPM 

The WPM transceivers do not apply guard intervals and therefore the direction of time offset is 

inconsequential. The demodulated signal under influence of time offset t  can be written as: 
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(3.4) 

In order to shorten the derivation the following notation is defined: 

 2 2

, ' '

, ' log ( ) log ( )( ) ( ) ( ' )u u k k

k k N N

n

t n uN u N n t        (3.5) 

Equation (3.5) represents the autocorrelation and the cross-correlation of the WPM waveforms. When 

k = k’ the two subcarrier waveforms are time-reversed images of each other and (3.5) gives the 

autocorrelation sequence of the waveform k. In the other cases when 'k k  the two waveforms 

correspond to different subcarriers and (3.5) stands for crosscorrelation between waveforms k and k’. 

Using Eq. (3.4) and (3.5) we can now express the output of the WPM receiver for the k-th subcarrier 

and u-th WPM symbol as: 

 

1
', ' , ' , '

', ' ', ' ', ' , ' ', ' , , '
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

  

         
(3.6) 

In Eq. (3.6) the first term stands for attenuated useful signal. The second term gives the ISI due to 

symbols transmitted on the same subchannel and the third term denotes ICI measured over the whole 

frame. 

The received constellation points of WPM under time synchronization errors do not experience linear 

phase rotation, opposed to OFDM where rotation of constellation points is proportional to subcarrier 

index. The WPM signal in presence of timing error will however be attenuated and it will suffer from 

ISI and ICI. 
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3.1.3 Numerical Results for Time Offset 

The performances of WPM in presence of timing synchronization errors are investigated by means of 

simulations. The time offset is modeled as a discrete uniform distribution with integer value, i.e. 1 

sample. Also in this simulation we include OFDM and theoretical AWGN BER as reference. We use 

cyclic prefix of 16 samples that is placed in front of OFDM symbols, while in WPM we don„t use any 

guard interval.  

Due to utilization of cyclic prefix the spectral efficiency of OFDM is decreased by 12.5% while 

spectral efficiency of WPM has remained unchanged. Finally, we employ the oversampling in order 

to magnify the difference in performance between various systems and wavelets. An overview of 

simulation parameters is given in table 3-1 through 3-4, while the respective results are shown in 

figure 3.3 through 3.6. 
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Table 3-1 : WPM Time Offset Simulation with Various Filter Length 

Simulation Parameters  

Wavelet Type  Daubechies 

Wavelet Filter Length 2 (Haar), 4, 10, 20, 40 

Number of Subcarriers 128 

Number of Multicarrier Symbols per Frame 30 

Modulation QPSK 

Channel AWGN 

Oversampling Factor 10 

Time Offset (in sample) 1t   

 

 

Figure 3-3 : WPM Time Offset Performance with Various Filter Length 

 

From figure 3-3 we can see that the OFDM system performs much better under time synchronization 

errors when compared to the WPM. This is due to cyclic prefix which increases robustness to channel 

spreading. The WPM cannot profit from these revisions and therefore show poor performance in 

presence of timing error. There is a slight degradation of BER performance when the wavelet filter is 

longer, mainly in the high SNR region. 

AWGN Channel; Time Offset = 1 sample, constant across all subcarriers 
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Table 3-2 : WPM Time Offset Simulation with Various Number of Subcarriers 

Simulation Parameters  

Wavelet Type  Daubechies 

Wavelet Filter Length 20 

Number of Subcarriers 128, 64, 32, 16, 8 

Number of Multicarrier Symbols per Frame 30 

Modulation QPSK 

Channel AWGN 

Oversampling Factor 10 

Time Offset (in sample) 1t   

 

 

Figure 3-4 : WPM Time Offset Performance with Various Number of Subcarriers 

 

In figure 3-4, we compare a different number of subcarriers in WPM. Although the performance of 

each subject understudy is slightly different, it can be seen that the scenario with larger number of 

subcarriers performs better. Although the effect is not significant, this is understandable because when 

more subcarriers are utilized, the symbol duration will also become longer and it will be beneficial in 

combating instantaneous fading and time offset.  

AWGN Channel; Time Offset = 1 sample, constant across all subcarriers 
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Table 3-3 : WPM Time Offset Simulation with Various Number of Symbols 

Simulation Parameters  

Wavelet Type  Daubechies 

Wavelet Filter Length 20 

Number of Subcarriers 128 

Number of Multicarrier Symbols per Frame 100, 80, 60, 40, 20 

Modulation QPSK 

Channel AWGN 

Oversampling Factor 10 

Time Offset (in sample) 1t   

 

 

Figure 3-5 : WPM Time Offset Performance with Various Number of Symbols 

 

In other hand, from figure 3-5 we can see the effects of various number of symbols to the 

performance, which is negligible. It can be concluded that there isn‟t any direct relation of the number 

of symbols to the performance. 

 

 

AWGN Channel; Time Offset = 1 sample, constant across all subcarriers 
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Table 3-4 : WPM Time Offset Simulation with Various Time Offsets 

Simulation Parameters  

Wavelet Type  Daubechies 

Wavelet Filter Length 20 

Number of Subcarriers 128 

Number of Multicarrier Symbols per Frame 100 

Modulation QPSK 

Channel AWGN 

Oversampling Factor 10 

Time Offset (in sample) 1.5 1.5t    

 

 

Figure 3-6 : WPM Time Offset Performance with Various Time Offsets 

 

In figure 3-6, performance with various time offset can be observed. The SNR is kept fixed at 16 dB 

and we compare different length of wavelet filters. The result align well with the previous result from 

figure 3-3. The wavelet filters with longer length suffer from slight performance degradation in almost 

any given time offset. The BER curves of WPM are almost perfect mirror images with respect to the 

origin. This does not hold for OFDM, since we can see clearly that the negative timing offset (towards 

the own cyclic prefix) result in much lower BER when compared to the positive timing offsets (away 

from the own cyclic prefix). 
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3.2 Frequency Offset in Multicarrier Modulation 

The orthogonality between the subcarriers is maintained at the receiver only if the transmitter and 

receiver have the same reference frequency. Any offset in the frequency will result in loss of 

orthogonality and hence in generation of interference. The interference is the most severe 

consequence of frequency offset but not the only one. Besides the interference term, frequency offsets 

initiates attenuation and phase rotation of each subcarrier. 

Generally frequency offset can be caused by misalignment between receiver and transmitter local 

oscillator frequencies or due to Doppler shift. The Doppler frequency shift df  is proportional to the 

subcarrier frequency ( )f n  and the relative speed between the transmitter and the receiver rv . The 

Doppler shift is expressed as: 

 
( )

( ) r
d

v f n
f n

c
  (3.7) 

In (3.7) c denotes the speed of light and it is approximately equal to 3×10
8
 m/s. The frequency of each 

subcarrier can be calculated by taking the sum of main carrier frequency cf  and baseband subcarrier 

frequency scf , i.e.: 

 ( ) ( )c scf n f f n   (3.8) 

Using equation (3.7) and (3.8) we can express the relative frequency offset due to Doppler shift as the 

ratio between the actual frequency offset and inter-carrier spacing as: 
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 (3.9) 

The frequency offset can be modeled at the receiver by multiplying received time-domain signal by a 

complex exponential whose frequency component is equal to frequency offset value. If we assume 

that transmitted signal is given by S(n), the received signal R(n) can now be written as: 

 02 /
( ) ( ) ( )

j f n N
R n S n e w n 

   (3.10) 

In (3.10) f  denotes the relative frequency offset due to local oscillator mismatch or due to Doppler 

shift or due to combination of both. N stand for the total number of subcarriers, 0  is initial phase and 

w denotes additive white Gaussian noise (AWGN). Without loss of generality, we assume for the 

moment that w(n) = 0 and 0  = 0. 
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3.2.1 Frequency Offset in OFDM 

In OFDM the frequency offset prevents the perfect alignment of FFT bins with the peaks of the sinc 

pulses i.e. subcarriers. The FFT output corresponding to the k-th subcarrier can be written in this case 

as: 
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 (3.11) 

Using the geometric series properties the equation (3.11) can also be expressed as: 
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We can split equation (3.12) into two distinct parts: 
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The first component of equation (3.13) stands for useful demodulated signal, which has been 

attenuated and phase shifted due to frequency offset. The second part of (3.13) contains the ICI term, 

in which contribute all other subcarriers. 

3.2.2 Frequency Offset in WPM 

The presence of the frequency offset in WPM transceiver cause the frequency misalignment between 

the waveforms of the transmitter and the receiver. The detected data at the WPM receiver in case of 

the frequency offset can be written for the k-th subcarrier and u-th symbol as [11]: 
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(3.14) 

In order to shorten the derivation we are going to use different notation, first we can define: 
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Using equation (3.14) and (3.15) we can now express the output of the WPM receiver for the k-th 

subcarrier and u-th WPM symbol as [11]: 
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In equation (3.16) the first term stands for attenuated and rotated useful signal. The second term gives 

the ISI due to symbols transmitted on the same subchannel and the third term denotes ICI measured 

over the whole frame. 

3.2.3 Numerical results for Frequency Offset 

The performance of WPM with frequency offset has been investigated by means of computer 

simulations and compared to the well-known OFDM. The WPM transceiver is simulated with various 

transmission properties as shown in Table 3-5. To simplify the analysis, the channel is taken to be 

additive white Gaussian noise (AWGN) and no other distortions except frequency offset is 

introduced. QPSK is the modulation of choice and frame size is set to 100 multicarrier symbols, each 

consisting of 128 subcarriers. Furthermore, the simulated system has no error estimation or correction 

capabilities nor are guard intervals or guard bands used. An overview of simulation set-up is given in 

table 3-5 through 3-8, while the respective results are shown in figure 3.7 through 3.10. 
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Table 3-5 : WPM Frequency Offset Simulation with Various Filter Length 

Simulation Parameters  

Wavelet Type  Daubechies 

Wavelet Filter Length 2 (Haar), 4, 10, 20, 40 

Number of Subcarriers 128 

Number of Multicarrier Symbols per Frame 30 

Modulation QPSK 

Channel AWGN 

Oversampling Factor 10 

Frequency Offset  0.1f   

 

 

 

Figure 3-7 : WPM Frequency Offset Performance with Various Filter Length 

 

Figure 3.7 illustrates the bit error rate (BER) of OFDM and WPM transceivers with relative frequency 

offset of 10% with regard to subcarrier spacing. BER curves of different wavelets and OFDM show 

similar performance but due to frequency offset they all lie far from theoretical curve. 

 

AWGN Channel; Frequency Offset 10% of Subcarrier Spacing 
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Table 3-6 : WPM Frequency Offset Simulation with Various Number of Subcarriers 

Simulation Parameters  

Wavelet Type  Daubechies 

Wavelet Filter Length 20 

Number of Subcarriers 128, 64, 32, 16, 8 

Number of Multicarrier Symbols per Frame 30 

Modulation QPSK 

Channel AWGN 

Oversampling Factor 10 

Frequency Offset  0.1f   

 

 

Figure 3-8 : WPM Frequency Offset Performance with Various Number of Subcarriers 

 

The figure 3.8 is obtained during simulation where we investigate the influence of the amount of 

subcarriers in combination with frequency offset on the BER. All WPM transceivers are now 

simulated with the same wavelet but with different number of subcarriers. We arbitrarily chose the 

Daubechies wavelet with 20 coefficients. Furthermore the relative frequency offset is set to 10% and 

again we use AWGN channel.  

AWGN Channel; Frequency Offset 10% of Subcarrier Spacing 
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The degradation of WPM „s BER in the presence of frequency offset is dependent on the number of 

subcarriers. This is straightforward when the absolute frequency offset is fixed [11], as for the more 

subcarriers in a given bandwidth the subcarrier spacing decreases and hence the relative frequency 

offset increases. However, in the figure 3.8 the relative frequency offset with respect to inter-carrier 

spacing is kept constant and there are still noticeable differences in the number of subcarriers used. 

The WPM with more subcarriers are slightly more susceptible to the frequency offset. This sensitivity 

decreases with increasing the number of subcarriers. From figure 3.8 we can also see that the 

performances of WPM with 64 and 128 subcarriers are almost identical for a given relative frequency 

offset. 

Table 3-7 : WPM Frequency Offset Simulation with Various Number of Symbols 

Simulation Parameters  

Wavelet Type  Daubechies 

Wavelet Filter Length 20 

Number of Subcarriers 128 

Number of Multicarrier Symbols per Frame 100, 80, 60, 40, 20 

Modulation QPSK 

Channel AWGN 

Oversampling Factor 10 

Frequency Offset  0.1f   

 

 

Figure 3-9 : WPM Frequency Offset Performance with Various Number of Symbols 

AWGN Channel; Frequency Offset 10% of Subcarrier Spacing 
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Table 3-8 : WPM Frequency Offset Simulation with Various Frequency Offsets 

Simulation Parameters  

Wavelet Type  Daubechies 

Wavelet Filter Length 20 

Number of Subcarriers 128 

Number of Multicarrier Symbols per Frame 100, 80, 60, 40, 20 

Modulation QPSK 

Channel AWGN 

Oversampling Factor 10 

Frequency Offset  0.05 0.4f    

 

 

 

Figure 3-10 : WPM Frequency Offset Performance with Various Frequency Offsets 
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Frequency offset in WPM does not only lead to ICI inside one symbol but across the whole frame. 

Therefore, it is important to see the effect of the frame size in combination with the frequency offset. 

Figure 3.8 shows that the amount of multicarrier symbols in a frame does not affect the performance 

of WPM in the presence of frequency offset.  

In figure 3.10 the BER is shown for different values of relative frequency offset varying from 10% to 

40%, relative to the subcarrier spacing. During this simulation we kept SNR constant at 16 dB. Again 

we can see that the performances of majority of the wavelets are very similar to that of OFDM, while 

Haar wavelet slightly outperforms other wavelets and OFDM. The figure 3.10 implies that WPM and 

OFDM are both very sensitive to the frequency offset, since small variations of frequency offset 

degrade the system performance significantly. 
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3.3 Summary of Synchronization Impairments 

In this chapter we studied the effects of synchronization errors, mainly the effects of time offset and 

frequency offset, on WPM and OFDM transceivers. The frequency offset and phase noise lead to the 

loss of orthogonality and subcarriers begin to interfere with each other. In OFDM interference is 

limited to ICI but in WPM the frequency offset and phase noise cause ICI as well as ISI. The effect of 

time synchronization error was also discussed. Akin to OFDM, we have found that timing error in 

WPM contains two components: ICI and ISI. There is however significant difference between both 

schemes in presence of timing error. Namely, the ISI in OFDM arises only between successive 

symbols while in WPM a number of symbols interfere one with another.  

The effects of frequency offset and time synchronization errors were also examined by the 

simulations studies. We choose a well-known wavelet (Daubechies) and apply various properties to 

study the effects of each properties to the performance of the system. The sensitivity of WPM and 

OFDM are quite similar in presence of frequency offset. However, time synchronization error is 

found to be a major drawback of WPM transceiver. The simulations have shown that OFDM has 

much lower BER under timing errors when compared to WPM, mainly due to use of cyclic prefix in 

OFDM. Therefore, in the case of OFDM without CP, the performance will be more or less the same 

with WPM. 

After observing the performance of WPM in the presence of time and frequency offset, we can 

conclude that WPM is not as reliable as OFDM if there are any time synchronization impairments, 

and hence a time synchronization scheme is vitally needed. Therefore, in the next chapter we will 

present the synchronization method for WPM to reduce the destructive effect of time offset and 

frequency offset. 
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4 SYNCHRONIZATION IN WPM 

 

 

 

 

n the previous chapters we have seen that the WPM„s subcarriers overlap in both time and 

frequency domain. Therefore, unlike in OFDM, the use of simple guard interval in WPM cannot 

prevent ICI and ISI from occurring when symbols are not correctly aligned at the receiver. This 

phenomenon is also closely related to possible methods of synchronization in WPM. Many 

synchronization techniques in OFDM rely on the use of guard interval and cyclic prefix. Therefore 

most OFDM synchronization techniques deal with the design of preamble and utilization of the cyclic 

prefix itself.  

Although WPM provides other benefits such as freedom to choose the shape and properties of the 

waveforms, but in case of synchronization we need a synchronization techniques for WPM that is 

independent of the use of guard interval and cyclic prefix. In this chapter, recent works in the 

synchronization of WPM as well as possible synchronization method for WPM without using guard 

interval or cyclic prefix will be discussed. 

4.1 Time Synchronization in WPM  

4.1.1 Recent Works in Time Synchronization for WPM 

The available literature on synchronisation algorithms for WPM modulated signals is sparse in 

comparison with the DFT-based schemes like OFDM. Fortunately, some of the work done for other 

multicarrier modulation schemes can be readily adapted to WPM. The early-late method proposed by 

Louveaux et al. to synchronise their filter bank based modulation scheme for DSL [21] provides for 

instance a good framework to derive a solution for WPM. While the method has shown to be capable 

of presenting a very low jitter, it has however the disadvantage of requiring the receiver to calculate 

both the early and late samples in addition to the on-time output samples. This directly leads to a two 

fold increase of complexity due to synchronisation only. To overcome this issue, Vandendorpe et al. 

proposed a more advanced method in [26] working at a sample rate. 

I 
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Luise et al. have derived a non-data aided synchronisation scheme for multirate wavelet modulation 

[27]-[28]. Their method was then extended by Fu et al. to support signal timing initial acquisition [29] 

as part of the work on synchronisation for fractal modulation [30]-[31]. Sablatash and Lodge chose 

instead to insert a reference sequence in order to achieve synchronisation for a WPM signal generated 

by any arbitrary tree structure [32]. The proposed method is unfortunately not easily scalable and 

rather computationally intensive.  

One of the most recent methods is the work of Jamin [36], which addresses the time synchronization 

more specific in the fractional or subsampling domain. The Mueller and Muller (M&M) algorithm 

[34], originally introduced for SC modulation, is derived from the maximum likelihood function. The 

simplest approximation of the algorithm makes use of only two consecutive estimates [ 1]x l  , [ ]x l  

and their corresponding symbols after the decision [ 1]x l  , [ ]x l , in which: 

 [ ] [ 1] [ ] [ ] [ 1]MM l x l x l x l x l      (4.1) 

where MM  is is the estimate of the sampling phase error. Equation (4.1), using the decision 

symbols x , belongs to the family of decision directed algorithms [35]. In this case, known data 

sequences can be used instead of the decision symbols. This is of particular interest since not having 

decision errors leads to a better performance especially at low SNR. From a practical point of view, 

this is rather easy to set up with multicarrier schemes as it is common to have some pilot subcarriers 

modulated with known data symbols.  

However, since the Mueller and Muller algorithm has been designed for SC modulation, its adaptation 

to the WPM scheme requires further attention. Louveau et al. have actually adapted it to the CMFB 

modulation [26]. It is however noticeable that their derivation, despite the fact that it is based on 

empirical analysis, is also valid for other multicarrier schemes, including WPM. Independent of the 

scheme actually considered, a number of differences with the SC case must be emphasised. In 

multicarrier systems, the modulated symbols are only available at the transform output. Therefore the 

subcarrier symbols are only available at every M sampling periods T. This leads to a loop delay that is 

much higher than with typical SC scheme, hence limiting the minimum convergence time of the close 

loop system it is a part of. In addition, the subcarriers being by definition centred on a different sub-

band of the overall channel, the sampling frequency offset estimation must therefore be evaluated on 

several subcarriers to increase robustness against frequency selective fading. We must therefore 

choose how to combine the different estimates.  

Figure 4-1 illustrates the implementation scheme of Mueller and Muller algorithm, with 
i  and i  

denotes the received signal and the pilot signal, respectively.   
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Figure 4-1 : Architecture of the M&M multicarrier timing offset estimator 

 

Derivation in [26] has also shown that the sign of the sampling phase estimate is inverted for the 

subcarriers with an even index (subcarriers are indexed from 0 to M-1, with M being the transform 

size). Hence, the estimate on those subcarriers having an even index must be inverted before 

combination. Taking all these considerations into account, we can express the multicarrier sampling 

offset estimate   as 

 
1[ ] ( 1) [ ]k

kk

k

l l  



    (4.2) 

where  is the subset of the subcarrier indexes used to estimate the overall timing offset, k  is a real 

positive weighing factor of subcarrier k. 

The symbol [ ]k l  denotes the timing error estimate on subcarrier k directly derived from Equation 

(4.2) which can be rewritten here as a function of the multicarrier symbols as 

 1, , , 1,[ ]k l k l k l k l kl          (4.3) 

The introduction of the weighting factor k  raises, of course, the question of how the estimates on the 

different subcarriers should be combined in order to obtain the final timing offset estimate. To clarify 

this particular point, Figure 4-2 plots the estimates [ ]k l  of a WPM modulated signal as a function 

of the actual timing offset   for each subcarrier. This particular case makes use of a 16-point 

transform of the Daubechies order 6 wavelet.  
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Figure 4-2 : Fractional time offset estimates of WPM (db6, 16 subcarriers) 

 

It must be noted that, in this case, the subcarriers have been reordered in such a way that the higher 

the index k is, the higher the subcarrier centre frequency is. This is important as it clearly emphasises 

that the slope of the curve and its validity range are related to the position of the centre frequency of 

the subcarrier. In other words, the subcarriers of lower centre frequency can estimate the timing offset 

on a wider range, while the subcarriers with a higher centre frequency can estimate the timing offset 

more accurately. Altogether, this gives us an insight in order to decide how to choose the weighting 

factors k . Ultimately, the k  could be calculated adaptively according to the value of the Timing 

Offset Estimator (TOE). At startup time, the range will be favoured. When the system has reached a 

low TOE and thus would be in tracking mode, the accuracy could be given a higher weight in the 

overall TOE instead. The approach chosen is intermediate as the k  have been chosen in order for 

0  to have a unity slope around the origin. 

4.1.2 Proposed Method for Time Synchronization in WPM 

While M&M method provides good performance in time synchronization, this method is more 

restricted to work in subsampling domain. To be implemented in a system, a more “coarse” 

synchronization method that is able to handle time offset larger than one sample is needed. This 

domain is where the proposed method will take place. 



[ Chapter 4 ] 

67 | P a g e  

 

This proposed time synchronization method in Wavelet Packet Modulation (WPM) system uses 

correlation method in wavelet domain (after processed by the analysis filter bank). The method is 

based on Kjeldsen and Lindsey study about a feed-forward decision-directed approach to be 

implemented within a WPM demonstration prototype [33].  The method consists in regenerating the 

transmit signal at the receiver, with assumption that the received symbols are correctly detected. The 

algorithm then resamples the input signal in order to reach the best correlation between the locally 

generated signal and a delayed version of the received signal. This technique can be categorized as 

"decision directed synchronization" since it is based on using symbol decisions at the receiver to assist 

the synchronization process.  

 

 

Figure 4-3 : WPM Symbol Synchronization Block Diagram 

 

If the symbol decisions are correctly estimated, we can reconstitute the composite transmit WPM 

signal at the receiver based on these decisions. The reconstituted transmit signal is then correlated 

against a sliding window of signal samples out of a receiver matched filter. The correlation output 
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value will be the greatest when the window is optimally aligned between the directly received signal 

and the reconstituted transmit signal; an approximation to the "maximum likelihood criterion". The 

slide index (modulo reduced with respect to the transmit pulse period) corresponding to this 

maximum correlation value thereby informs the receiver which samples of the received signal 

correspond to the most interference-free symbol values. 
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where: 

  is the maximum likelihood timing estimator,  

M is the number of subbands, 

K is the observation window size in symbols, 

,i ky  is the k-th received complex symbol from the i-th analysis subband, 

ig  is the known channel attenuation factor for the i-th analysis subband, 

,
ˆ

i ka  is the k-th symbol decision out of the i-th analysis subband, 

 

Although this form of the MLDD is mathematically simple, in the implementation timing estimator 

requires excessive computation at the branches of the receiver analysis filter bank, therefore it is not 

computationally efficient. We can make some adjustments to the computation to achieve more 

efficient implementation: 
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where: 

ny  is the n-th sampled complex output from the receiver matched filter, 

,i nh  is the cascaded filter impulse response of the i-th analysis subband, 

The rearrangement of terms in (4.5) allows the use of the sampled supersymbol values ny  (prior to 

decimation) instead of the M leaf values ,i ky . The inner summation group within the brackets can be 

easily formed by passing the product of the ig  channel attenuation factors and the slicer ,
ˆ

i ka  symbol 

decisions through a synthesis bank equivalent to that of the transmitter. The result is then passed into 

a sliding correlator along with the delayed ny  supersymbol samples. Implementation of the MLDD 

timing estimator could “borrow” the synthesis filter bank (IDWPT) for use in synchronization during 
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packet reception and release this resource to the transmitter (in the same transceiver) to use when 

needed for the WPM transmission. This scheme is depicted in figure 4-3. 

Based on simulation studies, a modification to (4.5) can decrease the variance and improve the 

convergence and stability properties of the WPM MLDD timing estimator. Instead of using the arg(•) 

of the maximum likelihood function, the index(•) corresponding to modulo of operation of the 

maximum correlation slide and the sN  (which is number of samples per WPM pulse). The result is: 

 , ,

1 0

ˆindex max mod
iNm N M

n i k n i i k s

n m i k

y h g a N






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 
  

 
   (4.6) 

where sN
 
is the number of samples per WPM pulse, 

The MLDD timing estimator in (4.6) is suitable for WPM because it is based solely on correlation 

principles. Therefore, the difficulty in exploiting the non-conventional shape of the WPM symbols is 

not a concern. Instead of correlating all subcarriers, this method only correlate one specific subcarrier 

with its corresponding pilot. In real implementation, the pilot can be replaced by the decision symbol 

(after symbol constellation mapping) in the receiver, although this will result in degradation of 

performance in low SNR condition.  

The algorithm works as follows. For a given observation window, the output of certain branch of the 

analysis filter bank is feeded to a sliding correlator window (which consists of the pilots of the 

corresponding subcarriers). This will give a series of result in the same size of the observation 

window. The largest value (the peak) of this result will correspond to specific value in the observation 

window, which is also the time offset estimates. 

Assuming the input complex symbol constellations are independent and identically distributed (i.i.d.) 

and a sufficient symbol correlation window size is selected, the MLDD timing estimator should 

converge without requiring special training symbols [33]. A channel estimator is required to compute 

the channel attenuation factors, but for the sake of simplicity, in this scenario the channel are either 

not used or completely known to the receiver.  

4.1.3 Numerical Results 

The performance of proposed synchronisation algorithm is valuated through simulation. The 

performance of the timing estimation is first illustrated by using simple scenario where the time offset 

is constant and known to receiver. For this particular simulation all the subcarriers are used as 

reference pilots for the purpose of illustration. The other parameters used are listed on table 4-1. 
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Table 4-1 : WPM Time Synchronization Simulation 1 

Simulation Parameters  

Wavelet Type  Daubechies 20 

Number of Subcarriers 128 

Number of Multicarrier Symbols per Frame 30 

Modulation QPSK 

Channel AWGN 

Oversampling Factor 1 

Time Offset 2t   

 

In this simulation, observation window size used, denoted by K in (4.4), is 25% of the symbol length. 

This is sufficient enough to give reliable estimation, as seen in the results. Although theoretically a 

larger observation window (e.g. 50% of symbol length) will give better performance, the difference is 

negligible, while the complexity of the process will increase drastically.  

 

 

Figure 4-4 : Time Estimation with Time Offset = 2 and SNR: 30, 20, 10, and 5 dB 
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Time offset used in this simulation is 2 sample to the right and applied to all subcarriers in the frame. 

The correlation of the time estimates is shown for various SNR, the algorithm works successfully 

when the correlation peak is at the given time offset (2 sample). 

 

 

Figure 4-5 : Time Estimation with Time Offset = 2 and SNR: 0, -5, -10, and -20 dB 

 

As seen in figure 4-4 and 4-5, the proposed method can still successfully estimate the given time 

offset in low region SNR (5 dB). But in lower SNR, such as SNR 0 and -5 dB, the performance 

degradation is significantly appeared. Although in this simulation the SNR 0 and -5 dB can be 

estimated successfully, this result might not accurately reflect the overall performance of the estimator 

since this simulation is done in singular basis (each result comes from one simulation). Therefore, a 

more complex simulation environment is needed. 
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Table 4-2 : WPM Time Synchronization Simulation 2 

Simulation Parameters  

Wavelet Type  Daubechies 20 

Number of Subcarriers 128 

Number of Multicarrier Symbols per Frame 30 

Modulation QPSK 

Channel AWGN 

Oversampling Factor 10 

Time Offset 2.5 2.5t    

 

The second simulation mainly uses same parameter as the first simulation, but in this scenario the 

time offset is generated randomly from -2.5 to 2.5 samples with uniform distribution and 0.1 sample 

interval. The receiver must estimate the correct time offset and the result will be averaged over 1000 

independent iteration. The result is shown in Figure 4-6. 

 

 

Figure 4-6 : Percentage of Successful Estimation vs SNR 
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The reason why fractional time offset is included in this simulation is to make the environment more 

realistic. In the implementation, the proposed method can be combined with M&M estimator to form 

a “Coarse-Fine” estimator. The proposed estimator acts as “coarse” estimator which synchronize the 

larger or integer part of the time offset, while M&M do the “fine tuning” to mitigate the fractional 

time offset. 

Figure 4-6 reveals that the proposed estimator has more than 95% successful estimates (out of 1000 

simulation) in SNR 10 dB or larger. To observe the effect of different length wavelet filters, 

simulations with Daubechies wavelets with filter length 2, 4, 10, and 20 are conducted. The results are 

depicted in Figure . It can be observed that the use of longer wavelet filter will result in a slight 

performance degradation, but in practical use this difference may become negligible.  

 

 

Figure 4-7 : Percentage of Successful Estimation for Different Wavelet Filter Length 
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Figure 4-8 : Average BER for Different Wavelet Filter Length 

 

 

Figure 4-9 : Mean Square Error for Different Wavelet Filter Length 
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Figure 4-8 shows the performance of the WPM in presence of time synchronization error when the 

number of subcarriers and symbols in the frame is altered. For increasing length of wavelet filter the 

BER slightly decreases. In Figure 4-9, we can see the same trend continues where the performance of 

wavelet filter with longer length will degrade. i.e. has higher MSE value, especially in the 0 to 10 dB 

SNR region. In the high SNR region the difference then become once again negligible. 

After estimation process is finished, the synchronization errors then can be corrected with digital 

interpolators (usually implemented as a bank of FIR filters known as a Farrow structure). It may be 

noted that in this experiment, the interpolator used are simply the inverse process of adding the offset 

to the signal transmitted. Therefore, although fractional offset can be estimated, the compensation 

implemented here is only work in integer domain. For a more accurate result, digital interpolator with 

Farrow structure will be needed, but this will be left for future works as the main objective of this 

simulation is to provide preliminary results in wavelet synchronization. According to Meyr et al., 4-

tap FIR filters and a quadratic polynomial are sufficient for virtually all practical applications [37], 

The notation x,  , and y denote the input, step coefficient, and output, respectively while HM, Cm, 

and Z denote the polyphase component, filter coefficient, and delay, respectively. 

 

Figure 4-10 : Farrow Structure of the Polynomial Interpolator [37] 

 

4.2 Frequency Synchronization in WPM 

As discussed in the previous chapter, the orthogonality between the subcarriers is maintained at the 

receiver only if the transmitter and receiver have the same reference frequency. Any offset in the 

frequency will result in loss of orthogonality and hence in generation of interference. The interference 

is the most severe consequence of frequency offset but not the only one. Besides the interference 

term, frequency offsets initiates attenuation and phase rotation of each subcarrier. Generally 

frequency offset can be caused by misalignment between receiver and transmitter local oscillator 

frequencies or due to Doppler shift. 
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To mitigate the frequency offset, the first step is to do frequency offset estimation. One possible 

method to do this is by using M&M algorithm, that is also used in timing offset estimation. The 

motivation of using M&M algorithm in carrier frequency offset (CFO) estimation is because it is 

related to baud rate timing correction in single carrier systems, as proven in [28]. However, in this 

experiment, we only explore the estimation process, without meddling into the acquisition or 

interpolation process. Theoretically, by using a LMS algorithm for CFO estimate updating, the 

estimated CFO equals: 

 1 ,
ˆ ˆ
k k M M kf f       (4.7) 

Where M  is step size with M&M  based acquisition. In the area of 0.5 0.5fT     there will be 

an unique locking point, which make the LMS algorithm drive the CFO to zero [28]. 

 

 

  

Figure 4-11 : M&M algorithm with correlation per subband basis (denoted in the shaded area) 

 

 

 

 

Figure 4-12 : M&M algorithm with correlation utilizes all subcarriers of the subbands  

(denoted in the shaded area) 
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Figure 4-11 and 4-12 show two different processes of calculating with the M&M algorithm. In 

estimating the time offset, we use the approach depicted by Figure 4-11, while in estimating 

frequency offset or CFO we use the approach illustrated by Figure 4-12. The simulation parameter 

used in this chapter summarized in Table . 

 

Table 4-3 : WPM Frequency Synchronization Simulation 

Simulation Parameters  

Wavelet Type  Daubechies 20 

Number of Multicarrier Symbols per Frame 30 

Modulation QPSK 

Channel AWGN 

Oversampling Factor 10 

Frequency Offset 0.5 0.5f     

 

 

 

Figure 4-13 : S-curve of CFO estimator with perfect decisions and zero phase error 
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Figure 4-13 shows the error function for the estimated CFO as estimation error E[ ] versus the 

normalized frequency offset fT . It can be observed that the error performance is affected by the 

number of subcarriers in the modulation, and the better performance is shown by the less number of 

subcarrier being used. This aligns well with the fact that the more subcarrier utilized the less robust it 

will be against frequency imperfection, as discussed in Chapter 3. 

4.3 Summary of WPM Synchronization 

WPM lacks several of the waveform aspects that facilitate synchronization of OFDM. This is because 

the constituent elements of a WPM orthogonally-multiplexed symbol vary in shape across the sub-

band scales. The scaling function that generates the wavelet basis family effectively “dilates” the 

pulse shape to create the orthogonality in time. There is no place for a guard interval or CP in WPM, 

so it is not possible to incorporate synchronization-aiding information on a similar periodic basis as in 

OFDM.  

In this chapter we have presented synchronization techniques for WPM to overcome large or coarse 

timing errors based on Kjeldsen and Lindsey study of a feed-forward decision-directed approach. The 

method consists in re-generating the transmit signal at the receiver assuming the detected symbols are 

correct. The algorithm resamples the input signal in order to reach the best correlation between the 

locally generated signal and a delayed version of the received signal. The method's main advantages 

are its low implementation complexity and is its flexibility. It can be made either data-aided or 

decision-directed, depending on the requirements of the application at hand. It proved to be robust as 

it is capable of tracking the time offset even in the presence of a large offset (more than 2 samples).  

Another synchronization problem in WPM is the presence of frequency offset . Frequency offset can 

be caused by misalignment between receiver and transmitter local oscillator frequencies or due to 

Doppler shift. In OFDM and WPM the frequency offset prevents the perfect alignment of FFT bins 

with the peaks of the sinc pulses i.e. subcarriers. Mueller and Müller algorithm can also be used in 

estimating the frequency offset, as well as the time offset. 

Further work on synchronization methods for WPM is necessary in order to enable and fully exploit 

its capability. The case of time varying multipath channel does for instance require further work. 

Alternatively, the methods proposed here can be combined with designing an orthogonal wavelet 

filter pair specically optimised to show robustness to synchronization errors. 
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5 CONCLUSION 

 

 

 

 

n this thesis work we have addressed the sensitivity of novel Wavelet Packed based Multi-

Carrier (WPM) transmission system to the carrier frequency offset and time synchronization 

errors. Furthermore, we have proposed a synchronization method to estimate time and frequency 

offset, as the first step to mitigate those problems in WPM. 

5.1 Key Research Conclusions 

The core conclusions of this effort can be summarized in the following points:  

 Spectral efficient multicarrier transceivers as WPM and OFDM are vulnerable to time offset 

which causes subcarriers to lose their mutual orthogonality and begin to interfere one with 

another. Under time synchronization errors OFDM can take advantage of cyclic prefix to greatly 

reduce the generation of interference as opposed to WPM which cannot benefit from such 

constructions due to time overlap of the symbols. Nevertheless, cyclic prefix in OFDM fails to 

prevent interference from occurring if offset value is larger than the size of the prefix or when 

offset is in the opposite direction with regard to symbol„s own prefix. When parts of the 

neighboring symbols get erroneously selected at the OFDM or WPM receiver windows, the 

demodulated signal will be distorted by Inter Symbol Interference (ISI) and Inter Carrier 

Interference (ICI). In OFDM, ISI arises only due to neighboring multicarrier symbols, while in 

WPM more than two multicarrier symbols contribute to the ISI generation. 

 In OFDM performance degradation due to frequency offset is limited to the interference among 

the subcarriers within one OFDM symbol (ICI), while in WPM subcarriers from multiple 

symbols interfere with each other (causing ICI + ISI). This dissimilarity in the interference 

behavior is due to the manner in which the subcarriers in wavelet and Fourier based systems are 

created. The signals generated by OFDM overlap only in frequency domain while WPM 

generated signals overlap in both frequency and time domain.  

 Simulations studies have shown that the performance degradation of WPM and OFDM are quite 

similar in the presence of frequency offset. However, time synchronization error is found to be a 

I 
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major drawback of WPM transceivers. Therefore, we focused our attention on the time 

synchronization error and attempted to find a solution for the large performance gap between 

WPM and OFDM transceivers under timing errors.  

 As the first step to mitigate synchronization problem in WPM, we studied the possible methods 

of synchronization to be implemented in WPM system. Most of the methods we tried is derived 

from synchronization method in OFDM which doesn‟t utilize the cyclic prefix in the process. 

Among the methods, two have been emerged as the most suitable candidate for the WPM 

synchronization, namely the Mueller & Muller based algorithm and the Maximum Likelihood 

Decision Directed (MLDD) algorithm. We have tried both algorithms but the reported Jamin‟s 

results for Mueller & Muller based algorithm [36] were not reproducible. Thus we decided to 

move on with the MLDD approach which only relies on the correlation properties of the wavelet 

signals. 

 While the synchronization method based on Mueller & Muller algorithm provides a good 

performance in time synchronization, this method is more restricted to work in subsampling 

domain. To be implemented in a system, a more “coarse” synchronization method that is able to 

handle time offset larger than one sample is needed. This domain is where the proposed method 

will take place. The proposed time synchronization method in Wavelet Packet Modulation 

(WPM) system uses correlation method in wavelet domain (after processed by the analysis filter 

bank). The method is based on Kjeldsen and Lindsey study [33] about a feed-forward decision-

directed approach.  

In this thesis work we study the effects of synchronization impairments, mainly time offset and 

frequency offset, to the performance of WPM and OFDM systems. Our simulation results show that 

the sensitivity of WPM and OFDM are quite similar in presence of frequency offset. However, time 

synchronization error is found to be a major drawback of WPM transceiver. This thesis work can be 

considered as a preliminary work to the complete design of synchronization algorithm specifically 

tailored for the WPM, as the method proposed in this thesis work is only derived from OFDM 

synchronization methods with some adjustments. Considering the great potential of WPM, time 

synchronization of WPM remains a challenging issue to solve in the future.  

5.2 Recommendations for Further Research 

Although the theory of wavelet transform has been well-evolved and documented over the past years, 

the use of wavelets in the telecommunication systems is still in the early stage of the development. 

Therefore, there remain several important issues and concepts that are worth investigating.  

 The first suggestion concerns time offset correction. In this thesis the vulnerability of WPM to 

time synchronization errors was addressed and timing offset estimation method for WPM was 
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proposed and implemented. Nevertheless, the fact remains that we cannot use guard intervals 

because of the overlapping nature of WPM symbols, therefore only moderate timing errors are 

acceptable. For this reason, a robust frame synchronization algorithm is still needed to be 

developed, especially in the tracking process to correct large time offsets after estimated by the 

proposed method. 

 Secondly is the complexity analysis of the synchronization methods. The complexity analysis of 

the proposed modified MLDD compared to the original MLDD can be necessary when it comes 

to implementation issues. It is also interesting to compare the complexity of the WPM 

synchronization algorithms with existing OFDM synchronization algorithms, which can be a 

useful reference in transceivers design. 

 Next is regarding frequency offset correction in WPM, this thesis work only addresses the 

estimation of frequency offset. Therefore, a robust method of frequency tracking after the 

estimation is still need to be developed. 

 The other synchronization problem not addressed in this thesis work is the phase noise that can 

be caused by thermal noise, causing the oscillator„s central frequency to fluctuate a bit. The 

influence of the phase noise on multicarrier transmission can be divided into two parts: Common 

Phase Error and Interference. Phase noise can also cause the loss of orthogonality between 

subcarriers, therefore synchronization methods to mitigate phase noise are also needed in the 

successful implementation of WPM systems. 

 Finally, in this thesis work, the synchronization impairments are tested one at a time to simplify 

the analysis, meaning that the time offset and frequency offset are assumed independent for each 

simulation. An interesting further research would be to implement a joint time-frequency 

synchronization methods and test them in a more realistic environment, such as wireless channels 

where the time and frequency offset can occur simultaneously, together with the fading and 

multipath, etc.  
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